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Minimax strategies in survey sampling

Siegfried  G a b l e r  and Horst  S t e n g e r , Mannheim

Abstract

The risk of a sampling strategy is a function on the parameter space, which is the set of all vectors

composed of possible values of the variable of interest. It seems natural  to ask for a minimax stra-

tegy, minimizing the maximal risk.

So far answers have been provided for completely symmetric parameter spaces. Results available

for more general spaces refer to sample size 1 or to large sample sizes allowing for asymptotic ap-

proximation.

In the present paper we consider arbitrary sample sizes, derive a lower bound for the maximal risk

under very weak conditions and obtain minimax strategies for a large class of parameter spaces. Our

results do not apply to parameter spaces with strong deviations from symmetry. For such spaces a

minimax strategy will prescribe to consider only a small number of samples and takes a non-random

and purposive character.

AMS classification: primary 62D05, secondary 90D45
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1. Introduction

Consider a population of units N,2,1 Κ  and associated values  N21 y,y,y Κ   of a  characteristic

of interest. The parameter (vector)  ( ) 'y,y,yy N21 Κ= ,  and especially the parameter sum

N21 yyyy +++= Κ   are unknown to us. So we select a sample s of size  n,  i.e.  an element of

{ }{ },ns,N,2,1s:sS =⊂= Κ

choose weights  si,a si ∈  ,  ascertain the values  si,yi ∈ ,  and  estimate  y  by

∑
∈si

isi ya  .

A sample may be selected randomly. Let  sp   be the probability of selecting  s S∈ ;  then sps:p →

is called sampling design. An estimator is a function  t  assigning a real value

( ) ∑=
∈si

isi yay,st

to each pair of a sample  Ss ∈   and a parameter  y   .

( ) ( )[ ]2

s
s yy,stpt,p;yR ∑ −=

is the risk of the strategy  ( )t,p ,  p  a design and  t  an estimator.

The strategy we use should reflect our prior knowledge. The set of a-priori possible parameters is

called parameter space  Θ  .  Several authors have considered the space

( ) ( ){ }22
i

N1 cyy:yT ≤∑ −ℜ∈=

with  N/yy =   and 0c ≠ ;  see Bickel and Lehmann (1981), Gabler (1990). Stenger and Gabler

(1996) discuss, more generally,

( ) ( ) ( ){ }2
jiij

N2 cyyyyd:y ≤−−∑∑ℜ∈=Θ
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with  )d( ij   a positive definite NN ×  matrix. Usually, values  0x,x,x N21 >Κ   of an auxiliary

variable related to the variable of interest are available and, especially,  Θ   may depend on

( ) 'x,x,xx N21 Κ=  .  An example is

( )













∑ ≤





 −








ℜ∈= 2

2

ii
i

N3 cx
x
y

y
x
x

:yΘ

with  N/xxandxxxx N21 =+++= Κ  .  See Stenger (1989)  and  Gabler (1990). We refer

to Cheng and Li (1983, 1987)  for further examples.

In the present paper we consider

{ }2N cyU'y:y ≤ℜ∈=Θ (1)

where  U  is non-negative definite of rank  N-1  with

0xU =  ,

( ) N'0,0,00 ℜ∈= Κ .  In a subsequent paper we will give a detailed justification of this approach.

Presently we confine ourselves to note that the spaces  ( ) ( ) ( )321 and, ΘΘΘ  ,  discussed in the lite-

rature, are special cases of  .Θ   Additional comments are given in section 7.

The condition

1x =

is not restrictive and will be assumed throughout the paper. Obviously,



C:\Eigene_Dateien:minimax_gast_Disc_Pap

4

( ) ( )

( )( ) ( )

( ) ( )yU'yxyy
x
1

N
1

yU'yyyyyd

yU'yyy

32
ii

i

2
jiij

12
i

=−∑

=−−∑ ∑

=∑ −

with

( )

( ) ( )
( ) ( )

( ) '11
N
1

xdiag
N
1

'1xIxdiag
N
1'x1IU

'11
N
1

Id'11
N
1

IU

'11
N
1

IU

1

13

ij
2

1

−=






 −⋅⋅





 −=







 −






 −=

−=

−

−

and

( ) 0xU i =

in all cases, with  2,1iforN/1x ==  .  Here and subsequently,  1  is the  N-vector with all com-

ponents equal to  1;  I  is the  NN×   identity matrix and diag(x)  the diagonal matrix  D  with

.N,2,1iforxd iii Κ==

2. Main results

Define

( ) ( )t,p;yRsupt,pr
Ty∈

=

A strategy  






 **
t,p   is minimax if
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( )
( ) ∞<=








t,prmint,pr

t,p

**

For  ( )1Θ=Θ   we have

( )









=

−
−

=

**

2

)t,p(

t,pr

c
1N
nN

n
N

t,prmin

where  
*
p   denotes simple random sampling without replacement, i.e.   








=

n
N

1ps

*
  for all  Ss ∈ ,

and

( ) ∑=
∈

∗

si
iy

n
N

y,st

is the expansion estimator. See e.g. Stenger (1979), Bickel and Lehmann (1981), Gabler (1990).

Hence, a minimax strategy is available in case

( )

.N/1x
UU 1

=
=

Stenger and Gabler (1996) derive a minimax strategy for

( )

.N/1x
UtocloseU 1

=

In the present paper we assume

( )

N/1toclosex
UtocloseU 1

and show the following:

Let  zo  be the unique solution of
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∑ −=−
N

1
i

2 xzzn2N

and define κ = sgn(N-2n) and for  i N= 1 2, , Κ

i

i
2
oo

i x

xzz
d

−κ+
=   .

Then, an estimator 
*
t  and a design  

*
p   exists such that  







 **
t,p   is minimax where  

*
t   is defined by

( )
∑
∑

∑
∈

∈

∈

==

si
ii

si
ii

i
si

*
si

*

xd

yd
yay,st     .

An explicit formula for the design 
*
p  will be given in Theorem 3.

Defining iii xd=α , i = 1, ... N, ( )y,st
*

 can be written as a Hansen Hurwitz type estimator

( )
∑α

∑α
=

∈

∈

si
i

si i

i
i* x

y

y,st

Note that the śiα  do not depend on U, while the design  
∗
p  does. The śiα  and 

*
p  are free of  c.

We give an example. Let  N=3, n=2  and 1x2 i <  for i = 1, 2, 3. Define

∏ −⋅
−

=α )x21(5.0
)x21(

1
k

i
i   for i = 1, 2, 3

and for  ji,}j,i{s ≠=

( )
j

j

ji

j

i

i

ji

i
*

x

y

)x21(
1

)x21(
1

)x21(
1

x
y

)x21(
1

)x21(
1

)x21(
1

y,st

−
+

−

−
+

−
+

−

−
=    .



C:\Eigene_Dateien:minimax_gast_Disc_Pap

7











∑

−
−

−
+

−
−−=

k

k

j

j

i

i
jis

*

x21
x

x21

x2

x21
x2

)xx1(p   .

If  )3(U Θ=  and sp
∗

 is nonnegative for all samples s, 






 **
t,p  is the minimax strategy. The risk of








 **
t,p  at y  is

yU'y

x
)x21(

)x21(x
3
1

1
)t,p;y(R )3(

i
k

2
ii

**

∑ 









+

∏ −
−

=

3. Interpretation of the main results: game and regression theory

Consider the following 2-person  0-sum game:

Player I, called Nature, selects  ΘΘ∈ ,y  defined by  (1).  Independently, Player II,

called Statistician, selects  Ss∈ and si,a si ∈  and has to pay

( ) 2
isi yya∑ −   .

Let  0
sa   be the  N-vector with



 ∈

=−
otherwise0

siifa
componentthi si

Then, the pay-off

( ) ( ) ( )1a'yy
'

1ay
'

1a 0
s

0
s

2
0
s −−=



 −

is bounded for  Θ∈y   if and only if

1xa
si

isi =∑
∈

(2)
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The Statistician interested in a minimax strategy will only consider  si,a si ∈  with (2). Therefore, the

subset

}0y:Ty{T i0 =∑∈=

of Nature’s pure strategies is of primary importance.

Let  s S∈   be fixed and consider a mixed strategy  π   of  Nature  which is a discrete probability on

0Θ   giving rise to the pay-off

( ) ( ) ( ) ( )1aV
'

1a
'

1a'yy
'

1a)y( 0
s

0
s

0
s

0
s −−=−−∑ π

where

'yy)y(V ∑ π=

satisfies  01V =   .

Subsequently, vectors and matrices are partitioned in accordance with common use. For  a  NN×

matrix C,  a  N-vector  z  and  s ∈ S  we write  ssC   for the  n n× submatrix composed of all  cij

with  i, j ∈ s  and  sz   for the n-vector consisting of  iz  , si ∈  .

Defining

s
1

sss

s
1

ss
s

xV'x

xV
)V(a

−

−

=

we have

)1)V(a(V')1)V(a()1a(V')1a( 0
s

0
s

0
s

0
s −−≥−−

for all  sa   with (2), i.e. )V(a s   is a best reply of the Statistician to  V , as long as he is restricted to

s  (and (2)). This is an easy consequence from regression analysis. (See remark 1.)

Theorem 1  in combination with Lemma 5 show that a mixed strategy  
*
π   of Nature exists such that
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'yy)y(Q
*

∑π=
∗

has the following property:






 −





 −=ρ

∗∗∗
1)Q(aQ

'
1)Q(a 0

s
0
s

does not depend on  Ss ∈ .  Hence,  all

Ss,)Q(a,s 0
s ∈





 ∗

are best replies of the Statistician to Nature’s mixed strategy  
*
π  ,  defining  

∗
Q .

A sampling strategy  (p, t)  is a mixed strategy of the Statistician, with pay-off  )t,p;y(R  , y   a

pure strategy of Nature. In Theorem 2 we prove

( ) ρ≥
Θ∈

t,p;yRsup
y

for all strategies  (p, t) ,  i.e  ρ  is a lower bound for the maximal risk of sampling strategies.

Finally, we show in Theorem 3  that the equation

)1)Q(a(Q')1)Q(a(p
c

U 0
s

0
s

Ss
s

2
−−

ρ
=

∗∗∗

∈
∑

admits a solution  Ss,ps

*
∈   with  1ps

*
=∑ .  For  x   and  U  close to  1/N  and  N/'11I −  ,

respectively, we have  s

**

s

*
ps:p.e.i,Ssallfor0p →∈≥   is a design and, with

isi

*
y)Q(a)y,s(t

∗
∑=

it follows

yU'y
c

)t,p;y(R
2

** ρ
=
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and for all mixed strategies π  of Nature and all mixed strategies  (p, t)  of the Statistician

)t,p;y(R)y(

)t,p;y(R)y()t,p;y(R)y(

*

*****

π∑≤

ρ=π∑≤π∑

i.e.  )t,p(and
***

π   form an equilibrium point of the game considered and  ρ  is the value of this ga-

me. As an immediate consequence,

( )t,p;yRsup)t,p;y(Rsup
y

**

y Θ∈Θ∈
≤ρ=

for all  (p, t).  Hence,  )t,p(
**

  is minimax.

Remark 1. Consider the linear regression model

ε+β= xY

for  ( ) 'Y,Y,YY N21 Κ=   where  ε   is a  N-dimensional random vector with

Vvar

0E
2σ=ε

=ε

Here, β   and  0>σ   are (unknown) parameters. 01V =    implies

β=∑
N

1
iY

with probability 1; therefore, predicting  ∑
N

1
iY   coincides with estimating  β  .  A linear predictor

∑
∈si

isi Ya

is unbiased for  ∑
N

1
iY   if
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0YYaE
N

1
iisi =





 ∑−∑

i.e. (2). Of all linear and unbiased predictors

( ) )V(a'YVa'Y 0
sss =

has minimal variance:

( ) ( ) ( )
( )( ) ( )( )

s
1

sss

2

20
s

0
s

20
s

0
s

2
0
s

xV'x

1VaV
'

1Va

1aV
'

1a1a'YE

−

σ
=

σ−−≥

σ−−=



 −

for all ss Aa ∈ ,

{ }1x'a;sifor0a:aA i
N

s =∉=ℜ∈=  .

Hence, ( )Va'Y 0
s  is best linear unbiased (BLU) as an estimator of  β  and a predictor of ∑ iY .

4. Preliminaries

In this section we derive results on eigen-vectors and –values of non-negative definite NN ×  matri-

ces of the type

'vuC +  .

With a few exceptions we will have vu =  in which case we use the notation

?'11?C +

with a diagonal matrix ? . Of special importance are matrices

D)'11I(DC α−=
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D  always diagonal and often equal to I.

The vector x  which is an eigen-vector of the matrix U defining the parameter space Θ  will be es-

sential in this section while other properties of U play no role.

We will have occasion to apply the following two lemmas.

Lemma 1: Assume  C  regular and  0uC'v1 1 ≠+ − .  Then

uC'v1

C'vuC
C'vuC

1

11
1

1

−

−−
−

−

+
−=





 + (3)

and with  v u=

uC'u1

uC
u)'uuC(

1

1
1

−

−
−

+
=+ (4)

Lemma 2: For  0>α   and  a  diagonal  ∆× matrixNN   with  01?'1 ≠  ,  consider

?'11?'11IM +α−=

with eigenvalues

N21 λ≥≥λ≥λ Κ

Then

11N32 =λ==λ=λ −Λ

Proof:  For  Nu ℜ∈

uuM λ=

is equivalent to
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( ) 0u?'11?u'11u1 =




+





α−λ− (5)

Without restricting generality we assume linear independence of  ∆ 1  and  1 . Then, the equations

0u?'1,0u'1 ==   define  a  (N-2)-dimensional subspace with  N-2 eigenvalues, all equal to 1.

Define  λ−=µ 1   and multiply  (5)  from the left by  '1   and  ?'1  ,  respectively, to obtain

0)u?'1()1?'1()u'1()1?'1()u?'1(

0)u?'1()1?'1()u'1()1'1()u'1(

2 =+α−α

=+α−µ

or equivalently









=






















+µα−

α−µ
0
0

u?'1

u'1

1?'11?'1

1?'1N
2

Assuming  0u?'1or0u'1 ≠≠  we derive

0)1?'1()1?'1()N( 22 =α++µα−µ

with solutions

2

1?'11?'1N41?'1N1?'1N

,

2
2

2
22

21














−α+





 −α±−α

=µµ

satisfying

01?'11?'1N
2

2
21 ≤













−α−=µµ

because of the Cauchy-Schwarz inequality

1?'1N1?'1 2
2

≤





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Hence we cannot have  0and0 21 >µ>µ   at the same time; therefore

.1 N1 λ≥≥λ

Next we want to determine a diagonal matrix D such that

'xxD)
n

'11
I(DQ 11 +−= −−

is non-negative definite with rank N-1 and  Q1 = 0 . As shown in Lemma 4 this is possible for  x

satisfying the weak condition (7) given in Lemma 3. In Theorem 1 we will prove a fundamental pro-

perty of  Q.

Lemma 3: Consider  ( ) 'x,x,xx N21 Κ=   with  x = 1 and

N,2,1ifor0xi Κ=> .

A solution  0z   of

∑ −=−
=

N

1i
i

2 xzzn2N (7)

exists if and only if

∑ −≥− oi x/x1n2N (8)

where

{ }N210 x,x,xmaxx Κ=

The solution  0z   is unique.

Proof: Define
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( )

( ) ∑ −=

−=
N

1
i

2 xzzg

zn2Nzf

For  oxz≥

( ) n2N)z(fN
xz

1
zzg

N

1
i

2
−=′>>∑

−
=′

( ) ( )

( ) ( )

( ) 0xzx

zxzxz

xz

1
z

xz

1
zg

2/3
i

2
i

2
i

22/3
i

2

2/3
i

2
2

i
2

<∑ −−=

∑ −−−=

∑
−

−∑
−

=′′

−

−

Therefore,

( ) ( )zgzf =

admits at most one solution. A solution exists if and only if

( ) ( )oo xgxf ≥

which is equivalent to

∑ −≥− ioo xxxn2N

i.e.

∑ −≥− oi x/x1n2N

Lemma 4: Define  )n2N(sgn −=κ   and
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( )N21

i

i
2
oo

i

d,d,ddiagD

N,2,1ifor
x

xzz
d

Κ

Κ

=

=
−κ+

=

Then

'xxD)
n

'11
I(DQ 11 +−= −−

is of rank  N-1  and non-negative definite with

01Q =  . (9)

Proof: (9)  is equivalent to

.N,2,1i;0x
d
1

d
1

n
1

d
1

i
ji

2
i

Κ==+∑− (10)

With

jd
1

n2
1

z ∑= (11)

(10)  may be written

.N,2,1i;xzz
d
1

i
2

2

i
Κ=−=








− (12)

Now,  z,  d1 , … dN   solve  (11),  (12)  if and only if for some  ε1, … εN  =  1, – 1

N,2,1i;xzz
d
1

i
2

i
i

Κ=−ε+=

and

( )i
2

i xzzN
n2

1
z −ε∑+=
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i.e.

i
2

i xzz)n2N( −ε∑−=−

Define κ−=εi for i=1, ... N. Then, the equations to solve are

.xzzn2N

N...,1i;xzz
d
1

i
2

i
2

i

−∑=−

=−κ−=

Hence, a special solution is  oN1o z,d,d,z Κ  with

i
2
oo xzzn2N −∑−=−

and , for i = 1, 2, … N, id  with

i
2
oo

i

xzz
d
1

−κ−=

which is equivalent to

i

i
2
oo

i x
xzz

d  
−κ+

=   .

Further

1111 MDDD)D'xxD
n
1'1

I(DQ −−−− =+−=  , say.

Since the assumptions of Lemma 2 are satisfied for M and  0  is an eigenvalue of  M, all other eigen-

values must be positive (in fact  ≥ 1)  and the rank and definiteness statements follow.
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Theorem 1: For all  Ss∈  ,

( )
sss

ss
s

1D'x

1D
Qa = (13)

( )( ) ( )( ) 11QaQ'1Qa 0
s

0
s =−− (14)

Proof: Obviously

n
D'11D'xxD

'xxD
n

'11
IDQ

1
sss

1
s

ss
2

s

ss
1

s
ss

s
1

sss

−−
−

−−

−




 +=

+












−=

Hence, by (3)

s
1

s

1

ss
2

s
1

ss

1

ss
2

s

1
sss

1
s

1

ss
2

s

1

ss
2

s
1

ss

1D'xxDD'1
n
1

1

'xxD
n

D'11D'xxD

'xxDQ

−
−

−−

−
−

−−−
−

−
−−






 +−






 +





 +

+






 +=

Again by (3)

s
2
ss

2
sss

2
s2

s

1

ss
2

s
xD'x1

D'xxD
D'xxD

+
−=





 +

−
−

and by  (4)

s
2
ss

s
2
s

s

1

ss
2

s
xD'x1

xD
x'xxD

+
=





 +

−
−   .

Therefore
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.
1D'x

1D

xD'1

1

xD'x1

1D'x
xD1D

xD'x1

xD

xD'x1

1D'xxD'1
n

n
1

1

n
1

xD'x1

xD'1

xD'x1

1D'xxD
1D

xD'x1

xD
xQ

sss

ss

ssss
2
ss

sss
s

2
sss

s
2
ss

s
2
s

s
2
ss

sssss

s
2
ss

sss

s
2
ss

ssss
2
s

ss

s
2
ss

s
2
s

s
1

ss

=















+
−+

+
=















+
−−

+













+
−

+
+

=−

Consequently,

1xQ'x s
1

sss =−

and

( )
sss

ss

s
1

sss

s
1

ss
s

1D'x

1D

xQ'x

xQ
Qa ==

−

−

which is  (13) . (14)  follows from (10) and

( )[ ] ( )[ ] ( )[ ] ( )

.1

xQQQ'x

)Q(aQ)Q('a

QaQ
'

Qa1QaQ
'

1Qa

s
1

ssss
1

sss

ssss

0
s

0
s

0
s

0
s

=

=

=

=−−

−−

Remark 2. Let Q2σ  be the variance matrix of the residuals in a linear regression model. Then, the

variance of the BLU-predictor for ∑ iY , based on a sample  s , is
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2

s
1

sss

2

xQ'x
σ=

σ
−

and does not depend on  s.

5. A lower bound for the maximal risk

Now, we are prepared to derive  a lower bound of the maximal risk with respect to  Θ . Note that

here only weak assumptions concerning  x   are needed and that the matrix  U  defining the parame-

ter space  Θ   has to satisfy 0xU = , but otherwise is arbitrary. First we show in Lemma 5 that

( )Q
UQtr

c2

 can be expressed as a mixed strategy of Nature.

Lemma 5: Let  U  be non-negative definite of rank  N-1  with (see (1))

0xU =

(see (1)). Then, a  ( )1NN −×  matrix  Z  and positive probabilities

1N21 ,, −πππ Κ

exist with

0Z'1 = (15)

1NIZU'Z −= (16)

( ) ( ) 'Z,diagZUQtrQ 1N1 −ππ⋅= Κ (17)

where  Q  is defined by (9) in Lemma 4.

Proof: Define
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





 −






 −= '11

N
1

IU'11
N
1

IA

with eigenvalue decomposition

'T?TA =

where

01'T

IT'T 1N

=

= −

( )1N1,diag −δδ=∆ Κ

with  0, 1N1 >δδ −Κ  . Define further

'T?TB

'T?TB

2
1

2
1

−+ =

=

and consider the eigenvalue decomposition

'C?CBQB =

where

( )1N1

1N

,diag?
01'C

IC'C

−

−

λλ=
=

=

Κ

with   0, 1N1 >λλ −Κ  .

Defining   Z = B+ C  equation  (15)  is obvious. Further, by  ,'11
N
1

I'TT −=
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.'Z?Z

B'C?CBQ

=

= ++

According to  (15)  we have

C'T?T'T?T'T?T'C

ZA'ZZU'Z

2
1

2
1

−−
=

=

giving (16).  In addition

∑λ==

==

j)?(tr

)ZU'Z?(tr)U'Z?Z(tr)UQ(tr

and with

1N,2,1i;
j

i
i −=

λ
λ

=π
∑

Κ

we derive

( )

( ) ( ) 'Z,diagZUQtr

'Z,diagZ)('Z?ZQ

1N1

1N1j

−

−

ππ=

ππ∑ λ==

Κ

Κ

i.e. (17).

Theorem 2: Consider  ( ) ∑ ==>= 1x,N,2,1ifor0xwith'x,x,xx iiN21 ΚΚ   and (see

Lemma 3)

∑ −≥− oi x/x1n2N

where
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{ }N1o x,xmaxx Κ= .

Let  U  be a  N × N matrix of rank  N - 1  with

0xU =

and define  (see sections 1 and 3)

{ }2N cyU'y:yT ≤ℜ∈=  .

)QU(tr
c2

=ρ   .

Then for all strategies  (p, t)

( ) ρ≥
∈

t,p;yRsup
Ty

 .

Proof: Define

QQ ρ=
∗

  . (18)

Then

( )QaQa ss =




 ∗

and by  (14)

ρ=



 −












 −






 ∗∗∗

1QaQ
'

1Qa 0
s

0
s (19)

for all s ∈ S. Now, consider a design  p  and an estimator  t   defined by  s
0
s Aa ∈  . Obviously,

[ ] [ ] ρ=



 −












 −






≥−−

∗∗∗∗

∑∑ 1QaQ
'

1Qap1aQ
'

1ap 0
s

0
ss

0
s

0
ss



C:\Eigene_Dateien:minimax_gast_Disc_Pap

24

For   ( ) ( )1N11N1 Z,ZZand', −− =ππ=π ΚΚ    defined in Lemma  5  we have

( )

'
ZZ

'
ZdiagZQQ

TZcZ

iii

ii

∗∗

∗∗∗

∗

∑π=

π=ρ=

∈=

Therefore

[ ]

[ ]

( ) .t,p;y
Ty

Rmax

t,p;
'

ZRmax

1a
'

Zpmax

1a
'

Zp

1Qa
'

Zp

i
i

2

0
sis

i

2

0
siis

2

0
siis

∈
≤











=













−≤













−π≤

















 −





π=ρ

∗

∗

∗

∗∗

∑

∑∑

∑∑

6. Minimax strategies

We will show that a minimax strategy is obtained if the estimator  
∗
t   introduced in section 5 is com-

bined with an appropriate design  
∗
p  .

Lemma 6.  Consider  ijb   ;  i, j = 1, 2, … N  with
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N,2,1iforbnb ii
j

ij Κ==∑

and define for  s ∈ S

n

b

n
2N

2
1n

b

1n
2N
2n

b

2n
4N

1
b   

N

1i
ii

si
ii

ji
sj,i

ijs

∑








 −








 −

+∑









−
−
−

−∑









−
−

= =

∈
<
∈

(20)

Then, for   i, j = 1, 2, … N

s
sj,i:s

ij bb ∑=
∈

For the proof of Lemma 6  we refer to Chaudhuri (1971)  and Gabler and Schweigkoffer (1990).

Theorem 3. Let  x  and  U satisfy the conditions of Theorem 2. Define D = diag( )N1 d,d Κ  and  Q

according to section 3  and  
∗
t   according to section 5. Define further

∑
−−

=
j j

jjiiij
i d

uuu2
m   for i = 1, 2, … N (21)

∑
∑−

−

∑
∑−

=

i

j j
i

i

j j
i

i

d
1

dn2

1
1

d
1

dn2

m

k (22)

∑−

+
=

)
d
1

dn2(d

mk
b

j
ii

i
ii   for all  i = 1, 2, … N (23)

ji

jjiiijjj
2
jii

2
i

ij dd2

uuu2bdbd
b

−−++
=   for  1 ≤ i < j ≤ N (24)

and  sb   by (20). Then, the function  sps:p
∗∗

→   on  S , defined by
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)UQ(tr/bxdp s

2

jj
sj

s

*









∑=
∈

satisfies

.1p
s

s =∑
∗

(25)

∗
p   is a design and  )t,p(

∗∗
  is minimax with

ρ=
∗∗

Θ∈
)t,p;y(Rsup

y

provided  x   and  U  are close  to  1/N  and  ,11
N
1

I ′−   respectively.

Proof: From (22)  and  (23)  we derive

∑ =
∑−

+=∑
i

j
i

i
iii k

d
1

dn2

mkbd   .

Hence, for  i = 1, 2, … N and the fact that (24) remains true for i=j

.
d

mk
d
1

bd
2
1

d

uuu2

d
1

bd
d
1

d
1

bd
2
1

dd2
uuu2bdbd

b

j i

i

j
iii

j j

jjiiij

ij j
jjj

ij
iii

j ji

jjiiijjj
2
jii

2
i

j
ij












∑

+
+=












∑

−−
∑ +∑+=

∑
−−++

=∑

From (23)  we obtain, therefore,

ii

j j
iii

j j
iii

j
ij

bn

)
d
1

dn2(b
d
1

bd
2
1

b

=












∑−+∑=∑

(26)
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Now

( )

)27()UQ(tryU'y

)24(and)23(by)UQ(tryyu

6Lemmaand)26(by)UQ(tr)yxy)(yxy(ddb

)UQ(tr)yxy(db

)UQ(tryy
xd

d
bxd

yy,stpt,p;yR

/

/

/

/

/

j,i
jiij

j,i
jjiijiij

2

iii
sis

s

2

si
i

jj
sj

i

s
s

2

jj
sj

2*

s
s

***

=

∑=

∑ −−=





 −∑∑=
















−∑ ⋅

∑
∑ 








∑=









−∑=









∈

∈
∈

∈

With  π   defined in Lemma 5  and  
∗
Q  defined by (18)  we derive from (27)

)18(toaccording

)UQ(tr/)UQ(tr

)UQ(tr/)U'yy)y((tr

)UQ(tr/yU'y)y()t,p;y(R)y(

ρ=

=

⋅π=

π=π

∗

∗∗

∑

∑∑

On the other hand

∑∑∑
∗∗∗∗∗∗∗

ρ=−−=π s
o
s

o
ss p)1)Q(a(Q')1)Q(a(p)t;p;y(R)y(

by  (19),  and (25)  is proved.

Obviously,  for  s ∈ S ,  sp
∗

  is a continuous function of  U  and  x   with limit  







n
N

1   for

N/'11IUandN/1x −→→  .  Hence, if  x   and  U  are close to  N/1   and  N/'11I −  , re-

spectively, we have
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Ssallfor0ps ∈≥
∗

and  
∗
p   is a design.

Then, by (27)

ρ=
∗∗

Θ∈
)t,p;y(Rsup

y

and the minimaxity of  )t,p(
∗∗

  is a consequence of Theorem 2.

7. Concluding Remarks

The minimax strategy  )t,p(
∗∗

 derived in section 6 is independent of  c . Subsequently, we consider

two consequences of this independence.

It is common practice to characterize the performance of a strategy  (p,t)  by the mean squared error

)t,p;y(R  defined in section 1. However, there may be reasons to believe that  y  is close to

}:x{L ℜ∈λλ=

where  ix   is the size, measured appropriately, of unit  i  and  )'x,...x,x(x N21=  . Then, we will

look for a strategy giving rise to a mean square error which is small for  y   close to  L  and  0  if

Ly∈ . This objective in mind we should base the selection of a strategy  (p,t)  on the risk function

yU'y

)t,p;y(R
R
~

=

where  U  with  0xU =   is non-negative definite and  yU'y  is interpreted as squared distance of

y   from  L . Now,  
~
R   is bounded on  Nℜ   if and only if  R  is bounded on

}1yU'y:y{ N
~

≤ℜ∈=Θ

and
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)t,p;y(Rsup)t,p;y(Rsup
~

y

~

Ny
Θ∈

ℜ∈
=

Hence, the strategy  )t,p(
∗∗

  is also minimax for  
~
R  and the parameter space  Nℜ  .

To derive the second consequence consider the following modification of the game described in sec-

tion 3:

Nature selects  c > 0  and subsequently  }cyU'y:y{y 2≤=Θ∈ .   The Statistician,

without knowledge of  c  and  y  , selects  s∈S  and  sAa ∈ . Then, he has to pay

2])1a('y[ − .

Then,

)t,p;y(R)y(

)t,p;y(R)y()t,p;y(R)y(

∑

∑∑
∗

∗∗∗∗∗

π≤

ρ≤π≤π

for all discrete probabilities  π   on  Θ  and all strategies  (p,t) , as earlier.

Note, however, that now  ρ  depends on Nature’s strategy and is unbounded such that  )t,p(
∗∗

 is no

longer minimax in the sense defined. Under the present conditions the statistician may be interested in

estimating  2c  , a problem which should not be easy to solve within the general setting of this paper.

Finally, we mention that the results presented may also be of interest for regression theory. A statisti-

cian adopting the strategy  )t,p(
∗∗

 behaves as if he was analysing a linear regression model with vari-

ance of residuals in some neighbourhood of  
∗

σ Q2  . He applies a mixture of best replies to 
∗

σ Q2

with weights protecting against certain deviations from 
∗

σ Q2  , i.e. he behaves optimally with respect

to 
∗

σ Q2  and, at the same time, takes a lower risk for models in the neighbourhood. See Sten-

ger(1998) for details.
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