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Abstract

Traditional database management systems use tree-structured query evaluation
plans. While easy to implement, a tree-structured query evaluation plan is
not expressive enough for some optimizations like factoring common algebraic
subexpressions or magic sets. These require directed acyclic graphs (DAGs),
i.e. shared subplans.

This work covers the different aspects of DAG-structured query graphs. First,
it introduces a novel framework to reason about sharing of subplans and thus
DAG-structured query evaluation plans. Second, it describes the first plan gen-
erator capable of generating optimal DAG-structured query evaluation plans.
Third, an efficient framework for reasoning about orderings and groupings used
by the plan generator is presented. And fourth, a runtime system capable of
executing DAG-structured query evaluation plans with minimal overhead is
discussed.

The experimental results show that with no or only a modest increase of plan
generation time, a major reduction of query execution time can be achieved for
common queries. This shows that DAG-structured query evaluation plans are
serviceable and should be preferred over tree-structured query plans.

Zusammenfassung

Traditionelle Datenbankmanagementsysteme verwenden baumstrukturierte Aus-
führungspläne. Diese sind effizient und einfach zu implementieren, allerdings
nicht ausdrucksstark genug für einige Optimierungstechniken wie z.B. die Fak-
torisierung von gemeinsamen algebraischen Teilausdrücken oder magic sets.
Diese Techniken erfordern gerichtete azyklische Graphen (DAGs), d.h. gemein-
sam verwendete Teilpläne.

Die Arbeit behandelt die verschiedenen Aspekte von DAG-strukturierten An-
fragegraphen. Zunächst wird ein formalen Modell zum Schließen über gemein-
sam verwende Teilpläne und damit über DAG-strukturierte Anfragepläne vor-
gestellt. Anschließend wird dieses Modell in einem Plangenerator zur Erzeu-
gung von optimalen DAG-strukturierten Anfrageplänen verwendet; bisherige
Ansätze konnten die optimale Lösung nicht garantieren. Weiterhin wird eine
neue Datenstruktur beschrieben, die dem Plangenerator eine effiziente Verwal-
tung von Sortierungen und Gruppierungen ermöglicht. Schließlich wird ein
Laufzeitsystem vorgestellt, das die Ausführung von DAG-strukturierten An-
frageplänen mit sehr geringem Mehraufwand relativ zu baumstrukturierten An-
frageplänen ermöglicht.

Die experimentellen Ergebnisse zeigen, dass ohne bzw. mit nur etwas höherem
Zeitaufwand im Plangenerator DAG-strukturierte Anfragepläne erzeugt werden
können, die für übliche Anfragen eine erheblich Reduzierung der Ausführungszeit
bewirken können. Diese Ergebnisse zeigen, dass DAG-strukturierte Anfragepläne
mit vertretbarem Aufwand allgemein einsetzbar sind und deshalb anstelle von
baumstrukturierten Anfrageplänen verwendet werden sollten.
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1. Introduction

Queries are usually the most important way to access the data contained in
a database. The user provides a declarative description of the data he needs,
and the database management system retrieves the data specified by the query.
This query processing is roughly done in a two-step approach: First, the system
determines the best way to execute the declarative query (converting it into a
more imperative form) and then executes it, producing the requested data.

Traditionally, the output of the first step is an operator tree [50]. Each of the
operators takes the output of its children as input, performs some operation
on it, and produces a new output stream that contains the intermediate result.
Finally, the root of the operator tree produces the result of the whole query.
These trees have many nice properties and are easily handled but they also
have a strong limitation: the output of an operator can only be used by a single
other operator. As a consequence, intermediate results cannot be reused by
multiple operators, which is very unfortunate.

One possible solution is to use directed acyclic graphs (DAGs) instead of
trees. When building query graphs as DAGs, operators can easily reuse inter-
mediate results, as they can share children. In fact, this structure is common for
many problems: examples include multi-query optimizers [41], data migration
processes [2] that factorize and share common subqueries, optimization of dis-
junctive queries with bypass plans [73], or parallel query processing [13]. Query
processing over data streams also relies upon DAG-structured query execution
plans [42].

However, using DAGs instead of trees is much more complex. Therefore,
existing query optimizers usually limit themselves to trees [44] or only consider
very limited forms of DAGs [20]. In this work, we present a novel approach that
allows the use of arbitrary DAGs during query processing. We concentrate on
the different aspects of query optimization in the presence of DAGs, but also
consider the problem of executing DAGs. The work intends to describe every
part of the database management system that has to be changed in order to
support DAGs. For the experimental results, a prototype system was actually
implemented.

The rest of the thesis is structured as follows: First, query processing in
general is described in Chapter 2. Chapter 3 and 4 discuss related work. Chap-
ter 5 and 6 describe the core of the query optimizer, while Chapters 8, 7 and
9 describe different components of the query optimizer. The actual execution
of DAGs is described in Chapter 10. Chapter 11 presents experimental results.
Finally, conclusions and future work are discussed in Chapter 12.
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2. Query Processing

2.1. Overview

Most database management systems (DBMS) offer a query interface, which al-
lows the user to retrieve data by specifying a declarative query (e.g. in SQL,
OQL etc.). Declarative means that the user specifies in which data he is inter-
ested but not how this data should be retrieved or computed. This enables the
DBMS to choose among multiple possible ways to answer the query, which can
have significantly different runtime characteristics. As a consequence, query
processing in a DBMS is usually structured as shown in Figure 2.1. The query
given is first processed by the compile time system, which analyzes the query
and tries to find the best way to answer it. The output of this step is an
execution plan that is passed to the runtime system, which actually executes
the plan and produces the query result. This work concentrates on the compile
time system, but also touches some aspects of the runtime system. This chapter
provides an overview of these two components.

2.2. Compile Time System

The main task of the compile time system is to convert the query into the ”best”
execution plan that produces the requested data. The exact notion of ”best”
depends on the application and is discussed in Chapter 9. This process is quite
involved and, therefore, split into several processing steps that are discussed
next.

The basic steps of query compilation are shown in Figure 2.2. While the
details vary among different query compilers, as some omit or combine steps,
query compilation consists roughly of the following steps: First, the query string
provided by the user is parsed and converted into an abstract syntax tree. This

result

plan

query

runtime system

compile time system

Figure 2.1.: Phases of query processing

9



2. Query Processing

execution plan

query

code generation

rewrite II

plan generation

rewrite I

factorization

normalization

semantic analysis

parsing

Figure 2.2.: Overview of query compilation

abstract syntax tree is examined during the semantic analysis and converted
into a logical representation of the query. After this step, the query compiler
has detected any errors in the query and has generated a concise logical repre-
sentation of the semantics of the query. The exact representation varies from
system to system, some possibilities are relational calculus [11], tableaus [1],
monoids [14], algebras [24], or combinations thereof. What these representa-
tions have in common is that they provide a precise formal description of the
data requested by the user, still without determining how to compute the data.
The following steps are mostly optional, as they do not influence the semantics
of the query but only the efficiency of its execution. Besides, the following steps
are (or at least could be) query language independent, as they only care about
the logical representation of the query and not the query itself.

In the following, we assume that this logical representation is an expression in
the logical algebra, which will be transformed into an expression in the physical
algebra by the plan generator. Some query compilers (e.g. [24]) already mix
logical and physical algebra before plan generation, but this only has a minor
influence on query compilation in general.

After constructing the logical representation, the query is first normalized and
afterwards common simple subexpressions are factorized (e.g., if the expression
”5∗x” occurs twice, the result is reused). This step can include constant folding,
construction of conjunctive normal forms etc. The goal is to remove as many
computations from the query as possible, either by performing the computation
at compile time or by finding shared expressions that only have to be computed
once.

The next step is called rewrite I and consists of transformation rules that
are applied to the query. These transformations can have a large impact on

10
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the quality of the resulting plan but are too difficult to model in the plan
generation step. They are done beforehand and are usually not cost-based.
The most important transformations are query unnesting [57], view resolution
and view merging [45] and predicate push-down or pull-up [56].

The plan generation step is the core of the optimization phase. The details of
this step are discussed in the next section. Basically, the plan generator takes
the logical representation of the query and transforms it into a physical plan.
While the logical plan describes the semantics of the query, the physical plan
describes the steps required to compute the result of the query. This transfor-
mation is cost-based, i.e., the plan generator tries to construct the plan that
will produce the query result with minimal costs. Costs are used to estimate
the runtime behavior of a physical plan. See Section 9.3.2 for a discussion of
different cost terms.

This physical plan is transformed again in the rewrite II phase. This is the
analogue to the rewrite I phase operating on physical plans. Theoretically, both
rewrite I and rewrite II are redundant, as the plan generator could consider
the different alternatives and choose the cheapest one. However, for practical
purposes it is often difficult to describe the transformations in a form suitable
for the plan generator. Besides, these transforms could have a large impact on
the search space. Therefore, these transformation steps are used as heuristics
to improve the constructed plan. Typical transformations done in the rewrite
II phase are group-by push-down [80], predicate pull-up [33, 46] and merging
of successive selections and maps.

Finally, the code generation step transforms the physical plan into a form that
can be executed by the runtime system of the database management system.
This step might do nearly nothing if the database is able to execute the physical
plan directly. However, database systems often require additional code to test
predicates etc. This can be machine code [51], code for a virtual machine [78],
interpreted expression trees [31] or some other form suitable for execution [15].

After this step the query compilation is done, as the query has been trans-
formed into a form that can be executed by the database management system.

2.3. Runtime System

The runtime system manages the actual database instance and can execute the
plans generated by the compile time system. The actual implementation differs
between systems, type relevant parts of a typical runtime system architecture
are shown in Figure 2.3: The lowest layer consists of the physical storage layer.
It interacts with the storage media and organizes the storage space into par-
titions. Based upon that, the logical storage layer maintains segments. Like
files in a file system, segments offer growable storage space that abstracts from
physical storage, fragmentation etc. The segments themselves are organized into
pages, which are read and written on demand by the buffer manager. These
pages have a fixed size, which makes I/O and buffer management simple. As
the pages are typically much larger than the data elements stored on it and
the data can vary in size, pages offer a simple storage space management that

11



2. Query Processing

B-trees

partitions

pages

operatorsplan execution

buffer manager

logical storage

physical storage

segments

data structures

Figure 2.3.: Overview of query execution

SORT

MERGE-JOIN

SORT

SELECT

INDEXSCANTABLESCAN

close

next

open

Operator

Figure 2.4.: Operator interface and usage example

is restricted to the page itself. Based upon this, complex data structures (e.g.
relations or indices) are stored in the pages. They can span multiple pages, but
have to use pages as storage units (e.g. each node in a B-tree would occupy
exactly one page). The data structures offer a high level interface that hides
the actual storage structure. Typical operations are insert a tuple, enumerate
all tuples, etc. The topmost layer uses this high-level interface to execute plans.
This is done by executing operators each performing a relative simple task (e.g.
set intersection). They are combined to produce the final query result. As this
is the layer most relevant for query processing, we describe it in more detail.

Algebraic operators are the building blocks of query execution. They offer
a set-oriented (or bag-/list-oriented) view of the data. This means that each
operator produces a set of data items (usually tuples) and itself takes sets of
tuples as input. Semantic constraints aside operators can be combined arbitrar-
ily, which makes them a very powerful concept for query execution. The basic
operator interface and a usage example are shown in Figure 2.4. The standard
operator interface [50] consists of the three methods open, next and close. The
open method initializes or resets the operator, the next method returns the next
data element until the whole result has been computed, and the close method
finishes the computation and releases allocated resources. Note that this inter-
face only cares about abstract data elements without understanding the actual
contents of the data. For most operators, the actual data has only a limited
influence on the operator logic. This allows for a generic implementation that
is independent of the concrete data types. Therefore, required operations like
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comparisons are moved out of the operators and provided as an annotation to
the operator. This allows writing generic operators that can be used for any
kind of data.

To illustrate this concept, consider the query

select *
from person p,

department d
where p.dep=d.id and

p.salary>40000 and
d.name="Development".

A possible operator tree for this query is shown in Figure 2.4: The TABLESCAN
requires no input and returns as output the tuples contained in the person
relation. This output is filtered by the SELECT operation, which removes all
persons with a salary ≤ 40000 (not shown in the figure). The remaining tuples
are passed to the SORT operator that reorders the tuples according to the dep
attribute (not shown). The INDEXSCAN also requires no input and uses an index
on the attribute name for the department relation. The index lookup implicitly
evaluates the condition for name, and the output is passed to the other SORT
operator that orders the tuples according to the id attribute. Both output
streams are combined in the MERGE-JOIN operator, that combines tuple pair
with matching dep and id attributes into a large tuple. The output of this
operator consittutes the answer to the query.

Note that it is common to use an algebraic notation instead of operator
names, e.g., � instead of JOIN, σ instead of SELECT etc. When it is not clear
which operator corresponds to the algebra expression (especially for joins), this
is stated by using a superscript, e.g., �SM instead of SORT-MERGE-JOIN.

While support for DAG-structured query plans mainly involves the compile
time system, the plan execution layer of the runtime system is also affected. For
DAG-structured query plans, the operators can share operators as input. This
makes it difficult to use the operator interface as described above. A detailed
discussion of executing DAGs can be found in Chapter 11.
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3. Related Work

Few papers about DAG structured query graphs exist and the techniques de-
scribed there are usually very limited in scope. A Starburst paper mentions
that DAG-structured query graphs would be nice, but too complex [31]. A
later paper about the DB2 query optimizer [20] explains that DAG-structured
query plans are created when considering views, but this solution uses buffer-
ing. Buffering means that the database system stores the intermediate result
(in this case the view) in a temporary relation, either in main memory or on
disk if the relation is too big. This buffering is expensive, either because it
consumes precious main memory which could be used for other operators or –
even worse – because the data has to be spooled to disk. Besides, DB2 opti-
mizes the parts above and below the buffering independently, which can lead
to suboptimal plans. Although not optimal, this is still a useful optimization
and probably state of the art in commercial database management systems.

The Volcano query optimizer [21] can generate DAGs by partitioning data
and executing an operator in parallel on the different data sets, merging the
result afterwards. Similar techniques are described in [22], where algorithms
like select, sort, and join are executed in parallel. However, these are very
limited forms of DAGs, as they always use data partitioning (i.e., in fact, one
tuple is always read by one operator) and sharing is only done within one logical
operator.

Although few papers about the general construction of DAG-structured query
plans exist, many published optimizations generate DAGs. A very nice opti-
mization technique are so-called magic sets [5]. There, domain information from
one part of the query graph is propagated sideways to another part of the query
graph and used with a semijoin to remove tuples that can never match later
in the query. A similar domain-based optimization can be used for dependent
joins: instead of performing the dependent join for each tuple on the left-hand
side, one determines the domain of the free variables on the right-hand side
first, performs the dependent join only on the domain, and then joins the result
with the left-hand side by means of a regular join. In both cases, the output of
an operator is passed into two operators in separate parts of the query plan, so
a more general DAG support is required.

Disjunctive queries can be handled efficiently via bypass plans [73]. There,
tuples are passed to different operators depending on predicate tests. For exam-
ple, when using the filter predicate f(x)∨ g(x), the predicate f(x) is evaluated
first, and when it is satisfied the tuple can already be passed to the output
without testing g(x). As this can also be done in more complex situations, the
performance gain can be substantial. This requires an even more general DAG
support, as now operators can not only have multiple consumers but also pass
tuples with different characteristics (especially cardinality) to their according
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consumers.
Sharing intermediate results is also important for multi-query optimization.

One paper that constructs (limited) DAGs is [41]: It uses heuristics to identify
common expressions in a sequence of (generated) queries and factorizes them
into either a temporary view or a temporary relation. In an OLAP environment
with generated queries, this reduced the runtime by up to a factor of 10.

While these techniques give a good impression of what kind of DAG support
is required, many other techniques exists. Usually, the DAG requirements are
simpler, the optimization techniques just want to read the same intermediate
result multiple times (e.g. when optimizing XQuery expressions [29]). However,
these papers never mention how this should actually be integrated into a plan
generator and a runtime system. The plan generation problem can be avoided
by using these techniques only as heuristics during the rewrite phases, but this
can produce suboptimal results and is not really satisfactory. The runtime
system is less important when considering only limited DAGs (and accepting
the performance penalty caused by buffering intermediate results), but DAG
support without buffering and with support for complex bypass plans is not
trivial.

The only paper that explicitly handles DAG-structured query plans during
query optimization is [67]. It describes some equivalences for operators with
more than one consumer and then describes plan generation for DAGs. How-
ever, this is reduced to classical tree-structured query optimization: the al-
gorithm decides beforehand (either using heuristics or by enumeration) which
operators should be shared. Then, it duplicates the shared operators for all
consumers except the first one and sets the costs for executing the duplicate to
zero. Then it performs a tree-based plan generation and merges the duplicates
afterwards. While this indeed generates DAG-structured query plans, one must
be careful to avoid missing the optimal solution: first, the plan generator must
be absolutely sure that the real operator (which represents the real costs) is in-
cluded in the result plan and not only duplicates with zero costs. This can be a
problem when constructing plans bottom-up and considering plan alternatives
(i.e. subproblems can be solved by using different operators). Second, this only
works if all operators just add up the costs of their input operators. When, for
example, such a duplicate is present on the right-hand side of a nested loop join,
the cost calculation will be completely wrong, as the nested loop multiplies the
costs of the right-hand side (apparently zero here) with the number of tuples
on the left-hand side. Still, it is a first step towards optimizing DAG-structured
query plans. The paper does not handle the execution of these plans, it just
mentions that they are useful for parallel/distributed execution.
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4.1. Overview

The early query compilers like [69] were hard-wired, which means that every
optimization performed was explicitly coded by hand. This severely limits the
extensibility and also makes it more difficult to use certain meta heuristics like
A∗. Extensibility is important for a query compiler, as adding extensions to
the database system is quite common. Sometimes these extensions can even be
made by the user (e.g. Starburst [31]), which requires a very flexible system. In
particular, the following common modifications must be anticipated:

• adding support for new components of the runtime system, like new index
structures, new operators etc.,

• adding support for new query features, like new query language standards,
new data types etc.,

• adding new optimization techniques, like new algebraic equivalences, and

• reordering optimization steps, e.g., performing the most promising opti-
mizations first.

In a hard-wired query compiler, this usually means rewriting large parts of
the compiler. And that is not even an option if the query compiler should
optimize user-defined types and functions, potentially with user-provided op-
timization techniques. Therefore, rule-based query compilers were developed
that separated the query compiler from the concrete optimization steps, such
that new optimizations could be added more easily. In the rest of this chapter,
we first look at some existing systems and then discuss some design decisions
for rule-based systems. A concrete implementation is discussed in Chapters 5
and 7.

4.2. Related Work

One of the first systems to use a rule-based approach was Squiral [71]. It uses
a transformation-based optimization approach. The query is represented as an
operator tree that is successively transformed by optimization rules. These rules
are simple heuristics (e.g. perform a selection before a join) and are not cost-
based. Still, the optimization can be extended by adding new rules. Besides,
the query compiler used two rule sets. One for the main query transformation
and afterwards one for order optimization to add sort operators for sort merge
joins etc.
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A much more ambitious approach was chosen by the Genesis project [6, 7].
The main goal there is to organize the query compiler (and the rest of the sys-
tem) into reusable software components that could be combined as needed. It
defines standard interfaces to get a clear separation between query represen-
tation, optimization algorithms and runtime algorithms. By using a generic
representation all algorithms should be applicable, independent of the concrete
database system. The optimizations are treated as transformation algorithms
(they get an operator tree as input and produce a new tree), but could work
constructively internally. While this is an interesting approach, it is not clear
if this kind of generality can really be achieved in a query compiler. All opti-
mization algorithms should work on any kind of input, but if a new operator
is added the existing algorithms at least need some hints how to handle the
operator (ignore it, optimize its input independent of the rest, etc.).

A well-known rule-based query compiler is the Exodus compiler generator
[27]. It takes a specification of the logical algebra, the physical algebra, op-
timization rules and of rules to convert the logical algebra into the physical
algebra. This specification is converted into source code that forms the actual
query compiler. Extending the query compiler can be done by just changing
the formal specification. The optimizations themselves are transformation rules
that are applied in a cost-based manner using a hill-climbing model. To im-
prove the search space exploration, the most promising rules (with the greatest
estimated potential) are applied first. The Volcano query compiler [23, 28] is
the successor project, that eliminates some limitations of the Exodus approach.
These are mainly lack of support for parallel execution, a limited cost model
and no support for enforcers (helper rules that guarantee ordering properties
etc.). See Section 5.2 for a discussion of the plan generation approach of Vol-
cano. The rule-based approach in general is similar to the Exodus project [28].
Based upon experiences with Exodus and Volcano, the Cascades framework
[24] uses a more general rule set. The query optimizer no longer handles logical
and physical operators differently (in fact, operators can be both) and it knows
about enforcer rules. The Cascades framework is not as well published as the
previous compilers, but apparently it is no longer a query compiler generator
but just one query compiler. The rules no longer come from a formal specifi-
cation but are now coded directly and integrated into the query compiler by
providing an object-oriented interface.

A rule-based query compiler that does constructive instead of transformative
plan generation is the Starburst query compiler [31, 44, 48]. It also has some
transformation rules for predicate push-down etc., but these are only used dur-
ing the rewrite phases. The plan generator itself builds the query plans bottom-
up, combining LOLEPOPs (low-level plan operators) into more complex STARs
(strategy alternative rules). The specification of this construction is done in a
grammar-like way. The LOLEPOPs form the terminals and the STARs the
non-terminals. This approach is especially interesting for two reasons. First,
it is the only approach presented here that will construct the optimal solution
(transformation-based optimization usually cannot guarantee this, as it does
not consider the whole search space). Second, it allows the user to define new
LOLEPOPs and STARs, so that the query optimizer can be extended by the
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user.

4.3. Design Decisions

When building a rule-based query optimizer, there are several decisions to
be made about the rule interface. The first is what the rule should actually
specify. The easiest possibility is to use rules as transformative optimizations,
e.g., by specifying algebraic equivalences. This is done in most rule-based sys-
tems, but it limits the query optimizer to a transformative approach. To allow
construction-based optimizations, the rules have to specify how operators can
be combined. The best approach here is probably the Starburst model, which
uses transformation rules during the rewrite phases and grammar-like rules for
constructive plan generation. The plan generator presented here also uses this
model, although the search is performed top-down: like in a top-down parser,
the non-terminals are expanded until only terminals are left.

Another problem is the representation of the query execution plan (respec-
tively the representation used for plan generation). To stay extensible, the
query compiler should assume as little as possible about the concrete database
system. However, the optimization rules need information about the query
structure and potentially about the data types involved. There is no obvi-
ous solution to this problem. In a transformation-based optimizer the query
could be represented as an algebraic expression which contains the full type
information. But when a new operator is added to the system, the existing
transformation rules do not know how to handle this operator. Probably they
could ignore it and optimize the rest of the algebra expression, but getting a
reasonable behavior might require to change all existing rules. Our plan genera-
tor uses a different approach. It is constructive and organizes the rules similarly
to Starburst in a grammar-like way. However, the rules usually assume that all
operators are freely reorderable. If this is not true, explicit operator dependen-
cies are added during the preparation step (see Section 5.3). Thus, the plan
generator treats evaluation order requirements like normal syntax requirements
(attributes must exist etc.) that have to be checked anyway. The advantage of
this method is that it is very flexible and assumes nearly nothing about the op-
erators involved. The disadvantage is that the preparation step becomes more
complex, as all equivalences have to be encoded in this step. Still, this is done
only once per query, and, as a consequence, the checks during plan generation
are much simpler.

Finally, the rules have to be encoded somehow. Most systems favor a formal
specification that is either converted into source code (Exodus, Volcano etc.)
or interpreted at runtime (Starburst for STARs). Other systems write the rules
directly in source code (Starburst for transformation rules, Cascades). A formal
specification is nice and might make transformation rules more efficient (as a
generated tree parser can be more efficient than a hand written one), but it is
difficult to make a specification expressive and extensible enough. The Cascades
approach encodes all rules in objects that provide the required methods to
the plan generator. This is a nice concept that was also chosen for our plan
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generator, although some care is required when creating these objects to keep
them easily extensible. See Chapter 7 for a basic discussion of optimization
rules written this way.
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5. Extensible Approach for DAG
Generation

5.1. Introduction

We present an extensible approach for the generation of DAG-structured query
plans. As we will see in the next chapters, supporting DAG-structured query
plans requires changes in different parts of a database system. The most promi-
nent part, however, is the plan generator.

The plan generator is a central part of the query compiler. It takes a logical
representation of the query and transforms it into a preferable efficient plan
that can be executed by the runtime system of the database. Usually, this is
done by converting an expression of a logical calculus or of a logical algebra
into an expression of a physical algebra.

Since there are many different ways to express a logical expression as a phys-
ical one, the search space for the plan generator is very large. In fact, it can
be shown that just determining the optimal join order is NP-hard in general
[9, 35, 68]. While real-life queries can still be solved by using techniques like dy-
namic programming and pruning, the large search space results in very memory-
intensive and computation-intensive operations. This requires some care when
implementing a plan generator.

Another problem is the coupling between the plan generator and the rest of
the system. This was already discussed in Chapter 4, however, the coupling is
especially difficult when trying to minimize space requirements. To save space,
the plan generator only retains the essential information in intermediate results
and synchronizes with the rest of the system only at the beginning and at the
end of the plan generation process (see Section 5.3).

In this chapter, we present a plan generator that makes very few assumptions
about the actual database system and allows the efficient generation of DAG-
structured query plans. Note that for practical purposes more information
about the runtime system is required. This is modeled separately by the rules
presented in Chapter 7.

The plan generator presented here handles DAG-structured query plans as
efficiently as tree-structured query plans. In fact, generating DAGs is more
efficient in some situations, as the plan generator recognizes equivalent subex-
pressions and prunes them against each other, thereby reducing the search
space.
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5.2. Related Work

The early papers about relational algebra already cared about optimizing al-
gebra expressions [10, 64]. One of the first systems that used a proper plan
generation as discussed in this chapter was System R [3, 69]. Its plan generator
first determines the possible access paths (table scans or index scans) and then
combines them bottom-up using dynamic programming until all relations are
joined. While this only solves the join ordering problem, it is already a complex
cost-based plan generation.

The Starburst plan generator [31, 44, 48] also uses a bottom-up construction
similar to System R. However, instead of only considering joins it uses a rule-
based approach to support arbitrary operators (see Section 4.2). Besides, it uses
a more elaborated plan representation and a ”glue” layer to enforce certain plan
properties. The plan generator presented here uses a somewhat similar rule
concept and similar partial plans, but the search phase is top-down and quite
different.

The Volcano query compiler [23, 28] uses a transformation-based approach.
It starts with a tree in logical algebra and performs a top-down search. In each
step it either uses a transformation rule, converts a logical operator into the
physical algebra, or adds an enforcer (e.g. sort) to guarantee physical properties.
Memoization is used to reduce the search space. So in each step the plan gen-
erator receives a goal (a logical expression and some physical properties) that
it tries to achieve. This concept of a goal-driven plan generation was reused in
our plan generator, although in a constructive approach. The Cascades query
compiler [24, 25] relaxes some of the constraints of the Volcano compiler. First,
the rules are much more general, they can place enforcer, match entire subtrees
etc. Second, the search space exploration is much more arbitrary. While Vol-
cano used a top-down approach, Cascades explores the search space according
to some guides, either explicit rules or promises made by rules. This means
that the optimized expression can become an arbitrary mix of physical and log-
ical operators, as the optimizer could optimize the parts in any order (in fact,
Cascades makes nearly no difference between logical and physical operators).
While this arbitrary exploration of the search space might have advantages (e.g.
early plans), it is not clear if this could also be used for constructive plan gen-
erators for the following reason: when building plans constructively, the plan
structure of subproblems is unknown until they have been solved. This makes
optimization decisions dependent on these (yet unsolved) problems difficult.

A plan generator that explicitly handles DAGs is described in [67]. It uses a
two-step approach that reduces the problem of generating DAGs to the problem
of generating trees. In the first step, the query is analyzed and all operators that
might be shared are determined. Then the subset of operators that should be
shared is determined (either by exhaustive search or by using some heuristics,
which might require running the following steps multiple times) and the shared
operators are duplicated. The duplicates provide the same properties as the
original operator, but report their costs as zero, so that additional consumers
produce no costs. Then, a normal tree-based plan generation is performed and
in the result the duplicates are merged back into the original operator. This
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plan generation

reconstruction

search

preparation

Figure 5.1.: Steps of plan generation

results in a cost-based DAG generation, but the approach has some drawbacks.
First, it is unfortunate that the selection of shared operators has to be done
beforehand, as this requires running the expensive plan generation step multi-
ple times. This selection cannot be omitted easily (e.g. by assuming that all
possible operators are shared), as some operators are alternatives (i.e. only one
of these operators makes sense). For example, when considering materialized
views, both a scan over the materialized view and a plan to recalculate the
view could be used. If the view is read several times, these alternatives are
both duplicated to enable sharing. By producing too many duplicates the plan
generator will choose only the duplicates without the original operators, as they
pretend to cause no costs. Second, the concept that additional consumers cause
no costs is only valid if the plan generator does not consider nested loops. If
data is read multiple times, the plan generator has to determine the maximum
number of reads, and in the model described above the duplicates can be read
an arbitrary number of times without causing costs. This severely underes-
timates costs, especially for very expensive operators. Note that nested loops
cannot be completely avoided, both dependent joins and joins with non-equijoin
predicates (e.g. a like b) use nested loops.

Another work that briefly mentions DAG generation is [55]. It gives some ex-
emplary transformation rules where input can be shared and states that renames
can be used to integrate the shared operators into the normal plan generation
process. While this allows DAG generation, it was not used to build a query
optimizer.

5.3. Integration of the Plan Generator

Before looking at the plan generator itself, it is worthwhile to consider the inte-
gration of the plan generator into the rest of the query compiler. As discussed
in Section 2.2, in most systems the plan generator forms the boundary between
primary logical and primary physical optimization. This means that the plan
generation phase performs a significant change of representation, converting a
logical calculus expression or algebra expression into a physical execution plan.

Plan generation itself can be separated in three distinct phases (see Fig-
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ure 5.1): The first phase, preparation, takes the logical representation and
brings it into a form suitable for plan generation. This includes looking up
a lot of data that is relevant for the query and is too expensive to look up
during the plan generation itself: relevant physical operators, available access
paths, interesting orderings, data distribution statistics, selectivities etc.

The main plan generation step, search, takes these operators and tries to find
the cheapest valid combination that is equivalent to the query. The exact way
to do this differs between plan generators. Some just transform the operator
tree, others build it bottom-up or top-down, but the search itself is basically a
combinatorial problem. Since the search space is huge, these combinations have
to be constructed as fast as possible. Therefore, the preparation phase should
precompute as much data as possible to allow for fast tests for valid operator
combinations, fast cost calculation etc. Furthermore, when using techniques
like dynamic programming, the search phase can construct millions of partial
plans, requiring a large amount of memory. Therefore, the search phase uses a
different representation of the query that is optimized for the plan construction.
The initial conversion from the query into this internal representation is also
done by the preparation phase.

Finally, after the search phase has found the best plan, the reconstruction
phase converts this plan back into the normal representation of the query com-
piler, although using physical operators instead of logical operators. While the
preparation step can be involved, the conversion back is usually much simpler,
the main problem is just to map the condensed internal representation back
to the original logical operators and to annotate the corresponding physical
operators accordingly.

When using a constructive plan generator instead of a transformative one,
the preparation phase has an additional task: it has to determine the building
blocks which will eventually be combined to form the full query. While this is
simple when only considering table scans, it becomes much more complex when
also considering index scans and materialized views [45]. If the preparation step
misses a potential building block, the plan generator cannot find the optimal
plan. On the other hand, the preparation step should add building blocks with
care, as the search space increases exponentially with the number of building
blocks. We will look at this particular problem in Section 5.7.1.

5.4. Algebraic Optimization

5.4.1. Overview

Query optimization, and especially plan generation, is based upon algebraic
equivalences. The plan generator uses them either directly by transforming
algebraic expressions into cheaper equivalent ones, or indirectly by constructing
expressions that are equivalent to the query. For tree-structured query graphs
many equivalences have been proposed (see e.g. [18, 52]), but some care is
needed when reusing them for DAGs.

When only considering the join ordering problem, the joins are freely re-
orderable. This means that a join can be placed anywhere where its syntax
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Figure 5.3.: Potentially valid transformation for DAGs (given a suitable σ)

constraints are satisfied (i.e. the join predicate can be evaluated). However,
this is not true when partial results are shared. This is shown in Figure 5.2
for a query that computes the same logical expression twice (e.g. when using
a view): In a) the join A � B is evaluated twice and can be shared as shown
in b). But the join with C must not be executed before the split, as shown in
c), which may happen when using a constructive approach. Intuitively this is
clear, as it means that �C is executed on both branches. But in other situa-
tions a similar transformation is valid, as shown in Figure 5.3: There A �B is
also shared, then a self join is performed and a selection predicate applied to
the result. Here, the selection can be executed before the topmost join if, for
example, the selection considers only the join attributes (other cases are more
complex). As the plan generator must not rely on intuition, we now describe a
formal method to reason about DAG transformations.

The reason why the transformation in Figure 5.2 is invalid becomes clearer
if we look at the variable bindings. As shown in Figure 5.4 a), the original
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Figure 5.4.: More verbose representation of Figure 5.2
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expression consists of two different joins A � B with different bindings. The
join can be shared in b) by renaming the output accordingly. While a similar
rename can be used after the join �C in c), this means that the topmost join
joins C twice, which is different from the original expression.

This brings us to a rather surprising method to use normal algebra semantic:
A binary operator must not construct a (logical) DAG. Here, logical means that
the same algebra expression is executed on both sides of its input. What we
do allow are physical DAGs, which means that we allow sharing operators to
compute multiple logical expressions simultaneously. As a consequence, we only
share operators by renames: If an operator has more than one consumer, all
but one of these must be ρ operators. Thus, we use the ρ to pretend that the
execution plan is a tree (which it is, logically) instead of the actual DAG.

5.4.2. Share Equivalence

Before going into more detail, we define when two algebra expressions are share
equivalent, which means that one expression can be computed by using the
other expression and renaming the result. We define

A ≡S B iff ∃δA,B :A(A)→A(B) bijective ρδA,B
(A) = B.

As this condition is difficult to test in general, we use a constructive definition
for the rest of this work (which in fact consists of sufficient conditions for the
definition above). First, two scans of the same relation are share equivalent,
as they produce exactly the same output (with different variable bindings).
Note that in this constructive approach the mapping function δA,B is unique.
Therefore, we always know how attributes are mapped.

scan1(R) ≡S scan2(R)

Other operators are share equivalent if their input is share equivalent and
their predicates can be rewritten using the mapping function. For the operators
used in this work (see Appendix A) we use the following definitions:

A ∪B ≡S C ∪D if A ≡S C ∧B ≡S D
A ∩B ≡S C ∩D if A ≡S C ∧B ≡S D
A \B ≡S C \D if A ≡S C ∧B ≡S D

ΠA(B) ≡S ΠC(D) if B ≡S D ∧ δB,D(A) = C
ρa→b(A) ≡S ρc→d(B) if A ≡S B ∧ δA,B(a) = c ∧ δA,B(b) = d
χa:f (A) ≡S χb:g(B) if A ≡S B ∧ δA,B(a) = b ∧ δA,B(f) = g
σa=b(A) ≡S σc=d(B) if A ≡S B ∧ δA,B(a) = c ∧ δA,B(b) = d

A×B ≡S C ×D if A ≡S C ∧B ≡S D
A �a=b (B) ≡S C �c=d (D) if A ≡S C ∧B ≡S D ∧ δA,C(a) = c ∧ δB,D(b) = d
A�a=b (B) ≡S C �c=d (D) if A ≡S C ∧B ≡S D ∧ δA,C(a) = c ∧ δB,D(b) = d
A �a=b (B) ≡S C �c=d (D) if A ≡S C ∧B ≡S D ∧ δA,C(a) = c ∧ δB,D(b) = d

A
→
�a=b (B) ≡S C

→
�c=d (D) if A ≡S C ∧B ≡S D ∧ δA,C(a) = c ∧ δB,D(b) = d

ΓA;a:f (B) ≡S ΓC;b:g(D) if B ≡S D ∧ δB,D(A) = C ∧ δB,D(a) = b ∧ δB,D(f) = g
µa:b(A) ≡S µc:d(B) if A ≡S B ∧ δA,B(a) = c ∧ δA,B(b) = d
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These conditions are much easier to check, especially when constructing plans
bottom-up (as this follows the definition).

Note that the share equivalence as calculated by the tests above is orthogonal
to normal expression equivalence. For example, σ1(σ2(R)) and σ2(σ1(R)) are
equivalent (ignoring costs), but not share equivalent when only testing the
sufficient conditions (this is not a problem for plan generation, as the plan
generator considers both orderings). On the other hand, scan1(R) and scan2(R)
are share equivalent, but not equivalent, as they produce different attribute
bindings. Share equivalence is only used to detect if exactly the same operations
occur twice in a plan and, therefore, only once cause costs (ignoring nested
loops, see Chapter 9 for more details). The logical equivalence of expressions is
handled by the plan generator anyway, it is not DAG-specific.

Using this notion, the problem in Figure 5.2 becomes clear: In part b) the
expression A � B is shared, which is ok, as (A � B) ≡S (A � B). But in part
c) the top-most join tries to also share the join with C, which is not ok, as
(A �B) 6≡S ((A �B) � C).

5.4.3. Optimizing DAGs

The easiest way to reuse existing equivalences is to hide the DAG structure
completely: During query optimization the query graph is represented as a
tree, and only when determining the costs of a tree the share equivalent parts
are determined and the costs adjusted accordingly. Only after the query opti-
mization phase the query is converted into a DAG by merging share equivalent
parts. While this reduces the changes required for DAG support to a minimum,
it makes the cost function very expensive. Besides, when the query graph is
already DAG-structured to begin with (e.g. for bypass plans) the correspond-
ing tree-structured representation is much larger (e.g. exponentially for bypass
plans), enlarging the search space accordingly.

A more general optimization can be done by sharing operators via ρ operators.
While somewhat difficult to do in a transformation-based query optimizer, for
a construction-based query compiler it is easy to choose a share equivalent
alternative and add a ρ as needed. Logically, the resulting plans behave as if the
version without ρ was executed (i.e. as if the plan was a tree instead of a DAG).
Therefore the regular algebraic equivalences can be used for optimization. We
will look at this again when discussing the plan generator.

5.4.4. Optimal Substructure

Optimization techniques like dynamic programming and memoization rely on
an optimal substructure of a problem (neglecting properties). This means that
the optimal solution can be found by combining optimal solutions for subprob-
lems. This is true when generating tree-structured query graphs, but when
done naively, is not true for DAGs. Figure 5.5 shows two query graphs for
A � B � C � B � C � D. The graph on the left-hand side was constructed
bottom-up, relying on the optimal substructure. Thus, A � B � C was opti-
mized, resulting in the optimal join ordering (A�B)�C. Besides, the optimal
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Figure 5.5.: Possible non-optimal substructure for DAGs

solution for B � C �D was constructed, resulting in B � (C �D). But when
these two optimal partial solutions are combined, no partial result can be reused
(except the scans of B and C, but these were omitted due to clarity reasons).
When choosing the suboptimal partial solutions A� (B �C) and (B �C)�D,
the expression B � C can be shared, which might be a better plan. Therefore,
the optimal DAG cannot be constructed by just combining optimal partial so-
lutions.

This could be solved by deciding beforehand which operators should be
shared. Then the plan generator would prefer plans that allow sharing these
operators (i.e. where the operators form a subgraph) to an otherwise equivalent
plan that does not allow sharing the operators. As it is not possible in general
to decide which operators should be shared, the plan generation works slightly
different: Instead of creating plans which allow sharing a given set of operators,
each plan is annotated with the set of operators in the plan that could be shared
with other plans. In theory, this would be every operator in the plan, but in
practice, only a few operators are relevant for sharing. We look at this in more
detail in Section 6.3.1. Given this annotation, the plan generator can check
if one plan allows more sharing than the other, and keep it even if it is more
expensive. As this means one plan per set of shared operators, the search space
is increased by a factor of 2n, where n is the number of sharable operators. In
practice, the factor is much lower, usually proportional to n and often close to
1. This has several reasons.

First, 2n is a very loose upper bound, as only operators can be shared that
are actually part of the subproblem. This still results in an exponential growth
of the factor, although much slower. Besides, only operators can be shared
whose input is also shared, as we want to share whole subgraphs. Furthermore,
the plan generator can still prune dominated plans. So when one plan allows
sharing the same or more operators than another plan and has lower costs, it
dominates this plan. Therefore, it is often sufficient to keep one plan if it offers
the most sharing and, at the same time, has the lowest costs. Besides, it is
possible to estimate if sharing is worthwhile: The costs for the plan without
sharing in Figure 5.5 are at most twice as high as for the plan with sharing, as it
selected the (local) optimal join ordering, and its only fault is calculating B�C
twice. Therefore, the join ordering A � (B � C) can be discarded if it causes
more than twice the costs of the optimal solution, as the difference cannot be
made up. In general, plans with a greater sharing can be discarded if the costs
are greater than the costs of the optimal solution times the maximum sharing
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(the maximal number of shared plans).
While the plan generator presented here guarantees the optimal solution by

keeping track of shared operators, sharing could be excluded from the search
space as a heuristic. As stated above, the maximum error made by constructing
the optimal solution without taking future sharing into account is bound by
the maximum sharing, usually 2 or 3. Besides, common subexpressions are
still shared if possible. It may only happen that some sharing opportunities
are missing. Cases where it is better to use suboptimal partial results can be
constructed, but do not happen for typical queries (e.g. TPC-H). They require
that the partial solution with more sharing is not much worse than the optimal
solution (otherwise sharing does not pay off), and only differs in the operator
order. This is uncommon.

5.5. Approach

5.5.1. Goals

The main design goals of the plan generator presented in this chapter were:

1. support for DAG-structured query plans

2. support for arbitrary operators

3. support for materialized views

4. support for bypass plans

5. efficient plan generation

Of these goals, efficiency was the least important. Of course the plan generator
still had to be able to optimize large queries, but a certain slowdown compared
with a heavily optimized (classical) plan generator was acceptable if the other
goals were met.

Support for a wide range of operators and materialized views is now common
for plan generators, however, support for DAG structured query plans is not.
Therefore, the main goal was to support DAGs, although the other goals are
also achieved with the chosen approach.

5.5.2. Components of the Plan Generator

When talking about ”the plan generator”, one usually means ”the component
that constructs the physical plan”. However, the plan generator is split into
several components where the plan construction itself is comparatively small,
as a lot of infrastructure is required during the plan generation phase. A rough
overview of the components used in our approach is shown in Figure 5.6. They
are discussed in more detail in the following chapters, but to make the concept
of the plan generator clearer, we already give a short overview here.

The core component of the plan generator is the search component. It is
responsible for finding the best plan equivalent to the input and uses the other
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Figure 5.6.: Components of the Plan Generator

components as helpers. In our approach, it is a kind of meta algorithm, which
means that the optimizer knows how the best plan should be found, but leaves
all the details to other components. This has the advantage that the optimizer
is very generic and extensible. We will discuss this in more detail in the rest of
the chapter.

The semantic coupling between the optimizer and the rest of the system is
done by the rules component. In the preparation phase the input is analyzed
and instances of all rules relevant for the query are instantiated. A rule can,
e.g., correspond to one algebra operator. So when the query contains a where
condition like a=b, a rule instance for a selection (or a join) is created that
contains information like required attributes, selectivity and how to construct
a physical operator from the result of the search phase. As we will see in
Chapter 7, there is no simple 1:1 mapping between rules and operators, but for
now it is sufficient to think of the rule instances as descriptions for all physical
operators that might be useful to answer the current query.

The plan generator builds the final plan incrementally, which means that it
creates many partial plans which only answer a subproblem of the input query.
The plan management is done by the plans component, which also takes care
of pruning plans that are dominated by other plans.

Finally, the cost model and the reasoning about orderings and groupings are
organized in dedicated components, as the corresponding problems are complex
and can be clearly separated from the rest of the plan generator. See Chapters 8
and 9 for a detailed description.

5.5.3. An Abstract View of Plan Generation

When looking at the problem of plan generation from a very high level, a
plan generator is a mechanism that finds the cheapest plans with some given
properties.

Consider the SQL query and its canonical operator tree shown in Figure 5.7.
The plan generator has to find the cheapest variation of this tree that still
returns the same result. Here, the only beneficial change to the operator tree
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select c.name, sum(o.value)
from customers c,

orders o,
where c.id=o.customer and

o.year=2004
group by c.id, c.name

Γid,name;sum(value)

customers orders

σyear=2004

�

id=customer

Figure 5.7.: A SQL query and its canonical operator tree

would probably be pushing the selection down. However, the plan generator
also has to replace all logical operators by physical operators. In the example,
here the join has to be replaced by a concrete join implementation. For a sort
merge join, this might even add additional sort operators to the tree. So in this
example, the plan generator has to find the cheapest combination of physical
operators that computes the (logical) join, the selection and the group-by while
still maintaining the proper semantics (e.g. the selection has to be done before
the group-by).

In general, the plan generation phase can be formulated as a problem of sat-
isfying (binary) properties under cost constraints: The plan generator tries to
find the cheapest plan that ”includes” all logical operators requested by the
input. Of course, the plan consists of physical operators, but these operators
know which logical operators they represent (as we will see in Chapter 7, a
physical operator can actually represent zero, one or many logical operators).
The operators themselves also require certain properties, the simplest ones are
available attributes: In the example, the selection requires the attribute year,
the join requires the attributes id and customer and the group-by requires the
attributes name and value. However, looking at the attributes is not sufficient
when considering operators that are not freely reorderable (like outer join or
group-by). This is discussed in more detail in Chapter 7, but basically the con-
straints can also be modelled as tests for binary properties. In the following, we
call these binary properties used to model operator requirements bit properties
to distinguish them from other plan properties.

For the plan generator, the semantics of these bit properties are not really
relevant, all it cares about is that these bit properties form the search space
(alternatives with the same bit properties can be pruned against each other)
and that they are required and produced by certain ”operators”. Actually,
the plan generator does not even care about operators, it only reasons about
rule instances, which roughly correspond to physical operators. So the plan
generator uses the rules to combine partial plans until finally a plan is found
that satisfies all bit properties required to answer the query. Of course this is
more complex, as the plan generator tries to find the cheapest plan and that
with as few computations as possible, but before looking at the details we first
consider the rules used during the search.
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5.5.4. A Concrete Plan Generator

The last paragraph actually describes a way to implement a plan generator.
Using this model, plan generation consists of recursively finding plans with
certain bit properties. It starts by searching a plan that contains all logical
operators. In each step, it tries to use one of the known rules to produce
some required bit properties and recursively finds plans with the bit properties
that are still missing. While a bottom-up implementation is also possible, a
top-down approach has the advantage that only bit property combinations are
examined that are relevant for the total query (see e.g. Section 5.9). The basic
approach is as follows:
plangen(goal)
1 bestP lan← nil
2 for each r in known rule instances
3 do if r can produce a bit property in goal
4 then rem← goal \ {p|p is produced by r}
5 part← plangen(rem)
6 p← buildPlan(r, part)
7 if bestP lan = nil or p is cheaper than bestP lan
8 then bestP lan← p
9 return bestP lan

This is highly simplified (see Section 5.7 for the real algorithm), but the
basic idea is that the plan generator is only concerned with fulfilling abstract
bit properties without understanding their semantics. The actual semantics are
described by the rules, which also take care of commutativity, associativity etc.
Because of this, the buildPlan function used above might intentionally fail,
as, although the plan generator has determined that all required bit properties
are satisfied, the rules themselves might decide that the result would not be
equivalent to a part of the query. In the real implementation, this is no problem,
as the rules also influence the search space exploration and, therefore, can avoid
this situation.

As the plan generation does not need to understand the bit properties and
is only interested in the fact whether they are available or not, these can be
modeled efficiently using bitmaps; the plan generation function simply maps
a bitmap representation of the available bit properties to a partial plan. This
observation also shows an obvious method to reduce the search space: As plans
with a certain set of bit properties will be requested repeatedly, memoization
can be used to avoid recomputation.

A nice property of the plan generator sketched above is that it creates DAGs
automatically: Each operator is linked to a partial plan that satisfies certain
bit properties. If two operators require plans with the same bit properties,
this results in a DAG. For more aggressive sharing, some additional care is
required (e.g. it might be possible to share a view that offers more attributes
than required by each individual consumer), but in general, this avoids duplicate
computation.

Support for materialized views is also very simple: Treat the materialized
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view like a scan that immediately provides all bit properties of the materialized
view. This way, it is automatically included in the search process without
any special handling. Consider, for example, the following query (assume that
matview is materialized):

create view matview
select o.custkey, o.year, revenue:sum(i.revenue)
from order o, item i
where o.orderkey=i.order
group by o.custkey, o.year

select c.name, v.revenue
from customer c, matview v
where c.custkey=v.custkey and

v.year=1995

The plan generator has two choices: It either uses the materialized view,
reducing the problem to two scans, one join and one selection, or it can ignore
the materialized view and calculate the view again, which means three scans,
two joins, one group-by and one selection. When only looking at the operators
involved, the materialized view seems to be a clear winner (and in this simple
example it probably is), but using the materialized view has the disadvantage
that the selection predicate cannot be pushed inside the view. If the view
is very large and the predicate is very selective, it might be better to ignore
the materialized view. The decision can (and should) be made by the plan
generator: First, look up all rules required to answer the query without using
the materialized view during the preparation step. Then, add another rule
that represents a scan of the materialized view and sets all bit properties as
if the join and the group-by of the view had been executed, but with the cost
characteristics of the scan. Now the plan generator is free to choose between
the two alternatives and can select the cheaper one.

5.6. Plan Properties

5.6.1. General

During plan generation, the plan generator generates millions of partial plans
that are finally combined to the full plan. Since these plans consume a sig-
nificant amount of memory, a compact representation is essential. Choosing a
representation includes a time-space trade-off; e.g., the costs of a plan could be
recomputed every time they are required. However, they are usually material-
ized, as a recomputation would be too expensive.

Traditionally, the plan properties include the cardinality, the costs, available
attributes (including the tuple width), applied operators, the ordering, avail-
able indices and storage information (the site and materialization information)
[48]. However, for the plan generator described here, the plan properties are
much more abstract, consisting mainly of a bit set and some information for
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the cost model. We call these properties stored in a bit set bit properties, to
distinguish them from plan properties in general. As the plan generator does
not understand the semantics of the bit properties, it just keeps track of them
and verifies that the equally abstract requirements of the operators are met.
Actually, the set of stored bit properties is selected for the current query, as
we will see in Section 5.7: The plan generator minimizes the set of bit proper-
ties during the preparation step and only keeps those that are essential for the
current query. The set of potential bit properties is discussed in Section 5.6.2.

The plan generator tries to find the cheapest execution plan for the query
and does so by first finding the cheapest (partial) plan for subproblems and
then combining the plans to the complete execution plan. Ideally, there exists
one ”best” plan for each subproblem, but sometimes it is not clear which plan
is better for one of either following reasons: because of the cost function (see
Section 9.3.2), because of ordering/grouping properties or because some plans
allow more sharing. For this reason the plan generator maintains a set of
plans for each (relevant) bit property combination which contains all plans that
satisfy these bit properties and are not dominated by other plans in the set.
Note that ordering/grouping properties are handled separately: Theoretically
the ordering and grouping properties could be treated, like any bit property, as
a simple flag: is ordered on attribute a, is grouped by the attributes b and c
etc. However, the set of all possible orderings is quite large and orderings can
change transitively into each other, which would make maintaining such flags
very difficult. Therefore, we use a special data structure for orderings, which is
described in Chapter 8. This data structure is opaque for the plan generator, it
only allows to check if a certain ordering or grouping is satisfied by the partial
plan.

As the plan generator has to keep multiple plans for a subproblem, the plan
management is split into two components: The container (PlanSet, which cor-
responds to one entry in the memoization table) describes the subproblem, con-
tains all plans and holds all logical properties shared by the contained plans.
The plan itself (Plan) describes a concrete plan and holds the physical proper-
ties, that are different for each plan. The concrete data structures are discussed
in Section 6.1.

5.6.2. Properties for Operator Rules

While talking about the set of bit properties satisfied by a plan, we did not
specify what these bit properties actually are. For the plan generator itself this
is not relevant, as only the rules themselves care about the semantics of the bit
properties. A detailed discussion of different rules can be found in Chapter 7,
but we already present some simplified rules and their bit properties here to
make the algorithm part of this chapter clearer.

We assume for a moment that we only want to optimize table scans, selections
and joins. This can be done by using three different rules, which at the same
time represent three physical operators: scan, selection and nested loop join. A
scan requires no input and produces a tuple stream with a given set of attributes.
In this scenario a selection is always applicable if the required attributes are
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present in the input and the join requires that the input streams contains certain
relations (i.e. the attributes of these relations). In this simple model, the set
of potential bit properties could just be the set of attributes relevant for the
operators. This is sufficient for each rule to check if their corresponding operator
would be applicable, however, it is not enough for the plan generator as a whole:
When just looking at the attributes, the plan generator would try to apply
selections multiple times, as they seem to reduce the cardinality ad infinitum.
Therefore the set of bit properties should also contain the logical operations
applied so far. Note that this can be different from the set of rules: there can
be multiple rules that produce the same bit properties (e.g. for different join
implementations). These rules would perform the same logical operator and,
therefore, only use one bit property entry. In our simple scenario, one rule is
equivalent to one logical operation.

Using attributes and logical operations as bit properties is very expressive,
as dependencies between logical operations (e.g. an outer join and its input)
can be modeled as well: An operation that has to be performed after another
operation just requires that the other operation has to be executed somewhere
in its subplans (which can be seen by looking at the bit properties). However, it
is desirable to keep the set of bit properties small, as this allows a more efficient
representation. Therefore, all rules selected during the preparation phase first
register all bit properties that might be relevant, and then a pruning algorithm
decides which bit properties should actually be used. For example, it is often
not required to keep track of the fact that a join has been performed, as the
join could not be executed twice anyway (due to the nature of search space
exploration). We will look at this in Section 5.7.1.

Apart from the plan information shown above, a rule needs additional in-
formation to calculate the properties of a new plan. For example, a rule for a
selection needs to know its selectivity, or a tablescan the physical characteristics
of the table. This information is not stored in the plan itself, but in the (shared)
rules: For each logical operation of the query (see Section 7.2 for more details),
the preparation steps creates one (or more) new rule instance that contains all
statistics and other parameters required by the rule. This has the advantage of
keeping the plans compact while still maintaining the full information.

5.6.3. Sharing Properties

Apart from the bit properties used for the operator rules, each plan contains
a sharing bit set to indicate potentially shared operators. Semantically, this
belongs to the cost model, as it is used to detect DAG creation and to keep
plans that allow more sharing. But as it is related to the algebraic optimization
discussed in Section 5.4, we already discuss it here.

When considering a set of share equivalent plans, it is sufficient to keep one
representative, as the other plans can be constructed by using the representa-
tive and adding a rename (note that all share equivalent plans have the same
costs). Analogously, the plan generator determines all rules that are share
equivalent (more precisely: could produce share equivalent plans if their sub-
problems had share equivalent solutions) and places them in equivalence classes
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(see Section 6.3.1). As a consequence, two plans can only be share equivalent
if their producing rules are in the same equivalence class, which makes detect-
ing share equivalence easier. Equivalence classes containing only a single rule
are discarded, as they do not affect plan sharing. For the remaining equiva-
lence classes, one representative is selected and one bit in the sharing bit set is
assigned to it.

For example the query in Figure 5.5 consists of 11 operators: A, B1, C1, B2,
C2, D, �1 (A and B1), �2 (between B1 and C1), �3 (between B2 and C2),
�4 (between C2 and D) and �5 (between A and D). Then three equivalence
classes with more than one element can be constructed: B1 ≡S B2, C1 ≡S C2

and �2 ≡S �3. We assume that the operator with the smallest subscript was
chosen as representative for each equivalence class. Then, the plan generator
would set the sharing bit B1 for the plan B1, but not for the plan B2. The plan
A �1 (B1 �2 C1) would set sharing bits for B1, C1 and �2, as the subplan can
be shared, while the plan (A�1 B1)�2 C1 would only set the bits B1 and C1, as
the join cannot be shared (only whole subgraphs can be shared). The sharing
bit sets allow the plan generator to detect that the first plan is not dominated
by the second plans, as the first plan allows more sharing. The equivalence
classes are also used for another purpose: When a rule requests a plan with
the bit properties produced by an operator, the plan generator first checks if a
share equivalent equivalence class representative exists. For example, if a rule
requests a plan with B2, C2 and �3, the plan generator first tries to build a
plan with B1, C1 and �2, as these are the representatives. If this substitution
is possible (i.e. a plan could be constructed), the plan constructed this way is
also considered a possible solution.

In general, the plan generator uses the sharing bits to mark sharing opportu-
nities: Whenever a partial plan is built using an equivalence class representative,
the corresponding bit is set, which means that the plan offers to share this oper-
ator. Note that it is sufficient to identify the selected representative, as all other
operators in the equivalence class can be built by just using the representative
and renaming the output. As sharing is only possible for whole subplans, the
bit must only be set if the input is also sharable. Given, for example, three
selections σ1, σ2 and σ3, with σ1(R) ≡S σ2(R). The two operator rules for σ1

and σ2 are in the same equivalence class, we assume that σ1 was selected as
representative. Now the plan σ1(R) is marked as ”shares σ1”, as it can be used
instead of σ2(R). The same is done for σ3(σ1(R)), as it can be used instead
of σ3(σ2(R)). But for the plan σ1(σ3(R)) the sharing attribute is empty, as σ1

cannot be shared (since σ3 cannot be shared). The plans containing σ2 do not
set the sharing property, as σ1 was selected as representative and, therefore, σ2

is never shared.
The explicit marking of sharing opportunities has two purposes: First, it is

required to guarantee the optimal results, as one plan only dominates another
if it is cheaper and offers at least the same sharing opportunities. Second,
it is useful for the cost model, as it has to identify the places where a DAG
is formed (i.e. the input overlaps). This can now be done by checking for
overlapping sharing properties. It is not sufficient to check if the normal bit
properties overlap, as the plans pretend to perform different operations (which
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1. instantiate suitable operator rules
2. register operator properties
3. prune irrelevant operators
4. minimize the properties
5. construct search filter
6. register share equivalent operators
7. register relevant orderings and groupings

Figure 5.8.: Steps of the preparation phase

select p.name, select p.name, d.name
p.dep.name from persons p,

from persons p departments d
where d=p.dep

1. scan(persons)
2. map(p.dep.name)
3. scan(departments)
4. join(d=p.dep)

Figure 5.9.: A example query, an alternative formulation and relevant rules

they do, logically), but share physical operators.

5.7. Algorithms

After describing the general approach for plan generation, we now present the
actual algorithms used. Unfortunately, the plan generator is not a single, con-
cise algorithm but a set of algorithms that are slightly interwoven with the
operator rules. This is unavoidable, as the plan generator should be as generic
as possible and, therefore, does not understand the semantics of the opera-
tors. However, there is still a clear functional separation between the different
modules: The plan generator itself maintains the partial plans, manages the
memoization and organizes the search. The operator rules only describe the
semantics of the operators and guide the search with their requirements.

In the following, we mainly describe the plan generator itself and only sketch
the operator rules to illustrate the interaction with the plan generator; the rules
are discussed in detail in Chapter 7. In this section, we first look at the coupling
between the rules and the plan generator and then follow the plan generation
step, starting with the preparation step, then the search phase and finally the
plan reconstruction. Note that the discussion here is very high-level, a more
detailed description of the algorithms is included in Chapter 6.

5.7.1. Preparation Phase

The different steps of the preparation phase are shown in Figure 5.8. The
first step consists of traversing the input query and instantiating suitable rules.
Which rules are actually suitable depends on the query and the concrete database
instance, but it should include at least rules for the operators in the input, rules

37



5. Extensible Approach for DAG Generation

for available indices and rules for materialized views that could be used. If plan
alternatives are considered (e.g. joins instead of pointer chasing), all rules for the
operators of the plan alternatives must also be instantiated. All these rules are
instantiated, annotated with information like selectivities etc., and collected.

Consider the OQL query shown on the left of Figure 5.9: It determines
the name of the department for each person by pointer chasing. This can
be evaluated by a single scan of persons and one map operator that does the
pointer chasing, so that the rules 1 and 2 shown on the right are instantiated.
If the query compiler realizes that the query in the middle is an equivalent
formulation that eliminates pointer chasing by a join, the rules 3 and 4 are also
instantiated. Rules 1 and 3 are annotated with the characteristics of the extents
(cardinality, pages, tuples per page, tuple size, physical storage). Rule 2 needs
the same statistics as rule 3 to estimate the costs of pointer chasing, and rule 4
needs a selectivity estimation and the information that the join is a 1 : n join.
Note that the four rules are the rules directly instantiated in the preparation
step. However, more rules are instantiated indirectly, e.g., the join rule will
consider different join algorithms with different rules (see Section 7.5.4). While
it is relevant to keep this in mind to understand the algorithm, these hidden
rules are invisible for the plan generator which only reasons about the directly
instantiated rules.

In the next step, the operator rules register their required and produced
bit properties. Anything that can be expressed as a boolean expression can
be a bit property, but the usual bit properties are available attributes and
applied operators. In our example, the scan rules produce the attributes of their
relations and the property that they have been applied. The map rule requires
the attribute persons.dep and produces the attribute departments.name and the
fact that it has been applied. The join rule requires the attributes persons.dep
and departments.oid and produces the fact that it has been applied. Note that
the bit properties ”map applied” and ”join applied” should be identified (by the
rewrite rule that generated the two formulations), as they are plan alternatives.

After the bit properties are registered, the preparation algorithm determines
which rules are relevant for the query. This step is redundant if it is always
certain that a rule is relevant for the query, but when considering plan alterna-
tives, it can easily happen that a rule looks promising but in the end cannot be
used in a complete plan. Consider e.g. access support relations (ASRs, [38]) or
materialized views that answer parts of the query. When they are used conser-
vatively (i.e. they exactly match a part of the query), they are always usable,
but when trying to use ASRs or materialized views that only overlap with a
part of the query it can, but need not be possible to re-use this for the whole
query. Of course the ultimate test for this is the plan generation itself, but
to reduce the search space the plan generator tries to eliminate non-applicable
rules beforehand. This is done by two different heuristics: First, all rules are
removed which require a bit property that is never produced. Second, all rules
are removed that are never required for the final plan, not even transitively.
Note that these removals have to be performed at the same time: a rule might
have impossible requirements whose removal makes another rule unnecessary
whose removal makes a third rule impossible etc. As stated above, this step

38



5.7. Algorithms

rule filter
1 person.name/dep
2 map/join, deparment.name, person.name/dep
3 department.oid, department.name
4 map/join, deparment.name, person.name/dep

Figure 5.10.: Filter for the rules in Figure 5.9

is not strictly required, but it makes considering plan alternatives (e.g. materi-
alized views) simpler: All alternatives that answer some part of the query are
considered; alternatives where it is certain that they cannot be used for the
final solution are discarded by this step to reduce the search space.

After it is clear which rules will be considered during plan generation, the
set of bit properties is minimized. Bit properties that are produced but never
required are eliminated, and bit properties that are always produced simultane-
ously are merged. Minimizing the set of bit properties has two purposes: First,
it reduces the space of the bitmap required in each plan and second, it reduces
the search space, as now some bit properties are ignored which otherwise could
have prevented the comparison of two plans. In our running example, this re-
moves all bit properties for unused attributes and the scan applied properties,
as only the attributes and not the scans themselves are required in this exam-
ple (an implementation would probably also require the scans to avoid special
cases, but then the scan applied property could be merged with one of the at-
tribute properties). The map/join applied property is kept, as it is used by
the map/join rules to detect already applied rules. The person.name and per-
son.dep properties are merged, as they are only produced simultaneously. The
final set consists of four bit properties, person.name/dep, department.name, de-
partment.oid and map/join applied. Technically, it would also be possible to
eliminate department.oid (by merging rules 3 and 4 in one macro rule), but
this would hide the scan of department from the plan generator and prevent a
re-usage of the scan for more complex queries.

The minimized bit properties are now used to construct a search filter as a
fast test if a plan with a given set of bit properties might actually be constructed
by a certain rule. This is usually straight-forward, e.g., for most rules the filter
is constructed as requirements ∪ produced. This means that a plan including
the rule must at least have the bit properties required for the rule and the bit
properties produced by the rule. The search filters for our example are shown in
Figure 5.10. The filter for rule 4 (join(d=p.dep)) consists of person.name/dep,
department.name and map/join applied, which is somewhat surprising: The
property department.oid is included in the requirements but not in the filter.
In a normal join situation it would also be included in the filter, but here we
want to use the join as a plan alternative and, therefore, intentionally forget the
additional available attributes. Note that it is safe to use any subset of these
filters (in particular, each filter can be empty), the filters are only a performance
optimization to check if a rule makes sense in a certain situation.

To support operator sharing, the plan generator now determines the equiv-
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alence classes for share equivalent operators (see Section 5.6.3). In each class
one representative is selected and a bit in the sharing bit set is assigned to
it. In our example, no bits are assigned, as all equivalence classes contain just
one element (i.e. no sharing is possible). See Section 5.8 for a more complex
example including operator sharing.

In the final preparation step the rules register all orderings and groupings
that are relevant for them. This is described in more detail in Chapter 8.
In our example the join would register (person.dep) and (department.oid), as
orderings (useful for a sort merge join) and the map operator might register
(person.dep) as a grouping, as it would make sense to group the input first
before pointer chasing.

Another bit property set that has to be determined during the preparation
step is the actual goal of the query. This can be implemented in multiple ways,
the simplest solution is to create a ”goal” rule that requires the query opera-
tions. Thus, no special code for minimization etc. is required; the requirements
of this goal after the preparation step are the goals of the search phase. In our
example the goal consists of person.name/dep, department.name and map/join
applied.

5.7.2. Search Phase

Within the search space the plan generator tries to find the cheapest plan
satisfying all bit properties required for the final solution. Note that we ignore
performance optimization in the following discussion to make the conceptual
structure clearer. Optimizations are handled separately in Section 5.7.4, and
the algorithms are discussed in more detail in Section 6.3.2.

The core of the plan generator itself is surprisingly small and only consists of
a single function that finds the cheapest plans with a given set of bit properties.
The search phase is started by requesting the cheapest plan that provides the
goal properties.
plangen(goal)

1 plans← memoizationTable[goal]
2 if plans is undefined
3 then plans← create a new PlanSet
4 shared← goal rewritten to use equivalence class representatives
5 if shared ∩ goal = ∅
6 then plans← CALLplangen(shared)
7 for each r in instantiated rules
8 do if r.filter ⊆ goal
9 then plans← plans ∪ {r(p)|p ∈ plangen(goal \ r.produced)}

10 memoizationTable[goal]← plans
11 return plans

What is happening here is that the plan generator is asked to produce plans
with a given set of bit properties. First, it checks the memoization data struc-
ture (e.g. a hash table, bit properties→plan set) to see if this was already
done before. If not it creates a new set (initially empty) and stores it in the
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join(d=p.dep)
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hash join
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Figure 5.11.: A possible plan for the query in Figure 5.9

memoization structure. Then it checks if the goal can be rewritten to use only
representatives from equivalence classes (if o1 and o2 are in the same equivalence
class, the bit properties produced by o2 can be replaced with the bit properties
produced by o1, see Section 5.6.3). If the rewrite is complete, i.e., the new goal
is disjunct from the original goal, the current problem can be formulated as a
new problem using only share equivalent operators. Thus, the plan generator
tries to solve the new problem and adds the results to the set of usable plans.
Afterwards, it looks at all rule instances, checks if the corresponding filter is
a subset of the current goal (i.e. the rule is relevant) and generates new plans
using this rule. Note that the lines 7-9 are very simplified and assume unary
operators. In practice, the optimizer delegates the search space navigation (here
a simple goal \ r.produced) to the rules. A more technical disucssion is given in
Section 6.3.2.

As we will see in Section 5.7.4, a concrete implementation is more complex,
as it tries to minimize search space, but the basic concept of the plan generator
is both simple and elegant.

5.7.3. Reconstruction

The output of the search phase is a DAG of partial plans where every partial
plan is annotated with a rule. This DAG has to be converted into an operator
DAG with operators from the physical algebra. As the rules were instantiated
specifically for the current query and, therefore, contain the required anno-
tations, this conversion can be done in a single depth-first traversal. Shared
partial plans must be detected during the traversal to create a DAG instead
of a tree, but otherwise the transformation is straight-forward. This step con-
structs the final result of the plan generation that is used in the remaining
phases of the compile time system.

For the example from Section 5.7.1, the final plan is shown in Figure 5.11:
Note that the topmost plan node points to a rule that is hidden from the plan
generator. The plan generator asked the join rule to produce a plan, and it
decided to use a hash join; therefore, the rule member points to the hash join
rule, which is embedded in the general join rule. During the reconstruction
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phase, this hash join rule is asked to produce an operator tree, which results in
a simple hash join with two scans as inputs.

5.7.4. Optimizations

Pruning

While the algorithm described above is compact and produces the correct result,
it examines too many plans. Consider the join ordering problem with cross
products. The algorithm above will examine the full set of 2n−1 logical partial
plans (and even more physical plans), regardless of the relations or the joins
involved. However, some of these plans will most likely be dominated by other
plans, as they are simply too expensive. It makes sense to stop exploring the
search space when it is obvious that the examined plans are more expensive than
an already known solution. This is not only true for complete solutions but also
for solutions for partial problems: If a plan for a given set of bit properties was
already constructed, its cost can be used to prune plans which must satisfy the
same bit properties. We will look into this in more detail below.

So this optimization consists of two steps: Determine a cost bound for search-
ing and stop searching when the bound is violated. We will look at the local cost
bounds for partial plans in the next paragraph, but it also makes sense to deter-
mine a global cost bound first before starting the search space: Thus, the plan
generator can already prune partial plans, although no complete alternative for
the current subproblem has been constructed. A very loose global bound can
be found by simply considering the canonical execution plan; if a partial plan
is more expensive than the canonical execution plan, it can be safely discarded.
However, this bound does not prune many plans, as it is too high. A better
bound can be found by using e.g. a greedy heuristic for join orderings or, even
better, a more advanced heuristic like KBZ [43]. These heuristics quickly con-
struct a plan that is much better than the canonical plan and which provides a
tighter cost bound for the search space.

During the search phase the cost bound can be lowered for subproblems if it
is known that a cheaper plan for the subproblem exists. However, one problem
with maintaining a local bound is that plans are sometimes not directly compa-
rable: For example, two plans might produce the same bit properties, but differ
in the orderings they satisfy. The same can be true for other characteristics
that are not encoded in the search space but only enforced on demand, like
grouping and physical location. In order to derive a safe bound, the costs of
a plan have to be increased by the maximum costs required to satisfy any of
these characteristics. When considering only ordering and grouping, these are
the costs for a sort, as this can guarantee any ordering and grouping. These
optimizations are sketched for join generation below (the code is actually a
function used by the rules and not part of the plan generator itself):
generatejoins(goal, bound)

1 result← ∅
2 space← goal \ produced
3 for ∀lp, rp : lp ∪ rp = space ∧ lp ∩ rp = ∅
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4 do for ∀l ∈ plangen(lp, bound), r ∈ plangen(rp, bound)
5 do p← join l and r
6 if costs of p ≤ bound
7 then result← result ∪ {p}
8 pc = costs of p + costs to sort p
9 bound← min(bound, pc)

10 return result

The bound parameter is used to determine whether a plan is more expensive
than an already known alternative. It is also passed to the recursive plangen
steps and updated if a cheaper plan was found. Thus, the search space gets
smaller whenever the plan generator can get a more accurate estimation of the
costs.

When implemented naively, this cost-based pruning conflicts with memoiza-
tion. The reason for this is that the plan generator can be asked multiple times,
but with different bounds for plans with a given set of bit properties. If, for
example, on the first call the cost bound was very low, the plan generator did
not find a plan which is cheap enough. However, on a further call the bound
might be higher, allowing for a plan which is cheap enough. As the memoization
mechanism described above ignores the bounds, an empty set will be returned
although a possible plan exists. The problem could be avoided by making sure
that the bound never increases for a given set of bit properties. While this is
theoretically possible using a suitable search space exploration strategy, it is
difficult to do so: A problem can be part of multiple larger problems, which
themselves can have very different cost characteristics [54]. Deciding beforehand
which problem should be explored first is difficult.

Using the bounds together with the bit properties as key for the memoization
is not an option, as the bounds will be different for nearly all calls. As the
problem only occurs if no solution was found (otherwise, raising the bounds
does not change the optimal plan), a simple solution would be to ignore the
memoized result if the plan set is empty. This is not advisable, as it could
trigger cascades of redundant searches with exponential runtime complexity. A
better solution would be to store the bounds together with the plan set, so that
the plan generator can check if the current bounds are actually higher and only
searches in this case.

Apart from storing the bound used for searching in the plan set, it is also
beneficial to store a lower cost bound for the plan set: Each plan set should
store the minimum costs of a plan that would satisfy the required bit properties
of the plan set. Initially, this lower bound could be set to zero, but during the
optimization phase the bound can be raised: Consider a situation where no plan
for a subproblem can be found, as all alternatives are more expensive than the
current bound. However, some plans will have been considered, either complete
plans (for this problem) or at least partial plans for subproblems. These plans
were discarded, as they were too expensive, but their costs can be used as lower
bounds; a plan for the whole problem will cause at least the costs of the cheapest
alternative that was discarded. The great advantage of a lower bound is that
the plan generator can now decide if the subproblem should be explored again

43



5. Extensible Approach for DAG Generation

when the bound has been raised: If the lower bound is higher than the current
upper bound, the subproblem can be ignored.

Ordering Predicates

For some operators, especially selection predicates that do not share common
subexpressions, an optimal execution sequence can be computed before the
search phase. For a more detailed discussion see [59], but in principle the
optimal execution sequence can be computed using the formula

rank =
1− selectivity

costs
.

The plan generator does not use this information, as is tries each operator
independently of the other operators. But exploiting the rank can be added
quite easily:

Although for all rules described so far each rule corresponds to exactly one
physical operator in the generated plan, this is not necessarily the case: When
a rule for a predicate is asked to create plans containing this predicate, it
can check which other predicates are also required and create plans containing
these predicates in optimal ordering. In this case the operator rule handles
more than one operator, but this does not interfere with the plan generation
itself, as the plan generator expects the rules to navigate the search space and
assumes nothing about the number of operators involved.

While this ordering by rank is the simplest to implement, more advanced
algorithms that also consider common subexpressions (see [59]) could also be
embedded in the operator rules. This would only require a local change in the
rule for selection operators.

Early Plans

An unfortunate property of construction-based plan generators is that they do
not produce incrementally better solutions but just the optimal solution after
the whole algorithm is finished. This is extreme for bottom-up plan generators,
as they start with small plans first and only produce nearly complete plans when
the algorithm is almost done. As the optimization time for complex queries can
be quite large, this is unfortunate, as the user might prefer a suboptimal execu-
tion plan over waiting for the plan generator. Ideally, the plan generator should
produce suboptimal but complete plans from time to time to allow aborting the
search phase earlier.

For transformation-based plan generators this is trivial, but it can also be
done for constructive top-down plan generators: The search phase consists of
recursive calls to operator rules which themselves find the optimal solution
for a subproblem. When the plan generator decides it needs an early plan, the
operator rules report the best plan found so far to their callers, which can either
use it or use a better plan already found one level higher, until a complete plan
reaches the root of the search process [39].

Problematic are operators that require two input plans, for example joins.
Although the join rules try different left/right combinations successively, for
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a huge search space it might happen that only one side has been examined.
Then no partial plans for the other side have been examined and, therefore, no
complete plan can be constructed. A solution for this problem is to combine
the operators of the missing side using a simple heuristic, which will produce a
suboptimal but at least complete plan without spending a lot of time searching.

Besides offering fast answers to the user, these early plans have the additional
advantage of reducing the search space. As the search phase proceeds, the
early plans will get better and, thereby, reduce the global cost bound. The
only disadvantage is the overhead to construct these early plans, but if they are
constructed every hundred thousands partial plans or so the overhead will be
negligible.

5.7.5. Top-Down vs. Bottom-Up

The description of the plan generator so far assumed that the plans are con-
structed top-down. This means that the algorithm starts with the whole prob-
lem (all bit properties required for the query) and splits it into smaller parts
that are solved recursively. Another approach is to construct the plans bottom-
up. There the plan generator starts with the smallest possible plans (e.g. table
scans) and combines these plans using operators until the whole query has been
constructed. Both approaches find the same solution and for many problems
(e.g. only joins and selections) also generate the same intermediate plans. In
fact, most rules can be transformed into bottom-up rules easily:
Select::search(plans, goal)
1 for each p ∈ plangen(goal \ produced)
2 do p′ ← add the selection to p
3 plans← plans ∪ {p′}

< − >
Select::searchBottomUp(plans, current)
1 for each p ∈ plans
2 do p′ ← add the selection to p
3 dpTable[current ∪ produced]← dpTable[current ∪ produced] ∪ {p′}

Instead of removing the bit properties provided by the rule to identify the
subproblem, the rules get the subproblem and add the bit properties provided
by them. For joins the rules determine which side they get (left or right),
determine the bit properties of the other side, look up the corresponding plans
in the dynamic programming table, construct a new plan and store it in the
table at the correct position.

While the two algorithms find the same solution and have the same time
complexity, they behave somewhat differently. The top-down approach has
three advantages: First, it is more intuitive to write rules this way (similar to
a top-down vs. a bottom-up parser). Second, after a while the plan generator
already knows solutions for relatively large subproblems. This allows a much
better cost bound propagation. Experimental results showed a search space
reduction by 10 − 20%. The construction of early plans is related to this, as
discussed above. Third, the top-down approach only considers subproblems if
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they make sense later on, while the bottom-up approach tries any combination
of operators. However, this only makes a difference if operators are freely
combinable, e.g., when considering two plan alternatives with disjunct operator
sets. The great advantage of the bottom-up method is that it only considers
operator combinations that are actually possible, as it constructs them this way.
Often the top down approach tries to solve subproblems for which no solution
exists.

This is a real problem. For chain queries with 10 relations > 99.9% of all
constructed plan sets are empty when ignoring cross products. These empty
plan sets not only waste memory, but also consume a lot of time searching
for a result, which means that the top-down approach is much slower than
the bottom-up approach. While this is only true when not considering cross
products, eliminating the problem by greatly increasing the search space is no
option. The severity of the problem can be reduced by inserting a sanity check
(lines 3-5) into the plan generator: Before solving a subproblem, it checks if
there exists an operator combination whose combined bit properties produce
the desired goal.
plangen(goal)

1 plans← memoizationTable[goal]
2 if plans is undefined
3 then mask ←

⋃
r∈ instantiated rules :r.filter⊆goal r.filter

4 if mask 6= goal
5 then return ∅
6 plans← create a new PlanSet
7 shared← goal rewritten to use equivalence class representatives
8 if shared ∩ goal = ∅
9 then plans← plans ∪ plangen(shared)

10 for each r in instantiated rules
11 do if r.filter ⊆ goal
12 then plans← plans ∪ {r ◦ p|p ∈ plangen(goal \ r.produced)}
13 memoizationTable[goal]← plans
14 return plans

This eliminates a lot of unnecessary searches and, in fact, reduces the runtime
by more than a factor of 20 for large queries. But the check itself requires a
time linear in the number of operators. For large queries this means that > 90%
of the total CPU time is spent on this check. The plan generation is still much
faster than without the check, but as a consequence, the bottom-up approach,
which does not have this problem, becomes faster for large problems. This is
shown in Figure 5.12. For small problems, the two approaches are about the
same, the top-down approach is somewhat faster due to better pruning. But
for larger queries, the linear costs during a top-down search are noticeable and
the heuristic does not eliminate all fruitless tries either. A related problem
occurs when a rule constructs a DAG: As the subproblems overlap, the rule
has to perform many identical calls to the plan generator. While this does not
increase the search space (due to memoization), it involves many fruitless table
lookups. A bottom-up approach is more efficient here, as it knows which plans
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Figure 5.12.: Plan generation for chain queries, average of 100 runs

are available. Perhaps a faster implementation of the search space pruning
check is possible (e.g. using a decision tree of applicable operators), but as
performance was not the main goal of this work, we just continue to use the
described top-down approach, as it can be reformulated as a bottom-up search
easily.

5.8. Example Plans

To illustrate the different aspects of plan generation, we now consider the whole
process for a more complex query. Consider the OQL query shown in Fig-
ure 5.13. It first computes the revenue for each project (creating the temporary
view prjsum) and then selects all persons that work in Germany and lists them
together with their project that created the highest revenue. A possible logical
representation is shown in Figure 5.14. Note that this is not meant to imply
an execution plan! While the final execution plan is similar in this example,
the figure is just an illustration. The query compiler considers very different
plans. We assume that unnesting and rewriting has happened before the plan
generation phase. The query is answered by selecting all persons who work in
Germany (a sequence of pointer chasing χ operations), determining the projects
of them (the µ operator unnests the set-valued attribute projects) and joining
the result with the view (which just consists of a join and a group-by, see the
appendix for a definition of Γ). Now the intermediate result is used twice. One
branch performs a group-by to determine the maximum revenue for each person
and joins the result to the other branch to get the projects with the highest
revenue. Note that this could not be done with an aggregation, as multiple
projects could have the highest revenue. Finally, the result is sorted on the
attribute m.
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define prjsum(project,sum) as
select p, sum(

select o.total
from orders o
where o.project=p)

from projects p

select p,pr, s.sum
from persons p, p.projects pr, prjsum s
where p.group.department.country = "D" and

pr = s.project and
s.sum=max(

select t.sum
from prjsum t
where t.id in p.projects)

order by s.sum desc

Figure 5.13.: More complex OQL query

�

p=sp∧sum=m

sortm

�

pp=pr

σd.country=D

χg:p.group

χd:g.department

Persons:p

Γpr;sum:sum(o.sum)

Orders:oProjects:pr

�

o.project=pr

µpp:p.project

Γsp:p;m:max(sum)

Figure 5.14.: Logical algebra representation of Figure 5.13
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In the preparation step, the plan generator examines this representation and
instantiates operator rules as needed. The resulting instances are shown in
Figure 5.15. The rules 1 − 12 can be derived directly from the query repre-
sentation, rules 13− 16 correspond to a transformation of pointer chasing into
joins, and rules 17 − 18 perform the same lookup by using an access support
relation persons.group.department.country instead (ASR, [38]). The sort op-
erator does not need a rule, as orderings are handled separately. Note that we
omitted some rules here to make the example more readable: All rules except 11
and 12 actually occur twice, once on the left-hand side of the final join and once
below the group-by (this is not strictly required, but typically the query is con-
sidered a tree by the previous steps until it is converted into a DAG by the plan
generator). We only show one version here, as in fact the plan generator uses
just one representative in the result, but rule 11 requires p′ and sum′ instead
of p and sum to make it clear that it requires a different version (handled by
renames). Now the set of bit properties is minimized. Many bit properties can
be eliminated, as they are never tested for (e.g. o1, o2, o3). Others are merged,
as they are only produced in combination (e.g. sp,m and o9, sum). The mini-
mum goal of the query specified by the user is p, pr, sum, o6, o12, which means
that the projected attributes must be there and all selections were applied (one
selection was transformed into a join).

However, we also want to partition the search space by applied operators (to
avoid endless loops and to reduce fruitless tries). Therefore, we increase the goal
of the query. For example, the bit property pp is required by one operator, and
already while searching we want to distinguish between plans that will include
it and plans that will not. Otherwise, operators that require pp would be sched-
uled, although the bit property cannot be produced in the current subproblem.
So we specify all bit properties produced by rules 1−12 (the logical representa-
tion) as goal and use the normal minimization mechanism (see Section 6.3.1) to
reduce it. This results in the goal p, pr, o, o4, g, o5, d, o6, pp, o8, sum, o10,m, o12.
Note that the concrete goal is somewhat arbitrary, as bit properties could have
been merged differently. For example, we could use o9 instead of sum, but
preferred the attribute name due to readability.

Now the plan generator recursively starts generating plans. It selects some
rules, breaks the global goal into smaller ones and solves these subproblems
recursively. For example, it might choose the rule �pp=pr first, as it satisfies a
goal of the query (o10). However, it is not possible to construct the whole query
using it as the topmost operator, so the try will fail. This is a disadvantage of
the top-down approach, see Section 5.7.5 for a detailed discussion how to avoid
it. The rule �p=sp∧sum=m can be used as topmost rule (but this is only known
ex post, all rules are tried). It triggers recursive searches, with and without
the group-by operator (bit property m). Although this seems to increase the
search space a lot (as the same problem is solved multiple times), the memo-
ization mechanism avoids this, the Γsp:p,m:max(sum) rule strips the sp and the
bit properties are identical afterwards (after a rename), resulting in a DAG.

Especially interesting is the solution of the subgoal p, o4, g, o5, d, o6. It can
either be solved by using the rules 1, 5−6, by using the rules 1, 6, 13−16, or by
using the rules 1, 6, 17−18. The different alternatives are shown in Figure 5.16:
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id type requires produces
1 Persons:p o1, p
2 Projects:pr o2, pr
3 Orders:o o3, o
4 χg:p.group p o4, g
5 χd:g.department g o5, d
6 σd.country=D d o6

7 µpp:p.project p o7, pp
8 �o.project=pr o, pr o8

9 Γpr;sum:sum(o.sum) pr, o o9, sum

10 �pp=pr pp, pr, o9 o10

11 Γsp:p,m:max(sum) p′, sum′ o11, sp, m

12 �p=sp∧sum=m p, sp, sum, m o12

13 Groups:g o13, g
14 Departments:d o14, d
15 �p.group=g p, g o15, o4

16 �g.department=d g, d o16, o5

17 ASR:a o17, a, d
18 �p=a.p p, a o18, o4, o5

Figure 5.15.: Rule instances for Figure 5.14

Persons:p

χd:g.department

χg:p.group

σd.country=D

�

p.group=g

�

g.department=d

Departments:dGroups:gPersons:p

σd.country=D

�

a.p=p

Persons:p ASR:a

σd.country=D

pointer chasing using joins using an ASR

Figure 5.16.: Plan alternatives
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�SM
p=sp∧sum=m

ΓSG
sp:p;m:max(sum)

�HH
pp=pr

�HH
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o.project=pr

sorto.projectsortpr
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sortp

sortm

Figure 5.17.: Execution plan for Figure 5.13

The first alternative uses pointer chasing as stated in the query, the second
replaces this with joins (other join orderings and join types were omitted), and
the third alternative uses an access support relation to calculate the whole path
in one step. As all alternatives can satisfy the requested bit properties, the plan
generator is free to choose.

The final result of the plan generation step is shown in Figure 5.17. While
this strongly resembles the input for this specific query, the plan generator
chooses to use the ASR instead of pointer chasing and replaced the logical joins
and group-bys with concrete join and group-by implementations. It also added
sort operators as needed. Note that the join/group-by on the right-hand side
could be done more efficiently if a hash-based join operator guaranteed output
clustered on the group-by attribute (see e.g. [26]), but we did not assume such
an implementation here.

5.9. Evaluation

When modifying a plan generator to support DAGs, it is essential to check
how this change influences the runtime behavior. To study the effect of the
query graph structure, we started with a chain query with 10 relations and then
increased the number of equivalent relations: first the query A�B�C . . . J , then
A�A�B . . . I etc. The runtime of the plan generator is shown in Figure 5.18:
Until the number of shared relations is about 5, the runtime shrinks drastically,
as the number of considered alternatives is reduced (the shared relations are
equivalent to each other). For more than 6 relations, the runtime increases
again, as the join graph becomes more and more a clique. For 9 shared relations
(one relation is read 10 times), the join graph is a clique and the search space
is as large as if the plan generator would consider cross products. This effect
aside, recognizing equivalent expressions actually decreases the search space
compared to a purely tree-based optimizer.

Note that this is not an objective way to measure the costs for DAG support,
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Figure 5.18.: Join of 10 relations with an increasing amount of sharing

as by increasing the amount of equivalent relations we also change the semantics
of the query. A fairer comparison is done in Chapter 11, here we are only
interested in how the plan generation is affected by the query.

The good performance of the DAG-creating plan generator is based upon the
forced sharing approach, which means that all share equivalent plans are pruned
against each other and only the cheapest is kept. If sharing is optional, i.e. both
sharing and not sharing plans are considered at the same time, the search space
is increased considerably. This is shown in Figure 5.19: When making shar-
ing optional, the runtime increases instead of decreasing when the number of
shared relations increases. Note that this is even a situation where the top-down
approach performs well, as it only considers the relevant sharing alternatives.
When using a bottom-up approach, the forced sharing is faster than the top-
down approach, but with optional sharing the search space explodes, as every
possible sharing variant is constructed. So for the plan generator, forced shar-
ing is highly recommended when constructing plans to keep the search space
reasonable.

5.10. Conclusion

The plan generator described here allows a very flexible generation of DAG-
structured query graphs. It is independent of a concrete database system and
can support a wide range of operators. Creating DAG-structured query graphs
is not much more difficult than creating trees and, in fact, reduces the search
space when sharing is possible. Therefore, it makes sense to create DAGs even
though the runtime system does not support it: Plan generation is faster when
sharing nodes, and after plan generation the plans can be converted back into
trees or temp operators can be added as needed.
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Further work should examine how to degrade gracefully if the search space
is too large for memoization or dynamic programming. For tree-structured
query graphs techniques have been proposed [40], but this becomes more com-
plicated when taking sharing into account, as alternatives may be interesting
only because of result reusage. A related topic is taking the query structure into
account: In some scenarios (e.g. TPC-H query 2, see Section 11.2) the query
can be partitioned into parts that can be optimized (nearly) independently of
each other, which reduces the search space very much. However, this is more
difficult to do when generating DAGs, as sharing has to be taken into account
across different plan generator runs.
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After giving a high-level view of generating DAG-structured query plans in
Chapter 5, we now go into more detail about the algorithms and data structures.
Note that this chapter deals more with technical details, the general discussion
has been done in the previous chapter.

6.1. Data Structures

Memoization Table

The plan generator uses memoization to reuse already solved subproblems.
Therefore, the search space is partitioned by the bit properties, and the mem-
oization table is a hash table using the bit properties as key. As multiple un-
comparable plans can satisfy the same bit properties (e.g. because of different
orderings), the memoization table contains a PlanSet entry instead of a single
plan for each examined bit property combination:

memoTable : bitset→ PlanSet

Plan Sets

As multiple plans can satisfy the same bit properties, they are organized in sets
that maintain the common data:

PlanSet
properties : bit set
state : logical state for the cost model
plans : set of Plan

The attribute properties is a bit set containing all bit properties satisfied by
the plans in the plan set. It is stored here instead of the plans themselves in
order to conserve space. The attribute state contains the logical state shared
by the plans, which is relevant for the cost model. The state is discussed in
Section 9.3.4 and usually includes the cardinality, the average size of each tuple,
etc. For the plan generator itself, this state is not significant, it is only used
and maintained by the cost model. Finally, the attribute plans is a set of all
plans with the stated bit properties.

Plans

The plans themselves keep as little information as possible; mainly the costs,
the rule that created the plan and the subplans:
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Plan
rule : Rule instance
physicalProperties

ordering : ordering/grouping state
costs : costs of the cost model
shared : bit set

left : Plan (for unary/binary rules)
right : Plan (for binary rules)

The attribute rule specifies the rule that created the plan node. This is used
in the reconstruction phase to create the actual operator tree. Usually, the rule
entry corresponds to one physical operator (e.g. for joins the generic join rule
selects a join implementation and sets rule to point to a rule describing the
implementation). The physical properties are stored in physicalProperties: The
attribute orderings contains the orderings and groupings properties of the cur-
rent plan node, it is just a pointer inside the ordering and grouping framework
described in Chapter 8. The attribute costs consists of the cost description of
the cost model. As with the state entry, this attribute is opaque to the plan
generator. The attribute shared specifies the (potentially) shared operators in
this plan (see Section 5.6.3). It is used by the cost model to detect DAG gen-
eration and to decide whether plans are comparable. Finally, the attributes
left and right are used to model the actual operator tree (respective DAG), for
unary operators only one entry is used and operators that require no input use
neither of them.

It is noticeable that the plan generator ignores most of the attributes (all
but rule and properties in PlanSet). This is due to the rule-based structure
of the plan generator. The actual cost computations are all done inside the
rules referenced by rule, the plan generator itself only cares about required and
provided bit properties. This results in a very clean and compact plan generator
that is also very extensible.

6.2. Rule Interface

Before looking at the concrete algorithms, we first consider the coupling between
the plan generator and the rules. The rules are only visible as abstract data
types (ADT) and offer the required functionality as methods. At the interface
level, there is a distinction between three types of rules, generic rules and two
specializations. The generic rule interface is shown below:

Rule
updatePlan(Plan) : void
buildAlgebra(Plan) : PhysicalAlgebra

The method updatePlan describes the semantics of the query: Given a plan
with left and right members set to suitable subplans, update the remaining
members (costs, cardinality, ordering etc.) according to the rule semantics.
This is useful when the structure of a subplan is known and only the details
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have to be filled in (e.g. the plan generator inserted an explicit sort). The
second method buildAlgebra takes a complete plan and converts it into the
physical algebra. This is only used during the reconstruction phase to construct
the final result.

Rules that only offer the Rule interface are mainly helper rules like sort or
temp. More important for the plan generator are rules that can influence the
exploration of the search space. The interface is shown below, note that the
ADT is a specialization of Rule.

SearchRule : Rule
filter : bit set
search(PlanSet) : void

The important method is search. It takes a PlanSet structure and tries to
construct plans with the bit properties specified by the PlanSet. We will see
an example of this in Section 6.3.2. The attribute filter is used for performance
optimization: It contains all bit properties produced and required by the rule.
Thus, the plan generator can decide quickly if the rule is relevant for the current
subproblem (i.e. filter is a subset of currently explored bit properties) and calls
search only in this case.

The second specialization is also a performance optimization, it could be
replaced with SearchRule. It describes rules that require no input:

BaseRule : Rule
initialize(PlanSet) : void

Note that BaseRule is derived from Rule and not from SearchRule, although
it explores the search space. This is due to the fact that the plan generator
knows that the descendants of BaseRule require no input: As they can produce
exactly one set of plans, these plans are produced and stored as partial results in
the memoization table before the actual search. Otherwise, the plan generator
would always consider using this rule, which would succeed only once. By using
a separate class, the plan generator can handle table scans etc. much more
efficiently. The initialize method sets the attributes of the plan set to the
characteristics of the rule, i.e., sets properties, cardinality, and tuple size. This
is used only once before the search phase when memoizing the initial plans.

6.3. Plan Generation

6.3.1. Preparation Phase

The preparation phase examines the query and collects the information neces-
sary for plan generation. This was already discussed in Section 5.7.1, here we
examine two more complex steps, namely the property minimization and the
construction of equivalence classes for share equivalence.

57



6. Algorithms for DAG Generation

Properties

To make the plan representation more compact (and also to reduce the search
space), the preparation phase prunes and minimizes the property specification.
This consists of three steps: First, all bit properties are collected. Thereby,
produced and required bit properties are kept separate, resulting in two sets of
bit sets. The algorithm keeps each individual bit property combination (and,
therefore, produces a set of bit sets instead of a bit set), as this is required to
check which bit property combination can be produced.
collectproperties()
1 produced← ∅
2 required← ∅
3 for each r in instantiated rules
4 do produced← produced ∪ {r.produced}
5 required← required ∪ {r.required}
6 return (produced, required)

Besides the property specifications, the preparation phase also determines
the goal of the query (i.e. the bit properties the final plan must satisfy). This
could be done in multiple ways. One possibility is to collect all bit properties
of the logical operators in the original query (see Section 7.2).
buildgoal()
1 goal← ∅
2 for each r in instantiated rules
3 do if r represents a logical operator in the query
4 then goal← goal ∪ r.produced
5 return goal

Now this information can be used to prune properties. The algorithm checks
which bit properties can be used to construct the goal properties (potentially
transitively) and removes all bit properties that are not useful. Afterwards, it
checks which bit properties can be satisfied by the remaining produced proper-
ties and eliminates all that cannot be satisfied. Note that while the algorithm
shown below only minimizes the property sets, the preparation phase after-
wards removes all rules whose bit properties are no longer relevant or cannot
be satisfied. The parameters produced, required and goal are the result of col-
lectproperties and buildgoal.
pruneproperties(produced, required, goal)

1 repeat
2 useful← goal
3 for each r in instantiated rules
4 do if r.required ∈ required ∧ r.produced ∩ useful 6= ∅
5 then useful← useful ∪ r.required
6 for each r in instantiated rules
7 do if r.produced ∩ useful = ∅
8 then produced← produced \ {r.produced}
9 possible← ∅
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10 for each r in instantiated rules
11 do if r.produced ∈ produced ∧ r.required ⊆ possible
12 then possible← possible ∪ r.produced
13 for each r in instantiated rules
14 do if r.required 6⊆ possible
15 then required← required \ {r.required}
16 until produced and required are not modified in this pass
17 return (produced, required)

The remaining bit properties are now minimized. While all remaining bit
properties can be produced, they can still contain irrelevant entries (if other
entries in the same bit set are relevant). These are removed, and all bit prop-
erties that are always produced together are merged.
minimizeproperties(produced, required)

1 result← ∅
2 R←

⋃
r∈required r

3 for each p in produced
4 do for each b in p
5 do if b 6∈ R
6 then p′ ← p \ {b}
7 produced← (produced \ {p}) ∪ {p′}
8 p← p′

9 result← result ∪ {b→ ∅}
10 P ←

⋃
p∈produced p

11 for each a in P
12 do for each b in P, a 6= b
13 do A← {p|p ∈ produced ∧ a ∈ p}
14 B ← {p|p ∈ produced ∧ b ∈ p}
15 if A = B
16 then result← result ∪ {ab→ a}
17 return result

The produced map function is then used to adjust the bit properties of the
remaining rules. When calculating the map function as shown, the mapping
is ambiguous (when two bit properties can be merged, any of the two can be
chosen). In practice, this is solved by defining an arbitrary total ordering among
bit properties and changing a 6= b in line 12 into a < b.

Share Equivalence

After determining which rules are relevant, the preparation phase decides which
rules are share equivalent. So far, we have only given a formal definition of share
equivalence for algebraic expressions, but the plan generator must also know
which operators could be used to build share equivalent plans. We consider two
operators as share equivalent if they form share equivalent expressions given
share equivalent input. For example:
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�1 ≡S �2 :≺� ∀A1,A2,B1,B2A1 ≡S A2 ∧B1 ≡S B2 ⇒ (A1 �1 B1) ≡S (A2 �2 B2)

The plan generator uses this notion for rules (which can consist of multiple
operators), but in practice, this is no problem: The rules are treated as if they
were (complex) operators. In general, the plan generator tests if two rules are
structurally identical (i.e. belong to the same class, have predicates with the
same structure etc.). Then, if a mapping can be found such that one rule can be
replaced by the other rule and a rename, they are considered share equivalences:
shareequivalentrules(r1, r2)
1 if r1 and r2 are structural identical
2 then P1 ← {r|r ∈ rules ∧ r.produced ⊆ r1.required}
3 P2 ← {r|r ∈ rules ∧ r.produced ⊆ r2.required}
4 if ∀i ∈ P1∃j ∈ P2 : shareequivalentrules(i, j)
5 then if ∀i ∈ P2∃j ∈ P1 : shareequivalentrules(i, j)
6 then return true
7 return false

The algorithm builds the mapping implicitly, by recursively testing if the
input of the two operators is share equivalent. It might even be easier to
construct the mapping explicitly in a bottom-up fashion, starting with share
equivalent scans and then transitively considering their consumers. The equiv-
alence relation is now used to construct equivalence classes, selecting one rule
as representative and discarding equivalence classes with only one element (as
no sharing is possible then).
constructequivalencclasses()
1 C ← ∅
2 for each r in instantiated rules
3 do if ∃(a, b) ∈ C : shareequivalentrules(a, r)
4 then C ← C \ {(a, b)} ∪ {(a, b ∪ {r})}
5 else C ← C ∪ {(r, {r})}
6 for each (a, b) in C
7 do if |b| = 1
8 then C ← C \ {(a, b)}
9 return C

These equivalence classes are used for two purposes: First, each representa-
tive is assigned a bit in the sharing property of the plans. Second, for all other
entries in an equivalence class a mapping from their produced properties to the
properties produced by the representative is constructed. Thus, the plan gener-
ator can rewrite a bit property set in terms of equivalence class representatives
(by applying all applicable mappings) to try using a shared plan.

6.3.2. Search Phase

After the preparation phase, the search is started top-down with the minimized
goal of the query; the pseudo-code is shown in Figure 6.1. In each step the plan
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plangen(goal)
1 plans← memoizationTable[goal]
2 if plans is undefined
3 then mask ← ∅
4 for each s in rules
5 do if s.produced ⊆ goal
6 then mask ← mask ∪ s.produced
7 if mask 6= goal
8 then return ∅
9 plans← create a new PlanSet with properties = goal

10 shared← goal rewritten to use equivalence class representatives
11 if shared ∩ goal = ∅
12 then plans← plans ∪ plangen(shared)
13 for each s in search rules
14 do if s.filter ⊆ goal
15 then s.search(plans, goal)
16 memoizationTable[goal]← plans
17 return plans

Figure 6.1.: Algorithm for plan generation

generator first checks the memoization table whether the problem was already
solved. If not, it checks if the bit property combination could be produced by
any rule combination, and stops the search if not (lines 3-8, see Section 5.7.5).
To share equivalent plans, the plan generator now uses the mapping from oper-
ators to their equivalence class representatives constructed in the preparation
phase to rewrite goal in terms of equivalences class representatives (lines 10-
12). If this is completely possible (the new goal is disjoint from the old one),
the plan generator solves the new goal and uses the result as the result for the
current problem. The check is shared ∩ goal = ∅ instead of shared 6= goal, as
only whole subproblems can be shared. If shared and goal overlap, at least one
operator remains that has to be scheduled first before sharing is possible (so
sharing will be tried later during the recursive search).

Afterwards, the plan generator looks at all known instances of SearchRule,
checks if their filter is a subset of goal (if not, the rule cannot produce a plan
with the desired bit properties). If yes, it asks the rule to build a plan and to
store it in the plan set. The plan set is passed down instead of the rule returning
a plan, as there can be more than one plan for a given goal and, besides, the
rules can use already known plans for pruning.

The rules direct the navigation of the search space. We give some illustrating
examples here, a more thorough discussion can be found in Chapter 7. Consider
a simple selection operator. When the plan generator asks a selection rule to
generate a plan, the selection asks the plan generator to produce a plan without
the selection and then adds the selection (note that plans is an instance of
PlanSet, which automatically prunes dominated plans):
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Select::search(plans, goal)
1 for each p ∈ plangen(goal \ produced)
2 do p′ ← add the selection to p
3 plans← plans ∪ {p′}

For binary operators like joins, the navigation is more complex. However,
most of the required functionality is identical for all binary operators and,
therefore, can be factored in common rule fragments in an implementation.
The general rule for joins is shown below:
Join::search(plans, goal)
1 space← goal \ (produced ∪ requiredLeft ∪ requiredRight)
2 for each lp ⊆ space
3 do rp← space \ lp
4 for each l in plangen(lp ∪ requiredLeft)
5 do for each r in plangen(rp ∪ requiredRight)
6 do p← join l and r
7 plans← plans ∪ {p}

The joins first check which bit properties can be satisfied arbitrarily, i.e., are
neither produced nor required by itself. These are called space here, as they
actually describe the search space for the join rule. The rule has to decide which
of these bit properties must be satisfied by the left subplan and which by the
right subplan. This is done by enumerating all subsets of space and asking the
plan generator for plans satisfying these requirements (and the requirements
of the join itself). These plans are then combined to a new partial plan and
memoized if they are cheaper than the existing plans.

Consider, for example, a problem with two relations R1 and R2, a join �1

between them and a selection σ1 (for simplicity reasons, we identify the bit
properties with the operators here). Now the join rule is asked to produce a plan
with the bit properties R1, R2,�1, σ1. The join itself produces the property �1

and it requires R1 and R2. The only remaining bit property is σ1, so space = σ1.
The join rule does not know on which relation the selection can be applied, so
it first asks the plan generator to produce plans with R1 and σ1, and then asks
for plans with R2, which are joined. Afterwards, it asks for plans with R1 and
plans with R2 and σ1, which are also joined. As the selection can probably
only be applied to one relation, one of these sets will be empty, but the join
rule does not understand the semantics of the selection and, therefore, tries
both possibilities. Note that this does not imply that selections are pushed
down: The selection rule itself could have been scheduled before, resulting in
space = ∅. In this case, the join rule would only consider a single plan.

6.3.3. Reconstruction

The reconstruction phase is mostly straight-forward, as the plan generator sim-
ply calls buildAlgebra in the root of the final query plan to get the physical
algebra. The only problem is that some additional information is required:
First, the plans have no reference to their enclosing plan set, so all information
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stored there (especially the bit properties) is unavailable. Second, the graph
forms a DAG, which means that plan nodes are visited multiple times, although
they correspond to only one physical operator. Third, the renames due to share
equivalence are only implicit during plan generation and have to be converted
into explicit renames. Still, this can be done easily by storing the required in-
formation in a hash table that is used during reconstruction. The hash table is
a map plan→ (algebra,bit properties) and is filled during a depth-first search.
For a selection, the reconstruction code is sketched below:
Select::buildAlgebra(plan)

1 (algebra, properties)← reconstructionTable[plan]
2 if (algebra, properties) is undefined
3 then input← plan.left.rule.buildAlgebra(plan.left)
4 ip← reconstructionTable[plan.left].properties
5 if required 6⊆ ip
6 then
7 nip← rename ip by checking the operators in plan.left
8 input← add new rename operator ip→ nip to input
9 ip← nip

10 algebra← add new select operator to input
11 properties← ip ∪ produced
12 reconstructionTable[plan]← (algebra, properties)
13 return algebra

The rule first checks if the physical algebra expression has already been con-
structed. If not, it requests the physical algebra expression of its input and
looks up the corresponding properties. If the requirements of the rule cannot
be satisfied by these properties, a rename is required. The subplan is scanned to
find this rename (the plan must contain equivalence class representatives who
are equivalent to rules that can produce the required properties) and a physical
rename expression is added. Afterwards, the selection can be applied, so the
physical expression is added, the new properties are calculated and both are
stored in the hash table.

The reconstruction is similar for binary operators like joins: Both input plans
are examined recursively, renames are added as needed and the two expressions
are combined using a physical operator.
NestedLoop::buildAlgebra(plan)

1 (algebra, properties)← reconstructionTable[plan]
2 if (algebra, properties) is undefined
3 then left← plan.left.rule.buildAlgebra(plan.left)
4 leftp← reconstructionTable[plan.left].properties
5 if requiredLeft 6⊆ leftp
6 then
7 np← rename leftp by checking the operators in plan.left
8 left← add new rename operator leftp→ np to left
9 leftp← np

10 right← plan.right.rule.buildAlgebra(plan.right)
11 rightp← reconstructionTable[plan.right].properties
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12 if requiredRight 6⊆ rightp
13 then
14 np← rename rightp by checking the operators in plan.right
15 right← add new rename operator rightp→ np to right
16 rightp← np
17 algebra← construct left �NL right
18 properties← leftp ∪ rightp ∪ produced
19 reconstructionTable[plan]← (algebra, properties)
20 return algebra
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7.1. Introduction

In Chapter 5 we have described the architecture of a plan generator. However,
the plan generator is incomplete without at least some basic rules for query
optimization. In this chapter we discuss the most common rules relevant for
e.g. SQL queries. After providing an overview of the rules, we look at rule in-
stantiation and extend the plan generator interface a bit to make the rules more
convenient to write. Afterwards, we discuss the different operator rules, from
the simple to the more complex. Finally, we consider how complex algebraic
equivalences can be modeled.

The rule class hierarchy is shown in Figure 7.1. The rules are organized in
three groups: Rules derived from BaseRule are rules for access paths that can
be constructed before the search phase, while rules derived from SearchRule are
used during the search phase to construct partial plans. The rules derived from
HelperRule (which is only an empty marker class) are used only indirectly by
the plan generator. For example, the Sort rule is used by multiple other rules
(e.g. in Join for a sort merge join), but not directly by the plan generator.

Note that the rules are presented independently of each other, but they are
not really independent. For example, in general a selection can be pushed
down the left-hand side of a left outer join, but not the right-hand side. Here
we assume that the preparation step identifies the situation where a push down
is not possible and forces the selection above the outer join. This is done by
including the outer join as a requirement for the selection, see Section 7.6 for
details. But while such dependencies can be described quite easily, detecting
such operator dependencies requires that the rules know about each other. This
is unfortunate, as it severely limits the extensibility.

For the small rule set presented here, this problem is not so severe, but a
more general implementation should try to solve this. One possibility would
be to provide a formal specification for each rule, including information about
associativity, commutativity, linearity, specific equivalences, etc. This would
allow a formal reasoning about the rules and make the rule system more easily
extensible. However, this approach is not always possible, as rules need not
correspond to algebraic operators. In particular, rule can change their behav-
ior depending on the operators present in their input (see Section 7.6 for an
example). In this case, it makes more sense to group rules depending on their
behavior (using an appropriate class hierarchy) and base the reasoning upon the
most specific class ”known” to a rule. While this might miss some optimization
possibilities if a rule is now known by another, it offers a flexible and extensible
way to handle rule dependencies.

Alternatively, the rule could be organized in a different way: Instead of mod-
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Figure 7.1.: Rule hierarchy

eling the rules after the algebraic operators, they could be modeled after parts
of the query. For example, instead of using one rule per join, the plan generator
could use one rule per predicate. The rule could then decide if it creates a join
plan, a selection plan etc. The dependencies between the rules could be derived
directly from the query representation (e.g. a join graph). However, formulating
such rules which are also suitable for complex queries is beyond the scope of
this work. Therefore, we here only consider rules which model operators.

7.2. Instantiating Rules

As stated in Section 5.7.1, all rules relevant for plan generation are instantiated
during the preparation phase; but we have not given a formal description of this
yet. In fact, the instantiation depends on the structure of the rules and on the
query representation. The rules presented here model both physical and logical
operators, i.e. there exists a rule for each supported physical operator (e.g. a
sort merge join) and when there is no 1:1 mapping between logical and physical
operators (e.g. for joins), there also exists a rule for the logical operator, which
selects a rule for the physical operator during plan generation.

This makes rule instantiation simple if the query is represented as an expres-
sion in the logical algebra: Instantiate a rule for each logical operator. For
example, the query σc=5(A �a=b B) would result in one Selection rule instance
annotated with the selectivities etc. of c = 5, one Join rule instance annotated
with the characteristics of a = b and two Scan instances, one for A and one
for B. Note that indirectly more rule instances are created: The Join rule
represents a logical join, but has to select a physical join operator during plan
generation. Therefore, creating a Join rule also creates rules for NestedLoop,
SortMerge, Sort (on a and on b) etc. But these additional rules are embedded
in the Join rule and not visible for the plan generator.
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If the query is represented in a logical calculus (e.g. a query graph), rule
instantiation requires some more work but is not very complex either: For
example, given a join graph, instantiate a Scan rule for each node and a Join
rule for each edge (respectively a Selection rule for each self edges). The exact
rule may vary depending on the edge (e.g. non-equijoins usually require a nested
loop join), but still the rules can be derived directly from the query. Some care
is required for cyclic query graphs (as joins can become selections here), but
this can also be solved by using smarter join rules that decide during plan
generation if they are selections or joins. In this case, the predicate gives rise
to the meaning of the rule; the rules no longer model algebraic operators, but
parts of the query.

Supporting plan alternatives generated by rewrite rules is more difficult. It
is not advisable that the rewrite rules just generate a new algebra expression
which is then provided as an alternative rule set to the plan generator: While
this works in the sense that the correct solution is produced, it is inefficient.
The two expressions probably overlap, as the rewrite rule will not change the
whole query, but only part of it. But the plan generator will not recognize this if
the rules are different, and will try both rule variants independently, resulting
in duplicate work. This can be solved in two ways: Either the preparation
step identifies the overlap and creates the corresponding rules only once, or the
rewrite rules do not create completely new algebra expressions, but annotate
parts of the existing expression with alternatives. The first variant makes the
rewrite rules simple, the second the preparation step. Either can be chosen, but
the second one is probably preferable, as the rewrite rules have more information
than available by just looking at the two different expressions (in particular,
they can mark two expressions as equivalent which are only equivalent under
certain constraints).

7.3. Plan Generator Interface

The basic function offered by the plan generator is

plangen(goal : bit set) : PlanSet

that produces the set of plans satisfying the requested bit properties. However,
some rules need not only certain bit properties, but also a certain ordering
or grouping. Therefore, we add a convenience function that calls the basic
plangen function and ensures that the result contains a plan with the requested
ordering or grouping:
plangen(goal : bitset, ordering : Order, enforcer : Rule)

1 plans← plangen(goal)
2 if plans = ∅
3 then return plans
4 if 6 ∃p ∈ plans : p satisfies ordering
5 then p← cheapest plan in plans
6 p2 ← create a new Plan
7 p2.rule← enforcer
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8 p2.left← p
9 enforcer.updatePlan(p2)

10 plans← plans ∪ {p2}
11 return plans

The extended function gets a goal, a requested ordering or grouping, and
an enforcer rule that can produce the requested ordering or grouping. It first
calls the basic function to get the set of plans. If this set is empty it gives up,
as no plan could be found. If there are plans, but none of them satisfies the
requested ordering, it creates a new plan by choosing the cheapest plan found
and applying the enforcer rule (updatePlan calculates all statistics). Note that
the notion of a cheapest plan might not be unique. It is here, as we assume
that all enforcers materialize their result, but otherwise it might be necessary
to create multiple plans instead of just one.

7.4. Updating Sharing Properties

To make the rules more readable, we pretend to factorize updating the shar-
ing properties into a separate function. In a real implementation the update
is trivial, but we give a more detailed high-level description here: The sharing
attribute consists of a bit set where a bit is set if a plan is constructed using an
equivalence class representative. As this is meant to identify shared subplans
and only whole subplans can be shared, the bit must only be set if the input is
also sharable, i.e., constructed using an equivalence class representative. Note
that the plan generator did not select a representative for equivalence classes
with just one entry, as then not sharing can occur during plan generation any-
way. The corresponding pseudo code for unary operators is shown below:
UnaryOperator::calcSharing(input : Plan)
1 if this is an equivalence class representative
2 then if input.rule ∈ input.sharing
3 then return input.sharing ∪ {this}
4 return input.sharing

Binary operators are analogous, they check both inputs and union the two
sharing attributes. Scans which are representatives directly set the bit, as then
the subplan just consists of one (sharable) operator.

7.5. Rules

In the rest of this section we describe different rules. As in our approach each
rule is a class that is instantiated during the preparation step, we first give the
class definition, then the initialize/updatePlan method to set plan charac-
teristics and for the search rule the search method to direct plan generation.

Note that the functions used to modify the members state and cardinality are
explained in Chapter 9; they belong to the cost model.
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7.5.1. Scan

The most basic rules are the rules for scans, either table scans or index scans.
As they require no input, they are derived from BaseRule so that the plan
generator can create access paths before the search phase. We only give the
index scan rule here, as the table scan is even simpler and can be derived
trivially from the index scan.

IndexScan : BaseRule
produced : bit set
index : segment t
relation : segment t

initialize(plans : PlanSet) : void
updatePlan(plan : Plan) : void

The first method sets the attributes of the plan set to the characteristics of
the relation:
IndexScan::initialize(plans)
1 plans.properties← produced
2 plans.state.cardinality ← cardinality of relation
3 plans.state.tupleSize← avg. tuple size of relation

So it sets the properties member to the produced bit set calculated in the
preparation phase and the state member to the characteristics of the relation.
This would be the same for a table scan, as these are logical characteristics.
Now the second method sets the physical characteristics for a concrete plan:
IndexScan::updatePlan(plan)
1 plan.rule← this
2 plan.sharing ← updateSharing()
3 plan.ordering ← ordering of the index
4 plan.costs← costs to scan the index

The ordering stored in the plan is the physical tuple ordering implied by the
index structure. The representation is discussed in Chapter 8.

Of course it makes more sense to use an index scan in combination with a
selection predicate. This can be done with a rule that behaves like an index
scan, but sets the cost accordingly and sets both the scan and the selection in
the produced member.

7.5.2. Sort

The rule for sort operators is also simple (at least from the point of view of the
plan generator) . It is never scheduled directly by the plan generator, but only
inserted on demand by other rules to enforce a required ordering:

Sort : HelperRule
ordering : Order
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updatePlan(plan : Plan) : void

The member ordering describes the physical ordering produced by the sort
operator (see Chapter 8 for a detailed discussion of Order). As Sort is a direct
descendant of Rule, it only offers the updatePlan method. Nothing more is
required, as other rules take care of the correct usage, see for example Sec-
tion 7.5.4.
Sort::updatePlan(plan)
1 plan.rule← this
2 plan.sharing ← updateSharing(plan.left)
3 plan.ordering ← ordering
4 plan.costs← plan.left.costs + costs of sorting

7.5.3. Selection

The first more intelligent rule is the rule for selection. It actually influences
the search, although only in a very limited way. Note that we assume here
that a selection can be put anywhere in the plan where the selection predicate
can be evaluated. When this is not true (e.g. for queries with outer joins), the
constraints are handled by the conflicting operators (see Section 7.6). Below is
the class definition, the member required consists of all attributes required for
the selection and the member produced consists of the fact that the selection
has been applied.

Selection : UnaryRule
produced : bit set
required : bit set
selectivity : double

updatePlan(plan : Plan) : void
search(plans : PlanSet) : void

The first method just adds the costs and changes the ordering according to
the functional dependency created by the selection:
Selection::updatePlan(plan)
1 plan.rule← this
2 plan.sharing ← updateSharing(plan.left)
3 plan.ordering ← plan.left.ordering adjusted by induced FD
4 plan.costs← plan.left.costs + costs for the predicate

The second method first checks if the desired plans could actually be produced
by the selection (this is redundant if the filter member is set correctly), triggers
the plan generator to find the best plans without selection and then adds the se-
lection. Note that the implementation is provided by the base class UnaryRule,
as the search logic is the same for other unary operators (e.g. GroupBy).
UnaryRule::search(plans)
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1 if (produced ∪ required) 6⊆ plans.properties
2 then return
3 input← plangen(plans.properties \ produced)
4 if |plans| = 0 ∧ |input| > 0
5 then plans.state.cardinality ← input.state.cardinality ∗ selectivity
6 plans.state.tupleSize← input.state.tupleSize
7 for each p in input
8 do p2 ← create a new Plan
9 p2.left← p

10 updatePlan(p2)
11 plans← plans ∪ {p2}

Note that in case that plans is empty (i.e. the first plan will be added) the
selection updates the cardinality and the tuple size (lines 5-6 are in reality a
small virtual method, as they are different for other operators).

7.5.4. Join

The join rule is much more complex, as it consists of multiple rules for the
different join algorithms. For simplicity, we restrict ourselves to equi-joins here
(theta-joins can be handled by just extending the nested-loop rule) and, as with
selections, assume that the joins are freely reorderable. See the outer join rule
for an example where this is not true. The join rule is a composition of multiple
relatively simple rules, we look at them afterwards. Below is the class definition
for equi-joins:

Join : BinaryRule
produced : bit set
requiredLeft : bit set
requiredRight : bit set
selectivity : double
nl : NestedLoop
sm : SortMerge
hh : HybridHash
orderLeft : Order
sortLeft : Sort
orderRight : Order
sortRight : Sort

updatePlan(plan : Plan) : void
search(plans : PlanSet) : void

The attributes produced, requiredLeft and requiredRight consist of the bit prop-
erties produced and required by the join. Their union forms the filter of the
join rule. As with selections, the selectivity is stored in an attribute with the
same name. More interesting are the attributes nl, sm and hh: They are nested
rules that are used by the main join logic to describe the different supported
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join operators. As the sort merge join requires that the input satisfies a certain
ordering, the orderings and the corresponding enforcers are stored in orderLeft,
sortLeft, orderRight and sortRight.

The updatePlan method is not really relevant for the generic join rule, as
it will select a more specific rule during the search phase. So no plan should be
constructed with the generic rule. If this happens for some reason, the generic
join can always fall back to the nested loop:
Join::updatePlan(plan)
1 nl.updatePlan(plan)

The search method is more involved. After the check if the rule is really
applicable (redundant if the filter is set correctly), it first determines which
bit properties are not determined by the join requirements and then asks the
plan generator to solve the different possible combinations. This call uses the
convenience function defined above to make sure that a plan satisfying the re-
quirements of the sort merge join is included. After the initialization of the plan
properties (if this is the first plan), it uses the different join rules to construct
plan alternatives.
Join::search(plans)

1 if (produced ∪ requiredLeft ∪ requiredRight) 6⊆ plans.properties
2 then return
3 space← plans.properties \ (produced ∪ requiredLeft ∪ requiredRight)
4 for each lp ⊆ space
5 do rp← space \ lp
6 lplans← plangen(requiredLeft ∪ lp, orderLeft, sortLeft)
7 if |lplans| = 0
8 then continue
9 rplans← plangen(requiredRight ∪ rp, orderRight, sortRight)

10 if |rplans| = 0
11 then continue
12 if |plans| = 0
13 then plan.state = join(lplan.state, rplan.state, cardinality)
14 for each l in lplans
15 do for each r in rplans
16 do if l satisifies orderLeft ∧ r satisfies orderRight
17 then p← create a new Plan(l, r)
18 sm.updatePlan(p)
19 plans← plans ∪ {p}
20 p← create a new Plan(l, r)
21 nl.updatePlan(p)
22 plans← plans ∪ {p}
23 p← create a new Plan(l, r)
24 hh.updatePlan(p)
25 plans← plans ∪ {p}

The different join rules are all direct descendants of Rule (via the empty
marker class Helper), as they do not have to manage the search phase them-
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selves. The general structure is:

JoinAlgorithm : HelperRule
join : Join

updatePlan(plan : Plan) : void

So the join algorithms do not store any information themselves, but use the
data of the enclosing generic join rule.

Nested Loop

The nested loop is the simplest join algorithm, it iterates over the right-hand
side for each tuple on the left-hand side. It can be used for any kind of join
predicate.
NestedLoop::updatePlan(plan)
1 plan.rule← this
2 plan.sharing ← updateSharing(plan.left, plan.right)
3 plan.ordering ← plan.left.ordering adjusted by induced FD
4 plan.costs← inputCosts(plan.left, 1, plan.right, plan.left.card)
5 plan.costs← plan.costs + costs for the predicate

Sort Merge

The sort merge join can only be used for equi-joins and requires that the input
is ordered on the join attributes. Note that this is guaranteed by the generic
join rule: The sort merge join updatePlan method is only called in this case.
SortMerge::updatePlan(plan)
1 plan.rule← this
2 plan.sharing ← updateSharing(plan.left, plan.right)
3 plan.ordering ← plan.left.ordering adjusted by induced FD
4 plan.costs← inputCosts(plan.left, 1, plan.right, 1)
5 plan.costs← plan.costs + costs for the predicate

Hybrid Hash

The hybrid hash join is also only usable for equi-joins and has a cost function
that depends on many parameters, especially the available memory. For a
detailed discussion see [65], here we just assume that the costs can be calculated
somehow. Note that the hybrid hash join destroys the ordering of the input.
HybridHash::updatePlan(plan)
1 plan.rule← this
2 plan.sharing ← updateSharing(plan.left, plan.right)
3 plan.ordering ← no ordering
4 plan.costs← costs for the hybrid hash join
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7.5.5. Outer Join

In contrast to the regular join, the outer join is not freely reorderable. This
means that in many cases changing the order of operators (e.g. an outer join
and a selection) influences the semantic of the query. The simplest solution for
this is to ”fix” the position of the outer join in relation to the other operators:
Add all operators that must come before to the requirements of the outer join
and let the operators that must come afterwards require the outer join. The
operator below and above the outer join can still be optimized, but they cannot
be moved across the outer join, guaranteeing the correct semantics.

However, this fixing of the position misses some optimization opportunities.
For example, a selection can be pushed down the left side of a left outer join,
and also the join ordering can be changed sometimes. See [16] for a detailed
discussion of outer join optimization. These optimizations can be done in two
ways: Either plan alternatives can be considered (see Section 5.8 for an exam-
ple), or for simpler optimizations like the exchange of selections and outer joins
it is sufficient to relax the operator dependencies accordingly (see Section 7.6).
Of course this should only be allowed if the selection is only applicable in the
left-hand side of the outer join, but this can be checked during the preparation
phase.

These semantic constraints aside, the outer join rule is nearly identical to the
other join rules. Note that the outer join will also offer a search method like
the regular rule, but as it is nearly identical, we omit it here. The rules are so
similar that it might be useful to specify only one rule and use a flag to discern
between regular and outer join, but we assume a special rule for a hash-based
outer join operator here.
OuterJoin::updatePlan(plan)
1 plan.rule← this
2 plan.sharing ← updateSharing(plan.left, plan.right)
3 plan.ordering ← no ordering
4 plan.costs← costs for the outer join

7.5.6. DJoin

Dependent joins are joins where the evaluation of one side depends on the
current value of the other. Thus, dependent joins are not commutative, but
associative and otherwise reorderable similar to normal joins. The free vari-
ables of the dependent side induce additional constraints, they are modelled as
requirements of the operator itself (see Section 7.6 for a detailed example). The
runtime behavior of the djoin usually degenerates into a nested loop join, but
for equi-joins some optimizations are possible if the left-hand side is grouped
on the join attribute. As the difference to the regular join is somewhat larger,
we give the full rule definition here:

DJoin : BinaryRule
produced : bit set
requiredLeft : bit set
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requiredRight : bit set
selectivity : double
equijoin : boolean
groupingLeft : Order
groupLeft : Sort

updatePlan(plan : Plan) : void
search(plans : PlanSet) : void

Note that although the enforcer groupLeft was declared as Sort, a hash-based
grouping operator would be sufficient, if available. The update method is just
like a method for a regular nested loop, but takes into account the grouping
property, if available:
DJoin::updatePlan(plan)
1 plan.rule← this
2 plan.sharing ← updateSharing(plan.left, plan.right)
3 plan.ordering ← plan.left.ordering adjusted by induced FD
4 if plan.left.ordering satisfy groupingLeft ∧ equijoin = true
5 then plan.costs← inputCosts(plan.left, 1, plan.right, number of groupings )
6 else plan.costs← inputCosts(plan.left, 1, plan.right, plan.left.cardinality)
7 plan.costs← plan.costs + costs for the predicate

The search method is similar to the regular join, but tries to group the left-
hand side first if the djoin is an equijoin
DJoin::search(plans)

1 if (produced ∪ requiredLeft ∪ requiredRight) 6⊆ plans.properties
2 then return
3 space← plans.properties \ (produced ∪ requiredLeft ∪ requiredRight)
4 for each lp ⊆ space
5 do rp← space \ lp
6 if equijoin = true
7 then lplans← plangen(requiredLeft ∪ lp, groupingLeft, groupLeft)
8 else lplans← plangen(requiredLeft ∪ lp)
9 if |lplans| = 0

10 then continue
11 rplans← plangen(requiredRight ∪ rp, orderRight, sortRight)
12 if |rplans| = 0
13 then continue
14 if |plans| = 0
15 then plan.state = join(lplan.state, rplan.state, cardinality)
16 for each l in lplans
17 do for each r in rplans
18 do p← create a new Plan(l, r)
19 updatePlan(p)
20 plans← plans ∪ {p}
21

75



7. Rules

→�

σa≤c≤b

�

CBA

Figure 7.2.: Simple dependent join example

7.5.7. Group By

Like the outer join the group-by operator is not reorderable in general. However,
several optimization techniques have been proposed, most of them require using
plan alternatives. See [80, 81] for a detailed discussion and Section 7.6 for an
example. The rule shown below considers two different implementations, either
a hash-based group-by or re-using an already grouped input.

GroupBy : UnaryRule
produced : bit set
required : bit set
selectivity : double
grouping : Order

updatePlan(plan : Plan) : void
search(plans : PlanSet) : void

GroupBy::updatePlan(plan)
1 plan.rule← this
2 plan.sharing ← updateSharing(plan.left)
3 if plan.left.ordering satisfies grouping
4 then plan.ordering ← plan.left.ordering
5 plan.costs← plan.left.costs + costs for the predicate
6 else plan.ordering ← grouping
7 plan.costs← plan.left.costs + costs for grouping

The search method is equivalent to the search method of Selection (in fact,
it is provided by the common base class UnaryRule).

7.6. Operator Dependencies

As stated above, dependencies are used to model algebraic equivalences. We
will now consider some more complex equivalences to illustrate the approach
for the given rule set. Note that we assume that all rules produce at least the
bit properties ”operator applied” (for the corresponding logical operator) and
”attribute available” (if they produce new attributes).

Rules for operators that are freely reorderable (especially Selection and Join)
only require bit properties according to their syntax constraints. For depen-
dent joins addition constraints are already required. Consider the operator tree
shown in Figure 7.2. In fact, the tree could be changed trivially to use only
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Figure 7.3.: Two examples of outer joins
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Figure 7.4.: Coalescing grouping example

regular joins, but it is useful as an illustration. The scans A and B require
nothing and produce the properties a and b (we assume that the scans produce
only one attribute). The regular join between A and B requires the attributes
a and b. Note that while the attributes a and b are ”available” in the dependent
branch, they must be treated differently (otherwise, predicates could migrate
from the independent to the dependent branch, which is not correct in gen-
eral). Therefore, we rename a and b (which are free attributes of the dependent
branch) into a′ and b′. Thus, the scan C produces the attribute c and also a′

and b′ (as they are always available). The selection now requires a′, b′ and c.
Finally, the dependent join requires a and b on the left-hand side and c on the
right-hand side.

A simple example for outer joins is shown on the left-hand side of Figure 7.3.
Here the scans A, B and C produce the attributes a, b and c; the join requires
a on its left-hand side and b on its right-hand side. The outer join requires a
on its left-hand side and c on its right-hand side, so the joins are reorderable
(within the syntax constraints). The selection only requires c syntactically,
but it must not be evaluated before the outer join. Therefore, the outer join
is also included in the requirements of the selection, guaranteeing the correct
execution sequence. A more complex join situation is shown on the right-hand
side of Figure 7.3. The first outer join requires a and b, while the second outer
join requires b and c. But the first outer join must be executed before the
second one (in particular, it is not allowed to push the second join down the
right-hand side of the first join). Therefore, the second join must ”require” the
first join on its left-hand side.

Similar to outer joins, group-bys are not freely reorderable in general, the
same techniques as discussed above can be used to guarantee a certain operator
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ordering. But in addition to this, group-by operators allow an interesting opti-
mization technique called coalescing grouping [8]. An example for this is shown
in Figure 7.4. Given suitable join and group-by predicates, the group-by can be
duplicated (or, in some cases, just moved) below a join, thus reducing the costs
of the join itself. In the worst case with n joins, there are 2n such grouping
possibilities, which makes it inefficient to model the problem using plan alter-
natives, as increasing the number of rules by a factor of 2n greatly increases the
search time. This could be done by the group-by rule instead: The rule asks the
plan generator to produce plans with a given set of bit properties. Therefore, it
could explicitly request plans with an additional group-by at a certain position
(the group-by could be added by an extended rule for joins, for example). This
would still increase the search space by 2n (ignoring pruning), but the rule set
remains compact and, thus, checking for applicable rules remains cheap.
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8.1. Motivation

The most expensive operations (e.g. join, grouping, duplicate elimination) dur-
ing query evaluation can be performed more efficiently if the input is ordered
or grouped in a certain way. Therefore, it is crucial for query optimization to
recognize cases where the input of an operator satisfies the ordering or group-
ing requirements needed for a more efficient evaluation. Since a plan generator
typically considers millions of different plans – and, hence, operators –, this
recognition easily becomes performance critical for query optimization, often
leading to heuristic solutions.

The importance of exploiting available orderings has been recognized in the
seminal work of Selinger et al [69]. They presented the concept of interest-
ing orderings and showed how redundant sort operations could be avoided by
reusing available orderings, rendering sort-based operators like sort-merge join
much more interesting.

Along these lines, it is beneficial to reuse available grouping properties, for
example for hash-based operators. While heuristic techniques to avoid redun-
dant group-by operators have been given [8], groupings have not been treated as
thoroughly as orderings. One reason might be that while orderings and group-
ings are related (every ordering is also a grouping), groupings behave somewhat
differently. For example, a tuple stream grouped on the attributes {a, b} need
not be grouped on the attribute {a}. This is different from orderings, where
a tuple stream ordered on the attributes (a, b) is also ordered on the attribute
(a). Since no simple prefix (or subset) test exists for groupings, optimizing
groupings even in a heuristic way is much more difficult than optimizing order-
ings. Still, it is desirable to combine order optimization and the optimization of
groupings, as the problems are related and treated similarly during plan gener-
ation. Recently, some work in this direction has been published [77]. However,
this only covers a special case of grouping, as we will discuss in some detail in
Section 8.3.

Existing frameworks usually consider only order optimization, and experi-
mental results have shown that the costs for order optimization can have a
large impact on the total costs of query optimization[62]. Therefore, some care
is needed when adding groupings to order optimization, as a slowdown of plan
generation would be unacceptable.

In this chapter, we present a framework to efficiently reason about orderings
and groupings. It can be used for the plan generator described in Chapter 5, but
is actually an independent component that could be used in any kind of plan
generator. Experimental results show that it efficiently handles orderings and
groupings at the same time, with no additional costs during plan generation
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and only modest one time costs. Actually, the operations needed for both
ordering and grouping optimization during plan generation can be performed
in O(1), basically allowing to exploit groupings for free. Parts of this chapter
were previously published in [60, 61, 62].

8.2. Problem Definition

The order manager component used by the plan generator combines order op-
timization and the handling of grouping in one consistent set of algorithms and
data structures. In this section, we give a more formal definition of the prob-
lem and the scope of the framework. First, we define the operations of ordering
and grouping (Section 8.2.1 and 8.2.2). Then, we briefly discuss functional
dependencies (Section 8.2.3) and how they interact with algebraic operators
(Section 8.2.4). Finally, we explain how the component is actually used during
plan generation (Section 8.2.5).

8.2.1. Ordering

During plan generation, many operators require or produce certain orderings.
To avoid redundant sorting, it is required to keep track of the orderings a certain
plan satisfies. The orderings that are relevant for query optimization are called
interesting orders [69]. The set of interesting orders for a given query consists
of

1. all orderings required by an operator of the physical algebra that may be
used in a query execution plan for the given query, and

2. all orderings produced by an operator of the physical algebra that may
be used in a query execution plan for the given query.

This includes the final ordering requested by the given query, if this is specified.
The interesting orders are logical orderings. This means that they specify a

condition a tuple stream must meet to satisfy the given ordering. In contrast,
the physical ordering of a tuple stream is the actual succession of tuples in
the stream. Note that while a tuple stream has only one physical ordering,
it can satisfy multiple logical orderings. For example, the stream of tuples
((1, 1), (2, 2)) with schema (a, b) has one physical ordering (the actual stream),
but satisfies the logical orderings a, b, ab and ba.

Some operators, like sort, actually influence the physical ordering of a tuple
stream. Others, like select, only influence the logical ordering. For example, a
sort[a] produces a tuple stream satisfying the ordering (a) by actually chang-
ing the physical order of tuples. After applying select[a=b] to this tuple
stream, the result satisfies the logical orderings (a), (b), (a, b), (b, a), although
the physical ordering did not change. Deduction of logical orderings can be de-
scribed by using the well-known notion of functional dependency (FD) [70]. In
general, the influence of a given algebraic operator on a set of logical orderings
can be described by a set of functional dependencies.
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We now formalize the problem. Let R = (t1, . . . , tr) be a stream (ordered se-
quence) of tuples in attributes A1, . . . , An. Then R satisfies the logical ordering
o = (Ao1 , . . . , Aom) (1 ≤ oi ≤ n) if and only if for all 1 ≤ i < j ≤ r the following
condition holds:

(ti.Ao1 ≤ tj .Ao1)
∧ ∀1 < k ≤ m (∃1 ≤ l < k(ti.Aol

< tj .Aol
)) ∨

((ti.Aok−1
= tj .Aok−1

) ∧
(ti.Aok

≤ tj .Aok
))

Next, we need to define the inference mechanism. Given a logical ordering
o = (Ao1 , . . . , Aom) of a tuple stream R, then R obviously satisfies any logical
ordering that is a prefix of o including o itself.

Let R be a tuple stream satisfying both the logical ordering o = (A1, . . . , An)
and the functional dependency f = B1, . . . , Bk → Bk+1

1 with Bi ∈ {A1 . . . An}.
Then R also satisfies any logical ordering derived from o as follows: add Bk+1

to o at any position such that all of B1, . . . , Bk occurred before this position
in o. For example, consider a tuple stream satisfying the ordering (a, b); after
inducing the functional dependency a, b→ c, the tuple stream also satisfies the
ordering (a, b, c), but not the ordering (a, c, b). Let O′ be the set of all logical
orderings that can be constructed this way from o and f after prefix closure.
Then, we use the following notation: o `f O′. Let e be the equation Ai = Aj .
Then, o `e O′, where O′ is the prefix closure of the union of the following three
sets. The first set is O1 defined as o `Ai→Aj O1, the second is O2 defined as
o `Aj→Ai O2, and the third is the set of logical orderings derived from o where a
possible occurrence of Ai is replaced by Aj or vice versa. For example, consider
a tuple stream satisfying the ordering (a); after inducing the equation a = b,
the tuple stream also satisfies the orderings (a, b), (b) and (b, a). Let e be an
equation of the form A = const. Then O′ (o `e O′) is derived from o by inserting
A at any position in o. This is equivalent to o `∅→A O′. For example, consider a
tuple stream satisfying the ordering (a, b); after inducing the equation c = const
the tuple stream also satisfies the orderings (c, a, b), (a, c, b) and (a, b, c).

Let O be a set of logical orderings and F a set of functional dependencies (and
possibly equations). We define the sets of inferred logical orderings Ωi(O,F ) as
follows:

Ω0(O,F ) := O

Ωi(O,F ) := Ωi−1(O,F ) ∪⋃
f∈F,o∈Ωi−1(O,F )

O′ with o `f O′

Let Ω(O,F ) be the prefix closure of
⋃∞

i=0 Ωi(O,F ). We write o `F o′ if and
only if o′ ∈ Ω(O,F ).

1Any functional dependency which is not in this form can be normalized into a set of FDs
of this form.
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8.2.2. Grouping

It was shown in [77] that, similar to order optimization, it is beneficial to
keep track of the groupings satisfied by a certain plan. Traditionally, group-by
operators are either applied after the rest of the query has been processed or
are scheduled using some heuristics [8]. However, the plan generator could take
advantage of grouping properties produced e.g. by avoiding re-hashing if such
information was easily available.

Analogous to order optimization, we call this grouping optimization and define
that the set of interesting groupings for a given query consists of

1. all groupings required by an operator of the physical algebra that may be
used in a query execution plan for the given query

2. all groupings produced by an operator of the physical algebra that may
be used in a query execution plan for the given query.

This includes the grouping specified by the group-by clause of the query, if any
exists.

These groupings are similar to logical orderings, as they specify a condition
a tuple stream must meet to satisfy a given grouping. Likewise, functional
dependencies can be used to infer new groupings.

More formally, a tuple stream R = (t1, . . . , tr) in attributes A1, . . . , An sat-
isfies the grouping g = {Ag1 . . . , Agm} (1 ≤ gi ≤ n) if and only if for all
1 ≤ i < j < k ≤ r the following condition holds:

∀1 ≤ l ≤ m ti.Agl
= tk.Agl

⇒ ∀1 ≤ l ≤ m ti.Agl
= tj .Agl

Two remarks are in order here. First, note that a grouping is a set of
attributes and not – as orderings – a sequence of attributes. Second, note
that given two groupings g and g′ ⊂ g and a tuple stream R satisfying the
grouping g, R need not satisfy the grouping g′. For example, the tuple stream
((1, 2), (2, 3), (1, 4)) with the schema (a, b) is grouped by {a, b}, but not by {a}.
This is different from orderings, where a tuple stream satisfying an ordering o
also satisfies all orderings that are a prefix of o.

New groupings can be inferred by functional dependencies as follows: Let R
be a tuple stream satisfying both the grouping g = {A1, . . . , An} and the func-
tional dependency f = B1, . . . , Bk → Bk+1 with {B1, . . . , Bk} ⊆ {A1, . . . , An}.
Then R also satisfies the grouping g′ = {A1, . . . , An} ∪ {Bk+1}. Let G′ be the
set of all groupings that can be constructed this way from g and f . Then we
use the following notation: g `f G′. For example {a, b} `a,b→c {a, b, c}. Let e
be the equation Ai = Aj . Then g `e G′ where G′ is the union of the follow-
ing three sets. The first set is G1 defined as g `Ai→Aj G1, the second is G2

defined as g `Aj→Ai G2, and the third is the set of groupings derived from g
where a possible occurrence of Ai is replaced by Aj or vice versa. For example,
{a, b} `b=c {a, c}. Let e be an equation of the form A = const. Then g `e G′ is
defined as g `∅→A G′. For example, {a, b} `c=const {a, b, c}.
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Let G be a set of groupings and F be a set of functional dependencies (and
possibly equations). We define the set of inferred groupings Ωi(G, F ) as follows:

Ω0(G, F ) := G

Ωi(G, F ) := Ωi−1(G, F ) ∪⋃
f∈F,g∈Ωi−1(G,F )

G′ with g `f G′

Let Ω(G, F ) be
⋃∞

i=0 Ωi(G, F ). We write g `F g′ if and only if g′ ∈ Ω(G, F ).

8.2.3. Functional Dependencies

The reasoning about orderings and groupings assumes that the set of functional
dependencies is known. The process of gathering the relevant functional depen-
dencies is described in detail in [70]. Predominantly, there are three sources of
functional dependencies:

1. key constraints

2. join predicates

3. filter predicates

4. simple expressions

However, the algorithm makes no assumption about the functional dependen-
cies. If for some reason an operator induces another kind of functional depen-
dency (e.g., when using TID-based optimizations [53]), this can be handled the
same way.

8.2.4. Algebraic Operators

To illustrate the propagation of orderings and groupings during query optimiza-
tion, we give some rules for concrete (physical) operators in Figure 8.1. As a
shorthand, we use the following notation:
O(R) set of logical orderings and groupings satisfied by the physical order-

ing of the relation R
O(S) inferred set of logical orderings and groupings satisfied by the tuple

stream S
x ↓ {y|y ∈ x}
Note that these rules somewhat depend on the actual implementation of the

operators, e.g. a blockwise nested loop join might actually destroy the ordering
if the blocks are stored in hash tables. The rules are also simplified: For exam-
ple, a group-by will probably compute some aggregate functions, inducing new
functional dependencies. Furthermore, additional information can be derived
from schema information: If the right-hand side of a dependent join (index
nested loop joins are similar) produces at most one tuple, and the left-hand
side is grouped on the free attributes of the right-hand side (e.g. if they do not
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operator requires produces
scan(R) - O(R)
indexscan(Idx) - O(Idx)
map(S,a = f(b)) - Ω(O(S), b→ a)
select(S,a = b) - Ω(O(S), a = b)
bnl-join(S1,S2) - O(S1)
indexnl-join(S1,S2) - O(S1)
djoin(S1,S2) - O(S1)
sort(S,a1, . . . , an) - (a1, . . . , an)
group-by(S,a1, . . . , an) - {a1, . . . , an}
hash(S,a1, . . . , an) - {a1, . . . , an}
sort-merge(S1,S2,~a = ~b) ~a ∈ O(S1) ∧~b ∈ O(S2) Ω(O(S1),~a = ~b)
hash-join(S1,S2,~a = ~b) ~a ↓∈ O(S1) ∧~b ↓∈ O(S2) Ω(O(S1),~a = ~b)

Figure 8.1.: Propagation of orderings and groupings

contain duplicates) the output is also grouped on the attributes of the right-
hand side. This situation is common, especially for index nested loop joins,
and is detected automatically if the corresponding functional dependencies are
considered. Therefore, it is important that all operators consider all functional
dependencies they induce.

8.2.5. Plan Generation

To exploit available logical orderings and groupings, the plan generator needs
access to the combined order optimization and grouping component, which we
describe as an abstract data type (ADT). An instance of this abstract data
type OrderingGrouping represents a set of logical orderings and groupings,
and wherever necessary, an instance is embedded into a plan note. The main
operations the abstract data type OrderingGrouping must provide are

1. a constructor for a given logical ordering or grouping,

2. a membership test (called containsOrdering(LogicalOrdering)) which
tests whether the set contains the logical ordering given as parameter,

3. a membership test (called containsGrouping(Grouping)) which tests
whether the set contains the grouping given as parameter, and

4. an inference operation (called infer(set<FD>)). Given a set of functional
dependencies and equations, it computes a new set of logical orderings and
groupings a tuple stream satisfies.

These operations can be implemented by using the formalism described be-
fore: containsOrdering tests for o ∈ O, containsGrouping tests for o ∈ G
and infer(F) calculates Ω(O,F ) respectively Ω(G, F ). Note that the intuitive
approach to explicitly maintain the set of all logical orderings and groupings
is not useful in practice. For example, if a sort operator sorts a tuple stream
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on (a, b), the result is compatible with logical orderings {(a, b), (a)}. After a
selection operator with selection predicate x = const is applied, the set of log-
ical orderings changes to {(x, a, b), (a, x, b), (a, b, x), (x, a), (a, x), (x)}. Since
the size of the set increases quadratically with every additional selection predi-
cate of the form v = const, a naive representation as a set of logical orderings is
problematic. This led Simmen et al. to introduce a more concise representation,
which is discussed in the related work section. Note that Simmen’s technique is
not easily applicable to groupings, and no algorithm was proposed to efficiently
maintain the set of available groupings. The order optimization component de-
scribed here closes this gap by supporting both orderings and groupings. The
problem of quadatic growth is avoided by only implicitly representing the set.
Before presenting our approach, let us discuss the existing literature in detail.

8.3. Related Work

Very few papers exist on order optimization. While the problem of optimizing
interesting orders was already introduced by Selinger et al. [69], later papers
usually concentrated on exploiting, pushing down or combining orders, not on
the abstract handling of orders during query optimization.

A more recent paper by Simmen et al. [70] introduced a framework based
on functional dependencies for reasoning about orderings. Since this is the
only paper which really concentrates on the abstract handling orders and our
approach is similar in the usage of functional dependencies, we will describe
their approach in some more detail.

For a plan node they keep just a single (physical) ordering. Additionally, they
associate all the applicable functional dependencies with a plan node. Hence,
the lower-bound space requirement for this representation is essentially Ω(n),
where n is the number of functional dependencies derived from the query. Note
that the set of functional dependencies is still (typically) much smaller than the
set of all logical orderings. In order to compute the function containsOrdering,
Simmen et al. apply a reduction algorithm on both the ordering associated with
a plan node and the ordering given as an argument to containsOrdering. Their
reduction roughly does the opposite of deducing more orderings using functional
dependencies. Let us briefly illustrate the reduction by an example. Assume
the physical ordering a tuple stream satisfies is (a), and the required ordering is
(a, b, c). Further assume that there are two functional dependencies available:
a → b and a, b → c. The reduction algorithm is performed on both orderings.
Since (a) is already minimal, nothing changes. Let us now reduce (a, b, c). We
apply the second functional dependency first. Using a, b → c, the reduction
algorithm yields (a, b) because c appears in (a, b, c) after a and b. Hence, c is
removed. In general, every occurrence of an attribute on the right-hand side of
a functional dependency is removed if all attributes of the left-hand side of the
functional dependency precede the occurrence. Reduction of (a, b) by a → b
yields (a). After both orderings are reduced, the algorithm tests whether the
reduced required ordering is a prefix of the reduced physical ordering. Note
that if we applied a → b first, then (a, b, c) would reduce to (a, c) and no
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further reduction would be possible. Hence, the rewrite system induced by their
reduction process is not confluent. This problem is not mentioned by Simmen
et al., but can have the effect that containsOrdering returns false whereas it
should return true. The result is that some orderings remain unexploited; this
could be avoided by maintaining a minimal set of functional dependencies, but
the computation costs would probably be prohibitive. This problem does not
occur with our approach. On the complexity side, every functional dependency
has to be considered by the reduction algorithm at least once. Hence, the lower
time bound is Ω(n).

In case all functional dependencies are introduced by a single plan node and
all of them have to be inserted into the set of functional dependencies associated
with that plan node, the lower bound for inferNewLogicalOrderings is also
Ω(n).

Overall, Simmen et al. proposed the important framework for order optimiza-
tion utilizing functional dependencies and nice algorithms to handle orderings
during plan generation, but the space and time requirements are unfortunate
since plan generation might generate millions of subplans. Also note that the
reduction algorithm is not applicable for groupings (which, of course, was never
intended by Simmen): Given the grouping {a, b, c} and the functional depen-
dencies a → b and b → c, the grouping would be reduced to {a, c} or to {a},
depending on the order in which the reductions are performed. This problem
does not occur with orderings, as the attributes are sorted and can be reduced
back to front.

A recent paper by Wang and Cherniack [77] presented the idea of combining
order optimization with the optimization of groupings. Based upon Simmen’s
framework, they annotated each attribute in an ordering with the information
whether it is actually ordered by or grouped by. For a single attribute a, they
write OaO(R) to denote that R is ordered by a, OaG(R) to denote that R is
grouped by a and OaO→bG to denote that R is first ordered by a and then
grouped by b (within blocks of the same a value). Before checking if a required
ordering or grouping is satisfied by a given plan, they use some inference rules to
get all orderings and groupings satisfied by the plan. Basically, this is Simmen’s
reduction algorithm with two extra transformations for groupings. In their
paper the check itself is just written as ∈, however, at least one reduction on
the required ordering would be needed for this to work (and even that would
not be trivial, as the stated transformations on groupings are ambiguous). The
promised details in the cited technical report are currently not available, as the
report has not appeared yet. Also note that, as explained above, the reduction
approach is fundamentally not suited for groupings. In Wang’s and Cherniack’s
paper, this problem does not occur, as they only look at a very specialized
kind of grouping: As stated in their Axiom 3.6, they assume that a grouping
OaG→bG is first grouped by a and then (within the block of tuples with the same
a value) grouped by b. However, this is a very strong condition that is usually
not satisfied by a hash-based grouping operator. Therefore, their work is not
general enough to capture the full functionality offered by a state-of-the-art
query execution engine.
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Figure 8.2.: Possible FSM for orderings

8.4. Idea

As we have seen, explicit maintenance of the set of logical orderings and group-
ings can be very expensive. However, the ADT OrderingGrouping required
for plan generation does not need to offer access to this set: It only allows to
test if a given interesting order or grouping is in the set and changes the set
according to new functional dependencies. Hence, it is not required to explicitly
represent this set; an implicit representation is sufficient as long as the ADT
operations can be implemented atop of it. In other words, we need not be able
to reconstruct the set of logical orderings and groupings from the state of the
ADT. This gives us room for optimizations.

Our initial idea published in [62] was to represent sets of logical orderings as
states of a finite state machine (FSM). Roughly, a state of the FSM represents
a current physical ordering and the set of logical orderings that can be inferred
from it given a set of functional dependencies. The edges (transitions) in the
FSM are labeled by sets of functional dependencies. They lead from one state
to another, if the target state of the edge represents the set of logical orderings
that can be derived from the orderings the edge’s source node represents by
applying the set of functional dependencies the edge is labeled with. We have
to use sets of functional dependencies, since a single algebraic operator may
introduce more than one functional dependency.

Let us illustrate the idea by a simple example and then discuss some problems.
In Figure 8.2 an FSM for the interesting order (a, b, c) and its prefixes (remember
that we need prefix closure) and the set of functional dependencies {b → d} is
given. When a physical ordering satisfies (a, b, c), it also satisfies its prefixes
(a, b) and (a). This is indicated by the ε transitions. The functional dependency
b → d allows to derive the logical orderings (a, b, c, d) and (a, b, d, c). This is
handled by assuming that the physical ordering changes to either (a, b, c, d)
or (a, b, d, c). Hence, these states have to be added to the FSM. We further
add the transitions induced by {b → d}. Note that the resulting FSM is a
non-deterministic finite state machine (NFSM).

Assume we have an NFSM as above. Then (while ignoring groupings) the
state of the ADT is a state of the NFSM and the operations of the ADT can
easily be mapped to the FSM. Testing for a logical ordering can be performed
by checking if the node with the ordering is reachable from the current state
by following ε edges. If the set must be changed because of a functional de-
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{b → d}
abcdabc

Figure 8.3.: Possible FSM for groupings
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Figure 8.4.: Combined FSM for orderings and groupings

pendency the state is changed by following the edge labeled with the functional
dependency. Of course, the non-determinism stands in our way.

While remembering only the active state of the NFSM avoids the problem
of maintaining a set of orderings, the NFSM is not really useful from a prac-
tical point of view, since the transitions are non-deterministic. Nevertheless,
the NFSM can be considered as a special non-deterministic finite automaton
(NFA), which consumes the functional dependencies and ”recognizes” the pos-
sible physical orderings. Further, an NFA can be converted into a deterministic
finite automaton (DFA), which can be handled efficiently. Remember that the
construction is based on the power set of the NFA’s states. That is, the states
of the DFA are sets of states of the NFA [47]. We do not take the deviation
over the finite automaton but instead lift the construction of deterministic finite
automatons from non-deterministic ones to finite state machines. Since this is
not a traditional conversion, we give a proof of this step in Section 8.6.

Yet another problem is that the conversion from an NFSM to a deterministic
FSM (DFSM) can be expensive for large NFSMs. Therefore, reducing the
size of the NFSM is another problem we look at. We introduce techniques
for reducing the set of functional dependencies that have to be considered and
further techniques to prune the NFSM in Section 8.5.7.

The idea of a combined framework for orderings and groupings was presented
in [61]. Here, the main point is to construct a similar FSM for groupings and
integrate it into the FSM for orderings, thus handling orderings and groupings at
the same time. An example of this is shown in Figure 8.3. Here, the FSM for the
grouping {a, b, c} and the functional dependency b→ c is shown. We represent
states for orderings as rounded boxes and states for groupings as rectangles.

{b → d} a,ab,abc

abd,abcd,a,ab,abc,{ab}
abdc,{abd}

Figure 8.5.: Possible DFSM for Figure 8.4
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Note that although the FSM for groupings has a start node similar to the FSM
for orderings, it is much smaller. This is due to the fact that groupings are
only compatible with themselves, no nodes for prefixes are required. However,
the FSM is still non-deterministic: given the functional dependency b → c,
the grouping {a, b, c, d} is compatible with {a, b, c, d} itself and with {a, b, c};
therefore, there exists an (implicit) edge from each grouping to itself.

The FSM for groupings is integrated into the FSM for orderings by adding
ε edges from each ordering to the grouping with the same attributes; this is
due to the fact that every ordering is also a grouping. Note that although the
ordering (a, b, c, d) also implies the grouping {a, b, c}, no edge is required for
this, since there exists an ε edge to (a, b, c) and from there to {a, b, c}.

After constructing a combined FSM as described above, the full ADT sup-
porting both orderings and groupings can easily be mapped to the FSM: The
state of the ADT is a state of the FSM and testing for a logical ordering or
grouping can be performed by checking if the node with the ordering or group-
ing is reachable from the current state by following ε edges (as we will see, this
can be precomputed to yield the O(1) time bound for the ADT operations). If
the state of the ADT must be changed because of functional dependencies, the
state in the FSM is changed by following the edge labeled with the functional
dependency.

However, the non-determinism of this transition is a problem. Therefore, for
practical purposes the NFSM must be converted into a DFSM. The resulting
DFSM is shown in Figure 8.5. Note that although in this simple example the
DFSM is very small, the conversion could lead to exponential growth. There-
fore, additional pruning techniques for groupings are presented in Section 8.5.7.
However, the inclusion of groupings is not critical for the conversion, as the
grouping part of the NFSM is nearly independent of the ordering part. In
Section 8.7 we look at the size increase due to groupings. The memory con-
sumption usually increases by a factor of two, which is the minimum expected
increase, since every ordering is a grouping.

Some operators, like sort, change the physical ordering. In the NFSM, this
is handled by changing the state to the node corresponding to the new physical
ordering. Implied by its construction, in the DFSM this new physical ordering
typically occurs in several nodes. For example, (a, b, c) occurs in both nodes of
the DFSM in Figure 8.5. It is, therefore, not obvious which node to choose.
We will take care of this problem during the construction of the NFSM (see
Section 8.5.3).

8.5. Detailed Algorithm

8.5.1. Overview

Our approach consists of two phases. The first phase is the preparation step
taking place before the actual plan generation starts. The output of this phase
are the precomputed values used to implement the ADT. Then the ADT is used
during the second phase where the actual plan generation takes place. The first
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1. Determine the input

a) Determine interesting orders

b) Determine interesting groupings

c) Determine set of functional dependencies

2. Construct the NFSM

a) Construct states of the NFSM

b) Filter functional dependencies

c) Build filters for orderings and groupings

d) Add edges to the NFSM

e) Prune the NFSM

f) Add artificial start state and edges

3. Convert the NFSM into a DFSM

4. Precompute values

a) Precompute the compatibility matrix

b) Precompute the transition table

Figure 8.6.: Preparation steps of the algorithm

phase is performed exactly once and is quite involved. Most of this section
covers the first phase. Only Section 8.5.6 deals with the ADT implementation.

Figure 8.6 gives an overview of the preparation phase. It is divided into four
major steps, which are discussed in the following subsections. Subsection 8.5.2
briefly reviews how the input to the first phase is determined and, more im-
portantly, what it looks like. Section 8.5.3 describes in detail the construction
of the NFSM from the input. The conversion from the NFSM to the DFSM is
only briefly sketched in Section 8.5.4, for details see [47]. From the DFSM some
values are precomputed which are then used for the efficient implementation of
the ADT. The precomputation is described in Section 8.5.5, while their utiliza-
tion and the ADT implementation are the topic of Section 8.5.6. Section 8.5.7
contains some important techniques to reduce the size of the NFSM. They are
applied in Steps 2 (b), 2 (c) and 2 (e). During the discussion, we illustrate the
different steps by a simple running example. More complex examples can be
found in Section 8.7.

8.5.2. Determining the Input

Since the preparation step is performed immediately before plan generation, it
is assumed that the query optimizer has already determined which indices are
applicable and which algebraic operators can possibly be used to construct the
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query execution plan.
Before constructing the NFSM, the set of interesting orders, the set of in-

teresting groupings and the sets of functional dependencies for each algebraic
operator are determined. We denote the set of sets of functional dependencies
by F . It is important for the correctness of our algorithms that we note which
of the interesting orders are (1) produced by some algebraic operator or (2) only
tested for. Note that the interesting orders which satisfy (1) may additionally
be tested for as well. We denote those orderings under (1) by OP , those under
(2) by OT . The total set of interesting orders is defined as OI = OP ∪ OT .
The orders produced are treated slightly differently in the following steps. For
details on determining the set of interesting orders we refer to [69, 70]. The
groupings are classified similarly to the orderings: We denote the grouping pro-
duced by some algebraic operator by GP , and those just tested for by GT . The
total set of interesting groupings is defined as GI = GP ∪ GT . More informa-
tion on how to extract interesting groupings can be found in [77]. Furthermore,
for a sample query the extraction of both interesting orders and groupings is
illustrated in Section 8.7.

To illustrate subsequent steps, we assume that the set of sets of functional
dependencies

F = {{b→ c}, {b→ d}},

the interesting groupings

GI = {{b}} ∪ {{b, c}}

and the interesting orders

OI = {(b), (a, b)} ∪ {(a, b, c)}

have been extracted from the query. We assume that those in OT = {(a, b, c)}
and GT = {{b, c}} are tested for but not produced by any operator, whereas
those in OP = {(b), (a, b)} and GP = {{b}} may be produced by some algebraic
operators.

8.5.3. Constructing the NFSM

An NFSM consists of a tuple (Σ, Q,D, qo), where

• Σ is the input alphabet,

• Q is the set of possible states,

• D ⊆ Q× (Σ ∪ {ε})×Q is the transition relation, and

• q0 is the initial state.

Coarsely, Σ consists of the functional dependencies, Q of the relevant order-
ings and groupings, and D describes how the orderings or groupings change
under a given functional dependency. Some refinements are needed to provide
efficient ADT operations. The details of the construction are described now.
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b,c

b

a,b,c

a,b

b

Figure 8.7.: Initial NFSM for sample query

For the order optimization part the states are partitioned in Q = QI ∪QA ∪
{q0}, where q0 is an artificial state to initialize the ADT, QI is the set of states
corresponding to interesting orderings and QA is a set of artificial states only
required for the algorithm itself. QA is described later. Furthermore, the set
QI is partitioned in QP

I and QT
I , representing the orderings in OP and OT ,

respectively. To support groupings, we add to QP
I states corresponding to the

groupings in GP and to QT
I states corresponding to the groupings in GT .

The initial NFSM contains the states QI of interesting groupings and order-
ings. For the example, this initial construction not including the start state qo is
shown in Figure 8.7. The states representing groupings are drawn as rectangles
and the states representing orderings are drawn with rounded corners.

When considering functional dependencies, additional groupings and order-
ings can occur. These are not directly relevant for the query, but have to be
represented by states to handle transitive changes. Since they have no direct
connection to the query, these states are called artificial states. Starting with
the initial states QI , artificial states are constructed by considering functional
dependencies

QA = (Ω(OI ,F) \OI) ∪ (Ω(GI ,F) \GI).

In our example, this creates the states (b, c) and (a), as (b, c) can be inferred
from (b) when considering {b→ c} and (a) can be inferred from (a, b), since (a)
is a prefix of (a, b). The result is show in Figure 8.8 (ignore the edges).

Sometimes the ADT has to be explicitly initialized with a certain ordering or
grouping (e.g. after a sort). To support this, artificial edges are added later on.
These point to the requested ordering or grouping (states in QP

I ) and are labeled
with the state that they lead to. Therefore, the input alphabet Σ consists of
the sets of functional dependencies and produced orderings and groupings:

Σ = F ∪QP
I ∪ {ε}.

In our example, Σ = {{b→ c}, {b→ d}, (b), (a, b), {b}}.
Accordingly, the domain of the transition relation D is

D ⊆ ((Q \ {q0})× (F ∪ {ε})× (Q \ {q0}))
∪ ({qo} ×QP

I ×QP
I ).

The edges are formed by the functional dependencies and the artificial edges.
Furthermore, ε edges exist between orderings and the corresponding groupings,
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Figure 8.8.: NFSM after adding DFD edges
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Figure 8.9.: NFSM after pruning artificial states

as orderings are a special case of grouping:

DFD = {(q, f, q′) | q ∈ Q, f ∈ F ∪ {ε}, q′ ∈ Q, q ` fq′}
DA = {(q0, q, q) | q ∈ QP

I }
DOG = {(o, ε, g) | o ∈ Ω(OI ,F), g ∈ Ω(GI ,F), o ≡ g}

D = DFD ∪DA ∪DOG

First, the edges corresponding to functional dependencies are added (DFD).
In our example, this results in the NFSM shown in Figure 8.8.

Note that the functional dependency b → d has been pruned, since d does
not occur in any interesting order or grouping. The NFSM can be further
simplified by pruning the artificial state (b, c), which cannot lead to a new
interesting order. The result is shown in Figure 8.9. A detailed description of
these pruning techniques can be found in Section 8.5.7.

The artificial start state q0 has emanating edges incident to all states repre-
senting interesting orders in OP

I and interesting groupings in GP
I (DA). Also,

the states representing orderings have edges to their corresponding grouping
states (DOG), as every ordering is also a grouping. The final NFSM for the
example is shown in Figure 8.10. Note that the states representing (a, b, c) and
{b, c} are not linked by an artificial edge since it is only tested for, as they are
in QT

I .
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Figure 8.10.: Final NFSM
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Figure 8.11.: Resulting DFSM

8.5.4. Constructing the DFSM

The construction of the DFSM from the NFSM follows the standard power
set construction that is used to translate an NFA into a DFA [47]. A formal
description and a proof of correctness is given in Section 8.6. It is important
to note that this construction preserves the start state and the artificial edges.
The resulting DFSM for the example is shown in Figure 8.11.

8.5.5. Precomputing Values

To allow for an efficient precomputation of values, every occurrence of an inter-
esting order, interesting grouping or set of functional dependencies is replaced

state 1: 2: 3: 4: 5: 6:
(a) (a,b) (a,b,c) (b) {b} {b,c}

1 0 0 0 0 1 0
2 0 0 0 1 1 0
3 1 1 0 0 0 0
4 0 0 0 0 1 1
5 0 0 0 1 1 1
6 1 1 1 0 0 0

Figure 8.12.: contains Matrix
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state 1: 2: 3: 4:
{b→ c} (a, b) (b) {b}

qo - 3 2 1
1 4 - - -
2 5 - - -
3 6 - - -
4 4 - - -
5 5 - - -
6 6 - - -

Figure 8.13.: transition Matrix

by integers. This allows comparisons in constant time (equivalent entries are
mapped to same integer). Further, the DFSM is represented by an adjacency
matrix.

The precomputation step itself computes two matrices. The first matrix
denotes whether an NFSM state in QI is active, i.e. an interesting order or an
interesting grouping, is contained in a specific DFSM state. This matrix can
be represented as a compact bit vector, allowing tests in O(1). For our running
example, it is given (in a more readable form) in Figure 8.12. The second matrix
contains the transition table for the DFSM relation D. Using it, edges in the
DFSM can be followed in O(1). For the example, the transition matrix is given
in Figure 8.13.

8.5.6. During Plan Generation

During plan generation, larger plans are constructed by adding algebraic op-
erators to existing (sub-)plans. Each subplan contains the available orderings
and groupings in the form of the corresponding DFSM state. Hence, the state
of the DFSM, a simple integer, is the state of our ADT OrderingGrouping.

When applying an operator to subplans, the ordering and grouping require-
ments are tested by checking whether the DFSM state of the subplan contains
the required ordering or grouping of the operator. This is done by a simple
lookup in the contains matrix.

If the operator introduces a new set of functional dependencies, the new state
of the ADT is computed by following the according edge in the DFSM. This is
performed by a quick lookup in the transition matrix.

For “atomic” subplans like table or index scans, the ordering and grouping
is determined explicitly by the operator. The state of the DFSM is determined
by a lookup in the transition matrix with start state qo and the edge annotated
by the produced ordering or grouping. For sort and group-by operators the
state of the DFSM is determined as before by following the artificial edge for
the produced ordering or grouping and then reapplying the set of functional
dependencies that currently hold.

In the example, a sort on (b) results in a subplan with ordering/grouping
state 2 (the state 2 is active in the DFSM), which satisfies the ordering (b)
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and the grouping {b}. After applying an operator which induces b → c, the
ordering/grouping changes to state 5 which also satisfies {b, c}.

8.5.7. Reducing the Size of the NFSM

Reducing the size of the NFSM is important for two reasons: First, it reduces
the amount of work needed during the preparation step, especially the con-
version from NFSM to DFSM. Even more important is that a reduced NFSM
results in a smaller DFSM. This is crucial for plan generation, since it reduces
the search space: Plans can only be compared and pruned if they have com-
parable ordering and a comparable set of functional dependencies (see [70] for
details). Reducing the size of the DFSM removes information that is not rel-
evant for plan generation and, therefore, allows a more aggressive pruning of
plans.

At first, the functional dependencies are pruned. Here, functional dependen-
cies which can never lead to a new interesting order or grouping are removed.
For convenience, we extend the definition of Ω(O,F ) and define

Ω(O, ε) := Ω(O, ∅).

Then the set of prunable functional dependencies FP can be described by

ΩN (o, f) := Ω({o}, {f}) \ Ω({o}, ε)
FP := {f |f ∈ F ∧ ∀o ∈ OI ∪GI :

(Ω(ΩN (o, f), F ) \ Ω({o}, ε)) ∩ (OI ∪GI) = ∅}.

Pruning functional dependencies is especially useful, since it also prunes artifi-
cial states that would be created because of the dependencies. In the example,
this removed the functional dependency b → d, since d does not appear in
any interesting order or grouping. This step also removes the artificial states
containing d.

The artificial states are required to build the NFSM, but they are not visible
outside the NFSM. Therefore, they can be pruned and merged without affecting
plan generation. Two heuristics are used to reduce the set of artificial states:

1. All artificial nodes that behave exactly the same (that is, their edges lead
to the same states given the same input) are merged and

2. all edges to artificial states that can reach states in QI only through ε
edges are replaced with corresponding edges to the states in QI .

More formally, the following pairs of states can be merged:

{(o1, o2) | o1 ∈ QA, o2 ∈ QA ∧ ∀f ∈ F :
(Ω({o1}, {f}) \ Ω({o1}, ε)) =
(Ω({o2}, {f}) \ Ω({o2}, ε))}.
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The following states can be replaced with the next state reachable by an ε edge:

{o | o ∈ QA ∧ ∀f ∈ F :
Ω(Ω({o}, ε), {f}) \ {o} =
Ω(Ω({o}, ε) \ {o}, {f})}.

In the example, this removed the state (b, c), which was artificial and only led
to the state (b).

These techniques reduce the size of the NFSM, but still most states are artifi-
cial states, i.e. they are only created because they can be reached by considering
functional dependencies when a certain ordering or grouping is available. But
many of these states are not relevant for the actual query processing. For exam-
ple, given a set of interesting orders which consists only of a single ordering (a)
and a set of functional dependencies which consists only of a → b, the NFSM
will contain (among others) two states: (a) and (a, b). The state (a, b) is cre-
ated since it can be reached from (a) by considering the functional dependency,
however, it is irrelevant for the plan generation, since (a, b) is not an interesting
order and is never created nor tested for. Actually, in the example above, the
whole functional dependency would be pruned (since b never occurs in an inter-
esting order), but the problem remains for combinations of interesting orders:
Given the interesting orders (a), (b) and (c) and the functional dependencies
{a → b, b → a, b → c, c → b}, the NFSM will contain states for all permuta-
tions of a, b and c. But these states are completely useless, since all interesting
orders consist only of a single attribute and, therefore, only the first entry of
an ordering is ever tested.

Ideally, the NFSM should only contain states which are relevant for the query;
since this is difficult to ensure, a heuristic can be used which greatly reduces
the size of the NFSM and still guarantees that all relevant states are available:
When considering a functional dependency of the form a→ b and an ordering
o1, o2, . . . , on with oi = a for some i (1 ≤ i ≤ n), the b can be inserted at any
position j with i < j ≤ n + 1 (for the special case of a condition a = b, i = j is
also possible). So, an entry of an ordering can only affect entries on the right of
its own position. This means that it is unnecessary to consider those parts of
an ordering which are behind the length of the longest interesting order; since
that part cannot influence any entries relevant for plan generation, it can be
omitted. Therefore, the orderings created by functional dependencies can be
cut off after the maximum length of interesting orders, which results in less
possible combinations and a smaller NFSM.

The space of possible orderings can be limited further by taking into account
the prefix of the ordering: before inserting an entry b in an ordering o1, o2, . . . , on

at the position i, check if there is actually an interesting order with the prefix
o1, o2, ...oi−1, b and stop inserting if no interesting order is found. Also limit the
new ordering to the length of the longest matching interesting order; further
attributes will never be used. If functional dependencies of the form a = b occur,
they might influence the prefix of the ordering and the simple test described
above is not sufficient. Therefore, a representative is chosen for each equivalence
class created by these dependencies, and for the prefix test the attributes are
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replaced with their representatives. Since the set of interesting orders with
a prefix of o1, . . . , on is a superset of the set for the prefix o1, ...on, on+1, this
heuristic can be implemented very efficiently by iterating over i and reducing
the set as needed.

Additional techniques can be used to avoid creating superfluous artifical
states for groupings: First, in Step 2.3 (see Figure 8.6) the set of attributes
occurring in interesting groupings is determined:

AG = {a | ∃g ∈ GI : a ∈ g}

Now, for every attribute a occurring on the right-hand side of a functional
dependency the set of potentially reachable relevant attributes is determined:

r(a, 0) = {a}
r(a, n) = r(a, n− 1) ∪

{a′ | ∃(a1 . . . am → a′) ∈ F :
{a1 . . . am} ∩ r(a, n− 1) 6= ∅}

r(a) = r(a, |F|) ∩AG

This can be used to determine if a functional dependency actually adds useful
attributes. Given a functional dependency a1 . . . an → a and a grouping g with
{a1 . . . an} ⊆ g, a should only be added to g if r(a) 6⊆ g, i.e. the attribute might
actually lead to a new interesting grouping. For example, given the interesting
groupings {a}, {a, b} and the functional dependencies a → c, a → d, d = b.
When considering the grouping {a}, the functional dependency a → c can be
ignored, as it can only produce the attribute c, which does not occur in an
interesting grouping. However, the functional dependency a → d should be
added, since transitively the attribute b can be produced, which does occur in
an interesting grouping.

Since there are no ε edges between groupings, i.e. groupings are not com-
patible with each other, a grouping can only be relevant for the query if it is
a subset of an interesting ordering (as further attributes could be added by
functional dependencies). However, a simple subset test is not sufficient, as
equations of the form a = b are also supported; these can effectively rename
attributes, resulting in a slightly more complicated test:

In Step 2.3 (see Figure 8.6) the equivalence classes induced by the equations
in F are determined and for each class a representative is chosen (a and a1 . . . an

are attributes occuring in the GI):

E(a, 0) = {a}
E(a, n) = E(a, n− 1) ∪

{a′ | ((a = a′) ∈ F) ∨ ((a′ = a) ∈ F)}
E(a) = E(a, |F|)
e(a) = a representative choosen from E(A)

e({a1 . . . an}) = {e(a1) . . . e(an)}.
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Using these equivalence classes, a mapped set of interesting groupings is
produced that will be used to test if a grouping is relevant:

GE
I = {e(g) | g ∈ GI}

Now a grouping g can be pruned if 6 ∃g′ ∈ GE
I : e(g) ⊆ g′. For example, given

the interesting grouping {a} and the equations a = b, b = c, the grouping {d}
can be pruned, as it will never lead to an interesting grouping; however, the
groupings {b} and {c} have to be kept, as they could change to an interesting
grouping later on.

Note that although they appear to test similar conditions, the first pruning
technique (using r(a)) is not dominated by the second one (using e(a)). Con-
sider e.g. the interesting grouping {a}, the equation a = b and the functional
dependency a→ b. Using only the second technique, the grouping {a, b} would
be created, although it is not relevant.

8.5.8. Complex Ordering Requirements

Specifying the ordering requirements of an operator can be surprisingly difficult.
Consider the following SQL query:

select *
from S s, R r
where r.a=s.a and r.b=s.b and

r.c=s.c and r.d=s.d

When answering this query using a sort-merge join, the operator has to re-
quest a certain odering. But there are many orderings that could be used: The
intuitive ordering would be abcd, but adcb or any other premutation could have
been used as well. This is problematic, as checking for an exponential number of
possibilities is not acceptable in general. Note that this problem is not specific
to our approach, the same is true, e.g., for Simmen’s approach.

The problem can be solved by defining a total ordering between the attributes,
such that a canonical ordering can be constructed. We give some rules how
to derive such an ordering below, but it can happen that such an ordering
is unavailable (or rather the construction rules are ambiguous). Given, for
example, two indices, one on abcd and one on adcb, both orderings would be a
reasonable choice. If this happens, the operators have two choices: Either they
accept all reasonable orderings (which could still be an exponential number,
but most likely only a few orderings remaing) or they limit themselves to one
ordering, which could induce unnecessary sort operators. Probably the second
choice is preferable, as the ambiguous case should be rare and does not justify
the complex logic of the first solution.

The attribute ordering can be derived by using the following heuristical rules:

1. Only attributes that occur in sets without natural ordering (i.e. complex
join predicates or grouping attributes) have to be ordered.
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2. Orderings that are given (e.g., indices, user-requested orderings etc.) or-
der some attributes.

3. Small orderings should be considered first. If an operator requires an or-
dering with the attributes abc, and another operator requires an ordering
with the attributes bc, the attributes b and c should come before a.

4. The attributes should be ordered according to equivalence classes. If a
is ordered before b, all orderings in E(a) should be ordered before all
orderings in E(b).

5. Attributes should be ordered according to the functional dependencies,
i.e. if a → b, a should come before b. Note that a = b suggests no
ordering between a and b.

6. The remaining unordered attributes can be ordered in an arbitrary way.

The rules must check if they create contradictions. If this happens. the
contradicting ordering must be omitted, resulting in potentially superfluous sort
operators. Note that in some cases these sort operators are simply unavoidable:
If for the example query one index on R exists with the ordering abcd and one
index on S with the ordering dcba, the heuristical rules detect a contradiction
and choose one of the orderings. This results in a sort operator before the
(sort-merge) join, but this sort could not have been avoided anyway.

8.6. Converting a NFSM into a DFSM

The algorithm described in this chapter first constructs a non-deterministic
FSM and converts it to a deterministic FSM. For this conversion, the NFSM is
treated like an NFA which is converted to a DFA. It has to be shown that the
DFSM resulting from the conversion is equivalent to the initial NFSM:

8.6.1. Definitions

An NFA [47] consists of a tuple (Σ, Q,D, qo, F ), where Σ is the input alphabet,
Q the set of possible states, D ⊆ Q× (Σ ∪ {ε})×Q the transition relation, q0

the initial state and F the set of accepting states. All nodes reachable from a
given set of nodes Q by following ε edges can be described by

E0
D(Q) = Q

E i
D(Q) = {q′|∃q ∈ E i−1

D (Q), (q, ε, q′) ∈ D}

ED(Q) =
∞⋃
i=0

E i
D(Q)

Then the NFA accepts an input w = w1w2...wn ∈ Σ∗ if Sn ∩ F 6= ∅ where

S0 = ED(qo)
Si = ED({q′|∃q ∈ Si−1 : (q, wi, q

′) ∈ D}).
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Similarly, a DFA [47] consists of a tuple (Σ, Q,∆, qo, F ) where

∆ ⊆ Q× Σ×Q

∧ ∀a, b, c ∈ Q, d ∈ Σ :
((a, d, b) ∈ ∆ ∧ (a, d, c) ∈ ∆)⇒ b = c.

So a DFA is an NFA which only allows non-ambiguous non-ε transitions. The
definition of accepting is analogous to the definition for NFAs.

An NFSM is basically an NFA without accepting states. It consists of a
tuple (Σ, Q,D, qo), where Σ is the input alphabet, Q the set of possible states,
D ⊆ Q × (Σ ∪ {ε}) × Q the transition relation and q0 the initial state. While
an NFSM does not have any accepting states it is usually important to know
which state is active after a given input, so in a way each state is accepting.

Likewise, a DFSM basically is a DFA without accepting states. It consists
of a tuple (Σ, Q,∆, qo) where Σ, Q,∆ and qo are analogous to the DFA. Again,
while there is no set of accepting states, it is important to know which one is
active after a given input.

8.6.2. The Transformation Algorithm

The commonly used algorithm to convert an NFA into a DFA (see [47]) can also
be used to convert an NFSM into a DFSM. Since the accepting states are not
required for the algorithm, the NFSM can be regarded as an NFA and converted
into a ”DFA”, which is really a DFSM. The correctness of this transformation
is shown in the next section.

The algorithm converts an NFSM (Σ, Q,D, qo) in a DFSM (Σ, Q′,∆, q′0) with
Q′ ⊆ 2Q. It first constructs a start node q′0 = ED({q0}) and then determines for
all DFSM nodes q′ all outgoing edges δ′ by expanding all edges in the contained
NFSM nodes:

δ(q′) = {(q′, σ, q′2|σ ∈ Σ, q′2 6= ∅,
q′2 = {ED(q2)|(q, σ, q2) ∈ D, q ∈ q′}}.

This results in the DFSM (Σ, Q′,∆, q′o) with

Q′
0 = {q′0}

Q′
i =

⋃
q′∈Q′

i−1
{q′2|∃σ ∈ Σ : (q′, σ, q′2) ∈ δ(q′)}

Q′ =
⋃∞

i=0Q
′
i

∆ =
⋃

q′∈Q′δ(q).

8.6.3. Correctness of the FSM Transformation

Proposition: Given an NFSM (Σ, Q,D, qo), the DFSM (Σ, Q′ ⊆ 2Q,∆, q′0) con-
structed by using the transformation algorithm for NFA to DFA described in
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n #Edges t (ms) #Plans t/plan t (ms) #Plans t/plan % t % #Plans %. t/plan
5 n-1 2 1541 1.29 1 1274 0.78 2.00 1.21 1.65
6 n-1 9 7692 1.17 2 5994 0.33 4.50 1.28 3.55
7 n-1 45 36195 1.24 12 26980 0.44 3.75 1.34 2.82
8 n-1 289 164192 1.76 74 116562 0.63 3.91 1.41 2.79
9 n-1 1741 734092 2.37 390 493594 0.79 4.46 1.49 3.00
10 n-1 11920 3284381 3.62 1984 2071035 0.95 6.01 1.59 3.81
5 n 4 3060 1.30 1 2051 0.48 4.00 1.49 2.71
6 n 21 14733 1.42 4 9213 0.43 5.25 1.60 3.30
7 n 98 64686 1.51 20 39734 0.50 4.90 1.63 3.02
8 n 583 272101 2.14 95 149451 0.63 6.14 1.82 3.40
9 n 4132 1204958 3.42 504 666087 0.75 8.20 1.81 4.56
10 n 26764 4928984 5.42 2024 2465646 0.82 13.22 2.00 6.61
5 n+1 12 5974 2.00 1 3016 0.33 12.00 1.98 6.06
6 n+1 69 26819 2.57 6 12759 0.47 11.50 2.10 5.47
7 n+1 370 119358 3.09 28 54121 0.51 13.21 2.21 6.06
8 n+1 2613 509895 5.12 145 208351 0.69 18.02 2.45 7.42
9 n+1 27765 2097842 13.23 631 827910 0.76 44.00 2.53 17.41
10 n+1 202832 7779662 26.07 3021 3400945 0.88 67.14 2.29 29.62

Figure 8.14.: Plan generation for different join graphs, Simmen’s algorithm
(left) vs. our algorithm (middle)

[47] behaves exactly like the NFSM, i.e.

1) ∀w ∈ Σ∗, q ∈ Q, q0
w→ q ∃q′ ∈ Q′ : q′0

w→ q′ ∧ q ∈ q′

2) ∀w ∈ Σ∗, q′a ∈ Q′, q′b ∈ Q′, qa ∈ q′a, qb ∈ q′b :

(qa
w→ qb) iff (q′a

w→ q′b)

Proof: Proposition 1) trivially follows from the definition of the transforma-
tion algorithm, see the definition of δ′ and Q′ in Section 8.6.2.

The proof for proposition 2) can be derived from the proof in [47], Chap-
ter 2.3: there, it is shown that for all w ∈ Σ∗, given a node q in the NFA and
a node q′ in the transformed DFA with q ∈ q′, a node f ′ in the DFA contains
a node f in the NFA if and only if q

w→ f and q′
w→ f ′. Since the DFSM is

constructed using the same algorithm, this results in proposition 2).
Therefore, the conversion algorithm used to convert an NFA into a DFA can

be used to convert the NFSM describing the ordering transitions to a DFSM
that behaves the same way as the NFSM.

8.7. Experimental Results

The framework described in this chapter solves two problems: First, it provides
an efficient representenation for reasoning about orderings and second, it allows
keeping track of orderings and groupings at the same time. Since these topics
are treated separately in the related work, the experimental results are split in
two sections: In Section 8.8 the framework is compared to another published
framework while only considering orderings, and in Section 8.9 the influence of
groupings is evaluated.

8.8. Total Impact

We now consider how order processing influences the time needed for plan
generation. Therefore, we implemented both our algorithm and the algorithm
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proposed by Simmen et al. [70] and integrated them into a bottom-up plan
generator based on [48].

To get a fair comparison, we tuned Simmen’s algorithm as much as possible.
The most important measure was to cache results in order to eliminate repeated
calls to the very expensive reduce operation. Second, since Simmen’s algorithm
requires dynamic memory, we implemented a specially tailored memory man-
agement. This alone gave us a speed up by a factor of three. We further tuned
the algorithm by thoroughly profiling it until no more improvements were possi-
ble. For each order optimization framework the plan generator was recompiled
to allow for as many compiler optimizations as possible. We also carefully ob-
served that in all cases both order optimization algorithms produced the same
optimal plan.

We first measured the plan generation times and memory usage for TPC-
R Query 8. A detailed discussion of this query follows in Section 8.9, here
we ignored the grouping properties to compare it with Simmen’s algorithm.
The result of this experiment is summarized in the following table. Since or-
der optimization is tightly integrated with plan generation, it is impossible to
exactly measure the time spent just for order optimization during plan gener-
ation. Hence, we decided to measure the impact of order optimization on the
total plan generation time. This has the advantage that we can also (for the
first time) measure the impact order optimization has on plan generation time.
This is important since one could argue that we are optimizing a problem with
no significant impact on plan generation time, hence solving a non-problem. As
we will see, this is definitely not the case.

In subsequent tables, we denote by t(ms) the total execution time for plan
generation measured in milliseconds, by #Plans the total number of subplans
generated, by t/plan the average time (in microseconds) needed to introduce
one plan operator, i.e. the time to produce a single subplan, and by Memory
the total memory (in KB) consumed by the order optimization algorithms.

Simmen Our algorithm
t (ms) 262 52
#Plans 200536 123954
t/plan (µs) 1.31 0.42
Memory (KB) 329 136

From these numbers, it becomes obvious that order optimization has a signif-
icant influence on total plan generation time. It may come as a surprise that
fewer plans need to be generated by our approach. This is due to the fact
that the (reduced) FSM only contains the information relevant to the query,
resulting in fewer states. With Simmen’s approach, the plan generator can only
discard plans if the ordering is the same and the set of functional dependen-
cies is equal (respectively a subset). It does not recognize that the additional
information is not relevant for the query.

In order to show the influence of the query on the possible gains of our
algorithm, we generated queries with 5-10 relations and a varying number of
join predicates —that is, edges in the join graph. We always started from
a chain query and then randomly added some edges. For small queries we
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n #Edges Simmen Our Algorithm DFSM
5 n-1 14 10 2
6 n-1 44 28 2
7 n-1 123 77 2
8 n-1 383 241 3
9 n-1 1092 668 3
10 n-1 3307 1972 4
5 n 27 12 2
6 n 68 36 2
7 n 238 98 3
8 n 688 317 3
9 n 1854 855 4
10 n 5294 2266 4
5 n+1 53 15 2
6 n+1 146 49 3
7 n+1 404 118 3
8 n+1 1247 346 4
9 n+1 2641 1051 4
10 n+1 8736 3003 5

Figure 8.15.: Memory consumption in KB for Figure 8.14

averaged the results of 100 queries and averaged 10 queries for large queries.
The results of the experiment can be found in Fig. 8.14. In the second column,
we denote the number of edges in terms of the number of relations (n) given in
the first column. The next six columns contain (1) the total time needed for
plan generation (in ms), (2) the number of (sub-) plans generated, and (3) the
time needed to generate a subplan (in µs), i.e. to add a single plan operator, for
(a) Simmen’s algorithm (columns 3-5) and our algorithm (columns 6-8). The
total plan generation time includes building the DFSM when our algorithm is
used. The last three columns contain the improvement factors for these three
measures achieved by our algorithm. More specifically, column % x contains
the result of dividing the x column of Simmen’s algorithm by the corresponding
x column entry of our algorithm.

Note that we are able to keep the plan generation time below one second
in most cases and three seconds in the worst case, whereas when Simmen’s
algorithm is applied, plan generation time can be as high as 200 seconds. This
observation leads to two important conclusions:

1. Order optimization has a significant impact on total plan generation time.

2. By using our algorithm, significant performance gains are possible.

For completeness, we also give the memory consumption during plan genera-
tion for the two order optimization algorithms (see Fig. 8.15). For our approach,
we also give the sizes of the DFSM which are included in the total memory con-
sumption. All memory sizes are in KB. As one can see, our approach consumes
about half as much memory as Simmen’s algorithm.
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8.9. Influence of Groupings

Integrating groupings in the order optimization framework allows the plan gen-
erator to easily exploit groupings and, thus, produce better plans. However,
order optimization itself might become prohibitively expensive by considering
groupings. Therefore, we evaluated the costs of including groupings for different
queries.

Since adding support for groupings has no effect on the runtime behavior
of the plan generator (all operations are still one table lookup), we measured
the runtime and the memory consumption of the preparation step both with
and without considering groupings. When considering groupings, we treated
each interesting ordering also as an interesting grouping, i.e. we assumed that
a grouping-based (e.g. hash-based) operator was always available as an alter-
native. Since this is the worst-case scenario, it should give an upper bound for
the additional costs. All experiments were performed on a 2.4 GHz Pentium
IV, using the gcc 3.3.1.

To examine the impact for real queries, we choose a more complex query from
the well-known TPC-R benchmark ([75], Query 8):

select
o year,
sum(case when nation = ’[NATION]’

then volume
else 0

end) / sum(volume) as mkt share
from

(select
extract(year from o orderdate) as o year,
l extendedprice * (1-l discount) as volume,
n2.n name as nation

from part,supplier,lineitem,orders,customer,
nation n1,nation n2,region

where
p partkey = l partkey and
s suppkey = l suppkey and
l orderkey = o orderkey and
o custkey = c custkey and
c nationkey = n1.n nationkey and
n1.n regionkey = r regionkey and
r name = ’[REGION]’ and
s nationkey = n2.n nationkey and
o orderdate between date ’1995-01-01’ and

date ’1996-12-31’ and
p type = ’[TYPE]’

) as all nations
group by o year
order by o year;
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When considering this query, all attributes used in joins, group-by and order-
by clauses are added to the set of interesting orders. Since hash-based solutions
are possible, they are also added to the set of interesting groupings. This results
in the sets

OP
I = {(o year), (o partkey), (p partkey),

(l partkey), (l suppkey), (l orderkey),
(o orderkey), (o custkey), (c custkey),
(c nationkey), (n1.n nationkey),
(n2.n nationkey), (n regionkey),
(r regionkey), (s suppkey), (s nationkey)}

OT
I = ∅

GP
I = {{o year}, {o partkey}, {p partkey},

{l partkey}, {l suppkey}, {l orderkey},
{o orderkey}, {o custkey}, {c custkey},
{c nationkey}, {n1.n nationkey},
{n2.n nationkey}, {n regionkey},
{r regionkey}, {s suppkey}, {s nationkey}}

GT
I = ∅

Note that here OT
I and GT

I are empty, as we assumed that each ordering
and grouping would be produced if beneficial. For example, we might assume
that it makes no sense to intentionally group by o year: If a tuple stream is
already grouped by o year it makes sense to exploit this, however, instead of
just grouping by o year it could make sense to sort by o year, as this is required
anyway (although here it only makes sense if the sort operator performs early
aggregation). In this case, {o year} would move from GP

I to GT
I , as it would

be only tested for, but not produced.
The set of functional dependencies (and equations) contains all join conditions

and constant conditions:

F = {{p partkey = l partkey}, {∅ → p type},
{o custkey = c custkey}, {∅ → r name},
{c nationkey = n1.n nationkey},
{s nationkey = n2.n nationkey},
{l orderkey = o orderkey},
{s suppkey = l suppkey},
{n1.n regionkey = r regionkey}}

To measure the influence of groupings, the preparation step was executed
twice: Once with the data as given above and once with GP

I = ∅ (i.e. groupings
were ignored). The space and time requirements are shown below:
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Figure 8.16.: Time requirements for the preparation step

With Groups Without Groups
Duration [ms] 0.6ms 0.3ms
DFSM [nodes] 63 32
Memory [KB] 5 2

Here time and space requirements both increase by a factor of two. Since all
interesting orderings are also treated as interesting groupings, a factor of about
two was expected.

While Query 8 is one of the more complex TPC-R queries, it is not overly
complex when looking at order optimization. It contains 16 interesting order-
ings/groupings and 8 functional dependencies, but they cannot be combined in
many reasonable ways, resulting in a comparatively small DFSM. In order to
get more complex examples, we produced randomized queries with 5− 10 rela-
tions and a varying number of join predicates. We always started from a chain
query and then randomly added additional edges to the join graph. The results
are shown for n− 1, n and n + 1 additional edges. In the case of 10 relations,
this means that the join graph consisted of 18, 19 and 20 edges, respectively.

The time and space requirements for the preparation step are shown in Fig-
ure 8.16 and Figure 8.17, respectively. For each number of relations, the require-
ments for the combined framework (o+g) and the framework ignoring groupings
(o) are shown. The numbers in parentheses (n−1, n and n+1) are the number
of additional edges in the join graph.

As with Query 8, the time and space requirements roughly increase by a factor
of two when adding groupings. This is a very positive result, given that a factor
of two can be estimated as a lower bound (since every interesting ordering is
also an interesting grouping here). Furthermore, the absolute time and space
requirements are very low (a few ms and a few KB), encouraging the inclusion
of groupings in the order optimization framework.
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Figure 8.17.: Space requirements for the preparation step

8.10. Conclusion

The framework presented in this chapter allows a very efficient handling of order
optimization during plan generation. After a preparation step with reasonable
performance, the plan generation can change and test for orderings in O(1),
using only O(1) space per subplan. Experimental results have shown that this
can significantly reduce the time needed for plan generation by both reducing
the time needed per subplan and the search space, which is essential for handling
large queries.

Furthermore, the experimental results showed that with only a modest in-
crease of the one-time costs, groupings can be exploited during plan generation
at no additional costs. In summary, using an FSM to keep track of the avail-
able orderings and groupings is very efficient and is easily integrated in a plan
generator.

One topic for future work is the minimization of the DFSM using the op-
erator structure. Currently, only the NFSM is pruned by detecting irrelevant
or redundant nodes. The DFSM could also be pruned by intentionally drop-
ping available logical orderings or groupings when it is clear that the ordering
or grouping will never be used (because of operator dependencies). Besides
minimizing the DFSM, this technique would also reduce the search space for
the plan generator, as more plans could be pruned (since more plans would be
dominated by other plans).
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9.1. Introduction

In order to find the optimal plan for a given query, the query optimizer has
to decide if a given plan is better than another plan. This is usually done
by choosing the ”cheapest” plan, which assumes that the costs of a plan can
be computed. Since the optimizer bases its decisions only on these costs, it
is important that the costs are computed correctly, at least in the sense that
a better plan indeed has the lower costs. Note that the notion of a better
plan is actually ambiguous: In this chapter, we usually assume that we want
to minimize the total costs of a query. However, sometimes it makes sense to
minimize the costs for the first result tuple or the resource consumption during
query execution. But regardless of the actual goals, the query optimizer needs
a way to calculate the (relative) costs of a plan. This is provided by a separate
program module, the cost model.

The first query optimizers only considered scans and joins and simply as-
sumed that the costs of an operation are proportional to the number of tuples
involved [79]. While this is sufficient to avoid the worst plans, it is only a very
rough estimate of the actual costs, as it completely ignores the actual imple-
mentations of, e.g., join operators. Therefore, query optimizers soon tried to
describe the real costs of a plan by estimating the time it would take to execute
the plan [69]. This was usually done by calculating a weighted sum of expected
costs for I/O and CPU [49].

This approach is much more accurate than just counting tuples, however,
estimating the CPU costs and especially the I/O costs is not easy. Approxima-
tions for the number of accessed pages have been made quite early [82] and the
costs for different operators have been estimated [30]. However these concen-
trate on joins and sorting, estimates for more complex operators like group-by
are still incomplete [34].

Besides being somewhat inaccurate, the existing cost models are not directly
applicable for DAG-structured query graphs. As they do not take into account
that the output of an operator can be shared by multiple other operators,
they severely overestimate the costs for DAGs. In this chapter, we present a
framework that can be integrated into the plan generator to compare plans and
to accurately keep track of the costs even if the query graph is a DAG.

The rest of this chapter is structured as follows: In Section 9.2 we describe
the related work, especially concerning DAGs. Section 9.3 contains the interface
provided for the plan generator and Section 9.4 sketches a concrete implemen-
tation of the interface. Section 9.5 describes the algorithm to handle DAGs
and Section 9.6 discusses the actual impact of the cost model. Conclusions are
drawn in Section 9.7.
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9.2. Related Work

The general development of cost models and the corresponding papers were
already discussed in Section 9.1. Besides, an abundance of related papers exists
that usually concentrate on a very specific aspect of cost models and the related
statistics. We will discuss some representatives below.

Few papers provide an overview of cost functions for all (or at least the
popular) operators required for query optimizations. An overview for join costs
is included in [72], but it neglects group-by etc. A discussion of a much wider
range of operators can be found in [22], but this is more a benchmark with
calculations than a full cost model (although the formulas could be used for
one).

Some papers look at the physical properties of the used hardware to make
cost models more exact. In [30] a detailed cost model for joins is described.
The authors emphasize that the cost model should distinguish between random
and sequential reads, as the cost differences are very large when using modern
hard disks. A detailed description of the characteristics of CPUs and disks can
be found in [65], but is only used for hybrid hash joins.

Other papers look more at the logical properties relevant for the cost model.
Nearly all cost functions require the correct input cardinality to give reasonable
results. However, only the cardinality of base relations can be directly derived
from database statistics. The size of intermediate results is discussed in [19].
Another paper also looks at this and takes the concrete predicates into account
[74]. Finally, [32] provides a detailed analysis of the number of tuples passed,
the number of passes required (e.g. for sort) etc., but uses a very simplified disk
model.

Other papers try to improve the precision of the predictions of the cost model.
One way to do this is to use histograms for a more precise data distribution
model [37]. A different approach is to accept the inaccuracy of the models and
propagate error margins instead to get a more realistic view of the costs [36].

While cost models for query graphs with parallel execution exist [17], they
do not specifically handle DAGs. The main problem there is that the operators
are executed independently, and it is not clear which operators form the critical
path and thus determine the total execution time.

9.3. Interface for Plan Generation

Before designing a concrete cost model, it is worthwhile to think about the
interface between the plan generation and the cost model. While at first glance
the interface seems to be obvious, some care is needed to allow more advanced
cost models.

Note that while the interface shown below describes the logical interface of
the cost model, it is still highly simplified. For real implementations a lot of
additional code is required.
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9.3.1. Goals

Before discussing the interface, we summarize the properties we would like the
interface to have:

1. allow the plan generator to determine the optimal plan

2. allow arbitrary cost models

3. allow arbitrary operators

4. loose coupling between the plan generator, cost model and operators

5. minimize the overhead

While again these goals are somewhat obvious, they are difficult to accomplish
at the same time, especially goals 2-4 contradict each other. In the following
sections we sketch a compromise that tries to fulfill these goals with only a
slight tighter coupling than preferable.

9.3.2. Cost Description

The most prominent part of the cost model is the cost description, determining
if one plan is cheaper than the other. Historically, this has been a simple
number, either the number of tuples involved [79] or some value proportional
to the estimated execution time [69]. However, this cost description could be
more complex, e.g., a vector of different properties like random reads, sequential
reads etc. [65].

The plan generator itself does not need to know the structure of the cost
description, for it it is sufficient to decide if one plan is better than the other.
Therefore, each (partial) plan should embed a cost description provided by the
cost model with the following interface:

cost t
enum rel { better, worse, equal, unknown }
compare(otherCosts : cost t) : rel

compareTotal(otherCosts : cost t) : rel

The method compare compares the costs of one plan with the costs of an-
other plan. Note that the cost model might be unable to decide which plan
is cheaper, compare can return unknown in this case. This does not happen
when using a single number as cost description, but for a vector-based cost
description a total ordering might be unavailable.

However, the potential lack of total order causes a problem when determining
the optimal plan: For intermediate plans it is OK to keep different alternatives,
but finally the optimizer has to decide which plan to execute. Therefore, the
method compareTotal is used for the final plan comparison, which has to
guarantee a total ordering. If it really cannot decide which plan is better it
might choose an arbitrary one or might try to minimize some sub-goals like
random I/O.
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logical state functions

operator state functions

physical state functions

logical cost functions

operator cost functions

physical cost functions

cost model optimization rules

cost model

CostsState

Figure 9.1.: Components of the cost model

9.3.3. Calculating Costs

As discussed above, costs are used to decide which plan is better than the other.
However, these costs have to be calculated somehow, the simplest approach
would be to just hide the calculations in the cost model, providing one method
per operator:

tableScan(segment) : cost t
nestedLoop(leftCosts,rightCosts,rightSize) : cost t
hybridHashJoin(. . .) : cost t

This approach has the advantage that every operation concerning costs is
hidden in the cost model; the cost model can be used as a black box. However,
is also has several disadvantages: First, the interface would be much more
complex than sketched above. Even when only considering the primitive table
scan, the cost model would need more information: How many pages should
be used for prefetching? Is a full scan required or is it used as an existential
quantifier? For more complex operators, the cost model requires much more
information, making the calculation functions both hard to use and inefficient
to call. Another disadvantage is that the cost model needs to know every
operator supported by the plan generator, which makes adding new operators
more cumbersome. Besides, this is a tight (semantic) coupling between the
operators and the cost model, as the cost model has to understand the specific
characteristics of an operator to calculate its costs.

This observation motivates a different cost model architecture, as shown in
Figure 9.1. The cost model has to provide two sets of functions: One to keep
track of a state like, e.g., cardinality, tuple size etc. (discussed in Section 9.3.4)
and one to perform the actual cost calculations. The cost calculation can be
divided in three layers: The lowest layer (physical cost functions) describes the
hardware accesses. As this is very hardware specific we ignore it here, but a
potential interface for a disk could be:

diskReadCosts(diskId, sectorList)
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The function will most likely get a list of ”expected” sectors (i.e. a list of
distances between sectors) instead of real sectors, but still the function is very
close to the hardware. The next layer (logical cost functions) uses these func-
tions to describe logical operations, e.g. reading and writing a number of pages.
Note that the function will need some parameters to identify the corresponding
physical devices and to estimate the physical sector distribution (e.g. a segment
id), but we simplify the inteface here.

readSequentialCost(pages) : cost t
readRandomCost(pages) : cost t
writeSequentialCost(pages) : cost t
writeRandomCost(pages) : cost t

Now these logical operations can be used to describe the operator logic in
the topmost layer (operator cost functions). Note that this layer is not part
of the cost model itself but part of the optimization rules. This way, the cost
model is separated from the supported operators, while most of the cost model
implementation is still hidden from the rest of the system. For example, a hash
join might implement the following (simplified) cost function:
HashJoin::costs()
1 leftPages← calcPages(left)
2 rightPages← calcPages(right)
3 partitions← max(leftPages/memInPages, rightPages/memInPages)
4 leftCosts← left.costs() + writeRandomCosts(leftPages)
5 rightCosts← right.costs() + writeRandomCosts(rightPages)
6 partitionCosts← readSequentialCosts(2 ∗ partitions ∗memInPages)
7 return leftCosts + rightCosts + partitionCosts

It first calculates the size of its input in pages and the number of partitions
required to fit the input into main memory. During the join the data is first
partitioned (resulting in random writes) and then the partitions are joined,
resulting in sequential reads. The cost calculation itself is done by the cost
model, the operator only calculates the physical characteristics.

For this approach, the exact interface provided by the cost model somewhat
depends on the cost model itself, as different cost models might consider differ-
ent physical properties. This is a disadvantage, but the dependencies are not
too strong and the separation from the operators outweighs this limitation. A
more detailed discussion of a complete interface is given in Section 9.4.

9.3.4. State

Whether the cost model performs the full cost calculation or just helps the
operators to calculate the costs, some plan properties are required to perform
the calculation. The most prominent is the cardinality. For some extremely
simple cost models, this is actually the only property it needs, but usually it also
needs some additional properties like the tuple size. Most of these properties
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are only relevant for the cost model itself and are just calculated and passed
around to calculate the costs.

Therefore, these properties should be stored in an abstract data type whose
actual implementation is only known to the cost model. However some (poten-
tially derived) properties should be available through access methods, as they
are useful to determine memory requirements etc. A simple interface is shown
below:

state t
cardinality : double
tupleSize : double

Note that the simple state shown above is not tied to a certain plan variant.
For example, the join order influences the costs, but not the output cardinal-
ity. The same is true for other logical state information like data distribution.
Hence, this state should not be stored in the plan itself but only once for each
group of plan alternatives. However, the cost model might also consider physi-
cal information (like if and how the intermediate result is materialized) that is
specific to a certain plan. In this case the state should be split into two parts:
The logical part, that is common for all equivalent plans, and the physical part,
which is stored inside the plan itself. We ignore this system-specific physical
part in the rest of this work, as we abstract from a concrete database system.

The state is modified by the state functions shown in Figure 9.1. The lowest
layer (physical state functions) modifies properties like the physical location,
data distributions etc. However, as we abstract from the hardware in the simple
state shown above, we ignore this layer here.

The next layer (logical state functions) updates the state according to logical
operations. This is also very system dependent, as it needs information about
data distributions etc., and is only used internally by the cost model. Therefore,
we do not go into detail here. Typical operations are updating cardinalities, up-
dating tuple information (after a projection or a concatenation) and estimating
(dependent) selectivities.

The topmost layer (operator state functions) is the only layer visible to the
rest of the system. It provides functions to initialize or update the state for each
supported logical operator. Note that this layer is part of the cost model and
not moved inside the optimization rules (like the operator cost functions). This
is due to the fact that the number of logical operators is usually small (and
complex logical operators can often be modelled by combining more simple
operators), while the number of physical operators can be quite large. Two
typical functions are shown below:

scanState(segmentId) : state t
join(leftState,rightState,selectivity) : state t

The method scanState initializes a state with the characteristics of a rela-
tion, and join combines two states into a new state describing the output of the
join. Note that this interface reflects the logical algebra and not the physical
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algebra. That is, these state changes do not depend on the actual implemen-
tation of an operator but only on its semantic. Therefore, the number of these
state functions is small.

Besides these functions for modelling logical operators, the cost model offers
a function to enable cost calculations in DAGs: This more subtle function
calculates the costs of the incoming operators. In the hash join example above
this is simply done by using +, but this only produces the correct result for a
certain class of cost models and for tree-structured operator graphs. This can
be seen considering a simple example: When the right-hand side of a nested
loop join contains a temp operator, it is not sufficient to multiply the right-
hand costs with the cardinality of the left side. The calculation gets even more
complicated when the left-hand side and the right-hand side share common
operators, i.e., form a DAG. We will look into this in more detail in Section 9.4,
but the cost model has to combine these costs in some way depending on the
number of reads.

inputCosts(left,leftReads,right,rightReads) : cost t

Note that depending on the implementation additional parameters are re-
quired to handle DAG-structured operator trees, but this is covered in the next
section.

9.4. Implementation of a Cost Model

After discussing the required interface, we can now describe the actual im-
plementation of the cost model. Since this work concentrates on supporting
DAG-structured query graphs, the considered hardware characteristics are not
very elaborated. However, this is not a fundamental limitation, more complex
approximations could be integrated easily.

9.4.1. Data Structures

The cost description has to be embedded in each partial plan and has to allow
fast comparisons with a small memory footprint. Therefore, we model the costs
as a linear combination of I/O and CPU time [49] and just store the aggregated
value. However, it is not enough to store one value per partial plan, many
operators (in particular temp operators) have different characteristics when the
data have to be read again. Multiple reads happen when using nested loop
joins, which can be unavoidable when answering nested queries. The resulting
cost description is shown below:

cost t
firstRead : double
furtherReads : double

enum rel { better, worse, equal, unknown }
compare(otherCosts) : rel
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While this correctly models the behavior of different operators, it makes com-
paring plans difficult, as no total ordering among these costs exists. However,
a partial ordering could result in a lot of plans that are not comparable, thus
increasing the search space. In Section 9.6 we will look at the search space
consequences of this model. Even if no total ordering exists, a partial ordering
can be defined that allows comparing most of the plans, thereby reducing the
increase in search space.

We now look at the problem of deciding if one plan (i.e. one cost description)
is dominated by another one. The problem is that the cost description does
not give a single value, but describes how the costs change depending on the
number of reads, thus forms a function. The cost description can be considered
as an affine function of the form y = x ∗ furtherReads + firstRead (y are the
total costs for x + 1 reads). Now, given a set of plan alternatives, only those
alternatives should be kept whose cost descriptions lay on the border of the
hypograph of all cost descriptions. However, while calculating the hypograph
is not very complex, it is too expensive to be done constantly during plan
generation. Therefore, we just use a heuristic for comparison, which might state
that a plan is not dominated although it is dominated by the other alternatives.
Note that this still guarantees that the optimal solution can be found, it just
increases the search space. The comparison method is shown below:
compare(otherCosts)

1 if firstRead < otherCosts.firstRead∧
2 furtherReads ≤ otherCost.furtherReads
3 then return better
4 if firstRead > otherCosts.firstRead∧
5 futherReads ≥ otherCosts.furtherReads
6 then return worse
7 if firstRead = otherCosts.firstRead
8 then if furtherReads < otherCosts.furtherReads
9 then return better

10 if furtherReads > otherCosts.furtherReads
11 then return worse
12 return equal
13 return unknown

Note that firstRead is always equal to or greater than furtherReads. Therefore
the comparison above orders actually most of the cost descriptions. Further-
more, there are only two common cases for furtherReads: Either furtherReads
is equal to firstRead or furtherReads is less because of a materialization. In the
latter case, furtherReads is the same for different plan alternatives, as the costs
for reading a materialized result depend only on the cardinality and the tuple
size. Therefore, the number of different cost descriptions is usually small.

Besides the costs itself, the cost model needs to maintain a certain state that
is shared by the different plan alternatives. As discussed in Section 9.3.4, we
only use a simplified state here, consisting of just the cardinality and the tuple
size.
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state t
cardinality : double
tupleSize : double

passes : int

The entry passes is used to keep track of multiple reads in combination with
DAGs, it is neither used nor updated most of the time. Its usage is described
in detail in Section 9.5.3.

9.4.2. Methods

In addition to these data structures, the cost model provides several methods
to manipulate them. They were already discussed in Section 9.3, we only give
a brief overview here. The cost functions visible to the rest of the system are:

readSequentialCost(pages) : cost t
readRandomCost(pages) : cost t
writeSequentialCost(pages) : cost t
writeRandomCost(pages) : cost t
cpuCosts(cardinality,instructionList) : cost t

Further, some methods are provided to model the logical characteristics of
the operators; they calculate the new state for each logical operator. The helper
function spaceRequirements estimates the size of an intermediate result in
bytes.

extentInfo(segment) : state t
filter(input,selectivity) : state t
join(left,right,selectivity) : state t
map(input,tupleIncrease) : state t
spaceRequirements(state) : card t

Finally, binary operators need a method to determine the costs of reading
their input. As this is not trivial when dealing with DAGs, it is described in
detail in Section 9.5. Also note that the actual signature of the method is much
more complex, but the basic interface is as follows (the left/right parameters are
the input plans, the leftReads/rightReads parameters are the number of reads
for each side):

inputCosts(left, leftReads, right, rightReads) : cost t

9.4.3. Usage Example

Now all these methods are used by the different operators to model their runtime
behavior. To illustrate this, we give a simplified code example of how the
blockwise nested loop join calculates its state and costs:
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BNLJoin::build(left, right)
1 result← new Plan()
2
3 passes← [spaceRequirements(right.state)/memSizeInBytes]
4 examined← left.state.cardinality ∗ right.state.cardinality
5
6 result.state← join(left, right, selectivity)
7 result.costs← inputCosts(left.costs, 1, right.costs, passes)
8 result.costs← result.costs + cpuCosts(examined, predicate)
9 return result

As described in Chapter 5, the actual implementation is more complex be-
cause of the structure of the plan generator, but in principle, the different
operators determine their behavior and then ask the cost model to calculate
the costs and update the state. The cost model uses a weighted sum of I/O and
CPU costs. However, this weighting is not visible in the code shown above, I/O
and CPU costs are simply added. This is due to the fact that the weighting
is done implicitly by adjusting the constants used to calculate the individual
costs.

9.5. Algorithm

After choosing a concrete representation for the cost model, most cost model
methods are straight-forward. While some care is needed to describe, e.g. ac-
cess characteristics [82], the reasoning about costs itself is not very complex
in classical plan generators. However, when supporting DAGs the calculation
becomes much more complex. In this section, we first look at the simple tree
case, then explain why DAGs are more difficult, and then present algorithms
to calculate the costs for DAGs.

During plan generation, the costs are calculated incrementally. This means
that the partial plans are annotated with the costs they cause, and when a
rule creates a new partial plan it takes the costs caused by its input and adds
the costs for the newly added operator. The costs for the operator itself are
the same for trees and DAGs. However, the costs caused by the input can be
different (due to sharing, as we will see below). Therefore, we only discuss how
to calculate the costs caused by reading the input here. Note that this is only a
problem for binary operators, as unary operators cannot construct DAGs (the
input can be a DAG, but it can be treated as a scan with given costs). Therefore
the cost calculation requires a function

inputCosts(left, leftReads, right, rightReads) : cost t

that calculates the costs of reading left leftReads times and right rightReads
times. This can than be used to calculate the costs for arbitrary binary opera-
tors.
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Figure 9.2.: DAG-structured query plan

9.5.1. Calculation for Trees

If it is clear that the operators actually form a tree (i.e. the two sub-graphs are
disjoint; they themselves may form a DAG) the costs can be computed easily:
Just multiply the costs with the number of reads and take into account that
the first read might be more expensive.
inputCostsTree(left, leftReads, right, rightReads)
1 leftCosts← leftReads ∗ left.costs.furtherReads
2 rightCosts← rightReads ∗ right.costs.furtherReads
3 leftDelta← left.costs.firstRead− left.costs.furtherReads
4 rightDelta← right.costs.firstRead− right.costs.furtherReads
5 result.furtherReads← leftCosts + rightCosts
6 result.firstRead← leftCosts + rightCosts + leftDelta + rightDelta
7 return result

9.5.2. Problems when using DAGs

This simple approach does not work for DAGs. Consider the DAG-structured
query plan in Figure 9.5.2. Here, the cost of the final blockwise nested loop join
cannot be calculated in a straight-forward top-down calculation, in particular it
cannot be determined by combining the cost of the two input operators. When
the topmost join is treated like a normal join in an operator tree, the costs are
overestimated, as the shared group-by operator is not taken into account. Since
this operator serves two joins simultaneously, its costs should only be counted
once. What complicates the calculation even more is that the shared operator
appears twice on the right-hand side of a nested loop and, therefore, is read
multiple times. The actual number of reads can only be determined by looking
at all operators occurring in the plan. This makes calculating the costs complex
and expensive and leads to the algorithm described below.
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9.5.3. Calculation for DAGs

For DAGs, the calculation is much more complex than for trees. Shared sub-
graphs that are read by multiple operators have to be taken into account. For
the cost calculation the actual number of passes (i.e. number of plan executions)
has to be calculated, which can be lower than the number of reads in the case
of sharing. At the same time, the partial plans involved must not be modified,
as they could be used by other plans.

This requires some help from the operator rules involved, but can actually
be performed efficiently without additional memory. The main idea is to use
the passes entry embedded in the plan state to keep track of the number of
reads (since this entry is reserved for this algorithm, it can be modified without
disturbing other plans). The two input plans are traversed top-down. When
visiting an operator for the first time, the costs are calculated as normal and the
number of passes is stored. Further traversals can determine that the operator
was already used and now only need to check if they require additional passes
and calculate the costs accordingly. Some care is needed to accurately compute
the number of passes, especially concerning (potential chains of) nested loops
and materializing operators like temp.

The main function just delegates the work to the operator rules. Note that the
code relies on the fact that the passes entry in each partial plan initially is equal
to zero. This is always the case for new plans, and the algorithm described here,
which modifies passes, resets it to zero afterwards. The algorithm guarantees
that only nodes with passes 6= 0 can have children with passes 6= 0, enabling a
linear runtime for resetPasses.
inputCostsDAG(left, leftReads, right, rightReads)
1 rc← right.rule.dagCosts(right, rightReads)
2 lc← left.rule.dagCosts(left, leftReads)
3
4 resetPasses(left)
5 resetPasses(right)
6
7 result.firstRead← lc.firstRead + rc.firstRead
8 result.furtherReads← lc.furtherreads + rc.furtherReads
9 return result

resetPasses(plan)
1 if plan.passes 6= 0
2 then plan.passes← 0
3 for each i input of plan
4 do resetPasses(i)

Now the operator rules have to describe how the costs propagate through
the operator tree. For the basic scan operations, this is trivial, it just needs to
examine passes to detect shared subgraphs and to check if additional reads are
required:
Scan::dagCosts(plan, reads)
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1 if plan.passes = 0
2 then result← I/O costs for reads passes
3 plan.passes← reads
4 return result
5 if reads > plan.passes
6 then additional← reads− plan.passess
7 result.firstRead← plan.cost.furtherReads ∗ additional
8 result.furtherReads← plan.cost.furtherReads ∗ additional
9 plan.passes = reads

10 return result
11 return zero costs

Simple unary operators like a selection basically behave the same way, how-
ever, they have to re-calculate the costs of their subplan to propagate the num-
ber of passes.
Select::dagCosts(plan, reads)

1 if plan.passes = 0
2 then result← input.rule.dagCosts(input, reads)
3 result← result + cpuCosts(reads, predicate)
4 plans.passes← reads
5 return result
6 if reads > plan.passes
7 then additional← reads− plan.passes
8 result← input.rule.dagCosts(input, reads)
9 result← result + cpuCosts(additional, predicate)

10 plan.pases← reads
11 return result
12 return zero costs

Operators that materialize their results like a temp operator, have to calculate
the costs of their subplans only once. However, they cannot just reuse the costs
stored in the partial plan, as their input could become cheaper due to additional
sharing introduced later on.
Temp::dagCosts(plan, reads)

1 if plan.passes = 0
2 then result← input.rule.dagCosts(input, reads)
3 result← result + reads ∗ scan costs
4 plan.passes← reads
5 return result
6 if reads > plan.passes
7 then additional← reads− plan.passes
8 result← scancosts ∗ additional
9 plan.passes← reads

10 return result
11 return zero costs

Binary operators basically behave like unary operators. However, they have
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Figure 9.3.: A DAG requiring exponential runtime

to visit both input operators. As will be discussed in the next paragraph, the
order of traversal is actually important.
NestedLoop::dagCosts(plan, reads)

1 if plan.passes = 0
2 then cross← left.cardinality ∗ right.cardinality
3 result← right.rule.dagCosts(right, reads ∗ left.cardinality)
4 result← result + left.rule.dagCosts(left, reads)
5 result← result + cpuCosts(reads ∗ cross, predicate)
6 plan.passes← reads
7 return result
8 if reads > plan.passes
9 then additional← reads− plan.passes

10 cross← left.cardinality ∗ right.cardinality
11 result← right.rule.dagCosts(right, reads ∗ left.cardinality)
12 result← result + left.rule.dagCosts(left, reads)
13 result← result + cpuCosts(additional ∗ cross, predicate)
14 plan.passes← reads
15 return result
16 return zero costs

Note that the nested loop code shown can require an exponential runtime, as
both input sources are visited (given a chain of nested loops where left = right,
this could result in a runtime of 2n). However, only the right input source is
actually read multiple times. By visiting the right input first we make sure that
the passes entry is set to a large value. Ideally, all further visits require a lower
or equal number of passes, resulting in a linear time consumption.

While this is true most of the time, some extreme trees indeed trigger the
exponential behavior. An example for this is shown in Figure 9.3. Depending on
the selectivities and the cardinalities of the relations, the left-hand side might
actually read the shared operators more often than the right-hand side: Assume
that C consists of 100 tuples, D of 1 tuple and C � D of 10 tuples; the joins
are numbered 1 to 6 from top to bottom. During the cost calculation, Join5 is
asked to calculate its costs. As its left-hand side consists of 10 tuples, it asks D
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for the costs of reading D 10 times. Afterwards, it asks �6 for its costs, which
detemines that D has to be read 100 times, which is larger than the previous
value, requiring a revisit. The same situation can happen with B, visiting the
right-hand side of �3 twice and thus D four times (as the revisit increases the
passes entries in the whole subgraph). The same happens for A, which leads to
eight accesses to D, doubling with each additional nested loop pair.

In reality, this kind of DAGs do not occur, resulting in linear runtime. How-
ever, as they might occur and it is unsatisfactory to have an exponential step
during cost calculation, we present two algorithms with linear bounds in the
next sections. However, these algorithms are more involved and slower for most
DAGs. Therefore, it might be preferable to try the exponential algorithm first.
Since the linear case visits each plan node at most twice, it is safe to abort the
algorithm after visiting more than 2n operators and switch to a linear algorithm.
This guarantees both good best case and worst case performance.

9.5.4. Calculation in Linear Time

The problem with the algorithm described above is that plan nodes are visited
multiple times and require a retraversal of their children if the number of passes
increases. This potentially triggers a cascade of retraversals. Actually, this is
not required. We now present an algorithm that computes the costs in quadratic
time. This algorithm can then be transformed into an algorithm requiring linear
time.

The operators that (potentially indirectly) produce the input of a certain
operator o can be divided in two groups: The first group of operators is executed
a constant number of times, independently of the actual number of reads of the
output of o. The usual reason for this is that they are placed below memoizing
operators like temp. The second group of operators is executed a number of
times proportional to the number of reads of the output of o. It does not matter
if these operators are read multiple times themselves, doubling the number of
reads of o also doubles the number of reads of these operators. Note that these
groups may overlap, as shared operators might be read both a fixed and a
proportional number of times.

This observation leads to an algorithm that computes the costs in quadratic
time and space. The idea is to compute the list of operators read in a partial
plan together with the number of fixed and proportional reads for each operator.
Thus, the list at the root of a DAG contains the number of reads for each
operator in the DAG. The lists can be efficiently build bottom-up: For scans
and unary operators this is trivial, binary operators can compute it by merging
the lists of their two input operators. By using an arbitrary fixed total ordering
of the operators, this merge can be done very efficiently, resulting in a total
runtime of O(n2).

The algorithm is shown below, it stores the lists as readOperators in each
partial plan. Note that the algorithm creates a temporary plan node as the
root of the two input operators that behaves like a nested loop join with a
given number of passes over each side. This is not strictly necessary, but avoids
adding a special case to order the left and the right side. Besides, we use the

123



9. Cost Model

function localCosts to calculate the costs for n reads of one operator without
the costs of its input.
inputCostsQuadratic(left, leftReads, right, rightReads)
1 root← create a new nlJoin(left, leftReads, right, rightReads)
2 list← topological sort of root and its subgraph
3 for each p in list ( backwards)
4 do p.rule.buildReadOperators(p)
5
6 result← zero costs
7 for each t in root.readOperators
8 do result← result + t.part.localCosts(t.fixed + t.proportional)
9 return result

We assume that the list of read operators consists of triplets [part, fixed,
proportional], where part specifies the plan part, fixed the fixed number of
reads of this plan part and proportional the number of reads that is proportional
to the number of reads of the operator itself. For scans the list of read operators
is simply empty:
TableScan::buildReadOperators(p)
1 p.readOperators←<>

Simple unary operators like a selection just copy the list of their input and
add the input itself:
Select::buildReadOperator(p)
1 p.readOperators← merge(p.input.readOperators, < [p.input, 0, 1] >)

Materializing operators like a temp operator behave the same, but they
change the proportional number of reads into a fixed number of reads:
Temp::buildReadOperator(p)
1 p.readOperators← merge(p.input.readOperators, < [p.input, 0, 1] >)
2 for each t in p.readOperators
3 do t.fixed← t.fixed + t.proportional
4 t.proportional← 0

Joins merge the lists of their input operators, adjusting the number of reads
if required
NestedLoop::buildReadOperators(p)
1 leftReads← merge(p.left.readOperators,< [p.left, 0, 1] >)
2 rightReads← merge(p.right.readOperators, < [p.right, 0, 1] >)
3 for each t in rightReads
4 do t.proportional← t.proportional ∗ p.left.cardinality
5 p.readOperators← merge(leftReads, rightReads)

Finally, the merge step simply merges the lists by taking the maximum of
proportional and fixed:
merge(l, r)

1 result←<>
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2 while |l| > 0 ∧ |r| > 0
3 do hl← first entry of l
4 hr ← first entry of r
5 if hl.part < hr.part
6 then result← result◦ < hl >
7 l← l\ < hl >
8 if hl.part > hr.part
9 then result← result◦ < hr >

10 r ← r\ < hr >
11 if hl.part = hr.part
12 then f ← max(hl.fixed, hr.fixed)
13 p← max(hl.proportional, hr.proportional)
14 result← result◦ < [hl.part, f, p] >
15 l← l\ < hl >
16 r ← r\ < hr >
17 return result ◦ l ◦ r

So the algorithm scans the operator DAG in a bottom-up way to determine
the operators transitively consumed by each operator. In the worst case, the
plan is a list (e.g. n selections), resulting in quadratic runtime.

A nice property of this algorithm is that the readOperators lists do not depend
on the parents of an operator and never change. Therefore, the lists can be
maintained incrementally during plan generation, resulting in amortized linear
runtime but quadratic space. This also eliminates the need for the topological
sort, as the plans are constructed bottom-up anyway (even during a top-down
search).

9.5.5. Calculation in Linear Time and Space

The algorithm described in Section 9.5.3 needs no additional memory besides
linear space on the stack, but might require exponential runtime. The algorithm
described in Section 9.5.4 guarantees linear time, but requires quadratic space.
We now describe an algorithm that requires both linear time and space, with
only somewhat larger constants than the algorithm requiring quadratic space.

The only reason why the first algorithm is exponential instead of linear is
that a plan node might be visited again with a reads > passes. If we can
always guarantee that this does not happen, each node is visited at most twice,
resulting in a linear runtime.

This can be achieved be visiting the plan nodes in topological order: Each
plan node passes the number of reads down to its children (iteratively, not
recursively). Since the nodes are visited in topological order, the number of
reads does not increase after the node is visited, resulting in linear time and
only requiring linear space for the topological sort. The only disadvantage is
that the topological sort has to be repeated for each cost calculation. Although
this can be done in linear time, it results in larger constants than the incremental
approach described in the previous section. A more detailed evaluation of the
different algorithms is given in Section 9.6.1.
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9.5.6. Full Algorithm

Regardless of the actual algorithm used, calculating the costs of a DAG is much
more expensive than calculating the costs of a tree. Therefore, the cost model
should avoid this expensive step whenever possible. This leads to a slightly
different function than the one described in Section 9.3:
inputCosts(left, leftReads, right, rightReads, alternatives)

1 if the subgraphs of left and right are disjoint
2 then return inputCostTree(left, leftReads, right, rightReads)
3
4 leftProp← left.costs.furtherReads ∗ (leftReads− 1)
5 rightProp← right.costs.furtherReads ∗ (rightReads− 1)
6 lowerBounds.firstRead← max(left.costs.firstRead, right.cost.firstRead)
7 lowerBounds.furtherReads← max(leftProp, rightProp)
8 if lowerBounds is dominated by one entry in alternatives
9 then return lowerBounds

10
11 return inputCostDAG(left, leftReads, right, rightReads)

At first the algorithm checks if the input plans overlap. This can be done
easily by inspecting if the sharing properties of the input plans overlap, as they
mark sharable operators present in the graphs. If they do not overlap, we have
the cheap tree case. If they do, we can compute a lower bound for the actual
costs by taking the maximum costs of each input. If this lower bound is already
dominated by a known alternative, the cost calculation can be canceled. Only in
the case that the plan seems interesting the expensive calculation is performed.

Note that the tree costs can always be used as an upper bound. This is useful
e.g. for bounds based pruning.

9.6. Experimental Results

The cost model we presented has several implications on the runtime and the
search space of the plan generator. Therefore, in this section we evaluate the
impact of the different decisions and discuss some trade-offs. All experiments
were executed on a 2 processor Intel Xeon 3 GHz Linux machine with 4GB
main memory. The different algorithms were executed single threaded, so only
one processor was used at a time.

9.6.1. Different Algorithms

In Section 9.5 we presented three different algorithms to calculate the costs for
a DAG with different time and space characteristics. We analyzed their runtime
behavior by looking at different cases.

First, we constructed a simple left-deep tree containing nested loop joins and
used the DAG algorithms to calculate the total costs. While in this case a DAG
algorithm is not actually required since the input is a tree, this problem gives
a reasonable lower bound for the runtime overhead for few shared operators.
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Figure 9.4.: DAG calculation costs for a left-deep tree

The results are shown in Figure 9.4. All algorithms need a linear time for this
problem, the algorithm using lists being the fastest and the algorithm with
guaranteed linear time and space the slowest. This is due to the fact that the
algorithm needs to calculate a topological sort, which needs about the same
time as the actual cost calculation. Note that the absolute time for the cost
calculation is quite small, especially since most queries will consist of perhaps 50
but not 1000 operators. However, measuring such small problems would show
only noise, and since the algorithms are linear (at least in this example) the
results for large problems show what happens when the algorithms are executed
multiple times.

After a tree without any shared operators, we examine a stack of nested loop
join operators, where both the left and the right side of a join reads from the next
join below. This is an example with a massive amount of operator sharing and
would trigger an exponential behavior with a naive cost calculation. The results
are shown in Figure 9.5. The algorithms perform similar to the left-deep tree,
so operator sharing does not have a large influence on cost calculation. Note
that the absolute time is lower than for the left-deep tree, as the join stack
includes less operators (the left-deep tree has tablescans on the right-hand side
of each join).

Finally, we looked at the example DAG shown in Figure 9.3, which triggers
the exponential behavior in the first algorithm. The results are shown in Fig-
ure 9.6. Here the last two algorithms again need linear time and behave very
similar, however, the first algorithm indeed starts to require exponential time.
This trend only stops after 3000 operators due to hardware limitations: The
floating point numbers used to represent passes can no longer detect the need
to retraverse. In this example, the runtime of the first algorithm is clearly unac-
ceptable, although the absolute time for the more realistic case of 100 operators
is not too bad.
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Figure 9.5.: DAG calculation costs for a stack of joins

 0.1

 1

 10

 100

 1000

 10000

 100000

 0  1000  2000  3000  4000  5000  6000  7000  8000  9000 10000

du
ra

tio
n 

[m
s]

no of joins

DAG cost calculation for a right deep example

exponential
incremental lists

linear

Figure 9.6.: DAG calculation costs for a right-deep tree, as shown in Figure 9.3
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For all examples, the incremental list algorithm was clearly the fastest. How-
ever, it requires a quadratic amount of space, which is quite large: For 1000
operators, it needs 19 MB and for 10000 operators 1.9 GB! While the more
realistic example of 50 operators only requires 48 KB, this is still 1 KB per
partial plan, which is too much for today’s main memory. While the memory
could be released after the cost calculation, the repeated calculation would re-
quire quadratic time and performs much slower than the other algorithms. So
while the incremental list algorithm is the fastest, its space requirements will
probably prevent its usage in the near future.

The other algorithms are somewhat slower but only need linear space (one
counter per plan node and enough stack space to visit all plan nodes). Most of
the time the exponential algorithm is faster than the linear algorithm, but of
course this changes dramatically when the exponential case is triggered. On the
other hand, for 100 operators even the exponential case is only about a factor
of 10 slower than the linear algorithm, and twice as fast in the normal case.
So if the exponential case is sufficiently rare it might still be worthwhile to use
the exponential algorithm. The linear algorithm is a safe choice, it needs as
little space as the exponential algorithm and guarantees linear runtime with a
slowdown of about a factor of 2 compared to the linear case of the exponential
algorithm. This factor will even decrease when the cost functions themselves
become more expensive (e.g. when modeling the hardware more detailed), so
the linear algorithm might actually be the best choice.

9.7. Conclusion

We described a cost model suitable to handle DAGs and presented three differ-
ent algorithms to calculate the costs of executing a DAG-structured plan. While
the first two algorithms had some problems concerning runtime and space re-
quirements respectively, the third algorithm guarantees execution in both linear
time and space. Future work should examine if it is worthwhile to use the usu-
ally faster exponential algorithm, if the exponential case is sufficiently rare.
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10. Execution of DAG-Structured
query graphs

10.1. Introduction

While it is clear that DAG-structured query plans are superior to purely tree-
structured query plans from a theoretical point of view, the practical situation
is not so obvious. One surprisingly difficult problem when dealing with DAG-
structured query plans is the actual execution.

Consider the query plans in Figure 10.1. In both plans the subqueries A,
B and C are joined in a way that joins B twice, once with A and once with
C. In the tree case this is done by duplicating the subquery B, which means
duplicate work for B. The DAG plan can avoid this duplication, as B can be
simply shared by the join with A and the join with C. The tree plan can be
executed by using the standard iterator model [50]: Recursively, each operator
pulls the required tuples from its children until the topmost join has computed
the query result. In the DAG case this is not possible, as the tuples from B are
required by two different operators: if one of them fetches a tuple it might be
missed by the other one.

When such a situation occurs (e.g. when using views), it is usually solved by
spooling B to disk, which eliminates the problem, as now the two joins can read
the data independently of each other. But spooling to disk is inefficient, and
also fails to handle another class of DAG-structured query plans: Figure 10.2
shows a bypass plan [73], where tuples are treated differently depending on
whether they satisfy a condition or not. While this could also be handled by
spooling the different streams to disk, the cost would be too high, as bypass
splits can also be done for extremely cheap operations like selections.

We will discuss the different existing approaches in more detail in Section 10.3,
but neither of them is really satisfactory. A general execution strategy for DAG-
structured query plans should satisfy the following goals:

1. it must handle arbitrary DAGs

2. it should not introduce new pipeline breakers

�

����

�

A B B C A B C

Figure 10.1.: A query plan as tree and as DAG
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Figure 10.2.: A bypass plan for disjunctive conditions

3. it should have minimal overhead, especially for trees

The last goal is very important, as most of the generated plans will probably
form trees and, therefore, a slowdown for this common case is unacceptable.

In the rest of this chapter we first discuss the different alternatives to execute
DAG-structured plans and then present a new approach that is better suited
for general DAGs. Experimental results show that the overhead for supporting
DAGs is acceptable. This means that even for ordinary tree plans an imple-
mentation which supports also DAGs is barely slower than an implementation
that only supports trees. This makes DAG support more attractive.

10.2. Related Work

After the standard iterator model for operators has been established [50], few
other papers discuss an evaluation model for query plans. While some papers
create DAG-structured query plans [5, 29, 73], none of them discuss how they
should actually be executed.

The execution of a limited form of a DAGs is discussed in [21]. It describes the
parallel execution of operators as performance improvement: A tuple stream
is split in multiple streams, each stream is handled by an operator executed
in parallel to the rest and the results are joined afterwards. This is especially
intuitive for sorting, but can also be done for other operators. But the DAG
structure is very confined and the data is always partitioned, not passed to
multiple operators.

One interesting approach is the Telegraph project [4, 12]. There, tuples do
not pass through a classical operator tree, but are passed individually between
operators, potentially even visiting operators multiple times. The idea is that
the execution should adapt to changing data characteristics. By adapting the
data flow on the fly, the runtime system can change wrong decisions made at
compilation time. This is important when little is known about the actual data,
as in stream processing. While the papers do not cover DAG-structured query
plans, it might be possible to use this approach also for DAGs, as it supports
arbitrary rerouting of tuples. However, this would be much more general (and
probably with a larger overhead) than the approach described here.

An architecture that explicitly handles DAG-structured query plans is de-
scribed in [42]. It uses a push approach, where the data is passed from pro-
ducers to their consumers. Depending on the operator structure, the operator
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Figure 10.3.: Different execution strategies

groups either run in their own threads, form a simple pipeline or use buffering
to handle multiple consumers. Currently, not many details about this have
been published.

10.3. Execution Strategies

While a direct execution of a DAG-structured query plan is usually not possible
in a classical database management system, there still exist strategies to execute
these plans, even in a system designed for trees. In the following, we present
some of these strategies, beginning with the least invasive and ending with
a very invasive but also very efficient execution strategy. As an illustrating
example, we use the execution plan shown on the left-hand side of Figure 10.3.

10.3.1. Using Trees

The simplest way to execute a DAG-structured query plan is to first convert
it into a tree. This is done bottom-up by creating a copy of every shared tree
until all trees have unique parents. For our example, the result is shown in the
second column of Figure 10.3.

This strategy is not really an option. While it can handle arbitrary plans,
it eliminates all advantages of the original DAG plan. Especially for bypass
plans [73], the resulting tree is probably worse than a plan without bypass
functionality.

10.3.2. Using Temp

The reason why a normal database system cannot execute DAGs directly is
that the same data has to be read multiple times by different consumers, which
does not work if the data is only passed between operators. However, what
these systems usually support is reading the same data for different consumers
if the data is stored on disk (e.g. in a relation). This can be used to execute
DAGs: Every operator that is read by multiple operators must be a scan (that
is a relation, an index or a temp operator that spools its input to disk). The
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transformed plan for our example is shown in the third column of Figure 10.3:
Both the output of the group-by and the output of the selection are spooled to
disk, as they are read by multiple operators.

While this strategy is often better than converting the DAG into a tree, the
overhead for the temp operator is considerable. For the group-by in our example
it might be still be advantageous (as a group-by is expensive and also reduces
the cardinality), but for the selection it is probably not.

Note that a variation of this strategy is buffering: Instead of spooling the
result to disk, we keep it first in a memory buffer and remove all data that has
been seen by all consumers. If the access pattern of the consumers is ”nice”
(i.e. they read the data more or less synchronously) this can avoid the expensive
spooling to disk. However, if they differ too much this scheme falls back to the
normal temp approach.

10.3.3. Share Only Materializing Operators

The problem with the previous strategy was the overhead for the additional
temp operators, as the data has to be read and written at least one more time.
However, many operators (especially the expensive ones) spool the result or at
least intermediate results to disk anyway: The sort or group-by operator, for
example, have to go to disk if the data is too large, otherwise they keep the whole
data in memory. In both cases, it is possible to compute the result multiple
times without reading the input multiple times. The operators that do not
spool to disk are usually much cheaper (but a counter example is shown below)
and can, therefore, be executed multiple times without too much additional
work.

So this strategy is a combination of the previous two strategies: Shared oper-
ators that materialize their result can be shared directly and the other operators
must be duplicated. The result for our example can be seen in the fourth col-
umn of Figure 10.3. This approach avoids the overhead of temp operators and
still allows for sharing partial results. While some minor modifications might
be required to allow for multiple readers of operators, this strategy is probably
the best compromise possible without major changes in an existing database
management system. The disadvantage is that not all operators can be shared.
While most of the operators that do not materialize are cheap, some can be very
expensive (e.g. a djoin). Then it might make sense to add a temp operator, of
course with the same overhead as the previous strategy.

10.3.4. Parallel Execution

A completely different evaluation strategy that also supports DAGs is the par-
allel execution of operators: If every operator is a separate process (possibly
even on a different computer), multiple readers are usually not a problem: As
they have to synchronize their work anyway, either by a simple rendezvous
protocol or by some more elaborate means, synchronizing with more than one
reader is not very different. This kind of execution has been done in the past
by distributed or parallel systems [21].
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The disadvantage of this strategy is that overhead for passing data between
operators is quite high. This might not be a problem for distributed or parallel
systems, but for a single processor system executing the plans in this way is
quite wasteful. And even for a distributed system it makes sense to execute the
local part of a plan with reduced overhead.

10.3.5. Pushing

The main problem with executing DAGs is that the same data is consumed
by multiple operators. Using the standard iterator model [50], this means that
multiple consumers want to iterate over the same data independently, which
usually cannot be done without buffering or spooling. This problem can be
avoided by reversing the control flow: Instead of the operators iterating over
their input, the input ”pushes” the data up the DAG, i.e., when an operator
has produced some data, it hands it to all its consumers at the same time. This
is shown on the right-hand side of Figure 10.3.

When using a push model, an arbitrary number of consumers can be served
at the same time without any buffering or spooling. In a way, this is similar to
the rendezvous protocol used for parallel execution, as each operator notifies its
consumers of available data. A problem of this approach is that the operators
no longer have full control of the speed in which they get their data (e.g. in our
example, the left-most join gets data from both input sides at the same time,
which is a problem for nested loop joins), but as we will see in the rest of this
chapter, this can be handled. The great advantage is that DAGs with arbitrary
operators can be handled with minimal overhead and without copying data.

10.4. Algebraic Operators

Algebraic operators are used during query execution to compute and combine
partial results until the whole query has been answered. Both this execution
model and the interface offered by the operators have remained essentially un-
changed since the beginning of relational database systems [50]. However, they
do not support DAG-structured query plans very well. Of the execution strate-
gies discussed in Section 10.3, nearly all of them require at least minor changes
to the standard model. Especially the push strategy, which offers the most
generic and efficient execution, is not supported very well. In this section, we
first look at the standard model of algebraic operators, then discuss how it
has to be changed to support a push execution and then consider the concrete
interface that should be offered. The required changes should be as minimally
invasive as possible, as a large number of operators has already been imple-
mented and existing systems will probably support DAGs only if it can be done
without too much work. Therefore, we also briefly discuss changes required for
existing operators.

10.4.1. Existing Interface

The standard (pull) operator interface is very simple:
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Operator
open() : void
next() : boolean
close() : void

The method open initializes the operator, allocates required resources and
prepares the operator to produce the first tuple. The method next produces
the next tuple if any, and returns false when all tuples have been produced.
The method close finally releases all resources required for the operator. So
the operator is used as an iterator over its output, each next call produces
the next entry. Note that this interface hides the actual passing of tuples, it is
assumed that they are stored somewhere else and are accessible by the other
operators. So the operator interface is mainly concerned with the control flow,
not the data flow.

This interface is only useful for trees. When the next method is called, the
operator has no way to determine who wants to get the next tuple. Thus, it
is unable to serve multiple consumers, as it cannot decide when to produce
the same tuple again and when a new one. While this could be solved by
passing a parameter, it could require buffering the whole output, which is highly
undesirable. One solution for this is changing from a pull model, where every
operator requests its input, to a push model, where the operators report their
output to the consumers.

10.4.2. A Push Interface

When the data is pushed bottom-up instead of pulled, the operators can no
longer request data from their input. Instead, they have to wait for events,
either that new data has arrived (which is then processed, potentially creating
new events) or that all data has been produced and the computation can be
finished. Thus, the operators provide two callback methods used for notifica-
tion:

Operator
dataEvent(source : Operator) : void
endOfDataEvent(source : Operator) : void

When an operator has produced a tuple, it calls the dataEvent method
of all its consumers; the parameter source specifies the producing operator.
Similarly, the endOfDataEvent method is used to notify the end of data.

While this basic interface is enough to pass data between operators, it is not
enough to execute a whole query. Consider, for example, a query with two
scans and one join. To execute this in a pull model, the next method of the
root (the join) is called until all data has been produced. However, in a push
model some operator other than the root has to start producing data, and for
the join both scans have to produce data, preferable in a sequence beneficial
for the join. We will look at the details of this in Section 10.5. For now we just
assume that an operator can activate one of its input operators, which causes
it to produce data in the near future (not necessary immediately).
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To illustrate this interface, we consider two operators: A selection and a hash
join. Note that these descriptions are very high level, a more detailed discussion
can be found in Section 10.5.
Selection::dataEvent(source)
1 if the data satisfy the predicate
2 then call dataEvent(this) in all consumers

Selection::endOfDataEvent(source)
1 call endOfDataEvent(this) in all consumers

When the selection receives a data event, it checks the selection predicate
and passes the event to its consumers if the predicate is satisfied. The end of
data events are passed unconditionally. The hash join is more complex as it
has to check from which side the data came.
HashJoin::dataEvent(source)
1 if source = left
2 then store the data in the left hash table
3 if source = right
4 then store the data in the right hash table

When the hash join gets a data event, it just takes the data and stores it in
a hash table. Note that the event is never passed to its consumers. This only
happens after all data has arrived:
HashJoin::endOfDataEvent(source)
1 if source = left
2 then activate the right input
3 if source = right
4 then join the hash tables
5 for all matches
6 do call dataEvent(this) in all consumers
7 call endOfDataEvent(this) in all consumers

Here we assume that the left-hand side produces data first (this assumption
can be eliminated easily). After the left-hand side has produced all data, the
join activates the right-hand side, as it also has to produce data. After the
right-hand side is finished, too, the join operator combines the two hash tables
and produces a data event for all matches. Finally, it notifies its consumers
that all data has been produced.

10.4.3. Reusing Existing Operators

While the push interface looks very different from the pull interface, converting
a pull operator into a push operator is usually not very complex. Two aspects
have to be changed: Passing data up the tree and getting data from the input.

In the pull model data is passed by returning true/false, in the push model
the dataEvent/endOfDataEvent methods are called instead. In the pull
model the operators call next to get data, in the push model the operators
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activate the input operator and leave the current method. These changes are
very minor, the main difficulty is the fact that in the push model the control flow
changes, the method ends after activating an input operator and only continues
when data arrives. Still, most code can be reused directly.

10.5. Implementation Details

The main problem of the push model is the control flow. First it has to de-
termine which operator should produce data first. Then this operator pushes
data up to its consumers, until, e.g., a join decides that another operator should
produce data. Now the control flow should change, but the current operator
might not be finished yet, so the control flow might change back to the current
operator later on.

When implementing this naively, this control flow change cannot be done with
common imperative languages like C or C++. The operators receive their data
from their callers, so in order to receive data from other operators an operator
would have to change its callers, which basically means changing the past. In
the rest of this section we sketch two implementation alternatives which solve
this problem. The first uses coroutines to manage this change of control flow.
However, this is not well supported by most programming languages and is
quite expensive. Therefore, the second alternative changes the control flow by
explicit scheduling.

10.5.1. Coroutines

The most intuitive way to implement the push model is to use coroutines (or
threads/processes). Each operator runs in its own context, waits for input
and tries to produce output. An operator can produce output if it has the
required input and its consumers accept the output, so they implement a simple
rendezvous protocol. Here an operator literally activates another operator: it
switches to the context of the other operator.

This model facilitates the implementation of operators. The code shown
below does not use the event interface from Section 10.1, as it is more natural
to write coroutines this way, but it could be split into multiple methods so that
the event interface remains.
HashJoin::routine()

1 while true
2 do activate the left operator
3 if it reported end of data
4 then break
5 store the data in the left hash table
6 while true
7 do activate the right operator
8 if it reported end of data
9 then break

10 store the data in the right hash table
11
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12 join the hash tables
13 for all matches
14 do activate all consumers, report data
15
16 while true
17 do activate all consumers, report end of data

When using coroutines, the operators can be written straightforwardly. All
operations are written as in a pull model and the result is just passed up to
the consumers. This also eliminates the problem of which operator should push
first: Just activate the root operator, it activates its input as needed.

The code shown above is very simplified, there is some infrastructure required
to support multiple reads or operators that do not expect input from a source
yet (imagine that the hash join gets input without ever been activated first).
But these are just details, the infrastructure is shared by all operators and the
operators themselves are quite simple. The main disadvantage of the coroutine
model is that it is too slow. We will look at some timing results in Section 10.6,
but the context switches involved in switching from one operator to another are
very expensive. Therefore, we developed a much faster, but also more complex
alternative.

10.5.2. Push by Pull

As switching to another coroutine is very expensive, we constructed a solu-
tion that can be implemented with normal function calls. The implementation
sketched here uses an explicit scheduling mechanism that solves the control flow
problems and can be implemented using standard programming constructs. Al-
though this provides a push model, the scheduling itself is done in a very pull-
like way (as we will see below). Therefore, we called this method ”push by
pull”.

The operators receive data as events and they produce new data, creating
events for other operators. This results in a very complex control flow. It can
be formulated easily by using coroutines, but even without coroutines it can
be done by explicitly scheduling the events. For example, it would be possible
to organize all events in a priority queue using some criteria and during query
processing always remove the most important event, activate the correspond-
ing operator and enqueue the newly produced events. Such a scheme allows for
arbitrarily complex data flow, and is easy to implement in standard program-
ming languages. However, the overhead is very high compared with pull model:
the data associated with the data events has to be materialized if operators
place more than one event at the same time into the queue and also the queue
management itself consumes CPU.

To avoid this overhead, we restrict the scheduling in two ways. First, oper-
ators only produce new data events after their existing data events have been
consumed (this avoids materializing). Second, the control flow changes only if
it has to because of missing data (this reduces the scheduling costs). In prac-
tice, this means that operators trigger their consumers (with a direct method
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call) as long as possible. For example, consider a blockwise nested loop join
between two tablescans. The left scan starts producing data and pushes it into
the join. The join consumes this data (by storing it in a buffer), but otherwise
does nothing and allows the scan to continue producing data as long as the
buffer is not full. If the buffer is full, the right scan must produce data, which
means that the left scan must stop. Thus, when handling an event, an operator
reports if its producer should stop or continue producing data. If the producer
stops, a scheduling component selects the next operator that should produce
data.

This model requires several minor modifications to the push interface de-
scribed in Section 10.4.2. First, there is a separate scheduling component: The
scheduler selects an operator that should produce data and this operator pushes
its data up to its consumers. Second, the event methods (dataEvent / endOf-
DataEvent) can return a boolean value. If one operator requires a reschedule
because it needs input from some other operator, it simply returns false as the
result of an event. If the event was created from within another event method,
this method also returns false etc., until the control flow reaches the scheduler
which triggered the first event. The scheduler now selects the next operator
and data is produced until the next reschedule is required etc. This way, the
scheduler is only activated as needed, reducing the overhead to a minimum.
The extended interface is shown below:

Operator
activateNext : Operator

activate(source,newSource : Operator) : boolean
reportData() : boolean
reportEndOfData() : boolean

dataEvent(source : Operator) : boolean
endOfDataEvent(source : Operator) : boolean
startPush() : void

The attribute activateNext is a hint for the scheduler: if it is set it points to
the operator that should be activated instead of this operator (which usually
means that the other operator has to produce data for the current operator
first). It is set by the activate method, that activates a requested operator:
Operator::activate(source, newSource)
1 activateNext← newSource
2 return source = newSource

It sets activateNext and checks if the requested operator is the same as the
source of the current event. If not, it returns false, which causes all callers to
drop back to the scheduler, which can now activate the proper operator.

When an operator creates new data or reaches the end of data, it has to notify
its consumers. This is done by the small helper functions reportData and
reportEndOfData that trigger the corresponding events in the consumers of
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the current operator. If any of the event functions return false (i.e. request a
reschedule), the report functions also return false, which triggers a fallback to
the scheduler. The pseudo code is shown below:
Operator::reportData()
1 result← true
2 for each c in consumers
3 do if c.dataEvent(this) = false
4 then result← false
5 return result

The reportEndOfData function is nearly identical, it calls endOfDataEvent
instead and clears activateNext, as no input is required after all data has been
produced.

The dataEvent and endOfDataEvent functions were already discussed
in Section 10.4.2, the additional return value is used to request a reschedule.
The new startPush method is called by the scheduler if it determines that
the operator should start producing data.

To illustrate the mechanism, consider the following simple selection operator:
Selection::dataEvent(source)
1 if the data satisfies the predicate
2 then if reportData() = false
3 then return false
4 return activate(source, input)

Selection::endOfDataEvent(source)
1 while true
2 do if reportData() = false
3 then return false

Selection::startPush()
1 activate(nil, input)

For a selection the startPush method makes no sense, as it always requires
data. It simply activates its input. If it gets data, it checks the predicate,
and if this is satisfied, it pushes the data up using reportData. If one of its
consumers requests a reschedule, it drops back to the scheduling component,
otherwise it uses activate to request more data. If it gets an end of input event,
it simply pushes this fact upwards until some operator requests a reschedule.

Binary operators are more complex. We consider here a simple hash join:
HashJoin::dataEvent(source)
1 if source = left
2 then store the data in the left hash table
3 return activate(source, left)
4 if source = right
5 then store the data in the right hash table
6 return activate(source, right)
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HashJoin::endOfDataEvent(source)
1 if source = left
2 then return activate(source, right)
3 if source = right
4 then activateNext← nil
5 join the hash tables
6 for all matches
7 do if reportData() = false
8 then return false
9 while true

10 do if reportEndOfData() = false
11 then return false

HashJoin::startPush()
1 if already joining
2 then continue joining the hash tables
3 for all matches
4 do if reportData() = false
5 then return
6
7 activate(nil, left)

The dataEvent and endOfDataEvent methods are nearly identical to the
ones from Section 10.4.2, the only interesting detail is that activateNext is reset
before joining the hash tables, as the operator does not need input anymore.
The startPush method is called when the scheduler has determined that the
operator should produce data. Then, there are two cases: Either the operator
is already joining the entries of the hash table (in which case it continues to do
so), or it requires more input, in which case it activates its left input operator
(this is somewhat arbitrary, it could start with the right hand side as well).

The scheduling component required is very simple, it just tries to activate
the root of the query plan until the whole result has been produced:
Scheduler::run()
1 while root did not get an end of data event
2 do iter ← root
3 while iter.activateNext 6= nil
4 do iter ← iter.activateNext
5 iter.startPush()

This causes the pull-like scheduling: When an operator needs input from
another operator, it sets activateNext and falls back to the scheduler. This
causes an execution order similar to the pull model.

10.5.3. Scheduling

While the scheduling algorithm shown above works, it is very simple. It does
not try to satisfy any goal besides correctness, especially it ignores any resource
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consumption. However, when a query plan includes pipeline breakers, there
are usually different scheduling alternatives. For example, the hash join shown
above could fall back to the scheduler after getting all data instead of directly
producing matches. Then, all input operators for the join could release their
resources, the scheduler could activate some other part of the query plan, and
later on the join would be activated again to produce the matches for another
operator. This might result in a much more conservative resource usage, espe-
cially for main memory.

In this work we concentrated on query optimization and, therefore, ignored
more advanced scheduling techniques, but if the runtime system uses explicit
scheduling anyway, it might be worthwhile to make use of it.

10.5.4. Possible Restrictions

While the push model supports arbitrary query plans – in principle –, there is a
restriction when using the standard operators naively: A binary operator must
not read the same operator directly (i.e. without pipeline breaker in between)
twice. Consider a plan that consists just of a tablescan and a nested loop join
that reads the table both on its left and its right-hand side. When the scan
pushes its output up, the join gets data on both its left and its right hand side
at the same time and not n tuples on the right-hand side for each tuple on the
left-hand side. Blocking the left-hand side does not help, as the left-hand side
is the same as the right-hand side. Note, however, that it is possible to execute
the nested loop join in this plan: It must just ignore the incoming tuples on
the left-hand side, the right-hand side is read multiple times anyway so the
left-hand side is also regenerated. With a minimal amount of buffering (the
next tuple on the left-hand side), this allows executing the nested loop join in a
push way without any additional work. However, it requires changing the join
implementation.

The easiest way to avoid these problems is to make sure that there is a
pipeline breaker between the shared source and the join. The pipeline breaker
can accept input without producing output. Therefore, it allows to decouple
the join from the source, the join can read the data in the order it wants. As
many operators (sort, group-by, grace hash join etc.) are pipeline breakers, this
is not a very severe limitation.

However, more operators than just the nested loop join can be adjusted
to accept reading the same source twice. A similar trick can be done for a
blockwise nested loop join (it gets spurious tuples when filling the memory
buffer, but it knows that it has to join all entries in the buffer anyway) and,
in fact, all standard binary operators can be adapted to handle this problem:
a sort merge join, for example, either wants to perform the join on the same
attribute (which, in fact, allows for a more efficient implementation) or it has
to add at least one sort operator anyway, which is a pipeline breaker. The same
is true for hash-based join operators that require a partitioning enforcer. While
theoretically some operators might exist that cannot be changed this way, the
push model does not impose restrictions for the currently known operators.
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10.6. Experimental Results

To evaluate the different execution strategies, we implemented the basic run-
time operators in three different versions: First as a classical pull model, then as
a push model using coroutines, and finally as push-by-pull model as described
in Section 10.5. Note that the same basic algorithms were used for all three ver-
sions. Of course the pull version cannot execute DAG-structured query plans.
However, it is the most common model used today and serves as a base line to
estimate the overhead for DAG support. The coroutine version represents the
parallel execution strategy; instead of coroutines, it would be possible to use
threads or processes. But as coroutines have a lower overhead than threads or
processes, this implementation was chosen to consider a reasonable fast imple-
mentation. The push-by-pull version is what we finally propose as an efficient
execution model to support DAGs.

The experimental results shown below were all performed on a 2.4 GHz Pen-
tium IV, using the gcc 3.3.1.

10.6.1. Data Passing Overhead

To evaluate if the overhead for DAGs is not too high, we first measured the
overhead required to pass data between different operators. Therefore, we con-
structed query plans that consist of a single main memory table scan of 100
tuples and a sequence of n selections, which all have true as a selection pred-
icate. When executing this plan, the data is fetched from the table and then
passed with minimal additional work through the sequence of selection opera-
tors. So we basically measure the cost of passing data between operators.

The results are shown in Figure 10.4. The overhead when using coroutines is
very high, it is at least a factor of 20 compared to the basic pull implementation.
Of course this does not mean that real queries will also be slower by a factor
of 20, as this test only measures data passing, but still the coupling between
the operators is expensive. Interestingly, the push-by-pull method seems to
be actually faster than the basic pull method when the number of selections
is small. However, this is somewhat misleading: This is mainly because only
100 tuples were read and the initialization is faster, as no open/close calls are
required. The absolute time difference is very small. Still, even for a large
number of operators the push-by-pull approach performs very well, with only
a very minor overhead compared to the pull approach.

As few queries contain even 100 selections, we also considered a query plan
with only 10 selections executed after a file scan with an increasing number
of tuples. The results are shown in Figure 10.5. Again, coroutines are very
expensive, but the difference between pull and push-by-pull is very small, as
the scan itself is expensive compared to a simple selection.

10.6.2. Control Flow Overhead

The previous experiment has measured the overhead for passing data between
operators, but it has a very primitive control flow, the scheduler in the push-
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by-pull approach is never invoked. To look at a more complex control flow, we
constructed left-deep chains of nested loop joins, joining n+1 relations with 100
tuples each. For each output tuple each join operator must read from both its
input streams, so that the control flow changes a lot. The operators are simple
1 : 1 nested loop joins, so we mainly measure the overhead of the infrastructure.

The results are shown in Figure 10.6. As expected, the coroutine imple-
mentation is again very slow, as the operators are very simple. Besides, the
push-by-pull implementation is somewhat slower, as it now has to perform more
complex changes of control flow. But still the difference between the push-by-
pull implementation and the pull implementation is at most 30%, and this is
the worst case scenario: Every tuple requires 2n re-schedules (as each join has
to switch from left to right and, for the next tuple, back) and the operators
themselves require nearly no time (each join does just one integer comparison),
so that only the cost for scheduling and data passing is measured.

Overall, the push-by-pull implementation performs reasonably well. The
overhead involved is not too big and becomes even neglectible when more ex-
pensive operators or complex predicates are involved. As this approach allows
the execution of far more general plans, the overhead can be justified easily.

10.7. Outlook

The experimental results show that DAG-structured query plans can be sup-
ported with a modest overhead. If necessary, this overhead could be reduced
even more by using block oriented data passing [63].
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Future work should try to improve the operators to handle arbitrary plans,
as discussed in Section 10.5.4. In some cases, this could be done by reorganizing
binary operators so that they accept input in arbitrary order (with respect to
left and right). For some operators like a grace hash join, it can be done quite
easily. Other operators like a nested loop join can be adapted with some work.
In fact, for the problematic case (reading from the same input twice) a much
more efficient implementation could be used: For a 1:1 join the implementation
is trivial, and even for n:m the operator only has to check for boundaries between
join attributes. Therefore, a database system could not only eliminate the
restrictions for self joins but actually benefit from self joins.
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11. Evaluation

11.1. Overview

In the previous chapters, we discussed several aspects of optimizing DAG-
structured query graphs. However, we still have to show two claims: 1) creating
DAG-structured query plans is actually beneficial and 2) situations where DAGs
are beneficial are common and not constructed. Therefore, we present several
queries for which we create tree-structured and DAG-structured query plans.
Both the compile time and the runtime of the resulting plans are compared to
see if the overhead for DAGs is worthwhile. All experiments were executed on
a 2.2 GHz Athlon64 system running Windows XP. The plans were executed
using the runtime system of the SOD2 object-oriented database system [58].

To avoid changing too many parameters at once, each operator (join, group-
by etc.) is given 1MB of memory as buffer space. This is somewhat unfair
against the DAG-structured query plans, as they need fewer operators and,
therefore, could allocate larger buffers. But dynamic buffer sizes would affect
the cost model, and the space allocation should probably be a plan generator
decision. As this is beyond the scope of this work, we just use a static buffer
size here.

Both tree-structured and DAG-structured query plans are constructed using
the plan generator presented here, either with or without rules for DAG gen-
eration (i.e. information about share equivalence). While this allows a better
comparison of the generated plan and the plan generation effort, this compari-
son is not completely fair, as tree structured query plans could be constructed
using a simpler (and potentially faster) plan generator. However, the query
execution time clearly dominates the query compilation time. Therefore, the
resulting plan is more interesting than the compilation time.

11.2. TPC-H

The TPC-H benchmark [76] is a standard benchmark to evaluate relational
database systems. It tests ad hoc queries where the database system must not
be tuned for the expected queries (in contrast to TPC-R [75]). This results in
query execution plans that are relatively simple and allow a better comparison
between tree and DAG versions.

The schema is shown in Figure 11.1. It models a business database with
customers, orders and supplier; the corresponding queries are from a data ware-
house scenario. For the runtime evaluation we used the scale factor 1 database
(1GB).

We now look at some exemplary queries. Note that queries without sharing
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customer
c custkey
c name
c address
c nationkey
c phone
c acctabl
c mktsegment
c comment

lineitem
l orderkey
l partkey
l suppkey
l linenumber
l quantity
l extendedprice
l discount
l tax
l returnflag
l linestatus
l shipdate
l commitdate
l recepitdate
l shipstruct
l shipmode
l comment

order
o orderkey
o custkey
o orderstatus
o totalprice
o orderdate
o orderpriority
o clerk
o shippriority
o comment

part
p partkey
p name
p mfgr
p brand
p type
p size
p container
p retailprice
p comment

150000 tuples 6001215 tuples 1500000 tuples 200000 tuples

supplier
s suppkey
s name
s address
s nationkey
s phone
s acctbal
s comment

partsupp
ps partkey
ps suppkey
ps availqty
ps supplycosts
ps comment

region
r regionkey
r name
r comment

nation
n nationkey
n name
n regionkey
n comment

10000 tuples 800000 tuples 5 tuples 25 tuples

Figure 11.1.: TPC-H Schema
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select ps_partkey, sum(ps_supplycost * ps_availqty) as value
from partsupp,supplier,nation
where ps_suppkey = s_suppkey and

s_nationkey = n_nationkey and
n_name = "GERMANY"

group by ps_partkey
having sum(ps_supplycost * ps_availqty) >

(select sum(ps_supplycost * ps_availqty) * 0.0001
from partsupp, supplier, nation
where ps_suppkey = s_suppkey and

s_nationkey = n_nationkey and
n_name = "GERMANY")

order by value desc;

Figure 11.2.: SQL formulation of TPC-H Query 11

opportunities are unaffected by DAG support: The plan generator produces
exactly the same plans with and without DAG support, and also the compile
time is identical in our test scenario. Therefore, it is sufficient to look at queries
which potentially benefit from DAGs.

Query 11

Query 11 is a typical query that benefits from DAG-structured query plans.
It determines the most important subset of suppliers’ stock in a given country
(Germany in the reference query). The SQL formulation is shown in Figure 11.2.
The available stock is determined by joining partsupp, supplier and nation.
As the top fraction is requested, this join is performed twice, once to get the
total sum and once to compare each part with the sum. When constructing
a DAG, this duplicate work can be avoided. The compile time and runtime
characteristics are shown below:

tree DAG
compilation [ms] 10.5 10.6
execution [ms] 4793 2436

While the compile time is slightly higher when considering DAGs (profiling
showed this is due to the checks for share equivalence), the runtime is much
smaller. The corresponding plans are shown in Figure 11.3: In the tree version,
the relations partsupp, supplier and nation are joined twice, once to get the
total sum and once to get the sum for each part. In the DAG version, this work
can be shared, which nearly halves the execution time.

Query 2

Query 2 selects the supplier with the minimal supply costs within a given region.
Structurally this query is similar to Query 11, as it performs a large join twice,
once for the result and once to get the minimum (see Figure 11.4 for a SQL
representation). However, it is more complex, as the nested query depends
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sort

σσsupplier

�

<

Γ∗;sum

�

�

supplier

nation

partsupppartsupp

nation
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�

Γps partkey;sum

σsupplier

partsupp

nation

�

�

sort

Γ∗;sum

�

<

Γps partkey;sum

tree DAG

Figure 11.3.: Execution plans for Figure 11.2

select s_acctbal, s_name, n_name, p_partkey,
p_mfgr, s_address, s_phone, s_comment

from part, supplier, partsupp, nation, region
where p_partkey = ps_partkey and

s_suppkey = ps_suppkey and
p_size = 15 and
p_type like "%BRASS" and
s_nationkey = n_nationkey and
n_regionkey = r_regionkey and
r_name = "EUROPE" and
ps_supplycost = (

select min(ps_supplycost)
from partsupp, supplier, nation, region
where p_partkey = ps_partkey and

s_suppkey = ps_suppkey and
s_nationkey = n_nationkey and
n_regionkey = r_regionkey and
r_name = ’EUROPE’)

order by s_acctbal desc, n_name, s_name, p_partkey

Figure 11.4.: SQL formulation of TPC-H Query 2
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Figure 11.5.: Execution plans for Figure 11.4

on the outer query. We assume that the rewrite step unnests the query (by
grouping the nested query on ps partkey and using a join), but still the nested
query lacks the part relation, which prevents sharing the whole join. Note that
the relation (and the corresponding predicates) can be re-added by a magic
set like transformation: The join with part is effectively a filter, as the join
is a key/foreign key join. The nested query is joined by ps partkey and the
group-by is on ps partkey and part is joined by ps partkey, so the join can be
duplicated inside the group-by without changing the result. Here, we consider
three plan generation alternatives: Normal tree construction, DAG construction
and DAG construction with rules for magic set transformation enabled. The
runtime and compile time are shown below.

tree DAG DAG (magic set)
compilation [ms] 9.3 9.2 9.7
execution [ms] 11933 7480 3535

The compile times for tree and DAG are about the same (the DAG is slightly
faster, as it can ignore some dominated alternatives), while the magic set vari-
ant is about 5% slower due to the increased search space. The runtime behavior
of the alternatives is very different, see Figure 11.5 for the corresponding exe-
cution plans. The tree variant simply calculates the outer query and the nested
query independently and joins the result. The DAG variant tries to reuse some
intermediate results (reducing the runtime by 37%), but still performs most of
the joins in both parts, as the queries are not identical. When using the magic
set transformation, large parts of the query become equivalent, which results in
much greater sharing and also reduced aggregation effort, reducing the runtime
by 70% compared to the tree variant.

11.3. Examples

Besides standard TPC-H queries, we also examine some queries selected to
demonstrate certain optimization techniques. Note that these examples were
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select *
from order
where o_orderstatus=’F’ or

exists(select *
from lineitem
where l_linestatus=’F’ and

l_orderkey=o_orderkey)

Figure 11.6.: Disjunctive query

�
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σo orderstatus=F σl linestatus=F

¯
⋃

�

σo orderstatus 6=F

order order lineitem

σo orderstatus=F σl linestatus=F

¯
⋃

σl linestatus=Fσo orderstatus=F

order lineitem

�

FT

tree tree (partitioning) DAG

Figure 11.7.: Execution plans for Figure 11.6

specifically chosen as a demonstration and are not necessary useful (e.g. the first
query can be formulated much simpler by using schema information). However,
they give an idea which optimizations are possible.

First, we consider a disjunctive query. We want to find all orders that are
either finished or of which at least one item is finished. The SQL representation
is shown in Figure 11.6. Note that for this very simple query plan generation
is basically pointless (compile time < 0.1ms), as few decisions are possible, the
main work is done during query rewrite. The compile time and runtime of three
different alternatives are shown below, we will discuss the alternatives below.

tree tree (partitioning) DAG
compilation [ms] < 0.1 < 0.1 < 0.1
execution [ms] 46683 25273 22450

The direct translation of the SQL query into an execution plan would require
a dependent join. We did not consider this alternative here, as a dependent join
of order and lineitem would be prohibitively expensive. Instead, the exists
expression is unnested and converted into a semi-join. As the other part of the
disjunctive condition has to be checked also, the parts are evaluated indepen-
dently and the result is combined. The resulting plan is shown on the left-hand
side of Figure 11.6. The approach has two disadvantages: First, it requires an
expensive duplicate elimination and second, it performs the join for tuples that
already qualified. Both problems can be avoided by negating the first condition
in the second branch, which guarantees non-overlapping results (second column
of Figure 11.6). This transformation greatly reduces the runtime of the query,
but is not trivial to do for all queries: Consider a query with two disjunctive
exists conditions. In this case, negating the condition in the second branch
would be prohibitively expensive. A more flexible approach is to use bypass
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plans which evaluate the first condition, return all qualifying tuples as result
and pass only the other tuples to the second part of evaluation plan (right-hand
side if Figure 11.6). This is even faster than the second approach and can be
used efficiently even for very expensive conditions.

11.4. Conclusion

The experiments have shown that the compile time is mainly unaffected by DAG
support when just considering sharing intermediate results. The compile time
is affected when using new optimization techniques (e.g. magic sets in Query
2), but of course the search space is much larger there. Still the compile time
is small and dominated by the runtime. The runtime effect of DAG support is
very large, as sharing can drastically reduce the runtime of many queries.

In fact DAGs can be considered a clear win over tree-structured query plans.
The compile time costs are minimal, the resulting plans are never worse than
tree-structured plans and often the plans are much better than the equivalent
tree-structured plans.
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12. Outlook

The work presented here offers a solid base for creating and executing DAG-
structured query plans. We presented a formalism to model DAG creation as a
dynamic programming (respective memoization) problem and presented a plan
generator that uses this formlism to create DAGs with little or no overhead
compared to creating trees. We also discussed and solved the problems arising
for the cost model and presented a runtime system suited for DAG-structured
query plans that also handles simple trees with neglectible overhead. Finally,
we have shown that DAG-structured query plans provide a great runtime ben-
efit for real-life queries. Besides, we have shown examples where DAGs allow
new classes of optimizations without buffering and without relying on multiple
optimization phases. Overall, this shows that efficient DAG creation is possible
and beneficial.

Future work should cover several topics: First the algebraic equivalences
could be improved. While we have lifted the normal tree equivalences to DAGs,
DAGs allow more transformations than trees. A theoretical foundation for this
would be useful. Second, the current approach supports a wide range of opti-
mizations, but relies on very smart rewrite and prepare phases to identify these
opportunities. Either this should be formalized or the operator rules should
be expanded to identify some of these opportunities themselves during plan
generation. Related to this, some applications (XML processing and especially
streaming) should be considered in more detail, as they can benefit greatly from
DAG support. This involves both optimization rules and specialized operators.

Summarizing, DAGs offer great advantages for many real-life problems and
allow an efficient implementation of interesting optimization techniques. There-
fore, it is desirable to make DAGs the standard plan representation for database
management systems.
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A. Algebra

In this work, we used a number of algebraic operators. Although they are well
known and described in literature [18, 52, 55], we provide definitions here for
the sake of completeness. Similar to the relational model, we assume that each
algebra expression produces a set of tuples with identical schema. We write
A(e) for the set of attributes produced by an expression e (i.e. the attributes
contained in each tuple) and F(e) for the set of free variables of the expression
e. We write a : b to assign the name a to the value b (e.g. when creating a new
attribute a).

The most basic operator is a scan over a relation or an extent, but it does
not belong to the logical algebra described here (as it is a physical operator).
We just write R to get all tuples contained in relation R.

As algebra expressions produce sets of tuples, we can use the regular set
operations ∪|, ∩ and \ to construct new expressions. Note that that the ∪
operator has to perform duplicate elimination, as it produces a set. If it is clear
that no duplicates can occur or if duplicates are relevant (i.e. for multi-sets),
we write ∪̄ for a union without duplicate elimination.

e1 ∪ e2 = {x|x ∈ e1 ∨ x ∈ e2}
e1 ∩ e2 = {x|x ∈ e1 ∧ x ∈ e2}
e1 \ e2 = {x|x ∈ e1 ∧ x 6∈ e2}

Attributes are removed using the projection ΠA(e) (A ⊆ A(e)), renamed
using ρa→b(e) (a ∈ A(e), b 6∈ A(e)) and new attributes are created (calculated)
using the map operator χa:f (a 6∈ A(e),F(f) ⊆ A(e)

ΠA(e) = {◦a∈A(a : x.a)|x ∈ e}
ρa→b = {x ◦ (b : x.a) \ (a : x.a)|x ∈ e}
χa:f = {x ◦ (a : f(x))|x ∈ e}

A selection using a predicate p is written as σp(e) (F(p) ⊆ A(e)). The cross
product of two sets is written as e1× e2. If both operations are executed at the
same time using a join, this is written as e1 �p e2 (F(p) ⊆ A(e1) ∪ A(e2)).

σp(e) = {x|x ∈ e ∧ p(x)}
e1 × e2 = {x ◦ y|x ∈ e1 ∧ y ∈ e2}

e1 �p e2 = {x ◦ y|x ∈ e1 ∧ y ∈ e2 ∧ p(x ◦ y)}
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Besides the normal join operator, there exist numerous special purpose join
operators. The outer join e1�p e2 (F(p) ⊆ A(e1)∪A(e2)) performs a join, but
makes sure that every tuple from e1 is part of the result. If no match was found,
a match is constructed by setting the attributes from e2 to NULL. The semijoin
e1 �p e2 (F(p) ⊆ A(e1)∪A(e2)) only checks which tuples from e1 match tuples
from e2, it does not construct the matches. Finally, the dependent join e1

→
�p e2

(F(p) ⊆ A(e1) ∪ A(e2), F(e2) ⊂ A(e1)) performs a join where the evaluation
of e2 depends on e1.

e1 �p e2 = e1 � e2 ∪ {x ◦ ◦a∈A(a : NULL)|x ∈ e1∧ 6 ∃y ∈ e2 : p(x ◦ y)}
e1 �p e2 = {x|x ∈ e1 ∧ ∃y ∈ e2 : p(x ◦ y)}
e1

→
�p e2 = {x ◦ y|x ∈ e1 ∧ y ∈ e2(x) ∧ p(x ◦ y)}

The group-by operator ΓA;a:f (e) (A ⊆ A(e), F(f) ⊂ A(e)) builds groups of
tuples with the same values in the group-by attributes and executes an aggre-
gation function on the group. The unnest operator µa:b(e) (b ∈ A(e)) converts
one tuple with a set valued attribute into multiple tuples combined with the
values contained in the attribute.

ΓA;a:f (e) = {x ◦ (a : f(y))|x ∈ ΠA(e) ∧ y = {z|z ∈ e ∧ ∀a ∈ A : x.a = z.a}}
µa:b(e) = {x ◦ (a : y)|x ∈ e ∧ y ∈ x.b}
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