Vs

Institut fur

Volkswirtschaftslehre
und Statistik

No. 572-99

Minimax strategies in survey sampling

Horst Stenger und Siegfried Gabler

Beitrage zur
angewandten

Wirtschaftsforschung

Universitat Mannheim
A5, 6
D-68131 Mannheim




Minimax strategiesin survey sampling

Segfried Gabler andHorst Stenger , Mannheim

Abstract

The risk of a sampling dtrategy is a function on the parameter space, which is the set of dl vectors
composed of possible vaues of the varidble of interest. It seems natural to ask for a minimax stra-

tegy, minimizing the maximd risk.

So far answers have been provided for completely symmetric parameter spaces. Results avalable
for more genera spaces refer to sample Sze 1 or to large sample Szes dlowing for asymptotic go-

proximation.

In the present paper we consider arbitrary sample sizes, derive a lower bound for the maximd risk
under very weak conditions and obtain minimax Strategies for alarge class of parameter spaces. Our

results do not apply to parameter spaces with strong deviations from symmetry. For such spaces a
minimax strategy will prescribe to consider only a amdl number of samples and takes a non-random

and purposive character.

AMS classification: primary 62D05, secondary 90D45

Keywords. Survey sampling; Maximd risk; Minimax strategies; Linear regresson modds
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1. Introduction

Congder apopulation of units 1, 2,K N and associated values y,,y,, K y, of a characteristic

of interest. The parameter (vector) y =(yy, Y, K yy) . and espedidly the parameter sum

y=y, +y, +K +y, aeunknown to us. Sowe sdect asamplesof sze n, i.e. an dement of
s={s:si {12k N},|s|=n},

chooseweights ag,il s, ascartanthevaues vy,,il s, and edimate y by
aagy -

A sample may be selected randomly. Let p, bethe probability of sdlecting sl S; then p:s® pq

is cdled sampling design. An estimator isafunction t assgning ared vaue

t(sy)=aasy,

— s

to each pair of asample sT S and aparameter y .

e =2 lilsy) o]

isthe risk of the Strategy (p, t), p adesgnand t an estimator.

The dtrategy we use should reflect our prior knowledge. The set of a-priori possble parametersis
caled parameter space Q . Several authors have considered the space

oyt e3P e

with y=y/N and ¢! 0; see Bickd and Lehmann (1981), Gabler (1990). Stenger and Gabler

(1996) discuss, more generdly,

Q¥ ={XT A" élO'ij(yi - 9)(3/1 -y)£c?}
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with (d;;) apostive definite N” N matrix. Usualy, vaues x;,X,,K xy >0 of an axiliary
variable rdated to the variable of interest are available and, especidly, Q may depend on

gz(xl,xz,K xN)' . Anexampleis

with X = x; +X, +K +x, axd X=xI/N . See Stenger (1989) and Gabler (1990). We refer

to Cheng and Li (1983, 1987) for further examples.

In the present paper we consider
Q:{XT AN:y'UyE cz} (1)
where U isnon-negative definite of rank N-1 with

Ux=0,

0=(0,0,K 0)' T AN. In asubsequent paper we will give a detailed justification of this approach.
Presently we confine ourselves to note that the spaces Q(l),Q(Z) and Q(3) , discussd in the lite-
rature, are specid casesof Q. Additional comments are given in section 7.

The condition
Xx=1

isnot restrictive and will be assumed throughout the paper. Obvioudy,
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1,1
N X
with
U(1)=I-l:_l.:_l.'
N
Uwzg_i
@ N
U9 =8-1x
1.
=—d
N '
and

indl cases with x =1/N for i =12 . Hereand subsequently, 1 isthe N-vector with al com-

ponentsequa to 1, | isthe N° N

di; =x; for i=2,2,K N.

2. Main reaults

Define

r(pt) =sp R(y; p,t)

yi T

A drategy ﬁ),tg isminimax if
e o

identity matrix and diag(x) the diagond matrix D with
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NN-n

mn r{p,t)=— C
(p.1) (p ) n N-1
_ &0
=rept=
e g

where p denotes smple random sampling without replacement, i.e.  p, :% ng fordl sl S,
a

and

t[(S, X) - % iTés Yi

is the expanson estimator. See e.g. Stenger (1979), Bickd and Lehmann (1981), Gabler (1990).

Hence, aminimax Srategy isavalablein case

U= ()
x =1/N.

Stenger and Gabler (1996) derive aminimax Strategy for

U dlose to U@
X=1/N.

In the present paper we assume

U dose to u®
X close to 1/ N

and show the fallowing;

Let z, be the unique solution of
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IN- 2n|z = 1y JZ%- X

1

and definek = sgn(N-2n) andfor i =1,2, K N

2
_Zo+k\zo'xi
;=

X

Then, anedimator t and adesign p exigts such that ﬁ),tg isminimax where t isdefined by
e o

An explicit formulafor the desgn p will be given in Theorem 3.

Deiinng a; =d;x;,i =1, ... N, t(s X) can be written as a Hansen Hurwitz type estimator

Note thet the a,’s do not depend on U, whilethe design p does. The a;’s and p arefreeof c.

We givean example. Let N=3, n=2 and 2x; < 1fori=1, 2, 3. Define

a; = L JO.S@(l- 2x,) fori=1,23
1- 2x;)

andfor s={i,j},it ]

1 1
t( | ): @- 2x;) Vi, (1- 2x;) Yi

Sy 1 1 x 1 1 X

+ +
- 2x;) (- 2x)) - 2x) (- 2))
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* 2 2x. 2X. 0
ps = (- X - X)) LTt B R 7! T

If U=Q® and p is nonnegative for dl sampless, %,tg is the minimax strategy. The risk of
é

%]
gb,tgar[y is
e o
* % B 1 ! (3)
R(y;p.t) = > y Uy
Eéw(l(l- 2Xi) 9
3°§00-2,) ',

3. Interpretation of the main results: game and regression theory
Consider the following 2-person 0-sum game:

Player |, called Nature, selects XT Q, Q defined by (1). Independently, Player I,

called Statistician, selects <1 S and ag ,il s and hasto pay
(dagyi-y)* .
Let a2 bethe N-vector with

. jag if ils
i - th component = | .
10 otherwise

Then, the pay-off

7

(@i’-l)'xg =(a-1) yy(e2-1)

oD D

isbounded for yT Q if and only if

4 agx =1 )

iis
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The Statistician interested in a minimex strategy will only consider ag , iT s with (2). Therefore, the

Subset
To={yl T:4y;=0}
of Nature' s pure strategies is of primary importance.

Let sl S befixed and consder amixed srategy p of Nature which is a discrete probability on
Q, gvingriseto the pay-off

4 p(y) (22 - 1)&[(@2- 1)' = (a2- 1)'V (a2-19)
where

V=apy)yy
stisfies V1=0 .

Subsequently, vectors and matrices are partitioned in accordance with common use. For a N” N

matrix C, a N-vector z and sT S wewrite C forthe n” nsubmatrix composed of dl ¢;

with i,jT s and z, for then-vector condsingof z, , il s .
Defining
Vit x
QS(V)_ [ = >
Xs Ve Xg
we have

(ag-1) V(al-1)3 (al(V)-1)'V(as(V)- 1)

fordl a, with(2),i.e. a,(V) isabest reply of the Statisticianto V , as long as he is redtricted to

s (and (2)). Thisisan easy consequence from regresson anaysis. (Seeremark 1.)

Theorem 1 in combination with Lemma5 show that amixed strategy p of Nature exists such that
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Q=Apy)yy'
has the fallowing property:
8200 2 OB(Q)- 19
r=£20Q- £ QE(Q- 15
doesnot depend on si S. Hence, dll
0, 0 of
g5, a,Q2.ss

are best replies of the Statidtician to Nature' s mixed strategy p , defining Q

A sampling strategy (p, t) isa mixed strategy of the Statitician, with pay-off R(y;p,t) , y a

pure strategy of Nature. In Theorem 2 we prove

sp R(y;p,t)3 r
o

for dl strategies (p,t), i.e r isalower bound for themaximd risk of sampling strategies.

Findly, we show in Theorem 3 that the equation
C2 o 0 * . * 0 *
U="-ap.(a(Q-D'Q(a(Q-1
ds
admits a solution ps,sT S with ap,=1. For x and U closeto /N and |-11'/N
respectively, wehave p, 3 0 for dl sl S,ie p:s® p, isadesgnand, with

t(s,y) =& a, (Q)y,

it follows

. roo
R(y;pt)=—y'Uy
C2

C:\Eigene_Dateien:minimax_gast_Disc_Pap



10

and for dl mixed strategies p of Nature and dl mixed strategies (p, t) of the Statistician
ap(y) Ry:;pt)E&p(y)R(y;pt)=r

E&p(y)R(Y:p. )

* *

i.e. p ad (p,t) forman equilibrium point of the game considered and r isthe vaue of this ga

me. As an immediate consequence,

ap R(y;p.t) =r £3p Rly:p,t)
e yiQ

* ok

fordl (p,t). Hence, (p,t) isminimax.
Remark 1. Consder the linear regresson model

Y=xb+e

for Y = (Yl,Yz,K YN) where € isa N-dimensond random vector with

Ee=0

vare=s?V

Here, b and s >0 are (unknown) parameters. V1=0 implies

Qo=
fin
I
O

N
with probability 1; therefore, predicting & Y; coincideswith estimating b . A linear predictor
1

N
isunbiased for a Y; if
1
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N s
E?&ﬂr%Y%:O

i.e. (2). Of dl linear and unbiased predictors

m
> (D
<
—_
fs¥]
”w O
1
~—

O C

N
1

—_—
e
1
=
~—
<
—_
P
1
=
~—
(72}

N

fordl a T A,
Asz{gT AN:a =0 for il s; g‘le}.

Hence, Y ' a°(V) isbest linear unbiased (BLU) asan estimator of b and apredictor of & Y;

4. Preiminaries

In this section we derive results on eigen-vectors and —vaues of non-negetive definite N~ N matri-

ces of the type
C+uv'.

With afew exceptions wewill have u =v inwhich case we use the notation
C+?11"7
with adiagond matrix ? . Of specid importance are matrices

Cc=D(l- all)D
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D dwaysdiagond and often equd toI.

Thevector x whichisan eigen-vector of the matrix U defining the parameter space Q will be es-

sertid in this section while other properties of U play no role.

Wewill have occasion to gpply the following two lemmeas.

Lemmal: Assume C regularand 1+v'C*ut 0. Then

-1 -1 '~1
Foruy'd =t UL ®

(4)

Lenma2 For a >0 and a diagond N’ N marix D with 1?12 0, consider

M=1-all+211"?

with eégenvaues

l,31,3K 31
Then

l,=l3=L =1,,=1
Proof: For ul AN

Mu=Ilu
isequivdent to
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(-1 )u- aléﬁ u°+’?1§’?u° (5)

Without redtricting generdity we assume linear independenceof D 1 and 1. Then, the equations
;'g:O 17 u=0 define a (N-2)-dimensond subspace with N-2 eigenvaues, dl equal to 1.

Define m=1- | and multiply (5) from the left by 1' and 1'? , respectively, to obtain

mMl'u)- a@'Y) @) +@?)(L?u)=0

a(l?u)- a?) Q'u)+ (1 ?%)@?u) =0

or equivaently

Ei

- Na 171 anluo a0
§-al?1 m+1? 1g&?ug goﬂ

Assuming 1'u? Oor 1?2u® 0 wedeive

(m- Na) (m+1'221) +a(1?2)* =0

with solutions

. . L2 é . . ..Zu
aN-12?%1+ N-1?7219 +4aaN1?21- 8 219
R . et

m,m, = .

2
stisfying

e a2l
mm, =-agNl ?°1- g2 g0
because of the Cauchy-Schwarz inequdity

R ,
@?19 £N1?2%
1721 17?71
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Hence we cannot have m >0 and m, >0 at the sametime therefore

313
313 1.

Next we want to determine adiagonal matrix D such that

Q=D*(1- L )pts xx'
n

is non-negetive definite with rank N-1 and Q1 = 0. As shown in Lemma4 thisis possble for x
satidying the weak condition (7) givenin Lemma3. In Theorem 1 wewill prove afundamenta pro-

perty of Q.

Lemma3:  Consder x=(x,x,,K xy) with x=1and
X; >0 for i =1,2,K N.

A solution z, of
N 2
IN-2n|z=a \z°-x; (7
i=1

exigsif and only if

[N-2n[3 & 1- x;/%, ®
where

Xy = max{xy, X,,K xy}
Thesolution z, isunique.

Proof: Define
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For z3 X,
g((z):zéN - > N> f§z) =|N- 2n|
1.yz7-X,
o 1 20 1
z)=4& -Z°4
R T
=3 (zz-xi)'m(z2 - X - 22)
= ax,(zz-xi)_‘?/2 0
Therefore,

admits at most one solution. A solution exigts if and only if
o ) o )
which isequivaent to

IN-2n] xo % &4/x,-x,

IN-2n|3 &/1- x;/x,

Lemma4: Define k =ggn (N- 2n) ad

15
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_Zo*K 2 - X, for i=12K N

i
X

D =diag(d,,d,,K d)

Then

Q=D*(1- 2 )pts xx'
n

isof rank N-1 and non-negative definite with

Q1=0. ©

2 iyt =0;i=12K N. (10)
d nd d
With
1.1
7=— & — 11
2n &y
(10) may be written
& 0
g_- zz =72 X; ;1=L2,K N. (12)
d o

Now, z, d;, % dy solve (11), (12) ifand only if for some e, Ya ey = 1,-1

di=z+ei JZ2- %, i=12K N

zzi(Nz+é e +z°- xi)

2n
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(N-2n)z=-3 g+/z°- X

Define e, =- k fori=1, ... N. Then, the equationsto solve are

1 > :
—=z-kz°-x; ;i=1..N
d

IN-2n|z=8 z?- x; .

Hence, aspecid solutionis z,,d;,K dy ,z, with

IN-2n|z, =- & |22

o~ X

and, fori=1,2 %N, d, with
di:z0 -k z2- X,
i

which isequivaent to

z, +K /22 - X,

Further

Q=D"*(I- lT+ Dxx'D)D*=D"'MD?, say.

Since the assumptions of Lemma 2 are satisfied for M and 0 isan eigenvaueof M, dl other agent
vaues must be pogtive (in fact 3 1) and the rank and definiteness statements follow.
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Theorem 1: Fordl sl S,

D.1
a,(Q)=—= (13)
XDl
0 ' 0 _
(220)- 1) @ (22(@)- 1)=1 (14
Proof: Obvioudy
FoS) "0
QSS = Dsl gIS - %_Dsl + XSX;
¢ n —
e o
6 Dsl 1st1
- @32 +szsg- JSn
Hence, by (3)

Qs =EDS" + xox 2
1p11.pt 1
2+X 'Q S =s=s s 2+X X'Q
S SZ=S S =SZs
+gb n 9 n ?1 9
1- H:-I-SD_sl 32+xsxéﬁ D_slls
Agan by (3)
2 o) ! -2 DSZXSX;DSZ
€D XX, =
z 1+ZSDSXS
and by (4)
L1 2
@82 +szég Xs = DX,
7] '~2
1+XSDSXS
Therefore
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& L. DixXDL® 1D.x, 1
2 © 1+x.D2x, H+x.D2x N
Qux, D% & 200k g TAOC
1+x.D2x 183 1.D.x.x.D.1 9
1__ n_ S S_S=—_S ST N
n ! =
€ 1+xD2x, 3
_ D, B x.DL 9 1

S -1
1+55D§§s ﬂl‘stZs

_ D
xDL
Consequently,
'~ly, —
lstls_l
and
_ Qg% _ DL

a,(Q)

1 -1 - 1
Xsts Zs XSDSJ'S

whichis (13) . (14) followsfrom (10) and

[22@)- 1] o[e2(0)- 1=[2(0)] e 22(@)
= 2(Q) Q a,(Q)
= XeQu Qs Qi Xs

=1.

Remark 2. Let s2Q be the variance matrix of the resduasin alinear regresson modd. Then, the

variance of the BLU-predictor for & Y, , based onasample s, is
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s? )

1 =S
Xsts Xs

and does not depend on s.

5. A lower bound for the maximal risk

Now, we are prepared to derive a lower bound of the maxima risk with respect to Q. Note that
here only weak assumptions concerning x are needed and that the matrix U defining the parame-

ter space Q hasto stify Ux =0, but otherwise is arbitrary. First we show in Lemma 5 that

C2

——— Q can be expressed as a mixed strategy of Nature.
tr(QU)

Lemmab: Let U be non-negative definite of rank N-1 with (see (1))

Ux=0

(see(1)). Then,a N” (N - 1) marix Z and positive probabilities

P1, P2, K Pr-1

exig with
12=0 (15)
Z'UZ=1,, (16)
Q=1tr(QU)xzdiag(p, K py.1) Z' (17)

where Q isdefined by (9) in Lemmad4.

Proof: Define
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1 |" 1 |"
A=F- —1120&- 11?2
e N ge N g

with egenvaue decomposition
A=T?T
where
T T=1,
T'1=0

D =diag(d;,K dy._,)

with d;, K dy_; >0 . Definefurther

and condder the eigenvaue decomposition

BQB=C?C’
where

CC=ly,

C'1=0

? =diag(l ,K 1 1)

with 1,,K 1 ,.,>0.

Defining Z =B C equation (15) isobvious. Further,by TT =1- ﬁlll',
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Q=B*C?C'B*
=727 .

According to (15) we have

Z'UzZ=ZAZ
1
T T?T T? 2T'C

=C'T?

N

giving (16). In addition

tr(QU) =tr(Z? Z'U) = tr(? Z'UZ)

:tr(?):élj
and with
(I
oF :o—;|:112!K N-1
al
we derive
Q=272 =(al,)Zdiag(p, K py,)Z’
:tr(QU)Zdiag(pl,K pN-l)Z'
i.e (17).

Theorem 2. Consider x =(x;, X,,K x) with x; >0 for i=1,2K N, & x; =1 and (see

Lemma3)

IN-2n|3 &/1- x;/x,
where

C:\Eigene_Dateien:minimax_gast_Disc_Pap



x, = max{ x,,K xy}.
Let U bea N° N matrix of rank N -1 with

Ux=0

and define (see sections 1 and 3)

T :{XT AN:y_/'Ux£cz}.
c2

“r(QU)

Then for dl strategies (p, t)

wpR{y:p.t) 2

Proof: Define
Q=rQ
Then
0 _
a, 07 a.(Q)
and by (14)
é_oad\0 l]'*éo 0 ,U_
za =1 a =1 -=r
g_sgby) H QS_SS%(/) “H

23

(18)

(19)

fordl sT S. Now, consider adesign p andan esimator t definedby a1 A, . Obvioudly,

sl s> ange o afett o
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For p=(p.K py,) ad Z=(Z,,K Z.,) definedinLemma 5 we have

Z=chT
Q=rQ=2dag(p)Z

:épiiiii

Therefore

&' 0

=max R¢Zi;p,t~

bg 2
EmeQmﬁ

6. Minimax strategies

24

Wewill show that aminimax strategy is obtained if the estimator t introduced in section 5 is com+

bined with an appropriate desgn p .

Lemma6. Consder b,

i > L1=12,% N with
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a b;=nb; fori=12,K N
i

and definefor sT S

1
| —

1 n- 2 2 5 a bij
b. = a ab. + =1 20
* oalN- 40 aN-20is ' aN-20 n (20)
gn-ZBIJ n-1g % n g

Then,for i,j=1,2,% N

b= & b

a s
si,jl s

For the proof of Lemma6 we refer to Chaudhuri (1971) and Gabler and Schweigkoffer (1990).

Theorem 3. Let x and U saiify the conditions of Theorem 2. Define D = diag(d,,K dy) and Q

according to section 3 and t according to section 5. Define further

mo=g 2NN g N
i~ —41,4, 74 (21)
] dj
o m;
i 2n‘d|édi
K = iy (22)
o 1
1- a 1
'2n-d;&
jdj
b, =—K*m, — forall i=12%N (23)
dl(zn‘ dlé'_)
dj
i = for 1Ei<j£N (24)
2didj

and by by (20). Then, thefunction p:s® p, on S, defined by
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. 2
b= &EQ&:bHHQW
il's

26

satisfies
aps=1 (25)
S
p isadesgnand (p,t) isminimaxwith
wpmypo—r
i Q
provided x and U areclose to /N and |- %]_1 respectively.
Proof: From (22) and (23) we derive
adb; =4 e, 1 =k
'2n-d & —
1 dJ
Hence, for i =1, 2, % N and the fact that (24) remainstrue for i=
ab, :édb +djb”+2u i = Ujj
j j 2dldj
€ L. o 1, 2u;- u;-uzu
2@ i 4 i d| J dj 9]
e U
:ledibnéi"' k+ml@
2 id;  dog
From (23) we obtain, therefore,
A L | u
a b; :—é‘jibiiad— b;i (2n - dad—)u
j 28 | idi'g (26)

11
>
o
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Now

* Kk ws * 7k \2
e 0o ., e u
REY: pt =2 p.lsy)- vy
e g s e u

, 2

& & d G

=4 ga dx;2 bS8 Ly, - yji /1 (QU)
s @jis 1] %isadjxj u
€ s ¢!

) 2
o eo u

2 bsé?-sdi (yi - Xiy)ﬂ [tr (QU)
i

=8 by d; (¥ - XY - x;y)/tr (QU) by (26) and Lemma 6

= é Ui Vi Y /tr (Q U) by (23) and (24)
I

:X'Uzltr(QU) (27)

With p definedinLemma5 and Q defined by (18) we derive from (27)

APy Ry:p. =8Py y'Uy/tr(QU)
=tr (A p(y) yy' 2)/tr (QU)

= tr (QU)/tr (QU)

=r according to (18)
On the other hand
A py) Ry:piD = &p,(@(Q-1) QalQ-D=rap,
by (19), and (25) isproved.
Obvioudy, for s1 S, E)S is a continuous function of U and x  with limit %g’:% for

X®1/N and U® - 11"/N . Hence,if x and U arecloseto YN and 1-11'/N , re-
Spectively, we have
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p,30fordl slS

and p isadedgn.
Then, by (27)

up R(y;p,t) =r
¥ Q

* ok

and the minimaxity of (p,t) isaconsequence of Theorem 2.

7. Concluding Remarks

The minimax strategy (E),E) derived in section 6 is independent of ¢ . Subsequently, we consider

two consequences of this independence.

It is common practice to characterize the performance of astrategy (p,t) by the mean squared error
R(y;p,t) definedin section 1. However, there may be reasonsto believethat y iscloseto

L={I x:1T A}

where X, isthe size, measured appropriately, of unit i and X=(X;,X,,...Xy)" . Then, we will
look for a strategy giving rise to a meen square error which issmdl for y closeto L and O if

3_/T L . Thisobjectivein mind we should base the sdection of adtrategy (p,t) on therisk function

- R(y;p,t
A= (_¥|O)
y'Uy

where U with Ux=0 isnon-negetive definteand y'Uy isinterpreted as squared distance of

y from L.Now, R isboundedon AN ifand onlyif R isbounded on

Q:{XT ANy UyEDL

C:\Eigene_Dateien:minimax_gast_Disc_Pap



29

ap R(y;ipt)= sp R(y;p.t)

yi AN Zia
Hence, the Strategy (E),E) isaso minimax for R and the parameter space AN .

To derive the second consequence congder the following modification of the game described in sec-

tion 3:
Nature selects ¢ > 0 and subsequently 3_/T Q={y:y'Uy£c?}. The Satitician,
without knowledge of ¢ and y , selects 9 S and al A,. Then, he has to pay
[y'(a- 1]z
Then,

A PY)R(Y;P.EQ PYIR(Y; P tET
£Q P(Y)R(Y;p.t)
for dl discrete probabilities p on Q and dl strategies (pit) , asearlier.

Note, however, that now r depends on Nature' s strategy and is unbounded such that ([*), E) iISno

longer minimax in the sense defined. Under the present conditions the statistician may be interested in
edimating c2 , aproblem which should not be easy to solve within the genera setting of this paper.

Finally, we mention that the results presented may aso be of interest for regression theory. A dtatiti-
cian adopting the strategy (f),;) behaves as if he was anadlysng a linear regresson modd with vari-
ance of resduas in some neighbourhood of s2 Q . He applies a mixture of best repliesto s2 Q

with weights protecting againgt certain deviaionsfrom s2 Q , i.e. he behaves optimally with respect

to s2 Q and, a the same time, takes a lower risk for models in the neighbourhood. See Sten+

ger(1998) for details.
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