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Abstract vii

Abstract
Automatic recognition of objects in images is a difficult and challenging task in
computer vision which has been tackled in many different ways. Based on the
powerful and widely used concept to represent objects and scenes as relational
structures, the problem of graph matching, i.e. to find correspondences between
two graphs is a part of the object recognition problem. Belonging to the field of
combinatorial optimization graph matching is considered to be one of the most
complex problems in computer vision: It is known to be NP-complete in the
general case.
In this thesis, two novel approaches to the graph matching problem are proposed
and investigated. They are based on recent progress in the mathematical liter-
ature on convex programming. Starting out from describing the desired match-
ings by suitable objective functions in terms of binary variables, relaxations of
combinatorial constraints and an adequate adaption of the objective function
lead to continuous convex optimization problems which can be solved without
parameter tuning and in polynomial time. A subsequent post-processing step
results in feasible, sub-optimal combinatorial solutions to the original decision
problem.
In the first part of this thesis, the connection between specific graph-matching
problems and the quadratic assignment problem is explored. In this case, the
convex relaxation leads to a convex quadratic program , which is combined with
a linear program for post-processing. Conditions under which the quadratic
assignment representation is adequate from the computer vision point of view
are investigated, along with attempts to relax these conditions by modifying
the approach accordingly.
The second part of this work focuses directly on the matching of subgraphs
– representing a model – to a considerably larger scene graph. A bipartite
matching is extended with a quadratic regularization term to take into ac-
count relations within each set of vertices. Based on this convex relaxation,
post-processing and the application to computer vision are investigated and
discussed.
Numerical experiments reveal both the power and the limitations of the ap-
proach. For problems of sizes which occur in applications the approach is quite
reasonable and often the combinatorial optimal solution is found. For larger
instances the intrinsic combinatorial nature of the problem comes out and leads
to sub-optimal solutions which, however, are still good.
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Zusammenfassung
Die automatische Erkennung von Objekten in Bildern ist eine der größten
Herausforderungen in der Bildverarbeitung. Werden die Objekte und Szenar-
ien durch Graphen repräsentiert, ist ein Teilproblem der Objekterkennung die
gewünschte Zuordnung der Knoten zweier Graphen zu finden. Dabei soll möglichst
die Graphstruktur und evtl. zusätzlich vorhandene Information berücksichtigt
werden. Die Bestimmung der besten Korrespondenzen der Graphknoten, auch
Graph Matching genannt, ist für allgemeine Graphen ein NP-Hartes kombina-
torisches Problem und gehört damit zu den schwierigsten aller Probleme in der
Bildverarbeitung.
In dieser Arbeit führen wir zwei neue Ansätze ein, um Graph Matching und
Subgraph Matching Probleme approximativ zu lösen. Dazu nutzen wir neuere
Methoden und Erkentnisse der konvexen Optimierung. Die Graph Matching
Probleme können als 0/1-Integer Optimierungsproblem formuliert werden und
lassen sich mit Hilfe einer geeigneten Relaxierung in ein kontinuierliches und
konvexes Problem transformieren. Ein Vorteil konvexer Optimierungsprobleme
liegt in der Tatsache, dass sie ohne zusätzliche Parameteroptimierung effizient
mit Standardverfahren gelöst werden können. Ein Nachverarbeitungsschritt
sorgt dafür, dass mit Hilfe der Approximierten Lösung eine für das Original-
problem passende und gute 0/1-Integer Lösung gefunden wird.
In dem ersten Teil dieser Arbeit untersuchen wir einen Ansatz, der das Problem
des gewichteten Graph Matchings auf die Klasse von Quadratischen Assign-
ment Problemen zurückführt. Die Relaxierung führt in diesem Fall zu einem
konvexen quadratschen Optimierungsproblem. Um eine nahliegende kombina-
torische Lösung zu erhalten, wird ein geeignetes lineares Optimierungsproblem
nachgeschaltet. Wir untersuchen, in wie fern das Verfahren für Probleme der
Bilderkennung geeignet ist und diskutieren mögliche Verbesserungen.
Im zweiten Teil dieser Arbeit konzentrieren wir uns auf das Problem des Sub-
graph Matchings wobei die Knoten eines kleineren Objektgraphens den Knoten
eines größeren Szenen-Graphens zugeordnet werden sollen. Dazu erweitern wir
ein sogenanntes Bipartites Matching um einen quadratischen Term, so dass
neben der Ähnlichkeit der Knoten untereinander auch die zugrundeliegende
Struktur der Graphen berücksichtigt wird. Anschließend untersuchen wir eine
konvexe Relaxierung dieser Problemformulierung mit einem entsprechenden
Nachverarbeitungsschritt und diskutieren verschiedene Einflüsse auf diesen Sub-
graph Matching Ansatz.
Unsere numerischen Experimente zeigen, dass unsere Verfahren meist sehr gute
und oft optimale Lösungen finden. Bei größeren Problemen macht sich jedoch
zunehmend die kombinatorische Natur der Probleme bemerkbar, trotzdem wer-
den in der Regel suboptimale Lösungen sehr guter Qualität gefunden.
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I am also grateful to Joachim Weickert who introduced me into several aspects
of computer vision like pde-based approaches in computer vision. Furthermore,
I thank Joachim Hornegger who introduced me into the interesting field of 3D-
reconstruction.
I am very thankful to Jens Keuchel and Christian Gosch who read preliminary
versions of this work and helped with their comments to improve the readability
of this thesis.
I would like to acknowledge the work of Stefan Roth who investigated a deter-
ministic annealing graph matching approach in his diploma thesis.
The working atmosphere at the CVGPR group has been very pleasant and
I would like to thank all members of the group for the inspiring and enjoy-
able environment. I specially value the friendship of many of my colleagues:
Daniel Cremers, Christian Gosch, Jens Keuchel, Timo Kohlberger, Paul Ruh-
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Chapter 1

Introduction

In this chapter we motivate the use of graph matching algorithms in computer
vision. After sketching the basic idea to apply convex optimization techniques
for finding approximate solutions to the combinatorial hard problem of graph
matching we summarize the contribution of this work. Then an outline of this
thesis is given followed by the enumeration of related approaches used for graph
matching.

1.1 Motivation

The automatic visual recognition of objects is regarded as one of the most
difficult problems in computer vision and is at the same time one of the most
fascinating challenges in computer science. In this thesis object recognition is
approached in a way that leads to the problem to find good matchings between
relational structures. Several methods for the representation of object views
have been proposed, e.g. pixel based or shape based representation. This thesis
follows the wide used approach to represent object views and scene views as
relational structures, namely as graphs.

(a) (b) (c) (d)

Figure 1.1: View based object recognition. The object view (a) and the scene
view (b) are represented as view based graphs in (c) and (d), respectively. This
turns the object recognition task into a sub-graph matching problem.

A common way to create view-based graphs is to use a set of image features
together with pairwise relations between them. The image features could be,
for example, points, line segments, or curve segments which are found by an
appropriate feature detector in a low-level pre-processing phase.

1
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An example for an object recognition problem is shown in figure 1.1. The first
two pictures, a) and b) shows a view of an object and a scene view containing
the object, respectively. The aim of the recognition task is to detect the given
object within the scene. The task of recognizing an object within a scene
can be traced back to the problem of finding a good matching between two
graphs. In this thesis we restrict ourself to the problem to find good matchings
between relational structures. We assume that the object view and scene view
are already represented by graphs. The pictures c) and d) of figure 1.1 are
examples for the representation of the views as view based graphs. As the
representation of relational structures is also used in other fields like biometric
identification, document processing, networks and others, the investigations
within this thesis maybe useful in these fields too.

1.2 Overview

This thesis contributes to the field of object recognition in computer vision.
Using a graph representation of object and scene views, the object recognition
problem turns into the problem of finding correspondences between graphs.
Therefore this work is concerned with the problem to find good matchings
between pairs of graphs. Such problems can be stated appropriately by com-
binatorial optimization problems. The primary motivation for our work is the
design of algorithms for which the performance does not critically depend on
the choice of tuning parameters, since the automatic choice of suitable param-
eter values is rather difficult in the context of computer vision systems. To
obtain such parameter free algorithms, convex programming approaches are an
appropriate choice. Before discussing this idea in the context of graph match-
ing, some basics related to graph matching are briefly introduced. For a more
detailed introduction we refer to chapter 2.

1.2.1 Graph Matching

A graph consists of nodes and edges where the edges represent pairwise relations
between the nodes. The expression graph matching in this thesis refers to the
problem to find a mapping between two sets of nodes which belong to two
different graphs. The matchings we are interested in are calledmaximal bipartite

matchings. These represent mappings where every node of the possibly smaller
graph is linked to exactly one node in the other graph, with no two nodes being
linked to the same node. This requirement is often referred to as matching

constraint.

In figure 1.2 we show an example of a bipartite matching between two graphs.
The bipartite matching is represented by the green line segments. Each line
connects two nodes from the different graphs which are mapped to each other.
Our graph matching problems can be stated as discrete optimization problems
which model the matching constraint appropriately.
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Figure 1.2: The bipartite matching (green line segments) represents the
mapping between the two sets of nodes belonging to the two different graphs.

1.2.2 Exact and Inexact Graph Matching

Graph matching problems can be divided into two problem classes: Exact and
inexact graph matching problems. Exact graph matching refers to (sub)graph
isomorphism problems while inexact graph matching refers to all problems
where an exact isomorphism cannot be expected to occur. To be more pre-
cise, exact graph matching is the problem to find an exact one to one mapping
between the nodes of two graphs such that each edge of one graph is mapped
to an identical edge of the other graph. If such a mapping exists the graphs are
called to be isomorphic. However, due to changed views or noise it is unlikely
that graphs extracted e.g. from vision systems are isomorphic to model graphs.
Therefore for real world problems the class of inexact graph matching problems
is much more relevant. The problem of finding an inexact graph matching is
usually formulated as an optimization problem with an objective function which
measures the quality of a match.

1.2.3 What this thesis is about

Unfortunately general graph matching problems are NP-hard combinatorial
optimization problems that are intractable for graphs even of medium size (e.g.
more than 20 vertices) on todays computers. However, due to the applicability
of graph matching in computer vision and other fields there is a high interest in
good approximation algorithms. These algorithms should be able to compute
good suboptimal solutions – in contrast to optimal solutions – and should have
a polynomial time complexity. In this work, we focus on convex optimization

techniques in order to find good approximations for graph matching problems.

In the context of combinatorial optimization problems a convex relaxation can
be obtained by relaxing the integer constraints along with an appropriate refor-
mulation of the original objective function into a convex approximation of the
problem. Such a convex optimization problems involves no additional tuning
parameters and can be solved in polynomial time with standard methods like
interior point algorithms. The obtained solution of the relaxed problem repre-
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sents an approximate solution to the original problem. With a post-processing
step a feasible and hopefully good integer solution of the original problem can
be calculated. The global optimization of the relaxed convex optimization prob-
lem makes it likely that bad local minima of the original integer problem are
avoided.

1.2.4 What this thesis is not about

Although this is an important issue, we would like to point out that this thesis
is not concerned with the image preprocessing question of how a vision system
can extract scene and object graphs in a reliable way. We assume that the
object graphs and the scene graphs for which we want to find a good matching
are already represented as graphs. The implication of this assumption is that
the used graphs in this thesis are either created randomly, by hand or just by
a triangulation of features extracted in a picture by a simple feature detector.
Performance investigations of the graph matching approaches are usually made
with randomly created graphs while shown examples are often manually created.

1.3 Convex Optimization

Many problems in computer vision can be stated as optimization problems, but
unfortunately, often the thorough mathematical models results in intractable
NP-hard problems. This leads to the idea – which we pursue in this thesis –
to approximate such intractable problems by convex and continuous problem
formulations for which the solution can be efficiently computed. The fundamen-
tal properties which makes convex and continuous approximation approaches
favourable are summarized here:

• A convex optimization problem has no local minima which is not the
global minimum and therefore one can not be trapped in a bad local
minimum.

• Under mild conditions a convex and continuous optimization problem can
be efficiently solved to optimality.

• No tuning parameters are introduced which can critically influence the
quality of the solution.

• Often a non-convex combinatorial optimization problem can be approxi-
mated by an appropriate convexified optimization problem.

These properties are utilized in this thesis to propose approaches for graph and
subgraph matching problems which are theoretically clear and free of tuning
parameters.

Several excellent books concerned with convex optimization techniques have
been published recently e.g. by Boyd and Vandenberghe [20], Bertsekas [15]
and Ben-Tal and Nemirovski [12].
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1.3.1 Semidefinite Programming

Semidefinite programming (SDP) represents a special type of convex optimiza-
tion problems and can be seen as unification of linear and (convex) quadratically
constrained quadratic programming as it includes both as special cases [140].
The origin of semidefinite programming goes back to Bellman and Fan [11]
in 1963 who discussed theoretical properties of semidefinite programs. It is
an ongoing active area of research and in recent years a very successful and
wide applicable convex relaxation technique called lifting procedure for binary
quadratic optimization problems has emerged which leads to semidefinite pro-
grams. Poljak described this technique in [115] which aims to approximate the
exact solutions for binary quadratic optimization problems. This scheme was
introduced by Lovász and Schrijver [96] and Lemaréchal and Oustry [95] showed
that this technique has its roots in Lagrangian duality. It has been applied to
a wide range of combinatorial optimization problems: max-cut and max-2sat
[54], the quadratic knapsack problem [68], segmentation and image restoration
problems [83]. More applications can be found e.g. in [146].

As the combinatorial optimization problems in this thesis are defined as quadratic
0/1-integer problems the SDP relaxation recipe [115] can be applied to the com-
binatorial graph and subgraph matching problems we are concerned with in this
thesis.

Note that in principle semidefinite programs can be solved in polynomial time
by the ellipsoid algorithm [58] but interior point algorithms turned out to be
the faster alternative [2, 109]. Due to the huge research interest in semidefinite
programming today several reliable SDP solvers are available (e.g [13, 92, 18]).
An independent benchmarking for many different SDP solvers can be found in
[104].

1.4 Contribution

This work has the aim to investigate if the application of convex relaxation
methods is a reasonable approach in object recognition to cope with the gener-
ally NP-hard problem of inexact graph matching. It has two main contributions.
The first is the application of a particular convex relaxation developed for the
quadratic assignment problem in order to find good correspondences between
two weighted graphs. The second contribution lies in the formulation of a
combinatorial subgraph matching approach which allows the application of the
convex semidefinite relaxation technique. These two approaches are outlined
below.

1.4.1 QAP Convex Relaxation used for Graph Matching

The quadratic assignment problem (QAP) is a well known combinatorial opti-
mization problem. It has attracted our interest as some graph matching prob-
lems can be formulated as QAP. Recent and ongoing research in that field has
led to relaxations which allow the calculation of good lower bounds together
with approximate solutions for QAPs. Following the work of Anstreicher, Brix-



6 Chapter 1. Introduction

ius and Wolkowicz [5, 21] we have explored their convex relaxation approach
for QAPs in view of its capability to find the desired correspondences between
pairs of weighted graphs. The investigation of this approach has been published
in the DAGM2001 conference proceedings [126].

1.4.2 Subgraph Matching by Semidefinite Programming

As the previous convex relaxation approach fails to be applicable in its original
form to graph matching problems with different sized graphs, we searched for
an applicable subgraph matching approach. We developed a combinatorial
subgraph matching approach which incorporates the relational constraints of
both graphs and can be approximately solved by convex optimization methods.
Starting from a linear programming formulation for the computation of optimal
bipartite matchings, we extend the objective function by a quadratic term in
order to take into account the relational constraints given by both graphs.
The resulting combinatorial optimization problem is approximately solved by a
(convex) semidefinite program. Preliminary results have been published in the
IWCIA2003 conference proceedings [127].

1.5 Outline

In the following we outline the structure of the remainder of this work.

• This chapter 1 ends with a summary of related work in the field of graph
matching.

• In chapter 2 we introduce the basic graph concepts that are needed to
define the graph matching problems we are concerned with in this thesis.
We focus on maximal bipartite matchings which build the basis for the
subgraph matching approach in chapter 5 and illustrate how we gener-
ally represent matchings in this work. After discussing the complexity of
our graph matching problems we provide the used notation and introduce
some mathematical definitions. Then some basic convexity concepts are
summarized.

• In chapter 3 we discuss relaxation techniques which lie behind the convex
relaxations which are used to approximate the intractable combinatorial
graph matching problems. Furthermore we discuss optimality conditions
for convex optimization problems and outline the convex optimization
problems that appear within this thesis. Then we discuss how linear pro-
gramming can be exploited to compute feasible 0/1-integer solutions from
the approximated solutions.

• In chapter 4 we study the application of a particular non-trivial convex
relaxation approach to the problem of weighted graph matching. We dis-
cuss several relaxations to this problem and explain in detail the convex
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relaxation of Anstreicher and Brixius who proposed this relaxation for
the quadratic assignment problem. To compute a feasible combinatorial
solution we propose an improved post processing step which is based on
a linearization of the original problem. A small graph matching problem
is used to illustrate the resulting convex relaxation. Several statistical
experiments including ground truth experiments show the performance of
this approach. A real world experiment demonstrates the applicability to
computer vision related problems. Then we outline how this approach can
be adapted to be able to cope with weighted subgraph matching problems
as well.

• In chapter 5 we propose a new combinatorial subgraph matching approach
which is based on a quadratic extension of the linear bipartite graph
matching approach to incorporate the structures of both the object and
the scene graph. The 0/1-quadratic integer problem formulation allows
to obtain a convex semidefinite relaxation for this combinatorial problem
which is explained in detail. Subsequently we investigate thoroughly the
capability of this subgraph matching approach and present several real
world problems in computer vision. Then we discuss possible compu-
tational improvements and investigate the approach in some interesting
circumstances. Furthermore we propose to utilize the lower bound com-
puted by our subgraph matching approach as an indicator for subgraph
non-isomorphism.

• In chapter 6 we conclude with a summary of our work and provide an
outline of several promising future research directions.

1.6 Related Work

Graph matching has a history of more than thirty years in pattern recognition
[30]. One of the first publications that suggests graphs for image representation
was published in 1971 by Barrow and Popplestone [9]. Recently graph match-
ing has found increasing interest as the computational power increases and it
is now possible to tackle graph based algorithms for graphs with sizes that are
reasonable for computer vision problems. In section 1.6.1 we outline several ba-
sic approaches that have been applied directly to tackle different kinds of graph
matching problems. In section 1.6.2 we sketch some more general concepts
which have been successfully used to state graph matching problems.

1.6.1 Basic Graph Matching Approaches

In the following we summarize basic approaches which have been used for solv-
ing graph matching problems. For these approaches the properties of interest
are summarized in table 1.1.
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Tree search/Branch and Bound yes discrete no

Genetic based Search no discrete no

Discrete Relaxation no discrete no

Continuous Relaxation labeling no continuous (yes)

Simulated Annealing yes discrete yes

Deterministic Annealing no discrete yes

Expectation Maximization no continuous yes

Spectral approaches no continuous no

Table 1.1: Classification and Properties of various graph matching ap-
proaches

Tree Search/Branch and Bound

Many algorithms for graph matching are based on a tree search with backtrack-
ing. In these approaches one iteratively tries to enlarge a partial match. If an
iteration is reached where the partial match cannot be further expanded, con-
form to the matching constraints, the algorithm backtracks. That is, it turns
back to a partial match where an alternative choice for an extension can be
made. If all possible matchings have been tried, or a graph matching is found,
the algorithm stops. One of the first and most popular tree search algorithm
was proposed by Ullmann [138] in 1976 and addresses exact graph matching
problems. It uses a so called refinement procedure to eliminate branches in the
search tree that can not lead to subgraph isomorphism.

A well known approach in tree search is the branch and bound approach. By
calculating lower bounds one tries to cut off subtrees that will not be searched.
To cut off search branches as early as possible one needs tight lower bounds,
which is one reason that researchers are interested in good lower bounds. The
branch and bound approach is guaranteed to find the optimal solution, but the
complexity in the worst case is as high as that of exhaustive search.

Evolutionary Strategies

Genetic algorithms are inspired by the natural evolution process and are a kind
of stochastic search methods. Usually they define some genetic operators, like
reproduction, crossover and mutation, to create the next generation of proposed
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solutions. The selection process is based on a fitness value which measures how
good a proposed solution is. Individual solutions with a higher fitness value
have a higher probability to survive. Stop criteria are often a limited generation
number or the time no improvement to the best solution is achieved. The first
book about genetic algorithms was published in 1975 by Holland [73]. In 1997
Cross, Wilson and Hancock [34] used genetic search for inexact graph matching.
A method called extremal optimization belongs also into this category. The
extremal optimization approach selects the weakest solution in a solution pool
for adaptive changes to improve its fitness. Beside the application to graph
partitioning and the traveling salesman problem (Boettcher and Percus [16]) it
has been applied to find point correspondences by Meshoul and Batouche [100].

Consistency Algorithms

The consistency algorithms for graph matching can be divided into discrete and
continuous approaches. The continuous relaxation labeling is an enhancement
of the discrete relaxation which allows a probabilistic interpretation for the as-
signment of the nodes in a graph. In the following we explain both approaches.

Discrete Relaxation
Discrete relaxation algorithms or more accurately discrete consistency algo-

rithms were first introduced by Waltz [141] in 1975 for the interpretation of
scenes with objects that cast shadows. In the original algorithm possible dis-
crete labels of nodes are iteratively removed such that the nodes contain only
labels which are consistent with some neighbored nodes constraints. Haralick
and Shapiro defined an operator that reduced the size of the tree searched for
a consistent labeling [62]. In the discrete relaxation approach of Kim and Kak
[85] in 1991 inconsistent models are rejected by using bipartite matching to
determine the compatibility of a scene with a possible model. More recently,
Wilson and Hancock [143] describe a Bayesian framework for performing rela-
tional graph matching by discrete relaxation.

Continuous Relaxation labeling
The term relaxation labeling goes back to a publication by Rosenfeld, Hummel
and Zucker [121] in 1976 with the title ’Scene Labeling by Relaxation Opera-
tions’ . They enhanced the Discrete relaxation of Waltz [141] by introducing
a so-called stochastic labeling which requires that the sum of the label weights
for each component is one. This allows a probabilistic interpretation of the
weights. Relaxation labeling or probabilistic relaxation iteratively refines the
(continuous) probability of class labels that can be assigned. The refinement
takes the label-probability of neighbored components into account. To ensure a
discrete labeling as solution a maximum selection (winner-take-all) can be used.
Faugeras and Berthod [42] defined a minimization problem by using transition
probabilities. Kittler and Hancock [87] justified the relaxation labeling ap-
proach 1989 theoretically by casting the process into a Bayesian framework.
Often relaxation labeling is used for classification tasks where labels can occur
more than once. In the case of graph matching this means there is no guarantee
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that each node of the first graph is assigned to a different node of the second
graph. Christmas [28] used probabilistic relaxation for structural matching like
road matching and the matching of edge segments in a stereo pair of images.

Annealing

Annealing approaches try to minimize problem specific objective functions which,
in the context of physics, often represent the total energy of a system. Annealing
approaches can be divided into simulated annealing and deterministic annealing

approaches depending on the method used to create/accept a new valid system
configuration.

Simulated Annealing
Simulated annealing algorithms have their origin in physics, namely in statistical
mechanics. The name is deduced from a slow cooling process for crystal struc-
tures (solids) in order to reach a state with minimal energy. The first simulated
annealing algorithm goes back to 1983 when Kirkpatrick, Gelatt and Vecchi
[86] published the well known paper with the title “Optimization by simulated
annealing”. Geman and Geman [51] determined in 1984 an annealing schedule
that is sufficient for convergence. A simulated annealing algorithm starts with
a valid system configuration (state) at high temperature. A new state of the
system is generated by a random perturbation of the system which magnitude
is dependent from a temperature parameter. If the energy of the new state
is lower than the previous state-energy, the new system state is accepted. If
the energy is greater, the new state is only accepted with a probability related
with the energy-difference. This allows the system to get out of local minima.
In an annealing schedule the temperature is lowered slowly until the system
converges. If the annealing schedule decreases the temperature logarithmically,
simulated annealing guarantees an optimal solution [57]. But the need of a
logarithmic decrease of the temperature in the annealing schedule leads to an
impractical running time for these algorithms. Herault and Horaud [71] have
used the simulated annealing for performing structural matching tasks.

Deterministic Annealing
Deterministic annealing approaches are using annealing schedules like simu-
lated annealing, but are – in contrast to simulated annealing – using determin-
istic rules for the acceptance of a new state. Deterministic annealing does not
guarantee a global optimum and it is still an open question, if deterministic
annealing can be set up to converge globally. But it is able to avoid bad local
minima. References to deterministic annealing approaches in different fields
can be found in a work from Hofmann and Buhmann [72] who have used deter-
ministic annealing for clustering. A deterministic annealing approach for graph
matching has been proposed by Gold and Rangarajan [55]. Their algorithm is
called graduated assignment algorithm. It incorporates a method discovered by
Sinkhorn [132] which is used to satisfy the two-way assignment constraint that
one graph node is matched to at most one node in the other graph and vice
versa. Independently Ishii and Sato [77] developed a very similar doubly con-
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straint network algorithm. Rangarajan [119] has introduced an approach called
self annealing which is closely related to deterministic annealing. The algorithm
has the goal to eliminate the temperature schedule by finding a schedule itself.
The self annealing approach provides also a link to relaxation labeling, e.g. the
original relaxation labeling algorithm by Rosenfeld et al. [121] can be seen as
an approximation of the self annealing algorithm.

Expectation Maximization

The Expectation Maximization (EM) algorithm is an iterative statistical al-
gorithm for computing maximum likelihood parameter estimates from some
incomplete data. The EM algorithm repeats two steps, the Estimation-step
and the Maximization-step, until it converges. One early paper on Maximum

likelihood estimation from incomplete data is published 1958 by Hartley [65].
The formalization and a convergence proof of the EM algorithm can be found
in the paper of Dempster, Laird and Rubin [36] in 1977. Usually only very
few parameters have to be tuned and some constraints like positivity are auto-
matically satisfied. But there is no guarantee that the EM algorithm escapes
bad local minima. In 1998 Cross and Hancock [33] used the EM framework to
recover the transformational geometry and node correspondences of relational
graphs. They iteratively used the maximized likelihood of the transforma-
tion parameters to improve the accuracy of the point correspondences. The
improved point correspondences are then used to improve the transformation
parameters. Luo and Hancock [97] also used the EM algorithm to recover corre-
spondence matches based on singular value decomposition for efficiently finding
the direction in the Maximization-step.

Spectral Approaches

Spectral approaches are using eigendecompositions of the adjacency matrices of
the graphs to compute a good matching. Umeyama [139] showed in 1988 that
a desired matching could be found efficiently if the graphs are sufficiently close
to each other.

Concave Minimization

In 2003 Maciel and Costeira [98] proposed a new method based on concave

optimization to solve the point correspondence problem. They reformulated
the integer optimization problem as a concave objective function and relaxed
the search domain into its convex hull. The concave optimization problem can
be solved efficiently and the special structure assures that it is equivalent to the
original problem.

1.6.2 More General Graph Matching Approaches

In this section we summarize three wider concepts which have been used in the
context of graph matching problems. Within these concept classes many of the
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basic methods mentioned above have been applied to solve the problems speci-
fied by these classes. The first class which is directly related to graph matching
consists of error-correcting graph matching approaches which minimize some
graph edit costs to find node correspondences between two graphs. The sec-
ond class is concerned with the problem of finding the largest fully connected
subgraph (i.e. the maximum clique) of an association graph. The maximum
clique problem is equivalent to the problem of finding the maximum common
subgraph of two graphs. The quadratic assignment problem represents a third
problem class which can be used for graph matching. We use this problem
formulation in chapter 4 of this thesis for finding correspondences between two
weighted graphs.

Error-Correcting Graph Matching

Error-correcting graph matching also known as error-tolerant graph matching
calculates an assignment between nodes of two graphs based on the minimiza-
tion of graph edit costs. One tries to find a sequence of graph edit operations
with a minimal cost which transforms one of the graphs into the other. Com-
monly introduced graph edit operations are, for example, deletion, insertion,
and substitution of nodes and edges. Each graph edit operation has a cost as-
signed which is application dependent. Generally the edit cost is chosen smaller
if a certain distortion of the graph is more likely to occur. The minimal graph
edit cost defines the so called edit distance between two graphs. The idea to
define the edit distance for graph matching goes back to Sanfeliu and Fu [125]
in 1983. The edit distance was used for string matching before. Algorithms for
error correcting graph matching are based on different methods like tree search
[102], genetic algorithms [142] and others (see [23]). The subgraph matching
approach we propose in chapter 5 belongs into this class of graph matching
approaches as it can be interpreted as a minimization of a graph edit cost.

Maximum Clique Problem

The problem of finding the maximum common subgraph of two graphs can be
reformulated into the so called maximum clique problem. This problem con-
sists in seeking the largest clique i.e. the largest fully connected subgraph in
an appropriately defined association graph. Each node in an association graph
represents a possible assignment between one node of the first graph and one
node of the second graph. If two such matchings (two nodes in the association
graph) are compatible in terms of the matching constraints, they are connected
by an edge. The largest fully connected subgraph of this graph corresponds
to the maximum common subgraph. This idea goes back to Ambler et al. [4]
and has been applied to many different computer vision problems (e.g. shape
matching [114], stereo correspondence [75], motion analysis[116]). A survey to
the maximum clique problem can be found in Bomze et al. [17]. One impor-
tant technique to solve the maximum clique problem, published by Pardalos
and Phillips [111] in 1990, is due to the Motzkin-Straus [105] theorem which
allows to formulate the maximum clique problem as continuous quadratic op-
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timization problem. Approaches that have been applied to solve the maximum
clique problem are discussed in [17] in more detail (e.g. genetic algorithms [26],
simulated annealing [78]).

Quadratic Assignment Problem

In chapter 4 of this thesis we investigate a graph matching approach that is
related to the quadratic assignment problem (QAP), which is a well known
combinatorial optimization problem. The QAP can be illustrated by consider-
ing the problem to assign a number of factories to a number of places. This
results in total costs which depend on the factory building costs in connection
with costs related to exchanged material. The aim is to minimize the total cost.
The optimization of quadratic assignment problems is a huge field of its own
and has been investigated by many researchers. It has been introduced by
Koopmans and Beckmann [90] in 1957. A survey of the quadratic assignment
problem can be found in Burkard et al. [24]. Sahni and Gonzalez [124] showed
in 1976 that this problem is NP-complete. The approaches to solve quadratic
assignment problems can be divided in non-relaxation approaches and relax-
ation approaches. The latter approaches provide a method to compute lower
bounds to the QAPs.

• Non-Relaxation Approaches: In 1988 Umeyama [139] developed an
algorithm which used the eigendecompositions of the adjacency matrices
of the graphs to solve a graph matching problem. It is closely related to
QAPs as the weighted graph matching problem formulated in [139] can
be reformulated into a QAP. In 1996 Gold and Rangarajan [55] used the
graduated assignment algorithm, which is a deterministic annealing ap-
proach, for graph matching problems. Their objective function is stated
similar to the QAP. Independently Ishii and Sato [77] published in 2001
a very similar so called doubly constrained network approach.

• Relaxation Approaches: In 1987 the authors Finke, Burkard, Rendl
[44] proposed an eigenvalue bound for quadratic assignment problems
which turns out to represent a weak lower bound for QAPs. The advan-
tage of this approach is that the corresponding matrix for which the bound
is achieved can be easy calculated. An improved bound can be computed
by the projected eigenvalue bound suggested by Hadley, Rendl, Wolkow-
icz [59] in 1992. But only for special cases an explicit matrix for which
the projected eigenvalue bound is achieved can be calculated. Anstreicher
and Brixius [21] overcame this drawback in 1999 by developing the convex
quadratic programming bound which additionally further improved the
projected eigenvalue bound.
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Chapter 2

Preliminaries

In this chapter we first introduce some relevant terms related to graph matching.
To recall how hard the problem of generic graph matching is to solve, the
complexity concepts for finite sets are recapitulated. Then some mathematical
preliminaries are summarized. A reader familiar with the summarized concepts
can skip the known parts.

2.1 Basic Graph Theory

In this section we introduce the basic concepts of graphs that are used through-
out this thesis. An undirected, weighted graph G = (V,E,w) consists of n
vertices (nodes) V = {1, . . . , n}, edges E ⊂ V × V and a weight function
w : E → R

+
0 which defines the edge weights. The number of vertices n is

also denoted by |V |. A graph that contains no edges starting and ending at the
same node (self-loops) is called a simple graph. Two vertices i and j are adja-

cent, or neighboring, if (i, j) is an edge of the graph. The vertices i and j are
then called to be incident with the edge (i, j). The structure and the weights
of the undirected graph G can be represented by a symmetric adjacency matrix

AG = A>G. The elements of AG are (AG)ij = wij , for i, j = 1, . . . , n. The edge
weight is wij = 0 if the edge (i, j) is not present. For non-weighted graphs the
weight is wij = 1 if the edge (i, j) exists and the appendant adjacency matrix
is a 0/1-matrix. A small sample graph and the corresponding adjacency matrix
are shown in figure 2.1.

0.6

0.5

0.3

0.1
0.4

G 1

3
4

2

AG =







0.0 0.4 0.0 0.1
0.4 0.0 0.6 0.3
0.0 0.6 0.0 0.5
0.1 0.3 0.5 0.0







Figure 2.1: Example for a small weighted graph and its adjacency matrix
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If the vertices or edges of the graph contain additional information, which e.g.
could be represented as vector, the graph is called an attributed graph. For our
applications, we assume that edge weights and node weights are scalar values.
Furthermore, we assume that there is a scalar distance function so that vertices
or edges of different graphs can be compared.

2.2 Graph Matching

As we are interested in object recognition we are mainly concerned with com-
puting good mappings between sets of nodes which belong to two high-level
graphs representing the object and the scene. High-level graphs refer to graphs
with a manageable size which are used to describe object prototypes or scenes
based on segmentation or features of an image. In contrast to that segmen-
tation approaches often work on “low-level” graphs with thousands of nodes,
where each node corresponds to a single pixel. The desired mapping of an ob-
ject graph to a scene graph is constraint by several requirements. For example
should every node of the probably smaller object graph be mapped to a differ-
ent node of the larger scene graph. In the following we define how we use the
term graph matching in this work and how the matchings and related solutions
are represented.

2.2.1 Bipartite Matching

In the literature matching is the problem to find an one to one correspondence
between vertices so that each vertex is incident with at most one edge. In other
words, no vertex is linked to more than one other vertex (see e.g. [53]). For
a natural description of correspondences between two sets of nodes a bipartite

matching can be used. Bipartite matching combines the idea of matching and
the concept of a so called bipartite graph. A bipartite graph is an undirected
graph where the vertices can be divided into two sets such that no edge connects
vertices in the same set. In our case the two sets are predetermined by the
vertices of the object and the scene graph, respectively. Assuming that the
nodes of the smaller graph should be mapped to nodes of the other graph a
so called maximal bipartite matching is a matching where each vertex of the
smaller set is matched to exact one different vertex in the second set.

To simplify matters, we will often use the term matching or bipartite matching
instead of maximal bipartite matching in this thesis.

2.2.2 Representation of Matchings

We illustrate how matchings are represented in this work. Figure 2.2 shows a
maximal bipartite matching which represents the correspondences between two
small sets of vertices. The corresponding bipartite graph consists of the colored
edges and incident nodes. In this example the following mapping of nodes is
depicted: 1 7→ 2, 2 7→ 1, 3 7→ 4.

The first set with m = 3 vertices can be assumed to belong to the object graph.
The second set with n = 5 vertices corresponds to the scene graph. In general
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Figure 2.2: A bipartite matching between two vertex sets. The smaller set
can be assumed to represent the nodes of an object graph which are mapped
against the nodes of a scene graph in the second set. In this thesis we often
show the computed mappings of corresponding nodes by a bipartite graph
which is here depicted by the colored edges and incident nodes.

we assume that the object graph is not larger than the scene graph (m ≤ n).

In this thesis we use binary matrices and vectors to represent the matchings
between the nodes of the two graphs in a mathematical way. These represen-
tations are sketched in the following.

Matching/Permutation Matrices

The one to one correspondences between two sets of vertices with m and n
vertices can be represented by a n×m matching matrix X with binary elements.
The element Xij is set to Xij = 1 if the node i of the first set is matched to
the node j in the second set. Otherwise Xij is zero (Xij = 0). Assuming that
m ≤ n, all column sums of X are one:

∑n
i=1 Xij = 1 for j = 1, . . . ,m. For

matching matrices the row sum is not fixed and can be either 1 or 0. With
X ∈Mn×m we denote the set of all n×m matching matrices. The appropriate
matching matrix for the matching displayed in figure 2.2 is depicted here:

X =









0 1 0
1 0 0
0 0 0
0 0 1
0 0 0









If m = n the matching matrix turns out to become a permutation matrix where
besides the column sums all row sums are one, too. Hence, for permutation
matrices denoted by Π we have the two conditions:

∑n
i=1 Xij = 1 for j =

1, . . . , n and
∑n

j=1 Xij = 1 for i = 1, . . . , n.

Indicator Vector

Beside the representation as matching or permutation matrix we use an indica-
tor vector x ∈ {0, 1}nm to represent the matchings. The vector form is closely
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related to the matrix representation. The indicator vector x is built by ap-
pending the columns of the matching matrix X to each other. This alteration
is formally done by the operator vec[.] (see 2.4.2). The elements of the indicator
vector x ∈ {1, 0}nm are ordered as follows:

x = vec[X] = (X11, · · · , Xn1, X12, · · · , Xn2, · · · , X1m, · · · , Xnm)>.

As before, an existing edge between the vertex i of the first set and the vertex
j of the second set is represented by xij = 1, otherwise it is xij = 0. With these
definitions the indicator vector

x = (0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0)>

represents the bipartite matching shown in figure 2.2. When presenting results
we sometimes plot the elements of the indicator vector in a 2D plot like it is
shown in figure 2.3. In these drawings the elements of the indicator vector

1

0

Figure 2.3: The 0/1-indicator vector represents the matching which is shown
in figure 2.2.

are separated by vertical lines into m partitions of length n. According to the
definition of x the j-th partition (j = 1, ...,m) represents all possible matchings
from the j-th vertex of the (smaller) first set to all n vertices of the (larger)
second set. For a matching one requires in each partition exact one element to
be equal to 1 while the others are 0. The approximation of an indicator vector
can be represented in the same way, but is usually allowed to have element
values in the range [0, 1].

2.2.3 Classification of Graph Matching Problems

Graph matching problems can be divided into two problem fields. The first class
consists of exact graph matching problems which require that the structure or
the substructure of two compared graphs are identical. For pattern recognition
the problems of the second class – inexact graph matching problems – are much
more important. In such a case one tries to find a matching between two graphs
even if the structure of the graphs differ to some extent. We describe the two
classes below.

Exact Graph Matching

An example for an exact graph matching problem is the problem to find an one
to one mapping f : VG → VH of vertices of the two graphs G = (VG, EG) and
H = (VH , EH) such that each edge (u, v) of G is mapped to a corresponding
edge (f(u), f(v)) in H. G is called to be isomorph to H if such a mapping
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exists. Note that we have presumed that both graphs have the same number of
vertices |VG| = |VH |.
A mapping is called homomorphism if all edges EG in G can be mapped to
edges EH in H but the converse is not true. This means that H can have some
extra edges.

The problem of finding the maximum common subgraph is also seen as an exact
graph matching problem. Here the number of vertices in the two graphs can
be different |VG| 6= |VH | and one wants to find the largest subgraph of the first
graph which is isomorphic to a subgraph of the second one.

Although it is not known if the general graph isomorphism problem can be
solved in polynomial time [50], yet for some special graph types like planar
graphs efficient algorithms are known [74, 40, 101].

Exact graph matching in this form is only of limited usability in computer
vision. As the object and scene graphs obtained by a vision system are – due to
noise or occlusion – likely different to some extent one cannot expect the graphs
or subgraphs to be isomorphic in computer vision related problems. This gives
rise to utilize inexact graph matching approaches.

Inexact Graph Matching

The graph matching problems we are concerned with in chapter 4 and chapter 5
both belong to the class of inexact graph matching problems. This class includes
all graph matching problems which cannot be seen as exact graph matching
problems. Therefore this category includes most of the graph matching problem
instances which arise in computer vision. The quality of an inexact matching is
usually defined by an appropriate objective function and the aim of the graph
matching algorithms is to find the matching which minimizes (or maximizes)
the value of the objective function. The graph edit distance in error correcting
graph matching approaches is an example for such an objective function which
has to be minimized to find the best matching.

2.3 Complexity

The complexity theory is concerned with the study of the intrinsic complexity
of computational problems. The graph matching problems considered in this
work are easy to formulate but belong to a problem class which is extremely
hard to solve. Until today, there is no polynomial time algorithm known which
can guarantee to find the optimal solution for this kind of problems.

The concept of polynomial time algorithms was introduced by Edmonds [39]
and Cobham [29] in 1964 and the complexity of problems can be classified in
classes like P, NP and NP-complete since the pioneering publications of Cook
[31] and Karp [81] in the beginning of the 1970s. In the following we outline
these elementary complexity terms. Furthermore, we refer to the literature that
shows that the problems we are concerned with are NP-hard.
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2.3.1 Complexity Classes

In this section an intuitive overview of the complexity classes P, NP, NP-
complete and NP-hard is given. These are concepts for a hierarchy of the
complexity of problems on finite sets. The class with problems which can be
solved in polynomial time is usually denoted by P. The class NP consists of
those problems with the property that the correctness of a solution can be
verified in polynomial time. It is not required that one is able to find the
solution in polynomial time. The class NP includes most combinatorial opti-
mization problems and all problems in P. NP is the shortcut for ”solvable by a
non-deterministic Turing machine in polynomial time”. Within the complexity
class NP the NP-complete problems are by definition the hardest problems. A
problem is NP-complete if every problem in the class NP can be reformulated
into this problem in polynomial time. Prominent problems which are known to
be NP-complete are, for example, the traveling salesman problem, the knapsack
problem, the maximum clique problem and the subgraph isomorphism problem.
In figure 2.4 the discussed complexity classes are shown in a schematically dia-
gram.

NP−complete

P

NP

Figure 2.4: Schematically representation of the complexity classes P, NP and
NP-complete

In the literature a problem L is called NP-complete if it is in NP and each
problem in NP is Karp-reducible to L (see e.g. [3]). This implies, if one NP-
complete problem is solvable in polynomial time, then each problem in NP can
be solved in polynomial time. But although there is no proof, it is believed by
most researchers that P 6= NP . This assumption might be supported by the
fact, that most combinatorial optimization problems could either be proved to
be polynomially solvable or to be NP-complete. For a precise analysis we refer
to the books by Aho, Hopcroft and Ullman [1] and Garey and Johnson [50].

A definition for NP-hard problems can be found in [8]. When a decision version
of a combinatorial optimization problem is proven to be in the class of NP-
complete problems, then the optimization version of the problem is NP-hard.
For example the decision version of the traveling salesman problem (TSP), ”is
there a tour with length less than r” is NP-complete. It is easy to verify that a
proposed tour has a length less than r. But the optimization problem, ”what
is the shortest tour?”, is NP-hard, since there is no easy way to determine if a
given tour is the shortest.
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2.3.2 Complexity of Discussed Graph Matching Approaches

The important characteristic of the NP-complete problems is that the run time
required to solve problems in this class to optimality cannot be bounded from
above by a polynomial that is a function of the problem size. This leads to
the fact that one is only able to obtain guaranteed optimal solutions for small
problem instances, for example, by exhaustive search. For larger instances one
is obliged to use approximation algorithms which are only able to compute
sub-optimal solutions.
Sahni and Gonzalez [124] showed in 1976 that for some problems, including the
quadratic assignment problem, the corresponding ε-approximation1 problem is
also not polynomially solvable (If P 6= NP is true.). The graph matching
problem we are concerned with in chapter 4 is known to be NP-complete [50]
as it can be stated as the quadratic assignment problem.
In chapter 5 we end up with an indefinite quadratic integer optimization prob-
lem which is also NP-hard [50] as Pardalos and Vavasis showed in [112] that
indefinite quadratic programs are NP-hard problems, even if the quadratic pro-
gram is very simple.

When dealing with approximations to the combinatorial graph matching prob-
lems one should keep in mind that the original problems are nearly impossible
to solve in reasonable time.

2.4 Terminology and Mathematical Preliminaries

In the following we list the notation followed by some mathematical basics that
are used throughout this thesis.

2.4.1 Notation

In this thesis the characters i, j, k and l are usually used as indices. Generally
the lower case characters like x or e refer to column vectors. Capital letters
like X,A and B refer to matrices. Greek letters like α, β and γ are used to
represent scalar values.

Sets

R
n n-dimensional real vectors

R
m×n m× n dimensional real matrices
Sn symmetric n× n matrices
Sn
+ positive semidefinite n× n matrices: Sn

+ = {X ∈ Sn|X º 0}
O orthogonal matrices X, i.e. X>X = XX> = In
E matrices with unit row and column sums
N non-negative matrices (i.e. non-negative elements)
Π permutation matrices Π = O ∩ E ∩ N
M matching matrices

1A ε-approximate solution is a solution which has a fixed maximum deviation from the
optimum.
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Vectors and Matrices

e vector of all ones: e = (1, . . . , 1)>

X> transpose of the matrix X
In n× n unit matrix
Enn n× n matrix of all ones: Enn = ee>

Operators

Tr[X] trace of the matrix X : Tr[X] =
∑n

i=1 Xii

X • Y inner product of two matrices X,Y : X • Y = Tr[X>Y ]
A⊗B Kronecker product of A and B
A ◦B Element wise Hadamard product: (A ◦B)ij = AijBij

‖X‖ Frobenius norm of the matrix X: ‖X‖ = Tr[X>X]1/2

vec[X] vector obtained by stacking the columns of the matrix X
λ(X) vector of the eigenvalues of the matrix X
r(X) vector of the row sums of the matrix X
s(X) sum of all elements of the matrix X
Diag(x) diagonal matrix with the vector x as diagonal elements
diag(X) vector of the diagonal elements of the matrix X

Miscellaneous

δij Kronecker delta: δij = 1 if i = j, and 0 otherwise
A º B Löwner partial order (see e.g. [99]):

the matrix A−B º 0 is positive semidefinite

2.4.2 Operator Definitions

Some of the above less common operator definitions which are used extensively
within this thesis are sketched in more detail in the following:

Operator vec[...]

The operator vec[X] creates a column vector v = vec[X] ∈ R
mn by appending

the columns of the matrix X ∈ R
m×n together. This is explicit shown for a

3× 2 matrix resulting in a vector of dimension 6:

vec[X] = vec









x11 x12
x21 x22
x31 x32







 = (x11, x21, x31, x12, x22, x32)
>

Inner Product •
The inner product (scalar product), A • B of the matrices A ∈ R

m×n and
B ∈ R

n×m can be written as the trace of the matrix multiplication of A> and
B.

A •B = Tr[A>B]
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For calculations the following property of the trace is very useful:

Tr[AB] =
m∑

i

n∑

j

AijBji =
n∑

j

m∑

i

BjiAij = Tr[BA]

It says that the matrices within the argument of the trace can be cyclic ex-
changed.

Outer/Direct/Kronecker Product ⊗
The direct product C = A ⊗ B, which is also called the Kronecker product,
is the product of every element Aij of the matrix A ∈ R

n×m with the whole
matrix B ∈ R

p×q resulting in the larger matrix C ∈ R
np×mq. The elements of

C are:

Cαβ = AijBkl

with α = p(i−1)+k and β = q(j−1)+ l. An illustrative example for A ∈ R
2×2

and B ∈ R
3×2 is shown here:

A =

(
a11 a12
a21 a22

)

B =





b11 b12
b21 b22
b31 b32





C = A⊗B =

(
a11B a12B
a21B a22B

)

=











a11b11 a11b12 a12b11 a12b12
a11b21 a11b22 a12b21 a12b22
a11b31 a11b32 a12b31 a12b32
a21b11 a21b12 a22b11 a22b12
a21b21 a21b22 a22b21 a22b22
a21b31 a21b32 a22b31 a22b32











Some useful relations we occasional use in this thesis are:

Tr(AB) = vec(A>)>vec(B) (2.1)

vec(AXB) = (B> ⊗A)vec(X) (2.2)

(A⊗B)(C ⊗D) = AC ⊗BD (2.3)

These relations are easily verified by calculation. An extensive background
related to the direct product can be found in the small specialized book “Kro-
necker Products and Matrix Calculus” written by Graham [56].

2.5 Basic Convexity Concepts

As we utilize convex optimization problems to approximate our graph match-
ing problems we summarize a few basic facts about convex functions and
sets. For more complete surveys along with several proves we refer to to
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[20, 10, 109, 103, 106, 12] where especially in [20, chapter 2 and 3] convex
sets and convex functions are discussed at great length. Convex relaxation
and the important convex optimization problems which appear in this work are
discussed in chapter 3.

2.5.1 Convex functions and sets

To ensure the attractive property that every local optimum is also a global
optimum, convex optimization problems require, beside the convexity of the
objective function, a convex domain. Therefore we recapitulate convex func-
tions and convex sets and provide some examples of convex sets:

Convex functions

The real valued function f(x), x ∈ R
n is convex if for any two points x1, x2 ∈ R

n

the following condition is true:

f(λx1 + (1− λ)x2) ≥ λf(x1) + (1− λ)f(x2) λ ∈ [0, 1] (2.4)

That means that the function values f(x) on the line segment x ∈ (λx1 + (1−
λ)x2), λ ∈ [0, 1] between any two points x1, x2 ∈ R

n are not above the line
segment that is defined by the two end points (x1, f(x1)) and (x2, f(x2)). An
example for a convex function is shown in figure 2.5.

x1 x2

f(x)

x

(x1, f(x1))

(x2, f(x2))

Figure 2.5: Example for a convex function: The function values f(x) between
any two points x ∈ (λx1 + (1 − λ)x2), λ ∈ [0, 1] are below the corresponding
line segment.

Convex sets

The set K is convex if for any two points x1 and x2 within the set K the line
segment between the points is part of the set.

λx1 + (1− λ)x2 ∈ K ∀λ ∈ [0, 1] (2.5)

Figure 2.6 shows both an example for a 2D convex set and an example for a
non-convex set.

Note that the solution set of a system of linear equations defines a convex set
(see e.g. [20]).
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Figure 2.6: Left: Convex set Right: Non convex set (The shown line seg-
ment between two points of the set is not full contained in the set.)

Convex Cone

An important convex set called cone or convex cone is a set K which satisfies
the following relations:

x+ y ∈ K for x, y ∈ K

λz ∈ K for z ∈ K, λ ≥ 0 (2.6)

That means that a cone is a closed set under addition and multiplication with
a positive scalar. The set of points in the nonnegative orthant and the set of
positive semidefinite matrices are two known examples for cones.
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Figure 2.7: Left: Convex cone in R2 Right: Surface of the positive semi-
definite matrix cone of 2× 2 symmetric matrices.

Recall that the set of positive semidefinite matrices Sn
+ is the set of symmetric

n×n matrices which are positive semidefinite: Sn
+ = {X ∈ Sn|X º 0} and that

a positive semidefinite matrix can for example be characterized by the following
property:

xTQx ≥ 0 for all x ∈ R
n, Q ∈ Sn

+

Figure 2.7 shows two examples of convex cones. The first is a cone in R2

which can be represented as K = {λ1(1, 3)
> + λ2(2, 1)

>|λ1, λ2 ≥ 0}. The
second visualized the surface of the positive semi-definite matrix cone of 2× 2
symmetric matrices
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(
a c
c b

)

∈ S2
+



Chapter 3

Combinatorial Relaxation and

Convex Optimization

In this chapter we are concerned with methods of relaxations and some im-
portant facts about convex optimization. Together they build the basis of the
convex relaxation approaches which are used to cope with the combinatorially
hard graph and subgraph matching problems in chapter 4 and chapter 5. In sec-
tion 3.1 we define what is meant by the term relaxation in this thesis and discuss
why it represents an approximation of the original optimization problem. Then
we outline how approximations can be obtained by Lagrangian Relaxation. La-
grangian duality and the convex optimization problems appearing within this
thesis are the subject of section 3.2 and section 3.3. Appropriate methods to
solve convex optimization problems are summarized in section 3.4. In section
3.5 we explain how we can efficiently compute a close feasible 0/1-integer solu-
tion to a real valued approximation of a matching.

3.1 Relaxations and Lower Bounds

Relaxation is a technique which can be used to obtain bounds to the optimum
values of optimization problems. Moreover, it provides a method to compute
approximate solutions for optimization problems which includes especially in-
tractable combinatorial optimization problems. Note that a convex relaxation

allows the efficient computation of the lower bounds.

Before turning to convex relaxation approaches we discuss the relaxation of
general minimization problems where a relaxation leads to lower bounds. Re-
laxations are mainly based on a reasonable enlargement of the feasible set of
an optimization problem, but can also involve a suitable change of the objec-
tive function. Consider the following general minimization problem where the
function f(x) ∈ R has to be minimized over the set x ∈ X which is assumed to
be a subset of X̂:

minimize f(x)

subject to x ∈ X ⊂ X̂ (3.1)

27



28 Chapter 3. Combinatorial Relaxation and Convex Optimization

A relaxation of the problem (3.1) can formally be written as

minimize f̂(x)

subject to x ∈ X̂ ⊃ X (3.2)

f̂(x) ≤ f(x) ∀x ∈ X

where the function f̂(x) is constrained not to be larger than f(x) for any x on
the original feasible domain X.

It is easy to see that the global solution of the relaxation (3.2) represents always
a lower bound to the minimum of the original problem (3.1): if we assume that
f̂(x) = f(x) for x ∈ X, then the complete original problem is embedded in
the relaxation (3.2) which is minimized over the enlarged domain x ∈ X̂ ⊃ X.
Therefore the minimum of the relaxed problem must be at least as low as the
minimum searched over the original feasible set. Note that f̂(x) can be changed
in an arbitrary way on x ∈ X̂ \ X. If the objective function f̂(x) is changed
on x ∈ X but the relation f̂(x) ≤ f(x) on x ∈ X is valid, then the relaxed
solution can by definition not be higher as in the case where f̂(x) = f(x) for
x ∈ X. Therefore the global solution of the relaxation (3.2) provides always a
lower bound for the original problem (3.1). Note that this can be transferred
straight forward to maximization problems, where the relaxation leads to an
upper bound.

The calculation of lower bounds is often embedded into branch and bound
frameworks for NP-hard optimization problems (see e.g. [21, 110, 60, 45]), but
in the worst case these algorithms have exponential time complexity like their
original counter-part. Therefore we decided in this work to utilize the global
solutions of our relaxations as a direct approximation for the combinatorial
solutions.

3.1.1 Interpretation of the Relaxation as Approximation

A natural and desired relaxation leaves the objective function on the original
domain unchanged. That means that f̂(x) = f(x) holds for x ∈ X in the
relaxation (3.2) which is minimized over the enlarged set x ∈ X̂ ⊃ X. For
combinatorial problems like our 0/1-graph matching problems the feasible do-
main of discrete decision variables x ∈ {0, 1}n is enlarged to the domain of
real values x ∈ R

n. If by chance, the optimal solution x∗ ∈ R
n of the relaxed

problem is also a feasible solution for the original problem (x∗ ∈ {0, 1}n ⊂ R
n)

then x∗ must be the optimal solution for the original problem too. In such a
case the relaxation approximates the original problem as close as possible. For
slightly less tight relaxations it is likely that the relaxed solution x∗ still shows
the characteristics of the combinatorial solution.

This behavior and the fact that the original problem is embedded within the
relaxation justifies the assumption that the solution x∗ can be interpreted as
an approximation for the integer solution of the original problem.
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Unfortunately, the relaxed solution can not be expected to result in a feasible
solution of the original problem but a post-processing step which computes a
feasible integer solution close to the approximation makes it likely that the so-
lution is close to the global combinatorial optimum. A measure for the accuracy
of an approximation is therefore a measure which indicates how close the lower
bound is to the combinatorial optimum. In our cases we utilize linear programs
as discussed in section 3.5 to find appropriate 0/1-integer solutions close to the
approximated solution.

3.1.2 Lagrangian Relaxation

A well known relaxation is the Lagrange relaxation which appeared first in
1970 in the today known form in the publications by Held and Karp [66, 67]
where the authors proposed a branch and bound algorithm for the traveling
salesman problem. Lagrange relaxation has its name since 1974 from Geoffrion
[52] and provides a systematic way to compute an appropriate dual problem
which bounds the given primal optimization problem. Consider the following
general minimization problem where we assume f(x), gi(x) and hj(x) to be real
valued differentiable functions R

n 7→ R:

min f(x)

subject to gi(x) = 0, i = 1, ..., l (3.3)

hj(x) ≤ 0 j = 1, ...,m

x ∈ R
n

We refer to this problem as the primal program. The Lagrange function or
Lagrangian L(x, λ, ν) which is associated to (3.3) is a function of the primal

variable x and of the dual variables λ ∈ R
l and ν ∈ R

m where λi 6= 0 and
νi ≥ 0:

L(x, λ, ν) = f(x) +
l∑

i=1

λigi(x) +
m∑

j=1

νjhj(x) = f(x) + λ>g(x) + ν>h(x) (3.4)

The components λi and νj of the vectors λ and ν are called Lagrangian multi-

pliers. The dual function is defined as the minimum of the Lagrange function
over the primal variables and is thus a function of the dual variables λ and ν:

Θ(λ, ν) = inf
x∈Rn

L(x, λ, ν) (3.5)

Note that the dual function (3.5) is concave in the dual variables, regardless of
the convexity properties of f(x) since it is the infimum of a family of concave
functions (see e.g [20]). The non-positive term v>h(x) guarantees that L(x, λ, ν)
is lower than or equal to the original objective function over the original feasible
set. Therefore the Lagrangian relaxation (3.5) indeed provides a lower bound
to the minimization problem (3.3).
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Finding the best and therefore largest lower bound (3.5) results in the following
so called dual problem which is defined as the maximization of the dual function
Θ(λ, ν):

sup
λ∈Rl,ν∈Rm

Θ(λ, ν) (3.6)

Until now we did not make any convexity assumptions about the problem for-
mulation which means that Lagrangian relaxation provides lower bounds also
for non-convex problems.

3.1.3 Convex Relaxations

The purpose of relaxation methods is often to obtain a convex continuous op-
timization problem for otherwise intractable minimization problems. The con-
vexity allows the efficient computation of the global solution of the relaxation
which represents the approximation of the original problem.
Sometimes the convexity of a function is hidden in the original representa-
tion space and a transformation can be found to obtain an equivalent convex
function (see e.g. [136]). A framework for convex relaxations of polynomial op-
timization problems over cones can be found in [89]. It covers a wide range of
optimization problems such as linear and quadratic 0/1-integer programs, non-
convex quadratic programs and bilinear matrix inequalities. In this thesis we
are concerned with the following two approaches to obtain convex relaxations
for graph and subgraph matching problems:

• In chapter 4 we utilize a non-trivial convex relaxation to a weighted
graph matching approach. This particular convexification was obtained
by Anstreicher and Brixius [6, 21] for quadratic assignment problems and
results in a convex quadratic optimization problem.

In contrast to this particular convexification scheme the second convexification
is based on a more generally applicable convexification scheme.

• Semidefinite programming has turned out to represent a powerful tool to
approximate NP-hard binary optimization problems. In chapter 5 we use
a widely applicable lifting scheme to approximate our subgraph matching
approach by a (convex) semidefinite optimization problem.

In the following we shortly outline the optimality conditions for convex opti-
mization problems and list the types of convex optimization problems we are
concerned with in this thesis.

3.2 Optimality Conditions

The primal-dual pairs of optimization problems obtained by Lagrangian relax-
ation gives rise to the Lagrangian duality theory which provides the framework
that lies behind many efficient algorithms for convex minimization problems.
We present only the main results of the Lagrangian duality theory and refer for
a thoroughly theoretical discussion to [20, 10, 94, 106].
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3.2.1 Lagrangian Duality

Denoting the optimal value of the primal problem (3.3) with p∗ and the optimal
value of the dual problem (3.6) with d∗ an important relation between these
two is defined by the difference

p∗ − d∗

which is called the duality gap.

Weak Duality

Due to the fact that the Lagrangian relaxation (3.6) provides a lower bound to
(3.3) we have the following important inequality:

d∗ ≤ p∗

This property is called weak duality and guarantees a non-negative duality gap.
Note that this relation is independent from any convexity assumption of the
primal problem.

Strong Duality

If the duality gap is zero

d∗ = p∗

then strong duality holds which means that the best bound that can be obtained
is tight. In general strong duality does not hold but if the primal problem is
convex there are mild conditions under which strong duality holds.

Slater’s Condition

Slater’s theorem says that strong duality holds if the primal program has a
strict feasible point which means that there is a feasible point such that all
inequalities are hold with strict inequalities. If the constraints are affine then
strong duality holds under the weaker condition that a feasible point exists. A
proof that strong duality holds when the primal problem is convex and Slater’s
condition holds can, for example, be found in [20, §5.3.2].

For convex optimization problems that satisfy Slater’s condition, a certificate
for optimality is a primal-dual pair of variables for which the Karush-Kuhn-
Tucker-constraints hold.

3.2.2 Karush-Kuhn-Tucker Conditions

It is not so long since the optimality conditions for inequality constraint prob-
lems were published by Kuhn and Tucker [93] in 1951. They were disclosed
first by Karush in his M.S. thesis [82] in 1939 and are nowadays referred to as
Karush-Kuhn-Tucker (KKT) conditions.
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Consider the minimization problem (3.3) with a differentiable object function
and differentiable constraint functions along with the associated Lagrangian
(3.4). A pair of primal and dual points x∗ and (λ∗, ν∗) are stationary points if
the following Karush-Kuhn-Tucker conditions are satisfied:

Primal feasibility:

gi(xs) = 0, i = 1, ..., l ; hj(xs) ≤ 0, j = 1, ...,m

Stationarity:

∇L(x, λ, ν) = ∇f(x)|x=xs +
l∑

i=1

λi∇gi(x)|x=xs +
m∑

j=1

νi∇hi(x)|x=xs = 0 (3.7)

Non-zero,Non-negativity:

λi 6= 0 , νi ≥ 0 (3.8)

Complementarity:

ν>h(x) = 0

For convex optimization problems the KKT conditions are sufficient optimality
conditions. A proof can for example be found in [10].

3.3 Convex Optimization Problems

Due to the nice properties of convex optimization problems which allow the
efficient computation of the global solution under mild conditions, our aim is to
formulate the graph matching approximations and related problems as convex
optimization problems.

3.3.1 General Convex optimization problems

A mathematical programming problem is called a convex optimization problem

if it consists of a convex function f(x) that is minimized on a convex domain
X. Therefore, the optimization

min f(x) (3.9)

s.t. x ∈ X

is convex if f(x) and X are convex. The function f(x) is called the objective

function. A point x is feasible if it is in X e.g. it satisfies the constraints that
are used to define X. The point x∗ ∈ X is an optimal solution if f(x∗) ≤ f(x)
for all x ∈ X.
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3.3.2 Convex optimization problems in this thesis

In particular we are concerned with three types of convex optimization problems
in this thesis: linear programming, quadratic programming and semidefinite
programming. We shortly summarize the appearance of these programs within
this work:

• Linear programming is utilized in this work in multiple ways. It appears in
connection with the computation of maximal bipartite matching between
two point sets. Very similar programs are used as post-processing to
compute feasible 0/1-integer solutions from real valued approximations of
the graph and subgraph matching problems. Furthermore linear program-
ming is used within the computation of the so called earth mover distance,
which is used to compute the similarity between grey-value-histograms of
image parts.

• A convex quadratic program with linear constraints is the result of the
non-trivial convex relaxation of a combinatorial weighted graph matching
formulation in chapter 4.

• In chapter 5 the relaxation of a quadratic 0/1-integer program which
models a subgraph matching approach results in a (convex) semidefinite
programming problem.

These three types of convex optimization problems are summarized below along
with their dual counter-parts which are derived by Lagrangian relaxation.

3.3.3 Linear Programming

The standard form of the linear programming (LP) problem is the following
optimization problem:

min q>x (3.10)

s. t. Ax = c

x ≥ 0

Here the variables q ∈ R
n and c ∈ R

m are vectors and A ∈ R
m×n is a matrix.

Introducing the Lagrange multiplier ui for the equality constraints and si ≥ 0
for the inequality constraints the corresponding Lagrange function reads:

L(x, u, s) = q>x− u>(Ax− c)− s>x

= (q> − u>A− s>)x+ uT c

The dual function is

Θ(u, s) = min
x

L(x, u, s) = min
x

((q> − u>A− s>)x+ uT c) ,

and from the stationarity conditions ∇xL(x, u) = 0 one finds a non-trivial
minimum only if (q> − u>A − s>) = 0. Therefore we have the following dual
function:
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Θ(u, s) =

{
uT c if (q> − u>A− s>) = 0
−∞ otherwise

Making the dual constraints explicit, we get the following known form of the
dual problem:

max uT c (3.11)

s. t. A>u+ s = q

s ≥ 0

3.3.4 Quadratic Programming

The quadratic program with linear constraints we are concerned with in this
thesis have the following form

min
1

2
x>Qx+ c>x (3.12)

s. t. Ax = b

Bx ≤ d

x ≥ 0

where x ∈ R
n is a vector and Q ∈ R

n×n is a matrix. The linear constraints
are defined by the matrices A ∈ R

m×n, B ∈ Rp×n and the vectors b ∈ R
m and

d ∈ R
p. As the linear constraints already represent a convex set, the matrix Q

has to be positive semidefinite to represent a convex optimization problem (see
e.g. [106, §1.3.2]).
Without loss of generality we can assume that Q is a symmetric matrix, as the
replacement of an unsymmetrical matrix Q̂ by the symmetric matrix Q = 1

2(Q̂+

Q̂>) leaves the quadratic objective function unchanged. The corresponding
Lagrangian (v ≥ 0,w ≥ 0) is

L(x, u, v, w) =
1

2
x>Qx+ c>x− u>(Ax− b)− v>(d−Bx)− w>x

= (
1

2
x>Q+ c> − u>A+ v>B − w>)x+ uT b− vTd ,

where u ∈ R
m,v ∈ R

p and w ∈ R
n with v, w ≥ 0. The stationarity condition

∇L(x, u, v, w) = x>Q+ c> − u>A+ v>B − w> = 0

lead us to the following dual function

Θ(u) = min
x≥0

L(x, u, v, w)

=

{
uT b− vTd− 1

2x
>Qx if A>u−B>v −Qx+ w = c

−∞ otherwise

and we obtain the dual problem by making the constraints explicit:
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max uT b− vTd− 1

2
x>Qx (3.13)

s. t. A>u−B>v −Qx+ w = c

v, w ≥ 0

3.3.5 Semidefinite Programming

The standard (primal) semidefinite program can be stated as

min Tr[QX] (3.14)

s.t. Tr[AiX] = ci for i = 1, ...,m

X º 0 ,

where Q,Ai ∈ R
n×n and X ∈ R

n×n are matrices and ci ∈ R, i = 1, . . . ,m are
scalar values. The matrices can be assumed to be symmetric matrices as every
non symmetric matrix M̃ ∈ R

n×n can be made symmetric by M = 1
2(M̃ +

M̃>) without changing the inner product Tr[MX] = Tr[M̃X]. Introducing the
Lagrange multiplier ui ∈ R, i = 1, . . . ,m and S ∈ R

n×n, S º 0, the Lagrange
function L(X,u, S) is:

L(X,u, S) = Tr[QX]−
m∑

i=1

ui(Tr[AiX]− ci)− Tr[SX]

= Tr[(Q−
m∑

i=1

uiAi − S)X] + c>u

The stationarity condition

∇XL(X,u, S) = Q−
m∑

i=1

uiAi − S = 0

reveals that the dual function is

Θ(u) = min
X

L(X,u) = min
X

Tr[(Q−
m∑

i=1

uiAi − S)X] + c>u

=

{
c>u if Q−∑m

i=1 uiAi − S = 0
−∞ otherwise .

Making the implicit constraints explicit, the dual semidefinite program reads:

max c>u (3.15)

s.t. Q−
m∑

i=1

uiAi − S = 0

S º 0
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The comparison of the primal-dual pair of semidefinite programs (3.14) and
(3.15) with the linear programs (3.10) and (3.11) reveal that the semidefinite
program can be seen as generalized linear programs where the non-negativity
constraints in the linear program are replaced by semidefinite constraint on the
matrix variables in the semidefinite programs.
Good survey articles for SDP include Vandenberghe and Boyd [140] the “Hand-
book of Semidefinite Programming“ written by Wolkowicz, Saigal and Vanden-
berghe [146] and Helmberg [69].

3.4 Solving Convex Optimization Problems

Although the simplex method, invented by George Dantzig [35] in 1947, is ef-
ficient for most practical linear optimization problems, it was shown e.g. by
Klee and Minty [88] that there exist cases where the simplex algorithm needs
exponential time in terms of the problem size. Khachiyan’s ellipsoid algorithm
[84] in 1979 was the first worst case polynomial time algorithm for linear pro-
gramming, but for practical purposes it converges too slow. The publication of
an efficient interior point algorithm for linear programming by Karmarkar in
1984 [80] has lead to the variety of now existing interior point algorithms.
The largest progress was made by extending interior point methods for linear
programming to semidefinite programming which was proposed independently
by Nesterov and Nemirovski [109] and Alizadeh [2] in 1994 and 1995.

3.4.1 Interior Point Methods

In recent years several interior point algorithms have been developed and the
author of [48] divides interior point algorithms into three categories: affine
scaling methods, potential reduction methods and central trajectory methods.
The interior point methods based on the central trajectory are today the most
used algorithms in practice and are also considered as most useful in theory.
Therefore we sketch the main idea of these approaches: The basic idea of central
path algorithms is to find a sequence of strictly primal-dual feasible points that
converge along a central trajectory to the solution until the duality gap becomes
smaller than a predefined threshold ε > 0. Usually a barrier term with a weight
µ > 0 is added which keeps the points in the interior of the feasible region
which is with increasing progress successively reduced. The most important
property of interior point algorithms is that these algorithms represent worst
case polynomial time algorithms.

3.4.2 Solver for Convex Optimization Problems

In this thesis we applied standard software to compute the arising convex op-
timization problems. Many solvers for convex linear, quadratic or positive
semidefinite optimization problems are available freely or as commercial prod-
ucts.

• To solve the linear programs that appeared within this thesis we applied
the CPLEX optimizer [76] which uses either a modified simplex method
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or a primal-dual predictor corrector interior point method. An example
for a freely available linear programming solver which is based on the
simplex algorithm is LP-SOLVE [14].

• For the convex quadratic optimization problems which arise in chapter 4
we have used a freely available interior point solver which was developed
by Zhang and Ye [148]. This interior point algorithm is designed to solve
convex quadratic programs that are linearly constrained.

• To solve the semidefinite programs within this work we have applied the
interior point solvers CSDP [18],PENSDP [92] and DSDP [13]. A bench-
marking for this and several other SDP solvers can be found in [104].

3.5 Computing Integer Solutions for Assignments

The graph matching problems we are concerned with in chapter 4 and chapter
5 can be stated as combinatorial optimization problems. In particular they can
be posed as optimization problems with 0/1-integer variables. A large fraction
of such integer optimization problems are known to be NP-hard. Even general
linear programs that underly the restriction that the feasible domain is integral
are usually NP-complete problems [50]. As the approximations computed by
the convex relaxations are usually not feasible for the original problem a post-
processing step is required to obtain feasible 0/1 solutions. Luckily we can
exploit some circumstances that allow the efficient computation of a feasible
0/1-integer solutions for our graph matching problems.

Integer Programming by Linear Programming

We can compute feasible 0/1-integer solutions which are close to real valued
approximations of our graph matching problems by linear programming. This
approach exploits the fact that feasible 0/1-integer solutions of our graph match-
ing problems always represents a bipartite matching.
Computing an assignment (bipartite matching) represented by a matching ma-
trix X ∈Mn×m which fits best to a real valued approximation Q ∈ R

n×m of the
matching matrix can be stated as the following integer optimization problem:

max
X∈M

Tr[Q>X] = max
X∈M

n∑

i

m∑

j

QijXij (3.16)

This problem maximizes the sum of the elements Qij that are “selected” by the
matrix elements Xij = 1 of the 0/1-matching matrix X. Recall from section
2.2.2, that the matching constraints for X ∈Mn×m,m ≤ n are:

Xij ∈ {0, 1} for i = 1, . . . , n , j = 1, . . . ,m
n∑

i=1

Xij = 1 for j = 1, . . . ,m (3.17)

m∑

i=1

Xij ≤ 1 for i = 1, . . . , n
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This means that all column sums of X are one while the row sum can be either
1 or 0. Note that in the case n = m also the rows of X sums up to exactly 1 and
X represents a permutation matrix. The interesting fact is that the problem
(3.16) can be stated with Tr[Q>X] = vec[Q]>vec[X] = q>x as the following
linear program:

maximize q>x

subject to Ax = e (3.18)

Bx ≤ e

x ≥ 0

Here the constraints reflect the row and column sum constraints of (3.17). The
combined constraint matrices A ∈ R

m×nm and B ∈ R
n×nm turn out to represent

a totally unimodular matrix (B>, A>)> ∈ R
(n+m)×nm. The totally unimodular

matrix (B>, A>)> along with the integer valued data e guarantees that the
solution x∗ of (3.18) is integral (see e.g. for proves [128, 91]) and results in a
matching matrix if we interpret the solution vector x∗ = vec[X∗] as matrix X∗

again. A definition of a totally unimodular matrix is given here:

• A matrix A is totally unimodular if every sub-determinant of A is 0,
+1, or −1. A sub-determinant is the determinant of a squared sub-matrix
of A which originates by deleting rows and columns of A. It follows that a
totally unimodular matrix can have only elements with the values 0, +1,
or −1.

For n = 4 and m = 3 the combined constraint matrix (B>, A>)> looks like
the matrix shown on the right side of figure 3.1. Seymour [130] showed that

(B>, A>)> =













1 0 0 0 1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1 0 0 0 1
1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 1













Figure 3.1: Example for a bipartite graph with its incidence matrix. Inci-
dence matrices of bipartite graphs are always totally unimodular.

all totally unimodular matrices can be constructed by so called network ma-
trices (see e.g.[32]) and two further matrices that are totally unimodular. A
polynomial-time total unimodularity test based on this result can be found in
[128].
The fact that the matrix (B>, A>)> is totally unimodular can be seen more
easily as an incidence matrix of an undirected bipartite graph is always totally
unimodular (see e.g for a proof [91, Theorem 5.24]). An appropriate bipartite
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graph that has an incidence matrix that is equal to the combined constraint
matrix (B>, A>)> for n = 4 and m = 3 is shown in figure 3.1.
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Chapter 4

Weighted Graph Matching

In this chapter we study a specific part of an object recognition problem. In
particular our aim is to find good matchings between relational structures that
represent object views and which are assumed to be represented as weighted
graphs. The discussed method is based on the observation that special weighted
graph matching problems can be reformulated as quadratic assignment prob-
lems. We investigate the applicability of a recently developed convex quadratic
relaxation approach for quadratic assignment problems to graph matching prob-
lems in pattern recognition.

4.1 Problem Statement

The primary purpose of this chapter is to investigate the applicability of a con-
vex relaxation approach to inexact graph matching problems which may occur
in visual object recognition systems. An example for a (weighted) graph repre-
senting an object view is shown in figure 4.1. The edge weights can be assumed

Figure 4.1: Image features and relations for an object view using features
obtained with the FEX–system (cf. [47, 46]). The shown graph has |V | = 38
nodes.

to be any distance or similarity measure between adjacent feature vectors. The

41
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aim is to find corresponding nodes between two view graphs based on the knowl-
edge of the structure and the edge weights. It is well known that general graph
matching problem are NP-hard (see section 2.3 or, e.g., [50]). For graphs like
the one in figure 4.1, an exhaustive search has to check the impractical number
of about 38! ≈ 5 · 1044 possible permutations of vertices. Therefore one has to
resort to approximation algorithms to obtain good suboptimal solutions. The
relaxation approach we are concerned with to tackle this problem was devel-
oped by Anstreicher and Brixius [5, 21] for the quadratic assignment problem
(QAP). Before we define the graph matching problem in section 4.1.2 we briefly
introduce the quadratic assignment problem in the following section.

4.1.1 The Quadratic Assignment Problem

The quadratic assignment problem can be interpreted as the problem to assign
n factories to n places. The factories have to exchange a fixed amount of
material. This results in a total cost which depends on the building cost, and a
cost related to the exchanged material and the distance between the factories.
The aim is to minimize the total cost. In figure 4.2 an example for a quadratic
assignment problem is shown. The three factories should be placed on the three
different places. Defining the flow matrix A, the distance matrix B and the cost
matrix C for the building costs, the problem can be written as

min
X∈Π

f(X) = min
X∈Π

Tr[AXBX> + CX>]. (4.1)

The objective function f(X) has to be minimized over all possible assignments
represented by the set of permutation matrices Π ⊂ R

n×n.

5

1

2

3

14

25

17

2 3

1

DistanceFlow

3

1

Figure 4.2: Small example of the quadratic assignment problem (QAP). The
assignment of the factories to the places should minimize the total cost.

The QAP defines an important research field in combinatorial optimization.
We refer to [24, 113] for surveys, and for more recent developments to [21, 120].

4.1.2 Graph Matching as QAP

We consider undirected weighted graphsG = (V,E,w) with nodes V = {1, . . . , n}
and edges E ⊂ V ×V . The weight function w : E → R

+
0 encodes a similarity or
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dissimilarity measure between pairs (i, j) of nodes. In image applications the
nodes of the graph represent the features extracted from the image. The (dis-)
similarity measure together with the structure of the graph is represented by the
adjacency matrix AG: (AG)ij = wij , i, j = 1, . . . , n. The adjacency matrices
we are concerned with are symmetric A>G = AG, since the similarity measure is
symmetric wij = wji.
Let G = (VG, EG, wG) and H = (VH , EH , wH) denote two given graphs with
the same size n = |VG| = |VH |. An example for two similar graphs we would
like to match is shown in figure 4.3. For illustration, the weights of the edges
are proportional to the Euclidean distance between incident nodes.
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1.70

1.72

2.44

2.60

4.49

3.21

1

4

7

8

5

6

2

3

2.92

2.58
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0.76
2.40

3.45

3.82

1.74

2.10

1.58

1.56

1.34

1.93

Figure 4.3: Example for two small graphs G and H with |VG| = |VH | = 8
to be matched. For illustration, the edge weights are proportional to the
Euclidean distance between incident nodes.

In order to match these two graphs, we wish to compute a permutation Φ : VG 7→
VG of the nodes of G such that the following distance measure is minimized:

n∑

i,j=1

(wG,Φ(i)Φ(j) − wH,ij)
2 (4.2)

This measure is reasonable as for isomorphic graphs a permutation Φ exists
such that the minimum value 0 is attained by mapping corresponding nodes
to each other. Therefore it is likely to be an appropriate objective function if
the two graphs are not too different. For such graphs the minimization of (4.2)
prefers assignments which map edges with a similar edge weight to each other.
In general, this measure favours mappings which assigns the edges with the
largest weight to each other. The permutation Φ represents a mapping between
the nodes of the first graph and the nodes of the second graph. Representing
the permutation Φ by a permutation matrix X ∈ Π (see section 2.2.2), the cost
function (4.2) takes the following form in terms of the adjacency matrices of G
and H [139]

f(X) = ‖XAGX> −AH‖2 , (4.3)

where ‖ · ‖ denotes the Frobenius norm.
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As before, for isomorphic graphs the minimum value f(X∗) = 0 is attained by
a mapping represented by a permutation matrix X∗ which maps corresponding
nodes to each other. For features VG, VH supplied by an image pre–processing
step, it is unlikely that G and H are isomorphic. In this case we define as the
best match the permutation matrix X∗ which minimizes f(X) over X ∈ Π.
Thus, the graph matching problem formally reads:

f(X∗) = min
X∈Π

‖XAGX> −AH‖2 (4.4)

The minimization problem (4.4) is closely related to the quadratic assignment
problem (QAP) introduced in section 4.1.1:

min
X∈Π

Tr[AXBX> + CX>] (4.5)

This can be seen by reformulating the graph matching objective function as
follows:

f(X) = ‖XAGX> −AH‖2 = Tr[(XAGX> −AH)2]

= Tr[XAGX>XA>GX>] + Tr[AHA>H ]− 2Tr[AHXA>GX>] (4.6)

= CG + CH − 2Tr[AHXA>GX>]

Besides the term CH = Tr[AHA>H ], the term CG = Tr[XAGX>XA>GX>] turns
out to be constant in the case of equally sized graphs, as XX> = X>X = I
holds for permutation matrices. Therefore, we have CG = Tr[AGA>G]. The
assumption of equally sized graphs was also made by Umeyama in [139] where
a spectral approach for weighted graph matching is described. The issue of
extending the below explained technique to graphs of different size (subgraph
matching) is discussed in section 4.8.

As a result, dropping the constant terms CH and CG, we recognize the graph
matching problem (4.4) as a special case of the quadratic assignment problem
(4.5) with A = AH , B = −AG and C = 0. We therefore consider the following
homogeneous quadratic assignment problem:

(QAP ) min
X∈Π

Tr[AXB>X>] (4.7)

We note again that (4.2) corresponds to (4.7) only if |VG| = |VH |. We make this
simplifying assumption in order to assess the convex relaxation techniques which
have been developed for the quadratic assignment problem for the weighted
graph matching problem in computer vision.

To demonstrate that the optimization problem (4.4), and therefore (4.7), is a
reasonable graph matching approach, figure 4.4 depicts the matching obtained
by the global minimum of (4.7) for the graphs shown in figure 4.3. The cor-
responding nodes are linked by red colored edges. It can be seen that the
computed matching meets our expectation for this graph matching problem.
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Figure 4.4: The matching obtained by solving the combinatorial minimiza-
tion problem (4.4) or equivalently (4.7) for the graph matching example in
figure 4.3. The found corresponding nodes are linked by red colored edges.
The result is in accordance with the desired matching.

4.2 Relaxations and Lower Bounds

To approximate the combinatorial optimization problem (4.7) which is equiv-
alent to the graph matching problem (4.4), several relaxations can be applied.
In this section, we consider relaxations of (4.7) based on the constraints that
characterize permutation matrices. To this end, we first characterize the prop-
erties of permutation matrices before we discuss three relaxation approaches in
detail. We will see that an unique ranking of these approaches can be obtained
based on the corresponding lower bounds.

4.2.1 Permutation Matrices and Relaxations

Possible natural relaxations for optimization problems which involve the set of
0/1-valued permutation matrices Π can be found by studying the properties
which characterize this set.

To see which constraints can be used for relaxation we summarize the properties
of permutation matrices X ∈ Π.

• Permutation matrices are orthogonal matrices: X ∈ O

XX> = X>X = I

• As already discussed in section 2.2.2 permutation matrices have unit row
and column sums, which is also known as the property that permutation
matrices are doubly stochastic: X ∈ E

Xe = X>e = e

• The elements of permutation matrices are non-negative: X ∈ N

Xij ≥ 0 ∀i, j
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• Permutation matrices have 0/1-elements: X ∈ Z

X2
ij −Xij = 0 ∀i, j

With these properties permutation matrices are completely characterized ([59,
149]):

Π = O ∩ E ∩ N = E ∩ Z = O ∩ Z. (4.8)

This gives rise to various relaxations. For example, if we drop the constraint
that X has non-negative elements along with the doubly stochastic constraint
we end up with the relaxation X ∈ O ⊃ Π. This orthogonal relaxation is
described in the following section. Next, the relaxation X ∈ O ∩ E , which is
based on a projection, is discussed. Finally the convex relaxation we are mainly
interested in to obtain approximations for the graph matching problem, is the
subject of section 4.2.4. This latter approach results in the tightest bound. In
summary, using all constraints we can write the QAP as

min
X

Tr[AXB>X>]

s.t. XX> = X>X = I

Xe = X>e = e (4.9)

X2
ij −Xij = 0 ∀i, j

Xij ≥ 0 ∀i, j ,

and reasonable relaxations for (4.9) are obtained by dropping one or more of the
characterizing constraints. In the context of the Lagrange formalism (see section
3.1.2) the dropping of some constraints can be seen as Lagrangian relaxation
with the corresponding Lagrange multipliers set to zero.

4.2.2 Orthogonal Relaxation

Relaxing the set of permutation matrices Π to the set of orthogonal matrices
O ⊃ Π, Finke et al. [44] suggested the so–called Eigenvalue Bound (EVB) which
gives the following lower bound for the minimization problem (4.7):

(EVB) min
X∈O

Tr[AXB>X>] = 〈λ(A), λ(B)〉− (4.10)

Here, 〈λ(A), λ(B)〉− denotes the so–called minimal scalar product. This is the
scalar product of the vectors λ(A) and λ(B) containing the eigenvalues of the
adjacency matrices A and B ordered as follows: λ1(A) ≤ λ2(A) ≤ · · · ≤ λn(A)
and λ1(B) ≥ λ2(B) ≥ · · · ≥ λn(B). The matrix X for which the bound (EVB)
is attained can be calculated as well. If U,W ∈ O diagonalize the adjacency
matrices A and B, respectively, and their columns are arranged according to
the order of the eigenvalues mentioned above, then the minimum of (4.10) is
attained at X = UW>. The advantage of this approach is that the matrix
X can explicitly be calculated. However, it turned out that in many cases
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this relaxation yields a bound for the minimization problem (4.7) which is too
weak to be useful in practice. Furthermore it should be noted that X = UW>

is not an unique solution and that the minimum (4.10) is also attained for
matrices X̃ = UDW> where D is a diagonal matrix with diagonal elements
Dii ∈ {1,−1} (see Appendix A.1.2 ). This leads to 2n possible solutions. To
avoid this ambiguity, Umeyama used the matrices |U | and |W | in his graph
matching approach [139] (which is based on the EVB) to obtain an approximate
permutation matrix X = |U ||W |>. Here |U | and |W | denote the matrices with
elements that are the absolute values of the elements of the matrices U and W ,
respectively (cf. section 4.3.1).

4.2.3 Projected Eigenvalue Bound

Hadley et al. [59] improved the lower bound (4.10) by taking into account the
doubly stochastic constraint X ∈ E , in addition to the orthogonality constraint
X ∈ O. To this end, they parameterized relaxed permutation matrices X ∈
O∩E based on (n−1)×(n−1) orthogonal matrices X̂ ∈ O and the relationship

X = V X̂V > +
1

n
E , (4.11)

where E = ee>, and the n−1 columns of the n× (n−1) matrix V form a basis
of the subspace orthogonal to the vector e. Conversely, for any (n−1)× (n−1)
matrix X̂ ∈ O, (4.11) yields a matrix X ∈ O ∩ E . The n × (n − 1) projection
matrix V defined with any basis of {e⊥} can, for example, be calculated using
the following scheme:

V =








a a · · · a a
1 + b b · · · b b
...

... · · · ...
...

b b · · · b 1 + b








with a = − 1√
n

and b = − 1

n+
√
n
.

Using this parameterization, the objective function of the QAP can be rear-
ranged as follows:

Tr[AXB>X>] = Tr[ÂX̂B̂>X̂>] + Tr[DX]− C1 , (4.12)

where Â = V >AV , B̂ = V >BV , D = 2
nr(A)r(B)> and C1 =

1
n2 s(A)s(B). The

vector r(A) = Ae denotes the vector of row sums of the matrix A, and the scalar
s(A) = e>Ae is the sum of all elements in A. The authors of [59] suggested to
optimize the first two terms on the right hand side of (4.12) separately, the first
one over X̂ ∈ O(n − 1), and the second one over X ∈ Π. The latter problem
amounts to solve the linear assignment problem (cf. section 3.5)

LAP(D) = min
X∈Π

Tr[DX] , (4.13)

which can be solved using any linear programming solver. As a result, the fol-
lowing lower bound for the minimization problem (4.7), the so called Projected

Eigenvalue Bound , is obtained:

(PEVB) 〈λ(Â), λ(B̂)〉− + LAP(D)− C1 (4.14)
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However, a major drawback of this bound is that due to the separate bounding
of the two terms in (4.12), a corresponding minimizing matrix X, that can
be used as approximate solution, cannot be computed in general. In [59] the
authors discuss a special case in which it is possible to obtain a matrix X
minimizing both terms. However, the next section shows how one can fully
overcome this drawback by a convex relaxation approach and even achieve a
better lower bound than (4.14).

4.2.4 Convex Relaxation

Following the work of Anstreicher, Brixius and Wolkowicz [5, 21], we focus on a
convex relaxation of the minimization problem (4.7) in this section. The main
motivation for this approach is its ability to compute both a tight lower bound
and the corresponding matrix X where this bound is attained. The explicit
calculation of X is important for us, as we use this result as direct approxima-
tion for the matching of the nodes of the two weighted graphs. In general, this
is not possible for the bound (4.14) because it is obtained by minimizing two
separate terms independently and hence does not lead to a single solution X.

As starting point for the convex relaxation, we reconsider the minimization of
the first term of the right hand side of equation (4.12) over the orthogonal set
O of (n− 1)× (n− 1) matrices X̂:

min
X̂

Tr[ÂX̂B̂>X̂>]

s.t. X̂X̂> = I (4.15)

X̂>X̂ = I

The Lagrangian dual of this problem reads (see Appendix A.1)

max
Ŝ,T̂

Tr[Ŝ + T̂ ]

s.t. Q̂ := (B̂ ⊗ Â)− (I ⊗ Ŝ)− (T̂ ⊗ I) º 0 (4.16)

Ŝ = Ŝ>, T̂ = T̂>

where Ŝ, T̂ , like Â and B̂, are (n − 1) × (n − 1) matrices. Here Q̂ º 0 means
that Q̂ has to be positive semidefinite. The solution for the dual problem (4.16)
can be calculated by an equivalent linear program which can be derived using
the fact that each of the two pairs of matrices Â, Ŝ and B̂, T̂ are simultaneously
diagonalizable by Û and Ŵ , respectively:

max
ŝ,t̂

e>ŝ+ e>t̂ (4.17)

s.t. (λiσj − ŝj − t̂i) ≥ 0 i, j = 1, . . . , n

Here σj and λi denote the eigenvalues of Â and B̂, respectively. As ŝ and t̂ are
vectors with the eigenvalues ŝj and t̂i of Ŝ and T̂ , the matrices Ŝ = ÛDiag(ŝ)Û>

and T̂ = ŴDiag(t̂)Ŵ> can be obtained from (4.17) by linear programming. The
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notation Diag(·) denotes the diagonal matrix with the vector in the argument
on its diagonal. For details concerning the transformation of (4.16) to the linear
program (4.17) we refer to the Appendix A.1.1.

The optimal solution for (4.15), according to (4.10), is

min
X̂∈O(n−1)

Tr[ÂX̂B̂>X̂>] = 〈λ(Â), λ(B̂)〉− (4.18)

The duality gap between the optimal solutions of (4.15) and (4.16) is zero since
interior points exist for both problems (see, e.g., [147, 109] and [7] for an explicit
proof). Hence, the optimal values are the same:

max
Ŝ,T̂

Tr[Ŝ + T̂ ] = 〈λ(Â), λ(B̂)〉− (4.19)

In order to exploit this relationship, we reformulate the objective function in
(4.15) as follows:

Tr[ÂX̂B̂>X̂>] =vec(X̂)>(B̂ ⊗ Â)vec(X̂) = Tr[(B̂ ⊗ Â)vec(X̂)vec(X̂)>]

=Tr[(B̂ ⊗ Â)Y ] = (B̂ ⊗ Â) • Y , (4.20)

where we have used (2.1) and (2.2) and

Y = vec(X̂)vec(X̂)>.

For arbitrary matrices Ŝ and T̂ , and X̂ ∈ O the following equations hold:

Tr[Ŝ] =Tr[ŜI] = Tr[ŜX̂>X̂] = Tr[X̂ŜX̂>] = Tr[IX̂ŜX̂>] = (Ŝ ⊗ I) • Y
Tr[T̂ ] =Tr[T̂ I] = Tr[T̂ X̂IX̂>] = (I ⊗ T̂ ) • Y

Here we have used I = X̂>X̂, the cyclic invariance of the trace, and again (2.1)
and (2.2). Using these relations and assuming that Ŝ and T̂ are feasible for
the dual problem (4.16), a positive semidefinite quadratic form containing Q̂
from (4.16) can be introduced into the objective function Tr[ÂX̂B̂>X̂>]. To
this end, the terms Tr[Ŝ] − (Ŝ ⊗ I) • Y = 0 and Tr[T̂ ] − (I ⊗ T̂ ) • Y = 0
are added to the objective function. Then the positive semidefinite term Q̂ =
(B̂ ⊗ Â)− (I ⊗ Ŝ)− (T̂ ⊗ I) º 0 can be identified. We get:

Tr[ÂX̂B̂>X̂>] = (B̂ ⊗ Â) • Y
= (B̂ ⊗ Â) • Y +Tr[Ŝ]− (Ŝ ⊗ I) • Y +Tr[T̂ ]− (I ⊗ T̂ ) • Y
= Tr[Ŝ + T̂ ] + [(B̂ ⊗ Â)− (I ⊗ Ŝ)− (T̂ ⊗ I)]

︸ ︷︷ ︸

Q̂º0

•Y

= Tr[Ŝ + T̂ ] + Q̂ • Y
= Tr[Ŝ + T̂ ] + vec(X̂)>Q̂vec(X̂)

Choosing Ŝ and T̂ as the optimal solution to (4.16) we obtain with (4.19):

Tr[ÂX̂B̂>X̂>] = 〈λ(Â), λ(B̂)〉− + vec(X̂)>Q̂vec(X̂)



50 Chapter 4. Weighted Graph Matching

Finally, substituting this expression as well as all the non–projected variables
X̂ = V >XV etc. into (4.12), we obtain after an elementary but tedious calcu-
lation (see also [22]) the quadratic formulation:

Tr[AXB>X>] = 〈λ(Â), λ(B̂)〉− + vec(X)>Qvec(X) (4.21)

A comparison with (4.12) shows that now we just have a single term on the
right hand side comprising the unknown matrix X. Hence (4.21) allows the
computation of both a lower bound and the corresponding approximation ma-
trix X. For the linear term in (4.12), minimizing over the set Π (cf. (4.13)) is
equivalent to minimizing over E ∩ N (see 3.5). Accordingly, Anstreicher and
Brixius [21] suggest to minimize the quadratic form in (4.21) over E ∩N , i.e. to
solve the convex quadratic problem:

min vec(X)>Qvec(X)
s.t. Xe = X>e = e

X ≥ 0
(4.22)

Here X ≥ 0 means that all entries of the matrix X have to be non-negative.
Using this minimization the Quadratic Programming Bound is given by:

(QPB) Tr[AXB>X>] = 〈λ(Â), λ(B̂)〉− + min
X∈E∩N

vec(X)>Qvec(X) (4.23)

The following relationship between the bounds (4.10), (4.14) and (4.23) are
hold by construction of the bounds (see also [21, 6]):

(EV B) ≤ (PEV B) ≤ (QPB) ≤ (QAP ) = min
X∈Π

Tr[AXB>X>] (4.24)

Consequently the bound (4.23) computed by convex programming cannot per-
form worse than the other bounds. The quality of the corresponding solution X
in comparison to other approaches (see next section) will be assessed in section
4.6.

4.2.5 Combinatorial Solutions

To obtain a permutation matrix P ∈ Π from a non-integer solution X ∈ E ∩N
to (4.22), a good permutation matrix close to the approximation X has to be
found. A simple way of doing this is to solve the following integer optimization
problem which can be solved by linear programming (see also section 3.5):

P0 = argmax
P∈Π

Tr[X>P ] (4.25)

We prefer to use a slightly different approach which takes into account that in
most cases a linear approximation of the original problem leads to an improve-
ment of the obtained objective value. To this end, we add an unknown matrix
∆ to the relaxed solution X so that one obtains a permutation matrix P :

P = (X +∆) ∈ Π
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Next, we expand the objective function Tr[APB>P>] around X up to linear
terms with respect to ∆:

Tr[APB>P>] = Tr[A(X +∆)B>(X +∆)>]
= Tr[AXB>X>] + Tr[AXB>∆>] + Tr[A∆B>X>] + Tr[A∆B>∆>]
≈ Tr[AXB>X>] + Tr[AXB>∆>] + Tr[A∆B>X>]
= −Tr[AXB>X>] + Tr[AXB>P>] + Tr[B>X>AP ]
= −Tr[AXB>X>] + 2Tr[B>X>AP ]

As a result, we have to minimize the term Tr[B>X>AP ] to obtain the combi-
natorial solution P from the solution X of the relaxation. This problem can
again be solved by linear programming:

P1 = argmin
P∈Π

Tr[B>X>AP ]

To see the difference to (4.25), we put M = −B>X>A and finally have:

P1 = argmax
P∈Π

Tr[MP ] . (4.26)

This minimization problem leads, compared to (4.25), in most cases to an im-
provement of the obtained objective value.

4.2.6 The 2opt Post-Processing Heuristics

A simple heuristic method called 2opt was proposed in [77] in order to further
improve combinatorial solutions computed by more expensive methods. This
greedy strategy iteratively exchanges pairs of assignments in the permutation
until no further improvement is possible. It should be noted, however, that
this is a completely local search strategy, in contrast to the non-local nature of
convex relaxation. Yet, as a post-processing step of the latter, greedy search
makes sense.

4.3 Other Approaches

In this section we briefly sketch two approaches that we will use for compar-
ison with the convex relaxation approach of section 4.2.4. The first one was
proposed by Umeyama [139] and resembles the spectral relaxation approach of
[44]. Furthermore, we consider the deterministic annealing approaches [55] and
[77] for which excellent performances are reported in the literature. The results
concerning the annealing approaches (section 4.3.2) were calculated by Stefan
Roth who investigated these approaches in his diploma thesis [122].

4.3.1 The Approach by Umeyama

Based on the Eigenvalue Bound (4.10), Umeyama [139] proposed the following
estimate for the solution of (4.7):

XUme = argmax
X∈Π

Tr(X> |U | |W |>) . (4.27)
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Here, U and W diagonalize the matrices A and B, respectively, with the eigen-
values sorted according to (EVB), and | · | denotes the matrix consisting of
the absolute values taken for each element. (4.27) is again a linear assignment
problem which can be solved efficiently by using standard methods for linear
programming (cf. section 3.5).

4.3.2 Graduated Assignment

Gold and Rangarajan [55] and Ishii and Sato [77] independently developed
a technique commonly referred to as graduated assignment or soft assign al-
gorithm. The set of permutation matrices Π is replaced by the convex set
D = E∩N of positive matrices with unit row and column sums (doubly stochas-
tic matrices). In contrast to previous mean-field annealing approaches, the
graduated assignment algorithm enforces hard constraints on row and column
sums, making it usually superior to other deterministic annealing approaches.
The core of the algorithm is an iteration scheme, which computes an approxima-
tive solution matrix X at each step of the annealing schedule. In our description
β > 0 denotes the current annealing parameter; γ is a fixed “self-amplification”
parameter, which enforces that the minimum on the set D is also in Π. Denot-
ing the iteration time step by the superscript, the matrix X (r+1) is calculated
as follows (for fixed β ):

X
(r+1)
ij = gihjy

(r)
ij (4.28)

Here y
(r)
ij is

y
(r)
ij = exp



−β
∑

k,l

(AikBjl + δikδjlγ)X
(r)
kl



 .

The scaling coefficients gi, hj in (4.28) are computed so that X(r+1) is projected
on the set D using Sinkhorn’s algorithm [55] as inner loop. Stopping criteria
based on convergence bounds or the number of iterations have to be established
for the inner projection loop and the iteration scheme. For more details, we
refer to [55, 77, 122].
Rangarajan et al. [118] showed that this scheme locally converges under mild
assumptions. Several studies revealed excellent experimental results. In our
experiments, we improved the obtained results with the local 2opt heuristics
(cf. section 4.2.6).
A drawback of the graduated assignment algorithm is that the selection of
several “tuning”-parameters is necessary to obtain optimal performance. An
annealing schedule has to be set up, which is usually described by three pa-
rameters: an initial temperature, the annealing rate, and a final temperature
or another stopping criterion [55]. There are theoretically motivated meth-
ods that give a lower bound for reasonable initial temperatures based on an
analysis of the bifurcation structure of the problem [77]. Nevertheless, careful
selection of the parameter greater than this bound can improve the results. The
self-amplification parameter also has a lower bound that guarantees the above
property that the minimizer of the objective function is in Π. An exhaustive
parameter search for the annealing schedule, even below the theoretical bound,
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may increase the performance. Finally, the stopping criteria also influence the
quality of the results. All parameters have in common that their optimal values
vary for different problem instances (cf. [77]), hence cannot be selected apriori.

4.3.3 SDP Relaxation

In this section we outline a SDP relaxation approach for QAPs. The reported
bounds for QAPs obtained by semidefinite programming are generally better
than the bounds obtained by the quadratic programming approach (see section
4.2.4). Recently published SDP bounds can be found in a paper by Rendl and
Sotirov [120]. The first semidefinite programming approach was published by
Zhao, Karisch, Rendl and Wolkowicz [149] who showed in detail that the dual
of the Lagrangian dual of (4.9)1 corresponds to an SDP relaxation of the QAP.
The SDP relaxation bounds used here for comparison are taken from [120] when
available.

We sketch the general semidefinite programming approach of [149] following the
clearer presentation in [120]. Although we did not investigate this approach for
graph matching we expect to obtain better approximations for the assignment
by the (tighter) semidefinite programming relaxation. But due to the squared
variables in the SDP approach the runtime of interior point algorithms for the
quadratic optimization approach is significant lower. Some elements of this
SDP approach for QAP are considered in more detail in chapter 5 where we
explain our SDP subgraph matching approach.

To obtain the SDP relaxation, the QAP objective function is transformed by a
Lagrangian relaxation which turns out to be equivalent to the lifting approach
(see into a linear function (cf. 4.20)

Tr[AXB>X> + CX>] =(B ⊗A+Diag(c)) • Y , (4.29)

using Y = vec(X)vec(X)> and the following reformulation of the second term
on the left side of (4.29)

Tr[CX>] = c>vec(X) = c>(vec(X) ◦ vec(X)) = Tr(Diag(c)Y ) = Diag(c) • Y ,

where c = vec(C). The matrix Y is positive semidefinite and has rank one. The
condition X2

ij −Xij = 0 for 0/1-constraints corresponds to

diag
(
Y
)
= y

where y = vec(X) and Y = yy>.

Furthermore, the fact that the row and column elements of permutation matri-
ces sum to one can be exploited. To this end, the projection matrix V

1Using the more general objective function Tr[AXB>X> + CX>] and without using the
constraint Xij ≥ 0 ∀i, j.
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V =

(
In−1
−e>n−1

)

known from section 4.2.3 – but here defined on a different basis of {e⊥} – is
used to define a projection matrix W :

W =
(
1
ne⊗ e, V ⊗ V

)

Starting from X = 1
nE + V X̂V > = 1

nee
> + V X̂V > (see section 4.2.3) and

defining x̂ = vec(X̂), we compute:

x = vec(X) =
1

n
(e⊗ e) + (V ⊗ V )x̂ = W

(
1
x̂

)

= Wz ,

where z = (1, x̂>)>. Hence, we obtain

Y = vec(X)vec(X)> = Wzz>W> = WRW> ,

where one can identify R = zz> as a positive semidefinite matrix with rank
one. Dropping the rank-one condition ,the following semidefinite relaxation in
terms of R can be defined

min
R

Tr[LR]

s.t. R11 = 1 (4.30)
(
1 y>

y WRW>

)

º 0

R º 0

where L = W>(B ⊗ A + Diag(c))W and y = diag(WRW>). The relaxation
(4.30) turns out to be very weak in general. Fortunately, it can be tightened
by the observation that the matrix Y = vec(X)vec(X)> = WRW> has a
structure that enforces many entries in Y to be zero ifX is a permutation matrix
X ∈ Π (see [150]). To this end, the so-called gangster operator G(WRW>) =
0 is introduced in [149] to ensure that appropriate elements in WRW> are
zero. In [120], non-negativity constraints on the entries of WRW> are used to
further tighten the bound. The authors point out that the bundle method is an
appropriate choice to deal with the high number of gangster and non-negativity
constraints. Details on the SDP relaxation approach for the QAP can be found
in the PhD-theses of Zhao [149, 150] and Sotirov [134].

4.4 Convex Relaxation: An Illustrative Numerical

Example

For the purpose of illustration, we apply the convex relaxation approach from
section 4.2.4 to a small graph matching problem in this section.
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4.4.1 A Small Graph Matching Problem

In order to visualize the convex relaxation approach, we consider the two small
weighted graphs G and H shown in figure 4.5. Obviously, the best match
corresponds to exchanging vertices 2 and 3 in either graph.

1

2

3

.12

G

.56

.92

3
21

.02

.99

.22

H

Figure 4.5: Two small sample graphs G and H to be matched

The adjacency matrices of the graphs G and H are:

AG =





0 0.56 0.92
0.56 0 0.12
0.92 0.12 0



 AH =





0 0.99 0.22
0.99 0 0.02
0.22 0.02 0





In this example, the objective function of the graph matching problem (4.4)
attains the following values for each of the six possible permutations:

1.370, 3.077, 2.01, 3.365, 0.613, 0.261

Thus, the optimum of this graph matching problem is

OPT = CG + CH + 2 min
X∈Π

Tr[AXB>X>] ≈ 0.261

with A = AH ,B = −AG, CG = Tr[AGA>G] ≈ 2.349 and CH = Tr[AHA>H ] ≈
2.058.
In the following, we visualize permutation matrices X by representing entries
Xij = 1 graphically by black squares, and Xij = 0 by white squares. Ac-
cordingly, the permutation matrices which lead to the objective function values
given above (in the same order) are depicted here:

The last permutation matrix represents an exchange of vertices 2 and 3 and
thus corresponds to the global optimum of this graph matching problem.

4.4.2 Relaxations and Bounds

We calculate the bounds described in section 4.2 for the problem depicted in
figure 4.5.
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Orthogonal Relaxation

The eigenvalue bound (4.10) leads to the following lower bound of the optimal
graph matching:

EVB = CG + CH + 2〈λ(A), λ(B)〉− ≈ 0.023

with CG = Tr[AGA>G] ≈ 2.349, CH = Tr[AHA>H ] ≈ 2.058 and 〈λ(A), λ(B)〉− ≈
−2.192. This bound is attained for 2n = 23 = 8 different matrices X = UDW>,
where U ,W diagonalize A and B, respectively, and D is a diagonal matrix with
diagonal elements Dii ∈ {1,−1}. Two possible solutions for X for which the
bound is attained are:

X1 ≈





0.999 0.041 0.002
−0.014 0.316 0.948
−0.038 0.948 −0.317



 X2 ≈





−0.027 0.529 0.848
0.963 0.240 −0.119
0.267 −0.814 0.517





Using linear programming to calculate permutation matrices close to these so-
lutions, the first one gives the correct integer solution while the other one leads
to a wrong integer solution. Besides the obvious weakness of the EVB–bound
in general, this indicates that due to the ambiguity of the solution, it is un-
likely to obtain a good approximation for the integer solution. The approach
of Umeyama to take X = |U ||W |> leads to the following approximation, which
in this case, yields the correct solution by linear programming:

X ≈





0.999 0.529 0.866
0.986 0.687 0.948
0.267 0.948 0.688



 .

Projected Eigenvalue Bound

Using the Projected Eigenvalue Bound (4.14), we obtain the following lower
bound for our small graph matching problem:

PEVB = CG + CH + 2[〈λ(Â), λ(B̂)〉− + LAP(D)− C1] ≈ 0.181

where 〈λ(Â), λ(B̂)〉− ≈ −0.985, LAP(D) ≈ −2.003, C1 ≈ −0.875. Note that
this bound is much stronger than the EVB–bound. On the other hand, as men-
tioned in section 4.2.3, this approach does not allow to compute a corresponding
matrix X for which the PEVB–bound is attained.

Quadratic Programming Bound

The Quadratic Programming Bound (4.23) gives:

QPB = CG + CH + 2[〈λ(Â), λ(B̂)〉− + min
X∈E∩N

vec(X)>Qvec(X)] ≈ 0.215

Here the minimization of the quadratic term results in minX∈E∩N vec(X)>Qvec(X) ≈
−1.111, and the bound is attained for

X ≈





0.747 0.000 0.253
0.253 0.000 0.747
0.000 1.000 0.000



 .
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As predicted, this bound is superior to the PEVB–bound and leads to a good
approximation of the correct permutation matrix. To summarize, for the nu-
merical example considered here, the ranking (4.24) of these bounds reads as
follows:

EVB ≈ 0.023 ≤ PEVB ≈ 0.181 ≤ QPB ≈ 0.215 ≤ OPT ≈ 0.261 (4.31)

4.4.3 Visualization

To illustrate how the convex relaxation approximates the original combinatorial
problem, we graphically inspect the original objective function

forig(X) = CG + CH + 2Tr[AXB>X>]

along with its convex relaxation

fconvex(X) = CG + CH + 2[〈λ(Â), λ(B̂)〉− + vec(X)>Qvec(X)]

for a few one–dimensional paths X(α) through the relaxed solution set defined
by X ∈ E ∩ N . It is well known (Birkhoff–von Neumann theorem) that this
set is the convex hull of the original feasible set of the permutation matrices
X ∈ Π. Hence, all paths

X(α) = αX2 + (1− α)X1 , α ∈ [0, 1]

between extreme points X1, X2 ∈ Π pass through the interior of the relaxed
solution set, and we can graphically explore the two cost functions above by
plotting their graphs over various paths. Figures 4.6 and 4.7 show several paths
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Figure 4.6: The original objective function and its convex relaxation along
paths through the relaxed solution set.

through the relaxed set starting and ending at different permutation matrices.
The following facts are illustrated:

• At the end–points of all paths, the two cost functions coincide because
the convex relaxation approach does not change the original objective
function on the original feasible set (cf. section 3.1).
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• The original objective function is non-convex on the relaxed solution set
and thus exhibits local minima. This is not the case for the objective
function of the convex relaxation.

• The plot on the right hand side of figure 4.7 illustrates how the lower
bound is attained by the convex relaxation approach. Furthermore, the
point where this bound is attained is close to the global optimum (the
end–point on the right), which confirms the tightness of the lower bound.
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Figure 4.7: The original objective function and its convex relaxation along
paths through the relaxed solution set. On the right, the plot illustrates how
the lower bound is attained at a point close to the global optimum (end–point
on the right).

In summary, these figures illustrate that the convex relaxation is tight and
therefore “knows” where a “good” minimum is situated. Moreover, a point close
to this global optimum can be computed without any initialization problem or
parameter tuning.

4.5 Implementation Details

In this section we note some details concerning the implementation of the
quadratic convex relaxation approach, which are not obvious in the first place.
We used Mathematica [145] for the reformulation of the graph matching prob-
lem into the convex problem formulation (4.23). The quadratic program (4.22)
itself was solved by a quadratic interior point solver developed by Zhang and
Ye [148].
Our first remark concerns the quadratic solver. It turned out that the quadratic
solver was able to solve our problems reliably only after a normalization of the
problem data. We have chosen this normalization factor to be the maximum
value of the absolute values in both matrices A and B. This results in normal-
ized matrices with entries in the range [−1, 1].
Secondly, despite the fact reported in [22], that the QPB (4.23) is not very
sensitive to the choice of Ŝ and T̂ obtained by the solutions ŝ and t̂ of the linear
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optimization problem (4.17), we have chosen to implement a procedure called
update basis suggested in [22, §2.3] which updates the solution to ŝ′ and t̂′ in
order to potentially improve the calculated bound. We observed improvements
of about 2.0 % with respect to the calculated bounds for the QAP problems
with a rank deficit shown in table A.1 of the Appendix. For the problems shown
in table 4.1, the improvement was negligible.
Thirdly, if Â or B̂ do not have full rank, ambiguous solutions of the linear
optimization problem (4.17) are obtained. In this case we set the eigenvalues
ŝj and t̂i to zero which correspond to zero eigenvalues σj = 0 and λi = 0,
respectively.

4.6 Experiments

This section has three parts. In the first part, we investigate the performance
of the convex relaxation. To this end, we compare the corresponding lower
bounds with the combinatorial solutions of several benchmark problems from
the QAPLIB–collection [25]. The QAPLIB is a public library of very difficult
real–world quadratic assignment problems which can be used to evaluate and
to compare the performance of any quadratic assignment approach. In the
second part we present statistical results computed for a large set of randomly
generated graphs (including ground–truth). Finally, in the third part a real
world example is shown.

Abbreviations

The following abbreviations are used within the tables of this section. In gen-
eral, f represents the value calculated for the objective function (4.7)

f(X) = Tr[AXB>X>] ,

with X ∈ Π. The subscript of f indicates which approach was used to obtain
the solution X ∈ Π:

f∗: value of the objective function (4.7) at the global optimum X∗ ∈ Π
EV B: the eigenvalue bound (4.10)
PEV B: the projected eigenvalue bound (4.14)
QPB: the quadratic programming bound (4.23)

fQPB: value of the objective function in (4.7) using the permutation matrix
obtained with (4.25) from the QPB solution.

f1
QPB: value of the objective function in (4.7) using the permutation matrix

obtained with (4.26) from the QPB solution.
fGA: value of the objective function in (4.7) using the permutation matrix

obtained by the graduated assignment algorithm (4.28).
fUme: value of the objective function in (4.7) using the permutation matrix

obtained by the approach of Umeyama (4.27).

An additional “+”–sign (e.g. fQPB+, f1
QPB+, fGA+, fUme+) indicates that the

2opt–heuristic method was used as a post–processing step to further improve
the permutation matrix found.
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4.6.1 QAPLIB Benchmark Experiments

Quality of the Relaxations

The quality of the relaxation approaches, namely the eigenvalue bound (EV B),
the projected eigenvalue bound (PEV B), and the quadratic programming bound
(QPB), can be assessed by measuring how close these bounds are to the global
optimum (see (4.24)). Table 4.1 shows the results for problems drawn from

Problem f∗ EV B PEV B QPB SDP
chr12c 11156 -127514 -24375 -22648 n.a.
chr15a 9896 -190769 -52468 -48539 n.a.
chr15c 9504 -186403 -50295 -47409 n.a.
chr20b 2298 -30995 -8051 -7728 n.a.
chr22b 6194 -66432 -22126 -20995 n.a.
esc16b 292 -230 250 250 288
rou12 235528 -274122 200024 205461 223680
rou15 354210 -424419 296705 303487 333287
rou20 725522 -739730 597045 607362 663833
tai10a 135028 -181950 112528 116260 n.a.
tai12a 224416 -284261 193124 199378 219760
tai15a 388214 -414351 325019 330205 358802
tai17a 491812 -496403 408910 415578 451317
tai20a 703482 -714901 575831 584942 637300
tai30a 1818146 -1505553 1500406 1517829 1652186
tai35a 2422002 -2015233 1941622 1958998 n.a.
tai40a 3139370 -2559063 2484371 2506806 n.a.

Table 4.1: Bounds computed for QAPLIB–problems.

the QAPLIB [25]. The first column comprises labels indicating the problem
and the number |V | of vertices of a data set from the QAPLIB. The second
columns shows the value of the objective function at the global optimum. The
lower bounds EV B,PEV B and QPB computed by the corresponding relax-
ation approaches are listed in the next three columns. The last column shows
the available bounds obtained by the SDP relaxation sketched in section 4.3.3,
and are taken from [120].

Since zero is a trivial lower bound for the QAPLIB problems, a negative sign
indicates that the relaxation is not at all tight. As this happens for all problems
with the bound EV B, it can be considered not to be useful. Note that the first
five problems in table 4.1 seem to be the most difficult, as all the computed
bounds are negative2.

Furthermore, table 4.1 confirms the relationship (4.24), with the quadratic con-
vex relaxation approach giving a good lower bound. The fact that the available
bounds obtained by the SDP relaxation represent the best bounds supports
the assumption that SDP relaxations are very tight relaxations. With ongoing
development of SDP solvers and an improved capability to cope with more and
more constraints, we believe that the SDP relaxation will become the method
of choice to obtain approximations for QAPs.

2It would be interesting to know the corresponding SDP results.
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Comparison to Spectral Decomposition and Graduated Assignment

We compare the combinatorial solutions obtained with the convex relaxation
approach with those computed with the graduated assignment approach (sec-
tion 4.3.2) and the spectral decomposition approach by Umeyama (section 4.3).
Table 4.2 shows the corresponding results in the same way as table 4.1. A “+”–

Problem f∗ fQPB fQPB+ f1
QPB f1

QPB+ fGA fGA+ fUme fUme+
chr12c 11156 20306 15860 27912 13088 19014 11186 40370 11798
chr15a 9896 26132 14454 20640 13540 30370 11062 60986 17390
chr15c 9504 29862 17342 19436 12754 23686 13342 76318 13338
chr20b 2298 6674 2858 7276 3832 6290 2650 10022 3294
chr22b 6194 9942 6848 8958 6902 9658 6732 13118 7418
esc16b 292 296 292 312 292 298 292 306 292
rou12 235528 278834 246712 266864 241802 273438 246282 295752 251848
rou15 354210 381016 371480 394192 374000 457908 359748 480352 384018
rou20 725522 804676 746636 795578 757270 840120 738618 905246 765872
tai10a 135028 165364 143260 154282 139524 168096 135828 189852 147838
tai12a 224416 263978 237200 246424 238902 263778 224416 294320 252044
tai15a 388214 455778 399732 432610 390782 451164 400328 483596 405442
tai17a 491812 550852 513170 545410 526518 589814 505856 620964 526814
tai20a 703482 799790 740696 752896 726038 871480 724188 915144 775456
tai30a 1818146 1996442 1883810 1979530 1872722 2077958 1886790 2213846 1875680
tai35a 2422002 2720986 2527684 2677688 2511800 2803456 2496524 2925390 2544536
tai40a 3139370 3529402 3243018 3411278 3277450 3668044 3249924 3727478 3282284

Table 4.2: Results of the QAPLIB benchmark experiments (see text).

sign indicates that the 2opt–heuristic method was used as a post–processing
step to improve the solution. The difference between fQPB and f1

QPB is that
linearization was used to “round” the convex programming solution to a com-
binatorial solution in the latter case (see section 4.2.5).

The columns labeled with fGA and fUme show the results obtained with the
graduated assignment approach [55, 77] and with the approach by Umeyama
[139]. It should be noted that considerable care was taken to manually find out
optimal parameter values for the graduated assignment approach for each data
set [122].

The following conclusions can be drawn from the results shown in table 4.2:

• The convex relaxation approach fQPB and the soft-assign approach fGA

have similarly good performance. However, the latter approach is much
more intricate from the optimization point-of-view and involves a couple
of tuning parameters which had to be optimized by hand.

• The approach of Umeyama fUme based on spectral decomposition is less
competitive.

• Using the simple 2opt greedy–strategy as a post–processing step signifi-
cantly improves the solutions.

4.6.2 Random Ground-Truth Experiments

In this subsection, we discuss results obtained for two different ground-truth
experiments. In the first experiment, we created many problem instances (4.7)
by independently computing two different random graphs with the same number
of vertices. In the second experiment we computed a large collection of random
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graphs along with slightly perturbed and randomly permutated “copies” of
these graphs. The experiment is supposed to simulate a vision system that
obtains object graphs which are slightly perturbed due to distortion or noise.

Random Graphs

In this experiment, we created many problem instances (4.7) by independently
computing two different random graphs with the same number of vertices. The
probability that an edge is present in the underlying complete graph was 0.3.
Figure 4.8 shows an example in order to visualize the edge–density of such
graphs. The global optimum for (4.7) was computed with an exact search
algorithm. This optimum was then used to calculate the ratio between the sub-
optimal objective value and the best objective value for each problem instance.
Hence, the best ratio possible is 1.0 if the lower bound coincides with the best
objective value. Table 4.3 summarizes the results by showing the statistics
(mean, worst case, and best case) for three experiments with different sizes of
the graphs (n = 9, 11, 15). The number of problem instances for each experi-
ment is shown in angular brackets. The number of correctly found matchings
without/with the 2opt heuristic method as post-processing step are shown in
round brackets.

The following conclusions can be drawn from the results shown in table 4.3:

• The soft-assign approach performs somewhat better for these experiments
than the convex relaxation approach, which yet does involve no tuning
parameters that have to be optimized by hand and does not depend on
initialization.

• With increasing problem size the performance decreases for all three ap-
proaches in general.

• The approach of Umeyama fUme based on spectral decomposition is less
competitive.

• Using the simple 2opt greedy–strategy as a post–processing step signifi-
cantly improves the results.

f1

QP B/f∗ fUme/f∗ fGA/f∗

mean worst case best case mean worst case best case mean worst case best case
n=9 [128] (22/55) (7/29) (31/55)

0.88765 0.43810 1 0.638244 0.065173 1 .948342 .7756129 1
+2opt 0.97130 0.79256 1 0.928304 0.753007 1 .969914 .843046 1
n=11 [42] (3/10) (0/7) (7/10)

0.83043 0.56268 1 0.636159 0.295194 0.998591 .940740 .8338586 1
+2opt 0.95760 0.85043 1 0.933206 0.811326 1 .958863 .8434407 1
n=15 [99] (0/2) (0/1) (4/11)

0.78726 0.52307 0.938917 0.225983 0.131333 0.863508 .916225 .105164 1
+2opt 0.92195 0.77956 1 0.890131 0.74688 1 .95763 .820596 1

Table 4.3: Statistics of the results of random ground-truth experiments (see
text).
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Figure 4.8: A randomly generated graph with 15 vertices and a probability
of 0.3 for the presence of an edge.

Perturbed Graphs

In the second series of experiments, we computed a large collection of ran-
dom graphs along with slightly perturbed and randomly permutated “copies”
of these graphs. The weights of the second graph were perturbed by a normally
distributed factor with standard deviation σ = 0.1 and means 1. Using the
same structure as table 4.3, the corresponding results are shown in table 4.4.
For larger problems (more than 15 vertices) for which computing the global
optimum was too expensive, we assumed the optimal permutation to be the
inverse of the random permutation matrix that was used to compute the sec-
ond graph of each pair. In some cases this was not true, however, and hence a
different permutation with a lower objective value could be found by the algo-
rithms. This explains why some of the quotients in table 4 have a value greater
than 1.

In summary, the statistics of our results shown in table 4.4 reveal that in al-
most every case of these “low–level noise” experiments the optimal permutation
was found by the quadratic programming approach. In contrast, the other ap-
proaches show a slightly decreasing performance with an increasing problem
size.

f1

QP B/f∗ fUme/f∗ fGA/f∗

mean worst case best case mean worst case best case mean worst case best case
n=9 [155] (154/155) (142/154) (144/151)

0.999996 0.999382 1 0.986481 0.463282 1 .997206 .859380 1
2opt 1 1 1 0.999883 0.981862 1 .998154 .859380 1
n=15 [183] (183/183) (163/175) (176/181)

1 1 1 0.974078 0.379189 1 .998347 .833787 1
2opt 1 1 1 0.993836 0.718871 1 .998484 .833787 1
n=20 [173] (173/173) (148/163) (167/171)

1 1 1 0.977225 0.475711 1 .998205 .855257 1
2opt 1 1 1 0.991662 0.772512 1 .998338 .855257 1
n=25 [169] (169/169) (64/123) (126/143)

1.00001 1 1.00155 0.848105 0.216079 1 .966097 .491432 1.001550
2opt 1.00002 1 1.00155 0.960519 0.602629 1.00099 .9748815 .686842 1.001550

Table 4.4: Statistics of the results of perturbed graph experiments (see text).
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4.6.3 Real World Example

In this section, we show an example for a real world graph matching problem
where the nodes of the object graphs are based on features that can be found
by an appropriate feature extractor like, for example, the FEX-system (cf. [47,
46]). The graphs we want to match are shown in figure 4.9. They have 38
nodes, which means that there is the tremendous number of approximately
1044 possible assignments.

Figure 4.9: Two graphs representing the same object. The graphs are created
based on features obtained with the FEX-system (cf. [47, 46]).

The result of the graph matching experiment is shown in figure 4.10. The convex
relaxation was able to find the expected assignment which is very encouraging
because the number of possible assignments is very huge. It should also be
mentioned that the results shown in this section are not further optimized
by the 2opt post-processing step and are therefore the results of the convex
relaxation approach (4.23), together with the linear optimization (4.26) which
is a convex problem too. This first experiment resembles the series of “low–level
noise” experiments from the previous section as only the nodes are permuted
and the weights of the graph are perturbed, but the underlying structure is
preserved.

To show that the graph matching approach is also applicable in situations where
in addition to the edge weights also the structure of the graphs is disturbed, we
conducted a second experiment. This experiment is shown in figure 4.11 where
the additional perturbations in the underlying structure are marked by green
edges. The result gets nearly the desired matching where the undesired match-
ing occurs surprisingly in the left bottom part of the graphs. The undesired
matchings are represented by blue line segments.3

These real world examples in connection with the comprehensive statistical
results reported above show that the convex relaxation approach is appropriate
to find the desired matching for similar graphs of the same size (|VG| = |VH |)
which do not differ too much. In the next section we discuss the advantages
and disadvantages that are inherent to this graph matching approach.

3This error is likely to be adjusted by the 2opt heuristics (see section 4.2.6).
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Figure 4.10: For the shown object graphs the desired matching is obtained
by the convex optimization approach.
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Figure 4.11: Matching result obtained with the convex optimization ap-
proach. In the left graph also the structure of the graph is perturbed. The
perturbations in the structure are marked with green edges. Nearly the de-
sired matching is found. Undesired matchings are represented by blue line
segments.
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4.7 Discussion

To reveal the advantages but also the limits of the QAP graph matching ap-
proach we point out its inherent properties in this section. We start with iden-
tifying the invariants for our approach. Then we discuss conditions in which
this approach does not lead to a desired matching.

4.7.1 Invariants

To find invariants we investigate which transformations applied to the graphs
leave the results obtained by the graph matching approach unchanged. In
particular, we find that the approach is invariant against rotation, translation
and scaling of the objects. These three invariants are discussed below:

Rotation

The graph matching approach is invariant against an arbitrary 2D rotation of
any of the two objects. The reason for this lies in the fact that the adjacency
matrices, from which the assignments are calculated, are only dependent on
the pairwise relationship (distance) of the nodes which does not change under
a rotation of an object in an image. That means the adjacency matrix AG of
the object graph G is equal to the adjacency matrix AG′ of the rotated object
graph G′.

Translation

Clearly, the same reasoning as for the rotation leads to the statement that the
approach is also invariant against any translation of the objects. The adjacency
matrices are not changed by a translation of either of the object graphs obtained
from an image.

Scaling

Not that obvious is the invariance of the QAP graph matching approach against
scaling of any of the two objects. This can be seen by considering the following
reformulation of the optimization problem (cf. (4.7))

min
X∈Π

Tr[AXB>X>] = min
X∈Π

sTr[
A

s
XB>X>] = smin

X∈Π
Tr[ÃXB>X>] (4.32)

where we have introduced a scalar scaling factor s > 0 and the scaled matrix
Ã = A

s . The optimal permutation does not change if we omit the constant
scaling factor s on the right hand side of (4.32) and therefore the optimal
solution X∗ ∈ Π is independent from a scaling of the matrix A As the same is
valid for a scaling of B, the optimal permutation does not change if either of
the two graphs is scaled.
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4.7.2 Limitations of the QAP Graph Matching

In this section we reveal cases in which the QAP graph matching approach is
likely to lead to undesired matchings. In particular, we discuss a case where the
objective function appears not to be appropriate to model the desired graph
matching.

Structural Perturbations

The real world example from section 4.6.3 has shown that the QAP graph
matching approach is non-sensitive against small perturbations. However, it
turns out that larger perturbations more likely lead to undesired matchings.
This behavior is due to the fact that the minimization of the objective function
in (4.7) prefers matchings where edges with large weight of the first graph are
mapped to edges with large weight in the second graph. This can be seen for
example for the distance measure (4.2) that is minimized by the QAP graph
matching approach: The strongest gains are obtained if edges with a large
weight are mapped to each other. On the other hand, this makes sense from
the viewpoint of computer vision, since large weights can be expected to involve
reliable feature measurements.
To illustrate the resulting behavior we created two similar graphs shown in fig-
ure 4.12. The two sparse graphs are supposed to represent the same object but
have – due to noise or occlusion – a different structure. In particular, the node
with the label 11 in the left graph does not appear in the right graph where it
has been replaced by node 12. Some affected edges were changed too. In the
context of object recognition, the desired matching should preserve as much as
possible the relative position of the nodes resulting in the following matching:
(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12) 7→ (1, 11, 2, 3, 4, 5, 6, 7, 8, 9, 12, 10). The match-
ing shown was obtained by globally optimizing (4.7) and results in the for
object recognition undesired matching. It can be seen that this matching – in
accordance with the preferred matching of the objective function – maps large
edges to each other.

1 2 3 4

5 6 7 8

9 10 11 12

1 2 3

4 5 6 7

8 9 10

11

12

Figure 4.12: The optimal matching for the shown two sparse graphs leads
to an undesired matching.

This drawback of the QAP graph matching approach can be tackled by adding
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more information to the graphs as has been done in figure 4.13 where the graphs
are fully connected. The optimal solution represented by the assignment shown
in figure 4.13 coincides with the desired matching.

1 2 3 4

5 6 7 8

9 10 11 12

1 2 3

4 5 6 7

8 9 10

11

12

Figure 4.13: The optimal matching for the shown two fully connected graphs
leads to a matching one hopes to achieve.

This example reveals that the QAP graph matching approach is sensitive to
large perturbations of the graphs, especially to perturbations that change the
order of edges with larger weights. However, this effect can be reduced if it is
possible to lower the relative error of the perturbation by adding more infor-
mation to the created graphs. Another weakness of the QAP graph matching
approach is that it is based on the assumption that the matched graphs have
the same number of nodes. Below, we discuss approaches to overcome this
drawback.

4.8 Towards Subgraph Matching

In this section we outline two efforts to adapt the QAP graph matching ap-
proach to make it appropriate also for subgraph matching. Note that we have
postponed this attempts in favor of the subgraph matching approach suggested
in the next chapter, but we discuss the ideas and the progress we have made
towards a weighted subgraph matching.

4.8.1 A Simple Extension Approach

The first subgraph matching approach we propose simply fills up the smaller
graph with virtual nodes such that the QAP graph matching approach for
equally sized graphs can be applied. Assuming that the adjacency matrices
AG ∈ R

n×n and AH ∈ R
m×m of the two graphs have different sizes n > m, the

virtual nodes are introduced by extending the smaller adjacency matrix with
zeros until the size of the larger matrix is reached:

AH ∈ R
m×m → ÂH =

(
AH 0
0 0

)

∈ R
n×n (4.33)
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Using exactly the same approach as for graph matching with graphs of the same
size (cf.(4.6)), we have to minimize the following objective function:

f1(X) = ‖X>AGX − ÂH‖2

= CG + ĈH − 2Tr[A>GXÂHX>] (4.34)

Here CG and ĈH = Tr[ÂHÂ>H ] are constant values. Our subgraph matching
approach corresponds then to the minimization of the objective function (4.34)
over the set of permutation matrices X ∈ Π:

min
X∈Π

f1(X) (4.35)

Figure 4.14 depicts a small subgraph matching problem: The left triangle should
be matched to the right graph containing one more node. Note that the desired
matching represents a subgraph isomorphism. The matching obtained by the
global minimization of (4.35) leads to the depicted undesired matching.
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Figure 4.14: Undesired matching found for the shown graphs by the sub-
graph matching approach which introduces virtual nodes. The matching is
obtained by the minimization of (4.35).

One can see that the reason which leads to the undesired matchings discussed
in section 4.7.2 is also responsible for the malfunction of the approach applied
to the small subgraph matching problem. The undesired matching confirms the
fact that the minimization of (4.34) prefers matchings where the most weighted
edges are in correspondence to each other. Unfortunately this means that it
is likely that the method to introduce virtual nodes results in a non-desired
matching. In the following section we discuss an adapted objective function
which is able to cope with subgraph matching.

4.8.2 A Promising Subgraph Matching Approach

Using matching matrices X ∈Mn×m (cf. section 2.2.2) instead of permutation
matrices, an objective function can be defined which models the weighted graph
matching for graphs with different sizes in a more appropriate way. Assuming



70 Chapter 4. Weighted Graph Matching

that the adjacency matrices AG ∈ R
n×n and AH ∈ R

m×m of the two graphs
have different sizes n > m, we define the following objective function:

f2(X) = ‖X>AGX −AH‖2

= Tr[X>AGXX>A>GX] + Tr[A>HAH ]− 2Tr[AHX>A>GX] (4.36)

= Tr[X>AGXX>A>GX] + CH − 2Tr[A>GXAHX>]

The minimization of this objective function over all matching matrices X ∈M
represents our second subgraph matching approach:

min
X∈M

f2(X) (4.37)

As shown in figure 4.15 the optimization approach (4.37) now leads to the
desired matching for the small subgraph matching problem. The subgraph
isomorphism is found and note that in such a case the objective function (4.36)
attains zero as minimum value.
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Figure 4.15: The desired matching is obtained by the minimizing (4.36) over
all possible matching matrices X ∈M4×3.

The only but important difference between the approaches (4.37) and (4.35) is
that X in (4.37) is now a matching matrix instead of a permutation matrix.
Therefore, the first term in (4.36) is no longer constant. Recognizing that the
matching matrix removes n−m rows and columns in AG

AG ∈ R
n×n → X>AGX ∈ R

m×m ,

the intuitive idea behind the objective function (4.36) becomes apparent. This
objective function removes n − m vertices from the larger graph and the re-
maining edge-weights of the two same sized graphs (|VX>AGX | = |VAH

|), are
compared.
Note that the invariance against rotation and translation of the graphs is pre-
served but the property of scale invariance is lost as a scaling of one of the
graphs changes the ratio of the first term to the third term in (4.36).
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4.8.3 Comparison of the two Approaches

The objective functions (4.34) and (4.36) of the two proposed subgraph match-
ing approaches are compared in figure 4.16. We plotted f1(X̂) and f2(X) for
the small subgraph isomorphism example shown in figures 4.14 and 4.15. We
can compare the two functions because for every matching matrix X ∈ M4×3

an appropriate permutation matrix X̂ = (XS) ∈ Π4×4 can be found which
basically corresponds to the matching matrix X. The matching matrices and
the appropriate permutation matrices on the y-axis are sorted according to the
objective values of f2(X).
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Figure 4.16: Comparison of the two objective functions proposed for
weighted subgraph matching. The minimum of f2 (4.36) corresponds to a de-
sired matching while the minimum of f1 (4.34) leads to an undesired matching.

The function f2 (4.36) achieved its minimum at the desired assignment while
the minimum of f1 (4.34) leads to an complete undesired matching.
Comparing the two objective functions reveals that the term Tr[X>AGXX>A>GX]
in (4.36) is the important adjustment that leads to the desired optimal solu-
tion of the subgraph matching approach (4.37). Note that the QAP term is
not influenced by the transition from permutation matrices X̂ = (XS) ∈ Π
to matching matrices X ∈ M and −2Tr[A>GX̂ÂHX̂>] = −2Tr[A>GXAHX>] is
valid.
If a subgraph isomorphism is present the subgraph matching approach (4.36)
attains zero – the smallest possible value – when the isomorphism is found.
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For small disturbations of the graphs it is likely that the approach leads to a
desired matching too. This supports the assumption that (4.37) represents a
reasonable approach for weighted subgraph matching, while the small example
in figure 4.14 has shown that the approach to introduce virtual nodes (4.35) is
not an appropriate subgraph matching approach.

Note that the combinatorial subgraph matching approach (4.37) is NP-hard as
it includes the NP-hard QAP graph matching approach as special case (n =
m). In the next section we make a proposal how this combinatorial subgraph
matching problem can eventually be approximated by a convex relaxation.

4.8.4 Relaxation Attempt

In section 4.8.2 we proposed the following promising integer minimization prob-
lem for the weighted subgraph matching for graphs with sizes n > m:

min
X∈M

Tr[X>AGXX>A>GX] + CH − 2Tr[AHXA>GX>] (4.38)

AG ∈ R
n×n and AH ∈ R

m×m are the adjacency matrices of the graphs and
X ∈Mn×m denotes a matching matrix.

We propose a relaxation approach to the integer minimization (4.38). Note
that we have postponed this approach to future research and investigated in
favor to this the convex subgraph matching approach we propose in chapter
5. Therefore we sketch only the idea to obtain a convex relaxation of (4.38)
along with some methods that could be useful to solve the proposed relaxation.
Our idea is based on the observation that the first term Tr[X>AGXX>A>GX]
in (4.38) is convex and that

−2Tr[A>GX̂ÂHX̂>] = −2Tr[A>GXAHX>] (4.39)

is valid. Recall that ÂH is an extended adjacency matrix (see (4.33)) and X̂ =
(XS) ∈ Πn×n is a permutation matrix which consists of the matching matrix
X ∈Mn×m that is augmented by an appropriate slack matrix S ∈Mn×(n−m).
The equality (4.39) allows the application of the convex quadratic relaxation of
Anstreicher and Brixius [21] to the QAP term −2Tr[A>GX̂ÂHX̂>] which results
in the following convex relaxation (see section 4.2.4):

min vec(X̂)>Q̂vec(X̂)

s.t. X̂e = X̂>e = e

X̂ ≥ 0

(4.40)

Maybe the “slack” elements of vec[(XS)] can be removed from the problem
along with the appropriate parts of the matrix Q̂ in this convex program without
affecting the convexity of the optimization problem.

Recognizing that Tr[X>AGXX>A>GX] is already convex we add this term (and
the constant CH) to the objective function of (4.40) without changing the con-
vexity of the optimization problem. As for matching matrices only the column
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sums are fixed to one we expect to obtain a relaxation of the following form:

min Tr[X>AGXX>A>GX] + CH + vec(X)>Qvec(X)
s.t. X>e = e

X>X = I
X ≥ 0

(4.41)

The resulting optimization problem is hopefully a convex and tight relaxation
of (4.38). Regardless of the convexity properties of (4.41) a local optimum of
(4.41) can be computed by minimizing the objective function of (4.41) over the
Stiefel manifold [135] along with the additional constraint that all row sums
of X are one. Below we sketch methods which might become useful to solve
optimization problems with such constraints.

Minimization on the Stiefel Manifold

Following mainly the paper of Edelman [38] we sketch an easy to implement
gradient descent algorithm to minimize a function F (X) over the Stiefel man-
ifold X ∈ Q. A local minimum can be found by starting at a feasible X ∈ Q
and computing the descent gradient direction H of the function F (X) in this
point. Then while staying on the Stiefel manifold the minimum of F (X) in that
direction is searched and used as new start point. This steps are repeated until
the algorithm converges to the local minimum.
According to [38] the descent gradient direction – using the so called canonical

metric – can be computed by

H = −∇F (X) = −(FX −XF>XX)

where the elements of FX are the partial derivatives of F with respect to the
elements of X:

(FX)ij =
∂F

∂Xij

The geodesic on the Stiefel manifold starting from X0 in the gradient direction
H is given by the curve

X(t) = X0M(t) +QN(t)

were
QR = (I −XX>)H (4.42)

is the QR-decomposition and M(t) and N(t) can be determined by the matrix
exponential

(
M(t)
N(t)

)

= exp

[

t

(
A −R>

R> 0

)](
I
0

)

with A = Y >H and R from the QR-decomposition (4.42). The matrix expo-
nential can be calculated for example by an algorithm suggested in [64]. With
this the minimum of F (X(t)) in the direction H = −∇F (X) can be searched
and used as starting point for the next iteration of this steps.
In [38] one can find a good and detailed description for the Newton and conju-
gate gradient algorithm on the Stiefel manifold.
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4.8.5 Projection Approach

The aim of this section is to present a projection method we have found for
relaxed matching matrices which allows the substitution of X ∈ Qn,m ∩ Ē by
expressing X in terms of y ∈ Qn−1,m. Here Q denotes the Stiefel manifold
(X>X = I) and Ē denotes the set of matrices with column sum one (X>e = e).
The discussed approach is inspired by the projection approach proposed by
Hadley et al. [59] which takes into account the doubly stochastic constraint X ∈
E in addition to the orthogonality constraint X ∈ O for relaxed permutation
matrices (see also section 4.2.3). Setting

X = X̃ + Vnz (4.43)

where

X̃ =
1

n
Enm =

1

n
ene

>
m

we want X to be within the Stiefel manifold:

X>X =
1

n
Emm + z>z

!
= In−1,n−1

We observe, as z>z = In−1,n−1 − 1
nEmm, that z itself is not within the Stiefel-

manifold and the question arises if it can be expressed as a function z(y) which
depends on a variable y that lies in the Stiefel-manifold. Indeed it turns out
that this can be achieved by the following expression:

z(y) = y(Imm − cEmm)

Solving the quadratic equation z>z = I − 2cEmm + c2mEmm
!
= I − 1

nEmm

shows, that with a c set to one of the following two positive values (n > m)

c1,2 =
1

m
±
√

1

m2
− 1

mn

z can really be expressed as a function of a variable y that lies in the Stiefel-
manifold. Therefore

X(y) =
1

n
Enm + Vny(Imm − cEmm)

allows to express X ∈ Qn,m ∩ Ē in terms of y ∈ Qn−1,m. Note that due to the
ambiguity of c one has to cope with the two possible substitutions of X.



Chapter 5

Subgraph Matching

In this chapter, we present a new convex programming approach to the prob-
lem of subgraph matching. The aim is to match object views, represented by
graphs, against larger graphs which represent scenes. Starting from a linear pro-
gramming formulation for computing the optimal bipartite matching between
the nodes of the two graphs, we extend the linear objective function in order to
take into account the relational constraints given by both graphs. The resulting
combinatorial optimization problem is approximately solved by a semidefinite
program. Results of numerous experiments evaluating the approach are pre-
sented.

5.1 Problem Statement

The success of the convex relaxation approach for graph matching as investi-
gated in the previous chapter motivates to move on and to formulate an equiv-
alent approach to subgraph matching problems. Figure 5.1 depicts an example
of a subgraph matching problem: the smaller graph on the left side has to be
matched against the larger graph on the right side. We propose a subgraph
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Figure 5.1: A subgraph matching problem: The model graph with K = 5
(left) has to be matched against the scene graph with L = 13 nodes (right).
Similar nodes in the model graph and in the scene graph are indicated by
similar colors.

matching approach which incorporates the similarity between the nodes of the
two involved graphs along with the underlying structure of the graphs. To this

75
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end, we assume that the similarities between all pairs of nodes of the two graphs
can be calculated. In figure 5.1 this similarity is displayed by the colors of the
nodes. Moreover, the relational structure of the object and the scene is assumed
to be represented by simple non-weighted graphs.
We point out again that our focus in this thesis is on the development of good
approximation algorithms for graph matching on the basis of convex program-
ming techniques. The decisive advantages of convex programming techniques
are that no additional tuning parameters, which have to be optimized, are intro-
duced and that convex programs can be solved reliably by established standard
methods like interior point algorithms. As already mentioned in section 1.2.4,
we do not consider in-depth issues related to image preprocessing and assume
the model and scene graphs to be given.

Starting from a bipartite graph matching (section 5.2), we extend the linear
objective criterion with a quadratic term favoring bipartite matchings which
take into account the relational structure of both the model graph and the
scene graph. This results in a quadratic integer program which naturally is
NP-hard (section 5.3). In section 5.4, a semidefinite relaxation of this combina-
torial problem is developed. An illustrative example is discussed in section 5.5
followed by various numerical experiments in section 5.6 and 5.7. In section 5.8
some real world subgraph matching problems are evaluated. Several interesting
aspects of the subgraph matching approach are discussed in section 5.9.

5.2 Notation and Bipartite Matching

In the following, we briefly recapitulate the basic notation used in this chapter
and provide the starting point of our approach, which consists of the bipartite
matching between two sets of nodes which originate from the object and scene
graph.

5.2.1 Matching in Bipartite Graphs

We consider undirected graphs G = (V,E) with nodes V = {1, . . . , n} and edges
E ⊂ V × V . We denote the model graph with GK and the scene graph with
GL. The corresponding sets VK and VL contain K = |VK | and L = |VL| nodes
respectively. We assume the scene graph to be larger than the object graph
(L ≥ K). Furthermore, we assume a similarity function w(i, j) to be given
which measures the similarity of each pair of nodes i ∈ VK and j ∈ VL.
If we ignore the structure in both the model graph and the scene graph, then
an optimal assignment of the K nodes of the model graph to the scene graph
can be found easily as a bipartite matching between the nodes VK and VL (cf.
section 2.2.1).
The bipartite matching is to find a matching in the bipartite graph Gbipartite =
(VK∪VL, E), which has edges (i, j) ∈ E defined for all pairs i ∈ VK , j ∈ VL with
the corresponding edge weights w(i, j) . This means that Gbipartite consists of
K+L nodes and has KL undirected edges linking every node in VK with every
node in VL. Note that no edge of Gbipartite links together nodes within the sets
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VK and VL, respectively. The optimal bipartite matching can be computed by
a linear optimization problem which is described in the following section.

5.2.2 Linear Problem Formulation of the Bipartite Matching

In this section, we sketch a linear programming approach to compute a bipar-
tite matching with minimal cost between two sets of nodes. To this end, the
matching is described by a 0/1-indicator vector x. Let x ∈ {0, 1}KL be the
indicator vector with elements xji for all pairs i ∈ VK , j ∈ VL. The element
xji represents the edge between the node i ∈ VK and j ∈ VL. An edge (i, j) is
present if xji = 1, and xji = 0 indicates that an edge is not present. We assume
that the components of x are arranged as described in section 2.2.2:

x = (x11, · · ·xL1, x12 · · ·xL2, · · · , x1K · · ·xLK)>. (5.1)

Thus x starts with L edges connecting the first node of VK with all nodes in
VL, followed by L edges connecting the second node in VK with all nodes in
VL, etc. We denote, with a slight abuse of notation, the corresponding weight
vector (w(1, 1), . . . , w(L,K))> again with w. The optimal bipartite matching
is then obtained by solving the following integer program

min
x

w>x

s.t. AKx = eK , ALx ≤ eL (5.2)

x ∈ {0, 1}KL

where the matching constraints are defined by the constraint matrices AL and
AK . Conforming to section 3.5, the matrix A = (A>K , A>L )

> composed of AL

and AK , is the incidence matrix of the bipartite graph Gbipartite. Hence, A is
a totally unimodular matrix [108] and, as a consequence, (5.2) can be solved
by a linear program where x ∈ R

KL and its solution is guaranteed to result in
the globally optimal integer solution x ∈ {0, 1}KL. Therefore we refer to the
integer program (5.2) often as linear program. As mentioned above, however,
this favorable situation has been achieved by ignoring the relational structures of
the object representation (model graph) and the image (scene graph). Applying
the linear approach (5.2) to the subgraph matching example shown in figure 5.1,
each node of the object graph is assigned to the best fitting partner. However,
without taking the structure into account, this leads to the undesired matching
shown in figure 5.2.
In order to include the relational constraints of the graphs we extend the linear
approach (5.2) in the next section. In section 5.4 we propose a corresponding
convex programming relaxation which is also favorable from the computational
point of view.

5.3 Combinatorial Subgraph Matching Approach

In this section, we suggest a formulation of the subgraph matching problem as a
quadratic integer program which is based on a regularization of the previously
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Figure 5.2: Ignoring the structure of the graphs the solution of the linear
optimization problem (5.2) leads to the shown undesired matching.

discussed bipartite matching. The quadratic program is discussed in detail
in section 5.3.1. After a short discussion of the regularization parameter in
section 5.3.2, the approach is classified in section 5.3.4. In order to find a
good approximation of this combinatorial subgraph matching problem, it will
be relaxed to a convex optimization problem in section 5.4.

5.3.1 Quadratic Integer Program

To incorporate the relational structure of both the model graph and the scene
graph, we extend the linear objective function in (5.2) with a quadratic term.
To control the influence of these additional costs the non-negative parameter
α ∈ R

+ is introduced. Formally the quadratic integer program then reads:

min
x

w>x+ αx>Qx

s.t. AKx = eK , ALx ≤ eL (5.3)

x ∈ {0, 1}KL

As before, the matching constraints are defined by the linear constraints. The
matrixQ ∈ R

KL×KL in the quadratic term of (5.3) to be specified below involves
the symmetric 0/1-adjacency matrices NK , NL of the model graph and the
scene graph, respectively, which encode the neighborhood structure in these
two graphs. For example, the adjacency matrix NK for the house-like model
graph from figure 5.1 is shown in figure 5.3.
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1

2

3

5

NK =









0 1 0 1 1
1 0 1 1 0
0 1 0 1 0
1 1 1 0 1
1 0 0 1 0









Figure 5.3: Example object graph and its adjacency matrix NK .
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Furthermore we define the Complementary Adjacency Matrices.

Definition 1. Complementary Adjacency Matrices

N̄L = ELL −NL − IL

N̄K = EKK −NK − IK

These matrices can be interpreted as indicator matrices for non-adjacent nodes.
They have the element (N̄)ij = 1 if the corresponding nodes i and j are not
directly connected in the graph. With this notation and referring to the order
of the set of edges defined in (5.1), the symmetric Relational Structure Matrix

Q in (5.3) incorporating the relational structure is defined in the following.

Definition 2. Relational Structure Matrix

Q = NK ⊗ N̄L + N̄K ⊗NL (5.4)

We explain in detail the two terms on the right hand side of (5.4) which are
used to construct the matrix Q:

• The first term in the quadratic expression x>Qx can be written as:

x>(NK ⊗ N̄L)x =
KL∑

ar

KL∑

bs

(NK)ab(N̄L)rsxarxbs (5.5)

The interpretation of this term is that if two nodes a and b in the model
graph are neighbors, (NK)ab = 1, then a good assignment (no costs)
involves corresponding nodes r and s in the scene graph which are neigh-
bors, too: (N̄L)rs = 0. For such a configuration no cost is added in (5.5).
Otherwise if the corresponding nodes r and s are no neighbors in the scene
graph, (N̄L)rs = 1, then a cost of 1 is added. This two configurations are
visualized in figure 5.4.

x  =1ar

x  =1bs

object graph scene graph

b

a

s

r x  =1ar

x   =1bs’

object graph scene graph

b

a r

s’
Good assignment Bad assignment

Figure 5.4: Left: Adjacent nodes a and b in the model graph are assigned
to adjacent nodes r and s in the scene graph. Right. Adjacent model nodes a
and b are no longer adjacent in the scene graph after the assignment. The left
assignment leads to no additional costs while the right undesired assignment
adds 1 to the cost term (5.5).
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• Analogously, the second term in xTQx gives:

x>(N̄K ⊗NL)x =
KL∑

ar

KL∑

bs

(N̄K)ab(NL)rsxarxbs (5.6)

This term penalizes assignments where pairs of nodes in the object graph
become neighbors in the scene graph which were not adjacent before.
Figure 5.5 illustrates this situation in detail.

x  =1ar

x  =1bs

object graph scene graph
a r

sb

x  =1ar

x   =1bs’

object graph scene graph
a r

s’

b
Good assignment Bad assignment

Figure 5.5: Left: Nodes a and b which are not adjacent in the object graph
are assigned to nodes which are also not adjacent in the scene graph. Right:
A pair of nodes a and b become neighbors r and s′ after assignment. The
left assignment is associated with no additional costs in (5.6). The undesired
assignment on the right side adds 1 to these costs.

Note that due to the symmetry of the quadratic cost term x>Qx, every differ-
ence in the compared structure of the two graphs is penalized with a cost of 2.
Figure 5.6 shows the matching which is obtained for the subgraph matching
example from figure 5.1 using the combinatorial subgraph matching approach
(5.3). Details about the experiment are described in section 5.6. The impor-
tant fact is that the additional quadratic term is able to correct the bipartite
matching appropriately such that the minimization of (5.3) actually leads to
the desired matching.
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Figure 5.6: The minimization of (5.3) which incorporates the structure of
the graphs leads to the desired matching.

The quadratic integer optimization problem (5.3) is a NP-hard problem (cf.
section 2.3.2). In order to calculate a good approximate solution, we will derive
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a convex relaxation in section 5.4. Before that, we discuss the influence of the
regularization parameter α for our subgraph matching approach.

5.3.2 Regularization Parameter

This section concerns the non-negative regularization parameter α which was
introduced as scale parameter to the quadratic term in the objective function
of (5.3). This parameter adjusts the importance of the quadratic structure
term relative to the linear matching cost term. In other words, it controls how
much the graph structure is taken into account. If α is increased the structure
becomes more important.

Choice of the Parameter

If the elements of the similarity vector w are normalized to values within the
range between 0 and 1 experiments showed that setting α to a value between
0.01 and 0.4 is a good choice for the parameter. Of course it should not be
too close to zero α → 0 as this results in the bipartite matching case. If the
parameter has a very large value α → ∞ this means that only the relational
structure is considered by our subgraph matching approach. These two extreme
cases are discussed in the following.

Bipartite Matching (α→ 0)

In the first case, α → 0, the quadratic term in the objective function of (5.3)
is switched off. It is easy to see that this case results in the bipartite matching
problem (5.2) which, as discussed in section 5.2.2, ignores any knowledge of the
underlying relational structure of the graphs.

Subgraph Isomorphism (α→∞)

The second case, α→∞, makes the first term in the objective function of (5.3)
negligible, and only the quadratic term remains. Therefore this case can be
studied by setting all similarities in w to zero 1 and α to an arbitrary value,
e.g. α = 1:

min
x

x>Qx

s.t. AKx = eK , ALx ≤ eL (5.7)

x ∈ {0, 1}KL

In the case of a subgraph isomorphism the combinatorial solution of (5.7) leads
to the lowest possible objective value zero. Note that conversely an objective
value of zero proves that a subgraph isomorphism is present in a given problem
instance. We can see that the minimization of (5.7) represents the search for
a matching which has the smallest possible deviation from a subgraph isomor-
phism. The question whether the convex relaxation of (5.7) leads to a bound

1Setting all similarities to equal values has the same effect, as this only adds a constant to
the objective function.
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which can be used to decide if a subgraph isomorphism does not occur in a
given problem instance is investigated in section 5.9.5.

5.3.3 Hidden Parameters

There are hidden parameters that do not belong directly to our subgraph match-
ing approach, but which influence the results. In particular, one can observe
that the edge density of the graph structures changes the capability of our
approach to obtain good subgraph matchings. In this thesis we set the edge
probabilities to reasonable values during the creation process without investi-
gating the effect of changing problem creation parameters.

Another example is the accuracy of the similarity measure between the nodes
of the two graphs which is crucial for obtaining the desired mapping. We chose
similarity values here that seem reasonable to us to occur in subgraph matching
problems.

This parameters are related to the process of creating or obtaining graphs and
important for the question how one can build object and scene graphs in a
reliable way. However, as already mentioned in section 1.2.4 dealing with this
question is beyond the scope of this work.

5.3.4 Classification of the Approach

The combinatorial subgraph matching approach (5.3) with Q defined in (5.4)
belongs to the category of error correcting graph matching. These approaches
intend to minimize graph edit distances (see section 1.6.2). As discussed pre-
viously, the quadratic cost term in (5.3) penalizes every difference between the
structure of the object graph and the mapped subgraph in the scene with costs
of 2. Therefore, the objective function in (5.3) is a measurement of the struc-
tural differences and can be interpreted as edit cost for deleting and creating
appropriate edges in the object graph needed to obtain a graph which is iso-
morphic to the mapped subgraph in the scene. The edit costs can be adjusted
by the regularization parameter α. If a subgraph isomorphism is attained the
quadratic term is zero. Note that this approach is only reasonable for non-fully
connected scene graphs as a fully connected scene graph contains no usable
structure information. In the latter case, the quadratic term x>Qx is constant
for every matching which reduces the quadratic approach (5.3) to the linear
bipartite matching (5.2). In real scenes, however, locally connected graphs are
typically used to represent spatial context in images.

5.4 Semidefinite Program Formulation

In contrast to the linear bipartite matching problem (5.2), the computation of
the global optimum of the quadratic optimization problem (5.3), which incor-
porates the object and scene structure, is intrinsically difficult. Therefore, we
derive a tractable convex relaxation of this NP-hard problem in order to com-
pute a “good” local minimum. The combinatorial subgraph matching approach
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(5.3) will be relaxed to a (convex) semidefinite program (SDP) which has the
following standard form:

min Tr
[

Q̃X
]

(5.8)

s.t. Tr[A1X] = c1

Tr[A2X] = c2
...

Tr[AmX] = cm

X º 0

The last constraint in (5.8) says that X has to be positive semidefinite. We wish
to emphasize once more that this convex optimization problem can be solved
with standard methods like interior point algorithms. Below, we describe step
by step how we derive such a semidefinite program from (5.3) while in section
5.4.1, we derive an appropriate SDP objective function. We show in section
5.4.2 how the bipartite matching constraints can be incorporated into the SDP
(5.8). After discussing SDP inequality constraints in section 5.4.3 we propose a
post-processing step in section 5.4.4 to obtain a close integer solution from the
non-integer solution of the convex relaxation (5.8).

5.4.1 Objective Function

In order to obtain an appropriate SDP relaxation for the combinatorial sub-
graph matching problem, we start with reformulating the objective function of
(5.3) into a homogeneous quadratic form

f(x) = w>x+ αx>Qx =
(
1 x>

)
(

0 1
2w

>

1
2w αQ

)(
1
x

)

, (5.9)

which can be stated directly in the desired trace formulation

f(x) = Tr

[(
0 1

2w
>

1
2w αQ

)(
1 x>

x xx>

)]

, (5.10)

where we have used the cyclic commutativity of the trace. To simplify this
expression we denote with Q̃ ∈ R

(KL+1)×(KL+1) and X ∈ R
(KL+1)×(KL+1) the

following symmetric matrices:

Q̃ =

(
0 1

2w
>

1
2w αQ

)

, X =

(
1
x

)
(
1 x>

)
=

(
1 x>

x xx>

)

(5.11)

Besides being symmetric, the matrix X is positive semidefinite and has rank 1.
We relax the objective function by dropping the rank 1 condition of X which
makes the set of feasible matrices convex [146]. This lifts the original problem
(5.3) defined in a vector space with dimension KL into the space of symmetric,
positive semidefinite matrices with the dimension (KL+ 1)× (KL+ 1). Using
Q̃ and X we have

f(x) = Tr
[

Q̃X
]
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which represents the appropriate objective function for the semidefinite relax-
ation (5.8). In the following section, we are concerned with the task to ob-
tain suitable SDP constraints which represent the constraints of the subgraph
matching approach (5.3).

5.4.2 Equality Constraints

We wish to incorporate several constraints into the SDP relaxation by specifying
appropriate constraint matrices Ai ∈ R

(KL+1)×(KL+1). These SDP constraints
will have the form:

Tr[AiX] = ci for i = 1, . . . ,m

In particular, we consider four types of constraints which correspond to the
homogeneous formulation of the problem, the 0/1-integer constraints, and the
bipartite matching constraints, respectively. We next discuss in detail how these
constraints are incorporated into the SDP formulation:

• The first constraint we take into account results from the homogenization
(5.9). To restrict the element X11 = 1 in the matrix X, we introduce a
constraint matrix oneA whose elements can be expressed as

oneAkl = δk1δl1 for k, l = 1, . . . ,KL+ 1 ,

where we make use of the Kronecker delta. Explicitly, this SDP constraint
reads:

Tr[oneAX] = Tr















1 0 · · · 0
0 0 0
...

. . .
...

0 0 0








X







= 1

• The second type of constraint we consider is derived from the integer con-
straints xi ∈ {0, 1}, i = 1, . . . ,KL, which can be rewritten as x2i = xi, i =
1, . . . ,KL. If we consider the matrix X before it is relaxed (see 5.11) we
observe that due to x2i = xi the 0/1-integer elements on the diagonal of
X must be equal to the 0/1-integer elements in the first column and row
of X. Therefore the 0/1-integer constraints can be weakly enforced in the
relaxed problem by requiring the first column and row of X to be equal
to its diagonal. To implement these constraints, we introduce KL con-
straint matrices intAj ∈ R

(KL+1)×(KL+1), j = 2, . . . ,KL + 1. We define
these constraint matrices to have a 2 at the appropriate diagonal element
and −1 at the corresponding elements in the first column and the first
row. All other elements are zero. Using the Kronecker delta the elements
of the j-th constraint matrix intAj are:

intAj
kl = 2δkjδlj − δkjδl1 − δljδk1 for k, l = 1, . . . ,KL+ 1

As a result, we have the following SDP constraints:
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Tr[intAjX] = 0 for j = 2 . . . ,KL+ 1

For example, for j = 2, this constraint reads:

Tr[intA2X] = Tr



















0 −1 0 · · · 0
−1 2 0 0
0 0 0 0
...

. . .
...

0 0 0 0










X










= 0

• The third type of constraint we take into account are the equality con-
straints

∑L
j=1 xij = 1, i = 1, . . . ,K, which are part of the bipartite match-

ing constraints in (5.3). They represent the constraint that each node of
the smaller graph is mapped to exactly one node of the scene graph.
We define K constraint matrices sumAj ∈ R

(KL+1)×(KL+1), j = 1, . . . ,K
which ensure (taking the order of the diagonal elements into account) that
the sum of the appropriate portion of the diagonal elements of X is 1.
We exploited here the fact that xi = x2i holds true for 0/1-variables. The
matrix elements for the j-th constraint matrix sumAj can be expressed as
follows:

sumAj
kl =

jL+1
∑

i=(j−1)L+1

δikδil for k, l = 1, . . . ,KL+ 1

The K constraints in SDP form are then:

Tr[sumAjX] = 1 for j = 1, . . . ,K

Explicitly written, this constraint reads:
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Note that we consider only equality constraints here, but possible ways
to formulate inequality constraints like the bipartite matching inequality
constraints (

∑K
i=1 xij ≤ 1, ∀j) as appropriate SDP constraints are dis-

cussed in section 5.4.3.
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• The fourth type of constraint is related to the observation that the bipar-
tite matching constraints in (5.2) have a direct impact to certain matrix
elements of the sub-matrix X̃ = xx> of X. If x ∈ {0, 1}KL represents a
bipartite matching then certain elements in X̃ must be zero. Affected ele-
ments can be determined by inspecting the following two cost terms which
penalize matchings that do not meet the bipartite matching constraints.

x>(IK ⊗ (ELL − IL))x =
KL∑

ar

KL∑

bs

(IK)ab(ELL − IL)rsxarxbs (5.12)

x>((EKK − IK)⊗ IL)x =
KL∑

ar

KL∑

bs

(EKK − IK)ab(IL)rsxarxbs (5.13)

The first of these two terms penalizes non-unique assignments of model
nodes to scene nodes. Analogously, the second term penalizes assignments
where different nodes of the model graph are mapped to the same node
in the scene graph. Thus, in summary, the two terms penalize all assign-
ments which do no lead to a bipartite matching. Figure 5.7 illustrates
such configurations in detail.

x  =1

x  =1

ar

bs

r

s

a=b

object graph scene graph

x  =1ar

x  =1bs

r=s

object graph scene graph

a

b

Example: Bad assignment Example: Bad assignment

Figure 5.7: Assignments which do not lead to bipartite matchings are pe-
nalized by the quadratic terms (5.12) and (5.13).

All integer solutions X̃ = xx> ∈ R
KL×KL, where x represents a bipar-

tite matching, have zero-values at those matrix positions where IK ⊗
(ELL − IL) and (EKK − IK) ⊗ IL have non-zero elements. Accordingly,
we want to force the corresponding elements in X ∈ R

(KL+1)×(KL+1) to
be zero. Fortunately, this can be achieved with the constraint matri-

ces zeros1Aars,zeros2 Aŝâb̂ ∈ R
(KL+1)×(KL+1) which are determined by the

indices a, r,s and ŝ, â, b̂. They have the following matrix elements

zeros1Aars
kl =δk,(aL+r+1)δl,(aL+s+1) + δk,(aL+s+1)δl,(aL+r+1) , (5.14)

zeros2Aŝâb̂
kl =δk,(ŝK+b̂+1)δl,(ŝK+â+1) + δk,(ŝK+â+1))δl,(ŝK+b̂+1) , (5.15)

where k, l = 1, . . . ,KL + 1. Each of these matrices has only two non-
zero matrix elements at symmetric positions. The indices a, r,s and ŝ, â, b̂
attain all valid combinations of the following triples where s > r and
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b̂ > â:

(a, r, s) : a = 1, . . . ,K; r = 1, . . . , L; s = (r + 1), . . . , L

(ŝ, â, b̂) : ŝ = 1, . . . , L; â = 1, . . . ,K; b̂ = (â+ 1), . . . ,K

This defines the following (LL− L)K/2 + (KK −K)L/2 additional con-
straints

Tr[zeros1AarsX] = 0 , ∀(a, r, s)
Tr[zeros2Aŝâb̂X] = 0 , ∀(ŝ, â, b̂)

which ensure zero-values at the corresponding matrix positions of X. An
explicit example for one of these constraints is shown here:

Tr
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The name gangster operator was introduced in [137] for such constraint
operators because it “shoots holes”, i.e. zeros into the matrix X.

Counting all the considered constraints we end up with the fast growing number
of constraints:

m = 1 +KL+K +
(KK −K)L

2
+

(LL− L)K

2
= 1 +K +

K2L

2
+

KL2

2

So far we considered equality constraints, which can be handled by currently
available SDP solvers. However, it is also possible to incorporate inequalities.
Therefore, we discuss the issue of reformulating linear inequality constraints
into appropriate SDP constraints in the next section.

5.4.3 Inequality Constraints

Inequality constraints can typically be used to further tighten the SDP relax-
ation. In this section, we summarize possible ways how linear inequality con-
straints can be stated in an appropriate SDP, similar to (5.8) which additionally
incorporates inequality constraints:

Tr[DiX] ≤ bi for i = 1, . . . , n

In the following, we consider linear inequality constraints

Ax ≤ b,
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where A ∈ R
n×m, x ∈ R

m and b ∈ R
n . Comparing this with the bipartite

matching inequality constraints (5.3), we can identify the matrix A = AL ∈
R
L×KL and the vector b = eL ∈ R

L. In [68], three different methods – called
lifting – to obtain SDP constraints from linear inequality constraints involving
0/1-variables are investigated (see also [68, 146, 12.1.2]). The authors showed
the following order of tightness

Diagonal Lifting < Squared Lifting < Lovász Schrijver Lifting,

with an increasing number of additional constraints being involved by these
approaches. The three ways to incorporate linear inequalities into SDPs are
outlined in the following:

Diagonal Lifting

The first and simplest method to incorporate linear inequalities, involving 0/1-
variables, is diagonal lifting. Let ia> be a row of the original constraint matrix
A, then the constraints

ia>x ≤ bi for i = 1, . . . , n (5.16)

can be lifted into the appropriate SDP constraints:

Tr[Diag(ia)X] ≤ bi for i = 1, . . . , n (5.17)

Here, the original inequality
∑m

j=1
iajxj ≤ bi is substituted by the quadratic

inequality
∑m

j=1
iajx

2
j ≤ bi by using the fact that xj = x2j holds true for 0/1-

variables.

Squared Lifting

The second lifting approach presumes ia>x ≥ 0 and bi ≥ 0 where ia, x ∈ R
m

and bi ∈ R . Then both sides of the n inequalities ia>x ≤ bi, i = 1, . . . , n (see
(5.16)) are squared which results in the following inequalities:

ia>xx>ia ≤ b2i for i = 1, . . . , n (5.18)

Substituting xx> by X ∈ R
m×m leads to the following SDP representation of

the inequality constraints:

Tr[iaia>X] ≤ b2i for i = 1, . . . , n (5.19)

Lovász Schrijver Lifting

The idea for this third SDP representation of inequality constraints which in-
volve 0/1-variables is to achieve a quadratic form by multiplying the n inequal-
ities (5.16) by either xi or (1 − xi), i=1,. . . ,m. Therefore, for every original
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inequality, one gets 2m lifted inequalities. To explain this approach in detail
we consider the single inequality

a>x ≤ b,

where a ∈ R
m is a vector and b ∈ R is a scalar.

First, multiplying this inequality with xi, i = 1, . . . ,m results in m inequalities:

m∑

j

ajxixj ≤ xib for i = 1, . . . ,m (5.20)

With xi = x2i for 0/1-variables we obtain for any fixed i the quadratic form:

m∑

j

ajxixj − bxixi ≤ 0 (5.21)

Written in trace form, Tr[iAX] ≤ 0, the components of the symmetric constraint
matrix iA are (k, l = 1, . . . ,m):

iAkl =
n∑

j

(
aj
2
(δkiδlj + δliδkj)− bδkiδli) =

al
2
δki +

ak
2
δli − bδkiδli

Secondly, if we multiply the original constraint with (1 − xi), i = 1, . . . ,m, a
similar calculation leads to m more inequalities:

m∑

j

ajxj −
m∑

j

ajxixj + bxi ≤ b i = 1, . . . ,m (5.22)

By using xj = x2j , we can express this again in trace form Tr[iÂX] ≤ b. Then the

symmetric constraint matrix iÂ has the following components (k, l = 1, . . . ,m):

iÂkl =

n∑

j

(ajδkjδlj−
aj
2
(δkiδlj+δliδkj))+bδkiδli = akδkl−

al
2
δki−

ak
2
δli+bδkiδli

The three liftings discussed above represent standard methods to incorporate
linear inequalities into a SDP formulation. We note here that we dropped the
linear inequality constraints of the bipartite matching (

∑K
i=1 xij ≤ 1, ∀j) in

our experiments because the SDP solvers we used require equality constraints.
At the time of writing, there were no SDP solvers available which are able to
cope with the large number of constraints and which are also able to cope with
inequality constraints. But the progress in the development of SDP solvers
makes it likely that there will be solvers in the near future which also can
efficiently cope with inequalities.

In the following we discuss how we obtain appropriate integer solutions from
the non-integer solutions of the semidefinite relaxation (5.8).
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5.4.4 Post-Processing to obtain an Integer Solution

Once the global optimum Xbound ∈ R
(KL+1)×(KL+1) of the semidefinite relax-

ation (5.8) is computed, the diagonal elements of the solution are interpreted as
a non-integer solution x̂sol = diag(Xbound) for (5.3). Omitting the first element
in x̂sol ∈ R

KL+1, which was added due to the homogenization (5.9), we obtain
the approximation xsol ∈ R

KL for the indicator vector x ∈ {0, 1}KL. To com-
pute from xsol a 0/1-integer solution which represents an admissible bipartite
matching, we solve the following linear program in a post-processing step:

max
x

x>solx (5.23)

s.t. AKx = eK ,

ALx ≤ eL

x ∈ {0, 1}KL

As in (5.2), the total unimodular constraint matrices AK and AL in (5.23) as-
sure that the optimal solution is a 0/1-integer solution and thus represents a
bipartite matching. The only difference to (5.2) is that (5.23) results in a bipar-
tite matching which maximizes the scalar product x>solx instead of minimizing
the scalar product w>x. As a result, the post-processing step (5.23) finds the
largest elements in the solution vector xsol which are compatible with a bipar-
tite matching. The 0/1-integer solution obtained represents the approximate
solution to the combinatorial optimization problem (5.3).
Based on a probabilistic interpretation of the non-integer solution xsol a more
sophisticated post-processing step can be used to obtain a 0/1-integer solu-
tion. The probabilistic interpretation and an improved post-processing step are
outlined in the following.

Probabilistic Interpretation of the Non-Integer Solution

According to the constraints AKxsol = eK each possible match of the model
node i to all j = 1, . . . , L scene nodes sums up to one in the solution vector xsol:∑L

j (xsol)ji = 1, i = 1, . . . ,K. Using this we interpret the elements (xsol)ji of the
solution vector probabilistically: The element (xsol)ji represents the probability
that model node i is matched to scene node j. The overall probability that a
model node i is matched to the scene is 1. With this interpretation, the post-
processing step (5.23) turns out to select the bipartite matching with the highest
total probability and is therefore a reasonable approach to obtain the 0/1-
integer solution. Nevertheless, as often a better combinatorial solution exists the
probabilistic interpretation of xsol suggests itself to consider the other possible
matchings according to their probability as well. To this end, we propose the
following post-processing step.

Probabilistically Motivated Post-Processing Step

To exploit the probabilistic information in the non-integer solution vector xsol

when computing the 0/1-integer solution, we adopt the well known Metropo-
lis algorithm (see e.g. [107, 144]). Starting from a valid bipartite matching
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obtained by (5.23), a node i ∈ {1, . . . ,K} of the (smaller) model graph is ran-
domly selected and according to the probabilities in (xsol)ji, j = 1, . . . , L, a new
mapping from i to j ∈ {1, . . . , L} is chosen randomly. If the new matching re-
sults in an improved combinatorial solution the solution is accepted. Otherwise
the new match is accepted only with a small probability. After a fixed number
of iterations the bipartite matching with the smallest objective function is used
as final 0/1-approximation. We call one such iteration sampling step. In our
experiments we have usually stopped the post-processing after 10 · KL steps.
More iterations surely would increase the probability to obtain better solutions.
Note that this approach can not worsen the matching obtained by (5.23). In-
deed, it experimentally turns out that this post-processing step often results in
improved matchings.

In the following we refer to the SDP relaxation followed by the linear post-
processing (5.23) as basic SDP subgraph matching approach. The approach
followed by the sampling method is called the probabilistic or sampling SDP
subgraph matching approach.

5.5 Illustrative Example

The aim of this section is to illustrate and to clarify the convex subgraph match-
ing approach. To this end, we consider in detail the subgraph matching problem
shown in figure 5.1 at the beginning of this chapter. Further experiments are
described in section 5.6.
As the direct comparison of our SDP subgraph matching approach with other
approaches was not accomplishable, because other approaches have different
requirements with regard to the problem data, we have decided to use syn-
thetically created problem instances for our experiments in section 5.6 that are
reasonable to simulate object recognition tasks.

5.5.1 The Subgraph Matching Example

For illustrating the main features of our approach, we consider the subgraph
matching problem depicted in figure 5.1.

We artificially generated the similarity data w for this subgraph matching exam-
ple. All assignment costs w(j, i) of the similarity vector w are selected randomly
out of different cost ranges, depending on the fact whether the model node i
fits to the scene node j or not. We defined three different cost ranges for the
possible assignments of the model nodes to the scene nodes:

expensive 0.8 – 1.0
cheap 0.4 – 0.6
very cheap 0.2

In our example the following assignments representing exactly the desired sub-
graph matching are chosen to be cheap: 1 7→ 9, 2 7→ 10, 3 7→ 11, 4 7→
12, 5 7→ 13. The other assignment costs are randomly selected out of the ex-
pensive range. To make the problem more difficult, the following undesired
assignments from model nodes to the background nodes are made very cheap
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artificially: 2 7→ 1, 3 7→ 8, 4 7→ 4, 5 7→ 2 (cf. figure 5.1). The exact data
for the shown experiment is listed in Appendix B.1.1. The chosen similarity is
abstractly represented by the colors of the nodes. A similar color of the model
node i and the scene node j indicates that the assignment cost w(j, i) of the
assignment i 7→ j is low.

5.5.2 Linear Bipartite Matching Approach

As discussed in section 5.2.2, the linear bipartite matching approach (5.2) leads
to a 0/1-solution which assigns the nodes of the model graph to the locally best
fitting scene graph nodes. Any knowledge of the structure is completely ignored
by this approach. The resulting undesired matching (1 7→ 9, 2 7→ 1, 3 7→ 8, 4 7→
4, 5 7→ 2) for the example problem has already been depicted in figure 5.2.

5.5.3 SDP Subgraph Matching Approach

In contrast to the linear optimization approach (5.2) our convex programming
approach (5.8) followed by the post-processing step (5.23) is able to find the
desired bipartite matching. The resulting matching, represented by the red
line segments, is shown in figure 5.8 . Furthermore, figure 5.8 shows some
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Figure 5.8: The SDP approach leads to the desired bipartite matching shown
by the red line segments. Furthermore, probable candidate matchings are
depicted with green lines.

candidate mappings (green lines) which are obtained by inspecting the non-
integer approximation vector xsol computed for the example problem. Recall
that xsol is equal to the diagonal of the solution matrix Xsol (omitting the first
element) of the SDP problem (5.8), and that xsol is used to obtain the binary
integer solution.

Figure 5.9 shows the approximation vector xsol plotted against its index. The
plot is subdivided into K = 5 segments, with the i-th segment (i ∈ {1, . . . ,K})
representing all possible matchings from the model node i to all L = 13 nodes
in the scene graph (cf. section 2.2.2).

Corresponding to the constraintsAKxsol = eK , one can verify that each segment
sums up to 1. Therefore, as discussed in section 5.4.4, we may interpret the
elements (xsol)ji of xsol as the likelihood that model node i is mapped to scene
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Solution Vector  x
sol 

 for the Example Subgraph Matching Problem
K=5, L=13

Figure 5.9: Non-integer solution related to the subgraph example exper-
iment. The solution vector xsol (α = 0.25) is plotted against its index.
The most probable matching, obtained by the post-processing step (5.23),
is marked red. Other reasonable mapping candidates are marked green. The
corresponding matchings are shown in figure 5.8.

node j. The solution shown supports this clearly, as only reasonable mappings
i 7→ j have higher values (xsol)ji in the solution vector xsol. For example,
in the second segment (see figure 5.9) only two reasonable mappings 2 7→ 1
and 2 7→ 10 have significantly large values which are represented by the vector
elements x1,2 ≈ 0.16 and x10,2 ≈ 0.69. The mapping 2 7→ 10, which is indeed
part of the optimal matching, can be seen as more likely than the mapping
2 7→ 1 which is one of the cheap mappings.

To obtain the bipartite matching from the approximation vector xsol, the post-
processing (5.23) is used to calculate a nearby 0/1-integer vector. The post-
processing selects in each segment the highest possible, and in our interpretation
the most likely entry, which is compatible with a bipartite matching. The most
likely entries are marked red, and the resulting closest 0/1-integer vector is
shown in figure 5.10. It represents indeed the global optimum of (5.3). Other

1 1 13 / 1 2 13 / 1 3 13 / 1 4 13 / 1 5 13
0

1

Figure 5.10: Integer solution representing the obtained bipartite matching
for the small subgraph matching example. It is obtained by the post-processing
step (5.23) from the non-integer solution xsol which is shown in figure 5.9.
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probable candidates are marked green in figure 5.9. The dot colors are in
accordance with the colors of the matching and candidate mappings shown in
figure 5.8.

5.5.4 Problem Nature

To visualize the character of the subgraph matching problems, the probabil-
ity distribution of the objective values (5.9) for the small subgraph matching
problem is shown in figure 5.11. The parameter α was set to 0.25. Our small
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Subgraph Matching Example: K=5, L=13

Non Integer Diagonal
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Figure 5.11: Distribution of the objective values of the illustrative graph
matching problem. The shown lower bound (2.44622) is obtained by the SDP
solution of (5.8). The global optimum (2.505) was found by the graph matching
approach. Additionally the objective value (4.15538), obtained by using the
diagonal vector in (5.9) of the SDP solution, is shown (cf. figure 5.8).

example with K = 5 model nodes and L = 13 scene nodes has L!
(L−K)! = 154440

possible assignments. According to figure 5.11 a randomly selected assignment
is likely to result in an objective value around 7.0± 1.0. But the aim is to find
the assignment that results in the global minimum which is 2.505 (cf. (5.3)).
The SDP relaxation (5.8) results in a very good lower bound 2.44622 close to
the global optimum. The tightness of the bound is a further indicator that our
approach is capable to find good approximations to the combinatorial original
problem. The non-integer approximation vector xsol leads to an objective value
(cf. (5.9)) of 4.15538 which is to some extent away from the global minimum.
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However, xsol contains sufficient information to obtain the optimal solution by
the post-processing step (5.23).
This small subgraph example shows very clearly the capability of the SDP graph
matching approach to find good subgraph matchings.

In the following sections, we investigate in detail the SDP subgraph matching
approach in order to reveal its performance and applicability for computer vi-
sion tasks. We present statistical results computed for large sets of randomly
generated subgraph matching problems. The experimental results are very
promising but they also reveal the difficult combinatorial nature of subgraph
matching problems.

5.6 Subgraph Matching Experiments

In the following we present results for subgraph matching experiments which
are supposed to simulate a broad range of subgraph matching problems where
we assume that the object graph is present in the scene graph. After first
describing in section 5.6.1 how the problem instances were created, we show
in section 5.6.2 for a single but representative problem instance the objective
value distribution along with results obtained by our SDP subgraph matching
approach. In section 5.6.3 we then discuss the typical influence of the parameter
α considering a particular subgraph matching problem instance. After guessing
the value of α we show in section 5.6.4 several statistical performance results
of the SDP subgraph matching approach for a large series of experiments with
increasing problem size.

5.6.1 Creation of the Problem Instances

Each problem instance for the experiments discussed in this section was created
as follows: First, the object graph with K nodes is randomly created with an
edge probability2 of 0.5. Then the scene graph is created by copying the object
graph and enlarging it to L nodes by adding (L−K) random nodes and edges
with an edge probability of 0.2. An example for such an object and scene graph
structures is shown in figure 5.12. One can see that the object graph structure
is present in the scene graph. To compute the similarity between the nodes of
the two graphs we defined the following two overlapping cost ranges:

small range 0.4 – 0.6
wide range 0.4 – 1.0

The cost wji, i = 1, . . . ,K, j = 1, . . . , L is selected randomly within the small
range (cheap) if the mapping of the object node i to the scene node j represents a
desired mapping. Otherwise the cost is set randomly to a value within the wider
range. Note that the wider range also includes the small range which makes it
likely that some undesired mappings have cheaper assignment costs wji than the
appropriate desired mapping. Therefore, the linear matching approach (5.2),
which ignores the graph structure, is likely to fail in all experiments.

2The edge probability is the probability that an edge of the underlying complete graph is
present.
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Figure 5.12: Illustration of a randomly created subgraph matching problem.
The object graph structure (left) is, due to the creation process, part of the
scene graph structure (right). The cost for a desired mapping is low, while for
an undesired mapping the cost may be any value including low ones. Here, a
similar color of an object node and a scene node indicates a low assignment
cost.

However, due to the problem creation we know where the object graph is present
in the scene graph and we are able to estimate the optimal solution of (5.3).
Our guess represents the desired matching which maps the object graph to the
object graph structure within the scene. For these estimated solutions x∗est the
quadratic term in (5.3) is zero as the object graph structure is mapped isomor-
phically to the subgraph in the scene. We have observed that in most cases this
estimation coincides with the optimal solution. But it should be noted that
in some rare cases an undesired matching can have a better objective value.
Nonetheless, we regard these experiments as ground truth experiments because
in nearly all cases our guess represents the optimal solution.

Abbreviations

We summarize here some notations which are used within the following sections.
We denote the lower bound obtained by the SDP relaxation (5.8) with f∗bound ∈
R and the appropriate solution matrix with X∗

bound ∈ R
(KL+1)×(KL+1). Recall

that the non-integer solution vector xsol ∈ R
KL is basically the diagonal3 of

X∗
bound. The estimated optimal combinatorial optimum will be denoted with

x∗est ∈ {0, 1}KL and the corresponding objective value with f ∗est ∈ R. Similarly,
if the exact global minimum of (5.3) is known we refer to its mapping as x∗opt ∈
{0, 1}KL and to the objective value as f ∗opt ∈ R. Furthermore, we denote the
solutions which are obtained by the basic SDP subgraph matching approach
with x∗lin ∈ {0, 1}KL and the solution computed by the sampling SDP subgraph
matching approach with x∗sampling ∈ {0, 1}KL. The corresponding objective

3Omitting the first element
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values are named analogously f ∗lin ∈ R and f∗sampling ∈ R.

5.6.2 Problem Nature

In order to see the nature of the combinatorial optimization problem (5.3) for
a particular but representative subgraph matching problem instance the prob-
ability distribution of the objective values is drawn in figure 5.13. The object
and scene graph size for this problem instance are K = 9 and L = 22, respec-
tively. Due to the high combinatorial number of possible mappings (≈ 1.8·1011)
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Figure 5.13: Probability distribution of the objective values for a specific but
representative subgraph matching problem instance with K = 9 and L = 22.
The calculated lower bound f∗bound is near to the global optimum f∗opt which
indicates that the relaxation is quite tight. The global optimum was obtained
by the sampling post-process and we have f ∗sampling = f∗opt.

the distribution looks much smoother than the distribution for the small sub-
graph matching problem shown in figure 5.11. The aim of the optimization
problem (5.3) is to obtain the matching with the smallest objective value f ∗opt.
Along with the probability distribution some computationally relevant values
like the lower bound f∗bound and the objective values f ∗lin and f∗sampling of the
computed 0/1-integer solutions are shown. One can see that the lower bound
is near the global optimum which indicates that the relaxation for this prob-
lem is quite tight. The basic SDP subgraph matching approach results in an
objective value f∗lin higher than the global optimum f ∗opt but the sampling post-
processing step reveals the global minimum and we get f ∗sampling = f∗opt. The
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graph structures of this particular subgraph matching instance are depicted in
figure 5.14. Furthermore, the optimal mapping x∗ ∈ {0, 1}KL is shown by red
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Figure 5.14: The shown graph structures belong to the subgraph matching
problem instance for which the probability distribution of objective values is
shown in figure 5.13. The optimal mapping x∗opt ∈ {0, 1}KL represents also
the desired mapping and is indicated by red lines.

lines and we can see that it represents also the desired mapping. Therefore, the
problem instance discussed here supports our assumption that we can search
for the global optimum of (5.3) to obtain a desired subgraph matching.

5.6.3 Influence of the Regularization Parameter

The factor α is the only approach inherent parameter which has to be ad-
justed in our SDP subgraph matching approach. To understand its influence
we next discuss the parameter dependency considering a small subgraph match-
ing problem which shows the typical behavior. Then we sketch how we chose
the parameter for our experiment series considered in section 5.6.4.

Typical Parameter Dependency

For a small subgraph matching problem with K = 6 object nodes and L =
12 scene nodes the parameter dependency of the combinatorial optimum f ∗opt
(green) along with the lower bound f ∗bound (black) computed by the relaxation
(5.8) is shown in figure 5.15. The exact problem data can be found in Appendix
B.1.2.

The global optimum f∗opt(α) for α = 0 is identical with the optimum obtained
by the linear matching approach (5.2). From this point the global optimum
starts to increase linearly with α. The slope of f ∗opt(α) is proportional to the
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Figure 5.15: Parameter dependency of the global minimum f ∗opt(α) (green)
of the combinatorial subgraph matching approach (5.3) for a typical subgraph
matching instance with K = 6 and L = 12 along with the lower bound
f∗
bound(α) (black) obtained by the SDP relaxation (5.8). Moreover, the ob-

jective values f∗sampling (red dots) which are obtained by the sampling post-
processing are shown.

number of structural differences in the obtained matching. With every change
of this slope the combinatorial optimum x∗opt ∈ {0, 1}KL changes to a mapping
with less structural differences. We see that with increasing α solutions with
less structural differences are preferred and for the discussed subgraph matching
problem instance we can obtain a full desired matching when setting α > 0.14.
At about this α the slope of f ∗opt(α) reaches zero from which we conclude that
the corresponding mapping x∗opt represents a subgraph isomorphism of the two
graph structures as the quadratic term in (5.3) must be zero. The graph struc-
ture of the discussed example along with the optimal and also desired mapping
for α > 0.14 is shown in figure 5.16.

The lower bound f∗bound(α) follows for small α’s smoothly the characteristics
of the combinatorial global optimum. It attains a maximum at α ≈ 0.13 after
which a slow nearly linear decrease starts. We observe that with increasing α
the gap between the optimal solution f ∗opt(α) and the lower bound f ∗bound(α)
increases, which indicates that the approximation gets less tight for increasing
α. The reason for the decreasing lower bound lies in the high degree of freedom
for the positive semidefinite matrix X in the relaxation (5.8). There can be
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Figure 5.16: Graph structure of the subgraph matching problem instance
used to visualize the typical parameter dependency. The shown desired map-
ping (red line segments) is equivalent to the optimal mapping for α > 0.14.

negative elements in X which squeeze down the objective value of the relax-
ation without affecting the positive semidefiniteness of the matrix X.

Furthermore, in figure 5.15 the objective values f∗sampling(α) obtained after 10 ·
KL iterations of the sampling step are shown by red dots. In many cases the
global optimum is achieved by this probabilistic post-processing. We note that
more iterations of the sampling step would yield the global optimum more often.
The chosen number of iterations reveals some other interesting facts about this
specific problem: First, there are at least three other matchings which also
correspond to a subgraph isomorphism of the graph structures. In these cases
the dots of f∗sampling(α) lie on a horizontal line. The subgraph isomorphism
corresponding to the objective value f ∗sampling(α > 0.14) ≈ 5.0 is shown in
figure 5.17.
Usually problems of this size are solved to optimality already by the basic
SDP subgraph matching approach. But due to the structural ambiguity the
optimal mapping is less clear present in xsol and can only be obtained by the
sampling post-processing step. Secondly, there are many solutions which lie on
straight lines with a slope of 2. These are mappings where just one edge must
be added or removed from the object graph structure to obtain a subgraph
isomorphism between the object and the scene graph structure (cf. section
5.3.1). Thirdly, it can be seen that with an increasing gap between the lower
bound and the optimum more often different solutions f ∗sampling and with this

different mappings x∗sampling ∈ {0, 1}KL are obtained by the sampling post-
process. That shows that the tightness which measures the distance of the lower
bound to the optimum affects the ability to compute the optimal combinatorial
solution by the sampling post-processing step.
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Figure 5.17: A possible matching which represents also a subgraph isomor-
phism between the object graph structure and the scene graph structure for
the here discussed problem instance. The mappings of the nodes are depicted
by the red lines and corresponding edges are marked by the same color.

Choice of the Parameter

To obtain a reasonable estimate for the regularization parameter α for the
experiment series which we will discuss in section 5.6.4 we investigate here the
parameter dependency of our SDP subgraph matching approach for one large
set of 1000 problem instances with the size K = 9 and L = 25. We note that
the problem instances were not changed with varying regularization parameter.

Generally, if α is too small the regularization is not able to correct an undesired
matching which is obtained by the linear matching approach (5.2). On the
other side, if α is too large the relaxation gets less tight and good solutions
become less likely. Therefore one has to find a compromise for α that is large
enough to result in a desired matching but that also results in a tight relaxation.
However, it turns out that the sampling SDP subgraph matching approach is
not very sensitive to the choice of the parameter values. This can be seen in
figure 5.18, where we show the percentage of problem instances which result in
the estimated or even better optimum.

For the investigated problem instances the basic SDP subgraph matching ap-
proach reaches a maximum fraction of 38.3% optimal solutions for α ≈ 0.15
which decreases to 25.5% for α ≈ 0.5. The additional sampling post-processing
improves this fraction to a much better rate of over 80% which is not very
sensitive to the choice of α. This supports our assumption that the non-integer
solution xsol comprises information that can be statistically exploited to obtain
good integer solutions.

From the viewpoint of computer vision an important measurement is the num-
ber of nodes one can expect to be mapped in accordance with the desired
mappings. Therefore, we plotted in figure 5.19 the mean number of computed
mappings which are in accordance with the desired mappings for increasing
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Figure 5.18: Percentage of computed solutions with an objective value equal
or better than the estimated solution. The sampling significantly improves
the fraction of optimal solution obtained by the basic SDP subgraph matching
approach.

parameter α. As we have fixed the number of object graph nodes to K = 9

in our experiments, there are exactly 9 desired mappings. We can see that for
α = 0 (the linear case) one can expect to obtain only approximately 1 desired
mapping (red dot). From α = 0.1 to α = 0.5 our basic approach results quite
stably in about 7 (out of 9) desired mappings which is further increased to 8
(out of 9) by the sampling post-processing step. Considering the large amount
of possible matchings (7.4 · 1011), it is promising that the sampling SDP sub-
graph matching approach can be expected to obtain approximately 8 of the
9 mappings correctly for the considered problem instances with K = 9 and
L = 25. Therefore, this measurement verifies that our SDP approach is capable
to compute matchings that are consistent with desired matchings.

Based on these experiments we have chosen α = 0.15 for the experiment se-
ries in section 5.6.4 as it maximizes the fraction of globally optimal solutions
obtained by the basic SDP subgraph matching approach and results in a high
number of desired mappings for this experiment. Putting everything together,
our experiments revealed that reasonable values for α are between α = 0.01
and α = 0.40 depending on the problem data4.

4 We assume that the similarity measure has values in the range between 0.0 and 1.0.
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Figure 5.19: The expectation value for the number of nodes which are
mapped in accordance with the desired mappings is not very sensitive to the
parameter α. The SDP subgraph matching approach, followed by the sampling
post-process, can be expected to result in nearly 8 (out of 9) correctly detected
desired mappings for the considered problem instances (K = 9, L = 25).

5.6.4 Statistical Performance Investigation

In this section we investigate statistically the capacity of the SDP subgraph
matching approach in terms of the problem size. To this end we study several
performance measurements for large sets of subgraph matching problems with
increasing problem size. In particular we investigate the tightness of the lower
bound, the percentage of optimally solved problem instances, the mean ratio
of the computed combinatorial objective value to the estimated optimum and
the number of correctly detected desired mappings. The problem instances are
created as described in section 5.6.1 and we set the object graph size to K = 9
while we increased the size of the scene graph from L = 14 to L = 30. For
every problem size we created 1000 problem instances.

Recall that the number of possible assignments in the subgraph matching ex-
periments is L!/(L −K)!. This exponential growth is depicted in figure 5.20.

Tightness

If the lower bound f∗bound which was obtained by the SDP relaxation (5.8) is close
to the global optimum f∗opt then the relaxation is called to be tight. Therefore
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we compare here the lower bound f ∗bound with the estimated optimum f ∗est to
have a direct measurement of the tightness. In particular we used the measure
T (f∗est, f

∗
bound) = (f∗est − f∗bound)/f

∗
est which tends to be zero if the relaxation is

very tight. In figure 5.21 the mean value of the tightness measure T (f ∗est, f
∗
bound)

is plotted and we can see that for the problems of smaller size the relaxation
is usually very tight as the mean of T (f ∗est, f

∗
bound) is very close to zero. For

the larger problems the relative distance between the lower bound and the
estimated optimum increases. In the following we will see how the decreasing
tightness influences some other performance measures.

Fraction of Optimally Solved Problem Instances

To get an idea of the capability of our subgraph matching approach we inves-
tigated the fraction of optimally5 solved problem instances. The results for
the here discussed experiment series obtained by the SDP subgraph match-
ing approach are plotted in figure 5.22. We compare the percentage of opti-
mal solutions obtained by the basic SDP subgraph matching approach with
the percentage of optimal solutions obtained by the sampling SDP subgraph
matching approach. For smaller problems in nearly all cases the global opti-
mum is obtained by the basic SDP subgraph matching approach, which was

5 Note that we count a solution as optimal if it has an equal or better objective value than
the objective value f∗est of the estimated solution.
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Figure 5.21: The tightness measure T (f∗est, f
∗

bound) = (f∗est − f∗bound)/f
∗
est

indicates that the relaxation is very tight if it is close to zero. We can see that
for smaller problem instances the relaxation is usually very tight but with
increasing problem size the relaxation becomes less tight.

further improved by the sampling post process. With increasing problem size
the percentage of optimal solutions obtained by the basic SDP subgraph match-
ing approach decreases to about 13% for problems with a scene graph size of
L = 30. However, even for the larger sized problems the probabilistic sampling
was able to increase the fraction of optimal solutions to a high rate of about 70%
optimally solved problem instances. This indicates that a probabilistic inter-
pretation of the non-integer solution vector xsol obtained by the SDP relaxation
is highly reasonable.

Relative Optimum

To get a more accurate picture of the performance of our SDP subgraph match-
ing approach we investigated the quality of the combinatorial solutions. There-
fore, we computed the mean values of the ratios f ∗lin/f

∗
est and f∗sampling/f

∗
est

for the solutions f∗lin and f∗sampling obtained by the basic and sampling SDP
subgraph matching approach, respectively. A ratio near to 1 indicates that the
obtained solution is close to the estimated optimum f ∗est.

In figure 5.23 the mean of the ratio f ∗lin/f
∗
est is shown. Beside the mean val-

ues of these ratios the standard deviation and the corresponding minimal and
maximal values are shown in the figure. We can see that for smaller problems
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Figure 5.22: Fraction of optimally solved problem instances for increasing
problem sizes. The sampling post-process is able to strongly increase this
fraction by exploiting the information in the non-integer solution vector xsol.

nearly always the optimal solution is obtained, but with increasing problem size
the solution f∗lin obtained by the basic SDP graph matching approach is on the
average up to 35% above the estimated global minimum f ∗est.

In figure 5.24 the mean value of the ratio f ∗sampling/f
∗
est is shown. One can see

that the sampling highly improves the results obtained by the basic approach
and draws in the mean the solution f ∗sampling very near to its estimated optimal
objective value f∗est. Also, for larger problems (K = 9, L = 30) the sampling
solution f∗sampling is usually only 5% away from the estimated optimum f ∗est.
We note that the ratio can become smaller than 1 as sometimes the obtained
objective value was smaller than the estimated optimum.

Desired Mappings

In order to analyze the applicability of the SDP subgraph matching approach
for subgraph matching problems which may occur in computer vision problems
we have also investigated the number of correctly detected desired mappings
that one can expect to obtain. We have plotted in figure 5.25 the mean number
of correctly detected desired mappings obtained by our SDP subgraph match-
ing approach. We can see that the bipartite matching approach (5.2) leads on

average to only 2 desired mappings for the small subgraph matching problems
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∗
est of the objective value f∗lin obtained by

the basic SDP graph matching approach and the estimated optimal objective
value f∗est. A ratio value near to 1 indicates that the obtained solution is close
to the estimated solution.

and decreases further to only 1 desired mapping for the larger problems. The
basic SDP subgraph matching approach can be expected to result nearly always
in the desired mapping for the small problem instances which is consistent with
the observation that nearly always the optimal objective value was obtained.
Therefore this is an experimental verification that the optimal solution is usu-
ally consistent with the desired matching. With increasing problem size we
observe that the mean number of correctly detected desired mappings obtained
by the basic SDP graph matching approach decreases to about 5.5 for problem
instances with the size K = 9 and L = 30, but the sampling post-process is
able to increase this rate to 7 out of 9 desired mappings.

Summary

We have seen in this section that the performance of the SDP subgraph match-
ing approach depends largely on the size of the subgraph matching problem
instances. The tightness which can be seen as a measure for the ability of the
relaxation to approximate the original problem, decreases slowly with increased
combinatorial problem size. For smaller problems the SDP relaxation is usually
tight enough that the simple post-processing step results in the combinatorial
optimum. But with the decreasing tightness (the tightness measure T increases)
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∗
est of the objective value f

∗

sampling ob-
tained by the sampling SDP subgraph matching approach to the estimated
optimum f∗est. The results are significantly improved compared to the mean
ratio f∗lin/f

∗
est shown in figure 5.23.

the ability of the SDP subgraph matching approach to optimally solve problem
instances decreases too. Nevertheless, keeping the combinatorial nature of these
problems in mind the results are very promising and even for larger problems
very good combinatorial solutions are computed by our sampling SDP subgraph
matching approach. In the next section we will see that also the kind of the
subgraph matching problems is an important factor for the performance of the
SDP subgraph matching approach.

5.7 Random Subgraph Matching Experiments

In this section we investigate the application of our SDP subgraph matching
approach to problem instances which are supposed to simulate subgraph match-
ing problems where the object graph is not present in the scene graph. Our aim
is to compare the obtained results for these problem instances with the solu-
tions for the problem instances in the previous section. We find that the more
random subgraph matching problem instances, investigated in this section, are
more difficult to solve. We describe in section 5.7.1 the creation of the here
discussed problem instances and show in section 5.7.2 the problem nature of a
single but representative problem instance. Then we investigate in section 5.7.3
statistically the performance of our SDP subgraph matching approach for large
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Figure 5.25: Mean number of correctly detected desired mappings obtained
by the SDP subgraph matching approach. Also for larger problem instances
with K = 9 and L = 30 the sampling SDP subgraph matching approach can
be expected to obtain 7 out of 9 desired mappings correctly.

sets of problem instances.

5.7.1 Creation of the Problem Instances

For the experiments we discuss in this section we have created problem instances
where the object and scene graphs are created randomly and independently from
each other. Thus, this time, we are not able to guess an optimal assignment.
To compute the ground truth for these problem instances by exhaustive search
in a reasonable amount of time we set the size of the object graph to K = 9
while we let the scene graph size vary only from L = 14 to L = 19. The vector
elements wji, i = 1, . . . ,K, j = 1, . . . , L of the similarity measure w are set
randomly out of the range 0.4− 1.0. Therefore this time there is no correlation
between the similarity and the structure as there was in the previous section.
We set the edge probability of the (smaller) object graph to 0.4 and the edge
probability of the scene graph to 0.3. In figure 5.26 we show two such randomly
created graph structures which belong to the set of problem instances where
the object graph has K = 9 and the scene graph has L = 19 nodes. For the
experiments discussed here the parameter α was set to 0.3.
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Figure 5.26: Example for the graph structures of a subgraph matching prob-
lem instance where the object and scene graph are created randomly and
independently from each other. The object graph (right) with K = 9 was
created randomly with an edge probability of 0.4 and the scene graph (left)
with L = 19 was created independently with an edge probability of 0.3. The
not depicted similarity measure w between the nodes of the two graphs has
random values out of the range 0.4–1.0.

5.7.2 Problem Nature

For a single but representative subgraph matching problem instance the proba-
bility distribution of the objective values along with some computational results
obtained by our subgraph matching approach is depicted in figure 5.27. The
object and scene graph structure which belongs to this particular problem in-
stance are shown in figure 5.26. The main difference to the results shown in
figure 5.13 is that this time the lower bound f ∗bound is not as close to the global
optimum f∗opt as the lower bound was to the estimated optimum f ∗est in figure
5.13. That indicates a lower tightness of the SDP relaxation for this kind of
problem instances and will be supported statistically by the results in section
5.7.3. Due to the lower tightness the optimal combinatorial solution is less
likely obtained by the sampling post-processing step. Nevertheless, in terms of
the objective value a good combinatorial solution is obtained by the sampling
as f∗sampling is close to the global optimum f ∗opt.

5.7.3 Performance Investigation

In the following we present statistical performance results of our SDP subgraph
matching approach for the more random subgraph matching problems discussed
here that are created as described in section 5.7.1. In order to obtain reliable
statistical results we have created 1000 problem instances for every different
scene graph size. To compare these results with the results discussed the pre-
vious section we have computed the same performance measurements in this
section as in section 5.6.4. As the exact global minima f ∗opt of the problem
instances discussed here are computed by exhaustive search, we use the global
optimum f∗opt as reference point instead of the estimated optimum f ∗est used in
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Figure 5.27: Probability distribution of objective values for a representative
random graph matching problem withK = 9 and L = 19. The graph structure
which belongs to this problem instance is shown in figure 5.26. For the here
discussed subgraph matching problem instances the lower bound f ∗bound is
usually not close to the global optimum f ∗opt which indicates that the relaxation
is not tight.

the previous section.

Tightness

We investigate the quality of the lower bound f ∗bound obtained by the SDP re-
laxation (5.8) using the tightness measure T (f ∗opt, f

∗
bound) = (f∗opt− f∗bound)/f

∗
opt.

Statistical results for this measure which compares the lower bound with the
global optimum of (5.3) are shown in figure 5.28. Compared to the results
shown in figure 5.21 we find that the lower bounds for the problem instances
discussed here are usually not near the global optimum. This shows that the
subgraph matching problem instances we are concerned with in this section are
more difficult to be approximated by the SDP relaxation. In the following this
is confirmed by the other performance measures.

Fraction of Optimally Solved Problem Instances

The fraction of optimally solved problem instances for the here discussed sub-
graph matching problems is depicted in figure 5.29. Compared to over 80%,
the basic SDP subgraph matching approach results now only in less than 5%
of all instances in the global optimum. The sampling still improves this rate to
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Figure 5.28: The tightness measure T (f∗opt, f
∗

bound) = (f∗opt − f∗bound)/f
∗
opt

shows that for the here discussed more randomly created problem instances
usually the lower bound is not near to the global optimum. For each problem
size 1000 experiments were performed.

about 34% to 23% optimally solved problems but compared to the fraction of
more than 96% for same sized instances discussed in the previous section (see
figure 5.22) we observe a decreased ability to compute the global optimum.

This supports the assumption that the performance of our subgraph matching
approach depends much on the kind of problem data. The more structured
problems discussed in the previous section are somehow easier to solve by the
SDP relaxation.

Relative Optimum

To investigate the combinatorial solutions obtained by the SDP subgraph match-
ing the mean values of the ratios f ∗lin/f

∗
opt and f∗sampling/f

∗
opt are shown in figure

5.30. We observe that the combinatorial solutions f ∗lin obtained by the basic
SDP subgraph matching approach are generally not as close to the optimal
objective value f∗opt as we have observed for the problem instances discussed in
the previous section (cf. figure 5.23).

The objective value f∗lin is in the mean nearly 1.50 times larger than the global
minimum f∗opt for the problems of smaller size (K = 9, L = 14). This increases
to a factor of nearly 2.0 for problem instances with K = 9, L = 19. For the
previously discussed problem instances of the same size we have obtained ratio
values close to 1.0 which means that these solutions are close to the optimum.
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exploiting the information in the non-integer solution. The results are based
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and independently. Besides the mean values the standard deviation and the
corresponding minimal and maximal values are depicted. A ratio value of 1.0
indicates that the optimum value is reached.
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Nevertheless, the sampling post-process was able to improve the combinatorial
solution remarkably. But in the mean f ∗sampling is still 1.09 to 1.14 times larger
than the global optimum f ∗opt. For same sized problems discussed in the previous
section (see figure 5.24) the sampling results usually in the global optimum.

This indicates again that the here investigated problem instances are harder to
solve.

Optimal Mappings

In this part we investigate analogously to the previous section the number of
mappings which are in accordance with the optimal mappings. For the problem
instances we are concerned with here we define the 9 optimal mappings which
belong to the optimal objective value f ∗opt to be also the desired mappings. The
results for increasing scene graph size (L = 14− 19) are depicted in figure 5.31.
For the smaller experiments (K = 9, L = 14) one can expect that about 5 out
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Figure 5.31: Mean number of mappings that are in accordance with the 9
optimal mappings. The number of correctly determined mappings obtained
by the sampling SDP subgraph matching approach lies between 5.5 and 4 (out
of 9) for the here discussed problems.

of the 9 obtained mappings are correctly detected. For problem instances with
K = 9 and L = 19 this rate decreases to about 4 correctly detected mappings.
This is in contrast to the expected number of correct obtained mappings for
the problem instances discussed in the previous section. There we see in figure
5.25 that for problems of the same size nearly all mappings are in accordance
with the desired mapping.
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Summary

The comparison of the results in this section with the results in the previous
section (section 5.6) reveal that beside the size of the problem instances also the
kind of subgraph matching problem instances influences the performance of the
SDP subgraph matching approach. The computed performance measures show
that the more structured problem instances discussed in the previous section
are better approximated by the SDP relaxation as the more random subgraph
matching problems discussed in this section.
After this statistical performance investigation of our SDP subgraph matching
approach we will show some real world subgraph matching problems in the next
section.

5.8 Real World Examples

The aim of this section is to visualize the application of the SDP subgraph
matching approach to real world problems. We first discuss in section 5.8.1
how we created our real world experiments and present in section 5.8.2 some
results. Note that these examples have mainly the purpose to illustrate our
SDP subgraph matching approach as we did not investigate in this thesis how
reliable object and scene graphs can be obtained from images.

5.8.1 Creation of the Real World Examples

We have used a simple way to create the object and scene graphs from images
for the here discussed subgraph matching problem instances. First, a corner de-
tector [63] was used to extract feature points in a predefined region of an image.
Selected feature points are supposed to represent the nodes of the graphs. The
relational structure of the object and scene graph are created by a Delaunay
triangulation [27, 129]. As the Delauney triangulation is not always able to
create graph structures in a stable manner we are sometimes obliged to create
the graph structure manually. An example for node configurations where the
triangulation is sensitive to perturbations of the feature points is shown in fig-
ure 5.32. Nevertheless, the similarity between the object and scene graph nodes

Figure 5.32: Example for similar node configurations that result in different
Delaunay triangulations. The red marked nodes in the last three graphs are
slightly moved toward the center of the graphs and the depicted different
triangulations are obtained.

was calculated by the Earth Mover Distance from gray value histograms of a
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quadratic area around the nodes. The Earth Mover Distance [123] is a similar-
ity measure for histograms and can be stated as a linear optimization problem.
For details concerning the Earth Mover Distance we refer to the Appendix B.2.

5.8.2 Results

In our first example a “matchbox graph” has to be matched against a scene
graph which includes the matchbox as subgraph. In the second example a part
of a “building brick” has to be matched against a scene graph. This problem
instance includes also a small structural perturbation. The third example rep-
resents also a“building brick” subgraph matching instance. For this particular
problem instance the SDP relaxation is tight enough to result already in the
combinatorial optimum.

Subgraph Matching Example: Matchbox

The graph structures along with the images of our first real world subgraph
matching example are shown in figure 5.33. The small graph in the left image

Figure 5.33: The “matchbox graph” in the left image with K = 12 nodes
has to be matched against in the scene graph with L = 34 nodes in the right
graph. The graph structures are created manually.

with K = 12 nodes is supposed to represent the object graph of the matchbox.
The graph in the right image represents the scene graph with L = 34 nodes and
contains the matchbox graph as a subgraph. In this case the graph structures
were created manually. In figure 5.34 we show the matching that was obtained
by the linear matching approach (5.2) which neglects every structural informa-
tion. Only 4 of the 12 computed mappings are in accordance with the desired
mapping. The correctly detected desired mappings are depicted by red lines
while the undesired mappings are colored blue.
The SDP relaxation with α = 0.03 results in the non-integer solution vector
xsol which is shown in figure 5.35. Interpreting the elements of xsol as likelihood
we see that the center node of the matchbox with the label 11 has a very high
probability to be matched to the correct scene node with the label 15.
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Figure 5.34: The shown mapping was obtained by the linear matching ap-
proach (5.2) which neglects every structural information of the graphs. Only
4 of the 12 mappings are in accordance with the desired mapping. The cor-
rectly detected desired mappings are depicted by red lines while the undesired
mappings are colored blue.
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Figure 5.35: The non-integer solution vector xsol obtained by the SDP
relaxation with α = 0.03. The linear post-process (5.23) selects the red colored
elements as the likeliest mapping x∗lin. The appendant matching is depicted
in figure 5.36. The only undesired mapping 4 7→ 31 is likely corrected by the
sampling post-process as the desired mapping 4 7→ 7 (green) is the second
likeliest mapping for the object node 4. The correct matching obtained by the
sampling post-process is shown in figure 5.37.
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The linear post-process (5.23) obtains the red colored elements as 1 in the in-
dicator vector x∗lin ∈ {0, 1}KL. The other elements are 0. The appropriate
matching is shown in figure 5.36. Only the mapping 4 7→ 31 is an undesired
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Figure 5.36: The basic SDP subgraph matching approach (α = 0.03) results
in the shown matching. Only the mapping 4 7→ 31 is an undesired mapping.
The green marked mapping 4 7→ 7 is according to the solution vector xsol
shown in figure 5.35 the next best mapping for the object node with the label
4. Therefore it is very likely that the full desired mapping is obtained by the
sampling post-processing.

mapping, but the next likeliest mapping 4 7→ 7 which is shown as green line
segment is the desired mapping. Therefore it is very likely that the full desired
mapping is obtained by the sampling post-processing. We plotted the full de-
sired mapping in figure 5.37.

We consider this subgraph matching example also to illustrate the changes in
the solution vector xsol if the parameter α was set too high. Therefore, we
show in figure 5.38 the solution vector xsol obtained by the SDP relaxation for
α = 0.2. One can see that xsol reflects the preferred mappings less clearly and
all the probabilities (except for the mapping 11 7→ 15) are less than 0.2. This
makes it harder for the sampling post-processing step to result in the global
optimum. For the discussed problem instance the likeliest mapping obtained
by the linear program (5.23) results in the mapping which is shown in figure
5.39. We observe that this is still close to the desired mapping but instead of
one, now there are two undesired mappings: 2 7→ 20 and 4 7→ 31. Note that
even in this case the 10 · KL sampling post-processing steps result usually in
the full desired matching which was already shown in figure 5.37. This shows
once more that our approach is not too sensitive to the choice of the parameter
α and that despite the bad choice for α a very good combinatorial solution was
obtained.
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Figure 5.37: The full desired matching for the “matchbox” subgraph match-
ing problem instance is obtained by the sampling SDP subgraph matching
approach.
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Figure 5.38: The solution vector xsol obtained by the SDP relaxation with
α = 0.20. The solution becomes with increasing α less clear but many desired
mappings are still the likeliest. The decreased tightness makes it harder for
the sampling post-process to result in the global minimum.
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Figure 5.39: The matching was obtained by the basic SDP subgraph match-
ing approach with α = 0.2. Despite the bad choice of α, only the two mappings
2 7→ 20 and 4 7→ 31 are undesired mappings. Note that the sampling post-
processing results usually in the full desired matching. This shows that the
sampling SDP subgraph matching approach is not too sensitive to the choice
of the parameter α.

Subgraph Matching Example: Building Brick 1

The second real world subgraph matching problem is shown in figure 5.40. The

Figure 5.40: The object graph (left) with K = 12 nodes represents a part
of a building brick and has to be matched against the scene graph (left) with
L = 41 nodes. The graph structures are the result of a Delaunay triangulation
of the feature points.

object graph with K = 12 nodes represents a part of a building brick and
has to be matched against the scene graph with L = 41 nodes. This time the
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graph structures are the result of a Delaunay triangulation of the shown feature
points. Ignoring the structure, the linear matching approach (5.2) results in the
undesired matching which is shown in figure 5.41. Only 3 of the 12 mappings
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Figure 5.41: Ignoring the structure the linear program (5.2) results in the
shown matching. Only 3 of the 12 mappings are in accordance with the desired
mapping. The correctly detected desired mappings are depicted by red lines
while the undesired mappings are colored blue.

are in accordance with the desired mappings. Many object nodes are mapped
to scene nodes which belong to the second building brick as it has locally very
similar features.

Taking a closer look at the graph structures one can observe that this example
has a small structural perturbation. There is an additional edge between the
nodes with the label “1” and “4” in the object graph which is not present in
the scene graph.

The solution vector xsol obtained by the SDP relaxation with α = 0.05 is shown
in figure 5.42. Even for this larger sized problem instance only a small fraction
of the possible mappings have significantly increased probabilities in xsol. This
time already the vector x∗lin computed by the basic SDP subgraph matching
approach represents the desired mapping and the sampling post-processing step
can not improve this solution any further. The appropriate mapping is shown
in figure 5.43. Accordingly to the colors in the solution vector xsol shown in
figure 5.42, the second best mappings are shown by green line segments. One
can observe that often the second best mappings are in accordance with the
mappings computed by the linear matching approach and are therefore often
seen as good mapping candidates.

We have seen that for the discussed problem instance the desired mapping
was computed by the SDP subgraph matching approach and that the small
structural error is no problem for the approach. We will discuss the issue of
structural differences in more detail in section 5.9.3.
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Figure 5.42: The non-integer solution xsol obtained by the SDP relaxation
with α = 0.05 shows that only some mappings have an increased probability.
In this case the likeliest mapping represents already the desired mapping and
the sampling post-processing step is not required.
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Figure 5.43: The basic SDP subgraph matching approach (α = 0.05) results
already in the desired mapping which is depicted by the red line segments.
Some next best mapping candidates are shown by the green line segments.
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Subgraph Matching Example: Building Brick 2

The third subgraph matching problem is based on the same pictures as the
previous example and is depicted in figure 5.44. This time the object graph is

Figure 5.44: The part of the building brick with K = 14 nodes has to be
matched against the scene graph with L = 40 nodes.

with K = 14 nodes slightly larger and a different scene graph with L = 40 nodes
is chosen. The linear matching approach (5.2) results in the undesired matching
which is shown in figure 5.45. Only 3 out of the 14 mappings are in accordance
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Figure 5.45: The linear solution for the real world graph matching problem
shown in figure 5.44. Only three mappings (4 7→ 24, 5 7→ 25, 14 7→ 37) are in
accordance with the desired mappings.

with the desired mappings. For this example we find that the SDP relaxation
(α = 0.01) is as tight as possible and already the solution vector xsol results
in a 0/1-integer solution. The computed solution vector xsol is depicted in
figure 5.46. As xsol is also a feasible solution for the integer subgraph matching
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Figure 5.46: The solution xsol of the SDP relaxation with α = 0.01 results
already in a 0/1-integer solution. Therefore this is guaranteed to be also the
combinatorial optimum as the relaxed solution is a feasible solution for the
combinatorial problem (5.3).

program (5.3) and the lower bound f∗bound is equal to the combinatorial objective
function f(xsol) in (5.3) we conclude that xsol must be the global optimum for
(5.3) (see also section 3.1.1). The corresponding optimal mapping is shown
in figure 5.47 and we see that it also represents the desired mapping. We
observe that this particular problem can be approximated very good by the
SDP relaxation. Although it is not clear to us we think a reason for this
could be the fact that this problem instance has no ambiguous mappings which
are cheap and simultaneously have a local fitting graph structure. We were
astonished about this result especially as the example has the small structural
perturbation which prohibited an isomorphic mapping of the object graph to
the desired subgraph in the scene graph. Maybe this example can be used
to find conditions under which a subgraph matching problem instance can be
approximated as tight as possible by a convex relaxation.

5.9 Discussion

In this section we discuss several interesting aspects of the SDP subgraph match-
ing approach. We first summarize the computational time and the memory re-
quirements in section 5.9.1 and discuss in section 5.9.2 possible ways to reduce
this computational effort. After that we investigate in section 5.9.3 the influ-
ence of structural perturbations on the performance of the subgraph matching
approach. Then we discuss in section 5.9.4 the behavior of our approach in
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Figure 5.47: The optimal mapping and also the desired mapping was ob-
tained by our SDP subgraph matching approach. For this example the solution
of the SDP relaxation (α = 0.01) coincides with the combinatorial optimum
which makes any post-processing dispensable.

the case that the scene graph contains more than one potential good matching
for the object graph. Thus we answer the question how bi- or multi-modal
optimization problems are reflected in the convex relaxation which is by defi-
nition only unimodal. In section 5.9.5 we demonstrate that a simplification of
our approach can be used to calculate a bound which sometimes proves that a
subgraph isomorphism can not occur in a subgraph matching problem instance.

5.9.1 Computational Effort

The most computational effort within our SDP subgraph matching approach is
needed for the computation of the solution of the SDP relaxation (5.8). We used
external SDP solvers for this task and an independent benchmarking for several
SDP solvers can be found in [104]. A comparison of three SDP solvers (DSDP
[13], PENSDP [92] and CSDP [18]) on the basis of our own data is shown in
table 5.1. There we compared the mean computation time needed to solve SDP

Problem Size (K/L) CSDP 4.8 PENSDP 1.1 DSDP 4.7

9/14 (16±15)s (42±11)s (191±18)s
9/22 (89±46)s (269±56)s n.a.

9/30 (395±86)s (1221±65)s n.a.

Table 5.1: Mean computation time for three SDP solvers needed to solve
SDP relaxations of several different sized subgraph matching experiments. The
CSDP-solver fits best our needs.

relaxations of different sized subgraph matching problems which were created
as described section 5.6.1. The solvers were run with default parameters on 3
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GHz PCs with 2 GB storage. The computation time shows that the CSDP-
solver fits best our needs. Note, that the DSDP-solver failed for the larger sized
problems.

The CSDP-solver is a variant of the predictor corrector algorithm suggested
by Helmberg, Rendl, Vanderbei, and Wolkowicz [70] and is described in de-
tail in [18]. Nevertheless, below we sketch the storage requirement and the
computational time for this solver.

Storage Requirement

In [19] the author points out that the CSDP-solver requires approximately

8(m2 + 11(n2
1 + n2

2 + · · ·+ n2
s))

bytes of storage. Here m is the number of constrains and n2
1, n

2
2, · · · , n2

s are the
sizes of block diagonal matrices used to describe the n×n problem and solution
matrices of the semidefinite program. Recall that in terms of the graph sizes
K and L we have

n = KL+ 1

and

m = 1 +K +
K2L

2
+

KL2

2

With this we compute that a small subgraph matching problem instance with
K = 9 and L = 14 needs about 17 MB while a larger problem instance with
K = 9 and L = 30 needs already 220 MB of storage. About 1.8 GB of storage is
needed to solve the SDP relaxation of the third real world example with K = 14
and L = 40 which is therefore near to the maximal problem size we can fully
compute on today’s computers with 2 GB of storage.

Computational Time

According to [18] the most difficult part in an iteration of the CSDP-solver
is the computation of the Cholesky factorization of a m × m matrix which
requires a time proportional to O(m3). This result is based on the here fulfilled
assumption that individual constraint matrices have O(1) non-zero elements
and that m is somewhat larger than n.

In figure 5.48 we plotted the mean computation time used by the CSDP-solver
to solve the problems discussed in section 5.6.4 on a 3 GHz Pentium 4 PC with
2 GB storage.

We have seen in this section that the computational demand increases quickly
with the problem size. But one has to keep in mind that the original com-
putational demand growth exponentially. And compared to this a single digit
polynomial growth for a good approximation algorithm is already a big advan-
tage. However, in the following section we discuss how we can reduce the size
of the subgraph matching instances in order to reduce the computation time
and to increase the size of problem instances we can cope with.
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Figure 5.48: Mean time used by the CSDP-solver [18] on a 3 GHz Pentium
4 PC with 2 GB storage to solve the SDP relaxation for increasing subgraph
matching problem size. The data is based on problem instances discussed in
section 5.6.4.

5.9.2 Reducing the Computational Effort

The quick growth in the computational demand of the SDP relaxation restricts
the application of our unmodified approach to small and medium sized problem
instances and requires that larger problems must be somehow reduced in size. In
the following we suggest two different approaches to reduce the computational
effort. The first approach reduces the number of constraints for the problem
instances by combining several constraints into a single constraint. The second
approach reduces the problem size by eliminating undesired mappings directly
from the problem instance.

Constraint Grouping

An easy method to reduce the number of constraints is to merge a predefined
number of gangster constraints into a single constraint. Recall that the (KK−
K)L/2 + (LL− L)K/2 gangster constraints represent the main fraction of the
constraints in the SDP relaxation (5.8). Therefore, when reducing the number
of these constraints we can expect a large computational gain. The gangster
constraints (see also (5.12) and (5.13)) are defined by the non-zero elements of
the matrix

G = IK ⊗ (ELL − IL) + (EKK − IK)⊗ IL .
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If we define M as the set of indices i and j where G has non-zero elements

M = {(i, j)|i ≤ j,Gij = 1}

the original gangster constraints are

Tr[AijX] = Xij +Xji = 2Xij = 2Xji = 0 ∀(i, j) ∈M

where one index pair (i, j) defines the position of symmetric elements in X
which are constrained to be 0. Hence, the constraint matrix Aij is a symmetric
matrix which has only two elements set to 1 (see also section 5.4.2).

We can merge together two different gangster constraints with indices (k, l) 6=
(m,n) by adding their constraint matrices Akl and Amn:

grouped2A = Akl +Amn

The new constraint reads then:

Tr[grouped2AX] = Xkl +Xlk +Xmn +Xnm = 2Xkl + 2Xmn = 0 .

We can see that this approach results in a less tight relaxation as the degree
of freedom for the concerned elements in X increases. The zeros in X are no
longer assured by the grouped constraints.

To group more gangster constraints together one can just add the appropriate
number of constraint matrices to obtain a single constraint matrix. We note
that we simply merged the gangster constraints in the order of occurrence in
the matrix G, but other grouping strategies may result in an improved tightness
of the relaxation.

The tightness measure T (f ∗est, f
∗
bound) = (f∗est − f∗bound)/f

∗
est is plotted in figure

5.49 for 1000 subgraph matching instances of the size K = 9 and L = 25 which
are created as discussed in section 5.6.1. There the constraints are reduced
by successively merging 2, 4, 6, 8, 10 and 12 gangster constraints into a single
constraint. We see that the tightness measure increases strongly with more
constraints merged together. This means that the tightness itself decreases
and we expect a less accurate approximation of the combinatorial subgraph
matching approach.

The influence of the capability to compute the global optimum is shown in
figure 5.50. If more than two constraints are merged together the basic SDP
subgraph matching approach is only in less than 5% of the instances able to
compute the global optimum. But the sampling increases this rate and even
for 12 grouped gangster constraints a rate larger than 35% is reached.

The advantage of this approach is that with a decreasing number of constraints
the time needed to solve the SDP relaxation decreases largely. But one has
to weigh up the time benefit to the loss of tightness. In figure 5.51 the mean
time needed by the CSDP-solver to solve the SDP relaxations is plotted. The
time was measured on a 3 GHz Pentium 4 PC with 2 GB storage. Merging
2 gangster constraints into a single constraint reduces the mean computation
time by a factor of about 5.
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Figure 5.49: The grouping of gangster constraints reduces the tightness
of the SDP relaxation which means that our tightness measure T (f ∗est, f

∗

bound)
increases. The results are based on 1000 subgraph matching problem instances
with K = 9 and L = 25 which are created as discussed in section 5.6.1

Problem orig. 2 6 12

Matchbox 3489s (9397) 330s (4909) 49s (1917) 33s (1169)

Building Brick 1 5505s (13051) 783s (6778) 96s (2596) 65s (1551)

Building Brick 2 8243s (15135) 1443s (7855) 164s (3002) 101s (1789)

Table 5.2: The time used to solve the SDP relaxation decreases drastically
when 2,6 or 12 gangster constraints are merged into a single constraint. The
total number of constraints in the relaxation is plotted in brackets.

The impact of this approach to our real world examples is shown in the tables
5.2 and 5.3. In table 5.2 one can see that the time used to solve the SDP
relaxation improves drastically when several gangster constraints were merged
into a single constraint. But the quality of the solution decreases and in table
5.3 we see that the basic SDP subgraph matching approach computes more
often undesired mappings when the tightness measure increases. Nevertheless,
the sampling is usually able to correct these undesired mappings for our real
world examples.

As time is often an important factor in an application one can benefit to merge
two or eventually four constraints into a single constraint without losing too
much accuracy. Next we discuss a way to reduce the problem size by removing
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Figure 5.50: Percentage of optimal solved subgraph matching problems
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of the SDP relaxation leads to a strong decrease of the fraction of optimal
solved problem instances.
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Figure 5.51: The mean time needed on a 3 GHz Pentium 4 PC for solving the
SDP relaxation. The computation time decreases with a decreasing number
of constraints. However, one has to weigh up the time benefit to the loss of
tightness.



5.9. Discussion 131

Problem (K,L) orig. 2 6 12

Matchbox (K=12,L=34) 0.110 (1;0) 0.266 (3;0) 0.559 (5;0) 0.836 (8;2)

Building Brick 1 (K=12,L=41) 0.189 (0;0) 0.643 (2;0) 1.184 (5;0) 1.478 (9;0)

Building Brick 2 (K=14,L=40) 0.000 (0;0) 0.005 (0;0) 0.048 (0;0) 0.083 (2;0)

Table 5.3: The computed tightness measure T (f ∗est, f
∗

bound) increases when
2,6 and 12 gangster constraints are merged into a single constraint. The num-
bers of undesired mappings obtained by the basic and the sampling SDP sub-
graph matching approach respectively are shown in brackets. With decreased
tightness (increased tightness measure T ) the basic subgraph matching ap-
proach fails more likely. But the sampling is usually able to correct these
undesired mappings.

mappings directly from the original subgraph matching problem.

Reducing the Dimension of the Problem

A mapping of the object node i to the scene graph node j is represented in
the combinatorial subgraph matching approach (5.3) by the binary variable
xji = {0, 1} of the vector x. If this mapping is considered to be unlikely or
undesired, it can be forced to be zero in the solution to indicate that this
mapping does not occur. Forcing xji = 0 is equivalent to eliminating this
particular mapping from the original combinatorial problem (5.3) and results
in a problem formulation where the dimension of the vector x is reduced by
one.

This reduction of the problem size can easily be implemented by removing the
elements xji and wji from the vectors x and w and by removing the appropriate
row and column from the quadratic problem matrix Q in the combinatorial
problem formulation (5.3). Furthermore the constraints must be adapted by
deleting the appropriate columns from the constraint matrices AK and AL. The
SDP relaxation of this reduced problem is computed straight forward as it is a
reduced version of the original relaxation.

This approach enables us to use prior knowledge about undesired mappings to
eliminate them from the subgraph matching problem formulation. However,
for general inexact subgraph matching problems it is difficult to find a strategy
to eliminate mappings such that in fact only undesired mappings are removed.
Of course, if this would not be hard this method would be able to solve the
original problem.

For the sake of simplicity we have only applied a simple threshold τ to eliminate
mappings i 7→ j if its similarity measure is above the threshold (wji ≥ τ). In
figure 5.52 we show the solution vector xsol for the “Building Brick 1” example
where 292 undesired mappings of the 492 possible mappings were eliminated.
These 292 elements are set to zero in the shown vector. We can see that this
makes the solution vector xsol more clearly (compare with figure 5.42) as the
desired mappings become more likely. Furthermore the computation time for
the solution of the SDP relaxation is reduced from 5505 to 44 seconds.
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Figure 5.52: With a simple thresholding the problem size was reduced from
n = KL + 1 = 493 to n = 200. The reduced solution xsol has the same
characteristics as the solution vector shown in figure 5.42.

In figure 5.53 a real world example is shown which is too large to be computed
without any size reduction. The object graph has K = 20 and the scene graph

Figure 5.53: Examples for a real world example K = 20 L = 43; 573 edges
of 860 selected

L = 43 nodes. For this problem size 5.7 GB of storage must be available. We
reduced the 860 possible mappings to 573 possible mappings by eliminating the
287 most costly mappings. The vector xsol for this reduced problem is shown
in figure 5.54. The desired combinatorial solution is already obtained by the
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Figure 5.54: Solution vector xsol obtained by the SDP relaxation of a size
reduced subgraph matching problem shown in figure 5.53. The 860 possible
mappings are reduced to 573 considered mappings by eliminating the 287 most
costly mappings. The elements which belong to the eliminated mappings are
set to zero.

linear post-processing (5.23) without the need of the sampling post-processing.
The appropriate mapping is depicted in figure 5.55.
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Figure 5.55: The full desired mapping which is shown by the red line seg-
ments is obtained by the basic SDP subgraph matching approach. Some next
best mappings with a probability > 0.1 are depicted by green line segments.
The problem size was reduced by eliminating the 287 most costly mappings
from the 860 possible mappings of the original problem instance.
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The elimination of undesired mappings from the subgraph matching problems
lead to an improved solution xsol such that the decision for a combinatorial so-
lution can be made more clearly and reduces the computation time. Therefore,
if one is able to determine undesired mappings a priori one should exploit these
knowledge to eliminate these mappings from the original problem instance. Of
course, if one is able to determine a desired mapping, this and all appropriate
undesired mappings can be removed from the problem instance too.

The observation that the solution vector xsol shows the preferred mappings
more clearly for a reduced problem size brings up the idea for an algorithm
that possibly computes a very good good approximation to the combinatorial
optimum. It makes use of the vector xsol to determine the mappings that can be
eliminated from the original problem. The idea is to eliminate successively the
mappings from the subgraph matching instance which have the lowest probabil-
ity according to the solution vector xsol of the relaxation. The reduced problem
is likely to result in a new solution vector x′sol which shows more clearly the
preferred mappings. This should be iterated until the problem size is small
enough that the solution can be obtained fast by exhaustive search. We think
this is a very promising algorithm to compute the combinatorial approximation
and we believe that it is very likely that this approach results in the global
combinatorial optimum because of the observation that optimal mappings are
somehow preferred in xsol and are therefore less likely removed from the original
subgraph matching problem.

5.9.3 Structural Perturbations

In section 5.6 we have implicitly assumed that in our graph matching problem
instances only perturbations occur which are related to the similarity measure
w between the nodes of the object and scene graph. But, from the computer
vision point of view it is also important to investigate the impact of structural
perturbations which may occur when the graph matching problems are obtained
by a vision system. To this end, we have investigated the mean number of
computed mappings which are in accordance with the desired matching for an
increased perturbation in the graph structure.

We have created 1000 problem instances with K = 9 and L = 25 which are
created as described in section 5.6.1. Then we successively removed 3 edges
in the scene graph. We note that the edges are always removed from the part
of the scene graph which represents the object graph structure. In figure 5.56
an example for such a problem instance is shown. The 9 desired mappings
are represented by red lines and 3 randomly selected edges, which are removed
successively from the graph structure, are marked blue.

In figure 5.57 we have plotted the mean number of correctly detected desired
mappings that are obtained by the SDP subgraph matching approach for the
described experiments. One can see that an increased perturbation decreases
the number of mappings we can expect to be in accordance with the desired
mapping. Particularly, for our experiments we can expect to get 8 out of 9
desired mappings correctly if no structural error is present (cf. section 5.6).
If three edges are removed we can expect to obtain only about 5 desired map-
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Figure 5.56: Example for a random subgraph matching problem with noise.
The desired mappings are represented by red lines. In our experiments three
randomly selected edges (here marked blue) are successively removed from the
part of the scene graph which represents the object graph structure.
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Figure 5.57: Mean number of mappings which are in accordance with the
desired mapping for an increasing perturbation in the graph structure. The
number of desired mappings decreases with increasing perturbation as a partly
undesired mapping becomes more likely to represent the global minimum of
(5.3). For the unperturbed problem instances we can expect 8 out of 9 map-
pings to be in accordance with the desired mapping which decreases to about
5 desired mappings for the problem instances where 3 edges are removed.
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pings correctly. This shows that our approach is somehow sensitive to structural
perturbations in the underlying graph structure. One reason for this behavior
could be found in the modeling of the combinatorial subgraph matching ap-
proach (5.3). The objective value for the desired mapping is increased by 2α for
each structural difference between the object graph structure and the mapped
subgraph structure. Therefore, with increasing perturbation, it becomes more
likely that a better global minimum, which our approach tries to find, results
in a partly undesired mapping. However, the obtained results are likely to be
improved if the reliability of the similarity measure between the nodes of the
two graphs is improved.

5.9.4 Bimodal Experiments

In this section we will answer the question what happens if the scene graph
contains more than one potential good matching for the object graph. This
means that the combinatorial objective function of (5.3) has more than one
very good local minima for different matchings. As the convex SDP relaxation
has only one global minimum we are interested in how the convex approach
reflects such a multi-modal situation.

To investigate this kind of problem we have modified the illustrative subgraph
experiment discussed in section 5.5. We have copied the scene graph of this
experiment twice to create an enlarged scene graph with L = 26 nodes. The
object graph with K = 5 nodes was left unchanged. Furthermore, we have
utilized the same similarity measure for both parts of the scene graph. This
creates a symmetric problem instance where the global minimum of (5.3) is
attained for the following two different desired matchings:

First desired matching: (1 7→ 9, 2 7→ 1, 3 7→ 8, 4 7→ 4, 5 7→ 2)
Second desired matching: (1 7→ 22, 2 7→ 23, 3 7→ 24, 4 7→ 25, 5 7→ 26)

We plotted the problem instance along with several possible mappings obtained
by the SDP subgraph matching approach in figure 5.58. The parameter was set
to α = 0.36. The red lines represents the likeliest matching of the object graph
to the right part of the scene graph. The green lines represents the likeliest
matching of the object graph to the left part of the scene graph. We can see
that only the mappings for the object node 4 are undesired mappings. However,
the next best mapping candidates, depicted by the cyan and blue colored lines,
are desired mappings for this node.

To understand the shown mappings in figure 5.59 the non-integer solution xsol
obtained by the SDP relaxation (5.8) is shown. Appropriate vector elements are
colored in correspondence to the colors of the mappings that are shown in fig-
ure 5.58. We observe that the solution vector xsol reflects the symmetry of this
problem instance. Assume that j and k are “equivalent” nodes in the left and
in the right part of the scene graph. Then we get for this problem instance the
same solution values (xsol)ji = (xsol)ki for the mappings of the object node i to
the scene graph nodes j and k. Therefore, from the probabilistic point of view,
the equivalent mappings have the same probability which meets our expecta-
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Figure 5.58: Bimodal subgraph problem instance which has two potential
good matchings for the object graph K = 5 in the scene graph L = 26. The
green lines represent the likeliest mappings of the object nodes to the left part
of the scene graph while the red lines represent the likeliest mapping to the
right part of the scene graph. The blue and cyan colored line represents the
next best candidates for the mapping of object node 4 into the scene graph.
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Figure 5.59: Non-integer solution vector for the bimodal experiment (α =
0.36). The vector elements are colored consistent with the colors of the map-
pings which are shown in figure 5.58. All the desired mappings have high
probabilities compared to the undesired mappings.
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tion as the problem is symmetric. However, the important fact is that all the
desired mappings have a high probability compared to other mappings. Note
that this is also true for less symmetric situations. That makes it likely that
the sampling post-process can extract a good combinatorial solution. Indeed,
repeated experiments have shown that the sampling post-process results nearly
always in one of the two desired mappings which are depicted in figure 5.60.
This artificial bimodal experiment shows that the solution vector xsol contains
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Figure 5.60: Either of the two desired matchings represented by the green
and red line segments is very likely obtained by the SDP graph matching
approach followed by the sampling post-process. The non-integer solution has
a probabilistic “knowledge” of both desired matchings.

the “knowledge” of both desired matchings. This knowledge is represented by
the higher probabilities for all the “good” mappings.

We expect a similar behavior for multi-modal experiments. But with an increas-
ing number of objects that are present in the scene graph, the solution vector
xsol becomes more scattered and the increased ambiguity makes it harder for
the sampling post-processing to result in a good and desired matching.

5.9.5 A New Bound for Subgraph Non-Isomorphism

In this section we suggest a new lower bound, computed by the SDP relaxation
(5.8), that can sometimes be used to decide if a subgraph isomorphism cannot
occur in graph matching problems (cf. section 5.3.2). Here we consider problem
instances where only the structures of the object and scene graph are given and
therefore we deal with simple graphs. The subgraph isomorphism problem can
be stated as the combinatorial optimization problem (5.7). The idea is based on
the fact that a subgraph isomorphism for such problem instances always leads
to 0 as optimal objective value for (5.7). Therefore, a lower bound for (5.7) that
is larger than 0 represents a proof that a subgraph isomorphism cannot occur



5.9. Discussion 139

in the problem instance. Note that conversely, a negative lower bound does
not imply that a subgraph isomorphism must occur and only indicates that a
subgraph isomorphism is possible.

An example for such subgraph isomorphism problems is depicted in figure 5.61.
Setting the similarity vector w = 0 the combinatorial subgraph isomorphism
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Figure 5.61: Example for a randomly created subgraph problem. Is there
a subgraph isomorphism ? For the shown problem instance we can compute
a lower bound > 0 for (5.7) which proves that no subgraph isomorphism is
present.

problem (5.7) is equal to our combinatorial subgraph matching approach (5.3).
With that we can use the SDP relaxation of (5.3) to calculate a lower bound
for (5.7). For the example shown in figure 5.61 we compute a lower bound > 0
using the SDP relaxation (5.8), which proves that a subgraph isomorphism does
not exist in this problem instance. Note that we did not eliminate mappings
that could not lead to an subgraph isomorphism.

The possible objective values of (5.3) are restricted to discrete values as the
quadratic term αx>Qx can only reach values which are multiples of 2α. The
parameter α is just a scaling parameter for this kind of problems and has no
influence on the solution. Therefore it can be set to an arbitrary value α > 0.
The discrete distribution of the objective values for the subgraph isomorphism
problem shown in figure 5.61 is depicted in figure 5.62 where we have set α = 0.3.

For a first preliminary investigation of this bound we created 1000 small sub-
graph matching problem instances with a similarity vector w = 0. We have
chosen the size of the object and scene graph to be K = 7 and L = 15, re-
spectively. The edge probability of the object graph was set to 0.5 and the
probability for an edge in the scene graph was set to 0.2.

The results for this experiment series reveal that for various problem instances
it is indeed possible to conclude that no subgraph isomorphism exist. We have
obtained 388 problem instances with a lower bound > 0.0 which proves that
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Figure 5.62: The distribution of the objective values for the subgraph iso-
morphism problem which is shown in figure 5.61. The objective values (5.7) for
this kind of problem instances are restricted to discrete values, as the quadratic
term αx>Qx can only attain values which are multiples of 2α. Here we have
set α arbitrarily to 0.3. The optimal objective value is 0.6 and the obtained
lower bound is 0.204 > 0.0, which is a non-isomorphism proof for this problem
instance.

no subgraph isomorphism can occur in this problem instances. The other 612
problem instances have a lower bound ≤ 0.0. For 436 (≈ 71%) of these problem
instances the combinatorial optimum is > 0.0 indicating that the relaxation is
not tight enough to detect that no subgraph isomorphism can occur.
But probably, the tightness and therefore the lower bound can be improved by
reducing the dimension of the problem size (see also section 5.9.2). For example
one can eliminate a mapping i 7→ j if the degree6 of an object node i is larger
than the degree of node j in the scene graph. Such a mapping cannot lead to
a subgraph isomorphism.
However, for increasing problem instances we have observed that the relaxation
gets less tight and a lower bound ≤ 0.0 becomes more likely.

6The number of incident edges.
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Conclusion

6.1 Summary

In this thesis we investigated convex optimization techniques to approximate
combinatorial problems which arise in computer vision in the context of view-
based object recognition. In particular we were concerned with a weighted
graph-matching approach and with a subgraph matching approach which may
be utilized as a component of an object recognition system which internally
represents the objects and scenes as graphs.
As the convex relaxation represents a central technique in this thesis to approx-
imate these NP-hard problems we point out the advantages of this technique
in the following:

• The original intractable integer optimization problem is approximated
by an analytical convex mathematical optimization problem. Due to its
convexity it can be optimally solved under mild conditions.

• No additional tuning parameters are involved in the optimization process
which can critically influence the quality of the solution and must be
optimized thoroughly.

• One can not be trapped in a local minimum in an early stage of the
algorithm.

• There exists a performance bound for quadratic and semidefinite opti-
mization problems which guarantees a combinatorial solution to be within
the best 4

7 of the total range of all objective values. But note that this
performance bound is obtained by the random hyperplane method which
we did not apply to obtain the combinatorial solutions.

• From the computational point of view the exponential complexity of cal-
culating the combinatorial optimum is reduced to a polynomial complex-
ity of calculating the convex relaxation which approximates the original
problem.

• The solution of a convex relaxation provides a lower (upper) bound to the
original combinatorial minimization (maximization) problem and thus can
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be used as a subroutine within an exact search strategy like branch-and-
bound. Note that such approaches have exponential complexity in the
worst case. In our approaches we used the convex relaxation directly as
approximation to the combinatorial solution.

A general method to obtain a convex relaxation is the Lagrange relaxation and
for indefinite quadratic 0/1-optimization problems a recipe [115] can be used to
obtain a (convex) semidefinite problem formulation. The connection between
this recipe and the Lagrange relaxation is discussed in [95]. The convex relax-
ation of the weighted graph matching problem results in a convex quadratic
program and the convex relaxation of our proposed subgraph matching ap-
proach results in a semidefinite program. An apparent drawback of the convex
relaxation approaches for integer problems lies in the following fact:

• The solution of the convex relaxation is usually not a feasible solution for
the original problem and a close combinatorial solution must be computed
by a post-processing step. The obtained solution represents often only
a suboptimal solution. However, experiments reveal that the obtained
solutions are usually close to the global optimum and much better than
a basic performance bound guarantees.

One has the following additional disadvantage in obtaining a semidefinite re-
laxation from a quadratic optimization problem:

• The number of variables is squared and often also the number of con-
straints increases very quickly. This reduces the size of problems one can
cope with.

However, SDP relaxations have turned out to be extremely successful in ap-
proximating combinatorial problems [2, 68, 69, 134]. Also our investigations
show that convex optimization methods and especially the semidefinite relax-
ation is an attractive direction of research and very good approximations for
these NP-hard relational matching problems are obtained.

6.1.1 Weighted Graph Matching

In chapter 4 we studied a convex programming approach [21] to the quadratic
assignment problem (QAP). In our context, the quadratic assignment problem
[24] corresponds to the weighted graph matching of two graphs with an equal

number of vertices. In this graph matching approach the matchings are rep-
resented by permutation matrices and we observed the following properties of
the combinatorial approach:

• The solution of the combinatorial QAP graph matching approach results
in the desired matching if the graphs are quite similar, which is of course
a required characteristic for a useful graph matching approach.

• The objective function favors matchings which map large edges of the first
graph to large edges in the second graph. Therefore, strong perturbations
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which affect the large weights in the graphs are likely to lead to a combi-
natorial optimum which corresponds to an undesired matching. But from
the viewpoint of computer vision large weights can be expected to involve
reliable feature measurements. Therefore large weighted edges are likely
to be present in both the object and scene graph.

• The QAP graph matching approach is invariant against rotation, trans-
lation and scaling of an image which makes it an attractive approach for
object recognition tasks in computer vision.

The convex relaxation of this weighted graph matching approach was explained
in detail and results in a convex quadratic program. According to the previously
listed advantages of convex programming this approach does not involve any
tuning parameter and the global solution can be computed in polynomial time
by interior point methods [140]. To obtain a combinatorial solution from the
convex relaxation we used the following post-processing step:

• A good local minimum was obtained by solving a linear program which
computes a permutation matrix close to the approximation. A slight
improvement of this approach was achieved by considering a linear ap-
proximation of the original problem which results in a linear program as
well.

We compared the convex relaxation approach with a recent deterministic an-
nealing approach [55, 77] and an approach based on the eigenvalue decomposi-
tion [139]. The comparison was based on several benchmark problems from the
QAPLIB-collection [25] and on statistical results computed for a large set of ran-
domly generated graphs which include ground truth experiments. Furthermore
we compared some of our QAPLIB-collection results with results published
in [120] which are obtained by a SDP relaxation of the quadratic assignment
problem. We found the following:

• The performance of the approach based on the eigenvalue decomposition
is worse than the convex quadratic relaxation approach whereas the de-
terministic annealing approach performs similarly or slightly better, but
uses parameter values which were optimized thoroughly by hand.

• The results of the SDP relaxation indicates that the SDP approach per-
forms in terms of the objective function better than the convex quadratic
relaxation approach . But one has to keep in mind that the SDP relaxation
squares the number of variables and therefore increases the computational
effort to solve the relaxation.

Beside the statistical investigation, an example was presented which shows the
applicability of the QAP graph matching approach to real world problems.
Nevertheless, a basic assumption behind the QAP graph matching approach is
that the two graphs have the same number of nodes. This is an unrealistic as-
sumption for practically use as due to noise, occlusion or distortion the graphs
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are likely to have a different number of vertices in computer vision applica-
tions. In order to cope also with subgraph matching problems we suggested
two enhancements of the QAP graph matching approach:

• The first straight forward approach was to add dummy nodes to the
smaller graph such that the resulting problem complies with the require-
ment of equally sized graphs. This approach turns out to result in unsat-
isfactory matchings.

• Secondly we proposed to comprise a convex correction term which rep-
resents an important adjustment within the combinatorial matching ap-
proach. The correction term originates from the original combinatorial
matching approach when applied to differently sized graphs. This correc-
tion leads to the desired subgraph matchings.

Note that we have postponed the investigation of the latter approach. Nev-
ertheless we outlined an appropriate convex formulation and showed how this
problem can be solved using a gradient descent algorithm on a particular man-
ifold and we think this approach is worth to be investigated in the future.

6.1.2 Subgraph Matching

In chapter 5 we proposed a new quadratic integer program to the problem
of subgraph matching. We extended the linear programming formulation for
computing optimal matchings in bipartite graphs by adding a quadratic term
which comprises the relational constraints given by both graphs. The resulting
quadratic integer minimization problem has the following properties:

• The objective function along with the constraints models the subgraph
matching in an adequate way. That means that the optimal combinatorial
solution is nearly always in accordance with the desired matching. This
qualified our approach as a reasonable subgraph matching approach.

• The minimization of the objective function prefers matchings where sim-
ilar nodes are mapped to each other and also the underlying structure of
the object graph is preserved in the assigned subgraph of the scene graph.

• The approach makes only use of a similarity measure between the nodes
of the two graphs and of the relational structures of both graphs which
are given by their 0/1-adjacency matrices.

• The introduction of a regularization parameter α allows to adjust the
influence of the structure related term compared to the similarity measure.

• The approach is invariant against rotation and translation. Depending
on the similarity measure it is also scale invariant. These are properties
which are favored for object recognition tasks that intend to detect objects
regardless of the position, rotation and scaling of an object in an image.

One can identify situations where the approach is not applicable or must be
modified to work:
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• The approach is only reasonable for non-fully connected scene graphs as
a fully connected scene graph contains no usable information about the
structure. However, in such a case the problem formulation is equivalent
to the linear bipartite matching problem which maps the locally best
fitting nodes to each other.

• As all existing object graph nodes are mapped to the scene graph, occlu-
sion of the object in the scene might become a problem. A possible way
to handle occlusion could be to break the object graph down into several
parts which are independently matched against the scene.

We explained in detail the (convex) SDP relaxation for this combinatorial sub-
graph matching approach. The previous discussed advantages of convex pro-
grams apply and the solution can be computed without the need of any ad-
ditional parameter in polynomial time. To compute reasonable combinatorial
solutions we proposed the following interpretation of the solution obtained by
the SDP relaxation:

• Due to the weakly incorporated 0/1-integer constraints in the SDP relax-
ation the vector on the diagonal of the SDP solution matrix is interpreted
as “non-integer” approximation for the combinatorial solution.

• According to the matching constraints which are incorporated into the
SDP relaxation we interpret the element values in the non-integer solu-
tion vector as probability for the appropriate mapping. This assumption
is strongly supported by our observation that indeed good matching can-
didates have higher values in the solution vector.

This probabilistic interpretation gives rise to the following consecutive post-
processing approaches.

• First we proposed a linear optimization problem to compute a close com-
binatorial solution to the approximated solution which according to the
probabilistic interpretation, represents the likeliest matching.

• The second post-processing step uses the likeliest matching as starting
point and tries to improve this matching by exploiting the probabilistic
information in the approximated solution. We proposed a sampling post-
processing step which considers other possible matchings according to
their probabilities as well. Note that this approach can not worsen the
previous approach.

We performed numerous large experiments to investigate the performance of
the SDP subgraph matching approach. The main results are summarized in
the following:

• For smaller sized subgraph matching problems our SDP subgraph match-
ing approach results nearly always in the combinatorial optimum. Even
for larger sized problems an impressively large fraction of problems can
be solved to optimality. Therefore, an important factor for the reliability
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of our subgraph matching approach is the size of the problem data. This
is not unexpected as the number of possible matchings increase exponen-
tially with increasing graph size.

• Despite the exponentially growth of the problem size with increasing
graph size the tightness decreases only slightly and in terms of the objec-
tive value still very good solutions are obtained.

• The probabilistic interpretation of the solution is very reasonable as it is
often able to improve the obtained solutions to optimality.

Furthermore our experiments reveal the dependence of the subgraph matching
approach on “external” parameters:

• Problem creation parameters like the edge density and the quality of the
similarity measure, thus external parameters, affects the tightness of the
SDP approximation and therefore the performance of the SDP subgraph
matching approach to result in the global optimum.

Several real world examples show that our SDP subgraph matching approach
is a very reasonable approach for graph matching in computer vision applica-
tions. It seems that such problems are good natured and usually the desired
matching shows up very clearly in the approximation. As real world subgraph
matching problems tend to be large we proposed two possible ways to reduce
the computational effort:

• The first approach reduces the number of constraints by combining several
gangster constraints into a single constraint but has the disadvantage that
the relaxation becomes less tight. A grouping of up to four constraints
seems to be reasonable as it results in a strong computational gain without
loosing too much accuracy.

• The second approach reduces the problem size by eliminating undesired
mappings directly from the problem instance. However, this approach
includes the danger that desired mappings are accidentally eliminated
from the original problem.

Maybe a combination of these two techniques can be used to further improve
the combinatorial solution. In particular a constraint reduced solution could be
used to determine the unlikeliest mappings that can be eliminated as undesired
mappings from the original problem. Some iterations of this process will scale
down the problem size such that it can be solved to optimality. Hopefully this
smaller problem still includes the optimal matching of the original problem.

Some advanced investigations showed the following interesting facts:

• The SDP subgraph matching approach can cope with small structural
perturbations and is insensitive against errors in the similarity measure.
However, an increased perturbation level raised the likelihood that an
undesired matching is obtained.
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• A bimodal experiment shows that the solution vector comprises the knowl-
edge of two potentially good mappings in the form of higher probabilities
for both matchings. Thus, we answer the question of how bi- or multi-
modal optimization problems are reflected in the convex relaxation which
is by definition only unimodal.

• Another very interesting observation is that our SDP relaxation can serve
as bound to the subgraph non-isomorphism problem between two simple
graphs. Nevertheless, the latter finding is in a preliminary stage and
worth to be investigated more thoroughly.

To summarize, we have proposed a very promising combinatorial subgraph
matching approach along with a convex approximation. The presented sta-
tistical and real world results show that this subgraph matching approach is
a considerable choice for subgraph matching problems that occur in computer
vision.

6.2 Future Work

We have seen that convex relaxation is a very promising approximation tech-
nique for the graph and subgraph matching approaches discussed in this the-
sis, especially if one considers the combinatorial nature of these integer pro-
grams. Our results showed that this technique along with an appropriate post-
processing is very likely to result in good combinatorial solutions. Indeed today
the main topic for semidefinite programming is the approximation of combina-
torial problems like the quadratic knapsack problem [68], the max-cut problem
[95], partitioning, grouping, and image restoration problems [83] to name a few.
This variety of applications encourages to find further computer vision prob-
lems that could be approximated tightly by convex relaxations. Currently an
ongoing area of research is the development of efficient algorithms for solving
SDP programs [2, 146, 69, 13].

In the following we discuss some graph matching related topics for future work.
We start with particular ideas we proposed in this thesis but which were not
yet implemented or investigated. Then we propose wider topics in the context
of graph matching for future investigations.

QAP Graph Matching

With regard to the QAP graph matching approach there are the following
aspects that could be investigated:

• For the SDP subgraph matching approach discussed in chapter 5 we pro-
posed a probabilistic interpretation of the solution computed by the SDP
relaxation. Nearly the same interpretation can be applied to the ap-
proximated solutions obtained by the convex quadratic relaxation of the
QAP graph matching approach. This interpretation gives rise to propose
an adapted two-opt post-processing which exchanges in each iteration two
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mapping pairs according to their probability instead of uniformly selected
pairs. We think that this minor modification could be a fruitful supple-
ment for this post-processing step and likely results in improved objective
values.

• Furthermore, we have not yet investigated the promising enhancement
of the QAP graph matching approach which is able to cope also with
weighted subgraph matching problems. Note that we already proposed a
convex approximation for this approach. The implementation and inves-
tigation will show whether this approach can indeed deal with (weighted)
subgraph matching problems.

SDP Subgraph Matching

Very interesting future work is related to our SDP subgraph matching approach:

• We proposed in section 5.9.5 a bound for non-subgraph-isomorphism. A
positive bound for a subgraph matching instance represents the proof
that no subgraph isomorphism can be found in the particular problem
instance. Moreover we are interested whether the solution of the convex
relaxation can be utilized to detect a present subgraph isomorphism. So
far, this topic is only preliminary investigated but we believe it is worth
to investigate the capability of this bound thoroughly.

Object Representation

The investigation of our graph and subgraph matching approaches in the con-
text of computer vision lead direct to the question how objects and therefore
image information can be represented as graphs in a reliable way ?

• One can find some papers concerned with this subject e.g in [79] or [61]
which are publications related to a IAPR workshop “Graph Based Rep-
resentations in Pattern Recognition”. The superiority of a graph based
representation is pointed out in [37]. But due to computational reasons
often the relational representation in object recognition tasks is confined
to tree structured representations like the shock trees in [131] or the model
graphs used in [41].

However, the development of good approximation algorithms for graph
matching and the increasing computational power qualifies graph based
approaches for the application in computer vision tasks. This gives raise
to the assumption that the use of relational representations will increase
over the time.

The question of which features have to be chosen as part of the rela-
tional representation of an object has been deliberately excluded from
this work, because the range of the literature and corresponding results
is extremely broad. Nonetheless, some general conclusions can be drawn
in this connection, based on the findings reported in this thesis.



6.2. Future Work 149

Firstly, it has been shown that the matching approach is more sensitive
to structural perturbations of relational object views than to noise in
the similarity measurements. Secondly, the matching problem can be
successfully solved for structured graphs - as opposed to almost complete
graphs - because the relaxation then is very tight. Finally, the approach
can cope with ambiguities in terms of several good matchings.

As a result, the selection of features for representing object views should
primarily focus on structural stability of the feature extraction stage un-
der realistic imaging conditions of the application. Furthermore, it makes
sense to restrict object representations to sparse graphs, at the cost am-
biguities in complex scenes. The latter can be dealt with by considering
not only the best match, but other probable matchings provided in the

same computational step, too.

The development of an feature extraction scheme directly combined with
the matching approach investigated in this thesis and a corresponding
recognition criterion is a worthwhile future research topic.

Object Recognition

The question how the graph matching approaches can be utilized in object
recognition tasks was beyond the scope of this work but gives rise to investigate
this subject in the future:

• The empirical evaluation in section 5.6 and 5.7 clearly showed that values
of the objective function for successful matchings markedly deviate from
expected values of arbitrary matchings. For specific scenes, this prop-
erty may already turn out to be sufficient for recognizing objects. More
sophisticated schemes for verifying the presence of an object raise inter-
esting questions for further research. Irrespective of how such a scheme
may look like, the set of most probable matchings, computed with the
approach investigated in this thesis, will provide a suitable starting point.

Performance Guarantees

The performance results of our subgraph matching in this thesis gives rise to the
question if one can prove a performance guarantee for our SDP approximation
algorithm.

• The idea to use randomized rounding to study approximation algorithms
was published first by Raghavan and Thompson [117]. Goemans and
Williamson [54] proposed a randomized approximation algorithm with a
good performance guarantee for maximum-cut problems which was based
on a semidefinite relaxation followed by the randomized hyperplane tech-

nique to obtain a feasible combinatorial solution. In particular they were
able to proof for the maximum-cut problem (a maximization problem)
that the expected solution value of their approach is at least 0.87856 times
the optimal value. Since then the randomized hyperplane technique has
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been applied to several semidefinite relaxations of combinatorial problems
in order to obtain feasible integer solutions. These include the maximum
directed cut problem [43], the maximum k-cut problem [49], machine
scheduling problems [133], the quadratic knapsack problem [68] and oth-
ers (see e.g. [146]). Eventually similar randomized rounding techniques
can be applied to obtain a performance guarantee for our SDP subgraph
matching approach where the feasible combinatorial solution must repre-
sent a matching.



Appendix A

Quadratic Assignment

Supplements

A.1 The Dual of the relaxed homogeneous QAP

Consider the following orthonormal constrained optimization problem, which
represents a relaxation of the homogeneous quadratic assignment problem. A ∈
R
x×n and B ∈ R

x×n are symmetric matrices and X ∈ R
x×n is an orthonormal

matrix (X ∈ O):

min
X

Tr[AXB>X>] (A.1)

s.t. XX> = I

X>X = I

We outline how the Lagrangian dual of the primal optimization problem (A.1)
can be calculated. Further we explain in section A.1.1 how the dual of (A.1)
can be stated as a linear optimization problem. The constraints of (A.1) can
be written element wise as:

−(XX>)ab + Iab = 0 a, b = 1, ..., n

−(X>X)cd + Icd = 0 c, d = 1, ..., n

For the two different constraint sets the Lagrange multiplier Sab, a, b = 1, ..., n
and Tcd, c, d = 1, ..., n are introduced to obtain the Lagrangian of (A.1). Con-
sidering now only the sum related to the Lagrange multipliers Sab in the La-
grangian we find the following trace formulation:

−
n,n
∑

a,b

(S>)ba((XX>)ab − Iab) =

−
n∑

a

([S>(XX>)]aa − [S>I]aa) = −Tr[S>(XX> − I)]

151
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Here S is symmetric (S = S>) as can be seen from

−Tr[S>(XX> − I)] = −Tr[(XX> − I>)S>] = −Tr[S(XX> − I)]

Together with a similar calculation for the second constraints (-X>X + I = 0)
the Lagrangian is:

L(X,S, T ) = Tr[AXB>X>]− Tr[S(XX> − I)]− Tr[T (X>X − I)] (A.2)

With the identity: Tr[KXL>X>] = vec(X)>(L ⊗K)vec(X) ( cf. (4.20) ) the
dual function w(S, T ) = minX L(X,S, T ) is then:

w(S, T ) = min
X

Tr[AXB>X>]− Tr[S(XX> − I)]− Tr[T (X>X − I)]

= min
X

Tr[AXB>X>]− Tr[SXIX>] + Tr[S]− Tr[TX>IX] + Tr[T ]

= min
X

vec(X)>(B ⊗A)vec(X)− vec(X)>(I ⊗ S)vec(X) + Tr[S] +

−vec(X)>(T ⊗ I)vec(X) + Tr[T ]

= min
X

vec(X)>[(B ⊗A)− (I ⊗ S)− (T ⊗ I)]vec(X) + Tr[S] + Tr[T ]

The dual problem maxS,T w(S, T ) reads now:

max
S,T

w(S, T ) = max
S,T

min
X

vec(X)>[(B⊗A)−(I⊗S)−(T⊗I)]vec(X)+Tr[S]+Tr[T ]

(A.3)
The inner minimization of the dual problem (A.3) is only bounded, if (B⊗A)−
(I ⊗S)− (T ⊗ I) º 0 is positive semidefinite. Making these constraints explicit
we arrive at the following dual problem:
Dual:

max
S,T

Tr[S] + Tr[T ] (A.4)

s.t. [(B ⊗A)− (I ⊗ S)− (T ⊗ I)] º 0

The dual problem (A.4) can be stated as the following linear optimization prob-
lem

max e>s+ e>t (A.5)

s.t. ti + sj ≤ cij = λiσj

which is shown in the next section.

A.1.1 QAP Dual as linear program

The aim of this section is to show the equivalence of the dual problem (A.4)
and the linear optimization problem (A.5). From the stationary condition of
the Lagrangian (A.2) at the optimum, one finds

∂

∂X
L(X,S, T ) = AXB> − SX −XT = 0.
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which is equivalent to:

S +XTX> = AXB>X> (A.6)

If we transpose the arguments of the traces in the Lagrange function (A.2),
which does not change the objective function, we have

L̄(X,S, T ) = Tr[XB>X>A]− Tr[S>(XX> − I)]− Tr[T>(X>X − I)] (A.7)

By setting the derivation of the Lagrange function to zero, we obtain

∂

∂X
L̄(X,S, T ) = AXB> − S>X −XT> = 0,

which is equivalent to:

S> +XT>X> = AXB>X> (A.8)

Observing that the right sides of the equations (A.6) and (A.8) are equal, we
get:

S +XTX> = S> +XT>X> = (S +XTX>)> (A.9)

Further by inserting (A.6) into (A.9) one finds

AXB>X> = XB>X>A,

from which we see that A and XB>X> commute. From this we conclude that
these two terms can be diagonalized simultaneously by an orthogonal matrix
V . From (A.6) we get:

V >AV
︸ ︷︷ ︸

Σ

V >XB>X>V
︸ ︷︷ ︸

Λ̄

= ΣΛ̄ = V >(S +XTX>)V

We assume that the matrix A is diagonalized by V >AV = Σ and that B is
diagonalized by the orthogonal transformation U>BU = Λ. The matrices Λ, Λ̄
and Σ are diagonal matrices. Substituting B = UΛU> in the diagonalization
of XB>X>:

V >XB>X>V = Λ̄,

we get

V >XU
︸ ︷︷ ︸

P

ΛU>X>V
︸ ︷︷ ︸

P>

︸ ︷︷ ︸

Λ̄

= PΛP> = Λ̄

The two diagonal matrices Λ and Λ̄ can only be different by the order of eigen-
values on the diagonal. We conclude that V >XU must be a permutation matrix
P ∈ Π:

V >XU = P
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With V >X = PU> we get

V >(S +XTX>)V = V >SV + V >XTX>V = V >SV + PU>TUP> = ΣΛ̄

which represents a diagonal matrix. We see that V >SV = S̄ and U>TU = T̄
must be diagonal matrices. The permutation matrix P in the term related to
T just reorders the diagonal entries in the diagonal matrix U>TU .

To summarize we have the following valid diagonalizations:

U>BU = Λ , U>TU = T̄

V >AV = Σ , V >SV = S̄

With that the dual problem (see also (A.4))

max
S,T

Tr[S] + Tr[T ]

s.t. [(B ⊗A)− (I ⊗ S)− (T ⊗ I)] º 0

can be written as linear problem. First the positive semidefinite constraint can
be rewritten as:

UΛU> ⊗ V ΣV > − UIU> ⊗ V S̄V > − UT̄U> ⊗ V IV > º 0

We can factor (U ⊗ V ) and (U> ⊗ V >) out and obtain:

(U ⊗ V )(Λ⊗ Σ− I ⊗ S̄ − T̄ ⊗ I)(U> ⊗ V >) º 0

This is equivalent to

(Λ⊗ Σ− I ⊗ S̄ − T̄ ⊗ I) º 0

where the matrices have only diagonal elements. With Tr[S] = Tr[V S̄V >] =
Tr[S̄V >V ] = Tr[S̄] and similar Tr[T ] = Tr[T̄ ] the dual problem can be written
as:

max
S̄,T̄

Tr[S̄] + Tr[T̄ ] (A.10)

s.t. [Λ⊗ Σ− I ⊗ S̄ − T̄ ⊗ I] º 0

Recognizing that the matrices have only diagonal entries we get the desired
result that this problem is equivalent to the following linear optimization prob-
lem:

max
s,t

e>s̄+ e>t̄ (A.11)

s.t. (λiσj − s̄j − t̄i) ≥ 0 i, j = 1, ..., n
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A.1.2 Non unique solutions for the EVB

The Eigenvalue Bound

(EVB) min
X∈O

Tr[AXB>X>] = 〈λ(A), λ(B)〉−

is obtained at least for X = UW> where U and W diagonalize the symmetric
matrices A ∈ R

n×n and B ∈ R
n×n respectively and further sorts the eigenvalues

of A and B> in an appropriate order (see section 4.2.2) .
We show that the minimum is also obtained for X̃ = UDW> where D is a
diagonal matrix with diagonal elements Di = {1,−1}.
As the trace is invariant against a cyclic rotation of the matrices in the argument
we are searching for additional solutions X̃ beside X where the following holds
true:

AXB>X> = AX̃B>X̃>

X>AXB> = X̃>AX̃B>

Assuming A and B have full rank this is equivalent with

XB>X> = X̃B>X̃> (A.12)

X>AX = X̃>AX̃ .

As X and X̃ are orthogonal matrices we can introduce Y and Z as follows:

Z = X−1X̃ = X>X̃

Y = X̃X−1 = X̃X>.

Using this we get from (A.12):

B> = ZB>Z>

A = Y >AY.

We can see that B>Z = ZB> and AY = Y A which means that the pairs
B>, Z and the A, Y are simultaneously diagonalizable. B> is diagonalized by
W therefore Z is also diagonalized by W . The same is true for A and Y , which
can be diagonalized by U .

Z = X>X̃ = WDZW
> (A.13)

Y = X̃X> = UDY U>

Here DZ and DY are diagonal matrices. Inserting X = UW> in (A.13) we find,

X̃ = UDZW
>

X̃ = UDY W>

from which we conclude that DZ = DY = D. From

I = X̃X̃> = UDW>WD>U>

= UDD>U> = UDDU>
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we find that DD = I. Therefore we have D2
i = 1 for the diagonal elements and

so Di = {+1,−1}. That means that one can obtain 2n solutions X̃ by using
X̃ = UDW> where D is a diagonal matrix with {1,−1} values on the diagonal.
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A.2 QAP-Bounds

We list several more results computed for problems in the QAPLIB–collection
[25]. In table A.1 the optimum f∗, the eigenvalue bound EV B (4.10), the pro-
jected eigenvalue bound PEV B (4.14) and the quadratic programming bound
QPB (4.23) are shown.

Problem f∗ EV B PEV B QPB SDP
chr12a 9552 -135327 -21886 -17789 n.a.
chr12b 9742 -136734 -17099 -13526 n.a.
chr15b 7990 -196657 -54711 -49179 n.a.
chr18a 11098 -241984 -68211 -60980 n.a.
chr18b 1534 -10945 -902 -673 n.a.
chr20a 2192 -32762 -8392 -7590 n.a.
chr20c 14142 -340384 -87222 -75497 n.a.
chr22a 6156 -67199 -21313 -19750 n.a.
chr25a 3796 -70912 -22351 -20950 n.a.
esc16a 68 -149 47 47 59
esc16d 16 -124 -19 -19 8
esc16e 28 -123 6 6 23
esc16g 26 -138 9 9 20
esc16i 14 -153 -25 -25 9
esc16j 8 -77 -6 -6 7
esc32a 130 -926 -150 -150 n.a.
esc32b 168 -704 65 65 n.a.
esc32c 642 -1021 464 464 n.a.
esc32d 200 -502 98 98 n.a.
esc32e 2 -469 -165 -165 n.a.
esc32f 2 -469 -165 -165 n.a.
esc32g 6 -286 -76 -76 n.a.
esc32h 438 -864 245 245 n.a.
esc64a 116 -993 -243 -243 n.a.
had12 1652 -1407 1573 1586 1643
had14 2724 -2488 2609 2628 2715
had18 5358 -4422 5104 5137 5317
had20 6922 -5785 6625 6673 6885
kra30a 88900 -154081 63717 67151 77647
nug12 578 -909 472 481 557
nug14 1014 -1505 871 884 992
nug15 1150 -1745 973 990 1122
nug16a 1610 -2184 1403 1436 1570
nug16b 1240 -1806 1046 1061 1188
nug17 1732 -2397 1487 1518 1669
nug18 1930 -2566 1663 1694 1852
nug20 2570 -3198 2196 2232 2451
nug21 2438 -3992 1979 2038 2323
nug22 3596 -6109 2966 3076 3440
nug24 3488 -4917 2960 3015 3310
nug25 3744 -4725 3190 3269 3535
nug30 6124 -7836 5266 5342 5803
scr12 31410 -134544 4727 9023 29321
scr15 51140 -206336 10355 16259 47840
scr20 110030 -454501 16113 28118 94998
sko64 48498 -43170 43890 44492 n.a.
sko72 66256 -57703 60402 61088 n.a.
ste36a 9526 -87952 -11771 -10523 n.a.
ste36b 15852 -427073 -130008 -125755 n.a.
ste36c 8239110 -71578370 -8965412 -7462533 n.a.

Table A.1: Bounds computed for QAPLIB–problems with rank deficit.

The available bounds obtained by a semidefinite relaxation approach (cf. section
4.3.3) are taken from [120].
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Appendix B

Subgraph Matching

Supplements

B.1 Example Data

To enable the reader to reproduce our results we list for two smaller subgraph
matching problems discussed in chapter 5 the appropriate data. Note that only
the adjacency matrices NK , NL and the similarity vector w are used within
our SDP subgraph matching approach but for the sake of completeness also the
coordinates of the model nodes and scene nodes are given.

B.1.1 Illustrative Example Data

We first list the data for the small illustrative subgraph matching experiment
which was discussed in section 5.5. The problem is for example depicted in
figure 5.1).

The adjacency matrices of the two graphs with sizes K = 5 and L = 13 are:

NK =









0 1 0 0 1
1 0 1 1 1
0 1 0 1 0
0 1 1 0 1
1 1 0 1 0









NL =


























0 0 1 0 0 0 1 1 0 0 1 0 0
0 0 0 1 1 0 0 0 1 0 0 0 1
1 0 0 0 1 0 0 0 0 0 1 1 0
0 1 0 0 0 1 1 0 1 1 0 0 0
0 1 1 0 0 0 0 0 0 0 0 1 1
0 0 0 1 0 0 1 1 0 0 0 0 0
1 0 0 1 0 1 0 1 0 1 1 0 0
1 0 0 0 0 1 1 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0 1 0 0 1
0 0 0 1 0 0 1 0 1 0 1 1 1
1 0 1 0 0 0 1 0 0 1 0 1 0
0 0 1 0 1 0 0 0 0 1 1 0 1
0 1 0 0 1 0 0 0 1 1 0 1 0


























The similarity vector w is printed below where the elements are arranged as

159
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specified in section 2.2.2:

w = (0.882, 0.831, 0.880, 0.904, 0.808, 0.996, 0.814, 0.966, 0.524, 0.839, 0.844, 0.909, 0.966,

0.200, 0.880, 0.971, 0.802, 0.935, 0.935, 0.948, 0.915, 0.810, 0.481, 0.880, 0.833, 0.979,

0.929, 0.975, 0.824, 0.982, 0.915, 0.809, 0.863, 0.200, 0.871, 0.899, 0.505, 0.959, 0.990,

0.928, 0.895, 0.824, 0.200, 0.979, 0.979, 0.813, 0.844, 0.899, 0.946, 0.834, 0.485, 0.923,

0.921, 0.200, 0.998, 0.914, 0.858, 0.907, 0.927, 0.814, 0.960, 0.948, 0.936, 0.885, 0.510)>

The following matrices VK and VL contain the positions of the nodes of the two
graphs GK and GL:

VK =









0.50 0.50
0.50 0.60
0.55 0.70
0.60 0.60
0.60 0.50









VL =


























0.42 0.76
0.64 0.41
0.71 0.69
0.43 0.50
0.73 0.60
0.30 0.65
0.40 0.64
0.32 0.77
0.50 0.50
0.50 0.60
0.55 0.70
0.60 0.60
0.60 0.50


























In these matrices the first column represent the x-coordinates and the second
the y-coordinates of the graph nodes. Furthermore, the row number specifies
the label of the node which has the coordinates given by that row.

B.1.2 Graph Data for the Parameter Dependency Example

The second data we list belongs to subgraph matching experiment in section
5.6.3 which was used to visualize the parameter dependency. The subgraph
matching problem is shown figure 5.16 and the adjacency matrices of these
graphs are:

NK =











0 1 1 0 1 1
1 0 0 0 0 1
1 0 0 1 1 1
0 0 1 0 1 1
1 0 1 1 0 1
1 1 1 1 1 0











NL =
























0 1 1 0 1 1 0 1 1 1 0 0
1 0 0 0 0 1 1 0 0 0 1 0
1 0 0 1 1 1 0 0 0 1 0 0
0 0 1 0 1 1 0 0 1 1 1 1
1 0 1 1 0 1 1 0 0 1 0 1
1 1 1 1 1 0 0 0 0 0 0 0
0 1 0 0 1 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 1 0 0 0
1 0 0 1 0 0 0 1 0 0 0 0
1 0 1 1 1 0 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0 0 0 0
0 0 0 1 1 0 1 0 0 0 0 0























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The similarity vector w is:

w = (0.898, 0.903, 0.766, 0.857, 0.799, 0.958, 0.784, 0.711, 0.776, 0.776, 0.709, 0.914,

0.753, 0.836, 0.822, 0.992, 0.771, 0.763, 0.794, 0.784, 0.672, 0.775, 0.641, 0.813,

0.985, 0.976, 0.946, 0.685, 0.960, 0.889, 0.975, 0.703, 0.722, 0.751, 0.638, 0.893,

0.848, 0.801, 0.646, 0.526, 0.785, 0.673, 0.977, 0.993, 0.642, 0.725, 0.733, 0.822,

0.895, 0.791, 0.983, 0.922, 0.907, 0.875, 0.949, 0.895, 0.947, 0.887, 0.760, 0.898,

0.976, 0.869, 0.626, 1.000, 0.738, 0.655, 0.770, 0.780, 0.856, 0.941, 0.840, 0.809)>

The coordinate matrices VK and VL for the nodes of the two graphs GK and
GL are:

VK =











0.163 0.690
0.157 0.116
0.143 0.100
0.173 0.162
0.158 0.187
0.125 0.147











VL =
























0.163 0.690
0.157 0.116
0.143 0.100
0.173 0.162
0.158 0.187
0.125 0.147
0.218 0.132
0.880 0.199
0.244 0.166
0.880 0.131
0.210 0.105
0.247 0.730
























B.2 Earth Movers Distance

A distance between two distributions can be calculated by the so called Earth
Mover’s Distance (EMD) which was introduced by Rubner et. al. [123]. An
intuitive way to interpret this distance measure is to define one distribution
as earth-hills distributed in space and the other as holes in the same space.
The holes of the second distribution should be filled with the earth of the first
distribution. The used amount of work to fill a hole is defined by the product
of the moved earth and the distance between the hill and the hole. The Earth
Mover’s Distance is then the least amount of work that is needed to fill the
holes with the earth.

In the following we assume to have the two histograms H = {pi, wpi}, i =
1, . . . , n and K = {qj , wqj}, j = 1, . . . , n where pi and qj define the positions of
the histogram columns and wpi and wqj are the appropriate column weights.
An example for two such histograms with n = 4 and m = 5 is depicted in figure
B.1.

To compute the Earth Mover’s Distance a distance vector d = (d11, . . . , dmn)
>

is defined where dij is the distance between the two histogram columns pi and
qj of the histograms.

dij = |pi − qj |
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p1 pn

wp1

wpn

p2 pn−1
...

n = 5
Histogram H = {pi, wpi

}

q1

Histogram K = {qi, wqi
}

wqn

qm

m = 4

qn−1q2

wq1

...

Figure B.1: An example for two histograms with n = 4 and m = 5 which
should be compared by the Earth Mover’s Distance.

Furthermore the flow vector f = (f11, . . . , fmn)
> is introduced, where fij is the

amount of material send from the column i of histogram H to the column j
of the histogram K. The aim to find the flow vector f ∗ which minimizes the
following costs:

min
f

m∑

i=1

n∑

j=1

dijfij = min
f

d>f

Note that the total cost is the sum of the moved material multiplied by the
distance. The minimization is subject to fij ≥ 0 which means that the material
is only moved from histogram H to K and not vice versa.

The following three constraints limits the amount of material that can flow.

n∑

j=1

fij ≤ wpi (B.1)

m∑

i=1

fij ≤ wqj (B.2)

and

m∑

i=1

n∑

j=1

fij = min(
m∑

i=1

wpi ,
n∑

j=1

wqj ) (B.3)

For example no more than the available material of a column can be transfered
to a hole (B.1) and a hole can only be filled up until it is full (B.2). Therefore
the total flow must be restricted to the available material or to the available
space in the holes depending on which is lower (B.3) .

Such a linear optimization problem can be efficiently calculated by any linear
programming solver. The optimal flow for the example distributions is shown in
figure B.2. The Earth Mover‘s Distance is defined as the total cost normalized
by the total flow:

EMD =

∑m
i=1

∑n
j=1 dijfij

∑m
i=1

∑n
j=1 fij



B.2. Earth Movers Distance 163

Figure B.2: Visualisation of the Earth Mover’s Distance between two his-
tograms. The histogram with m = 4 is interpreted as a distribution of holes
while the histogram with n = 5 is interpreted as distribution of earth hills.
The cheapest flow to fill the holes with earth is depicted by arrows.

We use this distance to compute the similarity between grey-value-histograms
of image parts.
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