
REIHE INFORMATIK

TR-2005-006

TECA: A Topology and Energy Control Algorithm
for Sensor Networks

Marcel Busse, Thomas Haenselmann,
and Wolfgang Effelsberg

Universität Mannheim
Praktische Informatik IV

A5, 6
D-68159 Mannheim, Germany

1

TECA: A Topology and Energy Control Algorithm for
Sensor Networks

Marcel Busse, Thomas Haenselmann, and Wolfgang Effelsberg
Computer Science IV - University of Mannheim, Germany

University of Mannheim
Seminargebäude A5, D-68131 Mannheim, Germany

{busse, haenselmann, effelsberg}@informatik.uni-mannheim.de

Abstract—A main challenge in the field of sensor networks is energy ef-
ficiency to prolong the sensor’s operational lifetime. Due to low-cost hard-
ware, nodes’ placement or hardware design, recharging might be impossi-
ble. Since most energy is spent for radio communication, many approaches
exist that put sensor nodes into sleep mode with the communication radio
turned off. In this paper, we propose a new Topology and Energy Control
Algorithm called TECA. We will show the performance of TECA by means
of extensive simulations compared to two other approaches. In terms of op-
erational lifetime, packet delivery and network connectivity, TECA shows
promising results. Unlike many other simulations, we use an appropriate
link loss model that was verified in reality. By measuring packet delivery
rates, TECA is able to adapt to different environments while still maintain-
ing network connectivity.

I. INTRODUCTION

Research in Sensor Networks has become more and more popu-
lar [1][8]. Advances in micro-sensor and radio technology enable low-
cost hardware and embedded systems including wireless communica-
tion, sensing, and processing unit. At the same time, it allows densely
populated sensor networks. Since in most cases sensor nodes will be
battery powered, energy efficiency has to be taken into account [13].
Recharging might be impossible due to local conditions or might be in-
efficient because of low-cost hardware. Therefore, energy conserving
algorithms are required that extend the lifetime of the entire network
while still maintaining network operation.

The sensor node’s energy consumption depends on many factors,
e.g., usage of sensing components and communication technology.
Some sensor nodes like the ESB [18] consume most energy for packet
sending rather than receiving, whereas other nodes nearly spend the
same amount of energy for both modes like the Mica motes [12]. All
sensor nodes could save the most energy if they turned their wireless
communication radio off and just stay in the sensing state. In order
to maintain communication through the network, either some or all
nodes have to wake up periodically or at certain times, or some nodes
are prevented from turning their radio off at all. Of course, an impor-
tant issue is the fact that the network will not be partitioned. Selecting
which nodes can sleep and which nodes must be awake is the task of
Topology Control or Topology Management.

In this paper, we present a new Topology and Energy Control Algo-
rithm (TECA) that (i) extends network lifetime by putting nodes into
sleep mode (radio turned off) and (ii) guarantees network connectivity.
We will show by means of simulations that our algorithm saves more
energy than other approaches and additionally minimizes packet loss
by considering link qualities. Since in reality wireless links sometimes
experience high packet loss rates, we take this issue into account. Un-
like many other simulations, we will simulate packet loss on wireless
links using an appropriate loss model that was verified in field studies.

The paper is organized as follows: In the next section, we briefly
outline related work. Then we will describe our Topology and En-
ergy Control Algorithm in Section III. Section IV gives a performance

evaluation of TECA by exploring different parameter settings. A com-
parison with two other approaches is presented in Section V. Finally,
Section VI ends with concluding remarks and an outlook on future
work.

II. RELATED WORK

Several energy-aware approaches have been proposed in the litera-
ture. Adaptive MAC layer protocols like S-MAC [25], T-MAC [21]
and WiseMAC [10] allow nodes to turn off their radio if they do not
participate in communication. All of these protocols have their ma-
jor focus on reducing idle listening by introducing a duty cycle. In
S-MAC, time is slotted in relatively large time frames consisting of an
active and sleeping part. Only in the active part, data transmissions
are possible. During the sleeping part, the radio will be turned off to
save energy. The length of the active part is fixed whereas the sleeping
time is under control of the application. As a consequence, nodes must
listen to the channel during the whole active phase even if no transmis-
sions are detected. T-MAC improves this situation by introducing a
timeout value TA that determines the active part’s length. If a node
detects an activity on the channel after the timeout (data transmissions
or collisions), it resets the timer. Otherwise, it assumes that the chan-
nel is idle and goes to sleep. Unlike S-MAC and T-MAC, WiseMAC
is based on the preamble technique. In WiseMAC, active and sleep-
ing phases are not synchronized among nodes. Each node informs its
neighbors about its own wake-up time. With this knowledge, another
node that has data to send just starts the transmission at the right time
with a wake-up preamble.

In addition to energy-efficient MAC layer protocols, there exist sev-
eral algorithms in the literature concerning topology control or topol-
ogy management. Typically, two different approaches can be distin-
guished: Power control algorithms that minimize the node’s transmis-
sion power and topology-based approaches that build a backbone of
active nodes that participate in data delivery while all other nodes turn
their radios off. Both approaches are orthogonal to the beforemen-
tioned energy-efficient MAC protocols and could be combined to fur-
ther save energy.

The goals of power control approaches are to minimize interfer-
ence, packet collisions and retransmissions as well as to improve spa-
tial reuse. Ramanathan et al. [17] present two algorithms that main-
tain connectivity in the network by adjusting the maximal transmission
power of a node. Both algorithms are centralized and based on global
knowledge. Li et al. [15] propose LMST where each node builds a
minimum spanning tree based on local information. The authors prove
that their topology control algorithm preserves network connectivity
with each node’s degree bounded by 6. Furthermore, the constructed
topology can be transformed into a bidirectional one by removing all
uni-directional links without affecting connectivity. While the algo-
rithm is limited to homogeneous networks, Li and Hou extend their

2

approach to heterogeneous networks where nodes may have different
maximum transmission ranges in [14].

Another approach that relies on the number of adjacent neighbors
is proposed by Blough et al. [3]. In k-Neigh, each node adaptively
decreases its transmission power until just k symmetric links to adja-
cent nodes remain. Using distance estimations, the k nearest neigh-
bors are determined that control the node’s transmission power. The
authors prove that their algorithm terminates after a total of 2n mes-
sages have been exchanged, with n nodes in the network. Also, they
give an estimate for k that achieves connectivity with high probability.
Interestingly, the value of k is only loosely depended on the number n
of nodes in the network. Thus, knowledge about the exact value of n
is not necessary. However, implementing k-Neigh in practice requires
the ability of distance estimations that is not always possible.

Although many approaches claim to reduce interference by the
spareness of the network as a result of power adjustment, Burkhart et
al. [4] disprove this implication. They propose connectivity-preserving
and spanner constructions that are interference-minimal. However,
power control approaches may improve the network’s capacity by re-
ducing interference but concerning energy efficiency, their saving com-
pared to idle listening will likely be marginal [19].

In contrast to power control, topology-based approaches exploit the
fact that in densely deployed networks many nodes will be redundant.
By turning the radio of these nodes off, a topology of active nodes is
constructed. Because of omitting idle listening, those approaches will
likely yield much energy conservation.

Xu et al. [24] have proposed Geographic Adaptive Fidelity (GAF),
a topology control protocol that uses geographic positions of nodes to
subdivide the sensor network into virtual grids. The grid size is chosen
such that all nodes in one grid can communicate with all other nodes
in adjacent grids. Given a transmission range r, the grid size a will be
r/
√

5. Since nodes in a grid are considered equivalent from a routing
perspective, just one node needs to be active with its radio turned on
while all other nodes are sleeping. Thus, GAF exploits redundancy in
the network and prolongs network lifetime with increasing node den-
sity. To balance out energy consumptions, sleeping nodes periodically
wake up and rotate the role of the awake node among them. Since GAF
assumes that each active node can communicate with active nodes in
adjacent grids, the network will not be partitioned by the built back-
bone topology theoretically. There are not more partitions than in the
underlying raw topology. However, this assumption does not always
hold in reality where poor links with high packet loss occurs even if
two nodes are close together. Furthermore, GAF relies on geographic
information which are not always available.

Span [7] is another protocol that builds a topology backbone of for-
warding “coordinators”. It attempts to preserve the original network
capacity and connectivity while reducing energy consumption. The
node’s decision of becoming a coordinator depends on remaining en-
ergy and the surrounding neighborhood. For example, a node becomes
a coordinator if two unconnected adjacent coordinators can be con-
nected. Like in GAF, nodes periodically wake up to balance energy
consumption, and go to sleep if they do not have to join the forwarding
backbone.

TMPO [2] shares many concepts with Span. However, its focus is on
efficient communications rather than on energy conservations without
providing sleeping nodes that turn their radio off. Based on a minimal
dominating set (MDS), a backbone topology is constructed by trans-
forming the MDS into a connected dominating set (CDS). TMPO uses
the concept of clustering to build the MDS. By introducing gateways
and doorways, these clusters will be connected in the CDS, guarantee-
ing network connectivity. A similar approach is presented in [22] with
Cluster-based Energy Conservation (CEC).

Nikaein and Bonnet [16] emphasize the same motivation focusing

on routing performance. They propose an algorithm that constructs
a routing topology based on a forest. Each tree in the forest forms
a zone that is maintained proactively. By considering the quality of
connectivity, the set of non-overlapping zones are linked.

Dousse et al. [9] consider networks where nodes switch between on
and off modes independently of each other. Since the on/off sched-
ules are completely uncoordinated, the network might be disconnected
most of the time. Assuming a store-and-forwarding routing mecha-
nism, data is sent from nodes to a sink. Under some simplifying con-
ditions, the maximum latency and variance is bounded. Moreover, the
latency grows linear with the distance between a node and a sink de-
pending on node density, connectivity range, and duration of active
and sleeping periods.

Also putting nodes to sleep, ASCENT [5] builds a topology rely-
ing on the number of neighbors a node has discovered. However, only
nodes whose packet loss is below a given threshold will be considered
neighbors. The neighbor threshold NT determines if a node joins the
backbone topology. If the node’s number of neighbors is smaller than
NT , the node will become active with its radio turned on. Otherwise,
ASCENT assumes that there are enough active neighbors maintaining
connectivity, and the node becomes passive. Although passive nodes
do not join the backbone topology, they still overhear packet trans-
missions. In case the number of neighbors drops below NT or active
nodes send help messages indicating poor link qualities to adjacent
nodes, a passive node changes its state back to active. Since ASCENT
also attempts to prolong network lifetime, each node has a passive
timeout after it goes to sleep and turns its radio off. In addition, there
is a sleeping timeout after sleeping nodes move back to passive again.
Because of the simplicity of ASCENT and the fact that it mainly relies
on the number of active neighbors, there might be situations where the
network gets partitioned.

Like ASCENT, Naps [11] bounds the node degree in the constructed
topology. While ASCENT tries to achieve a stable system, Naps puts
nodes to sleep faster and more aggressively. The simulations show
that most of the nodes are part of the largest connected component, but
several distinct partitions are not unlikely.

Similar to Naps, AFECA [23] puts nodes into sleep mode, with the
sleeping time being related to the number of neighbors. However, each
node must have an accurate knowledge of the neighborhood size.

Schurgers et al. [20] propose STEM, a topology control protocol
where nodes are equipped with a second radio channel for paging. The
paging channel operates on a lower frequency and lower bandwidth
conserving more energy. Nodes then shut down their main radio chan-
nel with their second radio turned on all the time. In case of packet
delivery, the paging channel will be used to turn the main radio on
again.

In this paper, we will present a topology-based approach without
the need of a second communication radio and geographic informa-
tion. Unlike most of the proposed algorithms, we perform simulations
not based on a unit disk graph but on a realistic link loss model. We
assume that all nodes are battery-powered and have the same transmis-
sion range. Moreover, we do not take mobility settings into account
since most of the sensor network will likely be static. In the next sec-
tions, we will describe our proposed algorithm before we will compare
it with GAF and ASCENT in Section V.

III. THE TOPOLOGY AND ENERGY CONTROL ALGORITHM

A. Basic Concept

Our proposed Topology and Energy Control Algorithm (TECA) is
motivated by a clustering approach. Clustering the network means
that each node is assigned to a cluster of nodes with one master node
that acts as the cluster head. The cluster head is responsible for all

3

its assigned nodes and might perform special application tasks, handle
data aggregation, control the medium access, or provide routing related
functions. Once the network is divided into several clusters, TECA
selects some nodes that act as bridges between two or more clusters.
Thus, the entire network gets connected.

As shown in Figure 1, there are five states a sensor node can be
in: initial, sleeping, passive, bridge, or cluster head. After a node
is powered on, it is in the initialization state with its radio turned on
until a timer Ti expires. In this state, nodes overhear packet trans-
missions, build a neighborhood table, and measure link qualities to
adjacent nodes. After time Ti, a node changes its state to passive. Like
in the initialization state, passive nodes overhear ongoing packet trans-
missions and keep their neighborhood table up-to-date. Additionally,
in case of network disconnectivity, they will become active, either as a
cluster head or as a bridge. Otherwise, they stay passive a time Tp until
they go to sleep to save energy. We call a node sleeping if it turns its
communication radio off. Other energy consuming components like
sensing and processing units may still be turned on.

Fig. 1. TECA state transitions

Since TECA conserves energy by putting redundant nodes to sleep,
a major challenge is to maintain connectivity in the network. Of
course, a node with information about all nodes and links between
them has the ability to build a well-connected topology. However,
TECA should be self-configuring and should work in a distributed
and localized fashion. Therefore, after clustering the entire network,
TECA maintains connectivity by selecting nodes as bridges connect-
ing different clusters. We will describe the cluster head and bridge
selection process in detail in the next section. In addition to maintain-
ing network connectivity, TECA attempts to select nodes joining the
topology as sparsely as possible. Furthermore, it explicitly considers
link qualities by measuring packet delivery rates. Especially in sen-
sor networks, high packet losses are very common due to low-power
radios, reflections, attenuation, and multipath/fading effects. Cerpa et
al. [6] have shown that in an area of more than 50% of the communi-
cation range, there is no clear correlation between packet delivery and
distance. In their measurements, link asymmetries occur with 5% to
30%. Further analyses have indicated that this is primarily caused by
small differences in hardware calibration and energy levels between
nodes.

B. TECA in Detail

The topology built by TECA is based on neighborhood informa-
tion that nodes exchange periodically. These beacons are broadcast
by non-sleeping nodes each time an announcement timer Ta expires.
Except for sleeping nodes, all nodes send these beacons. Beacons con-
tain the node’s id, state, remaining energy, a timeout value, and 1-hop
neighborhood information. However, only information about active
neighbors, i.e., cluster heads and bridges, will be included into the
packet. To identify asymmetric links and to provide other nodes with
link qualities, loss information is added for each active neighbor. This
information is based on local measurements of packet delivery and

adapted by exponential smoothing over time. Since packet loss may
be different depending on the transmission direction, both directions
will be considered independently. Thus, we can identify asymmetric
links through a difference in packet loss that is higher than a threshold
LA.

While a node is in initialization state, it only sends out beacons every
announcement time. After it changes its state to passive, it first sets a
passive timer Tp after which it will turn its communication radio off
and sleep to save energy. As long as a node is not sleeping, it checks
its current state each time it receives or must send an announcement
packet. The CheckState(n) function is shown in Algorithm 1.

Algorithm 1 CheckState(Node n)

1: if (IsCluster(n)) then
2: if (n.state 6= clusterhead) then
3: n.state = clusterhead
4: set cluster head timer Tc

5: end if
6: else if (IsBridge(n)) then
7: if (nstate 6= bridge) then
8: n.state = bridge
9: end if

10: else
11: if (n.state 6= passive) then
12: n.state = passive
13: set passive timer Tp

14: end if
15: end if

Once a node has lost its cluster head or determines that it is a cluster
head itself, function IsCluster(n) will return true. Otherwise, the node
verifies if it should be active to connect different clusters based on its
2-hop neighborhood information. If function IsBridge(n) also returns
false, it remains or changes to passive mode. In the next two sections,
we will look at both the cluster and bridge selection process in more
detail.

1) Cluster Head Selection: The clustering selection process works
as follows: As long as a node is not assigned to a cluster, it is a potential
cluster candidate that it propagates to its neighborhood. Thus, the best
suitable node is found, i.e., the node with the best cluster selection
value, e.g., remaining energy. This node will then become a cluster
head. All nodes in the cluster head’s 1-hop neighborhood are assigned
to it and are no longer cluster head candidates. With that mechanism,
any node is either cluster head itself or assigned to one. Thus, after the
cluster selection process, adjacent cluster heads are at most three hops
apart, i.e., starting from an arbitrary cluster head, another cluster head
can be reached in at most three hops.

Proof: Assume there are more than two nodes between two ad-
jacent clusters. Consider the node that is 2 hops away from one cluster
head c. Since this node is not a cluster head itself (otherwise the next
cluster head would be just two hops away), it must be assigned to an-
other cluster. Therefore, its cluster head is adjacent to c and thus three
hops away.

Figure 2 depicts a possible cluster formation for a sample sensor
network with 5 cluster heads. Each cluster is indicated by a circle
around the cluster head that is equal to its radio transmission range.
Although some nodes are in more than one cluster, they are assigned
to just one cluster. Later, these nodes might become potential bridges
(or bridge candidates) to connect two or more clusters with each other.

After a node is selected as a cluster head, it sets a cluster timer
Tc during which it will not change its state. Due to load and energy
balancing, it tries to find another cluster head it could join if Tc expires.

4

Fig. 2. Cluster formation

The running time of Tc is defined by

Tc = min{α, energyi} · Einit
i (1)

with α ∈ [0 . . . 1] be the cluster timeout factor, Einit
i be the initially

assigned energy in time units, and energyi be the fraction of node i’s
remaining energy.

The algorithm of the cluster head selection is shown in Algorithm 2.
First, the best cluster head with respect to remaining energy is deter-
mined among all 1-hop neighbors. Note that we only consider neigh-
bors with packet loss below a loss threshold defined by LT . In case
of undecidability regarding a node’s energy, we use the node’s id as a
breaking tie. If no existing cluster head is found, the node becomes a
cluster head itself. However, if a cluster head is found whose cluster
timeout timer was not expired and the node is a cluster head too, it just
remains in its state if its remaining energy is higher (resp. has a lower
id).

Algorithm 2 Cluster head selection: IsCluster(Node n)

1: if (n.state = clusterhead ∧ time < n.Tc) then
2: return true
3: end if
4: c ← null
5: for all (Neighbors m ∈ N : link(n, m).loss ≤ LT) do
6: if (m.state = clusterhead ∧m.Tc < time) then
7: if (!c∨m.energy > c.energy∨ (m.energy = c.energy∧

m.id < c.id)) then
8: c ← m
9: end if

10: end if
11: end for
12: if (!c ∨ (n.state = clusterhead ∧ (n.energy > c.energy ∨

(n.energy = c.energy ∧ n.id < c.id)))) then
13: c ← n
14: end if
15: return (c.id = n.id)

The next step after clustering the entire network is to select bridge
nodes to connect clusters with each other. Other nodes that are neither
cluster heads nor bridges will later turn their radios off and sleep with-
out participating in network communication. Then, the cluster head
of the cluster sleeping nodes are assigned to is responsible for them.
For example, cluster heads can store and later forward data packets to
sleeping nodes, as soon as they wake up. Since sleeping nodes can
still sense their environment, they must have the ability to communi-
cate local events, e.g., to a data sink. In that case, they simply wake up
and turn their radio on. As each node is assigned to a cluster head that
maintains connectivity, even sleeping nodes can thus propagate local
events to a data sink through the network.

2) Bridge Selection: After the cluster head selection process, all
non-cluster heads remain passive until their passive timer Tp expires.
During this phase, they listen to announcement packets of their neigh-
bors. If a passive node is aware of the existence of more than one
cluster, the node will become a bridge candidate.

Determining which of these nodes become bridges is a great chal-
lenge. There are three main requirements for selecting bridges:
Bridges must connect different clusters in an optimal way, i.e.,

1) the packet loss between clusters should be minimized,
2) the connection should be long-lived, and
3) the number of selected bridges should be minimal to prolong the

entire network’s operation lifetime.
The basic idea of our bridge selection algorithm is to consider a node’s
2-hop neighborhood as a graph with different link costs. Then, we
compute the Minimum Spanning Tree (MST) but only take virtual links
between cluster heads into account. Figure 3 shows an example of vir-
tual links connecting all cluster heads. They are composed of one or
more nodes that connect clusters best with respect to the above require-
ments.

Fig. 3. Virtual cluster links

To reflect both packet loss and link lifetime, link costs are intro-
duced. Later we will additionally use penalty costs in Section III-B.4
to minimize the number of active nodes.

The packet loss of virtual links will be computed as follows: Con-
sider a virtual link containing k nodes n1 . . . nk with n1 and nk be
cluster heads. Let lossi, 1 ≤ i ≤ k, be the packet loss between n1

and ni and lossi−1,i the packet loss between two successive nodes.
We then define

lossi =

�
0 i = 1
1− (1− lossi−1) · (1− lossi−1,i) i = 2 . . . k

(2)

Thus, the virtual link’s loss is defined by lossk. Also, the lifetime
of a virtual link is defined by lifetimek with

lifetimei =

�
energyi i = 1
min{lifetimei−1, energyi} i = 2 . . . k.

(3)

where energyi is the fraction of the node’s remaining energy.
The costs of a virtual link are defined by a priority function f that

combines link lifetime and loss:

costi = 1− f(lifetimei, lossi) (4)

We will investigate this priority function in detail in Section III-B.3.
Figure 4 shows one possible mapping between virtual links and ac-

tivated nodes - the bridges. Of course, there have been more nodes se-
lected as bridges than necessary if we compute the MST on the entire
network. However, all nodes have just a localized view of the network
and thus are only able to take their 2-hop neighborhood information
into account.

5

Fig. 4. Built Topology

The bridge selection algorithm is given in Algorithm 3 and 4. We
will first have a look at the IsBridge(n) function. If a node n acts as
a cluster head with its cluster timer Tc still running, the node will not
change its state. If the node just discovers less than two clusters in its
2-hop neighborhood N2, it does not have to act as a bridge. Otherwise,
we build a Minimum Cluster Spanning Tree (MCST) consisting of all
selected cluster heads and bridges based on the MST algorithm using
function BuildTopology(n). Then, set MCST N contains all nodes
that should be active to build the topology, i.e., cluster heads and bridge
nodes. IsBridge(n) returns true if MCST N contains the appropriate
node n.

Algorithm 3 Bridge selection: IsBridge(Node n)

1: if (n.state = clusterhead ∨
|{Nodes m ∈ N2 : m.state = clusterhead}| < 2) then

2: return false
3: end if
4: MCST N ← BuildTopology(n)
5: return (n ∈ MCST N)

Algorithm 4 builds the MCST by running a priority search on the
neighborhood graph. Nodes that are sleeping or dead, i.e., without re-
maining energy, are not considered. The crucial point of the algorithm
is that the MST is not constructed with respect to all nodes but just to
cluster heads, i.e., by just considering virtual links. We employ a heap
implementing a priority queue that is used to get the next node (with
minimal costs) starting at an arbitrary cluster head. Node’s costs as
a combination of lifetime and loss are computed according to Equa-
tion 2, 3, and 4. We will extend these costs by adding penalty costs in
Section III-B.4.

The virtual links are built using the set virtual link of node n.
Each time we visit a new cluster head, all nodes along the virtual link
are added to MCST N . In addition, the node is marked as visited
(with costs euqal to −∞). The node’s lifetime, loss, and virtual link
set are reset.

After visiting node v, we consider node’s v 1-hop neighborhood
N1. However, nodes that are already contained in v’s virtual link set
are skipped to avoid loops. For all other nodes, we compute the nodes’
costs according to Equation 4.

In order to get a well-connected topology, we artificially increase the
loss if the virtual link’s loss is above the loss threshold LT . In such a
case, we set the loss rate to 1 − ε with 0 < ε ¿ 1. Therewith, other
virtual links might be preferred even if their costs (possibly influenced
by lifetime) would actually be worse.

If an adjacent node w is reachable over node v with lower costs,
w’s fields lifetime, loss, virtual link, and costs are updated. Ad-
ditionally, the heap is updated, too. In case both costs are the same,
we use the virtual link as a tie-breaker. Function Cmp(link1, link2)

Algorithm 4 BuildTopology(Node n)

1: for all (Nodes m ∈ N2 ∪ {n}) do
2: m.costs ← (m.state ∈ {sleeping, dead}) ?−∞ : ∞
3: m.virtual link ← {m}
4: end for
5: MCST N ← ∅
6: for all (Nodes m ∈ N2 : m.state = clusterhead) do
7: if (m.cost 6= −∞) then
8: m.lifetime ← m.energy
9: m.loss ← 0

10: MCST N ← MCST N ∪ {m}
11: prio queue.push(m,−∞)
12: repeat
13: v ← prio queue.pop()
14: if (v.state = clusterhead ∧ v.costs 6= −∞) then
15: MCST N ← MCST N ∪ v.virtual link
16: v.costs ← −∞
17: v.lifetime ← v.energy
18: v.loss ← 0
19: v.virtual link ← {v}
20: end if
21: for all (Neighbors w ∈ N1

v : w /∈ v.virtual link) do
22: if (w.costs 6= −∞) then
23: lifetime ← min{v.lifetime, w.energy}
24: loss ← 1− (1− v.loss) · (1− link(v, w).loss)
25: loss ← (loss > LT) ? 1− ε : loss
26: costs ← 1− f(lifetime, loss)
27: if (costs < w.costs ∨ (costs = w.costs ∧

Cmp(v.virtual link∪{w}, w.virtual link) < 0))
then

28: w.lifetime ← lifetime
29: w.loss ← loss
30: w.virtual link ← v.virtual link ∪ {w}
31: prio queue.update(w, costs)
32: end if
33: end if
34: end for
35: until (!prio queue.empty())
36: end if
37: end for
38: return MCST N

compares two virtual links returning -1 if the former is better, i.e., if
1) |link1| < |link2|, or
2) |{n ∈ link1 : n.state = {clusterhead, bridge}}| > {m ∈

link2 : m.state = {clusterhead, bridge}}|, or
3)
P

n∈link1
n.energy >

P
m∈link2

m.energy, or
4) minn∈link1∧n/∈link2{n.id} < minm/∈link1∧m∈link2{m.id}.
Note that a node’s costs mainly depend on the priority function f .

In the next section, we will have a deeper look at that function.
3) Lifetime Loss Model: The priority function f takes two param-

eters: remaining lifetime and packet loss. Based on both values, it
shall determine the node’s priority expressed by a value ∈ [0..1]. The
higher the priority, the higher the probability to visit the appropriate
node next. Certainly, there are many possible functions that would ful-
fill that requirement. We propose a two-dimensional linear function
controlled by two parameters α and β defined by

flifetime,0 = (1− α) · lifetime + α

flifetime,1 = β · lifetime (5)

f(lifetime, loss) = loss · flifetime,1 + (1− loss) · flifetime,0.

6

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

 0

 0.2

 0.4

 0.6

 0.8

 1

 0

 0.2

 0.4

 0.6

 0.8

 1

pr
io

rit
y

lifetime

loss

(a) α = 0, β = 0

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

 0

 0.2

 0.4

 0.6

 0.8

 1

 0

 0.2

 0.4

 0.6

 0.8

 1

pr
io

rit
y

lifetime

loss

(b) α = 1, β = 1

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

 0

 0.2

 0.4

 0.6

 0.8

 1

 0

 0.2

 0.4

 0.6

 0.8

 1

pr
io

rit
y

lifetime

loss

(c) α = 1, β = 0

Fig. 5. Priority function f with different α, β values

In Figure 5, the priority function is plotted for some α, β values. With
parameters α and β, the weighting of lifetime and loss can be con-
trolled differently. For example, a topology just based on remain-
ing energy would be achieved by using α = 0, β = 1. On the
other hand, α = 1, β = 0 would lead to a topology optimized for
packet loss. That could also be achieved by using a linear combination
γ(1− loss)+(1−γ)lifetime resp. by using α = γ, β = 1−γ. But
a linear combination would not satisfy the following requirements:
• Nodes with loss close to one should be considered worthless, and
• nodes with remaining energy close to zero should be considered

worthless, too.
In this context, the term worthless means that the node’s priority

should be zero such that other nodes are preferred regarding the con-
structed topology. However, if we set α = 0, β = 0, the priority func-
tion expresses that behavior as shown in Figure 5(a). In Section IV,
we will investigate the influence of different α, β values on the perfor-
mance of TECA by means of simulations.

4) Penalty Costs: As described in Section III-B.2, the third re-
quirement of the bridge selection process is to minimize the number
of selected bridges to save as much energy as possible. For exam-
ple, consider the sub-graph depicted in Figure 6. If we take link loss
(depicted as weights on each link) into account and neglect link life-
time, all nodes 6, 7, and 8 are selected as bridges. Then, MCST con-
tains link (2, 7, 3) with costs (packet loss) 0.0 and link (2, 6, 8, 4) with
costs 0.1. However, if we also took energy consumption into account
and accepted higher link costs, link (2, 7, 8, 4) could be an alternative
since node 6 could sleep. Thus, the main question is how to tackle
both cases.

Fig. 6. Link costs

We handle this situation by introducing penalty costs. Nodes that are
not yet in the topology will be penalized over nodes already selected.
Again, consider Figure 6. Assuming the bridge selection algorithm

shown in Algorithm 4 starts in node 2, link (2, 7, 3) will be the first link
added to MCST since first, all nodes 6, 7, 8 experience penalty costs.
Now, node 7 becomes active (or remains active) and will be preferred
over other nodes, i.e., it will no longer been penalized. Depending on
the used penalty value PV , link (2, 7, 8, 4) could get lower costs than
link (2, 6, 8, 4) in spite of higher packet loss.

We compute the penalty costs of a virtual link as follows: Consider a
virtual link containing k nodes n1 . . . nk with n1 and nk being cluster
heads. Let penaltyi be assigned to node ni with 1 ≤ i ≤ k. Let
0 < ε ¿ 1, and 0 ≤ PV < 1 be the penalty value. Then, we define

penaltyi =

�
pi i = 1
penaltyi−1 + (1− penaltyi−1) · pi i = 2 . . . k

(6)
with

pi =

8
<
:

ε + PV ni 6= {clusterhead, bridge} ∨
(ni = {clusterhead, bridge} ∧ ni /∈ MCST N).

ε else

Thus, the costs function changes to

costi = ci + (1− ci) · penaltyi i = 1 . . . k (7)

with ci = 1− f(lifetimei, lossi).
Constant ε is used to penalize longer links in terms of hops. Further-

more, passive nodes always receive penalty costs until they become
active. For example, consider node 6 in Figure 6. If PV was high
enough such that link (2, 7, 8, 4) was added to MCST, node 6 would
finally become a sleeping node. But if node 7 knew about another link
connecting cluster heads 2 and 3 that was better than link (2, 7, 3) and
outside the scope of node 6, it might not become active at all if it se-
lected link (2, 6, 8, 4) to connect cluster heads 2 and 4. Then, node 6
as well as node 7 go to sleep, partitioning the network.

Therefore, just adding penalty costs to Algorithm 4 could lead
to disconnected clusters depending on the order nodes are added to
MCST, or more precisely on the order in which already activated nodes
like cluster heads and bridges are added to MCST. Since the topology
will be computed in a distributed and localized fashion, each node will
likely build the MCST on different sub-graphs representing the node’s
2-hop neighborhood. Thus, we cannot guarantee that for each node,
Algorithm 4 starts with the same cluster head which could lead to dif-
ferent MCSTs.

For example, consider Figure 6 again. Let PV be 0.2 and the amount
of remaining energy be negligible. Furthermore, assume that nodes 6,
7, 8 are bridges. The bridge selection algorithm of node 6 should start
at cluster head 2 and that of node 7 at cluster head 4. First, let us
consider the MCST of node 6. Since link (2, 7, 3) has minimal costs,

7

it will be added to node 6’s MCST first. Because we assumed that node
7 is already a bridge, it will no longer receive penalty costs. Therefore,
link (3, 7, 8, 4) is better than link (2, 6, 8, 4) and added next. That
terminates the algorithm with node 6 becoming passive.

The MCST of node 7 is built as follows: Since the bridge selection
algorithm starts at node 4, link (4, 8, 6, 2) is added first. However, the
next best link is (4, 8, 3). Node 7 assumes that it is redundant and
becomes passive. Thus, both nodes 6 and 7 are passive likely leading
to a partitioned network.

As we have seen, the graph’s traversal order is crucial and could lead
to different MCSTs if link/node costs are changed during the traversal.
Therefore, we propose the following approach:

1) First, search for the best virtual link in the graph, i.e., the link
with minimal costs.

2) Add that link to MCST.
3) Now search for the next best virtual link in the graph that is not

yet contained in MCST.
4) If such a link exists, go back to step 2.
Referring to the last example, now both nodes 6 and 7 would add

link (2, 7, 3) to MCST first, independent from the traversal’s starting
point. Then, link (2, 7, 8, 4) is added next since node 7 is already
selected and does not receive penalty costs. Consequently, just node 6
becomes passive while node 7 remains in bridge state.

The enhanced bridge selection algorithm enabling penalty costs is
presented in Algorithm 5 and 6. Set MCST L contains the selected
MCST’s links, whereas MCST N contains the selected nodes. Then,
the MCST is built up successively. Virtual links are added to MCST L

according to their link costs starting with the best link. The algorithm
terminates if no further link is found, i.e., the MCST is complete. Let
M be the number of cluster heads, then MCST L contains at most
M − 1 virtual links. Thus, the priority search is only performed at
most M − 1 times, too.

Algorithm 5 BuildTopology(Node n)

1: MCST N ← {Nodes m ∈ N2 : n.state = clusterhead}
2: MCST L ← ∅
3: repeat
4: best link ← PrioritySearch(n, MCST N , MCST L)
5: if (best link 6= ∅) then
6: MCST N ← MCST N ∪ best link
7: MCST L ← MCST L ∪ {best link}
8: end if
9: until (best link = ∅)

10: return MCST N

5) Sleeping Timeout: After selecting cluster heads and bridge
nodes, all remaining nodes stay passive until their passive timer Tp

expires. The intuition behind passive nodes is the ability to react to
changes in the neighborhood as already activated nodes might become
passive requiring other nodes to be active.

If Tp expires, a passive node goes to sleep with its radio turned off
to save energy. However, the node must wake up at last at the cluster
timeout to participate in rebuilding the topology.

Considering just the timeout of one’s own cluster could lead to net-
work partitions. For example, Figure 7 shows a topology of five nodes.
Let node 1 and 3 be cluster heads, node 2 be a bridge, and node 4 and 5
be sleeping nodes. Furthermore, let node 4 be assigned to cluster 1 and
node 2 and 5 be assigned to cluster 3. Assume the timeout of cluster
3 is before that of cluster 1. Then, node 5 wakes up first but will not
find a cluster to join. Thus, it becomes a cluster head itself. If node
4 does not wake up at the same time, the network will get partitioned
since node 5 does not have a connection to node 1 and 2.

Algorithm 6 PrioritySearch(Node n, MCST N , MCST L)

1: for all (Nodes m ∈ N2 ∪ {n}) do
2: m.costs ← (m.state ∈ {sleeping, dead}) ?−∞ : ∞
3: m.virtual link ← {m}
4: end for
5: best link ← ∅
6: best costs ←∞
7: for all (Nodes m ∈ N2 : m.state = clusterhead) do
8: if (m.cost 6= −∞) then
9: m.lifetime ← m.energy

10: m.loss ← 0
11: prio queue.push(m,−∞)
12: repeat
13: v ← prio queue.pop()
14: if (v.state = clusterhead ∧ (v.costs 6= −∞) then
15: if (v.virtual link /∈ MCST L∧

(v.costs < best costs ∨ (v.costs = best costs ∧
Cmp(v.virtual link, best link) < 0))) then

16: best link ← v.virtual link
17: best costs ← v.costs
18: end if
19: v.costs ← −∞
20: v.lifetime ← v.energy
21: v.loss ← 0
22: v.virtual link ← {v}
23: end if
24: for all (Neighbors w ∈ N1

v : w /∈ v.virtual link) do
25: if (w.costs 6= −∞) then
26: lifetime ← min{v.lifetime, w.energy}
27: loss ← 1− (1− v.loss) · (1− link(v, w).loss)
28: loss ← (loss > LT) ? 1− ε : loss
29: penalty ← ε
30: if (w.state /∈ {clusterhead, bridge} ∨ (w.state ∈

{clusterhead, bridge} ∧ w /∈ MCST N)) then
31: penalty ← penalty + PV
32: end if
33: penalty ← v.penalty + (1− v.penalty) · penalty
34: costs ← 1− f(lifetime, loss)
35: costs ← costs + (1− costs) · penalty
36: if (costs < w.costs ∨ (costs = w.costs ∧

Cmp(v.virtual link∪{w}, w.virtual link) < 0))
then

37: w.lifetime ← lifetime
38: w.loss ← loss
39: w.penalty ← penalty
40: w.virtual link ← v.virtual link ∪ {w}
41: prio queue.update(w, costs)
42: end if
43: end if
44: end for
45: until (!prio queue.empty())
46: end if
47: end for
48: return best link

On the other hand, if node 2 dies due to lack of energy before the
timeouts of cluster 1 and 3, both clusters will get partitioned, too. In
that case, node 4 must wake up to take the role of node 2.

Thus, a node has to wake up if
1) a cluster timeout of a known cluster in the nodes’ neighborhood

occurs, and

8

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60

lin
k

lo
ss

 r
at

e

distance [m]

(a) Link loss rate

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60

C
D

F
 li

nk
 lo

ss
 r

at
e

distance [m]

(b) Cumulative density function of loss rate

 0

 0.2

 0.4

 0.6

 0.8

 1

-40 -20 0 20 40

-40

-20

 0

 20

 40

x [m]

y [m]

(c) Link loss map

Fig. 8. Link loss model

Fig. 7. Sleeping timeout example

2) a bridge runs out of energy with the network remaining con-
nected if the considered node would be active.

Based on the MCST, the sleeping timeout is calculated as follows:
First, the minimum of all known cluster timeouts is determined. Then,
Algorithm 5 is used to identify superior nodes that suppress the passive
node n from becoming active. For example, in Figure 7, node 2 is a
superior node of node 4. However, Algorithm 5 needs to be modified
regarding the set of nodes that are visited.

Let Ω be the set of active nodes (cluster heads and bridges) in the
node n’s 2-hop neighborhood. Then, the priority search is performed
on Ω ∪ {n}\{i} for each bridge i. In case node n will be selected to
be active, bridge i is a superior node of node n. Let ΩC be the set of
known cluster heads and ΩS be the set of superior nodes of node n.
Then, the sleeping timeout is calculated by

Ts = min
j∈ΩC∪ΩS

{timeoutj} (8)

with timeoutj be the cluster timeout if j ∈ ΩC . If j ∈ ΩS , the
timeout is determined by the amount of remaining energy.

IV. PERFORMANCE EVALUATION

As described in the last section, TECA’s performance relies on user-
defined parameters α, β, PV , and LT . In this section, we will investi-
gate different parameter settings showing how they affect the topology
built by TECA. Before we will present the simulation setup and results
showing the impact of different parameter settings, we first have a look
at the used link loss model.

A. Link Loss Model

The link loss model used in our simulations was published by Zu-
niga and Krishnamachari [26] who derived an analytical link layer
model based on real data. They identify the existence of three dis-
tinct reception regions: connected, transitional, and disconnected.
Figure 8(a) depicts these regions obtained from the analytical model.
Within the connected region, actually no link loss occurs. Similarly,
the disconnected region is characterized. However, within the transi-
tional region that is quite significant in size, link losses are very com-
mon. Moreover, there is a high variance in loss rates, and asymmetric

links exist. Especially in densely deployed sensor networks, more than
50% of links can be unreliable.

The Link Loss Rate (LLR) of distance d between a transmitter and
receiver is defined by

LLR(d) = 1−
�

1− 1

2
exp−

γ(d)
2

1
0.64

�ρ8f

(9)

where γ is the Signal-to-Noise Ratio (SNR), ρ the encoding ratio, and
f the frame length. Equation 9 refers to a non-coherent frequency shift
keying used as modulation technique with different encoding schemes.
Several environmental and radio parameters are considered expressed
by SNR, e.g., the environment’s log-normal shadowing variance σ and
the path-loss exponent η. In our simulations, we set σ = 3.8 and
η = 3.0. The encoding ratio ρ is set to 1.0. For a deeper understanding
of the model, please refer to [26].

The cumulative density function of the link loss rates is shown in
Figure 8(b). Again, we can observe the three distinct regions with a
maximum transmission range of about 50 m. However, many nodes
within this range experience high link losses. Therefore, it is not ad-
visable to use the maximum transmission range in Equation 11 for
calculating the number of nodes N for a given density µ. Since node
density is defined by the number of neighbors a node is connected to,
r should rather be dependent on the link threshold LT . For LT = 0.8
that is used in our simulations, we get r ≈ 27 m.

Another view of link loss vs. distance is shown in Figure 8(c). With
the transmitter at the center (0, 0), the link loss rate to distant locations
is colored. As depicted in Figure 8(a), nodes positioned within the
transitional range receive high variance in link loss.

B. Simulation Setup

In our simulations, nodes are placed randomly on an area of size
100 m × 100 m by using a uniform distribution function. All simu-
lations are based on static networks as we expect most of sensor net-
works to be static. Let µ be the node density, i.e., the number of neigh-
bors within a node’s radio transmission range r. Then, the total number
of nodes N placed on an area of size A×A can be approximated by

N = µ · A2

πr2
(10)

with a circular transmission range of size r.
However, Equation 10 does not take boundary effects of the area

into account. Particulary for small sized areas, these effects are signif-
icant. Equation 11 represents a more precise calculation. A derivation
is given in Appendix I.

N =
µ− 1

p
+ 1 (11)

9

with p ≈ r2(3.142A2−2.667Ar+0.158r2)

A4 .
For each pair of nodes, we compute the link loss rate according to

the presented link loss model. During packet delivery on the link layer,
packets are randomly dropped with that loss rate. Packet collisions are
not taken into account since they heavily depend on employed MAC
schemes. Furthermore, we would like to concentrate on TECA’s per-
formance first.

All simulations are based on symmetric links with a neighbor
threshold NT of 0.8. Modeling asymmetric links will be considered
in future work.

In order to highlight the influence of different parameter values on
TECA only, we assume that all nodes already know their neighbors and
have sufficient link loss information. In addition, a node’s remaining
energy is uniformly distributed within (0 . . . 1] of the maximum energy
value.

Then, for all parameter combinations, TECA is performed on each
node until no further state changes occur. We carry out 20 simulation
runs. For each run, the nodes’ placements and generated link loss rates
are the same.

C. Simulation Results

In order to investigate the performance of TECA based on differ-
ent parameter settings, we are interested in the following metrics:
Mean Cluster Link Lifetime (MCLL), Mean Cluster Link Loss Rate
(MCLLR), and Mean Number of Active Nodes (MNAN). MCLL and
MCLLR are computed by taking all virtual links of the global MCST
into account. Then, MCLL indicates the average lifetime until the net-
work would get partitioned. Similarly, MCLLR defines the average
quality cluster heads are linked by in the MCST.

The global MCST is built according to Algorithm 4 since penalty
costs are out of concern. However, the algorithm is modified in two
ways: (i) Only activated nodes, i.e., cluster heads and bridge nodes,
will be considered, and (ii) neighbor tables of all nodes are taken into
account to get a global MCST.

MCLL, MCLLR, and MNAN are defined as follows: Assume there
are P partitions in the global topology of cluster heads and bridges.
Let MCSTp be the MCST of partition p. Let Cp be the number of
cluster heads and Bp the number of selected bridge nodes in partition
p. Therefore, the number of cluster links is equal to Cp − 1. Let nijp

be the i-th node of cluster link j in partition p with energyijp be the
fraction of remaining energy and ljp be the link length. Then, MCLL
is defined by

MCLL =

PP
p=1

PCp−1
j=1 min1≤i≤ljp{energyijp}PP

p=1 (Cp − 1)
. (12)

According to Equation 2, let lossjp be the loss of cluster link j
containing ljp nodes in partition p. MCLLR is then defined by

MCLLR =

PP
p=1

PCp−1
j=1 lossjpPP

p=1 (Cp − 1)
. (13)

For MNAN we get

MNAN =

PP
p=1 (Cp + Bp)

N
(14)

with N equal to the total number of nodes.
Varying parameters α, β, and PV , we run TECA on each node until

a stable topology is reached. All simulations are carried out using a
node density of 10 and a loss threshold LT of 0.8. The setup is the
same as described in Section IV-B.

Figure 9 depicts the simulation results for PV = 0. Except for
α = 1, the amount of MCLL is quite the same. As expected, the high-
est value is achieved if we just take lifetime into account and neglect
link loss expressed by α = 0, β = 1. However, as long as lifetime
is considered at all, i.e., α < 1, nodes with low link loss can be pri-
oritized with respect to remaining energy without using node’s id as a
tie-breaker. Particular in densely deployed networks, there are likely
many nodes receiving low or no link loss which could achieve better
link lifetimes. Therefore, in case of α = 1 and low loss rates, many
decisions are just based on node ids leading to poor cluster link life-
times.

The cluster link loss without penalty costs is shown in Figure 9(b).
Actually, for most values of α, β, we get a very low MCLLR with
α = 1, β = 0 performing best. If just lifetime is taken into account
(α = 0, β = 1), the resulting MCLLR is quite bad. Direct links
between cluster heads usually have the best link lifetime since cluster
heads are selected regarding remaining energy. However, loss on these
links is very high, i.e., higher than LT .

Note that MCLLR for α = 1, β = 1 is quite the same as for α = 0,
β = 0. Since the network is dense enough that many nodes receive low
link loss and the amount of energy varies among nodes considerably,
nodes with low loss will likely get higher priorities than nodes with
high link lifetimes (see Figure 5(b)). Using the definition in Equation 2
and 3, that means that lossi < 1 − lifetimei applies to many nodes
ni.

The amount of active nodes, i.e., cluster heads and bridge nodes, is
shown in Figure 9(c). Except for α = 1 and α = 0, β = 1, MNAN is
about 0.4%. In case of α = 1, many nodes are selected regarding their
id due to the fact that they likely receive low link loss (because of the
dense deployment). As soon as α is below 1, loss is taken into account
leading to reusing nodes with low loss values instead of arbitrarily
selecting nodes.

For α = 0, β = 1, MNAN is lower than for all other combinations.
In that case, just link lifetime is taken into account that is best if direct
links between cluster heads are selected even if they experience high
loss rates. Using direct links leads to fewer active nodes since bridges
are not required.

Reducing the number of selected bridges is only possible up to a
certain amount since TECA always attempts to maintain connectivity.
Therefore, a minimum number of bridge nodes are needed. Figure 10
shows the same graphs for penalty costs 0.8. As expected, MNAN
decreases with increasing PV. However, the influence on MCLL is
low. On the other hand, MCLLR changes significantly with increas-
ing penalty costs. Only for β < 0.2, MCLLR is roughly as optimal
as in Figure 9(b). Consequently, more direct cluster links are selected
because selecting bridges causes penalty costs preferring direct links
even in case of higher loss rates. That is also shown in Figure 10(c).
However, if link loss is taken into account sufficiently (β < 0.2),
penalty costs are compensated by the fact that direct cluster links char-
acterized by high lifetime and loss get worse priorities. Thus, more
nodes become bridges achieving better link loss rates.

As the simulation results have shown, the parameter settings are
highly application dependent. However, low link loss will likely be the
main issue for most applications. Therefore, it should be considered
with high priority, i.e., β should be set to 0. The amount of lifetime
influenced by α is a trade-off. We suggest to set α = 0 that works best
in densely as well as sparsely deployed networks. Especially at the
end of the entire network lifetime, the network stability is much better
if nodes with low remaining energy are downgraded such that nodes
with more remaining energy are preferred (even in case of higher link
losses). Moreover, the network’s energy consumption will be balanced
among all nodes better.

10

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1 0
 0.2

 0.4
 0.6

 0.8
 1

 0

 0.2

 0.4

 0.6

 0.8

 1

M
C

L
L

α

β

(a) MCLL

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1 0
 0.2

 0.4
 0.6

 0.8
 1

 0

 0.2

 0.4

 0.6

 0.8

 1

M
C

L
L

R

α

β

(b) MCLLR

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1 0
 0.2

 0.4
 0.6

 0.8
 1

 0

 0.2

 0.4

 0.6

 0.8

 1

M
N

A
N

α

β

(c) MNAN

Fig. 9. TECA’s performance for PV = 0

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1 0
 0.2

 0.4
 0.6

 0.8
 1

 0

 0.2

 0.4

 0.6

 0.8

 1

M
C

L
L

α

β

(a) MCLL

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1 0
 0.2

 0.4
 0.6

 0.8
 1

 0

 0.2

 0.4

 0.6

 0.8

 1

M
C

L
L

R

α

β

(b) MCLLR

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1 0
 0.2

 0.4
 0.6

 0.8
 1

 0

 0.2

 0.4

 0.6

 0.8

 1

M
N

A
N

α

β

(c) MNAN

Fig. 10. TECA’s performance for PV = 0.8

V. COMPARISON WITH OTHER APPROACHES

We have conducted extensive simulations comparing TECA to other
proposed approaches, namely GAF and ASCENT. While GAF uses
node position information to build up the topology, ASCENT is just
based on a neighbor threshold NT (see Section II). In contrast to
TECA, neither one of them take network partitions into account ex-
plicitly. Preventing network partitioning is tackled by a smaller grid
size in GAF and a higher neighbor threshold in ASCENT. A first ex-
pression on how the built topologies of active nodes might look like is
given in Figure 11.

All algorithms are simulated using the same set-up as in the last
section, varying node density, initial energy, and cluster timeout factor.
Each simulation point in the graphs represents the average of 20 runs.
The simulation area is 100 m × 100 m. According to the link loss
model presented in Section IV-A, the radio range for getting a 80%-
connectivity is about 27 m. Table I gives an overview of all parameter
settings.

By means of simulations, we are interested in the following is-
sues:

1) How many nodes are selected as cluster heads, bridges, passive
and sleeping nodes? How does the topology change over time?
How many nodes are selected by GAF and ASCENT?

2) How is the energy consumption over time? How much can the
network’s operational lifetime be extended?

3) Are there still situations where network partitions occur? How
loss-resistent is the topology regarding end-to-end packet deliv-
ery?

4) How does the network lifetime scale with respect to node den-
sity, initial energy, and cluster timeout factor?

To get first answers to these questions, we focus our simulations
on the node’s selection process, mainly responsible for energy con-
sumption. Furthermore, we use a very simple energy model that just
differentiates energy consumption of nodes with their communication
radio on vs. nodes with their radio turned off. In addition, MAC layer
behavior has not been taken into account, e.g., packet collisions do not
occur in the simulation. One reason for that is computational complex-
ity. On the other hand, we are interested in results on a high level at
first. We will consider MAC-related issues in future work.

The first simulation set considers the node’s selection process and
its evolution over time. All results are presented for TECA, GAF, and
ASCENT separately. TECA is run with α = 0, β = 0, and PV = 0.8
representing an appropriate trade-off between link loss and lifetime.
Once a second, active and passive nodes send an announcement packet
that contains its id, state, energy, timeout, and 1-hop neighborhood of
active nodes together with link loss information. To keep neighbor in-
formation consistent, a sequence number is included, too. Nodes are
considered dead if no announcement is received within Td = 10 s.
For reducing computational complexity, nodes do not verify their state
each time a control packet is received but set a timer first. The veri-
fication timeout Tv is set to 200 ms. If it expires, the node’s state is
verified bundling all neighborhood changes that occurred within Tv .
The passive timeout Tp after a node goes from passive to sleep is 2 s.
However, the sleeping timeout Ts depends on the cluster timeout fac-
tor and the timeouts of adjacent nodes. It is calculated by each node
individually according to Equation 8. To get a first link loss estimate,
an initialization phase is carried out that lasts Ti = 10 s.

According to r/
√

5, GAF uses a grid size of about 12 m getting a
connectivity of about 80%. Like TECA, it employs the same timeouts
Ti, Ta, Tp, Tv , and Td. However, the sleeping timeout Ts is calculated

11

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

(a) TECA

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

(b) GAF

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

(c) ASCENT

Fig. 11. Built topology by TECA, GAF, and ASCENT

differently. Each grid can be considered as a cluster with the activated
node be the cluster head. This node computes its cluster timeout as in
TECA. Since there are no bridge nodes, Ts is just set to Tc. Further-
more, a node can go to sleep as soon as it encounters a node with more
energy. Announcement packets do not include the 1-hop neighborhood
but additionally contain the node’s position.

On the other hand, ASCENT uses the same announcement pack-
ets like TECA. The sleep timeouts are calculated by considering the
timeouts of all active neighbors. Each active node sets its timeout ac-
cording to Equation 1 (like cluster heads in TECA). Then, Ts is the
minimum of all active neighbor’s timeouts. The neighbor threshold
NT controlling ASCENT’s topology is set to 5 as recommended by
the authors. All other parameters are the same as in TECA.

A. Investigating TECA, GAF, and ASCENT over Time

In the first set of simulations, we employ a node’s initial energy
value of 100 s, i.e., after 100 s a node will die if it keeps its radio
turned on all the time. Furthermore, all algorithms employ a cluster
timeout factor of 0.5, balancing network lifetime and energy deviation
among all nodes.

Figure 12 depicts the percentage of nodes in active, passive, sleep-
ing, and dead state over time for TECA, GAF, and ASCENT. Active
nodes are nodes that build the topology, i.e., cluster heads as well as
bridges in TECA. Passive nodes still have their radio on and probe the
network of becoming active if necessary. Sleeping nodes turn their

Parameter Setting
Simulation area 100 m× 100 m

Simulation runs 20

80% radio range 27 m

Loss threshold LT 0.8

Number of retransmissions 2

Tinit (Ti) 10 s

Tannouncement (Ta) 1 s

Tpassive (Tp) 2 s

Tverify (Tv) 200 ms

Tdead (Td) 10 s

Node density 10 . . . 50

Initial energy Einit 102 s . . . 105 s

Cluster timeout factor 0.1 . . . 1.0

TABLE I
SIMULATION SETTINGS

radio off and change back to passive after their sleeping timeout Ts.
Dead nodes are nodes that ran out of energy.

Compared to GAF, TECA and ASCENT select fewer active nodes
leading to more nodes that sleep and save energy. Due to an initial
energy value of 100 s and a cluster timeout factor of 0.5, each 50 s
sleeping nodes wake up. Since all nodes are powered on at the same
time, these cycles are more or less synchronized. If MAC collisions
were taken into account, wake-up times would be spread over time to
avoid these synchronization effects.

In TECA, most of the cluster heads change their state to balance en-
ergy consumptions among all nodes after cluster timeouts. Each time
the topology changes, it takes some time until the topology is stable.
This time depends on the announcement time Ta, the time nodes stay
passive, and on how fast nodes verify their state after neighborhood
changes. However, the amount of active nodes remains constant until
too many nodes die.

Since GAF is just based on the number of selected nodes in grids,
the number of active nodes decreases over time with the dying of entire
grids. However, ASCENT selects the same amount of active nodes that
remains constant over time because of a fixed neighbor threshold.

Observing the evolution of dead nodes, we see that nodes in TECA
stay alive for a longer time than in GAF and ASCENT. However, get-
ting closer to the end, most of the alive nodes are activated preventing
network partitioning. This leads to a shorter remaining network life-
time.

In contrast to that, GAF benefits from densely deployed grids since
only one node will be active while all other nodes sleep. The grid with
the maximum number of nodes determines the time until all nodes in
the network are dead. Therefore, GAF archives the longest simulation
time even if most of the nodes are already dead.

The remaining amount of energy over time is shown in Figure 13.
While sleeping nodes do not consume energy, the energy of active
nodes constantly decreases until the topology is rebuilt. Since in AS-
CENT active nodes stay active until they run out of energy, the node’s
energy deviation is worse than for TECA and GAF. Particulary at the
end of the network lifetime, TECA performs best regarding balancing
energy consumption among all nodes. At that time, it is likely that
many link lifetimes are shorter than the remaining cluster’s energy re-
quiring sleeping nodes to wake up earlier to maintain connectivity.

Figure 14 depicts information about a node’s neighborhood. The
number of neighbors refers to nodes that are not dead and within the
1-hop neighborhood, averaged over all nodes. The number of active
neighbors and the node degree refer to active neighbors only. While
the number of neighbors is averaged over all nodes, the node de-
gree considers just active nodes. Regarding the number of neighbors,
TECA performs best. Since it balances energy consumption among
nodes better than GAF and ASCENT, the number of neighbors remains

12

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300 350 400 450 500

Fr
ac

tio
n

of
 N

od
es

Time (sec)

active nodes
passive nodes

sleeping nodes
dead nodes

(a) TECA

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600 700 800

Fr
ac

tio
n

of
 N

od
es

Time (sec)

active nodes
passive nodes

sleeping nodes
dead nodes

(b) GAF

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600

Fr
ac

tio
n

of
 N

od
es

Time (sec)

active nodes
passive nodes

sleeping nodes
dead nodes

(c) ASCENT

Fig. 12. Fraction of different node types vs. time

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300 350 400 450 500

Fr
ac

tio
n

of
 R

em
ai

ni
ng

 E
ne

rg
y

Time (sec)

active nodes
sleeping nodes

avg. node

(a) TECA

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600 700 800

Fr
ac

tio
n

of
 R

em
ai

ni
ng

 E
ne

rg
y

Time (sec)

active nodes
sleeping nodes

avg. node

(b) GAF

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600

Fr
ac

tio
n

of
 R

em
ai

ni
ng

 E
ne

rg
y

Time (sec)

active nodes
sleeping nodes

avg. node

(c) ASCENT

Fig. 13. Fraction of remaining energy for different node types vs. time

 0

 5

 10

 15

 20

 25

 30

 35

 0 50 100 150 200 250 300 350 400 450 500

N
um

be
r

of
 N

od
es

Time (sec)

node degree
number of neighbors

number of active neighbors

(a) TECA

 0

 5

 10

 15

 20

 25

 30

 35

 0 100 200 300 400 500 600 700 800

N
um

be
r

of
 N

od
es

Time (sec)

node degree
number of neighbors

number of active neighbors

(b) GAF

 0

 5

 10

 15

 20

 25

 30

 35

 0 100 200 300 400 500 600

N
um

be
r

of
 N

od
es

Time (sec)

node degree
number of neighbors

number of active neighbors

(c) ASCENT

Fig. 14. Node degree and number of neighbors vs. time

constant a longer time.
The number of active neighbors is quite the same in TECA and AS-

CENT. It is constant over time, in contrast to GAF where it depends
on the lifetime of single grids. However, the node degree in TECA is
higher than in ASCENT, i.e., the topology is better connected.

The little peaks in Figure14(a) indicate the iterative selection pro-
cess of TECA until the topology reaches a stable state. Compared to
GAF and ASCENT, TECA needs more iterations as a result of select-
ing the best nodes regarding link lifetime and loss.

Figure 15 shows the number of network partitions over time if ac-
tive, i.e., cluster heads and bridges, as well as all nodes that are alive
are considered. Also, the difference between both of them is depicted.
If we take all nodes into account, the appropriate number of partitions
is a lower bound. Guaranteeing connectivity would therefore require
that the number of partitions are the same for both cases, i.e., the dif-

ference should be zero. As shown in Figure 15(a), TECA maintains
network connectivity very well and outperforms GAF and ASCENT,
respectively. The topology of active nodes built up by TECA is near
the optimum with respect to network partitions almost for the entire
simulation time.

Since GAF and ASCENT do not take network connectivity into ac-
count explicitly, the network gets partitioned heavily. Also note that
the simulation area is very small, with increasing area size, network
partitions are even more likely. Of course, a smaller grid size resp. a
higher neighbor threshold leads to denser topologies that are more ro-
bust against network partitions and traffic loss but would also result in
poorer energy savings.

However, short-term partitions sometimes occur even when using
TECA because
• it takes some iterations until the topology reaches a steady state,

13

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 50 100 150 200 250 300 350 400 450 500

N
um

be
r

of
 P

ar
tit

io
ns

Time (sec)

active nodes
all nodes
deviation

(a) TECA

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 100 200 300 400 500 600 700 800

N
um

be
r

of
 P

ar
tit

io
ns

Time (sec)

active nodes
all nodes
deviation

(b) GAF

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 100 200 300 400 500 600

N
um

be
r

of
 P

ar
tit

io
ns

Time (sec)

active nodes
all nodes
deviation

(c) ASCENT

Fig. 15. Number of network partitions vs. time

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300 350 400 450 500

E
nd

−
to

−
E

nd
 L

os
s

R
at

e

Time (sec)

active nodes
all nodes

(a) TECA

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600 700 800

E
nd

−
to

−
E

nd
 L

os
s

R
at

e

Time (sec)

active nodes
all nodes

(b) GAF

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600

E
nd

−
to

−
E

nd
 L

os
s

R
at

e

Time (sec)

active nodes
all nodes

(c) ASCENT

Fig. 16. End-to-end loss rate vs. time

• inconsistency in neighbor tables exist due to loss of announce-
ment packets containing state and neighborhood information,

• nodes go to sleep before they know about new clusters due to
short passive timeouts and packet loss, or

• link loss estimates are wrong.
Reducing the time until the TECA algorithm terminates would require
shorter announcement timers, especially when changes in the neigh-
borhood occur. But the more important issue is the loss of state infor-
mation. In such cases, nodes might make wrong decisions of becom-
ing active or not. Since all packets are broadcast, transmitting nodes do
not get acknowledgements from receiving nodes. Therefore, we pro-
pose the use of retransmissions for announcement packets to reduce
the probability of packet loss.

Since Figure 15 shows the number of partitions based on 80% con-
nectivity, i.e., nodes are considered connected if the link loss is below
LT , wrong loss estimates might cause network partitions, too. For
example, consider two cluster heads that assume a link loss of 10%
between them based on short-term measurements, although the link
quality is actually worse than 80%. Then, adjacent nodes consider both
clusters connected and go to sleep even if some of them are needed to
connect the clusters.

The end-to-end loss rates over time are depicted in Figure 16. Every
second, we randomly select one sender and one receiver among all
active nodes. Then, the sending node generates 50 packets and floods
the network. However, only active nodes participate in flooding. The
selection of sender-receiver pairs is done 50 times.

Based on how many packets get lost at the receiver side, the end-to-
end loss rate is calculated. Like in Figure 15, we get a lower bound
for the loss rate by taking all nodes into account, i.e., flooding is done
by all nodes. Of course, with an increasing number of network parti-
tions, end-to-end loss increases since sender and receiver are selected

randomly among all active nodes, independent of their partition.
Again, TECA outperforms GAF and ASCENT. It benefits from

keeping network partitions as low as possible. In addition, TECA con-
siders link loss by measuring ongoing packet transmissions. Based
on these estimates, bridge nodes are selected to best connect cluster
heads. While ASCENT also measures link qualities and considers
nodes as neighbors only if the estimated loss rate is below LT , GAF
does not take link loss into account at all. It assumes that every node in
a grid can communicate with all other nodes in adjacent grids. There-
fore, end-to-end loss mainly depends on the grid size used by GAF.
A more conservative grid size might lead to better results but would
never adapt to dynamic environments with varying link losses. Since
ASCENT only considers suitable links with loss rates below LT , it
performs better than GAF. However, the algorithm is just based on a
neighbor threshold without techniques selecting links that connect two
nodes best like TECA.

B. Investigating Different Node Densities

The second set of simulations was performed to investigate the im-
pact of node density on the performance of TECA, GAF, and AS-
CENT. The simulation settings are as in the first simulation set except
the node density that we vary between 10 and 50. In addition to the
average, all simulation points in the graphs indicate 95% confidence
intervals.

First, we are interested in how many nodes are selected to be ac-
tive. Figure 17 depicts the fraction of active nodes vs. node density at
time t = 20 s. As expected, all algorithms benefit from higher node
densities expressed by lower active node fractions. Due to the grid
constraint in GAF that each node should be able to communicate with
any node in adjacent grids, many nodes are activated. Since ASCENT

14

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 15 20 25 30 35 40 45 50

Fr
ac

tio
n

of
 A

ct
iv

e
N

od
es

Node Density

TECA
GAF

ASCENT

Fig. 17. Fraction of active nodes vs. node density

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 15 20 25 30 35 40 45 50

Fr
ac

tio
n

of
 R

em
ai

ni
ng

 E
ne

rg
y

Node Density

TECA
GAF

ASCENT

Fig. 18. Remaining energy vs. node density

 0

 2

 4

 6

 8

 10

102 103 104 105

N
et

w
or

k
L

if
et

im
e

Fa
ct

or

Initial Energy

80% dead (TECA)
80% dead (GAF)

80% dead (ASCENT)

Fig. 19. Network lifetime vs. initial energy

 0

 2

 4

 6

 8

 10

 10 15 20 25 30 35 40 45 50

N
et

w
or

k
L

if
et

im
e

Fa
ct

or

Node Density

20% dead
40% dead
60% dead
80% dead

100% dead

(a) TECA

 0

 2

 4

 6

 8

 10

 10 15 20 25 30 35 40 45 50

N
et

w
or

k
L

if
et

im
e

Fa
ct

or

Node Density

20% dead
40% dead
60% dead
80% dead

100% dead

(b) GAF

 0

 2

 4

 6

 8

 10

 10 15 20 25 30 35 40 45 50

N
et

w
or

k
L

if
et

im
e

Fa
ct

or

Node Density

20% dead
40% dead
60% dead
80% dead

100% dead

(c) ASCENT

Fig. 20. Network lifetime vs. node density

limits the number of active neighbors an active node may have by NT ,
it performs better. However, TECA outperforms both of them. Due to
the fraction of activated nodes, the network’s energy consumptions are
different. As shown in Figure 18, the fraction of remaining energy
averaged over all nodes at time t = 100 s, i.e., after the lifetime of
a node that never sleeps, is best for TECA. Because of that, TECA
should prolong the network’s operational lifetime more than GAF and
ASCENT. However, according to Figure 12, GAF performs best un-
til all nodes are dead, followed by ASCENT with TECA performing
worst. This is caused by the time nodes stay in passive state with re-
spect to initial energy. In TECA, more iterations are needed than in
GAF and ASCENT until the topology is stable. Therefore, more en-
ergy is consumed by passive nodes. But with an initial energy value of
only 100 s, this fraction is crucial for the overall network lifetime.

Figure 19 shows the impact of initial energy on network lifetime for
a density of 30 nodes. Varying initial energy from 102 s to 105 s, the
network lifetime factor defined by

network lifetime factor =
network lifetime

initial energy value
(15)

is depicted. Here, network lifetime is the time until 80% of all nodes
are dead. With an increasing initial energy value, TECA exploits its
full potential. The impact of energy spent by passive nodes on AS-
CENT and GAF is quite small indicated by a constant network life-
time factor. Thus, for more realistic energy values, TECA is expected
to perform best even with respect to overall network lifetime.

The network lifetimes for different fractions of dead nodes vs. node
density are shown in Figure 20 (initial energy of 1000 s). With TECA,
most of the nodes die towards the end of the simulation achieving good
energy and load balancing. Since GAF requires a selected node in
each grid, grids with few nodes die early. ASCENT employs the worst
energy balancing since nodes stay active until they run out of energy.

Note that in GAF the time until all nodes are dead holds out much
more than for the case of 80% dead nodes. This is due to the fact
that even if most of the nodes are dead, there are still grids with some
nodes alive. Although all nodes are distributed over the simulation area
uniformly, densely populated grids are not unlikely. Thus, the time
until all nodes are dead heavily depends on the maximum number of
nodes in a grid.

Figure 21 summarizes the results of TECA, GAF, and ASCENT
concerning node density vs. network lifetime. It depicts the network
lifetime factor for the case of 80% dead nodes. With an initial energy
value of 1000 s, TECA achieves the best results, independent of node
density.

C. Investigating Different Cluster Timeout Factors

In the last set of simulations, we investigate the impact of dif-
ferent cluster timeout factors on energy balancing and network life-
time. Figure 22 depicts the standard deviation of remaining energy
vs. cluster timeout factor for an initial energy value of 1000 s at time
t = 1000 s. As expected, different cluster timeouts, i.e., neighbor
timeouts at which sleeping nodes will wake up, have no noticeable im-
pact on ASCENT since nodes remain active until they die. However,
for GAF and TECA, the standard deviation decreases if nodes wake
up more frequently. Although both GAF and TECA rotate the role of
being active among all nodes by selecting nodes with most remaining
energy, GAF performs worse than TECA since it is bounded by grids.
Thus, GAF balances energy consumptions among nodes in the same
grid only. Even if just one node is left, the node must be active. In
contrast, TECA take all nodes into account leading to a better energy
balancing.

At last, Figure 23 presents the influence of cluster timeout factors on
network lifetime, again for an initial energy value of 1000 s. Unlike
before, we now show the network lifetime factor regarding the case of

15

 0

 2

 4

 6

 8

 10

 10 15 20 25 30 35 40 45 50

N
et

w
or

k
L

if
et

im
e

Fa
ct

or

Node Density

80% dead (TECA)
80% dead (GAF)

80% dead (ASCENT)

Fig. 21. Network lifetime vs. node density

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 0.2 0.4 0.6 0.8 1

St
d.

 D
ev

ia
tio

n
of

 E
ne

rg
y

Cluster Timeout Factor

TECA
GAF

ASCENT

Fig. 22. Standard deviation of remaining energy
vs. cluster timeout factor

 0

 1

 2

 3

 4

 5

 6

 7

 0 0.2 0.4 0.6 0.8 1

N
et

w
or

k
L

if
et

im
e

Fa
ct

or

Cluster Timeout Factor

20% energy (TECA)
20% energy (GAF)

20% energy (ASCENT)

Fig. 23. Network lifetime vs. cluster timeout factor

20% remaining energy in contrast to 80% dead nodes. For all cluster
timeout factors, TECA outperforms GAF and ASCENT.

As pointed out above, a significant amount of energy was consumed
by passive nodes in TECA. Thus, reducing the wake-up cycle leads
to more energy saving since nodes rarely wake up and do not become
passive very often. Also, due to the fact that TECA needs several iter-
ations until a stable state is reached, it further benefits from unfrequent
cluster timeouts. The impact of increasing cluster timeout factors on
GAF and ASCENT is rather insignificant.

VI. CONCLUSION

In this paper, we have presented a new Topology and Energy Con-
trol Algorithm that selects active and sleeping nodes. While active
nodes keep their communication radio turned on, sleeping nodes save
most energy by turning their radios off. Maintaining network connec-
tivity is an crucial design issue. Based on Minimum Cluster Spanning
Trees, TECA works in a distributed and localized fashion being able
to guarantee connectivity. By taking packet loss and remaining energy
into account, TECA is also able to adapt to different environments and
application requirements.

By means of simulations, we have compared TECA to two other
approaches, namely GAF and ASCENT. Concerning network connec-
tivity, end-to-end packet delivery, overall network’s operational life-
time, and load and energy balancing, TECA outperforms GAF and
ASCENT.

Motivated by these promising results, we will extend the simula-
tions by taking asymmetric links as well as MAC layer issues into
account. Moreover, we will work on a combination of TECA with
adaptive MAC layer protocols that also put active nodes to sleep to re-
duce idle listening. Thus, active nodes do not need to be active all the
time but sleep if they not participate in packet delivery.

Furthermore, we will implement TECA on real sensor nodes. In that
way, the simulation results should be verified.

REFERENCES

[1] I. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci. A Survey
on Sensor Networks. IEEE Communications Magazine, 40(8):102–114,
August 2002.

[2] L. Bao and J. J. Garcia-Luna-Aceves. Topology Management in Ad
Hoc Networks. In Proceedings of the 4th ACM International Symposium
on Mobile Ad Hoc Networking and Computing (MobiHoc), Annapolis,
Maryland, June 2003.

[3] D. Blough, M. Leoncini, G. Resta, and P. Santi. The K-Neigh Protocol
for Symmetric Topology Control in Ad Hoc Networks. In Proceedings
of the 4th ACM International Symposium on Mobile Ad Hoc Networking
and Computing (MobiHoc), Annapolis, Maryland, June 2003.

[4] M. Burkhart, P. von Rickenbach, R. Wattenhofer, and A. Zollinger. Does
topology control reduce interference? In Proceedings of the 5th ACM
International Symposium on Mobile Ad Hoc Networking and Computing
(MobiHoc), Roppongi Hills, Tokyo, May 2004.

[5] A. Cerpa and D. Estrin. ASCENT: Adaptive Self-Configuring sEnsor
Networks Topologies. In Proceedings of IEEE INFOCOM, New York,
USA, June 2002.

[6] A. Cerpa, N.Busek, and D. Estrin. SCALE: A Tool for Simple Connec-
tivity Assessment in Lossy Environments. Technical Report 21, Center
for Embedded Networked Sensinsing, UCLA, September 2003.

[7] B. Chen, K. Jamieson, H. Balakrishnan, and R. Morris. Span: An Energy-
Efficient Coordination Algorithm for Topology Maintenance in Ad Hoc
Wireless Networks. In Proceedings of the 7th International Conference
on Mobile Computing and Networking (MobiCom), Rome, Italy, July
2001.

[8] M. B. S. D. E. Culler, D. Estrin. Overview of Sensor Networks. IEEE
Computer Magazine, 37(8):41–49, August 2004.

[9] O. Dousse, P. Mannersalo, and P. Thiran. Latency of Wireless Sensor Net-
works with Uncoordinated Power Saving Mechanisms. In Proceedings of
the 5th ACM International Symposium on Mobile Ad Hoc Networking and
Computing (MobiHoc), Roppongi Hills, Tokyo, May 2004.

[10] A. El-Hoiydi and J.-D. Decotignie. WiseMAC: An Ultra Low Power
MAC Protocol for the Downlink of Infrastructure Wireless Sensor Net-
works. In Proceedings of 9th IEEE International Symposium on Comput-
ers and Communications (ISCC), Alexandria, Egypt, June 2004.

[11] P. B. Godfrey and D. Ratajczak. Naps: Scalable, Robust Topology Man-
agement in Wireless Ad Hoc Networks. In Proceedings of the 3rd Interna-
tional Symposium on Information Processing in Sensor Networks (IPSN),
Berkeley, California, April 2004.

[12] J. Hill and D. Culler. Mica: A Wireless Platform for Deeply Embedded
Networks. IEEE Mirco, 22(6):12–24, November 2002.

[13] C. E. Jones, K. M. Sivalingam, P. Agrawal, and J.-C. Chen. A Survey
of Energy Efficient Network Protocols for Wireless Networks. Wireless
Networks, 7(4):343–358, August 2001.

[14] N. Li and J. C. Hou. Topology Control in Heterogeneous Wireless Net-
works: Problems and Solutions. In Proceedings of IEEE INFOCOM,
Hong Kong, China, March 2004.

[15] N. Li, J. C. Hou, and L. Sha. Design anf Analysis of an MST-Based
Topology Control Algorithm. In Proceedings of IEEE INFOCOM, San
Francisco, California, April 2003.

[16] N. Nikaein and C. Bonnet. Topology Management for Improving Rout-
ing and Network Performances in Mobile Ad Hoc Networks. Mobile
Networks and Applications, 9(6):583–594, December.

[17] R. Ramanathan and R. Hain. Topology Control of Multihop Wireless
Networks Using Transmit Power Adjustment. In Proceedings of IEEE
INFOCOM, pages 404–413, Tel Aviv, Isreal, March 2000.

[18] J. Schiller, A. Liers, H. Ritter, R. Winter, and T. Voigt. ScatterWeb -
Low Power Sensor Nodes and Energy Aware Routing. In Proceedings of
Hawaii International Conference On System Sciences (HICSS), Hawaii,
USA, January 2005.

[19] C. Schurgers, V. Tsiatsis, S. Ganeriwal, and M. Srivastava. Optimizing
Sensor Networks in the Energy-Latency-Density Design Space. IEEE
Transactions on Mobile Computing, 1(1):70–80, January 2002.

[20] C. Schurgers, V. Tsiatsis, S. Ganeriwal, and M. Srivastava. Topology
Management for Sensor Networks: Exploiting Latency and Density. In
Proceedings of the 3rd ACM International Symposium on Mobile Ad Hoc
Networking and Computing (MobiHoc), Lausanne, Switzerland, June
2002.

[21] T. van Dam and K. Langendoen. An Adaptive Energy-Efficient MAC
Protocol for Wireless Sensor Networks. In Proceedings of ACM SenSys,
Los Angeles, CA, November 2003.

16

(a) Case 1 (b) Case 2 (c) Case 3

Fig. 24. Covered communication area by simulation area

[22] Y. Xu, S. Bien, Y. Mori, J. Heidemann, and D. Estrin. Topology Control
to Conserve Energy in Wireless Ad Hoc Networks. Technical Report 6,
Center for Embedded Networked Sensinsing, UCLA, January 2003. Sub-
mitted for review to IEEE Transactions on Mobile Computing.

[23] Y. Xu, J. Heidemann, and D. Estrin. Adaptive Energy-Conserving Rout-
ing for Multihop Ad Hoc Networks. Technical Report 527, Information
Sciences Institute, USC, October 2000. Submitted for publication.

[24] Y. Xu, J. Heidemann, and D. Estrin. Geography-Informed Energy Con-
servation for Ad Hoc Routing. In Proceedings of the 7th International
Conference on Mobile Computing and Networking (MobiCom), Rome,
Italy, July 2001.

[25] W. Ye, J. Heidemann, and D. Estrin. An Energy-Efficient MAC Protocol
for Wireless Sensor Networks. In Proceedings of IEEE INFOCOM, New
York, NY, June 2002.

[26] M. Zuniga and B. Krishnamachari. Analyzing the Transitional Region in
Low Power Wireless Links. In Proceedings of IEEE Secon, Santa Clara,
CA, October 2004.

APPENDIX I
DERIVATION OF EQUATION 11

Consider an area of size A×A with A > 0. Let N be the number of
nodes placed on the area. Let p be the probability that a node is linked
to an adjacent neighbor. Then, the probability of having k neighbors
is given by

P (X = k) =

N − 1

k

!
pk(1− p)N−k−1. (16)

Let µ be the node density, i.e., the average number of nodes covered
by a node’s communication range. Then, we get µ = (N − 1)p + 1
that is equivalent to

N =
µ− 1

p
+ 1. (17)

Thus, it remains to find probability p. Let 〈x, y〉 be the node’s posi-
tion and r < 1

2
A be the radius of its communication area. Then, four

cases can be distinguished:
1) The node’s location is in one of the four corners.

Let Ã1 be the area of the node’s communication range restricted
by the simulation area. As shown in Figure 24(a), Ã1 is com-
posed of four subareas:

Ã1 = Ã1
1 + Ã2

1 + Ã3
1 + Ã4

1

=
1

2
αr2 +

1

2
rx sin β +

1

2
ry sin γ + xy

(18)

with α + β + γ = 3
2
π, β = cos−1 x

r
, and γ = cos−1 y

r
. Then,

the average area Ā1 is given by

Ā1 =
1

1
4
πr2

Z r

0

Z √r2−y2

0

Ã1 dx dy (19)

2) The node’s location is at only one boundary.
According to Figure 24(b), Ã2 is calculated by

Ã2 = (Ã1
2 + Ã2

2)− Ã2
2

= πr2 − r2

2
(α− sin α)

(20)

with α = 2 cos−1 y
r

. The average area Ā2 is then

Ā2 =
1

r(A− 2r)

Z r

0

Z A−r

r

Ã2 dx dy

= r2(π − 2

3
).

(21)

3) The node’s location is at both boundaries, but not in a corner.
Analog to the second case, area Ã3 is given by

Ã3 = (Ã1
3 + Ã2

3 + Ã3
3)− Ã2

3 − Ã3
3

= πr2 − r2

2
(α− sin α)− r2

2
(β − sin β)

(22)

with α = 2 cos−1 y
r

and β = 2 cos−1 x
r

, as depicted in Fig-
ure 24(c). The average area Ā3 is

Ā3 =
1

r2(1− 1
4
π)

Z r

0

Z r

√
r2−y2

Ã3 dx dy. (23)

4) The node’s communication area is not restricted by the simula-
tion area.
In this case, we just get

Ā4 = Ã4 = πr2. (24)

Let p̄1, p̄2, p̄3, and p̄4 be the probabilities of the different cases.
Then, the average covered communication area E[A] of a node arbi-
trarily placed on the simulation area is given by

E[A] =

4X
i=1

p̄iĀi (25)

with p̄1 = πr2

A2 , p̄2 = 4r(A−2r)

A2 , p̄3 = r2(4−π)

A2 , and p̄4 = (1 − p̄1 −
p̄2 − p̄3). Thus, the probability p is defined by

p =
E[A]

A2
≈ r2(3.142A2 − 2.667Ar + 0.158r2)

A4
. (26)

