Development and Implementation of the
Quasi-Online Archive System for the Mixed
Astrometrical and Photometrical Data

Inauguraldissertation
zur Erlangung des akademischen Grades
eines Doktors der Naturwissenschaften
der Universitdt Mannheim

vorgelegt von

Doktor rer.nat. Andrew Belikov
aus Moskau

Mannheim, 2005

Dekan: Professor Dr. Matthias Krause, Universitdt Mannheim
Referent: Professor Dr. Guido Moerkotte, Universitdt Mannheim
Koreferent: Professor Dr. Rainer Spurzem, Universitit Heidelberg

Tag der miindlichen Priifung: 30. Juni 2005

Abstract

The progress of the astronomy means an increase in the data volume which must be
handled. It is impossible to use the astrometrical data obtained with a space satellite
without intensive data processing made in a specially organized Data Processing Center.

In the presented study the Data Processing Center for a astrometric space mission was
developed through conceptual, logical and physical design of the Center. We will review
possibilities for the construction of the Center, hardware and software components and
the design of the database for the mission.

The goal of the Thesis is to construct a Data Processing Center which will minimize the
response time of time-critical requests. The distributed database in the shared-nothing
environment is proposed for the data storage. A new approach to the data partitioning
through nodes of the cluster is studied.

Acknowledgments

I would like to express my gratitude to Dr. Siegfried Roser and Dr. Elena Schilbach for
the invitation to perform the presented study and for helping me with the study. I am
very grateful to Dr. Sonja Hirte for the help with the work, for reading and spelling it
and for instant advices to finish it finally.

This study would be impossible without financial support of the Klaus Tschira Stiftung.
I would like to thank Dr.h.c. Klaus Tschira for his interest to this work and to the DIVA
project.

I would like to acknowledge Prof. Dr. Guido Moerkotte for the supervision of this work
and Dr. Sven Helmer for the help and advices during the work.

Zusammenfassung

Wie auf vielen anderen Gebieten ist die gegenwirtige Entwicklung der Astronomie durch
einen enormen Zuwachs von Daten gekennzeichnet. Insbesondere trifft das auf astromet-
rische und photometrische Daten zu, die mit einem Weltraumsatelliten gewonnen werden.
Eine effektive Bearbeitung solcher Daten ist ohne ein speziell angepasstes Datenverar-
beitungszentrum nicht maoglich.

Diese Promotionsarbeit ist der Entwicklung eines optimalen Datenverarbeitungszentrums
fiir eine astrometrische Weltraummission gewidmet, und zwar von der Erstellung eines
Konzepts bis zum logischen und physischen Design. Wir priifen und vergleichen ver-
schiedene Mogligkeiten fiir den Aufbau eines solchen Zentrums, diskutieren notwendige
Hardware-, Softwarekomponenten und das mogliche Datenbankdesign fiir die Mission.

Eine der Hauptforderungen an das Konzept war die Gewahrleistung minimaler Antwort-
zeiten bei zeitkritischen Anfragen an die Datenbank. Fiir die Datenspeicherung wird eine
distributed database in the shared-nothing Umgebung vorgeschlagen. Ein neues Verfahren
zur Verteilung von Daten auf Knoten eines PC-Clusters wird dabei untersucht.

In dieser Arbeit wurden zwei Hauptaufgaben untersucht, und die den Aufgaben entsprech-
enden Losungen vorgeschlagen. Zum ersten soll ein Konzept des Datenverarbeitungszen-
trums (DPC) entwickelt werden, das die Forderungen einer astrometrischen Weltraum-
mission erfiillt. Das DPC soll eine regelméssige Speicherung und piinktliche Verarbeitung
aller Daten garantieren, die wihrend einer Mission anfallen. Dabei sollen Kosten des DPC
moglichst niedrig gehalten werden (ca. 5%-7% der Gesamtkosten der Mission).

Zum zweiten wurde untersucht, welche Moglichkeiten bestehen, die Daten so zu organ-
isieren und zu verteilen, dass die Antwortzeiten bei der routineméssigen Datenverar-
beitung minimal sind. Da téglich neue Beobachtungen anfallen, miissen die zeitkritischen
Anwendungen, die umfangreiche Datenvolumen aus der Datenbank bearbeiten, optimal
geplant und gewihrleistet werden.

Ein Konzept des DPC fiir eine astrometrische Weltraummission wurde entwickelt und
getestet. Der logische und physikalische Aufbau des DPC basiert auf Simulationen der
routineméssigen Anwendungen, auf Evaluierung von Antwortzeiten bei umfangreichen
Anfragen an die Datenbank, auf Untersuchung dazu geeigneter Hardware- and Soft-
warekomponenten.

Eine Benchmark fiir astronomische Datenbanken wurde entwickelt und getestet. Die
vorgeschlagene Benchmark beriicksichtigt das Datenverarbeitungschema, welches bei re-
gelmésigen astronomischen Beobachtungen mit Instrumenten mit grofen Feld und mit
CCD-Detektoren allgemein giiltig ist.

Eine signifikante Verringerung der Antwortzeiten wurde durch eine optimale Verteilung
(physische) von Daten erreicht. Als Losung wurde ein horizontales hash partitioning of the
distributed database in a shared-nothing environment entwickelt, wobei eine grofe Anfrage
(mehr als 10% Zeilen pro Transaktion) vorausgesetzt wird. Es wurde festgestellt, dass in
diesem Fall eine lineare Abhéngigkeit der Antwortzeiten von der Zahl der Datensétze

angenommen werden kann. Das Szenario fiir die Datenverteilung folgt aus der Priifung
des aktuellen Status des Hardware/Software-Systems wihrend der Datenverarbeitung.
Dabei konnten die Antwortzeiten im Vergleich mit einer gleichméfigen Datenverteilung
um einen Faktor 10 verkleinert werden.

Das vorgeschlagene DPC-Konzept ist auch fiir erdgebundene Teleskope geeignet, wenn
eine groke Himmelsdurchmusterung mit CCD-Detektoren vorgenommen wird.

Die Promotionarbeit besteht aus 10 Kapiteln und 8 Anhédngen. Das erste Kapitel gibt
eine Einfiihrung in die Problemstellung. Im Kapitel 2 wird eine Ubersicht iiber die wis-
senschaftlichen Ziele der Astrometrie und iiber die neuesten Entwicklungen in der Wel-
traumastrometrie gegeben sowie die Hauptschritte bei der Datenreduktion wahrend einer
astrometrischen Mission beschrieben. Im Kapitel 3 werden die Anforderungen an ein Data
Processing Center formuliert. Die Anforderungen ergeben sich aus einer Analyse der Art
und des Umfangs der Daten, von notwendigen Speicherkapazititen, von typischen An-
forderungen seitens der Datenreduktion. Das entsprechende Konzept fiir DPC ist im
Kapitel 4 beschrieben. Das logische und physische Design des DPC'ist in den Kapiteln 5
und 6 dargestellt. Hier werden auch die Vorschlige zur Optimierung der Datenbankstruk-
tur diskutiert, die Hardware- und Softwarekomponenten sowie der Zeitplan fiir Arbeiten
des DPC beschrieben.

Bei der Entwicklung des in der Kapiteln 2-6 vorgestellten DPC wurden immer zwei
Aspekte im Auge behalten: eine signifikante Verringerung von Antwortzeiten bei der
Auswahl notwendiger Daten aus der Datenbank fiir die verschiedenen Anwendungen. Die
Losung hat als Randbedingung moglichst niedrige Kosten des DPC. Ein néchster Schritt
zur Losung dieses Problems wird im Kapitel 7 gemacht, wo der theoretische Hintergrund
der Datenverteilung im Fall einer shared-nothing-Umgebung diskutiert wird. Es wurde
festgestellt, dass bei grofs en Datenanfragen eine lineare Abhéngigkeit der Antwortzeiten
von der Anzahl der angefordeten Datensdtze angenommen werden kann. Dieses relativ
einfache Herangehen stellt die wichtigsten Voraussetzungen fiir die Losung des Problems
einer optimalen Datenverteilung dar. Kapitel 8 beschreibt die Anwendung eines Systems,
das die Losung realisiert, und die erreichten Ergebnisse fiir die Datenverteilung. Eine fiir
astronomische Datenbénke vorgeschlagenes Benchmark wird im Kapitel 9 dargestellt. Das
Benchmark-System berticksichtigt das allgemeine Schema, welches die fiir eine Datenbank
astrometrischen Beobachtungen durch scannende Satelliten iiblich ist. Die verschiedenen
Tests des Benchmark-Systems wurden ausgefiihrt und dargestellt. Im Kapitel 10 werden
die Ergebnisse der Promotion zusammengefasst.

In den Anhingen findet sich eine detaillierte Beschreibung aller in der Arbeit durchge-
filhrten Tests. Der Anhang A zeigt die Unterschiede zwischen der Anwendung der Java
und C/C++ Programmiersprachen bei Datenanfragen auf. Der Anhang B stellt die
Ergebnisse dar, die fiir die Antwortzeiten pro Transaktion in Abhangigkeit von der Zahl
der Datensiitze erreicht wurden. Im Anhang C werden die Tests fiir die Anderung von
Antwortzeiten bei einer Vergroferung der Anzahl der fiir die Datenverteilung genutzten
Knoten dargestellt. Im Anhang D wird die Stabilitdt der Antwortzeiten fiir Datenbankan-
fragen untersucht. Wie gut eine lineare Form die Abhéngigkeit der Antwortzeiten von
Rekordsanzahl beschreibt, wird im Anhang E gepriift. Die Anhédnge F und G untersuchen
Abhéngigkeiten der Antwortzeiten von der Grofe der Tabellen. Anhang H zeigt die Tests
zur Stabilitdt der time cost function. Im Anhang I werden die Unterschiede zwischen

Laden von Daten mit Hilfe von INSERT und der DB2 utility db2split beschrieben.

Contents

Introduction
1.1 Goalofthe Thesis
1.2 Summary of Contributions o000

1.3 Outline of the Thesiso

Modern space astrometry

2.1 Astrometry at a Glanceo
2.2 Space missions in astrometryo Lo oL
2.3 Astronomical & astrometric data processingo

24 Summary . .o o. ..o e e e

Requirements to the Data Processing Center
3.1 Tasksof the DPC
3.2 DataFlows
3.2.1 Data Flow Scheme
3.2.2 Format of the Incoming Raw Data
3.3 Requirements from the Data Processing
3.3.1 Daily Schedule oo
3.3.2 Requirements from Applications oL,
3.4 Requirements for the Data Storage
3.4.1 Estimation of the Scientific Raw Data Volume
3.4.2 Requirements to the Backup and Recovery System
3.5 Constraints
3.6 Additional Tasks of the Data Processing Center
3.6.1 Simulation of the Data
3.6.2 The Data Mining Abilities

3.7 Summary e e e

4 Conceptual Design of the DPC

4.1
4.2
4.3
4.4
4.5
4.6

5 The
5.1
5.2
5.3
5.4

6 The
6.1
6.2

6.3
6.4

6.5
6.6

6.7

The General Scheme of the Data Processing Center with Subcomponents .
The Model of Activity in the DPC
The Software Architecture o L.
The Model of the Data Retrieval
The Model of the Data

SUMMAry e e e e e

Logical Design of the DPC

The Choice of the Data Storage Approach
The Logical Structure of the database
The Problems of the Logical Design.

SUmMmaryo e

Physical Design of the DPC

Attribute Domains the Data. The Required Precision
Optimization of the Database Structure
6.2.1 Theoretical Basis for the Design of the Optimum Structure
6.2.2 Queries from Applications to the Database
6.2.3 The Results of the Optimization of the Database Structure
The Physical Design of the Database
Requests to the Database from the Data Processing
6.4.1 Keysand Indices oo L oL
The growth of the data with time.
Hardware & Software Components and Their Optimum Choice

6.6.1 A Shared-Nothing Linux Cluster as the Core Component of the
Data Processing Center

6.6.2 RDBMS
6.6.3 Compilers
6.6.4 The DataInsert L oL
6.6.5 Implementation of the Data Processing Center
6.6.6 Classification of Failures
6.6.7 The Backup and Recovery System

SUMMATY . . . o o oo o e e e e e e e e e e

29
29
30
31
34
36
38

41
41
43
44
44

7 The Partitioning Problem: Theoretical Background 73

7.1 'The Problem of Physical Data Placement 74
7.1.1 Data Partitioning Through Nodes. Tablespaces for Data and Indices 75
7.1.2 Requests to the Data. Time Cost Function 76
7.1.3 The form of the TCF 78
7.1.4 The Stability of the TCF 79
7.1.5 The Time Cost Function in the Form of Linear Matrix Equation . . 82

7.2 'The Minimax Problem in the Case of the System of Linear Equations . . . 85

7.3 Estimation of the gain oL 0oL 86

7.4 The Use of the TCF o o . 87
7.4.1 Optimum Number of Nodes 87
7.4.2 Optimum Control Node 88
7.4.3 'The Status of the Cluster 88
7.4.4 Optimum Data Distribution 89
7.4.5 Data Redistribution 000000 oL 89

7.5 Minimization of the Size of the Test Database 90

7.6 Summary e e 93

8 The Partitioning Problem: Practical Implementation of the Solution

and Results 95
8.1 Requirements tothe DBSS, 95
8.2 An Implementation of the DBSS for Astrometrical Databases. The Prac-
tical Solution of the Partitioning Problem. 96
8.2.1 Tests and the DBSS database 97
8.2.2 The Optimum Solution for the Data Placement 103
8.3 The Data Placement, 103
8.4 The Implementation of the DBSS 103
8.4.1 The Tested Cluster 103
8.4.2 The DBSS Database 103
8.4.3 The Proof of the Results 104
85 Summary 106
9 A Benchmark for an Astrometrical Database 109
9.1 The Application Environment 109
9.2 The Logical Design of the Database 110

9.2.1 Attributes, Relations and the General Structure of the Database . . 110

II1

9.2.2 The Transaction Profile 110

9.3 Scaling Rules 113
9.4 The Atomicity, Consistency, Isolation and Durability Properties 114
9.5 Partitioning L 114
9.6 The Generation of the Input Data 115
9.7 Response Time L 116
9.7.1 Specification of Control Times 117
9.7.2 Computation of the Response Time 117
9.7.3 Computationof rps Lo 117

9.8 System Under Test Definition 117
9.8.1 Models of the Target System 117
9.8.2 Hardware Definition 0 0. 117
9.8.3 Software Definitiono 118
9.8.4 DBMS configurationo 118

9.9 Pricing 118
9.10 Implementation and Results 118
9.10.1 System Under Test 118
9.10.2 Benchmark Database L. 119
9.10.3 Control Times Lo 121
9.10.4 Pricing L 121

9.11 Summaryo e 121
10 Conclusions. 123
10.1 Summary of Results and Contributions 123
10.2 Future Worko 124
10.3 Possible Use 124
A The choice of the programming environment. C/C++ and Java 129
A1 Test PC . . . o o o 129
A2 Test database 129
A3 Request 130
A4 Results L 130

The single-row and multiple-row data retrieval 131

B.1 Test PC e 131
B.2 Test database 131
B.3 Request e 132
B.4 Results. e 132
The relation between the response time and the number of nodes 135
C.1 Test PC e 135
C.2 Test database e 135
C.3 Request e 140
C4 Results e 140
The stability of the request 143
D.1 Test PC e e 143
D.2 Test database 143
D.3 Request e 144
D.4 Results. e 144
The form of the TCF 147
E.1 Test PC e 147
E.2 Test database 147
E.3 Request 148
E.4 Results. e 149

The dependence of the TCF on the size of the table in case of the local

data retrieval 151
F.1 Test PC o e 151
F.2 Test database 151
F.3 Request 153
F4 Results. 153

The dependence of the TCF on the size of the table in case of the remote

data retrieval 155
G.1 Test PC o e 155
G.2 Test database 155
G.3 Request e 158
G4 Results e 158

H The stability of the F4+T matrix 161

H.1 Test PC o o e 161
H.2 Test database 161
H.3 Request e 161
H4 Results. o o e 161

I The choice of the data upload strategy. The direct insert and the use

of DB2 utility 163
L1 Test PC o o e 163
[.2 Test database 163
[.3 Request e 164
[4 Results. e 164

VI

List of Figures

2.1 The principle of the parallax measurements 6
2.2 'The growth of accuracy for the stellar position 7
2.3 The growth of accuracy and data volume for astrometry during the last
decades 8
2.4 The orbits of DIVA/AMEX and GAIA 9
2.5 The measurement principles of scanning satellite (in the case of GAIA) . . 10
2.6 The focal plane of DIVA o 11
2.7 The focal plane of GAIA 12
2.8 Illustration of the principle scheme of the focal plane 13
2.9 The principle scheme of the processing chain 15
3.1 The scheme for the development of the DPC 18
3.2 The general scheme of data flows L. 19
4.1 The main systems of the DPC 31
4.2 The Use Case of the activities in the DPC 31
4.3 The Use Case of the activities with the stored data 32
4.4 The subdivision of entities in the DPC 32
4.5 The first approach to the conceptual model of the raw data 33
4.6 The improved conceptual model of the raw data 33
4.7 The general conceptual data model for entities 34
4.8 Identifying entities oL Lo 35
4.9 Javaand CH++ L e 35
4.10 The single-row and multiple-row data retrieval 36
4.11 The UML model for the data processing in the DPC. 39
5.1 The logical structure of the database 43
6.1 The UML scheme of the database 58
6.2 The growth of the data during the mission (DIVA/AMEX) 63

VII

6.3

6.4

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8

7.9
7.10
7.11

7.12

7.13

7.14

8.1
8.2
8.3
8.4
8.5

9.1
9.2

E.1

The relation between the number of nodes used in the query and the re-

sponse time L. L e e e e e 65
The comparison between the direct insert and the preprocessed insert . . . 67
The response time vs the CPU usage 76
The distribution of the response time for different CPU usage 7
The TCEF for local and remote data retrieval 79
The approximation of the TCF for a local data retrieval 80
The approximation of the TCF for a remote data retrieval 81
The response time and the quasi-stable solutions 82
The distribution function of the response time 83
The form of the TCF and the dependence of the TCF on the number of

retrieved TOWS e e 84
The matrix approach to the description of the cluster 85
The optimum number of nodes 87

The dependence of the response time from the number of rows retrieved
and the size of the table in the case of the local data retrieval 90

The approximation of the dependence of the response time from the size
of the table in the case of the local data retrieval 91

The dependence of the response time from the number of rows retrieved
and the size of the table in the case of the remote data retrieval 92

The approximation of the dependence of the response time from the size

of the table in the case of the remote data retrieval 93
Use case diagram for the DBSS 96
Activity diagram for the DBSS 97
Sequence diagram for the DBSSo 98
The principle scheme of the DBSS 102
The response time for the uniform data distribution, the optimum data

distribution and the single-node distribution 106
The UML scheme of the Benchmark Database 115
The records per seconds measure for RS1 statement 119
The scheme of the test of the remote and local data retrieval 148

VIII

List of Tables

2.1

3.1
3.2

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11

8.1
8.2
8.3

9.1
9.2
9.3
9.4
9.5

Al

B.1

Astrometric Space Missionso 8
The data transmission rate 23
Main characteristics of the whole-sky catalogs 27
Characteristic time intervals for processes 46
Queries of the data processing Lo 50
Attributes for the database with attributes’ domains. 51
Relationships between attributes. 51
An optimum database scheme 52
The raw data tables. 53
The processed data tables 54
The final catalog tables o000 56
Thesize of tables 62
GAIA and DIVA/AMEX clusters 68
The upgrade plan 69
The DBSS Database 101
The F+T matrix with dispersion 104
The response time for various data distributions 107
The benchmark database 111
The size of raw, processed and final data tables 114
Benchmark input data generationo oL 116
The response time and rps for benchmark statements 122
The response time for RST o L. 122
ESQL/Cand Java. 130
The difference between row by row data retrieval and cursor. 133

IX

C.1

D.1
D.2

E.1

F.1
F.2

G.1
G.2

H.1

I.1

The request time for Nnodes. 141
The quasi-stable solutions for the response time. 145
The distribution function of the response time. 145
The linear form of the TCF. 150
The dependence of the response time on the size of the table. 154
The dependence of the TCF on the tables’ size. 154
The dependence of the TCF on the tables’ size. 158
The response time for tables of various sizes 159
The F4T matrix with dispersion. 162
INSERT and LOAD. 164

Abbreviations and Terms used in the
Thesis

There are some abbreviations and terms which must be described before the reader will
start with the presented work.

Application is a completed functional unit of work which is performed as a detached
program. Through the Thesis application means a unit of work which realizes the single
stage of the pipeline or an external to the pipeline work (the application labeled as an
“external application” in this case).

DBA, Database Administrator, a person who is responsible for the availability of the
database to the users and programs that need it, the resposabilities include as well the
making of backups and archiving data, on-going monitoring of the database and improve-
ment of the database performence.

DPC, the Data Processing Center, the core element in the scientific data processing. The
DPC receives the input raw data and produces the final scientific data at the end of the
mission.

DBSS, the Database Statistic System, a software package, which was invented in the
presented study.

DBMS, a Database Management System, a software system that facilitates the creation
and maintenance and use of a database. RDBMS is a DBMS for the relational database,
ODBMS is a DBMS for the object-oriented database.

DMS, in the DMS tablespace, Database Managed Space tablespace, the definition of
the tablespace which stores data in files (or on devices) controlled by the he database
manager.

mas, milliarcsecond, 1073 of the arcsecond, 2.4(7) 1077 of the degree.
pas, microarcsecond, 107% of the arcsecond, 2.4(7) 10719 of the degree.

NP-complete, a definition of a problem, which can be solved only by an algorithm whose
run time is at least polynomial in the size of the input.

Pipeline is a sequence of functional units (“stages”) which performs a task in several steps.
Each functional unit takes inputs and produces outputs which are stored in its output
buffer. One stage’s output buffer is the next stage’s input buffer. This arrangement allows
all the stages to work in parallel thus giving greater throughput than if each input had
to pass through the whole pipeline before the next input could enter.

rps, rows per second, a measure of the efficiency of the data retrieval from the database.

XI

SMS, in the SMS tablespace, System Managed Space tablespace, the definition of the
tablespace which stores data in operating system files.

SOC, the Space Operation Center, the operational center which provide an interface be-
tween scientists and the satellite. The Space Operation Center receives the data from the
satellite, monitors the systems that keep the spacecraft functioning and issues commands
to the satellite.

TCF, a time cost function, a time required to retrieve a single record from the database.
This definition is used through the presented study.

TPC, the Transaction Processing Performance Council, a group which defines defines in-
dustry standard benchmarks that compare the ability of hardware and software platforms
to perform database transactions. Also, the TPC usially designates the benchmark itself.

tps, transactions per second, a measure of the efficiency of the data retrieval from the
database.

XII

Chapter 1

Introduction

The collection of data has always been a major effort in astronomy. The increase of data
and the use of collected data allow to solve a number of problems, from the calculation
of orbits of planets of the solar system to the prediction of the fate of the Universe. A
number of discoveries in physics, chemistry and even biology are based on astronomical
data.

In the last years the enormous increase in the data volume was triggered by the installation
and use of new astronomical techniques. This comprises both new large ground-based
telescopes and successful space missions. Some multi terabyte databases are already in
use in astronomy (for example, the Sloan Digital Sky Survey, http://www.sdss.org,
which has already 10 TB data and is not completed yet), and in the nearest future they
will become usual for astronomical archives. The data volume will increase with the
development of next generation missions like SEGUE or GAIA.

But the huge data volume will remain useless without an effective data mining service
provided by the owner of the data for the broad astronomical community. The storage
and use of huge data volumes requires careful analysis of the strategy of data storage and
software and hardware components which will be used. The problems of the data storage
increase with a possible lack of financial resources available for a scientific project.

Historically the storage and processing of the large chunks of astronomical data were done
in two ways: the construction of an astronomical data center or the creation of a mission
data center (which includes ground-based instruments as well as astronomical satellites).

The development of Astronomical Data Centers has a history of almost 40 years. The first
and leading Astronomical Data Center (Centre de données astronomiques de Strasbourg,
CDS, http://cdsweb.u-strasbg.fr)) was established in 1972 in Strasbourg as a result of
the cooperation between the Louis Pasteur University and Institut National d’Astronomie
et de Géophysique. The goal of the newly created Data Center was not only the collection
of useful astronomical information but also the distribution of this information to the
astronomical community and supply of data mining abilities. Later, the CDS has initiated
the foundation of astronomical data centers worldwide. One of the most successful is the
Astronomical Data Center of NASA (ADS, http://ads.harvard.edu). The astronomical
data centers have their own specific features: they possess a collection of data which is
very wide in data types. The CDS data storage consists of a number of catalogs, from

tiny ones to huge all-sky surveys. Nevertheless, one of the principal results of the CDS’s

activity is the successful joining of a number of data sources under a single interface
(SIMBAD, Vizier).

Data Centers of space missions have a more limited task: they have to work only for a
restricted time during the space mission and produce a final catalog at the end of this mis-
sion. However, in practice most of the space missions data centers do not finish their work
at the end of the mission but create a permanent archive of the mission. Sometimes, in case
of an astronomical space mission, the data storage and handle requires to establish a new
scientific institute like the Space Telescope Science Institute (http://www.stsci.edu) for
the Hubble Space Telescope (HST).

The purposes of the space mission data center depend on the type of the mission and can
be divided into two main branches: in case of the space telescope like HST, INTEGRAL
(the gamma-ray space telescope, http://isdc.unige.ch), the Spitzer Space Telescope
(the infra-red space telescope, http://ssc.spitzer.caltech.edu) and many others the
mission data center must serve as an interface between observers and the Scientific Op-
eration Center. This duty makes it necessary to collect requests for observations from
an observer and compile an optimum plan of observations. The second purpose is to
collect the observed data and reuse later to provide an access to these data for the wide
astronomical community.

It is clear, that in case of the satellite which will scan the whole sky without observational
program (DIVA, AMEX, GAIA) the first purpose is gone. Instead, we will have the
need not only to collect data but to make all necessary scientific computations with the
observed data (the scientific data reduction hereafter) and to provide the final catalog of
the mission to astronomers. As a result the task of the data processing will be one of the
primary goals for such a data center. In fact, we have to construct the data processing
center as the basic element for the scientific operations with data during the mission.

We should note as well, that in case of an astrometric space mission like GATA many
astronomers will be interested in the mining of the original data. Although these appli-
cations will not be time critical and will come only at the very end of the mission the raw
data volume must be stored online and must be available for tasks of data mining.

As a result we have a combination of an astronomical data center and a space mission
data center, but they are separated in time: during the mission the main task is the data
processing with the goal to complete the final catalog of the mission as soon as possible
and after the end of the mission the data processing center can be turned into the online
archive with both the raw data and the final catalog available.

1.1 Goal of the Thesis

Two problems will be solved in the present study. The first one is the problem of the
concept of the Data Processing Center (DPC), which will satisfy the requirements from
the astrometric space mission. The Data Processing Center has to supply the data storage,
data processing for the mission and data mining for the external users at the end of the
mission. Moreover, the budget of the DPC is limited and must not exceed some value

(usually the limit is 5%-7% of the cost of the mission). To combine the low cost for the
DPC and the efficiency of the solution is the most important task of this Thesis.

The second, more technical problem is the decrease of the response time with which
applications need to retrieve the data. As will be seen later, we will have a number of
time-critical applications which deal with massive data chunks and these applications will
have a limited time interval to retrieve data from the database.

1.2 Summary of Contributions

In the present Thesis the concept for the DPC for an astrometric space mission is proposed
and tested.

The conceptual, logical and physical design of the Data Processing Center is based on the
simulation of the applications at the DPC, the estimation of the response time for major
requests from applications, the study of possible hardware and software components. The
DPC concept will be useful not only in the case of a space astrometry mission, but also
in wider fields of all-sky surveys made with ground-based telescopes. The general data
processing schemes for all-sky surveys are similar due to the similarity of the observational
technique (the use of the CCD, the reduction of the CCD image and the storage of the
obtained data).

A benchmark for astronomical databases was developed and tested. The benchmark is
based on the general scheme of the data processing in the case of periodical astronomical
observations with wide field instruments and CCD detectors.

To decrease the response time for requests from applications an effective solution for the
problem of the physical data placement was invented. The solution was designed for the
case of a horizontal hash partitioning of the distributed database in a shared-nothing
environment and the case of a massive data retrieval from tables (more than 10® rows
in a single transaction). These circumstances allow us to use a linear approach for the
dependence of the response time on the number of records retrieved. The data distribution
scenario is a result of the estimation of the status of the hardware/software system at the
moment of the data retrieval. The improvement of the response time is more than 10
times compared to a uniform data distribution.

1.3 Outline of the Thesis

The Thesis has the following structure: Chapter 2 is dedicated to the description of
space astrometry and the typical astrometric scanning satellite. The chapter reviews the
target of astrometry, the switch from ground-based astrometry to space missions and
the data processing to be performed during the mission. In Chapter 3 we summarize the
requirements for the Data Processing Center. The requirements are defined on the basis of
the description of data flows throughout the mission, the description of the data storage
capacities which are needed by the DPC and the demand from the data processing.
The conceptual design of the DPC is defined by the requirements and is described in
Chapter 4. The logical design is defined in Chapter 5, where problems of the logical

3

design are reviewed as well. The physical design of the DPC is described in Chapter 6.
This includes the optimization of the structure of the database of the DPC, the description
of hardware and software components of the DPC and the schedule for the work of the
DPC. The development of the DPC described in Chapters 2-6 has one primary goal: to
decrease the response time required for applications to retrieve data from the database
of the DPC. The next step to solve this problem is made in Chapter 7 with the review
of the theoretical background for the problem of data distribution in case of the shared-
nothing environment (which was selected for the Data Processing Center in the previous
chapter). For the massive data retrieval by the select statement, it is proved that we can
use a linear form for the dependence of the response time from the number of records
retrieved. This simple approach is the basis for the solution of the problem of data
distribution. In Chapter 8 we describe the implementation of the system which realizes
the solution as well as the results archived by the system of data distribution. Chapter 9
describes the proposed benchmark for astronomical databases. This benchmark is based
on the general scheme of the database for scanning astronomical /astrometric missions and
measures principle requests from applications to the database. The test of the benchmark
was performed as well. Chapter 10 concludes the thesis and reviews the results of the
study.

Appendices describe the tests performed during the study. Appendix A shows the dif-
ference between the use of the Java language and the C/C-++ for the data retrieval.
Appendix B shows the difference of the response time for data retrieval in a single trans-
action and the row by row data retrieval (one single row per transaction). Appendix C
tests the change of the response time with the increase of the number of nodes used for
the data distribution. In Appendix D we checked the stability of the response time for
the data retrieval and in Appendix E we proved that the linear form suits quite well the
description of the dependence of the response time from the number of rows retrieved
for the massive data retrieval. Appendices F and G are dedicated to the search for the
dependence of the response time from the size of the requested table. Appendix H tests
the stability of the time cost function. Appendix I shows the difference between the data
load with the use of the INSERT statement and the data load with the use of the DB2
utility db2split.

Chapter 2

Modern space astrometry

This chapter briefly reviews the basic principles of an astrometric space mission. The
schematic layout of the satellite, the parameters of space astrometric missions and the
data processing tasks during the mission will be shortly discussed. The main goal of this
chapter is to show how the astrometric space satellite forms the scientific data.

2.1 Astrometry at a Glance

The topic of astrometry is the precise determination of stellar positions, proper motions
and heliocentric parallaxes, which are the periodic (one year) parts of the time-derivatives
of stellar positions caused by the motion of the Earth around the Sun. In general, astrom-
etry deals with all coordinates and motions of stars on the sky. As the Earth revolves
around the Sun, the direction to the star continually changes. At Figure 2.1 we can see,
that the direction F;S to a star S will change half a year later to the direction FE5S.
Measuring the angles C'F1.S and C'E,S and knowing the radius of the Earth’s orbit « it is
possible to calculate the stellar parallax = and the distance to the star d. The problem of
the parallax measurements is that the distance d is very big, and as result, the angle 7 is
very small (as well as the measured difference CE;S — CE,S). Even for the nearest star
Proxima Centauri the change in the position does not exceed 1 arcsecond. The parallax
for a star in the center of our Galaxy will not exceed 0.0001 arcsecond.

Another problem of the measurement of stellar parallaxes is a reference frame. The
massive measurements of positions on the sky are possible for relative positions only.
This means, that for each measured field on the sky some number of stars with known
parallaxes and very precise positions located in this measured field must be available.

The first stellar catalog in the history of mankind was compiled by Hipparchus in the
IT century B.C. 200 years later it was recompiled by Ptolemaeus with a precision about
2 arcminutes. For 14 centuries the precision of observations remained the same until
Tycho Brahe (16th century A.C.) improved the measurements of positions to 30 arcsec,
which is the best value achievable without any technical equipment like a telescope. The
first parallax was measured in 1837 by Bessel (61 Cyg, 0.3 arcsec). The improvement in
astrometric accuracy over more than 2000 years of development is shown in Fig. 2.2.

Eo

Figure 2.1: The principle of the parallax measurements. 7 is the stellar parallax, d is the
distance to the star, a is the distance to the Sun. E; and FEs are positions of the Earth with a
half year time difference.

The accuracy of the ground-based measurements improved with time. The best measure-
ments with photographic plates achieve 0.008 arcsec whereas it can be improved with
use of CCD detectors to 0.002 arcsec ([van Leeuwen, 1997|, for the mass measurements
with wide field instruments). The best accuracy for stellar position reached with very
small field astrometry is 1-2 mas (|[Kovalevsky, 1995]). The new generation of ground-
based telescopes was developed with the goal to provide an astrophysical research and to
observe a single object. Although it is possible to use these instruments for small field
astrometry and to improve the astrometric accuracy by a factor of 5-10 compared with
the mass measurements with wide field instruments, the number of observations will be
limited to less than 1000 objects per year. We can see, that ground-based astrometry
practically reached its limits in precision. As well it is hard to create an uniform reference
system for measurements of positions, parallaxes and proper motions over the whole sky
with the pointed ground-based astrometry.

The importance of astrometric observations from space arises from the limitations of
ground-based astrometry.

2.2 Space missions in astrometry

The first space mission for astrometry Hipparcos improved the accuracy of measurement
of positions by a factor of 100 for 120,000 objects after 3 years of observation. This
mission successfully ended more than 10 years ago, whereas planned astrometric missions
will be able to reach 10-100 times better accuracy for millions of stars. According to
the observation mode, future space missions for astrometry can be divided into two main
groups: scanning instruments (FAME, DIVA, GATA) and pointing instruments (SIM).
Missions in the first group will be able to observe the complete sky and to measure
positions, parallaxes and proper motions of stars down to a moderate limiting magnitude

6

T |

I GAIA

[[

I [

[[

— 4 in !

[[

H [

4‘ HIPPARCOS'

! !
> H (=
) [[

_ L |
S 2 ! [
= L i
9) J FE5] |
i \ [

! b

| !

[[
%@ O [1]
— [[

I 1]

! !

n I

[[

H I

2 JLHipparchus :,
[

b I

[[

[| | | i

O 500 1000 1500 2000
time, years

Figure 2.2: The growth of accuracy for the stellar position.

(V' = 20™ for GAIA), while SIM will provide an extremely high accuracy but for a limited
list of objects only.

The precision of a single measurement is limited by a number of factors, the first one being
the diffraction of the instrument. In the case of an observation with an ideal instrument
with aperture D (the diameter of the objective of the telescope) the size of the diffraction
image is 206264.8 A\/D arcsec for monochromatic light with wavelength A. Taking into
account the photon noise of the flux observed by the instrument it is possible to evaluate,
that the accuracy of a single measurement is 206264.8 \/(D +/N), where N is the number
of photons of wavelength .

Let us review the main parameters of HIPPARCOS and ongoing astrometric missions to
indicate the volume of the data during the mission. The Table 2.1

Simultaneously with the rise of the precision of astrometric measurements the data volume
of measured positions arises as well (see Fig. 2.3).

7

\
N
LA L B L B B]

log Position Accuracy
\ \
~ o
T ‘ L

FKb5

-5F

FKS

?Hﬁqpparcos

GAITA

GAIA

2

&
5 E

Z,

Q0

9
4

1980 1990 2000 2010 2020 2030
time, years

Figure 2.3: The growth of accuracy and data volume for astrometry during the last decades.
The accuracy in the position measurements (circles, left axis, position’s accuracy is in arcseconds)
and the number of stars observed with this accuracy (crosses, right axis).

Table 2.1: Astrometric Space Missions

HIPPARCOS AMEX/DIVA GAIA
Start of the mission, year 1989 canceled 2012(planned)
End of the mission, year 1993 2017(planned)
Final catalog produced, year 1997 2020
Type of observation strategy | input catalog whole sky whole sky
scanning scanning
Limiting magnitude, mag - 12 20
Position accuracy reached, mas 1 mas 0.19 mas (planned, | 10 pas (planned,
V = 12m) V = 15m)
Number of objects observed 120,000 4107 (planned) 10° (planned)

2.3 Astronomical & astrometric data processing

The main data flow during an astrometric space mission will be the data transfer from the
satellite to the data processing center (DPC) via the science operations center (SOC).

8

Moon's orbit

the direction 360,000 km

to the Sun

DIVA/AMEX

orbit,

apog. 10,000 km L2,
— 1.5 mIn km
O
AN

Figure 2.4: The orbits of DIVA/AMEX and GAIA. The picture is not scaled. Lagrange point
L2 is shown.

The data flow from the satellite (telemetry) will include house-keeping data describing the
status of the satellite (e.g., attitude, voltages, currents, temperatures, other parameters)
on the one side and scientific measurements on the other side. The SOC receives telemetry
data and uses it to monitor the satellite’s behavior. The telemetry data will be send to the
DPC for the scientific analysis. The telemetry capacity depends on the communication
link between satellite and ground station (a large communication rate means a rise of
the satellite’s mass and therefore the price for the satellite and launch) and on the time
interval during which the satellite will be observable from the ground station. In the
case of DIVA the orbit was planned to be highly eccentrical so that the satellite would
be observable for approx. 18 hours per day by a single ground station. The orbit of
GAIA is quite different: GAIA will be placed in the L2 point of the Sun-Earth system
(1.5 million km from Earth) and will be observable by a single ground station for 8 hours.
The transmission rates are different as well (see Table 3.1).

The principle layout of the DIVA/AMEX satellite (as well as any scanning space satellite)
includes two fields of view (FOV) combined at the focal plane of the telescope, where a
CCD array is placed. In the case of DIVA/AMEX the beams would be combined in the

single focal plane.

In the case of GAIA the two FOVs for astrometric measurements will be accompanied by
a third instrument for spectroscopic and radial velocity measurements.

In case of the DIVA/AMEX on the focal plane two types of CCD mosaics are mounted.
The first part consists of Sky Mappers (SM1 and SM2). The second part houses the so-
called spectroscopic CCDs (SC1 and SC2). Outside this area, in undispersed light, three
CCD mosaics, called Sky Mappers (SM3, SM1 and SM2), are mounted (see Fig. 2.6, SM3
is reserved and will be used in the case of the failure with SM1 or SM2). All mosaics are
identical and each consists of 4 individual chips with 1024 x 2048 pixels of 13.5 micron x
13.5 micron. The CCDs are thinned, back-side illuminated for high quantum efficiency.

GATA will have an astrometric star-mapper (ASM, with the same function as SM in case
of DIVA), an astrometric field proper (AF1-11 in Fig. 2.7) and a broad-band photometer

9

Line of sight 1

Consecutive
great circles

Line of sight 2

Figure 2.5: The measurement principles of scanning satellite (in the case of GATA). The satellite
rotates around the satellite’s spin axis with the rotating speed 2. The basic angle ® is the angle
between two lines of sight. Source: [de Bruijne J., 2003]

(BBP) which will measure stellar magnitudes in a number of bands.

The arrangement of the focal plane are similar for DIVA (see Fig. 2.6) and GAIA (see
Fig. 2.7), and despite the differences in the construction of both satellites the general
principles of observations will be the same:

e a stable angle between the two FOVs directions will be used to measure the angle
between two stars,

e a CCD array will be placed in the combined focal plane of the two FOVs.

Due to the rotation of the satellite the stellar images are moving from left to right in the
focal plane. The integrated exposure time per mosaic transit is 1.4 sec. All CCDs are
clocked synchronously with the actual rotation of the satellite, i.e. they are operated in
the so-called time-delayed integration (TDI) mode. The actual rotation rate, nominally
180 arcsec/s, is determined in real-time to an accuracy better than 0.1 arcsec/s from the
crossings of individual stars through SM1 to SM2.

After detection in SM1 the onboard computer predicts windows surrounding the stars in
the continuous pixel stream of the CCDs in the dispersed field. Only these windows will

10

+ SM1 window

-~
/
<

140 mm

‘ SC1 window

‘ SC2 window

plane

star motion
on the focal i 9 o ./ 9 ./
SM3 SM1 SM2 SCi SC2

Figure 2.6: The focal plane of DIVA. The CCD mosaic SM3 is reserved one, windows were cut
on mosaics SM2, SM1, SC1 and SC2.

be transferred to the ground. Additionally, smaller windows around the stars detected in
the mosaics SM1 to SM2 will be transmitted to the ground.

In scan direction the full width of the central "Airy" fringe in both the SMs and the
SCs is about 1.4 arcsec at a central wavelength of 750 nm. In cross-scan direction it is 2
times larger. Therefore and because the main astrometric measurements are done along
scan a four times larger pixel size in this direction is used. In the present concept, this is
achieved via an on-chip binning of four pixels in cross-scan direction. So, read-out noise
as well as on-board data rates are reduced. On the focal plane the set of CCD is placed.
During the observation, the star arises in the first Field of View (FOV, the first FOV is
the first FOV on the direction of the rotation of satellite, see Fig. 2.5).

Being detected on the first CCD (sky mapper) the transition of the star will be passed
on the other CCDs and only a limited window will be cut on other CCDs. After the
time interval At = &/, where ® is an angle between two scanning directions and €2 is
a rotation speed of the satellite the same star will appear in the second FOV and will be
detected. The result of the single stellar detection (in one FOV) will be a set of windows
from each CCD. This set will be accompanied with the clock counts, packed onboard and
sent to the ground-based station with the corresponding telemetry.

A part of the CCD pixel array (a so called window) will be cut onboard and send to
ground with the position of the center of the window on the CCD chip. This will be
the primary information about the object which will be used to compute position of the
object on the focal plane and to calculate the position of the object on the sky with the
use of satellite coordinates. Like for Hipparcos, the data processing will be divided into
following tasks:

e Pixel Data Processing. From the window (7x12 pixels in the case of DIVA/AMEX,

11

Optical center of ASTR!

field #1 (TBC)
D .
a] Mechanical center
o] Optical center of ASTRO o)
2 field #2 (TBC f (~61.2% AF07qctve)
“T10
v
9
8
7
™~
N Optical center of
S e« ASTRO field #2 (TBC)
I3 Mechanical center
§ 5 [— Optical center of
3 ASTRO field #1 (TBC)
4
= l=F =% == == == = = = F— |— = |=| == |=F F=>Apparent star motion
3
) [[] AsTRO field #1 | |[ASM
AF
X [[] astRO field #2 | |55
dob M2t 23456l 7]8)o]wo]u]|a]2s]4s
O
; < 768 mm / 0.944 >
™
[

Figure 2.7: The focal plane of GAIA. Source: [Jordi C., 2003]

see [TD0284-01, 2002]) the centroid of the image will be determined as well as the
brightness of the object.

Instrument Calibration. Instrument calibration consists of photometric and as-
trometric calibrations. In the case of photometric calibration, we have to recalculate
the brightness of the object to the adopted uniform photometrical system. Due to
numerous effects this task will require to trace the performance of the CCD chips
and to correct images. For example, CCD chip will degrade during the mission and
as result the image of the same non-variable object will differ at the beginning and
at the end of the mission. Astrometric calibration means the determination of all
distortions which affect the position of the object on the focal plane.

Attitude Reconstruction. The task of this step is to produce a relation between
the satellite’s internal coordinate system and the standard celestial coordinate sys-
tem. To enable this information about the satellite’s coordinate axis, rotation and
onboard clock counts are sent to the ground periodically.

Great Circle Reduction (DIVA/AMEX only). This is the first step in the
process of coordinate determination. Window centroids (from pixel data processing),
instrument parameters (instrument calibration) and satellite’s coordinate system
(attitude reconstruction) will be combined to produce coordinates of objects on the
basis of approximately 6 hours of satellite’s observations. Due to the slow precession

12

@ (b

1=]
|

Figure 2.8: Tllustration of the principle scheme of the focal plane. Two windows are shown,
one with a single image (a) and one with two images (b). The window size in the case of
DIVA/AMEX (7 x 13 pixels) is much smaller than shown here.

of the satellite’s axis and the slow rotation (rotation period is approximately 2 hours)
the 6 hours of observations could be interpreted as 3 scans of the same 360 degrees
strips on sky and will be used to produce one-dimensional coordinates of all objects
in this “strip”. In the case of GAIA the approach of a Great Circle Reduction
is not applicable. Any projection of the highly accurate one-dimensional single
measurement, onto a reference great circle other than the instantaneous one would
immediately destroy the high accuracy due to the unknown cross-scan coordinate.

e Sphere Reconstruction. After half a year the satellite will cover the whole sky
at least once with the the “strips” used in the Great Circle Reduction. As a
result, the computation of coordinates of reference stars on the celestial sphere will
be possible.

e Astrometric Parameters Determination. Positions of objects on the celestial
sphere will be collected during the mission to produce stellar positions, parallaxes
and proper motions.

e Preliminary Identification. To provide a link between the mission coordinate
system and the standard coordinate systems we must cross-identify stars with the

13

most accurate positions with pre-existing sky surveys and catalogs.

e Object Recognition. The purpose of this task is to identify all stars and stellar
objects observed by the satellite on the basis of their image coordinates. As a result
the mission’s system of stellar identification will be created and each image will be
assigned to a star or stellar object.

From the simplified description above (see Fig. 2.9 for the principle scheme of the data
processing, the Astrophysic Parameter Determination was omitted), one can realize,
that the complete data reduction from the raw data to the final catalog is very complex
task for the data reduction team. The Data Processing Center plays a central role within
this process. The algorithm design and coding is an external task to the DPC and not a
topic of this work.

2.4 Summary

The general description of the data processing scheme, instruments and the principle of
astrometric and photometric data reduction can be summarized in the following:

e all missions targeted to the whole-sky scanning are based on the same principles.
Despite some differences in instruments of DIVA and GAIA the same general de-
scription of observations can be made for both missions,

e the only important difference between DIVA and GAIA is the data volume, which
will be described in the next chapter,

e the same data processing scheme can be used for both missions (except the absence
of the Great Circle Reduction in the case of GAIA).

The next chapter will review the requirements to the DPC and will set problems which
must be solved by the construction of the DPC.

14

¢

IPS

Astrometric
Parameter
Determination

Proper Motions

Parallaxes

FD1

Windows
Window IDs Pixel Data Great Circle
Processing . Reduction
Image IDs Object IDs .
g (} GC Coordinates
RDO ppo| coordinates of reference
Preliminary Preliminary Sphere stars
House Keeping Coordinates Identification Reconstruction A
Data EEE—
CCD chip) RD3 ot
information Attitude
Reconstruction
Time Counts RDL
J
A
-

Object
Recognition

FDO

Figure 2.9: The principle scheme of the processing chain. The main data flows are shown.

Final Object IDs

16

Chapter 3

Requirements to the Data Processing
Center

This chapter is dedicated to the review of requirements which the Data Processing Center
of an astrometric space mission has to fulfill. The Data Processing Center has a number
of tasks to be done during the mission. To describe the requirements to the DPC we start
from the description of the data flows for the mission and from the estimation of the data
volume to be stored. The description of the data processing made in the previous chapter
serves as a basis for the more accurate and formal description of operations on the data
in the DPC and will be combined with the requirements from time-critical applications.
At the same time we have to take into account constraints which will limit possible ways
of the solution. The most important ones come from the time critical applications but
the limited resources which are available for the construction and support of the DPC
plays a significant role as well. Fig. 3.1 shows the way which will be used to describe the
development of the DPC.

The requirements to the DPC define the concept and the development of the DPC (which
are subject of the next chapters).

3.1 Tasks of the DPC

The Data Processing Center is a core element for the data processing and serves as an
“interface” between the data received from the satellite and the scientists.

The DPC has the following main tasks:
e to receive raw data from the Space Operation Center (SOC),

e to store raw data during the mission. This includes a regular backup and retrieval
of data in case of possible failures,

e to provide an online access for users (pipeline, other applications of the data reduc-
tion process and external users at the end of the mission) to raw and processed data
and the final catalog.

17

Data Flows Data Processing Data Storae

Requirements
from the Data
Processing and
Data Storage

Constraints

The DPC Concept

Analysis of users, entities,
relationships
and data processing

Y

The DPC Logical Design

The Logical Design of the DPC
The Logical Design of
the Database

The DPC Physical Design

The DPC Hardware Components
The DPC Software Components
The DPC Database

Figure 3.1: The scheme for the development of the DPC.

To define the requirements to the DPC, we have to analyse what kind of data will come
to the DPC, which data processing operations will be made with the data and what is the
desired final result of the mission. It is important to keep in mind that the time which
can be spent for the data processing is limited and the final catalog of the mission must
be supplied to astronomers as soon as possible after the end of the mission.

Some users of the DPC like First Look (FL, first and continuous inspection by GAIA sci-
entists of science data produced with pipeline) and Scientific Quick Look (ScQL, technical

18

Satellite

SO1 OS1
SO
DO1
OF1
FO1 ©ob1
FL DPC
< DF1

Figure 3.2: The general scheme of data flows.

inspection of satellite data at the SOC) have to access data stored in the DPC as well.
Nevertheless, their design and work could be organized so that they will access incoming
data in the SOC. In this work, we suppose that ScQL is installed in the SOC, whereas
FL must share resources with the DPC (we will consider further FL and the DPC as two
completely independent systems). In fact both ScQL and FL need only a few calibration
information from the data stored in the DPC and the data flows from the DPC and FL
and ScQL are not supposed to be significant.

We have to describe data flows through the mission as well as the data processing require-
ments and the data storage capacities which must be deployed in the DPC.

3.2 Data Flows

Data Flows include the description of the general scheme of data flows and the description
of data formats of raw data.

3.2.1 Data Flow Scheme

Fig. 3.2 describes the data transmission between the subsystems of the mission.

S01 - the data flow from satellite to the SOC includes scientific data (time counts and
windows) and house keeping data (position of the satellite and other parameters describing

19

the satellite state). The transmission rate is described in Table 3.1. The data for this data
flow will be stored on the satellite, packed and transfered to the SOC. SOC will unpack
the data flow and use for the First Look.

OS1 - data flow from the SOC to satellite. Commands from the SOC (for example, to
change rotation rate).

DO1 - data flow from the SOC to the DPC. This is SO1 data which flows from the
satellite to the DPC via the SOC.

OD1 - data flow from the DPC to the SOC containing information on the detailed study
of the satellite performance (the study of the CCD chips, for example).

OF1 - data flow from the SOC to First Look (or/and Scientific Quick Look). This data
flow will support First Look with the information about the satellite status.

FOL1 - data flow from First Look to the SOC. This data flow is a result of the analysis of
the satellite’s orbit, orientation and instruments.

DF1 - data flow from the DPC to First Look. The data flow consists of the data required
for the First Look to perform an analysis of the satellite state.

The DPC will receive and decode the data stream and will save the data in the database.
Numerous applications will retrieve data from the database and will save results of the
data processing into the database which we have to develop.

The task of the data processing is to produce astrometric and astrophysical parameters
of stars from measured parameters. The DPC will receive CCD frames, angles which
describe the satellite’s position, onboard time counts and other parameters.

3.2.2 Format of the Incoming Raw Data

The incoming raw data are represented by three entities:

Time counts. These data store the on-board time at the moment of the object obser-
vation. TDI clock counts will increase with a 1 ms tact rate during the mission. The
maximum TDI clock count will depend on the duration of the mission and will go up
to 10! for 3 years of the satellite’s life. This will require a 34-bit integer. In theory it
is possible to use 64-bit but the use of this data type will create mutual problems for
applications, for example, with the portability of applications between hosts with 64- and
32-bit architectures. It is better to divide the TDI clock count on two variables: the
running TDI clock count %k; and the number of resets since the beginning of the mission
ks (the data structure mirrors the onboard TDI timing information). Both values will
depend on instrument features: we can reserve two 32-bit integers for them.

House-Keeping data. This data describe the satellite’s position and performance (these
include the onboard time, the position of satellite axis and the temperature regime of the
satellite). The final set of parameters depends on details of the satellite construction. In
any case, for the description of the satellite’s orbit and positions of satellite’s axes, we
have to use the following parameters: the onboard time and the referenced time in UTC
system (down to ms, E20.14 values were used in case of Hipparcos), Keplerian parameters
of the orbit (5 values of E20.14 were used in case of Hipparcos), 6 values for the rotation
axis of the satellite — 3 coordinates of the axis and 3 components of the velocity vector.

20

CCD chip information. This is the CCD chip number for the CCD chip in which the
object was observed. To describe the position of the object on the CCD frame it is enough
to use two values: they fix the corner of the window on the CCD chip in both coordinates
(column of the CCD chip, “Y” coordinate and row of the CCD chip, “X” coordinate).
The type of the window will be attached as well. The type of the window depends on
the brightness of the detected object and defines the size of the pixel array which is cut
onboard and sent to the SOC. 16-bit integers are sufficient to store these values.

Window. This array of integer values contains the main information about the object.
The window size usually contains 7 x 13 pixels, only for a few bright stars the window will
slightly larger. Also, for calibration purposes, full chip windows (524288 pixels) will be
cut sometimes. Fortunately, the number of full-chip windows is limited and can be stored
in a separate table. The value of each pixel is an integer and can vary from 0 to 65535. As
a result, we need 2 characters (8-bit) to store each pixel value. Among the object windows
(a window used to observe an object on the sky, but not a full chip window) the largest
has 84 x 13 — 1092 pixels ([TD0284-01, 2002]). GAIA will have even smaller windows for
most of objects (3 x 3 — 9 pixels, [de Boer et al., 2000]).

Three entities (Time Counts, CCD chip info, and Window) define the raw data
information about the observed object. Each CCD mosaics on the focal plane of the
satellite (SM1, SM2, SC1 and SC2) sends to the ground these three entities to describe
the object passing the focal plane. Fig. 2.6 shows the transit of the star through the focal
plane. The object will be detected on SM1 and will be predicted on SM2, SC1, SC2. As a
result the window which is cut on SM1 serves as a parent window for windows on SM2,
SC1 and SC2. The window on SC1 is described by a set of entities {Time Counts,
CCD Chip info, Window} , whereas windows on SM2, SC1, SC2 are described by
a set of entities {Time Counts, CCD Chip info, Window, Time Counts for the
Parent Window on SM1, CCD chip info for the Parent Window on SM1} .

We have described the raw data and requirements to the DPC from the raw data. During
the data processing in the mission more entities will be created. These new entities and
requirements to their precision will be observed later in the following chapters.

3.3 Requirements from the Data Processing

The data will be transferred to the DPC from the SOC as a set of files containing raw
data from the satellite and telemetry commands to the satellite. The work with the data
will be described below on the basis of the principle cycles of the DPC’s activity.

3.3.1 Daily Schedule

The Incoming Data. The data of one day of observation will be transferred from the
SOC to the DPC. The data transfer rate will depend on the quality of the link between
the SOC and the data center. In the case of GATA (85 GB of the daily data input, see
Table 3.1) and an average supposed speed of 5 KBps this operation will take up to 5 hours
(with the typical present day network).

21

The Reorganization of Incoming Data. The reorganization will include subdivision
of the data into the House-Keeping Data and the scientific raw data. The generated
Window Identifiers will be added to the chunk of data and used later as a partitioning
key for the data. The algorithm for the generation of the Window Identifiers will be
described in the next chapters (see Chapters 7 and 8).

The data load and archiving. The House-Keeping Data and the raw data will be
loaded into the database. The daily data load for the scientific raw data will be 85 GB (in
the case of GAIA, |EF5/FR/PC/038.02]). The daily load of the processed data will be
different in case of the DIVA/AMEX and GAIA. As we will see later (see Section 6.5), the
volume of the processed data for the DIVA/AMEX will be comparable with the volume
of raw data whereas for GAIA the processed data volume will be 10 times bigger than
the raw data volume.

The daily data processing. The daily data processing comprises Pixel Data Processing,
Attitude Reconstruction, Preliminary Identification and Great Circle Reduction. All these
tasks except the Great Circle Reduction work with the data chunk for the single day of
observations.

The half-year data processing. Although this work does not belong to the daily
tasks it will sometimes influence the daily schedule of the DPC. As soon as the data for
a half-year period of observations will be processed, Sphere Reconstruction, Astromet-
ric Parameter Determination and Astrophysic Parameter Determination will be started.
These programs will run more than one day and will need to retrieve a huge data volume.

3.3.2 Requirements from Applications

The data processing chain was described in the previous chapter. Each process in the
data processing chain requires not only the ability to retrieve data from the database but
also to make necessary computations with these data as well. We must give some general
requirements from the data processing to the computational capacities of the DPC.

Data Processing Capacity. In the case of Hipparcos 10 FLOP were required for
each observed star (see |[O’Flaherty et al., 1997]). In the case of DIVA/AMEX, we would
observe 4 x 107 stars for half a year. Assuming 19 hours of calculation each day (the
rest of the time is reserved for backup/archiving duties), we will have 1.25 x 107 sec for
the data processing. As a result we must provide at least 32 GFLOPS computational
capacities for the DIVA/AMEX data processing. For GAIA with 10'° objects observed
in a half-year period, we will need 8000 GFLOPS.

Time Critical Requests. The work with the data will be organized in daily cycles.
This means, that every day an incoming portion of data (85 GB in the case of GAIA)
must be processed. To prevent a delay in the data processing it is important to store and
process this data portion before the next data portion will arrive.

The detailed description of the data processing will be done in Chapter 5.

22

Table 3.1: The data transmission rate. The data for Hipparcos are
from [O’Flaherty et al., 1997], for DIVA from [DI-AED-RS-0001], for GAIA
from |[EF5/FR/PC/038.02].

Hipparcos | DIVA/AMEX | GAIA
Data transmission rate, Mbps 0.023 0.7 1.2
Raw data per day, GB 0.24 5.25 85
onboard storage, GB 0.01 1 25

3.4 Requirements for the Data Storage

Requirements for the data storage are:

e safe storage of the data volume and the capability to quickly restore data in the
case of hardware failure;

e online access to the complete data volume;
e quick response to time critical requests (esp. from the pipeline);

e the necessity to minimize the storage place.

3.4.1 Estimation of the Scientific Raw Data Volume

To provide an estimate of the data volume based on the number of observed stars, we
take into account the following parameters:

e a limiting magnitude derived for the chosen S/N (Signal-to-Noise) ratio, which will
determine the number of objects that can be observed by the satellite,

e an assumed distribution function f(m) which describes the number of stars per unit
of the sky surface in the selected range of visual magnitudes [m, m + dm],

e a multiplication factor r,;, which determines the number of images produced by the
satellite. This parameter depends on the time interval of the whole sky scanning Pg
and the mission duration T},

e arecord length for the object I, (7x13 pixels for the most of cases, see [TD0284-01, 2002]),

e the brightest stellar magnitude m,,;, and the faintest stellar magnitude m,,,, which
will be observed.

Finally, the estimation of the data volume is

Mmazx

V(S/N) :/ ra(m) f(m)l.(m)dm.

Mmin

23

The value V(S/N) is an estimate of raw data. To find the volume of processed data we
have to multiply V(S/N) by the scaling factor of applications which produce processed
data from raw data (pipeline). The estimation of the data volume stored into the database
can be done only after the description of the data structure and will be made later after
the description of the physical structure of the database (see Section 6.5).

The estimation done above are correct for the satellite with unlimited transfer capacity
from the satellite to the ground. The real data volume is limited by the transfer rate
for the data exchange between satellite and the SOC. Nevertheless, the precise number
of records transmitted from the satellite to the SOC in each cycle of observation will
depend on the brightness function of the observed sky region and the scanning law of the
satellite. The parameter Signal-to-Noise plays the main role in the increase or decrease
of the number of objects observed by the satellite.

The estimation for DIVA satellite was made on the basis of brightness function compiled
by [Kharchenko et al., 1997] (see [TD0251-03, 2001] for results). The predicted num-
ber of stars observed down to V = 16™ is 4 x 107. The same estimations for GAIA
give 10° stars. The number of observations for each star exceeds 170 (in the case of
GAIA, |[EF5/FR/PC/038.02]). Taking into account the limited transfer capacity the raw
data volume in the case of GAIA will approximately the 100 TB ([EF5/FR/PC/038.02]).

3.4.2 Requirements to the Backup and Recovery System

We have to choose a backup and recovery strategy which will allow us to manage data in
case of failures, and to restore the work of the Data Center as soon as possible. We have
to take into account the stability of the data and data structure. Data processing will
work with big chunks of data (typically a data input for one day of observation). In the
processing chain, each process will receive the data from the previous process and can not
be started until the previous process has finished its work. Processes select data from the
database but do not update any data record. As a result, each update of the database
means a huge data insert.

3.5 Constraints

The construction of the Data Processing Center for an astrometric space mission faces
some constraints, where one of them — not the least important — is the financial budget.
The cost of the construction of the satellite and for the launch will take more than 90 %
of the project’s budget. In case of DIVA, for which this work was initiated, the amount of
money available for the data reduction was not specified at the beginning, but the least
expensive solution had to be sought.

The cost of the deployment and support of the database center consists of the cost of
hardware/software components, staff and training, downtime and outsourcing. The cost
of hardware/software components usually takes only 30 % of the database center cost
([Perry, 2002]).

Hardware/software components. The cost of the hardware/software components
must be reduced as well as the cost of the support of the system.

24

Limited manpower. The personal of the DPC has to be formed by scientists who
are already working for the project. Only a few positions for programming/engineering
personal are available.

Outsourcing. There are some examples of the successful outsourcing solutions in astron-
omy (SDSS, HST). The use of an external company for the development of the software
(pipeline) will require very close cooperation between this company and the astronomical
staff of the DPC, and may be not affordable by a low-cost mission.

Limited finances means: a careful balance must be kept between the cost and the effec-
tiveness of the DPC.

3.6 Additional Tasks of the Data Processing Center

Despite the DPC will not be involved in the development of individual algorithms for the
data processing, and must supply only interfaces for applications to the database we have
to complete a task which concerns the development of the data processing chain. Major
simulations of the raw and processed data must serve as an input during the testing of
the pipeline.

3.6.1 Simulation of the Data

To simulate the raw data as they are delivered by the satellite, we have the following

options ranging from the almost trivial case A to the realistic, but very complicated case
C:

A) the simulation of “dummy” data, produced with the help of DB2 utilities or an
external simulation program. These data will reproduce the structure of the real
data only and the volume of data.

B) the simulation of the data based on the simulation of the satellite (the scanning law,
the focal plane of the satellite and the output of the CCD chips in the focal plate
will be simulated). A distribution of stars on the sky is assumed from some model
of the Galaxy (see, for example, [Kharchenko et al., 1997]).

C) the same as B but with the real distribution of stars on the sky derived from one
of the deep stellar catalogs.

These three methods to simulate raw data are needed for different purposes. The first
method is sufficient to simulate data for benchmarks and database tests, whereas to
analyse the work of the pipeline and the correctness of all processes, we have to use
methods B or C. The second task does not the duty of the DPC itself, but must be done
by the team of scientists and programmers which will create the pipeline running in the
DPC. Nevertheless the simulated data must be stored at the DPC in the database and
the DPC must be able to provide an access to these data to developers of the pipeline.

25

Simulated data A

The “dummy” data for the database tables are simulated by a program which will create
artificial data. It is not necessary that the contents of these data set are observations of
real stars. The only real requirement is the correspondence of these data to the database
schema which will be developed in the next chapters.

Simulated data B

To simulate observations of an astrometric scanning satellite we have to describe the way
the satellite scans the sky with its two fields of view (the so called scanning law). The
satellite orbits around the Earth, moves with the Earth around the Sun and rotates around
one axis (see Fig. 2.5 in the case of GAIA). This complicated motion can be described as
a rotation around three axes. The first one is the direction to the Sun, the second is the
satellite’s axis of precession and the last one is the satellite’s axis of rotation (which is in
fact the axis of symmetry of the satellite as a solid body).

Data simulated by the method B and C have one common feature: we have to simulate
two functions : the path of the scanning window(windows) of the satellite on the sky
— the coordinate of the center of the axis of the field of view (FOV) on the sky with
time ([, b)[time] and the number of stars per magnitude interval for this coordinate N(m)
given by the brightness function. The brightness function describes the number of stars
in a selected direction on the sky. The description for the simulation of the brightness
function can be found in [Kharchenko et al., 1997|. The method described in this paper
was developed for the DIVA satellite but can be used for GAIA as well.

Simulated data C

The only difference of this method from the method B is the fact that the number of
stars is estimated not by the use of a brightness function but is taken directly from a
suitable stellar catalog (like the Guide Star Catalog — [Lasker et al., 1990], for example).
In this case, we can produce simulated data with the use of the database: from a stored
catalog we can select data for any time interval in the scanning law. The main problem
is the incompleteness of the catalog: there is no catalog complete enough to satisfy all of
GAIA’s requirements down to the completeness limit. Some catalogs are incomplete for

bright stars as well. Nevertheless there are three catalogs which can be used at least for
DIVA/AMEX data simulation:

GSC. The Guide Star Catalog was created as a master-catalog for the Hubble Space
Telescope. Later it was updated and increased from the initial 18 millions stars to the
present-day 998 millions (GSC II version). The GSC is incomplete in the bright end of
the magnitude scale, a number of bright stars were removed from the catalog to provide
an uniform distribution of bright stars over the sky which is important for the guidance
of the telescope.

2MASS. The 2MASS catalog gives deep J, H, K photometry for 471 millions stars. The
photometry of stars is inaccurate for close pairs. GAIA’s ability to resolve close pairs will
be much higher than in this catalog, yet it can be used for simulations.

26

Table 3.2: Main characteristics of the whole-sky catalogs.

GSC-II | 2MASS | USNO-B1.0
Band V,J,R | JHK B,R
Completeness, mag | 19.5(J) | 18(K) 20(B)

USNO-B1.0. The USNO-B1.0 catalog includes photometry and proper motions for 1.046
billion stars.

Table 3.2 shows the completeness limit for each catalog. The description of massive stellar
whole-sky catalogs can be found in [Kharchenko et al., 2004], where the characteristics of
each catalog are studied.

3.6.2 The Data Mining Abilities

The DPC will store all data volumes: raw data, processed data and the final catalog.
After the end of the mission the DPC must supply the astronomical community not only
with the final catalog but with the ability to access the raw data as well. To fulfill this
requirement the DPC must support all data volumes online at the end of the mission.

3.7 Summary

The requirements to the DPC can be divided on the requirements from the data storage,
the requirements from applications (to the computational facilities of the DPC) and some
specific requirements (the astronomical data simulation ability).

The basic requirements are:

e the input raw data volume is 100 TB (in the case of GAIA). The data volume will
increase with the work of pipeline and other applications (up to 1,000 TB as it is
stated by GATA),

e the computational facilities is at least 8,000 GFLOPS (in the case of GAIA),

e the ability to support the development of the pipeline with the data simulated in
the DPC.

27

28

Chapter 4

Conceptual Design of the DPC

The conceptual design of the DPC describes the most general schemes used to find an
appropriate, if not optimum solution for the requirements described in the previous chap-
ter. We do not specify any hardware or software components here. Nevertheless, even at
the beginning of the design of the DPC we have to concentrate on three main features
which the properly designed DPC must fulfill: scalability, flexibility and availability. In
our case scalability means that the DPC must be able to collect the increasing volume
of the data through the mission (with daily data input of 85 GB in the case of GAIA).
Flexibility is not so critical because applications for the DPC will be developed before the
start of the mission. They will be improved during the mission but the interface between
the application and the database must be created only once and has to be kept during
the mission. Availability supposes that in the case of failure the work in the DPC must
be restored before the next data input.

The conceptual design of the DPC reviews the general scheme for the DPC, activities in
the DPC and the work with the data.

4.1 The General Scheme of the Data Processing Center
with Subcomponents

We can divide the DPC into the following systems (see Fig. 4.1):

e The data storage system. The system must fulfill the requirements to the Data
Storage described in the previous chapter.

e The software development system. This part of the DPC has to provide resources
for the development and test of applications running on the DPC. The software
development system allows to develop and test components of the pipeline without
accessing the database of the mission. We need this subsystem for security reasons:
an improper work of the application can damage the database as well as the opera-
tional system and other applications. It is important to note, that the development
of the pipeline will not be finished at the start of the mission, but the data process-
ing algorithms and software has to be improved once the actual data arrive, and do
not exactly correspond to the simulation.

29

e The archiving system. The system partly shares resources with the data storage
system.

e The data processing system. The system must fulfill the requirements from the
applications described in the previous chapter.

4.2 The Model of Activity in the DPC

We have already described the data flows which will supply the DPC with the data, and
we also described the requirements from applications which will be run in the DPC. Next,
we have to decide how the activity of these applications will be structured inside the
DPC. Therefore, we first describe the actors (users) in the DPC which will operate with
the data and influence the DPC. Then we start with the modeling of activities inside the
DPC. There are the following groups of users of the DPC:

e the system administrator, who is responsible for the support of the system,

e the database administrator (DBA), who is responsible for the support of the database,
archiving of the data and restoring the database in the case of a failure,

e the pipeline, which includes a number of applications working with data and insert-
ing new data into the database,

e Space Operation Center (SOC), which will have to access some data chunks to
retrieve data for the Scientific Quick Look,

e Scientific Data Reduction (SDR), which will deal with the full data reduction and
also with the retrieval of the new information from available data (data mining
during the mission),

e External Users, who will appear at the very end of the mission and will access the
database with final results, and possibly the whole data volume.

Possible activities of these users are (see Fig. 4.2):

e management of the DPC. This encapsulates all duties of the system administrator:
support of the users, installation of new hardware /software and so on,

e management of the database, which comprises the DBA activities for the creation,
configuration and the support of the database,

e operations with the database (data retrieval, insert and update).

Figure 4.2 illustrates all the activities in the DPC, whereas Fig. 4.3 shows the interactions
of the users with the database.

30

Software

Data Storage

Development

System

System

Archiving | Data

Processing

System

System

Figure 4.1: The main systems of the DPC.

the DPC
management

System
Administrator

thg database

DBA

External
Users

operations
with
database

Pipeline

SOC

SDR

Figure 4.2: The Use Case of the activities in the DPC.

4.3 The Software Architecture

To provide an access to the data we have to supply the applications which will make
scientific data reduction with an interface to the database. The access to the data can be

31

stfometry & Photometry)

A

Pipeline .
Backup & Archiving

External Users
(after the end of the mission)

Figure 4.3: The Use Case of the activities with the stored data.

r-—— — — — = - - == | — — T T T
Time Counts l— Coordinates
S —_— — — —_— — — — — — —_— — —

A2 y T
- - - - — = - - - - - = | e R —
House-Keeping Data Preliminary Coordinates l) |
L N Proper Motions
. ._______ _____
CCD chip coordinates - - - - — -]/ I |
L o Image Parameter Set Parallaxes
—— = = = = —_— —_— —_— —_ —_ —_ —
—_—— — — — —
. —_—— — = — - —
L Window \‘LI Astrophysical
- - - — Parameters
- h— - b b — — — — — — — — — — — — —
L Window Identifier |
—_— — — — — — —
L Image Identifier |
L Object Identifier |
RAW DATA PROCESSED DATA FINAL CATALOGUE

Figure 4.4: The subdivision of entities in the DPC.

organized by following methods:

e with the use of n-tier technology. The application has to use a middleware as an
interface to the data (see [Chavez, 2000| for an example of the use of the n-tier in
astronomy);

e with the use of the direct access to the database with the interface to the data
implemented in the application.

The most important advantage of the n-tier technology compared to the direct access in

the case of the DPC is a better flexibility (a number of applications can use the same
interface, applications are independent from the database structure). The most important

32

Pixel Array

Xposition _
oot
1 e~
CCD chip info
Chip number
1
/1<>)/

A Time Count

Figure 4.5: The first approach to the conceptual model of the raw data.

Pixel Array
1
NW1
TC1
- 1 1
Time Count /‘<x Window ID
TC2 NW2
X position
Chip number

Figure 4.6: The improved conceptual model of the raw data.

disadvantage is a delay in the data transfer from the database to the application which
occurs at each new layer of n-tier architecture.

We can use any language-interpreter (like Java, perl or python) to simulate the delay in
the data transfer in the case of the n-tier architecture. In Appendix A we measured the
response time for the data retrieval from the same database made at the same moment of
time with the use of two applications: the first one was written in C+-+ (no middleware)
and the second one was written in Java (JVM as a middleware). Fig. 4.9 shows, that the
use of n-tier architecture produces a delay in the data transfer.

The result does not mean, that we reject the n-tier architecture for the software of the
DPC. There are a number of non-time-critical applications where the n-tier architecture
can be used successfully and can reduce efforts for the development and use of these

33

Q

RAW DATA RECORD

W ndow Ti mre Count CCD Chi p Dat a I

I'nformation
| ,

W ndows | D

| mage | D Cbj ect 1D
| mage Preliminary Qoordinat es Geat Circle I
PROCESSED DATA | Phot onet ry Coor di nat es of R‘;erence Coor di nat es
ars

RECORD I

= |
|
E |

Coor di nat es Par al | ax Proper Mtion Astrohysi cal
I Par anet er s I

FI NAL CATALOG

N

e e e e e e e e e— e— e— —

Figure 4.7: The general conceptual data model for entities. The attributes of the entities are
omitted. All entities can be attributed to the three “general” entities: raw data record, processed
data record and final catalog record. Window ID, Image ID and Object ID serve as the key
attributes (“identifying entities”) for “general” entities.

applications, but we have to avoid the n-tier architecture for time-critical applications.

4.4 The Model of the Data Retrieval

The data retrieval from the database can be made by two methods:

e a request from the application will retrieve the single data row in the single trans-
action (single-row data retrieval method),

34

W ndow | D

1
n
I mage I D
n
1
hject ID

Figure 4.8: Identifying entities: Window ID, Image ID and Object ID.

:‘ |
3
2 - o
-+ C []
OF ° -
g e R B 5
-1
-2¢ f
_3; | | | E

0 2 4 6

log Ngoys

Figure 4.9: Java and C++ comparison. Filled circles are test results for Java, crosses are test
results for C. Error bars are shown. The time is in sec.

e a request from the application will retrieve multiple data rows in the single trans-
action (multiple-row data retrieval method).

The results shows that time-critical applications have to avoid the single-row data re-
trieval. As we see in Fig. 4.10, the single-row method delays the data retrieval signifi-

35

1* ° 3

) O* ° A

E "
- g

i B f

W]

—3 E

T N D S

0 1 2 3 4

log Ngows

Figure 4.10: The single-row and multiple-row data retrieval. Circles are results for the single-
row data retrieval, crosses are results for the multiple-row data retrieval. Time in sec. Error bars
are shown.

cantly.

4.5 The Model of the Data

The data flows, data and data processing generated by an astrometric space mission are
defined by the principle layout of instruments as well as by the transmission of data from
the satellite to the SOC. We define the entities which describe the data by the following

groups:

e Raw data: data records generated on board of the satellite and transmitted to the
SOC. These data include scientific measurements (CCD images of observed objects)
and information on the current status of the instruments and the satellite (House-
Keeping data).

e Processed data: any data generated at the DPC by pipeline except the final
catalog.

36

e Final catalog: result of the work of pipeline and other application programs using
raw and processed data. This is the principle result of the mission which will be
made available to the broad scientific community.

One of the problems which we meet here is the problem of the organization of the incoming
data. Fig. 4.5 shows the initial approach of the conceptual model of the raw data. As we
can see, the Window entity is a week one and can not be used without an identification
with two other entities: Time Count (when this Window was red out on the focal plane
of the satellite) and the CCD chip information (where this Window was observed).

It is not practical to identify the Window entity with the use of 5 attributes of 2 different
entities. It is necessary to improve the situation at this early stage of the development
of the DPC. To make the improvement we have to introduce a new entity: Window
Identifier, which will be used as a key for the access to all three entities: the Window, the
Time Count and the CCD chip information (see Fig. 4.6).

The data processing will create a number of new entities. We have to introduce these new
entities following the most general description of the data processing (Fig. 4.11). Four
initial entities (Window, CCD chip information, Time Count and the House-Keeping
Data) were already described in the previous chapter.

Window Identifier. The Window Identifier will be used as a key to find the raw data
record (see Fig. 4.7). The Window Identifier will be assigned on ground in the SOC or in
the DPC. Estimated from the data volume coming from the satellite we need two integer
values to store the Window Identifier.

Image Parameter Set. Image Parameter Set (IPS) is a collection of values describing
the size and the form of the image which was obtained by Pixel Data Processing for
each Window. The final set of these parameters depends on the algorithm used to process
the data. It is important to note that the Pixel Data Processing produces more than one
image from a single Window in some cases (10% of all windows). The case (b) in Fig. 2.8
shows an example of a Window with two Images.

Image identifier. The image identifier will be generated by a Pixel Data Processing
on the basis of the Window Identifier and will serve as a reference for any entities which
belong to the processed data. This is the analog of the Window Identifier for the raw
data.

Image photometry. Directly from the pixel array of the Window Pixel Data Pro-
cessing will estimate a set of values which will characterize the brightness of the object
observed in the Window. As well as the IPS the composition of the Image Photome-
try attributes will depend on algorithms used by the Pixel Data Processing and other
applications.

Preliminary Coordinates. Preliminary coordinates are the result of Attitude Re-
construction and consist of four values describing the position and mean errors of the
position of the image on the sky. These coordinates are necessary to produce a preliminary
identification of the image.

Great Circle Coordinates. This entity will be produced by the Great Circle Re-
duction process, and appears with DIVA/AMEX only. GAIA will skip this process.
Nevertheless, to create a general scheme for both missions we have to keep this process

37

in the scheme. Great Circle Coordinates are one-dimensional coordinates of the center of
the image in a coordinate system which is defined such that it is central to the strip which
the satellite will scan for a short period of observations. In half a year such Great Circles
will cover the whole sky and each object will have a number of Great Circle Coordinates
in different coordinate systems. The combination of these one-dimensional coordinates
will make it possible to construct the 2-dimensional position of each object.

Object identifier. The Preliminary Identification based on the Preliminary Coordi-
nates will assign to each image an unique Object Identifier, which will serve as a reference
for the final catalog of the mission. As a number of objects can not be identified in the
coarse Preliminary Identification Catalog or can be wrong identified, all Object Identi-
fiers will be newly generated by the Object Recognition based on the final Coordinates,
Image Photometry and other entities at the very end of the mission .

Coordinates of Reference Stars. Coordinates of Reference Stars are determined by
the Sphere Reconstruction based on the Great Circle Coordinates and used to find
the 2-dimensional position of each object.

Coordinates (or, more accurate, positions on the sky), Parallaxes and Proper Mo-
tions are produced by the Astrometric Parameter Determination process and they
are the most valuable result of the mission.

Astrophysical parameters. Astrophysical parameters like the brightness of the object
and others will be defined at the very end of the mission by the Astrophysical Param-
eter Determination process. The exact list of the astrophysical parameters is defined
by the abilities of the instruments on board of the satellite.

Entities described above can be divided on entities based on the raw data, processed data
and the final catalog. Some of the entities from raw data will be used to produce the final
catalog (Time Count, see Fig. 4.4). We have to note as well that 3 entities play a special
role in the data processing (Fig. 4.7). These are Window Identifier, Image Identifier and
Object Identifier. They are used as a reference for any other entity in the DPC except
House-Keeping Data. The relationships between these entities (Fig. 4.8) are defined by
the observational strategy of the scanning satellite.

4.6 Summary

The conceptual model is derived in this chapter determines the construction of the DPC.
It flows from the concept of the astrometric scanning satellite and based on the astrometric
data processing. The next step in the development of the DPC is the logical design of the
DPC which will be made in the next chapter.

38

6€

W ndows | D

Pixel Data
Processing

SoC House Keepi ng

Dat a

Attitude
Reconstruction

CCD Chip
I'nformation

Time Counts

0

Q2 ¥

| mage
Phot onet ry
Igg?D\A f): Astrophysical
Parameter

Geat Crcle Determination

Coor di nat es

Great Circle
Reduction

I PS A

Prelimnary
Coor dj nat es

or di nat es
of Refergnce Astrometric
Parameter

Determination

P P

Sphere

Chject ID

Preliminary
Identification
Object
Recognition

Ast rohysi cal
Par anet er s

Paral | ax

_—

Proper Motion

\@

Coor di nat es

A

_,@

Ghj ect 1D

Figure 4.11:

The UML model for the data processing in the DPC.

40

Chapter 5

The Logical Design of the DPC

The logical design of the DPC is dedicated mainly to the logical design of the database
of the DPC. To simplify the design of the logical structure of the database we will make
a choice of the data storage approach at this chapter and not in the chapter dedicated
to the physical design of the DPC. This will make it easier to develop the scheme of the
database and to describe the way applications will access the data stored in the database.

5.1 The Choice of the Data Storage Approach

We can organize the data storage as a file system, with the use of a relational DBMS
or an object-oriented DBMS. Let us describe the differences between these possibilities
and how they answer to the requirements to the data storage formulated in the previous
chapter.

File system. At the first glance, a properly organized file system with the storage of data
as binary files is the fastest solution. Nevertheless, we need to implement two properties
of the data storage which will make this solution hardly usable: the huge data volume and
fast changes in the processed data (90% of the data volume will be occupied by processed
data in case of GATA, as we will see later). For the processed data we must implement a
way to change an existing data record inside a file or to insert a new data record into an
existing file. To do this we have to read and rewrite the whole file or to create an index
system for data records. If we take into account all these requirements we will see, that
we must create a system which will be similar to a DBMS (the special format for data
storage files, the indexes, the direct access to rows in the file). Instead of assembling a
new DBMS we can use a commercial DBMS.

ODBMS. An object-oriented DBMS is a natural way to study data with complicated
structure. Nevertheless, we have to abandon this possibility, because of a relatively slow
response to requests in case of an ODBMS compared with a RDBMS (see, for exam-
ple, [Thakar et al., 2003] for the test of the performance of ODBMS and RDBMS for the
SDSS archive. This work analyses the typical request to astronomical data). Addition-
ally, we need to organize data not by the object but by the attribute of the object (for
example, time counts). Finally, we need to respond on a request from pipeline - the main
user of the database. Let us suppose that we use ODBMS to store data. In this case each

41

observation of a star on the sky is stored as an object with some parameters (parameters
of object are entities with attributes from the previous chapter). The pipeline needs to
take from the database a collection of the same parameters from all objects within some
period of observation but not theses objects themselves (not the complete information
about an observation). In the case of ODBMS we have to retrieve all objects which will
satisfy to our request and, in the next step, to select the required parameters from the
collection of objects.

RDBMS. In the case of an RDBMS we are able to access all the data organized in simple
tables with the ability to select data by different parameters and an ability to speed up
the request with the use of indices. Nevertheless, we have to keep in mind the possibility
to lose some information about links between parameters. Raw data, photometry, window
centroids and other data types will be organized as detached tables and we must provide
additional cross-referenced tables to keep the information about the data processing chain
(for example, we have to keep the link between the window and the image parameters set
derived from this initial window). As a result, the overall data volume will increase.

Let us compare the advantages and disadvantages of both approaches for an astrometric

space mission. We follow the comparison scheme of [Jordan, 1998]:

ODBMS RDBMS in the case of DIVA/AMEX/GAIA
the model classes, tables, Most of the work will be done with
of the data objects, rOwSs, massive data chunks with the request

methods triggers, for the same entity for all objects,

stored all entities for the same object on
procedures the sky will be requested only at
the end of the mission.
The preferred approach is RDBM.
applications C/C++, 4GL, Some RDBMSs propose 4GL and
Fortran, QBE-languages, | QBE languages. Generally
Java, C/C++, Java, | RDBMS has a better choice
etc. etc. of APIs and user tools.
The preferred approach is RDBM.
support of full limited, The preferred approach is ODBMS.
objects SQL3
support of can be native The preferred approach is RDBMS.
normalization implemented
data access object database As we need an access to
driven driven an attribute of all entities
the database-driven model
is preferred.
The preferred approach is RDBMS.
data cast usually not required The direct data cast from

required the data type of the DBMS

(the same for to the data type of the application
data types as is required in the case of RDBMS.
for applications) The preferred approach is ODBMS.

42

House Keeping Data

Time Count 1

Time Count 2
Onboard Time 1
Onboard Time 2
Attitud angle 1
Attitude angle 1 error

Processed Data

Window Identifier 1

Window Identifier 2

Image Identifier 1

Image ldentifier 2

Object Identifier 1

Object Identifier 2

Amplitude of the image

Error of the amplitude of the image
Background of the image

Error of the background of the image
Shape parameter 1 of the image

Error of the shape parameter of the image
FOV identification

Preliminary position, right accession
Preliminary position, declination

Position along the Great Circle

Error of the position along the Great Circle
Reference Great Circle Number

Sphere Reconstruction position, right accession
Sphere Reconstruction position, declination

Error of the Sphere Reconstruction position, declination
Sphere Reconstruction Reference Great Circle

Error of the Sphere Reconstruction position, right accession

I..n

Window Idgntifier

K

Pipeline or program number
01..n

Object Identifier

1

Raw Data

Final Catalog

Window Identifier 1

Window Identifier 2

Time Count 1

Time Count 2

CCD chip X coordinate

CCD chip Y coordinate

CCD chip Number

Window

Time Count 1 for the Parent Window

Time Count 2 for the Parent Window

CCD chip X coordinate for the Parent Window
CCD chip Y coordinate for the Parent Window
CCD chip number for the Parent Window

Object Identifier 1

Object Identifier 2

Position, right accession

Position, declination

Error of position, right accession
Error of position, declination

Proper motion in right accession
Proper motion in declination

Error of proper motion in right accession
Error of proper motion in declination
Parallax

Error of parallax

Photometry in band 1

Error of photometry in band 1

log g

Metallicity

External catalog name

External catalog number

Figure 5.1: The logical structure of the database.

As we can see, RDBMS is be the better solution in our case.

The choice of the data storage approach is a balance between effectiveness of the solution
for the data processing and cost for this solution. The most effective is a self-developed
DBMS, but we must reject this solution as we have no resources to create a new DBMS.
We will use the second possible solution — a commercial RDBMS which is possible to use
for free for noncommercial projects.

5.2 The Logical Structure of the database

The logical structure of the database is based on the conceptual model of the data pro-
cessing described in Chapter 4. From Fig. 5.1 we see that entities can be grouped in
four main tables for the House-Keeping Data, the raw data, processed data and the final

catalog.

5.3 The Problems of the Logical Design.

The structure shown in Fig. 5.1 is simple and clear, but the proposed structure can not
be implemented for the real database installed in the DPC. Let us review the problems
which will arise with such a scheme.

The lack of normalization. The Processed Data table is a combination of enti-
ties from the processed data, the raw data (Window Identifier) and the final catalog
(Object Identifier). To identify a row in the Processed Data table we must use 6
attributes (see Fig. 5.1), but most attributes in the table depend on Object Identifier
only. As a result, the table will not be in the second normal form of a relational database.

NULL values. For a number of rows in the Processed Data table and the Final
Catalog table we will have NULL values for attributes. For example, at the beginning
of the mission we will have no 2D coordinates which will be determined only half a year
later.

Non-optimum data processing. Let us suppose that the next portion of data is
generated by one of the processes of the pipeline. To insert this portion of data into the
database we will have to use an UPDATE operation which is not as fast as the INSERT
operation. To select a data portion from the database by the request of the application
we need to browse a huge table (Processed Data) whereas the application will need data
from only a few columns in the table.

5.4 Summary

The logical design must be upgraded to better satisfy the requirements from the appli-
cations. This means that we have to make a detailed description of the requests from
applications to the database and to create a design for the database which will satisfy
these requests in an optimum way. The direct use of the conceptual model (Fig. 4.7) for
the logical scheme of the database is not the final step in the development of the database
for the DPC. In the next chapter dedicated to the physical design of the DPC we have
to transform the logical scheme of the database to a physical scheme which fulfills the
requirements of the data processing to the database.

44

Chapter 6

The Physical Design of the DPC

The Physical Design of the DPC will consist of two main parts: the design of an optimum
database scheme in accordance with the requirements from applications and the design
of the DPC which includes hardware/software components.

We start with a more detailed description of entities used in the data processing. The
description of processes will help to generate an optimum scheme of the database.

6.1 Attribute Domains the Data. The Required Preci-
sion

We have to define domains for each attribute. The domain comes from the requirements
on the precision of the data.

Domains for Time counts, House-Keeping data, CCD chip information and Win-
dow were described previously (see Section 3.2.2). We should add, that the Window for
AMEX/DIVA can be stored into VARCHAR variable with a maximum 2184 characters
(see Section 3.2.2, each pixel can be stored in 2 characters), whereas the GAIA Window
will much smaller and will need no more than 18 characters. The full-chip windows, which
cover a whole CCD chip will be stored as BLOB values.

The description of entities for processed data and the final catalog was already done (see
Section 4.5). A few notes on some entities are appropriate.

Preliminary Coordinates,Great Circle Coordinates, 2D Coordinates and final
Coordinates will required with up to 0.1 pas precision (in the case of GAIA) and will
range from 0 up to 360 degrees. The DOUBLE for each coordinate will be used and the
INTEGER value for error of the coordinate.

Parallaxes. Parallaxes will range from 1 arcsec down to pas. INTEGER is enough to
store.

Proper motions. Proper motions will be stored in two INTEGER values with two
INTEGER values reserved for errors.

Astrophysical parameters. Astrophysical parameters like the brightness will be defined
at the very end of the mission. DOUBLESs will be used to store them.

45

Table 6.1: Characteristic time intervals for processes in the case of DIVA/AMEX.

Process Frequency of the process | Critical Time
Initial Data Insert daily 1-2 hours
WID Generation daily 1-2 hours
Pixel Data Processing daily 4-5 hours
Attitude Reconstruction daily 4-5 hours
Preliminary Identification daily 4-5 hours
Great Circle Reduction once per 3 cycles 6-12 hours
Sphere Reconstruction once per half a year half a year
Astrometric Parameter once per half a year half a year
Determination
Object Recognition once per mission half a year
Astrophysic Parameter oncer per mission half a year
Determination

The domains for the entities are summarized in Table 6.3.

6.2 Optimization of the Database Structure

To provide an optimum scheme for the database we start from the description of processes
which select data from the database. As the response time for time-critical applications
is the most important parameter, the “optimum” database structure must be an optimum
from the point of view of applications in our case.

All applications, which are described in the conceptual model (see Fig. 4.11) can be
divided into two main groups: daily processes, like Pixel Data Processing, Attitude Re-
construction, Great Circle Reduction and processes, which will be run once per half a
year (see Table 6.1). Each process is characterized with it’s frequency — the typical time
interval between two consequent run of this process, and it’s critical time — the time in-
terval reserved for the work of the process. The process must finish it’s work on the data
within the critical time interval.

We begin with the general description of the time required for the application to retrieve
data from the database.
6.2.1 Theoretical Basis for the Design of the Optimum Structure

At the beginning of the design of the optimum physical structure for the database we
have following information:

e attributes {5;}, where each S; belongs to some domain (D;). There are some of
attributes which are used by processes in the DPC accompanied by an another

46

attribute in the most cases. To simplify the development of the database structure
we will join such attributes and will consider them further as a single attribute (a
composite attribute). For example, instead of two attributes Window Identifier
1, Window Identifier 2 we will use a single attribute Window Identifier. This is
due to the fact that during the step of the most general description of the processes
and their work with the data we will not need to consider each attribute separately.
Each process has to retrieve the whole entity as it is described in Fig. 4.11;

e tables {7;}, where T; is defined on the attributes S; designed on the basis of rela-
tionships between attributes and operations on the data. 7; = [S1, S2,...,5;,...];

e operations {R;}, where R; is one of the operations which the process has to per-
form with the data in the database. The typical R; in the case of our database
is the SELECT or the INSERT statement. Let us suppose, that the operation
R; has to select all rows from the database, the row must consist of attributes
{51,854, ...,...,S;,...}, the condition for the operation is that the attribute S; be-
longs to the subdomain D; and the attribute S; belongs to the subdomain Ds.
Hereafter we will use a formal description of such an operation:

R; = {< type of the operation >; < list of attributes >; < conditions >},
in our case
R; = {SELECT;{Sy,Sa, ,...,S;,... };S1 € {D1}, S5 € {Ds}}.
If the subdomain is an interval, the condition is described as S; € [D1, D3];

e aset of ppi-keys { K;}, where K is a primary key or a partitioning key or an indexing
key.

A representation with the use of graphs of the structure of data can be used (see, for
example, Fig. 4.6 for the raw data entities with attributes). The full description of entities
with attributes is a multigraph I'y, where each attribute is represented by a vertex, a link
between two attributes forms an edge of the graph. The optimization of the database
scheme means that we have to find subdivisions of the initial multigraph ['y, such, that
operations {R;} will take a minimum time on this subdivision. As result we will have
subgraphs {I';} and, finally, we will form table T} from each subgraph T';.

To estimate the time required for operations we will use the time cost function (TCF)
— i.e., the estimation of the time required to perform an operation on the data. The
time cost function for operations { R;} depends on attributes selected by request and keys
which exists for these attributes:

TCF: f(R;) = f({Si}r,, {Ki}s.).

We will use the theoretical description of the TCF for SELECT and INSERT operations
(see, for example, [Kulba et al., 1999] for the description of the theoretical modeling of the
TCF). As it was mentioned previously (Chapter 3), there will be no UPDATE operations
for DPC. The true form of the TCF will depend on the organization of the query optimizer
for the true DBMS, nevertheless we can estimate the TCF based on the principles of the
relational algebra and a very simple assumption for the form of the TCF, which we are
listing below:

47

1. Ry ={SELECT;S;;}. The operation R; retrieves all rows for the attribute S;. In
this case the TCF is just the time required to take all records from some physical
device (hard disk).

f(R) = > t,=N;t,

i=1,N;

where ¢, is the time required to take one row from the data storage (each row consists
of the attribute S; only);

2. Ry = {SELECT;S};;S; € [Dj,D3]}. The operation R, retrieves all rows for the
attribute S;, which satisfy to the range circumstance S; € [D;, D7]. Dj and D? are
the beginning and the end of the interval which is defined on the domain D;. In the
worst case we have to retrieve all records and check the requirement for any record,
so that the TCF becomes

f(RZ) - Z (tr + tcheck) - Nj (tr + tcheck})a

i=1,N;

where t.pecr is the time required to check the row satisfies the requirement. If we
have an appropriate index for this attribute we only have to find the begin and the
end of the ordered attributes:

f(R2) =2C logy N+ Y t. =2C logy N; + M t,,

i=1,M

where C' is the time required to check an index record for one row, M is the number
of rows retrieved by the statement (see [Arsenev & Yakovlev, 2001], for example);

3. Ry = {SELECT; Sy, 55; 5, € {S1}}. For any row of the attribute Sy we have to
check the existence of the corresponding row of the attribute S;.

f(R3) - Z Z (2 tr + tcheck) = Nl N2 (2 tr + tcheck)-

i=1,N2 j=1,N1

It is the worst case for the execution of such a query, if the attribute S; has no
indices.

4. R4 = {]NSERT, Sl, } f(R4) = N1 tinsert,Sl-

Other queries can be represented as a combination of these simple subqueries with their
TCFs. It is important not to confuse the time required to take one row from the data
storage (¢,) with the time required to retrieve the record of the same size from the physical
device, because t, includes delays due to the database management system. Let us suppose
that we have a subgraph I'; which is defined on attributes {Si,...,S,}. The operation
R; works with attributes {S;}, where k is a running number of the attribute. There are
following possibilities in the case of the SELECT statement:

1) {Sk} € I';. This is the optimum subgraph for the operation. The time cost function
is based on the estimations 1 — 4.

48

2) 35, : S, € {Sk},S; ¢ T';. This case requires an additional select of the data for the
attribute S; and the join of tuples for the attribute S; with tuples for the rest of
attributes. We will not consider this case and will reject it.

3) there is no attribute from {Sy} in I';. In this case the value of the time cost function
is set to 0.

In the case of the INSERT statement attributes are allowed to belong to different graphs
({INSERT;{S:};}, {S1,---.S;} € Ty {Sj41,...,5.} € I, I UT, = @). The case of
the graph (table) has more attributes than the INSERT operation ({INSERT;{S;};},
S, S, € {Si}, S; ¢€ Ty) is restricted. This is due to the absent of the UPDATE
operation for the database of the DPC and our intend to exclude any UPDATE operation
from the consideration.

We described the attributes previously in Chapter 3, Chapter 4 and this Chapter. The
attributes are summarized in Table 6.3, where the domains for each attribute are reviewed,
and in Table 6.4, where the origin of each attribute is shown.

On the basis of the description of attributes {S;} and the estimation of the time cost
function for operations { R;} we have to find a set of subgraphs {I';}, which will satisfy a
requirement of the minimization of the combined TCF.

6.2.2 Queries from Applications to the Database

The description of processes which will work with data is shown in Table 6.2. Most of
processes have two operations: INSERT and SELECT.

To construct the time cost function for each possible subgraph I'; we have to assign a
weight to each process. For example, Initial Data Insert and Pixel Data Processing will
run every day and must be completed within a limited time interval, whereas Sphere
Reconstruction can be run only every half a year of the mission and has a lower priority
compared to Pixel Data Processing. As we can see from Table 6.1, the five daily running
processes are the most important processes which define the structure of the database.
These processes will have the highest priority. The weight for each process is estimated

as
Vi

N)
Zj:l Vj

where v; is the frequency of the process i (see Table 6.1) and N is the number of processes.

w; =

The weighted sum of the time cost functions for each process is minimized over all possible
graphs (i.e., over all combinations of attributes).

49

0¢

Table 6.2: Queries of the data processing.

Dependences between attributes

Query to the database

W —-TC,CI—-TC,W —CI

Process
Initial Data Insert

{INSERT;TC,HK,CT,W;}

TC — WID,CI — WID

Generate Window

{SELECT;TC,CI,W:}
{INSERT;WID,TC,CI,W,PRG;}

W —WID WID — PRG
IID - WID,IID — PRG

Identifier
Pixel Data

{SELECT;WID,TC,CI,W;WID € {WID;}}
{INSERT;1ID,TC,CI,IPS,IPH, PRG;}

IPS —IID,IPH — IID
PRC — IID,PRC — PRG

Processing
Attitude Reconstruction

(SELECT; HK,IID,TC,CI,1ID € {IID;}, HK € {HK,}}
{INSERT; PRC, PRG; }

OID — IID,0ID — PRG

Preliminary Identification

{SELECT; 11D, PRC;IID € {IID;}}
{INSERT;OID, PRG;}

GCC — 1ID,GCC — PRG

Great Circle Reduction

[SELECT:IID,TC,CI,IPS. 11D € {IID,}}
{INSERT;GCC, PRG;}

CO0O — OID,COO — PRG

Sphere Reconstruction

{SELECT;OID,GCC;}
{INSERT;COO, PRG;}

PAR — OID,PM — OID

Determination

Astrometric Parameter

{SELECT;0ID,COO,TC;}
{INSERT; PAR, PM, PRG; }

PAR — PRG,PM — PRG
OID, — OID,0IDy — PRG

Object Recognition

{SELECT;0ID,C0OO,TC; }
{INSERT;OID,, PRG:}

AP — OID,AP — PRG

Determination

Astrophysical Parameter

{SELECT;0ID,COO, PAR, PM,IPH;}
{INSERT; AP, PRG;}

Table 6.3: Attributes for the database with attributes’ domains.

Entity

Introduced by a process Domains
Time counts (TC) SOC 2(INTEGER)
House-Keeping Data (HK) SOC 11(DOUBLE)
CCD chip information (CI) SOC 3(SMALLINT)
Window (W) SOC VARCHAR
IPS (IPS) Pixel Data Processing 4(INTEGER)
Window ID (WID) Raw Data Insert 2(INTEGER)
Image ID (IID) Pixel Data Processing 2(INTEGER)
Object ID (OID) Preliminary Identification 2(INTEGER)
Object Recognition
Image Photometry (TPH) Pixel Data Processing Npanp 3(INTEGER)
Preliminary Coordinates (PRC) Attitude Reconstruction 2(DOUBLE),2(INTEGER)
Great Circle Coordinates (GCC) Great Circle Reduction INTEGER, SMALLINT
Coordinates (COO) Sphere reconstruction 2(DOUBLE),2(INTEGER)
Parallaxes (PAR) Astrom. Parameter Determination 2(INTEGER)
Proper Motions (PM) Astrom. Parameter Determination 4(INTEGER)
Astrophys. Parameters (AP) Astrophys. Parameter Determination 4(INTEGER)
Program Identifier (PRG) each process SMALLINT, CHAR(100)

6.2.3 The Results of the Optimization of the Database Structure

The number of stars observed by the satellite per scan is approximately 700000 (in the
case of DIVA| see [TD0201-05, 2002]). The number of windows transmitted to the ground
per scan is approximately 1.6 millions ([TD0284-01, 2002]). The later value is the number
of rows which must be inserted into the database and must be selected from the database

Table 6.4: Relationships between attributes.

Entity

Parent Entity

Child Entity

Time counts
House-Keeping Data
CCD chip information
Window
IPS
Window ID

Image ID
Object ID

Image Photometry
Preliminary Coordinates
Coordinates
Parallaxes
Proper Motions
Astrophysical Parameters

Time counts
Time counts
Program Identifier
Program Identifier

Window ID, Program Identifier
Image ID, Program Identifier

Image ID, Program Identifier
Image ID, Program Identifier
Object ID, Program Identifier
Object ID, Program Identifier
Object ID, Program Identifier
Object ID, Program Identifier

CCD chip information, Window
Preliminary Coordinates

Window, CCD chip information,
Time counts
IPS, Image Photometry,
Preliminary coordinates
Coordinates, Parallaxes, Proper Motion,
Astrophysical Parameters

o1

Table 6.5: An optimum database scheme. i is the number of the solution, I'; is a subgraph.

i I, Comment

1 TC, OID, COO

2 IID, OID, PRG

3 OID, AP, PRG Astrophysical Parameters
4 OID, IPH, COO, PAR, PM

5 OID, GCC

6 OID, COO, PRG Sphere Coordinates

7 OID, PAR, PM, PRG Astrometrical Parameters
8 11D, GCC, PRG Great Circle Coordinates
9 IID, TC, CI, IPS IPS

10 IID, PRC

11 TC, CI, W Initial Data Table

12 IID, PRC, PRG Preliminary Coordinates
13 TC, HK, CI, W

14 IID, TC, HK, CI

15 WID, TC, CI, W Raw Data Table

16 WID, TC, CI, W, PRG Raw Data Table

17 | WID, 1IID, TC, CI, IPS, IPH, PRG

by daily processes. This value was used to estimate a time required to process data:
N
teg = > _ ™" w; f(R;,T),
i=1

where N is the number of processes (N = 10, see Table 6.2), I'; runs through all possible
combinations of attributes S; (see Table 6.3 for attributes) and n/°“® is the number of
rows retrieved by the process i. Finally we have a set of all possible subgraphs defined on
attributes with the estimation of time t.,; corresponding to each subgraph. If we reject all
degenerate cases (the estimated time is 0) and cases with maximum value of an estimated

time (max;t’,, where i runs through all possible graphs), we will have only 17 subgraphs

(see Table 6.5).

Based on these subgraphs we have to select a scheme which will an optimum join of
subgraphs satisfying all processes. As we can see from the set of subgraphs, there are
three types of data groups in three categories of tables: tables for raw (initial data),
tables for the processed data and the final table. The final scheme of the database is
completed and we start with the description of tables and attributes for each data group.

6.3 The Physical Design of the Database

The Physical Design realize the optimum data scheme and based on the Table 6.5. Three
main groups in the schema are the raw data, the processed data and the final catalog.

92

I.Raw data

RDSW

RDFW

RDCP

RDHK

Raw Data Standard Windows. The majority of windows will relative small (7 x 13
pixels, see Chapter 2) and is stored packed in the VARCHAR column. Windows
observed at SM1, SM2, SC1 and SC2 mosaics are stored at the same table. The
origin of the window could be found from special column (Window type).

Raw Data Full Chip Window. This table will store a few procent (2% among all
windows) of the large full-chip images. This is the only table in the database which
will require a BLOB type.

Raw Data Child-Parent Chip Relation. The table stores links between the window
identifier of the window on the first chip and window identifies of predicted windows

(usually the first SM window is the parent window and the second SM window and
SC windows — children).

Raw Data House-Keeping Data. The table stores technical data from the satel-
lite: the relation between TDI counts (T1, T2) from RDSW and physical time,
coordinates of satellite axes, satellite rotation rate and so on.

Table 6.6: The raw data tables.

Attribute ‘ Designation ‘ Domain
RDSW: Standard window size
Window NW1 INTEGER
Identifier NW2 INTEGER
Time T1 INTEGER
Count T2 INTEGER
CCD chip X-coordinate CX SMALLINT
CCD chip Y-coordinate CY SMALLINT
Window type WT SMALLINT
Window W VARCHAR(2184)
RDFW: Full chip window
Full chip window ID F1 INTEGER
Time T1 INTEGER
Count T2 INTEGER
CCD chip X-coordinate CX SMALLINT
CCD chip Y-coordinate CYy SMALLINT
Window FW BLOB
RDCP: Child objects
Parent PWNI1 INTEGER
Window ID PWN2 INTEGER
Child CWN1 INTEGER
Window ID CWN2 INTEGER
RDHK: House-Keeping Data

93

Time T1 INTEGER

Count T2 INTEGER
Physical Time PT1 INTEGER
(Onboard time) PT2 INTEGER
Attitude angle 1 AA1 DOUBLE
Attitude angle 1 error EA1 DOUBLE
Attitude angle 2 AAl DOUBLE
Attitude angle 2 error EA1 DOUBLE

I1. Processed data.

PDPRG

PDIPS

PDWI

PDIO

PDPRC

PDGCR

PDSR

PDOR

Processed Data Program Identifier. This table collects information for all versions
of the pipeline and other programs and will be used as a reference of the sources of
the processed data.

Processed Data Image Parameters Set. The table stores the results of the pipeline
treatment of Windows, mainly by the Pixel Data Processing part of the pipeline.

Processed Data Window - Image Identifiers Relation. This table will store links
between the window identifier and identifiers of images extracted from this window.

Processed Data Image - Object Identifiers Relation. This table will store links
between the image identifier and identifier of object associated with the image.

Processed Data Preliminary Coordinates. This table will contain an information
about preliminary coordinates of the object and an image identifier.

Processed Data Great Circle Reduction. The table will store results of the GCR,
i.e. coordinates of stars with errors and so on.

Processed Data Sphere Reconstruction. This table will contain 2 coordinates for
each object and errors of coordinates computed as result of Sphere Reconstruction
process.

Processed Data Object Recognition. The table will contain the final Object Identi-
fiers resulted from the Object Recognition process.

Table 6.7: The processed data tables.

Attribute ‘ Designation ‘ Domain
PDPRG: Pipeline or other program ID
Pipeline or program number PRG SMALLINTEGER
Description DSC CHAR(1000)
Version VRS SMALLINT
Realize date RDA DATE
PDIPS: Windows centroids

54

Pipeline or program current number PRG
Image NI1
Identifier NI2
Time T1
Count T2
Window centroid X WX
Window centroid Y WY
X coordinate error XE
Y coordinate error YE
Amplitude of the IPS in ADUs AMP
Error of the amplitude in ADUs AMPE
background of the image in ADUs BA
Error of the background in ADUs BAE
Shape parameter 1 in pixels SP1

Error of the shape parameter 1 in pixels SP1E

SMALLINTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER

PDWI: Window - Image Identifiers Relation

Pipeline or program current number PRG SMALLINTEGER
Image NI1 INTEGER
Identifier NI2 INTEGER
Window NW1 INTEGER
Identifier NW2 INTEGER
PDIO: Image - Object Identifiers Relation
Pipeline or program current number PRG SMALLINTEGER
Image NI1 INTEGER
Identifier NI2 INTEGER
Object NB1 INTEGER
Identifier NB2 INTEGER
PDPRC: Preliminary Coordinates
Pipeline or program current number PRG SMALLINTEGER
Image NI1 INTEGER
Identifier NI2 INTEGER
FOV identification FOV SMALLINT
Preliminary position, « PALF DOUBLE
Preliminary position, § PDEL DOUBLE
PDGCR: Great Circle Reduction
Pipeline or program current number PRG SMALLINTEGER
Image NI1 INTEGER
Identifier NI2 INTEGER
Position along the Great Circle, arcsec GCC DOUBLE
Error of the position, arcsec GCCE DOUBLE
Reference Great Circle number RGC SMALLINT
PDSR: Sphere Reconstruction
Pipeline or program current number PRG SMALLINTEGER
Preliminary Object NB1 INTEGER

95

Identifier NB2 INTEGER
Position, « arcsec SALF DOUBLE
Position, ¢ arcsec SDEL DOUBLE

Error of position, a arcsec SALFE DOUBLE
Error of position, ¢ arcsec SDELE DOUBLE
Reference Great Circle RGC SMALLINT
PDOR: Object Recognition
Pipeline or program current number PRG SMALLINTEGER
The final Object NB1 INTEGER
Identifier NB2 INTEGER
The Preliminary Object PNB1 INTEGER
Identifier PNB2 INTEGER
Failure flag BBF SMALLINT

II1. Final catalog

FDASP Final Data Final Catalog of Astrometric Parameters. This table collects the final
result of the astrometric data processing.

FDAPP Final Data Astrophysical Parameters.
FCEXI Final Data Cross-identification table with external catalogs.

FCEXD Final Data List of external catalogs table.

Table 6.8: The final catalog tables.

Attribute ‘ Designation ‘ Domain
FDASP: Final catalog of astrometric parameters
Pipeline or program current number PRG SMALLINTEGER
Object NB1 INTEGER
Identifier NB2 INTEGER
Position, a ALF DOUBLE
Position, ¢ DEL DOUBLE
Position error, o, EAL DOUBLE
Position error, o EDE DOUBLE
Proper motion, g, MUA INTEGER
Proper motion, s MUD INTEGER
Proper motion error, o, EMA INTEGER
Proper motion error, o, EMD INTEGER
Parallax PAR INTEGER
Parallax error EPA INTEGER
FDAPP: Final catalog of astrophysical parameters
Pipeline or program current number PRG SMALLINTEGER
Object NB1 INTEGER
Identifier NB2 INTEGER

o6

Final photometry, band1 FB1 SMALLINT

Final photometry error, band1 EFB1 SMALLINT
Final photometry, band2 FB2 SMALLINT
Final photometry error, band?2 EFB2 SMALLINT

log g LGG DOUBLE

FCEXI: Cross-identification with external catalog
Pipeline or program current number PRG SMALLINTEGER

Object NB1 INTEGER
Identifier NB2 INTEGER
Catalog’s ID number CTN SMALLINT
Catalog’s name CNM VARCHAR(100)
FCEXD: List of external catalogs
Catalog’s ID number CTN SMALLINT
Catalog’s description CNM CHAR/(5000)

A number of tables will be included in this section: each external catalog (like Tycho-2
or 2MASS) which will be used for cross-identification will be inserted into the database
as a separate table.

The set of the tables described in this chapter is not complete. We can update the number
of tables as well as the number of attributes in each table. For example, the table for the
Coordinates for Reference Stars was not considered (this table has an information
about Reference Great Circles) as the size of this table is neglectable compared with other
tables of the processed data. The only restriction is that we can not add new primary keys
to the four primary keys which come from the four identifying entities described in the
conceptual design of the database. In the next Section we will use the database scheme
to write down the SQL statements which will be used by the pipeline.

6.4 Requests to the Database from the Data Processing

The required SQL statements can be found from the description of the processes made
above, from the most general relation between data (Fig. 6.1) and from the description of
the corresponding tables. This is the realization of the general description of the processes
(see Table 6.2).

Initial Data Insert. Generate Window Identifier. The initial data insert will load
data into four tables: RDSW, RDFW, RDHK and RDCP. It is better to combine the
operation of the generation of the window identifier and the initial data insert in the
single process.

INSERT INTO RDSW VALUES(NW1,NW2,T1,T2,CX,CY,WT,W)
INSERT INTO RDFW VALUES(NW1,NW2,T1,T2,CX,CY,W)
INSERT INTO RDCP VALUES(PWN1,PWN2,CWN1,CWN2)

INSERT INTO RDHK VALUES(T1,T2,PT1,PT2,AA1,EA1,AA2,EA2)

o7

8¢

_— _— —_— —_— e _— _— _— _— _— _— -
I RDCP | PDPRG
: PRG._SVALLINT
I | e | NTE=R BSC: VARCHAR(1000)
oW | NTEGER | VRS: SMALLINT
| [[owe: InTEGER [HWE O RDA: DATE
PN PNR | S T N S Y g |— — — — — — —
| 0..1 | e e ‘N\MN\/\E A A B B e | |
n n
| RDFW RDSW PRG | 1.0 |
. NBL, NB2
| e WA TNTEGER | + - — — - — — — 4 — 7 5_Foase
T2' | NTEGER _NV2: | NTEGER N1 N2 | PRG SVALLT NT |
CX: SMALLINT Ti: I NTEGER | | PRG _NBI: | NTEGER
| & St 2 LMES B s [LI ELAN FIN A ;o |
| Ww_BLOB CY' SMALLINT | | PDIPS PDIO | DEL: DOUBLE |
W SMALLI NT PRG SVALLT NT - EAL: DOUBLE
RDHK W VARCHAR(4368) | | NI 1: | NTEGER Eﬁf ?%EEIE'&W EDE: DOUBLE
| T NI 2: | NTEGER NI 2: | NTEGER | | MUA: | NTEGER |
T1. I NTEGER . PRG | T1: | NTEGER NB1: | NTEGER MJUD: | NTEGER
| T2: | NTEGER I T2: | NTEGER NB2: | NTEGER | EMA: | NTEGER
PTL: | NTEGER WK | NTEGER | EMD: | NTEGER |
PT2" | NTEGER L) e | | W | NTEGER ' B PAR | NTEGER
| | Al DOUBLE XE | NTEGER || EPA' | NTEGER |
EAL' DOUBLE | YE | NTEGER
L | AWP: | NTEGER NBY, NB2 4
- - - - = = |- — |- AVPE: | NTEGER . |
SR Y OO S I Y | T
r PDWI t.n SP1: | NTEGER | o o LR |
PRG SVALLTNT SP1E: | NTEGER | _NBL:
| _ | NB2: | NTEGER |
N1 I NTEGER T FBL. SMALLINT
N 2' | NTEGER '
| N 2t | NTEGER | EFB1: SMALLINT
NV2: | NTEGER PRG | FB2: SMALLINT |
: | EFB2: SMALLI NT
| ninz §0" §F "N RLn NN | — = |
PRE P
|
| 1 N2 |_1_,n NBL, NB2 | |
| PDGCR __ |* "™ pppRC | L-" PDOR |1 || |
PRG SNVALLI NT PRG SV NT PRG SNVALLI NT
| N1 INTEGER NI1: | NTEGER NBL: | NTEGER | |
: NI 2° | NTEGER NB2: | NTEGER \
| GOC. DOUBLE FOV: SMALLINT PNBL: | NTEGER PROCESSED DAT, || FI NAL CATALOG |
GCCE: DOUBLE PALF: DOUBLE PNB2: | NTEGER
| RGC: SMALLINT PDEL: DOUBLE BBF: SMALLI NT | | |

Figure 6.1: The UML scheme of the database. Raw Data, Processed Data and Final Catalog layers are shown. Some tables are not shown
(PDSR, FCEXI, FCEXD).

The incoming data file will in fact consist of two files: the first with the House-Keeping
data and the second with scientific data (the mixture of Standard Windows and Full Chip
Windows). The last one has to be preprocessed before the data insert and divided into
the three files (one file for each table of the scientific raw data). At this moment the newly
generated window identifiers will be added to data files.

Pixel Data Processing. Pixel Data Processing, Attitude Reconstruction and Prelimi-
nary Identification are the most time critical statements among all. Pipeline has to select
data from the database and process selected data before the next data portion comes from
the satellite. The typical time interval for the whole action is approximately 2 hours for
DIVA/AMEX type mission and approximately 24 hours for GAIA. Pixel Data Processing
requires to select data for the current cycle of the observation only. To provide a fast
data retrieval the window identifier generated at the previous step must have informa-
tion about the scanning circle. The first part of the window identifier (NW1) is in fact
the running number for the scanning circle. As result, the SQL select statement is very
simple.

SELECT NW1, NW2, T1, T2, CX, CY, W FROM RDNW
WHERE NW1 >— i AND NW1 < i+8 ORDER BY NW1, NW2;

where i is the running number of the scanning circle. The Pixel Data Processing will as
well generate an Image Identifier for each image in the window. As a result, the insert
statement is subdivided into the two inserts: IPS for each image and the relation Image
Identifier - Window Identifier.

INSERT INTO PDIPS VALUES (PRG, NI1, NI2, T1, T2, WX, WY, XE, YE, AMP,
AMPE, BA, BAE, SP1, SPIE)
INSERT INTO PDWI VALUES (PRG, NI1, NI2, NW1, NW2)

Attitude Reconstruction. For the attitude reconstruction two tables will be searched:
PDIPS and RDHK.

SELECT PRG, NI1, NI2, T1, T2, WX, WY, XE, YE FROM PDIPS
WHERE NI1>=; AND NI1<i+3 ORDER BY T1,T2
SELECT T1, T2, PT1, PT2, AA1, EA1, AA2, EA2 FROM RDHK
WHERE T1 >= T, AND T2 <=T, ORDER BY T1,T2

The data retrieved from both tables are measured in the same time interval. The prelim-
inary coordinates will be inserted,

INSERT INTO PDPRC VALUES (PRG, NI1, NI2, FOV, PALF, PDEL)

Preliminary Identification. For the attitude reconstruction two tables will be searched:
PDIPS and RDHK.

SELECT PRG, NI1, NI2, T1, T2, WX, WY, XE, YE FROM PDIPS
WHERE NI1>=; AND NI1<i+3 ORDER BY T1,T2
SELECT T1, T2, PT1, PT2, AA1, EA1, AA2, EA2 FROM RDHK
WHERE T1 >= T, AND T2 <=T, ORDER BY T1,T2

99

The data retrieved from both tables were measured in the same time interval.
INSERT INTO PDIO VALUES (PRG, NI1, NI2, NB1, NB2)

Great Circle Reduction. The Great Circle Reduction will require IPSs for images
within three scanning circles:

SELECT PRG, NI1, NI2, T1, T2, WX, WY, XE, YE FROM PDIPS
WHERE NI1>—i AND NI1<i+3 ORDER BY T1,T2

The results are one-dimensional coordinates of the objects:
INSERT INTO PDGCR VALUES (PRG, NI1, NI2, GCC, GCCE, RGC)

Sphere Reconstruction. The Sphere Reconstruction will access one-dimensional coor-
dinates of objects for half year of observation and will produce 2-dimensional coordinates:

SELECT X.PRG, X.NI1, X.NI2, X.GCC, X.GCCE, X.RGC, Y.NB1, Y.NB2
FROM PDGCR X, PDIO Y
WHERE X.NI1=Y.NI1 AND X.NI2=Y.NI2 AND X.NI1>=NI1, AND X.NI1 <NTl,
ORDER BY Y.NB1, Y.NB2

INSERT INTO PDSR VALUES (PRG, NB1, NB2, SALF, SDEL, SALFE, SDELE)

Astrometric Parameter Determination. The astrometric Parameter Determination
will collect all information about positions of objects determined through the mission to
find precise positions, parallaxes and proper motions for each object.

SELECT PRG, NB1, NB2, SALF, SDEL, SALFE, SDELE, RGC FROM PDSR
ORDER BY NB1, NB2

INSERT INTO PDSR VALUES (PRG, NB1, NB2, ALF, DEL, EAL, EDEL, MUA,
MUD, EMA, EMD, PAR, EPA)

Object Recognition. The final object recognition
SELECT PRG, NB1, NB2, SALF, SDEL, SALFE, SDELE, RGC FROM PDSR
INSERT INTO PDOR VALUES (PRG, NB1, NB2, PNB1, PNB2, BBF)

Astrophysical Parameter Determination.

SELECT X.PRG, X.NB1, X.NB2, X.ALF, X.DEL, X.EAL, X.EDE, X.MUA, X.MUD,
X.EMA, X.EMD, Y.NI1, Y.NI2, Z.T1, Z.T2, Z.AMP, Z.AMPE, Z.BA, Z.BAE
FROM FDASP X, PDIO Y, PDIPS Z
WHERE Y.NB1=X.NB1 AND Y.NB2=X.NB2 AND Z.NI1=Y.NI1 AND Z.NI2=Y.NI2
ORDER BY X.NB1, X.NB2

INSERT INTO FDAPP VALUES (PRG, NB1, NB2, FB1, EFB1, FB2, EFB2, LGG)

60

6.4.1 Keys and Indices

We are setting some general principles for the data placement in the database as follows:

Primary keys. We have 4 types of primary keys : artificial window identifier (NW1,NW2),
time counts (T1,T2), image identifier (NI1,NI2) and object identifier (NB1,NB2). Each
of them consists of 2 INTEGER values or a (SMALLINT, INTEGER) pair. It is possible
to identify each window with a set of 5 fields (time counts - T1,T2; CCD chip information
- CX,CY, CN), these values will be unique for each window. Nevertheless the use of a
two-column primary key is better, because we will save disk space required to store an
index and it will be easier to access the data.

Partitioning key. We will the second part of each identifier (NW2,T2,NI2, NB2) as a
partitioning key to distribute the data through the nodes. As NW1, NI1 and NB1 will
count the same value - a running number of scanning circles of the satellite, the data could
be distributed so, that windows belonging to the same scanning circle will be shared by all
nodes. The main requests from pipeline require data from the same scanning circle and,
as a result of the data distribution, the request will load all nodes sharing data uniformly.

Coherence of partitioning keys. We set NW2 as the “basic” partitioning key. Any
table having another partitioning key, i.e. NI2, NB2 and T2, will be distributed so, that
the record due to the image or object will be placed at the same node with the parent
window. This way we significantly reduce the number of transmission between nodes in
the case of join statement between tables with different primary and partitioning keys.

Order Indexes. Most of the requests needs a huge amount of data ordered by some
entity. To speed up the select of the data for requests the indices must be implemented
for attributes which were not covered by primary or partitioning keys but will be used in
a where-statement of requests.

The SQL statements above are not the final version for the data treatment, nevertheless
we can construct a set of indexes for our tables on the basis of supposed requests to the
database (most of them are really Primary Keys - PK). These indexes will

IWRDSW ascending and unique index on the columns NW1, NW2 of RDSW table (PK).
ITRDSW ascending and unique index on the columns T1, T2 of RDSW table.
IWRDCP ascending and unique index on the columns PWN1, PWN2 of RDCP table (PK).
ITPDIPS ascending and unique index on the columns NI1,NI2 of PDIPS table (PK).
ITPDIPS ascending and unique index on the columns T1,T2 of PDIPS table.
ITIPDWI ascending and unique index on the columns NI1,NI2 of PDWI table (PK).
ITIPDPID ascending and unique index on the columns NI1,NI2 of PDPID table (PK).

IBPDPID ascending and unique index on the columns PNB1,PNB2 of PDPID table.

The final scheme of the database is shown in Fig. 6.1.

61

6.5 The growth of the data with time.

As soon as we have designed the data structure for the mission’s database we can estimate
the data growth through the mission. For this we have to combine the scanning law,
designed data structure and the processing chain. As an every half a year we propose to
start an improved version of the pipeline which will produce the next iteration of processed
data and as we have to store all processed data during the mission the increase of the
data volume will be non-linear.

The transfer between data types can be estimated on the basis of the modeling of the
satellite’s behavior and the modeling of instruments. The initial record will be the stan-
dard chip window in 99% and full chip window in 1 % of the cases. The standard chip
window will contain 2 or more images in 10 % of the cases (see [TD0284-01, 2002| for
the DIVA/AMEX case). As a result the following formula can be applied to estimate the
growth of the size of the database:

circle
DBV (B, circle) = / (fraw(circle) + forocessea(circle) + fanai(circle))d circle,
0

fraw(circle) = 0.99V(S/N) (size(RDSW) + size(RDCP)) circle
+ 0.01V(S/N)size(RDFW) circle
+ v(telemetry) size(RDHK) circle,
Jorocessea (circle) = 1.21 V(S/N) (size(PDIPS) + size(PDWI) + size(PDPRC)) circle
3.62V(S/N) (size(PDGCR)) A(circle, 3)
217.4V(S/N) (size(PDIO) + size(PDSR) + size(PDOR)) A(circle, 183),
fanal(circle) = (size(FDASP) + size(FDAPP)) A(circle, 183),

- +

where DBV is the data volume in Bytes, circle is the running circle of observations,
Jraws fprocessed, [final are the data volume due to the raw data, the processed data and the
final catalog correspondingly, V(S/N) is a number of the detected objects on the focal
plane during the running circle of observations (this value depends on the Signal-to-Noise
ratio), and

[1, if (a/b-int(a/b)) =0
Aa,0) —{ 0. if (a/b - int(a/b)) # 0

Table 6.9: The size of tables.

| DIVA/AMEX, B | GAIA, B | Update rate
Raw Data
RDSW 2184 | 18 daily
RDFW 2096928 daily
RDCP 16 daily
RDHK 272 daily
Processed Data

62

100 |~ n

80 - n

60 - n

data volume, TB

40 ’ |

20 F . .

0 200 400 600 800
time, days

Figure 6.2: The growth of the data during the mission (DIVA/AMEX). The dotted line is the
growth of the the raw data, the dashed line is the growth of the processed data, the dashed-dotted
is the growth of the final catalog and the solid line is the combined data growth.

PDPRG 1014 daily /once per half a year
PDIPS 46 daily

PDWI 18 daily

PDIO 18 once per half a year
PDPRC 28 daily
PDGCR 28 ‘ - each 3 days
PDSR 44 once per half a year
PDOR 20 once per half a year

Final Catalog

FDASP 66 once per half a year
FDAPP 98 once per half a year
FCEXI 112 once per mission
FCEXD 5002 once per mission

The function size(table) returns the size of each table in Bytes (see Table 6.9). As we
can see, the data grows with the constant rate every day except in the case of half-year

63

processes. They increase the data volume every half a year. The non-linear data growth
will occur because each new version of the pipeline will need to re-process the raw data
obtained previously. In Fig. 6.2 we supposed that the new version of the pipeline runs
every half a year and has to re-process previously obtained raw data for half a year.

6.6 Hardware & Software Components and Their Op-
timum Choice

In the ideal case the choice of the hardware and software components of the DPC is ruled
by the needs of scientists and the personal to handle data in reasonable time. In practice
one of the major factor in the choice of these components are financial constraints. As
result the choice must be “optimum?”, i.e. the DPC has to consume the minimum resources
and and the same time the DPC has to be sufficiently effective to accomplish the task.

6.6.1 A Shared-Nothing Linux Cluster as the Core Component
of the Data Processing Center

The most important problem for the DPC during the mission is the scalability. Indeed,
the data storage will grow during the mission from a few GB up to 100 TB at the end
of the mission in case of DIVA/AMEX (up to 1 PB in case of GAIA). The DPC must
supply pipeline and other applications with data providing a fast access to the whole data
volume. Solution of many other problems, e.g. safety, backup strategy and etc. depends
on the scalability.

To store data we can choose between the “mainframe” strategy and the “cluster” one. In
the first case we will store all data on the media (RAID arrays) connected to the same
host and operated by this single host. It is clear that the practical realization of this
solution will be complicated by the following problems:

e the data transfer bottleneck: the host will transfer all the stored data through the
same bus which will slow data transfer,

e the cost: for 100 TB data we will need approximately 1000 harddisks. The price of
the harddisk storage media is approximately 1,000 USD for 1 TB in the year 2004
(for IDE disks) with the trend for the price to decrease down to 1,000 USD for 25
TB in the year 2020 (see [Cybersource WP, 2002]).

In Appendix C we tested the dependence of the response time on the number of nodes of
the cluster which were used to distribute the data. In Fig. 6.3 we see, that the dependence
of the response time is not obvious: the increase of the number of nodes can increase the
response time. The reason for this result and the choice of the optimum number of nodes
of the cluster will be discussed in the next Chapter.

To use the cluster we have to select between the “usual” network (Ethernet, for example)
and the fast switches (or fast network solution like Myrinet, for example).

64

e—e | node
sy & nhodes
3 3 nodes
+.—+ 4 nodes
w..% O nodes
&— < 06 nodes
~— 7 nodes
2 [+—=1 8 nodes
w9 nodes

log time

0 1 2 3 4 5 6
log Ngows

Figure 6.3: The relation between the number of nodes used in the query and the response
time. The time is in sec. (See Table C.1).

Myrinet and Ethernet. In our case the main delay is due to the data retrieval from
disks and not to the data exchange between nodes (we have to prevent the later case via
the design of database structure). The prove of this statement is done in the Appendix E
and will be described in the next Chapter. It is unlikely that the database will need
Myrinet or fast switches. But as we need a computational facilities up to 32 TFLOPS (in
the case of GAIA) we can organize two clusters: a big one with Ethernet and a small one
with Myrinet for pipeline and other calculations.

The first solution is more suitable for the archive (offline) data storage. The “cluster”
solution is more practical for the online data storage which we need. Indeed, we can

65

distribute data through independent hosts to reduce the amount of data stored at a single
host and to provide an independent access to different chunks of data.

Possible solutions for the cluster are a shared-nothing cluster (SN), shared-memory (SM)
and shared-disk (SD). Taking into account the data growth during the mission, we have to
reject SN and SM clusters. In fact both have the same negative feature as the “mainframe”
solution: we will need to maintain a single host with an enormous storage capacity and
very bad scalability.

6.6.2 RDBMS

To store the data we have to select a stable relational DBMS. As a non-commercial project
we are allowed to use most of the commercial RDBMSs for free. In the year 2004 we have
following commercial DBMS for clusters:

Informix XPS Informix XPS (eXtended Parallel Server) is a very administrator- and
user-friendly product. In the fall of 2001 Informix Inc was sold to IBM. Although IBM
did not announce officially the close of the Informix product family, this company did
not support Informix XPS for Linux any more. It is unlikely that IBM will sell Informix
products till the year 2011.

Oracle RAC Oracle RAC (Real Application Cluster) does not suit for our purposes
because it works on shared-memory clusters and Oracle does not produce RAC for self-
made clusters.

DB2 ESE DB2 Enterprise Server Edition is the RDBMS which can be used under Linux
OS and on a self-made cluster. Parameters of this RDBMS (esp. the maximum storage
capacity for data pro database server) will define the number of nodes for the mission
database cluster.

Finally, we can compare the cost for the Oracle RAC and DB2 ESE. At the end of the
year 2004 the price for the Oracle 9i was approximately 40,000 USD per CPU, whereas
the price for DB2 ESE v8.1 was approximately 25,000 USD per CPU. The MySQL server
was upgraded to a distributed database server in recent years, but MySQL is still not a
SQL92 compatible DBMS.

6.6.3 Compilers

In case of the pipeline and applications development from scratch it would be better to
chose one programming language for all applications. Unfortunately, this is impossible,
because many astronomical and astrometric programs use a number of already completed
applications and subroutines written mainly in Fortran (some of them were developed in
the case of the Hipparcos mission).

As a compromise solution we propose to use C/C++ as the “core” language and Fortran
77/90 as the “support” language. Since DB2 does not support Fortran for Linux OS we
must design a library for application programmers.

66

3

3
%
%

log time

0 1 2 3 4 5 6
log Ngows

Figure 6.4: The comparison between the direct insert and the preprocessed insert. Filled
circles are test results for INSERT statement, stars are test results for the preprocessed
insert. The time is in sec. (See Table 1.1)

6.6.4 The Data Insert

The DPC will receive a huge raw data volume each day. Even bigger processed data vol-
ume will be generated by applications running in the DPC. To reduce the time required
for applications to insert the data into the database we will use an external (to applica-
tions) utility which will insert results of the work of the applications into the database.
In Appendix I we tested the data insert from the application and the preprocessed data
insert. In the latter case we used db2split utility and LOAD FROM FILE command of

67

Table 6.10: GAIA and DIVA/AMEX clusters.

Parameter DIVA/AMEX GAIA
Raw data, TB 4 100
Raw and processed 50 1024
data, TB

Database partition servers 100 2 instances
(DB2 UDB EEE v7.2) (1000 each)
Nodes, 2xCPU 50 1000
Nodes, 4xCPU 25 500

DB2. Fig. 6.4 shows that the preprocessed data insert is more effective in the case of the
big data volumes.

6.6.5 Implementation of the Data Processing Center

The implementation of the data center includes following items:

The list of initial components. This includes a core cluster with a initial number
of nodes, writing DVD devices and service PCs. We can fix and install a number
of necessary components of the DPC and then, step by step, add new data storage
devices and new nodes to the cluster. The components have to be installed and
tested half a year before the mission start.

Cluster upgrade requirements. We will select a configuration for the initial
cluster which we can easily upgrade during the mission. We must be sure that the
hardware components we need for the cluster will be accessible at the end of the
mission (e.g., for AMEX in 2011).

Upgrade plan. This plan describes an upgrade of the cluster with the data growth.

The DPC software. We will use DB2 DBMS as the core of the DPC, but we have
to design and implement a number of packages and programs to maintain database,
load and unload the data, backup the data and trace the performance of the DBMS
and the cluster.

Table 6.10 shows the approximate configuration of the cluster in cases of DIVA/AMEX
and GAIA.

Initial components

The initial configuration and the upgrade plan for the cluster depends on the time scale in
which the new components (nodes) can be added and on the prediction of the data growth
in the database. In the case of DIVA/AMEX we propose a half-year period as the time
which we have to cover with the initial configuration. This assumes that at the beginning

68

Table 6.11: The upgrade plan — the growth of data during the mission as a percent of the
final whole data volume and the growth of the DIVA/AMEX data cluster.

Day of the mission | Percent of data in the database Upgrade
0 0.1 Initial cluster
150 9.8 Upgrade 1
270 19.1 Upgrade 2
390 29.2 Upgrade 3
500 39.6 Upgrade 4
580 49.2 Upgrade 5
650 58.8 Upgrade 6
720 68.3 Upgrade 7
780 78.4 Upgrade 8
840 88.2 Upgrade 9
900 98.0 Upgrade 10
910 99.7 Upgrade 11

of the mission we have a data storage for approximately 10 TB of data (10 2-CPU or
4-CPU nodes with 1 TB data space on each, 2 database servers on each node plus one
reserve node). Also 32 GFLOPS cluster will be installed(in the case of DIVA/AMEX). A
detached PC with DVD burning device and 5 TB RAID array will be used for archiving.

Upgrade plan

The upgrade plan is based on the data growth rate of the mission. The estimation of the
growth of the data volume with time made previously (see Fig. 6.2) shows non-linear data
growth. In the case of the DIVA/AMEX the data will reach 100 TB at the end of the
mission and it is reasonable to add new storage capacities in 10-TB portions (this means
that 10 new nodes will be added at each upgrade). The first upgrade will be needed 3
months after the start of the mission, ten upgrades will be necessary approximately every
3 months (see Table 6.11). This upgrade plan was calculated for a 3 year mission duration
and can be changed in accordance with the actual duration of the mission.

Required software

OS. Linux clone, possibly the latest version of SuSE.
DBMS. The latest version of DB2 ESE.

Time server. This server is used to synchronize the local time on each node. NTP
(http://www.ntp.org) can be used.

Compilers. Throughout this work the GNU C/C++ compiler was used (http://gcc.gnu.org/).
Intel C/C++ and Fortran compiles were tested as well and can be used for the soft-

69

ware development (http://www.intel.com/software/products/compilers/clin/ and
http://www.intel.com/software/products/compilers/flin/).

6.6.6 Classification of Failures

We can classify possible failures by the following way :

Software failure: OS. In the case of an OS failure all work will be restarted from
the last commitment point (the time than the last successful results of pipeline work
were fixed). The damaged node will be fixed as in a case of node failure (see below).

Software failure: DB2 data load. During each cycle of data load we have to put
a big chunk of data into the database. We do not suggest to log a raw data table.
If during the raw data load a failure will appear, we will stop the load procedure,
delete the newly inserted data portion and repeat the procedure of data load.

Software failure: DB2 server failure. In the case of a server crash, the server
will be stopped and the reason of the failure will be analyzed. Usually, this kind of
failure indicates problems of hardware or OS.

Hardware failure: Harddisk failure. In the case of the failure on the harddisk
the affected disk will be replaced and all data located on the disk will be restored
from the backup.

Hardware failure: node failure. In order to substitute a crashed node, we
propose to keep an empty node in hot reserve. In the case of a failure all applications
and the DBMS server will be stopped, the data will be placed into the reserve node,
the corresponding changes will be made in the configuration of the DBMS server,
the DBMS server and all applications will be restarted from the last commitment
point.

Hardware failure: periphery device. The most critical situation occurs if the
external network link with the SOC would crash or the backup device(s) would fail.
In the case of a failure produced by the DPC periphery devices we have to keep
a reserve of hardware to replace the damaged devices (for example, writing DVD
device).

6.6.7 The Backup and Recovery System

There are two groups of processes in the DPC. The first one will retrieve the data for a day
of observations and will produce the new processed data daily (Pixel Data Processing,
Attitude Reconstruction, Great Circle Reduction). The second group of processes will
need the data for at least half a year of observations and will produce the new processed
data once per half a year (Sphere Reconstruction, Astrometric Parameters Determination,
Object Recognition and Preliminary Identification). Both data chunks produced by these
two groups of processes will never be changed after the insert and can easily be archived
before an insert to the database. The data insert for each day of the mission will be stored

70

in the archive and can be easily repartitioned and restored. As a result the optimal choice
would be a circular logging with the backup of all input data.

The restore of the data in the case of software failure will be done by the RESTART
DATABASE command. The only changes in the database are due to the insert operation
and in this case the operation will be terminated and restarted (we have no UPDATE
operations for the database).

The case of a hardware failure is more complicated and dangerous. As we deal with
the huge amount of data we are unable to remove and add nodes by standard DB2
commands. Indeed, these operations will require a logging during the data redistribution.
The maximum storage capacity for the logging at the separate node is (Maximum Number
of Log files:128) x (Maximum size of the Log file: 65535 pages)x (The page size: 4 kB)
= 32 GB. The redistribution of the data among nodes will require a huge time as the size
of the data chunk at each node will be close to the maximum capacity of 512 GB.

As a solution we will keep an empty reserve node in the cluster excluded from the database
server nodes. In the case of a hardware failure the damaged node will be excluded from the
configuration, the archived data volume of the damaged node will be restored at the new
node, the name of the damaged node will be assigned to the new node and the database
will be restarted.

The IBM Tivoli Storage manager can be used for the archiving from the database cluster.

6.7 Summary

We have created a concept for the DPC which based on a few simple principles: low cost
for the realization, low manpower to support and the decrease of the response time for
time-critical applications.

As we will see from the next chapter, it is possible to improve the response time signifi-
cantly for the case of the distributed database and shared-nothing cluster if we abandon
the uniform data distribution through nodes of the cluster.

71

72

Chapter 7

The Partitioning Problem: Theoretical
Background

In the case of distributed databases the problem of the optimum response time is in fact
a problem of the data distribution over the nodes of the cluster which is used to store the
data. The method for the data distribution can be round-robin, range- or hash-based, but
the existing commercial DBMSs use these methods of the data distribution to create a
uniform data distribution over the nodes. If we are using the non-homogeneous hardware
(as we use for the DPC to reduce the cost for the hardware) the uniform data distribution
becomes non-optimal.

In practice we have to create a system which will work with the software we have pre-
selected for the Data Processing Center, so we are limited by the relational DBMS we
have chosen and the logical database structure designed in the previous chapter. Also,
we have to place the data on the shared-nothing cluster.

This chapter describes the theoretical basis which can be used to improve the response
time. The task of the improvement of the physical structure of the database can be
subdivided into the task of the design of the initial data placement and the task of the
data reorganization during the work with the data. The latter task includes the monitoring
of the system and the generation of the time stamps for the data reorganization. Also,
we have to find an optimum configuration of the cluster itself (the optimum number of
nodes of the cluster in our case).

To solve the partitioning problem we have to create a system, which will describe the
time, which the DBMS needs to retrieve data as a function of:

e operations {R;},
e nodes of the cluster {N;},
e tables {T;} and indices { K},

e data storage devices {d’}.

We will use the volume of the input data M (number of rows) to produce a distribution
of the data for the cluster {M;} (number of rows on the node i of the cluster).

73

The data distribution will be based on the estimation of the response time which the user
of the database needs to retrieve the data. The estimation of the response time will be
made with the use of the Time Cost Function (TCF).

We have to solve following problems in the framework of the partitioning problem:

e the choice of the optimum number of nodes of the cluster which will share the data,

e the choice of the optimum control node, which will be used by the application to
retrieve the data from the cluster,

e the optimum data distribution for the pre-selected optimum control node and the
defined number of nodes of the cluster,

e the monitoring of the system.

7.1 The Problem of Physical Data Placement

To solve the problem of the physical data placement in general form we have to develop
a physical design of the database with the use of the information about the system which
maintains the database.

The solution must provide a scenario for the data placement, grouping and clustering.
The solution will include partitioning key definitions and indices for the database scheme.
The description of the problem, algorithms for the solution and tests for the distributed
databases on shared-nothing systems can be found in [Zilio, 1998]. The case of the more
general task is reviewed in [Kulba et al., 1999].

Our case differs from the general case reviewed in [Zilio, 1998]. We have already specified
the database scheme on the basis of the “naive” algorithm and the rough estimation of the
theoretical time cost function (Chapter 6). Also, we are interested in the non-homogeneous
case of the cluster used to store the database.

The algorithms described in the [Zilio & Jhingran, 1994] and [Zilio, 1998| are applicable to
the initial design of the database and the reorganization of the database. They are based
on the estimation of the workload and are dedicated to the generation of the optimum
logical structure of the database, whereas we need an optimum data distribution (which
is a part of the physical design of the database) for the already designed logical scheme
of the database.

To describe the process of data retrieval from the database we have to describe the way
which the DBMS uses to select the data and to transfer the selected volume to the end-
user application. The query optimizer creates the execution plan for the query, the query
is subdivided into subqueries for each node. After the execution of subqueries (which
requires sometimes an intense data exchange between nodes) the result is returned to the
control node where the application is running which asked for the data.

We describe in the following the principle procedure, how we will distribute data through
nodes and the measure which will be used to generate such a distribution. For the last
purpose the Time Cost Function will be used. This TCF must be different from the

74

theoretical approach used in the previous Chapter and must be based on the use of the
real DBMS and the database structure we have developed.

Both the partitioning problem and the problem of the selection of the partitioning key
are NP-complete (see, for example, [Garey & Johnson, 2003| and [Zilio, 1998], Appendix
F). Nevertheless, as we will see later, it is possible to simplify the problem and to create a
quite simple algorithm for the solution by means of some restrictions on the general task.

7.1.1 Data Partitioning Through Nodes. Tablespaces for Data
and Indices

The time required for the selection of data from a database depends on the organization of
the request and on the physical data placement of the requested data. DB2 can maintain
up to 512 GB disk space for one node (in the case of a 32K page size). From the estimation
of the required data space (tablespace, indexspace and temporal data space) we can
estimate the number of nodes needed for data storage. It is essential to place data in an
optimum way to minimize the response time. Unfortunately there is no way to use devices
for data storage in current DB2 version for linux (direct use of disk partition). Hence we
will limit ourselves to files and will use 2GB files as the maximum file size for data storage.
Among System Managed Space (SMS) and Database Managed Space (DMS) we will use
the DMS type of tablespace storage due to a better effectiveness of DMS.

Let us suppose our cluster consists of N nodes { N;}. Each node i contains B tablespace
files {b}} and D index space files {d’}. We have a limit on the volume of tablespace and

indexspace files
VRS
J J

Do) =S = Vieta

0]

The value of the maximum space allowed for the table differs for different DBMSs (for
example, for DB2 UDB EEE S; = 512G'B).

Data partitioning through nodes for DB2 is performed by the use of a partitioning key — an
attribute in the table used to find a node number where the row will be placed (the hash
method is used). For our database the natural way to place data is the use of the second
parts of the Window Identifier, the Image Identifier and the Object Identifier (NW2, NI2,
NB2). The first part of the key stores information about the running number of the scan
(NW1) which will be used to retrieve information from the database (see Chapter 6).

The principle idea of the data distribution through nodes is based on the use of the
generated identifier to assign a fixed number of rows to each node. The incoming raw
data will have no identifier for the Window. The combination of Time Counts and CCD
chip information and Window Type can be used as an unique identifier (see Chapter 3).

75

200 -

150 -

Response Time, sec

100 -

151 O 1 M I A I I e

0.8c0 0.88 0.90 092 0.94 096 0.98 1.00
CPU usage, percent

Figure 7.1: The response time vs the CPU usage. To find the dependence between the re-
sponse time and the CPU usage was subdivided into 10 group (thin vertical lines). The CPU
usage interval corresponds to the case of the database cluster shared with other (non-database)
applications.

7.1.2 Requests to the Data. Time Cost Function

The Time Cost Function (TCF) is the time which is required to retrieve one row from
the database. There are two ways to describe the TCEF:

e a parametrical description, which is based on the use of the dependence of the TCF
from a number of parameters describing the hardware and software used to store
and retrieve data and

e a non-parametrical description which supposes an empirical description of the TCF
(the TCF depends on the local time only).

Despite attempts to describe the TCF parametrically (see, for example, [Tomov et al., 2004])
the practical use of the parametrical description of the TCF is doubtful. A simple test
can be performed to clarify the problem: on the single node the response time for the
same number of rows retrieved was measured simultaneously with the percentage use of
the CPU. A single node of the linux cluster installed in Astronomisches-Rechen Institut

76

L | l‘ 1 | l‘ 4
m 1500 | | - |1 i
§ . CPU Usage: 0.921 — 0.930] CPU Usage: 0.930 — 1.000 |
o | T 4
3 [\ I
« 1000 | N\ -+ N\ .
o L | \ 1 \
& I | i € i
[o\ \ rol 1 | | \ rol 1
5 500
2 IR Iy rhro] ;o) I AR
- | / \ 4 / v
z, | | \ , \ - -’/ \ 1 | \ , \ - -’/ \
| \/ \ N \ \
0 ‘ e : : : | e : : :
T I
7 1500 | | + ! -
§ . CPU Usage: 0.895 — 0.900] | | CPU Usage: 0.905 — 0.915 |
o | | T | 1
8 B | 4 |
« 1000 | N -+ N\ B
© [| ;o\ T l P\
o [T [
g I | | ! A T | | | \ ~
E [\ /\ rool T \ A\ rool
5 500 I T I 2
= Lo Iy /AR Tt I\ 1N
= o \ oo Vol \ N \
ol Y /_-4/ Py NN \
|} } T ——+ } i |} i T } } i
Eo + 1
B 1500 - | I T I N
§ Loy CPU Usage: 0.865 — 0.8751 | | CPU Usage: 0.875 — 0.885 |
o | | T | q
8 [\ 4 \
« 1000 | | /) 1 | N]
o I | | \ 11 | i \
B | | | \ A T | | | \ N
E [\ N\ roo T | \ /\ rool
5 500 I - I -
E Lo Iy AR b / ‘o
Z roy \ N A U AR \ A
ol! Y Y R A A ‘ \
100 120 140 160 180 200 100 120 140 160 180 200
Response Time, sec Response Time, sec

Figure 7.2: The distribution of the response time for different CPU usage. Dashed line is the
distribution function for all response time, thick solid line is the distribution function for the
response time for the selected range of the CPU usage.

(ARI) was used for the test (dual Pentium 4 2,2 GHz with two 73GB SCSI disks). Op-
erational system was SuSE linux 7.2, DBMS — DB2 UDB EEE v7.2. The database was
created at the single node of the cluster with the single table which had the only integer
attribute. The number of rows in the table was 10° and all rows were retrieved by the
request. The response time shown in Fig. 7.1 was measured for the different usage of the
CPU, but there is no direct dependence in the response time on the CPU usage at all.
In Fig. 7.2 the dashed line shows the distribution of response times for all ranges of the
CPU usage and the thick solid line — in each interval of the CPU usage. As we can see,

7

a minimum response time can occur for the high values of the CPU usage and vice versa.
This does not imply, that there is no dependence between the response time and the CPU
usage, but the result of the test shows, that the dependence of the TCF on parameters
is not additive. We have to reject the parametrical description of the TCF and switch to
the non-parametrical one, which will depend on time only and will be found from direct
measurements of the response time.

As we can find out from the previous chapter the most important request to the database
is a simple select statement. We will suppose that the Time Cost Function C' = {C;} =
{J; + Q;}, where Q; - the time required for the select-statement executed on node j and
J; - the time required for the join-statement executed on node j. It is clear, that @); will
depend on the data placement on the node j only, meanwhile J; will depend on the data
placement on all nodes and the data link rate between the nodes. Finally,

Qi — fSEZCCt(MZ'),
N
Ji - Z f]mn(Mia M])7
j=1
i#i
where fselect fion are functions, describing the time required to select and join sets of
rows M;, M;. We have to take into account the time required to transfer M; rows from
node j to node ¢
T — f'transfe’r(MA)
7 J/

(2

As these transfers and the local query at node i will be done in parallel, the final time
required to perform a query at node i will be

Ci = maX{Qi,ﬂjU € {nl}} + JZ

N
= max{ [(M), [T (M) € {nik +) O (My, M;).

1]

We have to find an appropriate form for the TCF (both fs¢%ct and ftransfer).

7.1.3 The form of the TCF

To find a form of the TCF we tested a time required to retrieve a various number of rows
from the same node locally (the application runs at the same node) and remotely (the
application runs on the another node of the cluster). The test was made at Astronomisches
Rechen-Institut with the use of the ARI’s cluster (see Appendix H for the full description
of the test). The result is shown in Fig. 7.3. Following this Figure we adopted the
empirical form for the TCF:

!
log f = A{; + A{ e~ A2 log Nrow's

where f is the TCF (response time in seconds per row), M is a number of rows which
is distributed over N nodes of the cluster, Nrows = M/N (we supposed an uniform
distribution of the data).

78

\
N
N

log time

\
>
o

Figure 7.3: The TCF for local and remote data retrieval. The panel (a) shows local data
retrieval, the panel (b) — remote data retrieval. Time is in seconds. (See Table H.1).

The fitting of the proposed form of the TCF shows a good agreement for local (Fig. 7.4)
and remote (Fig. 7.5) data retrieval.

10g fiocat = (—4.43 £0.29) + (1.52 + 0.69) exp((—1.00 £ 0.00) log M/N),
108 fromote = (—2.04 & 0.29) + (0.94 % 0.68) exp((—1.00 = 0.00) log M/N).

It is clear, that
lim log f = Al

N >

in practice log f = Ag , if the number of retrieved rows N,ous > Nimit (Nimiz = 10° in
our case). As a result, the TCF depends linearly on the number of retrieved rows for a
massive data retrieval.

7.1.4 The Stability of the TCF

The increase of the time required to transfer a number of rows between nodes is linear.
Nevertheless, the real transfer rate can be influenced by a number of factors (see, for

79

0.0014

0.0012

0.0010

0.0008

time, [sec]

0.0006

0.0004

0.0002

T T T 7 T T T [T T T [T T T [T T T [T T T [T)k T T T

0.0000 \\\\\\\\\‘\\\\\\\\\‘\\\\\\\\\‘\\\\\\\\\‘\\\\\\\\\T\\\\\\\\\T\
0 1 2 3 4 5 6
log Ngows

Figure 7.4: The approximation of the TCF for a local data retrieval. The line is a fitted function,
squares are measured values for the TCF (see Table H.1).

example, [Arsenev & Yakovlev, 2001]). As result, the transfer rate will be not constant
and will depend on a number of parameters (like CPU usage, for example. Also, the TCF
depends linearly on the number of rows retrieved if the number of rows exceeds some
critical number Nj;pi:.

To test the stability of the TCF we retrieved in107 rows from the database in the ascending
order (see the description of the test in Appendix D). As the node which was used to
perform the test was loaded with others, non-database applications and the load was
not stable we see a number of quasi-stable response times in Fig. 7.6 instead of the only
response time. Each quasi-stable response time is dispersed around some value. The
estimation of this dispersion will be important to characterize the performance of the
cluster at the selected moment of time t. High dispersion is an indicator of fast changes
in the number of running programs, the use of CPU and memory. Based on the results
of the test the distribution of the response time for the same request can be described as
a sum of Gauss function:

N(t) = Z 67(t7t0)2/(2 02)’
i=1

where N(t) is a distribution function for the response time, ¢ is the response time and

80

O"O TT T T T T T T T [T T T T T T T T T[T T T T T T T T T [T T T T T T T T T[T T T T T I T I T[T T T TTTTIT][T

0.08 n

' 0.06n n

sec

time, |

0.02n N

O‘OO N B ‘ T Y ‘ N ‘ I I ‘ O Y ‘ I I ‘ Il
0 1 2 3 4 5 6
log Ngows

Figure 7.5: The approximation of the TCF for a remote data retrieval. The line is a fitted
function, squares are measured values for the TCF (see Table H.1).

o is the dispersion of the response time around some quasi-stable response time ¢, (see
Fig. 7.7 and Appendix D for an example of the use of the distribution function for the
determination of the probability of the quasi-stable solution).

In Appendix E we described the test which was made to measure the response time for
the requests with the increase of the number of rows retrieved. We increased the number
of retrieved rows from 100 rows in the transaction up to 7754700 rows. The result is
shown in Fig. 7.8. As we can see, the linear dependence is confirmed in the experiment
but shows as well a very big dispersion of the time required to retrieve the data around
some average linear dependence. In practice we can not rely on the TCF once measured
at some node of the cluster but we have to trace the performance of the cluster and the
change of the TCF. Indeed, the difference between two linear dependences constructed
on the same node with the same request but for different time intervals (which means a
different node overload) reached 300 %. Appendix E shows that despite the dependence
of the response time on the number of rows retrieved is generally linear, the coefficients
of the linear relation are unstable in the case of a real cluster loaded with a number of
applications. Theoretically the remote node should always show the longer response time
compared with the response time for the same number of rows retrieved than the local
node. In practice the remote note can be much faster than the local node due to a number

81

250 .

200 |- " i .

150 F =

Response time , sec

1000 | =]

0.0 0.2 0.4 0.6 0.8 1.0 1.2
time, 10° sec

Figure 7.6: The response time and the quasi-stable solutions (thin lines).

of factors (the main factor in the test was the overload of the local node with an external
to the DBMS work). As we can see from the experiment as well, the null-point for the
linear relation can be assigned to zero.

7.1.5 The Time Cost Function in the Form of Linear Matrix
Equation

We made the following assumptions:

e there is no join-statement in the query. Indeed, we are interested mostly in the
select-statement, which requires to select rows from each node and transfers these
rows to the control node. As result, f/" = 0;

fselect

e the form of select function is a simple linear dependence on the number of

selected rows M;;

82

1400 -]
1200 -]
1000 - 2
800 |- 2
600 -]
400 - 2
200 2

i | |
0= [- I AN N

0.8 1.0 1.2 1.4 1.6 1.8 2.0
Response time per record, 107° sec

Figure 7.7: The distribution function of the response time. The approximations of the distribu-
tion function are shown in case of solutions [1,6] from Table D.2 (thick line) and solutions [1,4]
(thin line).

e the form of the transfer function f*"s/¢" is linearly dependent on the number of
transfered rows as well;

e the response time does not depend directly on the hardware and the communication
architecture. We do not use some analytical assumptions about this dependence but
we have to estimate this dependence during tests.

The linear form of the select and transfer functions is
fselect(MZ_) — fz Mz

and

f;ransfer(Mi) _ tij Mz

To find C; for each node ¢ we have to fill the followinAg matrix and to take the maximum
value from each row. We assume that the operator {2 returns the maximum value from
each row of the matrix and converts [m x n] matrix to [m x 1]:

83

150 F : —
5 |
()
“ 100
(D)
£ I
= L
O i
D] L %
c F
O 3
oF N
S E
o 50 = 4
| = §:¥
L # f; = |
0 ! | ! ! | ! ! | !
0 2x10° 4x10° 6x10°

Number of records

Figure 7.8: The form of the TCF and the dependence of the TCF on the number of retrieved
rows. The approximation of the TCF by linear function is shown - thin line for the local node
(TCF(Nyee) = A3+ AY N,..), thick line for the remote node (TCF(Nyee) = Ab + Al Nyeo), see
Table E.1.

4 fi M, (fotton) My - (fn+tin) My
C— Cy _8 (f1+tar) My fa My o (fnFtan) My
Cn (fv +itnv) My (fa+tno) My - fn My
C=QF+T)M,

where F matrix is a diagonal matrix with f;; = f;, if ¢ = j, and f;; =0, if ¢ # j. The
matrix F 4+ T is a tool to describe the state of the cluster and to predict the time required
to retrieve M rows from any control node.

84

Figure 7.9: The matrix approach to the description of the cluster.

In the case of the local data retrieval we have f;, in the case of the data placed on the
node j and the request was made at the node j we have ¢;;. From the previous Section
and Appendix D we assumed a Gaussian form for the dispersion law for both coefficients
fi and t;;. The natural way is to estimate not only the matrix F + T but the dispersion
matrices 0F and 0T. If the matrix F + T describes the behavior of the cluster for the
selected DBMS, the dispersion matrices describe the instability of the cluster performance
due to the overload of the cluster by other tasks.

7.2 The Minimax Problem in the Case of the System
of Linear Equations

To find an optimum data distribution M,,,; we have to minimize the C (C = Q(F + T) M).
The “minimization” does not mean, that all members of the C must be minimal, but that
the C must include C; so that there is no C;: C; < C;. We are looking for the minimum
of C, whereas each member of the matrix C is a maximum of the corresponding row of
the matrix (F+T) M: C; = max;(f; +t;;) M,. This is the minimax problem in the case
of the system of equations (see [Sukharev, 1989]).

Two features of the TCF are able to reduce the complexity of the problem: these are the
constant number of rows we have to distribute and the linear form of equations.

Let us suppose, that we have to distribute M rows of equal size among N equivalent
nodes. We simplify the problem taking (f; +t;;) = 1 for any ¢ and j. This mean that
there is no difference between the local and remote data retrieval.

Theorem 1. The distribution of M rows among N equivalent nodes without specification
of the control node (the local and remote data retrieval have the same response time) is

85

given by the solution of the minimax problem M,,;, = min;max;M; in the case of the
uniform distribution M; = M/N.

Proof. Let us suppose that the Theorem 1 is wrong, i.e., IM; : M; < M/N. But, as the
number of rows to distribute is fixed: M, + Z;V:L#j M; = M, 3M;, : M, > M/N, that
contradicts with the minimax requirement M; = max;M;. O

For a transition to the case of non-homogeneous nodes we use a simple geometrical analogy.
Let us suppose that we have to set a point in N-dimensional space so, that the maximum
component of its coordinate of the point will reach a minimum, all coordinates are positive
and the sum of all coordinates must be equal to M. It is proved in Theorem 1, that the
problem is solved if each coordinate is M /N. The case of the non-homogeneous nodes in
our approach of linear dependence of the response time on the number of rows corresponds
to the linear transformation of one coordinate system to another one. The coordinate M;
will be transfered to the coordinate M; = (f; + t;;) M; (j is fixed).

Theorem 2. The distribution of M rows among N nodes with the control node j and

matrix F + T satisfies the minimax solution in the case M; TRy M

Proof. In the case of system of linear equations we have the transformation to the new
coordinate system with coefficients of the F 4+ T matrix as coefficients of transformation.
Indeed, the new values of the]\Zfi for each node are (fi; + t;) M; where j is a preselected
control node. The sum of the number of rows in new coordinate system will be Zf\il ((fij+
t;) M;) and the new optimum data placement in case of the minimax solution is S~ | ((fi;+
ti) M;)/N for each node. The uniform distribution of the rows in the new coordinate
system means (f; + tx) My = (fi; + t;) M;) for any k,l. Combined with the minimax
solution and Theorem 1, this will lead us to M; = S M. O

1
+tk)/(fij+ti)

7.3 Estimation of the gain

Accepting the method of data placement proposed above we can easily estimate the the-
oretical gain of the new method. In case of a uniform data placement of M rows the time
required to retrieve the data is governed by the slowest node.

M
tuniform = N mlax(fzy + tj)a

where j is the preselected control node. In the case of the optimum data distribution the
retrieval time for the control node is

toor = M. t; = M tj = -
opt — J J_tj 221/(f2]+t2) J Ell/('ﬂ]_’_tl)’
and the gain is
B max;(fi; +t;) _ 1
At =M (N Zi1/(fij+t,~))

86

20 BN N R N R

@)

N, number of nodes
o

O \\\\\\\\\‘\\\\\\\\\‘\\\\\\\\\‘\\\\\\\\\‘\\\\\\\\\‘\\\\\\\\\‘\

0 1 2 3 4) S
log M/N

Figure 7.10: The optimum number of nodes. The line shows the optimum number of nodes for
M/N rows per node. Triangles are the predicted values with errors. Errors are estimated from
the errors of fiocq; and fremote functions (see Section 7.1.3). Points are experimental results (see
Test C, Table C.1).

7.4 The Use of the TCF

There are a number of tasks which can be solved with the use of TCF and the matrix
F + T, they will be reviewed in the following.

7.4.1 Optimum Number of Nodes

To find an optimum number of nodes to be used in the cluster we can use simple and
reasonable requirements: we install a new node if this improves the response time of the
request. Let us suppose that we use an uniform data distribution through the cluster. In
the case of N nodes and M rows which will be retrieved by the request the time required
to retrieve rows stored at the local node is fiocal(M, N) = f(M/N), and the time required
to retrieve rows stored at the remote node iS fremote(M, N) = f(M,N) + t(M,N) =
f(M/N)+t(M/N), where t(M, N) is a time required to transfer M rows from the remote
node in the case of N nodes. We will suppose that the cluster is completely homogeneous.

87

The number of rows to distribute is fixed (M). If the new node is added, the number of
rows stored at each node decreases and the time required to retrieve rows from the local
node and from the remote node decreases as well. If we retrieve all rows M (distributed
over the cluster) the response time is defined by the slowest operation — the remote data
retrieval, and the response time is f(M/N)+t(M/N). The requirement for the optimum
number of nodes is that the data retrieval after the add of the new node is faster than
the data retrieval from the local node before the add of the new node. This mean, that
the new node must be added if

f(M/N) +t(M/N) < f(M/(N = 1)),

this is the requirement of the optimum number of nodes.

f(M,N) and t(M,N) are the coefficients of the matrix F4T, but in the case we are
studying they are no more constant and depend on the number of rows retrieved (we
adopt the relation which was described in Section 7.1.3).

The requirement of the optimum number of nodes becomes
f(M/N) +t(M/N) < f(M/(N —1)),

and we neglect f(M/N) (f(M/N) < t(M/N), see Section 7.1.3). Rewriting the require-
ment of the optimum number of nodes with the use of the proposed form of the coefficients
and new variables y = N and x = M/N we will have this requirement in a new form:
nyg > By _fB(]; 2B + E;ng“%
B By

where B/ = A//In10, B. = A./In10. The result for the test cluster with the use of
values for f(M/N) and t(M/N) from Section 7.1.3 is shown in Fig. 7.10. The optimum
number of nodes is the line in Figure, if we will use more nodes (the space over the line)
the response time will increase, as we see from the test for the dependence of the response
time on the number of nodes (see Appendix C, Table C.1).

7.4.2 Optimum Control Node

Among all nodes {IN;} we have to find anode N°P* which the application will use to retrieve
the data. The optimum control node is the node which corresponds to the minimum
response time:

-opt

1°PY : Ciopt = min;C;.

7.4.3 The Status of the Cluster

It is important for the data retrieval to keep a stable response time on the cluster. To
analyse the time required to select the data and the dispersion of this time we use an
average TCF at some moment of time and the dispersion of the TCF for the time interval
around this moment of time:

< (F+T)>wyftots) OEF +T) Ry ftota)-

88

The average value of the TCF and the dispersion are calculated for the time interval [to, ¢1]
and a group of operations {R;} in the assumption that the response time distributed
around the average value by the Gauss law. The dispersion and the average values of the
TCF can serve as an indicator of the cluster overload by other application, and is used
for the planning of the daily work.

7.4.4 Optimum Data Distribution

Let us assume an input of the data at the moment t,. We have to design an optimum
data distribution so, that at the moment ¢, of the data selection by the operation R; the
TCF will reach its minimum. The task is to find { Mo }:

< (F +T) > Mopt = Coptu

Copt : min; < (F+T) > M;,

where ¢ runs through all possible distribution of rows M over nodes of the cluster. The
solution of the problem was found in Section 7.2.

7.4.5 Data Redistribution

In the case of a data redistribution we have to know two TCFs: for the time interval t;
before redistribution ((F+7");,) and another one for the desired time interval t5 ((F4+T7),)-

With the use of the TCF we are able to answer two principle questions: the first one is
the prediction of the time required to retrieve a number of rows from the database and,
the second one is a scenario for the optimum placement of the data with the final goal to
minimize the response time C. These two tasks are named direct and reverse tasks in the
following. In the first case we already have a number of rows placed at the cluster (M
rows) and we compute the matrix F + T to find the select and transfer coefficients (f; and
tij). We use the matrix F + T which we have found in the first task (the matrix depends
on the characteristics of the cluster and the DBMS but not on the data placement) to
find an optimum M.

The same method can be extended to the case of data expansion. With the F+T matrix
we are able predict an optimum scenario in the case than we will need to change the
number of nodes N.

The matrix F+T is not stable. The coefficients of the matrix depend on the load of
the cluster. The number of applications running on the cluster will change during the
mission. As a result we have to compute the matrix F 4+ T periodically to monitor cluster
performance. This also means, that we have to keep on the cluster the test database
(specially designed and distributed over the nodes of the cluster) to compute F + T. This
test database has a pre-defined distribution of rows M over nodes and uses the disk space
on the cluster. In the next Section we are trying to minimize the disk space which the
test database occupies.

89

‘\\\\\\\\\‘\\\\\\\\\ TrT T T T T T 1T TrT T T T T T 1T TT T T T T T TT
O 5 +—+T1, 4B
Fx—x T2, 8B 4

F ~—aA T4, 20B N

F —+1 T4, 20B+VARCHAR B

0.0 F .
) , |
g |
40 L i
» , |
S —05¢ .
1.0 .
—— 4 |
T\H\HH\\HH\\H\\\\HH\H\H\HHH\HH\HH\

0 w 2 3 4 5

log Ngoys

Figure 7.11: The dependence of the response time from the number of rows retrieved and the
size of the table in the case of the local data retrieval. Time is in sec. (See Table F.1).

7.5 Minimization of the Size of the Test Database

To estimate the TCF for the desired database (DIVA/AMEX or GATA mission database)
we simulate the tables of the database and produce benchmark tests for the database. To
save the disk space we have to reduce the size of the test database. This means that we
have to decrease a number of attributes for each table and the number of rows in each
table. The best solution would be the only table with the only attribute and the minimum
number of rows. Still the benchmark produced with the use of the test database must be
scaled to the case of the mission database.

Two relations have to be found for the minimization of the size of the test database: the
dependence of the TCF on the size of the rows retrieved from the database (this will allow
us to decrease the number of attributes in the table) and the dependence of the TCF on
the number of rows retrieved (this will allow us to decrease the number of rows in the

90

- +—+ 1 record E
L — 10® records 4
L A4 107 records 4
O O 451 10* records —

L % 10° records B

log time

—0.0r .

- A &
—1.0 b

5 10 15 20
Record Size, B

Figure 7.12: The approximation of the dependence of the response time from the size of the
table in the case of the local data retrieval. (See Table F.1).

test database). The second question was already answered (see Fig. H). The minimum
number of rows for the table of the test database is 10 per node (the TCF becomes
constant).

To answer the first question let us assume that we have two tables: 77 with attributes
{S1,52,...5;...} and T, with the only attribute {S;}, and S; is a 4B INTEGER at-
tribute. It is necessary to find a dependence which transforms the time required to
retrieve Ny rows from table T; to the time required to retrieve N; rows from table T7.
We also assume that the only indexed column in the table is S; and we have an ordered
ascending index. We look for this relation in the form

tl - f(t07T07T17N07N1)

and neglect the dependence from parameters which describe the state of the node (CPU
overload, disk characteristics, RAM and others).

91

o—e 4B

w7 OB
3 16B
+._+ 40B
w ..% 140B
o— o 140B(VARCHAR
~r—0n D40B(VARCHAR

= = 1040B(VARCHAR)

log time

|
N
T \<§<‘ T \‘\‘_\ 5::
NERMR

O 1 2 3 4 5 6
log Ngows

Figure 7.13: The dependence of the response time from the number of rows retrieved and the
size of the table in the case of the remote data retrieval. Time is in sec. (See Table G.2).

The description of the response time we used previously is based on the linear dependence
on the number of rows ¢t = Ag N,ows (see Section 7.1.3). To estimate the dependence of
the response time from the size of the table we will suppose that Ay = A+ Aj size(table).

Appendices F and G describe tests which were made to find a dependence of the response
time from the size of the table. The results for the local data retrieval are shown in
Fig. 7.11 and Fig, 7.12, for the remote data retrieval in Fig. 7.13 and Fig, 7.14. The
results shows that the response time depends on the number of rows retrieved and the
size of the table, but at the same time the difference in response times for a 4B table
and a 100B table does not exceed 2% and can be neglected. A small 4B table can be
used for tests and the results can be used to optimize the data distribution for all tables.
Nevertheless it is highly recommended to construct a dependence of the response time
from the size of the table for each node in the cluster. If the distributed table is big
enough (1kB, for example) and the number of rows placed at each node exceeds 10, the

92

[T T T (56 T T T ‘ |

4 [+—+ 1 records B

H— + + M

[w—x 10° records 1

L 53— 510" records 1

O Be—8 = &
o W F -
4 C .]
L A—A 10” records N

o Br) f
@) o]
— O b 2]
b 10 records]

2 3

L <& o i

1 . 4

= + 5

o 2 —]

C 1 record]

C \ \ \ \ [

200 400 600 800 1000
Record Size, B

Figure 7.14: The approximation of the dependence of the response time from the size of the
table in the case of the remote data retrieval. (See Table G.1).

difference in the response time can reach 10% and more. The use of the small test table
in this case becomes more complicated, because the results of the test for each node must
be scaled with the use of the constructed function TCF(N,.., size(Table)) (see Table F.2
and Table G.1 in Appendices F and G for examples of the scale function).

7.6 Summary

The solution of the partitioning problem described in this chapter was used as a basis
for the construction of the Database Statistic System (DBSS), which monitors the cluster
and proposes an optimum data distribution. The DBSS is described in the next chapter.

93

94

Chapter 8

The Partitioning Problem: Practical
Implementation of the Solution and
Results

To realize the optimum physical data placement described in previous chapter we wrote
a software system based on the use of the DB2 ESE DBMS. The system which we have
to create (DB Statistic System, DBSS) must perform an optimal data placement, it must
provide information about the present performance of the database and it must propose
an optimal distribution of the data over the database nodes with the use of generated
partitioning keys.

8.1 Requirements to the DBSS

At the beginning all functions of the DBSS are analyzed:

e local query on the node,

e remote query,

e insert results of the tests into the DBSS database,
e select the results of tests from the database,

e construction of the F+T matrix,

e optimum solution for the constructed F+T matrix,
e optimum data distribution,

e data load.

Fig. 8.1 shows the Use Case diagram for the DBSS.

95

initialization
local query
server

client remote query

DBSS Database
insert

DBSS Database
select
stat
monitor data load

data insert
agent

data
redistribution

WINDOWS ID
generator

Figure 8.1: Use case diagram for the DBSS.

8.2 An Implementation of the DBSS for Astrometrical
Databases. The Practical Solution of the Partition-
ing Problem.

DBSS can be subdivided into the three sections:

e the DBSS database which collects an information about the system,
e the optimum solution for the data placement,

e the data placement.

Fig. 8.4 shows the general scheme for the DBSS. To find the TCF (the F+T matrix) for
the tested system we run tests with the use of the DBSS database and store the results
of the tests there. The duration of the test depends on the number of nodes used in
the DBMS configuration. As we can see from the previous Chapter, it is possible to
reduce the size of requested data (and the size of the table with the simulated data in
the DBSS database) to 103 4B records. On our test cluster of 10 nodes (each node has

96

t he DBSS Test the data redistribution

3

[send a command } select results

to DBSS server of tests
from the DBSS

database
for desired
time interval

[] calculate
F+T
insert result to find
the DBSS a solution

execute command
at the database
server

distribute
data

T

(insert data

send a message
from DBSS server
to client

Figure 8.2: Activity diagram for the DBSS.

a dual Pentium IV 2.0 GHz CPU and two 73 GB SCSI hard disk) the duration of the
test takes approximately 2 minutes. The frequency of the test depends on the schedule of
the DPC and on the number of applications running on the cluster. The decision about
the frequency of the test must be done by DBA of the system on the basis of the actual
situation with the cluster and the frequency of the data upload to the database.

The activity diagram for the DBSS is shown in Fig. 8.2 and the sequence diagram in
Fig. 8.3.

8.2.1 Tests and the DBSS database

The DBSS database consists of two tables (see Table 8.1) which collect information about
tests done at the system. The structure of the database is very simple and reflects an idea
of the whole system to manage the behavior of the DBMS with only one parameter — the
time of query execution. Also we have to create a table with simulated data on each node
of the cluster. This table consists of the only 4B INTEGER attribute and must have at
least 103 rows.

The part of the software responsible for the test done by the DBSS consists of the client

97

A

client

send command !
e >

A

| ocal

t est renote test

data insert

server

—~at the | ocal

execut e request

node

i nsert :resul t

| execute request at the renpte node »_,_ >
|
| < | | ocal test end
1 .
| insert result L
I ' "
|
|
renote test end
| test end 0 L
|
|
|
|

Figure 8.3: Sequence diagram for the DBSS.

and server sides. Both client and server are based on the use of Unix sockets and a TCP
protocol. Both use a Unix socket system library (C++ class responsible for the use of
sockets). The description of the library and an example of the client /server program can
be found in [Chan, 1997].

The server side uses a C++ class as well, which encapsulates all SQL requests to the

database.

The SQLStatement class

The SQLStatement class is used to create and execute a test SQL statement and insert
the response time to the DBSS database.

class SQLStatement {
private:

char
char
char
char
char
char

EXEC
char

* database_name;

* table_name;
from_statement;
where_statement;
inp_table_def;

*
*
*
* error_string;

SQL BEGIN DECLARE SECTION;

into_class[1000] ;

98

char header[1000];
char where_class[1000];
long longint;
short shortint;
struct {
long testid;
char descr[1000];
char db_name[10];
char table_name[10];
char into_class[100];
char sql_statement[1000];
} BDB_DESC;
struct {
long testid;
short node_at;
short node_from;
char time_begin[27];
char time_end[27];
double nrecords;
} BDB_RES;

char

sql_string[500];

EXEC SQL END DECLARE SECTION;

public:
SQLStatement (int test_id, int node_at, int node_from, char * descr,
char * db_name, char * tb_name, char *x fr_statement,
char * wh_statement,char * i_table_def);

int
int
int
int
int
int
int

open_database ();
close_database ();
time_begin ();
time_end ();
make_query() ;
insert_DESC() ;
insert_RES();

void WriteStatement();
void TraceBDBRecords();
char * error() {return error_string;};

};

The database and the table. The names of the database and table for the request are
stored in the char arrays database_name and table_name.

The definition of the statement. The statement is stored in three char arrays:
from_statement for the FROM-part of the request, where_statement for the circum-
stances of the request and inp_table_def for the description of the format of the re-
quested table.

99

Description of the SQL failure. In case of the failure of the request SQLCA array is
stored in the error_string char array.

The DBSS database structures. The structure of the DBSS database is encapsu-
lated in two structures: BDB_DESC and BDB_RES corresponding to two tables of the DBSS
database.

open_database function. This function realizes CONNECT TO :database_name SQL
statement. In the case of a failure the SQLCA array stores in error_string.

close_database function. This function realize CONNECT RESET SQL statement. In
case of failure the SQLCA array stores in error_string.

time_begin function. The time_begin inserts the current timestamp into the
BDB_RES.time_begin.

time_end function. The time_end inserts the current timestamp into the
BDB_RES.time_end.

make_query function. The make_query function executes the prepared SQL statement
and stores the number of records retrieved into BDB_RES.nrecords.

insert_DESC function. This function inserts the description of the executed query into
the DBSS database (BDB_DESC table).

insert_RES function. This function inserts the results of the query i into the DBSS
database (DBD_RES table), i.e. the number of records retrieved and two timestamps: the
first one for the start of the query and the last one for the end.

WriteStatement function. The function writes SQL statement which is executed to the
standard error output.

TraceBDBRecords function. This function writes the BDB_DESC and BDB_RES records to
the standard output.

error function. This function returns the error string error_string.

SQLStatement initializer. The SQLStatement is initialized with: the type of test
(int test_id), the number of the node at which the test will be executed (int node_at),
the number of the node from which the data will be retrieved (int node_from), the de-
scription of the test (char * descr), the database name (char * db_name), the table
name (char * tb_name), the from-class of the SQL statement (char * fr_statement),
the where-class of the SQL statement (char * wh_statement) and the description of the
format of the table which will be used in the test (char * i_table_def).

Command File

The command file defines the tests which will be executed. The description includes
the type of the statement ([Statement_Typel=1 — a command to execute the SQL
statement, [Statement_Typel=-1 — a command to the server to finish the work), the
targeted host for the test (the field [Host]), the node of the DBMS where the query
will be executed (the [Nodel field), the node where the data for the query stored (the
field [Node_From]), the database to connect ([Database]), the table which will address
the request ([Tablel), the SQL statement divided into the where-class and from-class

100

Table 8.1: The DBSS Database.

Attribute | Designation | Domain
BDB DESCR: Description of tests
Test ID TESTID INTEGER
Description DESCR VARCHAR(1000)
Database DB_NAME CHAR(10)
Table TABLE NAME CHAR(10)
INTO variables INTO_CLASS CHAR(100)
SQL statement SQL_STATEMENT | VARCHAR(1000)
BDB RES: Results of test
Test ID TESTID INTEGER
Test node number NODE AT SMALLINT
Control node number NODE_FROM SMALLINT
Timestamp at the beginning of the test TIME BEGIN TIMESTAMP
Timestamp at the end of the test TIME END TIMESTAMP
Number of records proceeded NRECORDS DOUBLE

([From_Class] and [Where_Class]) and how many times the request will be executed

([Ntimes]).

[Statement_Typel

1

[Host]

seth

[Node]

0

[Node_From]

0

[Database]

BDB

[Table]

TEST_MAIN

[From_Class]

select * from TEST_MAIN
[Where_Class]

where nw2>=0 and nw2< 10000
[Ntimes]

20

101

¢0T

= |' _—— = = === = = =

| DATA PLACEMENT|
| MODEL

| optimum control node
optimum data distribution

T_END TIMESTAMP

TESTS E
@
Node 0 ablespace
Test H Ej
Results Node | blespace
HHT Tables ace
Node N p
The DBSS
Database
| BDB_DESCR
BDB_RES GER
INTEGER
ID INTEGER NTEGER
N_RECORDS INTEGER HAR(1000)
T_BEGIN TIMESTAMP

"REF INTEGER

Figure 8.4: The principle scheme of the DBSS.

| size of
<:| input data
| X

matrlx

s

DATA
PLACEMENT|

hash
function

partitioning
key
values
Node 0
data N d
distribution = Node!

|\ - - - - - — — — — — 7 /1

8.2.2 The Optimum Solution for the Data Placement

The calculation of the F4T matrix is done straightforward on the basis of the test results
selected from the DBSS database for the desired time interval. The optimum control node
and data distribution are proposed on the basis of the F+T matrix.

8.3 The Data Placement

The data placement is done in two steps: the first one is the generation of the partitioning
key and the second one is the data load.

Unfortunately there is no HASH function for the DB2 linux version. Instead a spatial table
TABLE_HASH must be distributed over the nodes of the cluster. The TABLE_HASH includes
only one INTEGER column, which is used as a partitioning key for the distributed table.

The table with the partitioning key column distributed optimally is split using the db2split
utility of DB2 and loaded with the LOAD FROM FILE command at each node.

8.4 The Implementation of the DBSS

8.4.1 The Tested Cluster

To test the developed DBSS we have selected three nodes of the cluster installed at the
Astronomisches Rechen-Institut. We limited ourselves to the three nodes with the purpose
to simplify the presentation of the results of the test.

Each node is a Pentium 4 2.2 GHz with 512 MB RAM and two 73GB SCSI disks. The
OS was SuSE linux 7.2. DB2 UDB EEE v7.2 was installed at these nodes, the Gnu C++
compiler was used to compile the DBSS (gcc version 2.95.3).

8.4.2 The DBSS Database

The DBSS database was created on three node: two tables to store the results of the test
(BDB_RES and BDB_DESCR) and three tables with the simulated data (one table at each
node, each table has the only 4B indexed INTEGER attribute and was filled with 10°
rows). The requests from each node of the cluster were issued by the DBSS client each
half an hour to select 10° rows locally and remotely at each node.

Fig. 8.5 shows the results. The statistic for 10 days was used to make a redistribution of
the data. The F+T matrix was constructed on the basis of these 10 days statistic (see
Table 8.2).

We used the method described in the Section 7.2 to find the optimum control node (node
0 in our case) and the optimum data distribution. From the matrix F4+T the optimum
data placement is 98 % of the rows for the node 0, 1% of the rows for the node 1 and 1%
of the rows for the node 2.

103

Table 8.2: The F+T matrix with dispersion.

Node of the Node of the data placement
data retrieval 0 1 2
0 (5.474+0.91)107° | (8.18 £0.69) 1073 | (8.67 £0.83) 1073
1 (8.16 +0.90) 1073 | (8.124£0.92) 107 | (9.65 +0.95) 1073
2 (8.5740.70) 1073 | (9.814£0.94) 1073 | (5.49 £0.77) 10°

8.4.3 The Proof of the Results

The comparison was made between proposed data distribution, standard one (uniform)
and the single-node configuration (100 % of the data on one node).

The test tables were created at three nodes. The table TEST_MAIN was used to distribute
data corresponding to the proposed data distribution, the table TEST_BAD for the uniform
data distribution and the table TEST_LONE for the single-node data distribution.

create NODEGROUP NGO12 on nodes (0,1,2)@

create tablespace TS_BDB IN NODEGROUP NGO12
managed by database using (FILE ’/home/data/bdb_spl’ 500000)@

create tablespace IS_BDB IN NODEGROUP NGO12
managed by database using (FILE ’/home/data/bdb_ispl’ 500000)@

create table TEST_MAIN

(
NW1 INTEGER not null ,
NW2 INTEGER not null,
T1 INTEGER ,
T2 INTEGER s
cX SMALLINT ,
CY SMALLINT ,
WT SMALLINT ,
W VARCHAR (20),
primary key (NW2)

) IN TS_BDB INDEX IN IS_BDB

¢

create table TEST_BAD

(
NW1 INTEGER not null ,
NW2 INTEGER not null,
T1 INTEGER ,

104

T2 INTEGER s

CX SMALLINT s
CYy SMALLINT s
WT SMALLINT s
W VARCHAR (20),

primary key (NW2)
) IN TS_BDB INDEX IN IS_BDB
@

create table TEST_LONE
(

NW1 INTEGER not null ,
NW2 INTEGER not null,
T1 INTEGER ,
T2 INTEGER ,
CX SMALLINT ,
CY SMALLINT ,
WT SMALLINT ,
W VARCHAR (20),

primary key (NW2)
) IN TS_BDB INDEX IN IS_BDB
@

create index IN_MAIN on TEST_MAIN (NWi ASC)@
create index IN_BAD on TEST_BAD (NW1 ASC)@
create index IN_LONE on TEST_LONE (NW1 ASC)@

The number of records in the tables is 10° NW1 value runs from 0 to 10% — 1.

Request

Three SQL statements were executed consequently:

SELECT * FROM TEST_MAIN where I1>=0 and I1< I_MAX

SELECT * FROM TEST_BAD where I1>=0 and I1< I_MAX

SELECT * FROM TEST_LONE where I1>=0 and I1< I_MAX

where I MAX € [1,10,102 103,10% 10°,105. Measurements for each point were made
5 times.

105

o oio0zoz oz
b+ 98%/1%/1% E
3F .
2F .
) - i
£ | |
+ r]
a0 -]
S 1r]
57]
OF .
:-i“\\\\\\\\T\\\\\\\\;\\\\\\\\\J:h/\\\\\\\\\‘\\\\\\\\\‘\\\\\\\\\‘\:
O 1 2 3 4 5 9
log Ngoys

Figure 8.5: The response time for the uniform data distribution, the optimum data distribution
and the single-node distribution. Time is in sec. (See Table 8.3).

Results

The results of the test shows that even in the case of the homogeneous cluster we can
improve the performance of the data retrieval significantly. Indeed, if we use the cluster
which is overloaded with the work like the ARI cluster (the CPU usage at each node was
close to 100 % during the test as the cluster was loaded with the N-body simulation)
and does not care to distribute data properly we will have 20 times slower response time
compared to the use of the optimum data distribution (see Fig. 8.5 and Table 8.3). We
also can not reject the use of the distributed database as the use of the single node of the
cluster for the storage of the data (100 % at the single node) shows an increase of the
response time compared with the optimum data distribution for the distributed database.

8.5 Summary

The Database Statistic System (DBSS) was created and tested. The test was performed
on the cluster which was the prototype of the DIVA/AMEX cluster — 10 nodes shared-
nothing cluster with DB2 UDB EEE installed. During the test the cluster was loaded

106

Table 8.3: The response time for various data distributions.

The number of | The response time with dispersion, sec, for data distribution
records retrieved uniform 98% /1% /1% 100%/0% /0%
1 0.220 £0.012 0.218 +0.008 0.053 +0.018
10 0.240 4 0.006 0.210 £ 0.004 0.049 +0.011
102 0.533 4+ 0.006 0.217 4+ 0.007 0.051 +0.012
103 3.738 £ 0.019 0.355 4+ 0.104 0.135 4+ 0.026
104 34.106 +0.122 1.979 + 0.425 2.396 + 0.624
10° 335.654 £ 0.869 | 20.612 + 1.563 22.200 +1.101
106 3362.795 + 8.089 | 204.174 £ 3.346 216.087 £ 3.907

with the work which suites perfectly to the situation of the DIVA/AMEX cluster shared
with the non-database applications.

We proved, that the use of the proposed data distribution with the switching control
node (which is determined on the basis of the F+T matrix) improves the response time
significantly and makes it possible to use database to store and retrieve data for time-
critical applications.

107

108

Chapter 9

A Benchmark for an Astrometrical
Database

The construction of a special benchmark for the case of an astronomical database targets
a number of goals. First of all, we have to estimate the efficiency of the data placement
in case of the time-critical requests. Also, we have to estimate the overall performance
of the designed software and hardware systems. Finally, we need to compare the cost of
different hardware solutions.

The data retrieval in the DPC can be done by two ways: the retrieval of the data record-
by-record (each record by a separate transaction) and the retrieval of the whole data
chunk in a single transaction. The {ransaction in case of the data retrieval in the DPC
can vary from process to process and can contain the all retrieved data (in the case of
Pixel Data Processing, for example) or a single record (in case of Object Recognition). In
our case to measure the efficiency the tps (transactions per second) is not suitable, but we
will use the rps (records per second) measure. This is more suitable from the point of view
of the application (pipeline) and allows to estimate the time required by the application
to access data.

The construction of the benchmark based on [The Benchmark Handbook, 1993|.

9.1 The Application Environment

The benchmark supposes the use of the chained processes with access to the data. The
description of processes can be found in the Chapter 2. The most important feature
is the absence of update operations over database. Only Pixel Data Processing and
Preliminary Identification can be run in parallel, all other processes require an input from
the preceeding process in the processing chain.

The DBMS is fixed on the RDBMS. The example of the benchmark was realized for the
DB2 UDB EEE v7.2.

The processes can access data remotely or locally from one of the nodes of the cluster, so
both “remote” and “local” terminals must be implemented.

109

9.2 The Logical Design of the Database

The design of the database is based on the attributes and relations described in Chapter 5
and Chapter 6. We simplified the structure of the database to reduce the its size, whereas
the structure of the database remains.

9.2.1 Attributes, Relations and the General Structure of the Database

The structure of the database is based on 5 tables only (instead of 13 tables in Chapter 6):
the raw data table, the processed data table and the final catalog table and on the two
tables for relations: raw data — processed data table and processed data — final catalog
table.

The relations between attributes are of the type one-to-many types: a single raw data
row can correspond to a number of processed data rows and a number of processed data
rows correspond to a single final catalog row.

9.2.2 The Transaction Profile

It is clear from the processing chain of the mission that we need to optimize the select
statements mainly. The select statements will take records from tables loaded by the
previous process in the processing chain or from the incoming raw data.

The definitions of select and insert statements were made in Chapter 3. The combination
of the requests with the corresponding weights can be used as a basis for the estimation
of the overall performance of the database during the mission.

To simplify the description of the operations on the database (the full description for each
process can be found in Chapter 6) we propose a general scheme of data processing:

RI raw data insert,
RS1 raw data select by the current number of the scanning circle,
PI processed data insert,
PS1 processed data select by the number of the scanning circle,
PS2 processed data select by the time interval,

PS3 processed data select for the corresponding windows (using the raw data record -
processed data record relation),

FT final catalog data insert,
FS1 final catalog data select by the object identifier,
FS2 final catalog data select for the corresponding images,

FS3 final catalog data select for the corresponding windows.

110

Table 9.1: The benchmark database.

Attribute | Designation | Domain
RD: Raw Data
Window NW1 INTEGER
Identifier NW2 INTEGER
Time T1 INTEGER
Count T2 INTEGER
CCD chip X-coordinate CcX SMALLINT
CCD chip Y-coordinate CY SMALLINT
Window type WT SMALLINT
Window W VARCHAR(2184)
PD: Processed Data
Image NI1 INTEGER
Identifier NI2 INTEGER
Time T1 INTEGER
Count T2 INTEGER
Coordinate Parameter 1 CP1 INTEGER
Coordinate Parameter 2 CP2 INTEGER
Coordinate 1 CO1 DOUBLE
Error of coordinate 1 ECO1 DOUBLE
Coordinate 2 CcO2 DOUBLE
Error of coordinate 2 ECO2 DOUBLE
FD: Final catalog
Object NB1 INTEGER
Identifier NB2 INTEGER
Position, « ALF DOUBLE
Position, o DEL DOUBLE
Position error, o, EAL DOUBLE
Position error, oy EDE DOUBLE
Proper motion, p, MUA INTEGER
Proper motion, js MUD INTEGER
Proper motion error, o, EMA INTEGER
Proper motion error, o, EMD INTEGER
Parallax PAR INTEGER
Parallax error EPA INTEGER
RDPD: Raw Data - Processed Data Links
Window NW1 INTEGER
Identifier NW2 INTEGER
Image NI1 INTEGER
Identifier NI2 INTEGER
PDFD: Processed Data - Final Catalog Links
Image NI1 INTEGER
Identifier NI2 INTEGER
Object NB1 INTEGER
Identifier NB2 INTEGER

111

Finally we will have following statements to execute for the benchmark:

RI: Raw data insert.
INSERT INTO RD VALUES(NW1, NW2, T1, T2, CX, CY, WT, W)

RS1: Raw data select. Sometimes users need data ordered by a relation between child
and parent windows. In the example below the program receives information about the
parent window for each object window as well.

SELECT NW1, NW2, T1, T2, CX, CY, WT, W FROM RD
WHERE NW1 >= § AND NW1 < i+ ORDER BY NW1, NW2

PI: Processed data insert. We will have a number of statements which will insert
processed data from the pipeline and other applications into the database.

INSERT INTO PD VALUES(NI1,NI2,T1,T2,CP1,CP2,CO1,ECO1,CO2,ECO?2)

Select statement to the tables of the processed data can be divided by type of requested
attribute: image identifier, time count or object identifier.

PS1: Processed data select by the number of the scanning circle.

SELECT NI1,NI2, T1, T2, CP1,CP2,CO1,ECO1,C02,ECO2 FROM PD
WHERE NI1 >= i AND NI1 < §+8 ORDER BY NI1, NI2

PS2: Processed data select by the time interval.

SELECT NI1,NI2, T1, T2, CP1,CP2,CO1,ECO1,CO2,ECO2 FROM PD
WHERE T1 >= T'ljegin AND T1 < T1., ORDER BY T1, T2;

PS3: Processed data select for the corresponding windows.

SELECT Y.NW1, Y.NW2, X.NI1, X.NI2, X.T1, X.T2, X.CP1, X.CP2, X.COL,
X.ECO1, X.CO2, X.ECO2
FROM PD X, RDPD Y
WHERE Y.NW1>= NWl,, AND Y.NW1 < NW1,,; AND X.NII=Y.NI1 AND
X.NI2=Y.NI2
ORDER BY Y.NWI, Y.NW2;

FI: Final catalog data insert. The insert statement for the final data.

INSERT INTO FDFC VALUES(PRG, NB1, NB2, ALF, DEL, EAL, EDE, MUA, MUD,
EMA, EMD, PAR, EPA, FB1, EFB1, FB2, EFB2)

FS1: Final catalog data select by the object identifier.

112

SELECT NBI1, NB2, ALF, DEL, EAL, EDE, MUA, MUD, EMA, EMD, PAR, EPA
FROM FC
WHERE NB1>=NB1, AND NB1<NB1, AND NB2>=NB2, AND NB2< N B2,
ORDER BY NB1, NB2

FS2: Final catalog data select by the image identifier.

SELECT X.NB1, X.NB2, X.ALF, X.DEL, X.EAL, X.EDE, X.MUA, X.MUD, X.EMA,
X.EMD, X.PAR, X.EPA, Y.NI1, Y.NI2
FROM FC X, PDFC Y
WHERE X.NB1=Y.NB1 AND X.NB2=Y.NB2 AND Y.NI1>=NT1, AND Y.NI1< N1,
AND Y.NI2>—=NT2, AND Y.NI2< N2,
ORDER BY X.NI1, X.NI2

FS3: Final catalog data select by the window identifier.

SELECT X.NB1, X.NB2, X.ALF, X.DEL, X.EAL, X.EDE, X.MUA, X.MUD, X.EMA,
X.EMD, X.PAR, X.EPA, Y.NI1, Y.NI2, ZNW1, Z.NW2
FROM FC X, PDFC Y, RDPD Z
WHERE X.NB1=Y.NB1 AND X.NB2=Y.NB2 AND Y.NI1=7.NI1 AND Y.NI2=Z.NI2
AND AND ZNW1>=NW1; AND ZNW1<NW1, AND ZNW2>=NW2; AND
Z.NW2< NW2,
ORDER BY Z.NW1, ZNW2

The statements described above have different importance in the calculation of the bench-
mark. RS1 and PS1 are time-critical and the most important measures in the benchmark.

Each select statement must be realized as a static cursor statement running over all
selected rows. The begin of the execution of the statement starts with the declaration of
the cursor end ends with the close of the cursor.

9.3 Scaling Rules

The number of rows in each table are governed by the daily input into the raw data table
and the multiplicity factor for processed and final data tables. Usually we will have only
10% of cases with two or more images in a normal window, as a result, the number of
rows in the processed data table must be scaled as Npp; = 1.1 Ngp, and this value has
to be used for the Processed Data Insert. The Processed Data Select must deal with
the whole volume of the processed data, so the number of rows in the processed data
table will be Npps = 100 T} ission Nro, Where Thission 18 the mission duration in years,
Npc is the number of objects in the final catalog and we supposed that each star will be
observed at least 50 times for half a year (as it would be in the case of DIVA/AMEX,
see [TD0284-01, 2002]). The number of objects in the final catalog is calculated on the
basis of the characteristics of satellite’s instruments (see [TD0201-05, 2002]| for the case
of DIVA/AMEX and [de Boer et al., 2000] for the case of GAIA). Table 9.2 reviews the
scaling rules for the benchmark database.

113

Table 9.2: The size of raw, processed and final data tables, in number of records (based
on [TD0201-05, 2002|for DIVA/AMEX, [de Boer et al., 2000] for GAIA)

DIVA/AMEX GAIA
Raw Data Table 1.510° per scan 3 10® per scan
Processed Data Table | 107 per half year | 1.510'° per half year
Final Catalog Table 4107 10°

9.4 The Atomicity, Consistency, Isolation and Durabil-
ity Properties

The Atomicity requirements for the transaction can be satisfied, because there are no
update operations. Insert operations must be done before any other operations over the
database will be initiated and the only operation with the database is a select.

The only possible failure in the atomicity can occur in the case of the insert operation.
In this case the situation is classified as a software failure, the insert must be canceled,
the database must be reset to the pre-insert state and insert operation must be repeated.
This situation is not typical for the database and will not be considered in the benchmark.

The Consistency of the database can be broken only during the insert of the data or in
the case of a hardware/software failure (the latter will not be considered). The insert
of the data must add a new portion to the database but not modify the data already
loaded. This condition can be checked by the existence of unique keys for each table of
the data : (NW1,NW2) for raw data, (NI1,NI2) for processed data, (NB1,NB2) for the
final catalog. The consistency of the tables of relations can be estimated based on the
relationships between entities themselves: in case of RDPD the unique (NW1,NW2) will
correspond to one or many (NI1,NI2) and the unique (NI1,NI2) will correspond to the
single (NW1,NW2); in the case of PDFD the unique (NI1,NI2) will correspond to the
only (NB1,NB2) and the unique (NB1,NB2) will correspond to one or many (NI1,N12).

The Isolation of the tables will be set in the case of the data load. Any other operations
over the database will not influence the isolation level of any table in the database. The
data processing chain does not require simultaneous data access for the select and insert
operations.

The Durability of the database is based on the stable content of tables. The time required
for the restoration of the database depends on the type of the failure that occurs in the
system. Basically the restoration is based on the archived copy of the inserted data
portion. Possible failures and the way to restore a database was described in Chapter 6.

9.5 Partitioning

The only type of the partitioning which is allowed during the test is a horizontal one. The
records can be distributed through nodes uniformly or in accordance with the method

114

RD PD FD
- NI 1. [NTEGER _NB1L: INTEGER
mi I%E%E NI 2: | NTEGER EE% ID(I\JIlTJEESER
T1: | NTEGER T1: TNTEGER ALF: DOUBLE
T2: | NTEGER T2: | NTEGER EAL. DOUBLE
CX: SMALLI NT CPL: | NTEGER EDE. DOUBLE
CY: SMALLINT CP2: | NTEGER A [NTEGER
WI: SMALLI NT COL: | NTECER MO | NTEGER
W VARCHAR(4368) ECOL: | NTEGER ;
C2: | NTEGER EMA: | NTEGER
1 ECO2: | NTEGER EMD: | NTEGER
PAR | NTEGER
1 1 EPA: | NTEGER
NV, V2 N1, NI 2)
I . |) N1, NI 2 NEL, NB2
..n
D b
N 1. TNTEGER PDFD
NI 2: | NTEGER NIL1: | NTEGER
NWL: | NTEGER NI 2: | NTEGER
NV2: | NTEGER NBL: | NTEGER
NB2: | NTEGER

Figure 9.1: The UML scheme of the Benchmark Database.

described in Chapter 7. This method can be applied to the partitioning keys of the
raw data table (NW1,NW2), whereas the other two keys are generated on the basis of
coherency of the partitioning keys of three tables. As a result we can have a slight
disbalance (20% of raw data records can correspond to 2 records of processed data) in the
partitioning of the processed data.

9.6 The Generation of the Input Data

The generation of the input data must be done in to steps:

1. The generation of the RD and FD tables with unique identifiers for (NW1,NW2) and
(NB1,NB2). The generation of the RD.W attribute must be done with all ASCII
character set (each character in the VARCHAR string has an integer value in the
range from 0 to 255 and must be randomly selected).

2. The generation of the PD table with unique identifiers (NI1,NI2) and parallel gen-
eration of two tables RDPD and PDFD. For the table RDPD in 20 % of records
(NW1,NW2) must correspond to two different (NI1,NI2). For the table PDFD each
(NB1,NB2) must correspond to 100 (NI1,NI2).

The range and the way of the generation of values is described in the Table 9.3.

115

Table 9.3: Benchmark input data generation.

Attribute ‘ Designation ‘ Distribution
RD: Raw Data
Window NW1 0
Identifier NW2 [OaNRE’CORDS — 1]
Time T1 random, [0,2000000]
Count T2 random, [0,2000000]
CCD chip X-coordinate CX random, [0,2047]
CCD chip Y-coordinate CY random, [0,2047]
Window type WT random, [0,13]
Window W see text
PD: Processed Data
Image NI1 0
Identifier NI2 [0,12 NRECORDS’ — 1]
Time T1 random, [0,2000000]
Count T2 random, [0,2000000]
Coordinate Parameter 1 CP1 random, [0,10]
Coordinate Parameter 2 CP2 random, [0,10]
Coordinate 1 CO1 random, [0.0,360.0)
Error of coordinate 1 ECO1 random, (0,0.001]
Coordinate 2 CO2 random, [0.0,180.0)
Error of coordinate 2 ECO2 random, (0,0.001]
FD: Final catalog
Object NB1 0
Identifier NB2 [O,NOBJECTS — 1]
Position, a ALF random, [0.0,360.0)
Position, ¢ DEL random, [-180.0,180.0]
Position error, o, EAL random, (0,0.001]
Position error, o EDE random, (0,0.001]
Proper motion, j, MUA random, [-1000.0,1000.0]
Proper motion, u; MUD random, [-1000.0,1000.0]
Proper motion error, o, EMA random, [0.0, 10.0]
Proper motion error, o, EMD random, [0.0, 10.0]
Parallax PAR random, [-1.0,1.0]
Parallax error EPA random, [0.0, 0.001]

9.7 Response Time

116

Measurements of control times must be provided for two cases: a client mode (measure-
ment of the control time on the host which executed an application) and a server mode
(the time required for the database server to retrieve a data chunk at the request of an
application locally).

The measured control times for each select statement can be treated individually or as

a sum with some weight coefficients as an estimation of the overall performance of the
database, the software and the hardware.

9.7.1 Specification of Control Times

The response time is specified as RT = T, — T}, where 77 is the begin of the execution
of the SQL statement inside the application (declaration of the cursor) and T3 is the
end of the execution (close cursor). The data retrieved by the application in case of local
response time were not displayed or written to file or device but stored in variables defined
by the application.

9.7.2 Computation of the Response Time

The computation of the response time must be done for each statement (like PS1) on
the basis of 100 consequent executions of the statement. The dispersion of the measured
response time must be computed:

tpsi[sec] =<t > +oy.

9.7.3 Computation of rps

The rps value must be calculated on the basis of the response time and the number of
records retrieved. Additionally for the RD statement RS1 the dependence of the rps on
the number of records must be tested. RS1 must be executed with 1, 10, 10, 103, 10,
10%, 10° records, at least 5 measurements must be provided for every point. The result
has to be plotted with axes log Nrpcorps — log rps with errors for rps.

9.8 System Under Test Definition

9.8.1 Models of the Target System

The Target System can be a single server or a cluster. In the case of a single PC the local
and remote terminals are the same. In the case of a cluster the remote terminal must be
executed at a server outside of the cluster and the local terminal at one of the nodes of
the cluster.

9.8.2 Hardware Definition
The hardware used in the test must be described as following:

1. Server/cluster nodes: CPU and memory,

2. Data storage media (usually hard disks) attached to nodes of the server: IDE/SCSI,
capacity, model.

117

3. Network hardware (Ethernet cards, Myrinet cards) : transfer rate.

9.8.3 Software Definition
The description of the software components used in the test:

1. DBMS: type of the DBMS, version.

2. Programming language for the realization of the benchmark: language, manufacture,
version.

3. Communication interface for the terminal-DBMS server and between database servers
of the DBMS in the case of a distributed database.

9.8.4 DBMS configuration

The configuration of the DBMS must be described in the following way:

1. The server configuration: number of servers on each node.

2. The tablespaces configuration.

9.9 Pricing

The cost for the tested system must be detached on the cost of the hardware component
and software components of the system. In addition the cost of the storage media can be
supplied if available.

The cost/rps measure must be provided for the PS1 statement.

9.10 Implementation and Results

The implementation of the benchmark is described below.

9.10.1 System Under Test

The targeted system is the single node.

Hardware Definition: Pentium IV 2.0 GHz with 512 MB RAM, SCSI 73GB hard disk.
Software Definition: DB2 UDB EEE v7.2, C++ (g++ 3.2.2), OS: SuSE linux v8.0.
DBMS Configuration: single-node DB2 UDB EEE v7.2.

118

A 5§ [T T T T

log rps

3.91]

3.0 7

0 1 2 3 4 5 6
log Ngows

Figure 9.2: Benchmark. The records per seconds measure for RS1 statement. Errors are shown.
Time is in sec. (See Table 9.5).

9.10.2 Benchmark Database

The benchmark database was created with the use of the following script:

create nodegroup NGOO on nodes (0) @

create tablespace TOO_BDB IN NODEGROUP NGOO
managed by database using (FILE ’/work/data2/t00.t1’ 512000)@

create tablespace I00_BDB IN NODEGROUP NGOO
managed by database using (FILE ’/work/data2/t00.i1’ 512000)@

create table RD

(
NW1 INTEGER,
Nw2 INTEGER,
T1 INTEGER,
T2 INTEGER,

119

CX SMALLINT,

CY SMALLINT,
WT SMALLINT,
W VARCHAR (2000)

) IN TOO_BDB INDEX IN IOQO_BDB

Q

create index IDX_NW1 on RD (NW1 ASC)@
create index IDX_NW2 on RD (NW2 ASC)@

create table PD
(

NI1 INTEGER,
NI2 INTEGER,
T1 INTEGER,
T2 INTEGER,
CP1 DOUBLE,
CP2 DOUBLE,
Cc0o1 DOUBLE,
ECO1 DOUBLE,
Cc02 DOUBLE,
ECO02 DOUBLE

) IN TOO_BDB INDEX IN IOO_BDB

Q@

create index IDX_NI1 on PD (NI1 ASC)@
create index IDX_NI2 on PD (NI2 ASC)@

create table FD
(

NB1 INTEGER,
NB2 INTEGER,
ALF DOUBLE,
DEL DOUBLE,
EAL DOUBLE,
EDE DOUBLE,
MUA DOUBLE,
MUD DOUBLE,
EMA DOUBLE,
EMD DOUBLE,
PAR DOUBLE,
EPA DOUBLE

) IN TOO_BDB INDEX IN IOO_BDB

@

create index IDX_NB1 on FD (NB1 ASC)@
create index IDX_NB2 on FD (NB2 ASC)@

create table RDPD

120

NW1 INTEGER,

NWw2 INTEGER,
NI1 INTEGER,
NI2 INTEGER
) IN TOO_BDB INDEX IN IOO0_BDB

Q@

create index IDX_RDPD_NW1 on RDPD (NW1 ASC)@
create index IDX_RDPD_NW2 on RDPD (NW2 ASC)@
create index IDX_RDPD_NI1 on RDPD (NI1 ASC)@
create index IDX_RDPD_NI2 on RDPD (NI2 ASC)@

create table PDFD
(

NI1 INTEGER,
NI2 INTEGER,
NB1 INTEGER,
NB2 INTEGER
) IN TOO_BDB INDEX IN IOO_BDB

Q

create index IDX_PDFD_NI1 on PDFD (NI1 ASC)@
create index IDX_PDFD_NI2 on PDFD (NI2 ASC)@
create index IDX_PDFD_NB1 on PDFD (NB1 ASC)@
create index IDX_PDFD_NB2 on PDFD (NB2 ASC)@

The number of records for tables: RD 10°, PD 10%, FD 10*, RDPD 1.210%, PDFD 5 10°.
The rules for the data generation are described in the Chapter 9.

9.10.3 Control Times

The control times for each benchmark statement are listed in Table 9.4. The dependence
of the response time on the number of rows is shown in Table 9.5 and Fig. 9.2.

9.10.4 Pericing

The pricing for the tested single-node system is 2000 USD/ 8000 records per second.

9.11 Summary

The benchmark for an astrometric database was developed to provide a basis for the
comparison between different hardware and software solutions for the realization of the
astrometrical data processing.

121

Table 9.4: The response time and rps for benchmark statements

The statement

RS1
PS1
PS2
PS3
FS1
FS2
FS3

The response time per record | rps, rows per second
with dispersion, sec

(120 £0.32) 10 * 8983 £ 2048
(2.93 +0.65)107° 35594 + 6690
(2.54 4+0.30) 107 39850 + 4270
(1.62 + 0.26) 104 6303 + 908
(4.39 4+ 0.60) 107° 23143 + 2587
(1.26 £0.13) 1073 804 + 78
(1.85+0.12) 1073 544 + 35

Table 9.5: The response time for RS1.

The number of records | The response time with dispersion, sec

1
10
102
103
10
10°
106

(86 +3.0)102
(9.95 + 5.64) 104
(6.35 = 10.30) 103
(5.08 & 2.71) 102

1.19+0.33
13.10 £ 2.43
120.70 = 10.43

122

Chapter 10

Conclusions.

The development of the Data Processing Center for the astrometric space mission is a
critical task. The success or failure of the whole mission depends on the work of the
time-critical applications in the DPC. Also, the DPC must handle a huge data volume
(up to 1 PB in the case of GAIA).

The DPC has to receive raw data from the SOC, to store raw and processed data and to
provide an access to these data for users of the DPC (most important for the pipeline).
The last requirement supposes that we have to supply a very fast access of the pipeline
and applications to the database. The presented study was dedicated to the development
of the concept of the DPC and, at the same time, to the decrease of the response time for
applications running in the DPC.

As a result, the target of the development of the DPC was the choice of components and
solutions which are able to reduce the response time.

10.1 Summary of Results and Contributions

The conceptual design of the DPC sets a model for the work with the data and a model
for the development of applications. To reduce the response time we selected a simple
client /server architecture (with the direct connection of the application to the database)
and a multi-row data retrieval.

The logical design of the DPC includes mainly the logical design of the database. An
improvement of the logical design and a migration from the logical scheme to the physical
scheme of the database is made on the basis of the estimation of the time cost function.
The physical design of the DPC reviews possibilities for the data storage, data processing
and data mining in the DPC. The solution is based on the shared-nothing linux cluster
with the relational RDBMS.

The estimation of the TCF and the use of the TCF allow to solve a number of problems
like following:

e a choice of the optimum number of nodes,

e an initial data distribution for the data,

123

e a redistribution of the data for the optimization of the response time.

The problem of the minimization of the response time in the case of the shared-nothing
cluster is a problem of the data placement. We developed a practical scheme for the data
distribution. This scheme was realized in the Database Statistic System (DBSS), which
monitors the state of the cluster and proposes an optimum data distribution. The test of
the DBSS was made in Astronomisches Rechen-Institut with the use of the 10-node linux
cluster. The test shows that even in the case of the homogeneous cluster the data must
be properly distributed over the nodes of the cluster.

Finally the benchmark for the astronomical databases was proposed. The benchmark uses
the most general processing chain for the astronomical data and estimates the response
time from the typical requests in the case of the astronomical data processing.

10.2 Future Work

The future work can target following:

e a practical realization of the DPC for one of the astronomical /astrometrical mission,

e an adaptation of the solution based on the linear form of the TCF on the case of
non-linear TCF (a number of retrieved rows N,,,s < 10?).

Indeed, in this work we used an exponential form for the description of the TCF:
logt(M) = (Ao + Ay exp(—Ay log M)) + log M,

where ¢(N) is a response time, M is a number of retrieved rows. We supposed in this
study that Ay > A; exp(—Ay log M). In this case t(M) = e M, where Ay = const.
Nevertheless it is possible to solve the matrix equation, which was used for the description
of the cluster, even in the case of non-linear TCF. The solution will become iterative and
we will require a careful analysis of the fitting of the problem.

10.3 Possible Use

The concept of the DPC developed in the presented study can be applied not only to
the astrometric space mission. The data processing described in the study supposes the
three levels of data (the raw data — the processed data — the final catalog). This scheme
suits for any scanning mission which uses the CCD detector at the focal plane of the
telescope. Some of such missions are already lunched (SDSS, for example) and a number
of them will start in the nearest future (GAIA, the Large Synoptic Survey Telescope —
http://www.lsst.org and others). The data processing in the astronomy becomes the
very important task.

124

Bibliography

|Arregoces, Portolani, 2003] Arregoces M., Portolani M., Data Center Fundamentals,
Cisco Press, 2003

[Arsenev & Yakovlev, 2001] Arsen’ev B.P., Yakovlev S.A., Integration of the Distributed
Databases, Lan’, S.-Petersburg, 2001 (in russian)

|[Barndorff-Nielsen & Cox, 1997| Barndorff-Nielsen O.E., Cox D.R., Asymptotic Tech-
niques for the Use in Statistics, Chapmann and Hall, London, 1989

[TD0284-01, 2002| Bastian U., Biermann H., Hirte S., IDAP: Interface Document for
DIVA Astrometry and Pipeline, Version 1.0, TD0284-01

[TD0201-05, 2002| Bastian U., Hirte S., DIVA: Conversations and Notations for the Basic
Model of the Instrument and of the Elementary Measurements, Version 1.1, TD0201-
05, 2002,

[TD0251-03, 2001| Bastian U., Schilbach E., Biermann H., A Model Observation Strategy
for DIVA, Version 1.2, TD0251-03

|The Benchmark Handbook, 1993| The Benchmark Handbook for Databases and Trans-
action Processing Systems, Second Edition, ed. Jim Gray, Morgan Kaufmann, San
Francisco, 1993

|[de Boer et al., 2000] de Boer K.S., Gilmore G., Hog E., Lattanzi M.G., Lindegren L, Luri
X., Mignard F., de Zeeuw P.T., Perryman M.A.C., Pace O., GAIA: Composition,
Formation and Evolution of the Galaxy. Report on the Concept and Technology
Study, ESA-SCI(2000)4, 2000

[Booch G. et al., 1999] Booch G., Rumbaugh J., Jacobson I., The Unified Modeling Lan-
guage User Guide, Addison Wesley Longman, 1999

[de Bruijne J., 2003| de Bruijne J., GAIA: Scanning Law, 2003
http://www.rssd.esa.int/SA/GAIA/docs/info_sheets/IN_scanning_law.pdf

[Chan, 1997] Chan Terrence, 1997, Unix System Programming Using C++, Prentice Hall
PTR

[Chavez, 2000] Chavez J., Multi-tier Internet Architecture with Java, UML and OOA &
D, Astronomical Data Analysis Software and Systems IX, eds. Manset N., Veillet C.,
Crabtree D., ASP Conf. Ser., Vol. 216, 75

125

[Cook et al., 1999] Cook J., Janacek C., Snow D., The DB2 Cluster Certification Guide,
Prentice Hall PTR, New Jersey, 1999

[Cybersource WP, 2002] Linux vs. Windows: Total Cost of Ownership Comparison,
Cybersource, 2002
(http://wuw.cyber.com.au/cyber/about/linux_vs_windows_pricing_comparison.pdf)

[DI-AED-RS-0001] DIVA Mission & System Requirements Specification, Ref.Num. DI-
AED-RS-0001, Astrium, 2001

[Dluznevskaya O., 2002] Dluzhnevskaya O., World Centres for Astronomical Data, Auto-
mated Data Analysis in Astronomy, ed.: Gupta R., Singh H.P., Bailer-Jones C.A.L.,
New Delhi, Narosa Pub. House ,31, 2002

[Dobrovidov & Koshkin, 1997] Dobrovidov A.V., Koshkin G.M., Nonparametric Signal
estimation, Physical and Mathematical Publishing Company of Russian Academy of
Science, Moscow, 1997

|Egret et al., 2000] Egret D., Hanisch R.J., Murtagh F., Search and discovery tools for
astronomical on-line resources and services, Astron. Astrophys. Suppl. Ser., 143, 137,
2000

|[Egret D., 2001] Egret D., Astronomical Data Centers, Information Systems, and Elec-
tronic Libraries, Virtual Observatories of the Future, ASP Conference Proceedings,
Vol. 225, ed.: Brunner R.J., Djorgovski G.S., Szalay A.S., San Francisco, 108, 2001

|[EF5/FR/PC/038.02] GAIA System Level Technical Reassessment Study. Final Report,
Ref.Num. EF5/FR/PC/038.02, Astrium, 2002

|Garofalakis & Ioannidis, 1996 Garofalakis Minos N., Ioannidis Yannis E., Multi-
dimensional resource sheduling for parallel queries, In Proc. of the 1996 ACM SIG-
MOD Int. Conf. on Management of Data, Montreal, Canada, 365, 1996

[Garofalakis & Toannidis, 1997] Garofalakis Minos N., Ioannidis Yannis E., Parallel Query
Scheduling and Optimization with Time- and Space-Shared Resources The VLDB
Journal, 296, 1997

|Garey & Johnson, 2003] Garey Michael R., Johnson David S., Computers and In-
tractability. A Guide to the Theory of NP-Completeness, F.H. Freeman and Com-
pany, New York, 2003

[Galeev, 2002] Galeev E.M., Optimization: Theory, Examples, Tasks, URSS, Moscow,
2002 (in russian)

|Genova et al., 2000] Genova F., Egret D., Bienaymé O., Bonnarel F., Dubois P., Fernique
P., Jasniewicz G., Lesteven S., Monier R., Ochsenbein F., Wenger M., The CDS hub.
Pn-line services and links at the Centre de Données astronomiques de Strasbourg,
Astron. Astrophys. Suppl. Ser., 143, 1, 2000

126

[Grant et al., 2000] Grant Carolyn S., Accomazzi Alberto, Eichhorn Guenther, Kurtz
Michael J., Murray Stephen S., The NASA Astrophysics Data System: Data hold-
ings, Astron. Astrophys. Suppl. Ser., 143, 111, 2000

[Grauer R. et al., 2003] Graue R., Kampf D., Roumlfer S., Bastian U., Seifert W., DIVA
optical telescope, Future EUV/UV and Visible Space Astrophysics Missions and
Instrumentation, ed.: Blades J.S., Siegmund O. H. W., Proceedings of the SPIE,
Vol. 4854, 9, 2003.

[MySQL BWP, 2003] A Guide to Lower Database TCO, MySQL Business White Paper,
December 23, 2003

|[Jordan, 1998] Jordan D., C++ Object Databases. Programming with ODMG Standard,
Addison-Wesley, Reading, 1998

[Jordi C., 2003] Jordi C, GAIA: Astro Focal Plane, 2003
http://www.rssd.esa.int/SA/GAIA/docs/info_sheets/IN_astro_focal_plane.pdf

|[Kharchenko et al., 2004] Kharchenko N.V, Piskunov, AE, Scholz R.-
D., Huge hight presicion stellar catalogues : Present Day and the
Future, presented at the Russian Astronomical Conference - 2004,
http://www.inasan.ru/rus/rvo/vak2004/nvk_rus.ppt

[Kharchenko et al., 1997] Kharchenko N., Rybka S., Yatsenko A., Schilbach E., Predicted
star counts and mean parallaxes down to the 23td magnitude, Astron.Nachr 318, 163,
1997

|[Kovalevsky, 1991| Kovalevsky J., 1991, Ap&SS, 177, 457, 1991
[Kovalevsky, 1995] Kovalevsky J., 1995, Modern Astrometry, Springer

|Kulba et al., 1999] Kul’ba V.V., Kovalevsky S.S., Kosjashenko S.A., Sirotjuk V.O., The-
oretical Basis for the Design of the Optimum Structures of the Distributed Databases,
SINTEG, Moscow, 1999 (in russian)

|Lasker et al., 1990| Lasker B.M., Sturch C.R., McLean B.J., Russell J.L., Jenkner H.,
Shara M.M., The Guide Star Catalog. I - Astronomical foundations and image pro-
cessing, Astron. Journ., 99, 20191, 1990

[van Leeuwen, 1997| van Leeuwen Floor, The HIPPARCOS Mission, Space Sci. Review,
81, 201, 1997

[Mignard & Kovalevsky, 2002] Mignard F., Kovalevsky J., Space astrometry missions:
principles and objectives, Astrometry from ground and from space, ed.: Capitaine

M., Stavinschi M., Bucharest, 169, 2003

[Naiburg & Maksimchuk, 2002] Naiburg E.J., Maksimchuk R.A., UML for Database De-
sign, Addison Wesley Longman, 2002

127

[O’Flaherty et al., 1997] O’Flaherty K.S., Perryman M.A.C., Heger D., McDonald
A.J.C., Bouffard M., Strim B. and the Hipparcos Sceince Team, The Hipparcos
and Tycho Catalogues, Vol.2: The Hipparcos Satellite Operations, SP-1200, ESA
Publications Division, ¢/o ESTEC, Noordwijk, Netherlands, 1997

|[Papadimitriou & Steiglitz, 1998| Papadimitriou Christos H., Steiglitz Kenneth, Combi-
natorial Optimization: Algorithms and Complexity, Dover, New York, 1998

[Perry, 2002] Perry R., Maximazing the Business Value of Enterprise Database Applica-
tions on Linux Platform, IDC White Paper, IDC, 2002 (http://www.idc.com)

[Scheithauer S. et al., 2001] Scheithauer S., Theil S., Wiegand M., Bastian U., DIVA
post-mission attitude reconstruction: the Great-Circle Reduction, Astronomische
Nachrichten, vol. 322, 197, 2001

[Snevely, 2002] Snevely R., Enterprise Data Center Design and Methodology, Prentice
Hall PTR, 2002

[Sukharev, 1989] Sukharev Aleksei G., Minimax Algorithms in Problems of Numerical
Analysis, Nauka, Moscow, 1989 (in russian)

[Thakar et al., 2003] Thakar A.R., Szalay A.S., Kunszt P.Z., Gray J., Migrating A Mul-
titerabyte Archive from Object to Relational Databases, Computing in Science and
Engineering (CISE) 2003 , vol.5, no.5, Sep/Oct 2003, p.16

|Tomov et al., 2004] Tomov N., Dempster E., Williams M. H., Burger A., Taylor H.,
King P., Broughton P., Analytical Response Time Estimation in Parallel Relational
Database Systems, Parallel Computing 30, ed. by G.R. Joubert, Elsevier Science BV
(North-Holland), 249, 2004

[Willemsen P. G. et al., 2003] Willemsen P. G.,Bailer-Jones C. A. L., Kaempf T. A., de
Boer K. S., Automated determination of stellar parameters from simulated dispersed
images for DIVA, Astron. Astrophys. 401, 1203, 2003

|Zilio, 1998| Zilio Daniel C., Physical Database Design Decision Algorithms and Con-
current Reorganization for Parallel Database Systems, PhD, University of Toronto,
1998

|Zilio & Jhingran, 1994] Zilio Daniel C., Jhingran Anant, Partitioning Key Selection for
a Shared-Nothing Parallel Database System, IBM Research Report RC 1980(87739),
1994

128

Appendix A

The choice of the programming
environment. C/C+-+ and Java

It is important to optimally select the programming environment for the project. In fact
we have to choice between C/C++ and Java languages to code the core applications for
the Data Center. The main criteria for the selection will be the time required for the
application coded in one of language to retrieve a number of records from the database.

A.1 Test PC

Hardware: Pentium 4 2,4 GHz PC with 512 MB RAM and 40 GB IDE disk.

Software: OS : Mandrake linux 9.1 with 2.4.21-0.13mdk core. DBMS : DB2 UDB EEE
v7.2 in one-node mode. C/C++ compiler : gce version 3.2.2 (Mandrake Linux 9.1 3.2.2-
3mdk). Java compiler : gij 3.2.2.

A.2 Test database

The test database simulates the raw data table and contains the only table placed in a
separate SMS tablespace with indexes in a separate SMS tablespace as well.

create tablespace TS_BDB managed by database
using (FILE ’/home/data/bdb_spl’ 100000)@

create tablespace IS_BDB managed by database
using (FILE ’/home/data/bdb_ispl’ 100000)@

create table TEST_MAIN

(
NW1 INTEGER not null ,
NWw2 INTEGER not null,

129

T1 INTEGER

T2 INTEGER ,
CX SMALLINT ,
CY SMALLINT ,
WT SMALLINT ,
W VARCHAR (2000) ,

primary key (NW2)
) IN TS_BDB INDEX IN IS_BDB
Q

The number of records in the table is 107 simulated such that the value of NW2 runs from
0 to 107 — 1.

A.3 Request

The SQL statement
SELECT * FROM TEST_MAIN where nw2>=0 and nw2 < i

was used to select data into the cursor and fetch them into application’s variables (i is the
number of records retrieved). This statement was realized for both Java and ESQL/C.
The statement was executed 20 times to measure the dispersion of the response time.

A.4 Results

Table A.1: ESQL/C and Java.

Number of tESQL/C’ O'tESQL/C, tJava’ O.Elava’
records Sec SecC SecC SecC
1 1.01073 | 2410°% | 055 [6.910°*
10 3.4107* | 1.9107° | 0.87 |1.11073
102 791073 | 1.4107° | 0.63 | 1.21072
103 401072 | 72107% | 0.62 |9.11072
104 0.36 1.5107° | 1.95 0.10
10° 3.6 1.61073 | 14.8 0.07
108 36.4 0.47 143.9 0.36
107 372.6 72.3 1441.8 | 100.0

Results are summarized in the Table A.1 and Fig. 4.9. The retrieval of the single record
with the use of Java takes 500 times more time compared with the use of C/C++. The
difference decreases with the increase of the number of records retrieved and stabilizes

with 10,000 records. Nevertheless the use of Java takes 4 times more time than the use
of C/C++.

130

Appendix B

The single-row and multiple-row data
retrieval

In this test the difference between massive data retrieval with the use of dynamical cursor
and row by row retrieval will be shown.

B.1 Test PC

The test was made on the same PC and with the same configuration as in Test 1.

B.2 Test database

The test tables were created at the single node with data and indexes in separate DMS
tablespaces.

create tablespace TS_BDB managed by database
using (FILE ’/home/data/bdb_spl’ 200000)@

create tablespace IS_BDB managed by database

using (FILE ’/home/data/bdb_ispl’ 200000)Q

create table TEST_MAIN
(

NwW1 INTEGER not null ,
NW2 INTEGER not null,
T1 INTEGER ,
T2 INTEGER s
CX SMALLINT s
CYy SMALLINT s
WT SMALLINT s

131

W VARCHAR (20) ,
primary key (NW2)
) IN TS_BDB INDEX IN IS_BDB
@

The number of records in the table is 10* simulated so that I1 runs values from 0 to

10* — 1.

B.3 Request

The SQL statement

SELECT * FROM TEST_MAIN where I1>=0 and I1< I_MAX

was used to select data into the cursor and fetch them into application’s variables, where
I _MAX € [1,10,10%,10%,10%]. The statement was realized with the ESQL/C, for the

Cursor:

EXEC SQL CONNECT TO :database;
EXEC SQL PREPARE c_prep FROM :sql_string;
EXEC SQL DECLARE c_base CURSOR FOR c_prep;
EXEC SQL OPEN c_base;
i=0.0;
for (;;) {
EXEC SQL FETCH c_base INTO :nwil, :nw2, :t1, :t2, :cx,
if (SQLCODE!=0) break;
i=i+1;
}
EXEC SQL CLOSE c_base;
EXEC SQL CONNECT RESET;

and for the row by row:

for (i=0; i< ii; i++) {
EXEC SQL CONNECT TO :database;

EXEC SQL SELECT * INTO :nwil, :nw2, :t1, :t2, :cx, :cy,
FROM TEST_MAIN WHERE nw2= :i;

EXEC SQL CONNECT RESET;
}

Measurements for each point were made 20 times.

B.4 Results

Results are show in Table B.1 and Fig. 4.10.

132

ey, :wt, w;

wt, w

Table B.1: The difference between row by row data retrieval and cursor.

Number of Response time, sec
records Row by row Cursor
1 (1.40 £ 0.58) 1072 (0.10 £ 0.01) 1072
10 (9.99 +£2.12) 1072 (0.26 £ 0.59) 102
102 (97.75£11.31) 1072 | (0.60 & 0.58) 1072
103 9.75 + 0.94 (4.1940.94) 1072
10 88.26 4+ 15.69 (37.80 +1.69) 102

133

134

Appendix C

The relation between the response time
and the number of nodes

The goal of the test is to find a relation between the number of nodes used for the data
storage and the time required to retrieve records.

C.1 Test PC

Hardware: linux cluster installed in Astronomisches-Rechen Institut, Heidelberg. The
cluster consists of 10 nodes (dual Pentium 4 2,2 GHz, each with 2 73GB SCSI disks) and
the front-end server (Pentium 4 2,4 GHz).

Software: OS: SuSE linux 7.2, DBMS: DB2 UDB EEE v7.2 in ten nodes configuration.

C.2 Test database

The test database simulates the raw data table and contains the only table placed in a
separate DMS tablespace with indexes in a separate DMS tablespace as well. 9 nodes
were used to distribute 9 tables, each uses from 1 to 9 nodes.

create nodegroup NGO on nodes(0)Q
create nodegroup NGO1 on nodes (0,1)@
create nodegroup NGO2 on nodes (0,1,2) @
create nodegroup NGO3 on nodes (0,1,)
create nodegroup NGO4 on nodes (0,1,2,3, @
create nodegroup NGO5 on nodes (O)
create nodegroup NGO6 on nodes (O
create nodegroup NGO7 on nodes (0,
create nodegroup NGO8 on nodes (0
create nodegroup NGO9 on nodes (0

135

create tablespace TO_BDB IN NODEGROUP NGO
managed by database using (FILE ’/work/data2/t2_t0’ 512000)Q

create tablespace IO_BDB IN NODEGROUP NGO
(FILE ’/work/data2/t2_i0’ 512000)@

managed by database using

create tablespace TO1_BDB
managed by database using

create tablespace I01_BDB
managed by database using

create tablespace TO2_BDB
managed by database using

create tablespace I02_BDB
managed by database using

create tablespace TO3_BDB
managed by database using

create tablespace I03_BDB
managed by database using

create tablespace T04_BDB
managed by database using

create tablespace I04_BDB
managed by database using

create tablespace TO5_BDB
managed by database using

create tablespace IO5_BDB
managed by database using

create tablespace TO06_BDB
managed by database using

create tablespace IO06_BDB
managed by database using

create tablespace TO7_BDB
managed by database using

create tablespace I07_BDB

IN NODEGROUP NGO1
(FILE ’/work/data2/t2_t01’

IN NODEGROUP NGO1
(FILE ’/work/data2/t2_i01’

IN NODEGROUP NGO2
(FILE °’/work/data2/t2_t02’

IN NODEGROUP NGO2
(FILE ’/work/data2/t2_1i02’

IN NODEGROUP NGO3
(FILE ’/work/data2/t2_t03’

IN NODEGROUP NGOS3
(FILE ’/work/data2/t2_1i03’

IN NODEGROUP NGO04
(FILE ’/work/data2/t2_t04’

IN NODEGROUP NGO4
(FILE °’/work/data2/t2_i04’

IN NODEGROUP NGO5
(FILE ’/work/data2/t2_t05°

IN NODEGROUP NGO5
(FILE ’/work/data2/t2_i05’

IN NODEGROUP NGO6
(FILE °’/work/data2/t2_t06’

IN NODEGROUP NGO6
(FILE °’/work/data2/t2_i06

IN NODEGROUP NGO7
(FILE ’/work/data2/t2_t07’

IN NODEGROUP NGO7

136

512000)@

512000)@

512000)@

512000)@

512000)@

512000)@

512000)@

512000)@

512000)@

512000)@

512000)@

512000)@

512000)@

managed by database using

create tablespace TO8_BDB
managed by database using

create tablespace I08_BDB
managed by database using

create tablespace TO9_BDB
managed by database using

create tablespace I09_BDB
managed by database using

create table TO_MAIN
(

(FILE ’/work/data2/t2_i07’

IN NODEGROUP NGO8
(FILE ’/work/data2/t2_t08°

IN NODEGROUP NGOS8
(FILE ’/work/data2/t2_i08’

IN NODEGROUP NGO9
(FILE °’/work/data2/t2_t09°

IN NODEGROUP NGO9
(FILE ’/work/data2/t2_109’

NwW1 INTEGER not null ,
NW2 INTEGER not null,

T1 INTEGER s

T2 INTEGER s
CX SMALLINT s
CY SMALLINT s
WT SMALLINT s
W VARCHAR (2000)

) IN TO_BDB INDEX IN IO_BDB
partitioning key (NW2) using hashing

Q
create table TO1_MAIN
(

NW1 INTEGER not null ,
NW2 INTEGER not null,

T1 INTEGER ,

T2 INTEGER s
CX SMALLINT s
CY SMALLINT s
WT SMALLINT s
W VARCHAR (2000)

) IN TO1_BDB INDEX IN IO1_

BDB

partitioning key (NW2) using hashing

Q

create table TO2_MAIN
(

NwW1 INTEGER
NW2 INTEGER
T1 INTEGER

not null ,
not null,

137

512000) @

512000)@

512000)@

512000)@

512000)@

T2
CX
CYy
WT
W

INTEGER
SMALLINT
SMALLINT
SMALLINT
VARCHAR (2000)

) IN TO2_BDB INDEX IN I02_BDB
partitioning key (NW2) using hashing

Q

create table TO3_MAIN

(

NW1
NW2
T1
T2
cX
cY
WT
W

INTEGER not null
INTEGER not null
INTEGER

INTEGER

SMALLINT

SMALLINT

SMALLINT

VARCHAR (2000)

) IN TO3_BDB INDEX IN IO3_BDB
partitioning key (NW2) using hashing

Q

create table TO4_MAIN

(

NW1
NW2
T1
T2
CX
cY
WT
W

INTEGER not null
INTEGER not null
INTEGER

INTEGER

SMALLINT

SMALLINT

SMALLINT

VARCHAR (2000)

) IN TO4_BDB INDEX IN IO4_BDB
partitioning key (NW2) using hashing

Q

create table TO5_MAIN

(

NW1
NW2
T1
T2
cX
cY
WT
W

INTEGER not null
INTEGER not null
INTEGER

INTEGER

SMALLINT

SMALLINT

SMALLINT

VARCHAR (2000)

) IN TO5_BDB INDEX IN IO5_BDB
partitioning key (NW2) using hashing

138

J

3

3

J

J

J

2

J

Q
create table TO6_MAIN
(

NW1 INTEGER not null ,
NW2 INTEGER not null,

T1 INTEGER ,

T2 INTEGER s
CX SMALLINT s
CY SMALLINT s
WT SMALLINT s
W VARCHAR (2000)

) IN TO6_BDB INDEX IN IO6_BDB
partitioning key (NW2) using hashing

Q

create table TO7_MAIN

(

NW1 INTEGER not null ,
NW2 INTEGER not null,
T1 INTEGER ,
T2 INTEGER ,
CX SMALLINT ,
CY SMALLINT ,
WT SMALLINT ,
W VARCHAR (2000)

) IN TO7_BDB INDEX IN IO7_BDB
partitioning key (NW2) using hashing

@

create table TO8_MAIN

(

NW1 INTEGER not null ,
NW2 INTEGER not null,
T1 INTEGER ,
T2 INTEGER ,
CX SMALLINT ,
CY SMALLINT ,
WT SMALLINT ,
W VARCHAR (2000)

) IN TO8_BDB INDEX IN IO8_BDB
partitioning key (NW2) using hashing

Q

create table TO9_MAIN

(

NW1 INTEGER not null ,
NW2 INTEGER not null,
T1 INTEGER s
T2 INTEGER s

139

CX SMALLINT s

CcY SMALLINT ,
WT SMALLINT ,
W VARCHAR (2000)

) IN TO9_BDB INDEX IN I09_BDB
partitioning key (NW2) using hashing
@

The number of records in the table is 107 simulated such that the value of NW2 runs from
0to 107 — 1.

C.3 Request
The SQL statement
SELECT * FROM TEST_MAIN where nw2>=0 and nw2 < i

was used to select data into the cursor and fetch them into application’s variables (i is
number of records).

C.4 Results

Results are summarized in the Table C.1 and Fig. 6.3. The response time decreases with
the increase of the number of nodes if the number of records stored at each node exceeds
some limit (100 records for this test).

140

v

Table C.1: The request time for N nodes.

Number of t + o¢, sec for N nodes
records 1 2 3 4 5 6 7 8 9

1 (B3£1.7)10° 2 | (89%£266)10 2 | (81+£25.1)10" 2 | (8.7+£228)10 2 | (7.2£20.7)10 2 | (85£16.5)10 2 | (7.8+15.7)10 2 | (10.2+£14.4)10 2 | (10.4£13.0)10 2
10 (10.1 £0.8)1072 | (7.843.7)1072 (8.244.1)1072 (5.8 4+3.5)1072 (5.4 £4.1) 1072 (8.045.4)1072 | (16.846.2)1072 (9.7 4+ 6.5) 1072 (11.3 £5.6) 1072
102 (56.3+£0.8) 1072 | (34.9+6.0)1072 | (31.64+3.8)1072 | (25.14+3.6)10"2 | (17.74+4.0)1072 | (23.1£7.6)1072 | (26.3+£8.5)1072 | (31.3+8.0)1072 (23.0 £5.8) 102
103 3.241.2 21406 20404 2.0+0.3 1.940.3 1.6 £0.2 1.6 £ 0.2 1.5+0.2 1.440.1
10* 41.04+9.7 31.7+6.1 27.5+4.3 24.3+ 4.4 21.343.9 20.3+3.6 21.2 £3.7 21.8+£3.5 27.5+3.4
10° 330.4 +18.6 233.6 £18.3 183.3 £12.3 158.7 4+ 10.6 137.0 & 13.4 128.2 4+ 15.8 125.3 +13.4 126.1 +12.7 135.4 + 8.8
106 3093.0 + 1409.0 1843.0 £ 617.0 1457.0 & 406.3 1162.0 £ 161.5 1030.0 + 131.2 962.6 £ 121.5 957.3 4+ 117.6 1023.0 4+ 101.2 1214.0 4 92.6

142

Appendix D

The stability of the request

With this test we would like to check the stability of the response time for the request on
the node which will be load with other non-database work.

D.1 Test PC

The test was produced on the one node of the linux cluster installed in Astronomisches-
Rechen Institut. The description of the node configuration was done in the previous test.
The cluster was shared with a number of applications using the cluster for numerical
calculations (CPUs and the Myrinet network was used by external applications but not
hard disks and not the Ethernet network).

D.2 Test database

The test table was created at a single node, the table simulates the raw data table and
placed in a separate DMS tablespace with indexes in a separate DMS tablespace as well.

create nodegroup NGS on node(3)@

create tablespace TS1 managed by database
using (FILE ’/home/data/bdb_st1’ 100000)@

create tablespace IS_ST managed by database
using (FILE ’/home/data/bdb_ist1’ 100000)@

create table TEST_STAB

(

I1 INTEGER not null ,
) IN TS_BDB INDEX IN IS_BDB
Q

143

The number of records in the table is 107 simulated such that the value of NW2 runs from
0to 107 — 1.

D.3 Request

The SQL statement
SELECT * FROM TEST_STAB where I1>=0 and il< 1000000

was used to select data into the cursor and fetch them into application’s variables (i is
the number of records).

D.4 Results

Results for the test were collected during 15 days with a number of unknown applications
running on the node. The resulting response time for the selection of 107 records is
133.3 & 36.4 seconds. As non-database applications run for days (which is the normal
situation for the DIVA/AMEX in case of shared cluster) we have at least 10 quasi-stable
solutions for the response times.

The distribution function of the response time can be calculated as
N
f(r) = Ager AT Ay,
=1

where 7 is a response time per record. The probability to arrive at one of the quasi-stable

solution is 0iag
P(i) = / ey / f(r)dr

7'1073 o

Results are shown in Tables D.1 and D.2 and Figures 7.6 and 7.7.

144

Table D.1: The quasi-stable solutions for the response time.

Number of Period, request time with dispersion,
solution | in request cycles sec

1 0 — 2650 95.6 £0.6

2 2750 — 2825 112.7+£ 3.0
3 3520 — 3580 154.2+24
4 3635 — 3850 1782+ 1.9
5 4110 — 4240 192.6 £2.3
6 4630 — 4695 110.5 £ 2.5
7 5000 — 6000 181.3 £11.7
8 6200 — 6250 117.5£9.5
9 7000 — 7800 152.5+6.4
10 7850 — 7960 109.0 £ 1.1
11 8050 — 8350 152.9+28
12 8610 — 8700 190.5 £ 2.3
13 9200 - 9400 109.5 £ 4.0

Table D.2: The distribution function of the response time.

Number of A Ay Ay As Probability of
solution the solution
1 1979.6 | 0.96107° | 0.5910~" 2.43 0.31
2 239.5 | 1.11107° | 4.04107" —-0.14 0.24
3 135.0 | 1.50107° | 4.4010°7 4.52 0.16
4 118.2 | 1.78107° | 1.8810~7 | 35.60 0.09
5 89.5 | 1.88107° | 0.871077 | 64.38 0.05
6 299.5 | 1.92107° | 3.7910°7 | —138.68 0.15

145

146

Appendix E

The form of the TCF

To check the form of the TCF two table was created at two node of the cluster. Two
applications retrieved data from the table : one locally, at the same node where the table
was placed and one remotely, from an other node of the cluster.

E.1 Test PC

The test was produced on two nodes of the cluster of Astronomisches-Rechen Institut.
See Test C for the description.

E.2 Test database

create nodegroup NGO on node(0)@

create tablespace TO IN NODEGROUP NGO
managed by database using (FILE ’/work/datal/bdb0.t1’ 512000,
FILE ’/work/datal/bdb0.t2’ 512000)@

create tablespace IO IN NODEGROUP NGO
managed by database using (FILE ’/work/datal/bdb0.il’ 512000,
FILE ’/work/datal/bdb0.i2’ 512000)@

create table TO_MAIN
(

Nw1 INTEGER not null ,
NW2 INTEGER not null,
T1 INTEGER ,
T2 INTEGER s
CX SMALLINT s
CY SMALLINT s

147

Figure E.1: The scheme of the test of the remote and local data retrieval.

WT SMALLINT ,
W VARCHAR (2000)
) IN TO INDEX IN IOQ

The number of records in the table is 10® simulated so that I1 runs values from 0 to
108 — 1.

E.3 Request
The SQL statement
SELECT * FROM TO_MAIN where I1>=0 and I1< I_MAX

was used to select data into the cursor and fetch them into application’s variables, where
I MAX varies from 100 records to 7754700 records with 100 records step. Simultaneously
the same statement was executed on the node 1 of the cluster.

148

E.4 Results

Results were collected for 46 days of the test’s duration. The stable part of the results
were selected (the difference between two neighbors points must be smaller than 20 %)
and the TCF was fitted in the form

TCF(NreC) - AZO + All Nreca

where i due to the local /remote data retrieval (0 for the local, 1 for the remote) and N,
is a number of records.

149

Table E.1: The linear form of the TCF.

The start | The end Al £ oA Al £ a1 A2+ a2 AZ £ 42 ATJA]
count count 10—° 105
1518800 1533400 —429.92 + 46.75 30.00 £ 3.06 —251.02 +44.74 18.14 +£2.93 0.60
1533500 1573800 12.02 +£4.81 1.16 £0.31 —39.94 + 7.47 4.32 +0.48 3.71
1580000 1777900 19.47 £0.91 0.78 + 0.05 —32.50 £1.19 3.90 + 0.07 5.01
1902500 1914200 —9.08 £+ 26.57 1.47 +£1.39 —96.97 £+ 65.90 5.87 & 3.45 3.98
1962700 2006100 —7.84 £5.50 1.40 £+ 0.28 —22.92 £+ 8.80 2.44 +0.44 1.75
2006200 2398900 —0.02 £0.21 1.00 £ 0.01 0.74 +0.38 1.26 +£0.02 1.26
2399000 2463300 —2.79 £ 3.59 1.11 £0.15 —15.97 £6.78 1.95+0.28 1.75
2470700 2498300 —7.98 £13.78 1.32 £ 0.55 —7.82 £29.85 1.10 £1.20 0.83
2524400 2539000 —24.89 + 22.93 1.96 £ 0.91 —38.77 £ 80.97 2.32 4+ 3.20 1.18
2617700 2627900 —9.71 £43.08 1.35+1.64 —40.86 £+ 160.84 2.35+6.13 1.75
2628000 2814400 —5.12 £ 0.61 1.16 £ 0.02 1.47 £ 2.00 0.73 £ 0.07 0.62
2860900 3491600 —0.16 £0.19 1.01 £0.01 —0.04 £0.36 1.30 £ 0.01 1.29
3491700 3827400 16.16 £ 0.52 0.55 + 0.01 —2.45+1.51 0.84 + 0.04 1.54
3848200 3907000 —194.33 £ 8.43 6.02 + 0.22 2.61 +26.75 1.22 + 0.69 0.20
3907100 3922200 2.39 4+ 181.26 1.71 £ 4.63 —1026.47 + 146.90 27.53 £ 3.75 16.12
3925800 3940000 —3859.58 + 277.39 99.77 £ 7.05 —1465.58 + 359.61 38.93 +9.14 0.39
3979800 3993200 —181.83 + 220.03 6.34 + 5.52 —187.16 + 201.11 5.48 + 5.04 0.87
4050400 4062500 —1118.76 + 120.50 28.58 £ 2.97 —224.41 + 228.69 6.33 & 5.64 0.22
4536400 4555300 5.11 £+ 32.64 0.86 + 0.72 —102.01 + 176.44 3.06 + 3.88 3.54
4555400 4583000 —46.80 + 61.78 2.03+1.35 —95.75 £+ 93.89 2.88 +2.05 1.42
4656700 4691000 —428.84 + 110.20 10.93 + 2.36 22.52 4 68.92 0.29 + 1.47 0.03
4693800 4705600 —5076.67 £+ 425.27 109.76 + 9.05 —57.22 + 355.61 1.99 £ 7.57 0.02
4706400 4717100 —5122.60 £ 522.08 110.45 4+ 11.08 —305.69 + 418.27 7.27 + 8.88 0.07
4815600 4831700 —78.93 + 42.88 2.65 4 0.89 —380.79 + 223.06 8.69 + 4.62 3.28
4831900 4846300 —65.09 + 54.79 2.36 = 1.13 —5121.38 + 625.26 106.70 £+ 12.92 45.23
4877800 4890100 —504.28 £ 93.73 11.30 + 1.92 —4595.28 + 747.47 94.94 £+ 15.30 8.40
4977300 4990700 —13.11 £56.91 1.24 +1.14 —1031.53 +291.89 21.89 + 5.86 17.71
5008600 5078500 —2.20£5.15 1.02 £0.10 —248.26 + 24.01 6.18 +0.48 6.08
5082300 5116900 —16.15 £+ 15.07 1.29 +£0.30 —3.41 £ 83.59 0.84 + 1.64 0.65
5122000 5171600 —18.69 £ 9.04 1.34 £0.18 0.62 + 48.31 0.77 +£0.94 0.58
5171700 5567100 —13.87 £0.75 1.24 +£0.01 —4.43 +£2.35 0.86 + 0.04 0.70
5567200 5603300 —1590.28 +90.10 29.93 £ 1.61 —131.40 +£93.38 3.13 +1.67 0.10
5685100 5714800 —435.22 + 139.13 9.30 + 2.44 24.89 + 123.42 0.35 + 2.17 0.04
5822800 5846200 —183.58 + 63.95 4.17+1.10 —39.27 £+ 190.66 1.46 £ 3.27 0.35
5880400 5896800 50.62 £ 318.62 0.65 + 5.41 —2897.68 + 558.36 50.76 + 9.48 78.38
5896900 5943700 21.94 + 38.54 1.13 £ 0.65 —914.07 £99.10 17.27 £1.67 15.32
5951200 5964500 —9.42 £ 209.79 1.66 + 3.52 —542.07 + 303.76 10.60 £ 5.10 6.40
5986500 6002700 —595.22 4+ 229.05 11.55 + 3.82 —56.93 + 230.10 2.88 + 3.84 0.25
6005000 6015400 51.67 4= 748.34 0.76 + 12.45 —20.88 £+ 676.02 2.27+11.25 2.97
6126700 6155500 —14.98 £ 121.29 1.30 £ 1.98 —264.98 + 189.38 6.18 + 3.08 4.75
6185400 6214400 —133.48 + 124.24 3.39 + 2.00 —1364.96 + 146.83 23.89 +2.37 7.06
6240700 6264600 —226.06 £+ 93.06 4.86 + 1.49 19.73 £ 216.30 1.61 £ 3.46 0.33
6264700 6278200 —1433.58 + 323.27 24.11 £ 5.15 —747.60 £ 489.28 13.87 £ 7.80 0.58
6278300 6294400 —285.68 + 233.31 5.81 +3.71 —712.74 £ 311.17 13.29 +£4.95 2.29
6311000 6341600 —258.31 £+ 70.55 5.34 +1.12 82.30 4+ 148.18 0.02 + 2.34 0.00
6381600 6399000 —447.24 + 164.28 8.41 + 2.57 —152.63 + 212.77 3.95 + 3.33 0.47
6399100 6435100 17.84 + 25.89 0.74 +0.40 —276.90 + 68.88 5.88 & 1.07 7.99
6493400 6508700 —7032.55 £+ 615.06 109.70 £ 9.46 —320.82 + 282.82 6.54 + 4.35 0.06
6540300 6558400 —285.45 + 246.24 6.02 + 3.76 26.74 £ 259.31 0.87 + 3.96 0.14
6652400 6674100 —1723.64 + 205.37 11.89 + 3.08 —653.19 £ 171.06 11.75 £ 2.57 0.99
6753100 6770900 —1111.43 +151.52 17.45 +2.24 —876.27 + 394.44 14.24 +5.83 0.82
6779800 6798300 44.75 + 122.55 0.37 +1.81 —306.73 + 316.82 5.81 + 4.67 15.54
6820600 6840200 —89.07 £+ 55.96 2.28 +0.82 —108.21 + 245.28 2.85 4+ 3.59 1.25
6849300 6866000 —321.99 + 172.64 5.73 + 2.52 —64.23 + 428.10 1.74 £ 6.24 0.30
6936600 6949500 —3099.84 + 553.72 45.66 + 7.98 —1378.68 £+ 653.91 20.64 +9.42 0.45
7197800 7212900 —219.73 + 144.66 4.09 + 2.01 —600.89 + 555.33 9.14 £ 7.71 2.23
7442900 7457200 —3254.86 + 743.41 45.11 +9.98 —430.03 + 588.04 6.79 + 7.89 0.15
7668100 7738000 —23.55 £+ 15.03 1.35 £ 0.20 —506.64 +61.24 7.60 £ 0.79 5.64
7746300 7762900 11.72 £+ 108.02 0.89 + 1.39 —2239.45 + 611.22 29.94 + 7.88 33.68

150

Appendix F

The dependence of the TCF on the size
of the table in case of the local data
retrieval

To To check the form of the TCF one table was created at the single node. Two appli-
cations retrieved data from the table : one locally, at the same node where the table was
placed and one remotely, from the other node of the cluster.

F.1 Test PC

The test was made on the same PC and with the same configuration as in Test 1.

F.2 Test database

The test tables were created at the single node with data and indexes in separate DMS
tablespaces.

create tablespace T1_BDB managed by database
using (FILE ’/home/data/bdb_t1’> 50000)@

create tablespace I1_BDB managed by database
using (FILE ’/home/data/bdb_it1’ 50000)@

create table T1

(
I1 INTEGER not null ,
primary key (I1)

) IN T1_BDB INDEX IN I1_BDB

@

151

create tablespace T2_BDB managed by database
using (FILE ’/home/data/bdb_t1’> 50000)@

create tablespace I2_BDB managed by database
using (FILE ’/home/data/bdb_it1’ 50000)@

create table T2

(
I1 INTEGER not null ,
I2 INTEGER ,
primary key (I1)

) IN T2_BDB INDEX IN I2_BDB

@

create tablespace T3_BDB managed by database
using (FILE ’/home/data/bdb_t1’ 50000)@

create tablespace I3_BDB managed by database
using (FILE ’/home/data/bdb_it1’> 50000)@

create table T3
(

I1 INTEGER not null ,
S1 SMALLINT ,
D1 DOUBLE s

primary key (I1)
) IN T3_BDB INDEX IN I3_BDB
Q

create tablespace T4_BDB managed by database
using (FILE ’/home/data/bdb_t1’ 50000)@

create tablespace I4_BDB managed by database
using (FILE ’/home/data/bdb_it1’ 50000)@

create table T4
(

I1 INTEGER not null ,
D1 DOUBLE s
W CHAR(8) ,

primary key (I1)
) IN T4_BDB INDEX IN I4_BDB

152

@
create tablespace T5_BDB managed by database
using (FILE ’/home/data/bdb_t1’> 50000)@

create tablespace I5_BDB managed by database
using (FILE ’/home/data/bdb_it1’ 50000)@

create table T5

(
I1 INTEGER not null ,
D1 DOUBLE s
W VARCHAR (8) s

primary key (I1)
) IN T5_BDB INDEX IN I5_BDB
Q

The number of records in the table is 10° simulated so that I1 runs values from 0 to
105 — 1.

F.3 Request

The SQL statement
SELECT * FROM TEST_STAB where I1>=0 and I1< I_MAX

was used to select data into the cursor and fetch them into application’s variables, where
I _MAX € [1,10,102, 103, 104, 107].

F.4 Results

The TCF was fitted in the form

TCF(Nyee, size(Table)) = Ag + A; size(Table),

where N,.. is a number of records and size(Table) is a size of the table in B for [T1, T2,
T3, T4] or [T1, T2, T3, T5] .

153

Table F.1: The dependence of the response time on the size of the table.

Table
Number of T1 T2 T4 T5
records 4B 8B 14B 20B 20B(VARCHAR)
1 (92+7.8)10° % | (7.5+02)10° % | (7905102 | (80+0.7)10 2 | (7.9+0.6)10 2
10 (7440.2)1072 | (7.5+0.2)1072 | (7.940.2)1072 | (8.0£0.2)10"2 | (7.9+40.2)1072
102 (7.7+£0.2)1072 | (7.8+£0.2)1072 | (8.14£0.2)1072 | (8.2+0.2)1072 | (8.140.2)1072
103 (10.2+£0.2)1072 | (10.54+0.2)1072 | (11.0+£0.2)1072 | (11.3£0.2)1072 | (11.0+0.2)1072
10 (36.1+£0.4)1072 | (37.2+0.2)1072 | (39.640.3) 1072 | (41.24£0.3)10~2 | (40.0+0.1) 1072
10° 2.95 4 0.01 3.0440.03 3.16 +0.05 3.37 4 0.01 3.45+0.09
Table F.2: The dependence of the TCF on the tables’ size.
Number of with T4 with T5
records AO + O A Al + A, AO + T Ay A1 + OA,
1 (8.67+£0.09)10=2 | (—0.05+0.07)1072 | (8.72+0.82)10~2 | (—0.05 £ 0.06) 10~2
10 (7.244£0.09)1072 | (0.04+£0.01)1072 | (7.284£0.12)1072 | (0.03 +0.01) 102
10? (7.48 £0.07)1072 | (0.04£0.01)1072 | (7.534+0.12)102 | (0.03 +£0.01) 1072
103 (9.99+£0.10)1072 | (0.07 £0.01)1072 | (10.11 £0.21) 1072 | (0.05 4 0.02) 102
104 (34.78 £0.22) 1072 | (0.334+0.02)1072 | (35.29 +0.65)10"2 | (0.26 £ 0.05) 10~
10° 2.83 4 0.03 (2.57 4+ 0.25) 102 2.80 + 0.06 (3.06 +0.50) 102

154

Appendix G

The dependence of the TCF on the size
of the table in case of the remote data
retrieval

To check the form of the TCF one table was created at the single node.

G.1 Test PC

The test was produced on the one node of the linux cluster installed in Astronomisches-
Rechen Institut. The description of the node configuration was done in the Test C.

G.2 Test database

The test tables were created at the single node with data and indexes in separate DMS
tablespaces.

create nodegroup NGO9 on nodes (9) @

create tablespace TO9_BDB IN NODEGROUP NGO9
managed by database using (FILE ’/work/data2/t09.t1’ 512000,
FILE °’/work/data2/t09.t2°> 512000,FILE ’/work/data2/t09.t3’> 512000)@

create tablespace I09_BDB IN NODEGROUP NGO9
managed by database using (FILE ’/work/data2/t09.i1° 512000,
FILE ’/work/data2/t09.i2’ 512000,FILE ’/work/data2/t09.i3’ 512000)@

create table Ti1

(
I1 INTEGER
) IN TO9_BDB INDEX IN I09_BDB

155

create index

create table
(

I1

I2
) IN TO9_BDB
@

create index

create table
(

I1

I2

D1

) IN TO9_BDB
Q

create index

create table
(

I1

I2

D1

D2

D3

D4
) IN TO9_BDB
@

create index

create table
(

I1

12

D1

D2

D3

D4

C1

IN_T1 on T1 (I1 ASC)@
T2

INTEGER,
INTEGER
INDEX IN IO9_BDB

IN_T2 on T2 (I1 ASC)@
T3

INTEGER,
INTEGER,
DOUBLE

INDEX IN IO9_BDB

IN_T3 on T3 (I1 ASC)@
T4

INTEGER,
INTEGER,
DOUBLE,
DOUBLE,
DOUBLE,
DOUBLE

INDEX IN IO9_BDB

IN_T4 on T4 (I1 ASC)Q
T5

INTEGER,
INTEGER,
DOUBLE,
DOUBLE,
DOUBLE,
DOUBLE,
CHAR (100)

156

) IN TO9_BDB INDEX IN I0O9_BDB
@

create index IN_T5 on T5 (I1 ASC)@

create table T6
(

I1 INTEGER,
12 INTEGER,
D1 DOUBLE,
D2 DOUBLE,
D3 DOUBLE,
D4 DOUBLE,
C1 VARCHAR (100)

) IN TO9_BDB INDEX IN I0O9_BDB
@

create index IN_T6 on T6 (I1 ASC)@

create table T7
(

I1 INTEGER,
12 INTEGER,
D1 DOUBLE,
D2 DOUBLE,
D3 DOUBLE,
D4 DOUBLE,
c1 VARCHAR (500)

) IN TO9_BDB INDEX IN I09_BDB
@

create index IN_T7 on T7 (I1 ASC)@

create table T8
(

I1 INTEGER,
I2 INTEGER,
D1 DOUBLE,
D2 DOUBLE,
D3 DOUBLE,
D4 DOUBLE,
C1 VARCHAR (1000)

) IN TO9_BDB INDEX IN IO9_BDB
Q

create index IN_T8 on T8 (I1 ASC)@

157

Table G.1: The dependence of the TCF on the tables’ size.

Number of coefficients of the TCF
records Ao £ o4, Ay £oa,
1 (2.80 £+ 0.35) 102 (0.240.8)107°
10 (8.70 £ 1.73) 1072 (—6.2+3.9)107°
102 (51.32 £11.22) 1072 | (=25.74+25.1)107°
103 2.94 4 0.12 (13.4 £25.8)107°
10* 26.09 + 0.23 (52.5 +50.6) 10~°
10° 254.14 + 1.26 (1.03 £0.28) 1072
106 2546.17 + 19.48 (43.40 4 4.37) 1072

The number of records in the table is 10° simulated so that I1 runs values from 0 to
108 — 1.

G.3 Request

The SQL statement
SELECT * FROM TEST_STAB where I1>=0 and I1< I_MAX

was used to select data into the cursor and fetch them into application’s variables, where
I MAX € [1,10,10% 103, 10%, 10°, 10°].

G.4 Results

The TCF was fitted in the form

TCF(Nyee, size(Table)) = Ag + A; size(Table),

where N,.. is a number of records and size(Table) is a size of the table in B for [T1, T2,
T3, T4, T5, T7, T8|.

158

6GT

Table G.2: The response time for tables of various sizes.

‘Table
Number of T1 T2 T3 T TS T6 T7 T8
records 4B 8B 16B 40B 140B 140B 540B 1040B

(VARCHAR) (VARCHAR) (VARCHAR)
1 (3.66 & 0.02) 10~ 2 (3.23 £ 0.40) 10~ 2 (2.83 £1.11) 10~ 2 (1.98 £ 1.00) 10~ 2 (2.77 £ 0.98) 10~ 2 (0.79 £ 0.31) 10~ 2 (1.91 4+ 1.24) 10~ 2 (3.54 &+ 1.10) 10~ 2
10 (12.66 & 0.01) 10~ 2 (11.87 4 0.61) 10~ 2 (9.83 +3.11) 10~ 2 (5.31 + 3.54) 10~ 2 (2.85 + 1.38) 10~ 2 (2.36 + 1.07) 10~ 2 (3.14 + 1.73) 1072 (4.07 + 2.00) 102
10° (90.30 £ 14.20) 10~2 | (60.10 +29.08) 10~ 2 | (32.82 4+ 15.83) 10~ 2 | (49.86 +43.27) 10~ 2 | (22.05 +90.21) 10~ 2 | (29.05 4 12.80) 102 | (21.99 +£0.94) 1072 | (36.10 + 0.88) 10~ 2
103 3.38 + 1.09 2.82 + 0.87 2.94 + 0.57 2.62 + 0.55 2.95 + 0.58 2.69 + 0.52 3.05 + 0.46 3.07 + 0.52
10t 26.01 + 3.14 26.54 + 4.18 26.17 + 3.66 25.32 + 3.93 26.26 + 2.59 25.30 + 3.36 26.91 + 4.36 26.37 + 5.65
10° 253.10 + 9.31 253.10 + 5.00 256.90 + 6.31 255.00 + 6.46 257.30 + 4.17 255.30 + 5.73 255.20 + 6.67 267.00 + 6.18

108

2568.00 £ 27.75

2552.00 + 46.74

2567.00 + 25.01

2564.00 £ 23.45

2611.00 £ 94.08

2564.00 £ 33.68

2699.00 + 244.9

3039.00 £ 81.12

160

Appendix H

The stability of the F+T matrix

The F+T matrix must be calculated for the number of records which will be retrieved in
the real application which will use data partitioning. In this test the dependence of the
F+T on the number of records used in the test query will be studied.

H.1 Test PC

The test was produced on two nodes of the cluster of Astronomisches-Rechen Institut.
See Test C for the description. Only 3 nodes of the cluster were used.

H.2 Test database

The benchmark database described in the Chapter 6 was used for the test.

H.3 Request

Two SQL statements were executed consequently:

SELECT * FROM TEST_MAIN where I1>=0 and I1< I_MAX
SELECT * FROM TEST_BAD where I1>=0 and I1< I_MAX

where I _MAX € [1,10,10% 103,104, 10°. Measurements for each point were made 20
times.

H.4 Results

Results in Table H.1 and in Fig. 7.3 shows the stability of the F+T matrix from some
number of records retrieved.

161

Table H.1: The F+T matrix with dispersion.

Number of The F+T matrix, sec, for element (f +1)"
records 00 01 02
1 (1.302 £2.284) 1073 | (8.523 £ 10.390) 10~ (1.402 £ 4.201)

10 (1.201 £ 0.624) 1074 | (1.736 £0.994)10~* | (1.911 £+ 1.311) 1072
102 (5.228 £0.721) 107> | (1.077£0.110) 1072 | (1.088 £ 0.124) 1072
103 (4.409 £ 0.095) 10~ | (1.010£0.012) 1072 | (1.011 £0.001) 102
10* (4.278 £0.200) 10~ | (1.040 £0.083) 1072 | (1.027 £0.005) 102
10° (4.113 £0.006) 10~ | (1.017£0.009)10=2 | (1.015=£0.005) 102
106 (4.088 £0.016) 107> | (1.018 £0.001) 1072 | (1.018 £ 0.001) 102

10 11 12
1 (6.791 £5.906) 10~2 | (2.445 £5.030) 10~% | (9.693 + 13.600) 102
10 (1.589 £ 0.586) 1072 | (2.476 £5.021) 1073 | (1.939 £ 1.336) 102
102 (1.061 £ 0.055) 1072 | (1.784+3.622)10~* | (1.087£0.139) 102
10° (1.006 £ 0.005) 102 | (5.661 £3.678)107° | (1.151 £0.321)10~2
10* (1.002 £ 0.001) 1072 | (4.047£0.283)107° | (1.019 £0.039) 102
10° (1.019 £ 0.009) 102 | (4.057 £0.036) 1075 | (1.019 £ 0.004) 102
106 (1.047 £0.018) 1072 | (3.832+£0.017)107° | (1.059 £ 0.001) 102

20 21 22
1 (6.795 £+ 6.260) 10~2 | (6.794 £6.263)10~2 | (5.702 £ 0.560) 10~*
10 (1.579 £ 0.627) 1072 | (1.578 £0.627)1072 | (2.476 +5.323) 1073
10? (1.058 £0.060) 1072 | (1.066 +0.081)10~% | (2.809 £ 5.139)10~*
103 (1.008 £0.011) 1072 | (1.008 £0.008) 1072 | (6.652 £ 5.227)10~°
10* (1.003 £ 0.002) 1072 | (1.019 £0.037)107% | (4.174£0.593)10~°
10° (1.019+£0.007) 1072 | (1.018 £0.004) 1072 | (4.234+0.048)107°
106 (1.014 £0.002) 1072 | (1.017£0.004) 1072 | (5.486 £ 0.003) 10~°

162

Appendix 1

The choice of the data upload strategy.
The direct insert and the use of DB2
utility

The presented test shows the difference between the use of the INSERT statement for the
data load and the use of the DB2 utility db2split and LOAD FROM FILE statement. In the
last case we use a preformatted (by db2split) database page to insert it directly in the
database’s tablespace.

I.1 Test PC

Hardware: Pentium 4 2,4 GHz PC with 512 MB RAM and 40 GB IDE disk.

Software: OS : Mandrake linux 9.1 with 2.4.21-0.13mdk core. DBMS : DB2 UDB EEE
v7.2 in one-node mode. C/C++ compiler : gce version 3.2.2 (Mandrake Linux 9.1 3.2.2-
3mdk). Java compiler : gij 3.2.2.

1.2 Test database

The test database simulates the raw data table and contains the only table placed in a
separate SMS tablespace with indexes in a separate SMS tablespace as well.

create tablespace TSI_BDB managed by database
using (FILE ’/home/data/bdbi_sp’ 200000)@

create tablespace ISI_BDB managed by database
using (FILE ’/home/data/bdbi_isp’ 200000)@
create table TEST

(

163

I1 INTEGER
) IN TSI_BDB INDEX IN ISI_BDB
@

create index IND1 on TEST (I1 ASC) @

The number of records in the table is 10 simulated such that the value of I1 runs from 0
to 106 — 1.

I.3 Request
The SQL statement for the direct insert is
INSERT INTO TEST VALUES (:load_val).

The ESQL/C program reads the :load_val from the file with data. In the second case
the csv file (DEL format in terms of DB2) is processed by db2split utility and loaded by
the LOAD FROM <filename> OF DEL INSERT INTO TEST command.

1.4 Results

Table I.1: INSERT and LOAD.

Number of | {/VSERT L GINSERT | 4LOAD I ;LOAD,
records sec sec
1 (5.78 £0.20) 104 | (4.27 £2.91)10~1
10 (1.87 + 2.98) 1073 (4.14 + 2.35) 107t
102 (6.74 +0.50) 1073 | (4.16 4 2.29) 10
10 (9.81 £1.32)1072 | (5.53 4+ 2.55) 10~
10* 1.074+0.02 (7.96 4+ 3.00) 107!
10° 10.84 +0.10 2.72+0.24
106 107.80 = 0.53 14.52 £+ 7.46

Results are summarized in the Table I.1 and Fig. 6.4. The use of the db2split utility and
LOAD statement decreases the time required to upload the data, but in case of the massive
data load only (more than 10* records).

164

