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1 Introduction

The field of econometrics combines economic theory, statistical methods, and
data. Only the combination of all three ingredients allows to understand eco-
nomic phenomena and derive sound policy recommendations. Theory can pro-
vide a set of competing models based on alternative assumptions which might
lead to conflicting conclusions. On pure theoretical grounds, the choice between
them can merely be based on a subjective assessment of plausibility. Further-
more, economic theories involve a set of parameters whose magnitude is unknown
in reality. Only by confronting the alternative models with data, it is possible
to judge them on a more objective basis and to quantify their implications.

On the other hand, it is impossible to draw conclusions from data alone. They
only provide measures like correlations between different quantities of interest.
An underlying theory is needed to interpret them in a structural way. With data
from classical experiments, the link between theory and data is straightforward.
The researcher varies quantities of interest while holding all other influences con-
stant. Obviously, the differences of the observed outcomes of the experiment are
caused by the changes of the experimental design which are controlled by the re-
searcher. Experiments are of limited use for studying many phenomena relevant
for economic analyses, although for specific questions, this approach provided
valuable insights into individual decision making. Typically, econometricians
have to rely on data generated “in the real world”. Since the world is complex,
economic theory is essential for the structural interpretation of the data.

In order to unite economic theory with data, statistical methods are needed.
The complexity of human behavior and economic systems prohibits the identi-
fication of deterministic relationships between quantities of interest. An impor-
tant reason for randomness is the impossibility to observe all relevant influences.
Models are always simplifications of the reality and statistics allows to explicitly
consider unaccounted influences.

The broad range of ingredients and goals of econometrics is also reflected in
the sources of inspiration for innovations in this field. Advances in economic
theory or statistical methods can motivate new developments as well as the
availability of different data sources or simply the demand for policy evaluations.
In the early days of econometrics, analyses were mainly based on aggregate
macroeconomic data. In the 1960s, researchers realized that the insights into
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1 Introduction

economic relationships this approach allows are limited. For example individual
heterogeneity cannot be considered. At the same time, data on individuals,
firms and other units started to become available and the computing power
increased so that they could be analyzed. This lead to a fast advancement of
microeconometric models and methods.

One of the main advantages of microeconometric analysis is that theories
on individual decision making can be connected to data on individual decisions.
This allows a much more direct and valid inference about the underlying mech-
anisms and the consideration of individual heterogeneity. In the year 2000, the
nobel prize in economics was shared by two pioneers of this literature. Daniel
McFadden developed the main idea and specific approaches to identify individ-
ual behavior based on economic models of utility maximization with data on
observed decisions. As he put it in his prize lecture, this exemplary combination
of economic theory and statistical methods

“[...] has been successful because it emphasized empirical tractability
and could address a broad array of policy questions within a frame-
work that allowed results to be linked back to the economic theory
of consumer behavior”.

This dissertation contributes four essays to the broad literature on microe-
conometric modeling and the computational problems that arise in the imple-
mentation of such models. Chapter 2 revisits a classical model for a specific class
of problems. The nested logit model is concerned with situations in which the
researcher is faced with observations on individual choices among a finite set of
mutually exclusive alternatives. Examples for these situations include brand or
travel mode choices. It models these decisions based on McFadden’s concept of
utility maximization and allows subsets of the alternatives to be similar in an
unobserved way. The nested logit model has a long tradition in the econometric
literature and is still one of the major tools used for empirical analyses in many
areas.

The implementation of this model caused severe confusion. Parallel to the
original model, which is based on a utility maximization model with a certain
specification of the stochastic components, an alternative specification of out-
come probabilities emerged. It was originally implemented in commercial statis-
tical packages such as LIMDEP and Stata and documented as “the nested logit
model”. In empirical applications, researchers commonly used these implemen-
tations, believing that they applied the original model specification. Chapter 2
discusses the differences between these two specifications and provides examples
for the bias of interpretation and inference if they are ignored. It furthermore
describes an implementation of the original model in Stata.
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After the power of micro-level data analysis had been fully appreciated, the
use of repeated observations on a number of individuals or other units over time
attracted a lot of attention. This panel data structure has invaluable advan-
tages over single observations for each individual. By observing changes over
time, individual heterogeneity can be accounted for in a much richer way and
dynamic aspects can be considered. James Heckman, the second nobel prize
laureate in the year 2000, advanced among other important areas the analysis of
heterogeneity and dynamics in microeconometric analyses. In his prize lecture
he noted that

“Different assumptions about the sources of unobserved heterogene-
ity have a profound effect on the estimation and economic interpre-
tation of empirical evidence, in evaluating programs in place and in
using the data to forecast new policies and assess the effect of trans-
porting existing policies to new environments”.

Chapter 3 of this dissertation discusses different modeling strategies for panel
data. It was motivated during work of the author on a larger project on the com-
plex interrelationships between health, socioeconomic status, and living arrange-
ments. In a first paper on this project, Heiss, Hurd, and Börsch-Supan (2005)
(HHB) study the joint evolution of these conditions using panel data from a
large survey of elderly Americans, the health and retirement study (HRS). We
analyze the individual trajectories of measures of each of these conditions. The
econometric model structure used in this paper is relatively simple since the goal
was to provide a broad overview of the relevant variables and their dependen-
cies. In order to understand the causal paths underlying the findings of HHB, a
more careful analysis of the sources of intertemporal relationships is required as
pointed out in the quotation above.

In general, applied econometric models often make use of the panel structure
in a very limited way, although James Heckman already provided a quite general
discussion in the early 1980s. Heterogeneity not captured by observed covariates
is typically treated as a latent variable that is constant over time. Some models,
including those discussed in HHB, consider causal dependence between outcomes
over time. More elaborate models are typically developed for specific models
only.

A discussion of more flexible modeling approaches for panel data in a general
setting is given in chapter 3 of this dissertation. The models are formulated in
a state space framework. In this approach, the model is separated into a part
that specifies the evolution of a set of latent variables over time and another part
that models the connection between this state space and the observed outcomes.
Using this strategy, the formulation and implementation of a rich set of flexible
and yet plausible and parsimonious models is straightforward.

3



1 Introduction

In addition to the general approach, chapter 3 considers special issues. These
include a specification of the evolution of latent variables in continuous time and
the joint modeling of multiple dependent variables. The correction of problems
caused by the systematic loss of individuals over time known as panel attrition
is discussed as a special application of joint models. These ideas are applied to
study the evolution of individual health. Health itself is modeled as a latent
variable for which the answers to survey questions give indications. A simple
model for this process captures the data much better than traditional approaches
like random effects or causal models. Mortality obviously affects the study of
health evolution, since the least healthy individuals die at younger ages. Using
a joint model of health and mortality, this can be easily accounted for. The
chapter also demonstrates the effects of ignoring this fact.

Based on the findings and methodological suggestions of chapter 3, Heiss,
Börsch-Supan, Hurd, and Wise (2005) study more carefully the evolution of
health, disability, and mortality. The state space approach suggested in chapter
3 proves to be useful for this enterprise. It will also help to get back to the
issue of a joint analysis of health, socioeconomic status, and living arrangements
in future research. The state space approach is well suited for this task, since
it allows straightforward specifications of joint models with flexible correlation
structures both across time and over different outcomes.

Flexible econometric models like those discussed in chapter 3 are not easily
estimated. In recent years, advances in econometric research have been trig-
gered by the technical progress leading to a surge of computational power. This
development permits analyses of such models. Previously, the specification of
econometric models has been confined to a class for which the required compu-
tational effort was limited. The ongoing increase in computing resources lead to
the development of simulation-based estimation methods which hardly restrict
the specification of models. As Kenneth Train puts it in the introduction of his
textbook on these methods (Train 2003):

“The researcher is therefore freed from previous constraints on model
specification – constraints that reflected mathematical convenience
rather than the economic reality of the situation. This new flexibility
is a tremendous boon to research.”

However, even with the computing power researchers have typically access
to today, simulation-based estimation still poses a challenge in many situations.
The more computing power is available, the higher is the flexibility of the imple-
mented models, which again creates higher computational costs. The results in
chapter 3 were based on simulation estimation which allowed the flexible model
specification. However, some of them required several days to run on a modern
PC. Improving on simulation methods is therefore an active area of research in
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statistics and econometrics. Chapters 4 and 5 are concerned with improvements
of and alternatives to simulation-based estimation. The approaches for different
problems in both chapters succeed strikingly well in mitigating the computa-
tional burden and allow to save about 99% of computing time in the presented
examples.

For the estimation of econometric models, certain measures such as outcome
probabilities have to be evaluated. The model often provides these as functions of
random variables only. Taking the expectation over these variables corresponds
to the integration over their distribution. These integrals pose the challenge to
specification and/or computation. The classical approach is to concentrate on
models for which they have a known explicit solution, which holds only in very
special cases. The alternative is to resort to computationally intensive numerical
methods.

There are different approaches to numerical integration. In practice, econo-
metricians typically use simulation techniques. They are relatively easy to im-
plement and the speed of their convergence to the true value does not depend
on the dimension of the integral. However, they also have disadvantages over
deterministic approaches such as Gaussian quadrature. They suffer from simu-
lation noise and both their accuracy and convergence rate are worse, at least in
low dimensions. While one-dimensional Gaussian quadrature is known to be effi-
cient, the usual extension to higher dimensions requires computational costs that
rise exponentially with the number of dimensions and thereby quickly becomes
prohibitive.

Chapter 4 discusses this problem for a class of panel data models including the
important case of general nonlinear models with AR(1) error processes, a special
case of the models described in chapter 3. It is argued that and shown how it is
possible to split the high-dimensional integral into several lower-dimensional in-
tegrals in these cases. Sequential numerical integration of each of these integrals
is much easier than integration of the original high-dimensional integral. Sev-
eral approaches for implementation are discussed and compared. The suggested
method uses Gaussian quadrature with importance weights.

For an application taken from chapter 3, the sequential quadrature and a se-
quential simulation-based approach are compared to the simulation of the whole
integral, which is the strategy currently used in the literature. The suggested
approach needs less computational costs by a factor of more than 100 to reach
the same accuracy. In practice, computations are done in less than one hour
compared to several days.

Chapter 5 is based on joint work with Viktor Winschel and discusses cases in
which multiple integrals cannot be split into several lower-dimensional parts or
in which these parts are still relatively high-dimensional. It suggests estimation
based on an integration rule that extends Gaussian quadrature in a more careful
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way than the widely known product rule. As opposed to the latter, it does
not suffer from exponentially growing computational costs, a problem known
as the “curse of dimensionality” of numerical integration. In high dimensions,
computational requirements of the proposed approach are dramatically lower
without losing the numerical advantages of Gaussian quadrature.

The method is easy to implement. Given nodes and weights, existing sim-
ulation code has only to be adjusted by replacing raw with weighted means.
Software for the generation of the appropriate nodes and weights is available
from the author. The chapter presents extensive Monte Carlo experiments for a
widely used discrete choice model, the random parameters or mixed logit model.
The suggested approach strikingly outperforms traditional simulation-based es-
timators, again saving computational effort by a factor of about 100.

To summarize, this dissertation contributes four essays to the broad literature
on microeconometric modeling and the computational problems that arise in
the implementation of such models. Chapter 2 clarifies on the specification
and presents an implementation of the more classical and widely used nested
logit model. The other three essays discuss specification and estimation in the
light of advanced numerical methods. They allow to fully exploit the potential
of latent variable models in microeconometrics by freeing the researcher from
constraints in the model specification. Chapter 3 demonstrates this advantage
and presents flexible and yet parsimonious modeling strategies for nonlinear
panel data. The numerical methodology required for the estimation of such and
many other models is advanced in chapters 4 and 5. They suggest to replace the
commonly used simulation techniques with deterministic integration rules by a
separation of the complex task into several less demanding tasks if this is possible
(chapter 4) or by an efficient multidimensional extension of Gaussian quadrature
in the general case (chapter 5). Both approaches dramatically mitigate the
computational burden and thereby provide even more flexibility and convenience
to the applied researcher.
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2 The Nested Logit Model: Clarification
and Implementation

2.1 Introduction

The nested logit model has become an important tool for the empirical analysis
of discrete outcomes. It is attractive since it relaxes the strong assumptions of the
multinomial (or conditional) logit model. At the same time, it is computationally
straightforward and fast compared to the multinomial probit, mixed logit, or
other even more flexible models due to the existence of a closed-form expression
for the likelihood function.

There is some confusion about the specification of the outcome probabilities
in nested logit models. Two substantially different formulas and many minor
variations of them are presented and used in the empirical literature and in
textbooks. Many researches are neither aware of this issue nor which version
is actually implemented by the software they use. This obscures the interpre-
tation of their results. This problem has been previously discussed by Hensher
and Greene (2000), Hunt (2000), Koppelman and Wen (1998), and Louviere,
Hensher, and Swait (2000, section 6.5). This chapter provides a comparison of
both approaches in line with this literature. It argues and shows in numerous
examples that one of these specifications is preferable in most situations. The
package nlogit of Stata 7.0 does not implement this specification. Therefore
the package nlogitrum is presented, which does.

The remainder of this chapter is organized as follows: section 2.2 introduces
basic concepts of discrete choice and random utility maximization (RUM) models
and discusses the conditional logit model as the most straightforward example.
Section 2.3 presents one version of the nested logit model, the so-called RUMNL
model. It can directly be derived from a RUM model. Section 2.4 introduces
the other variant, that is implemented as nlogit in Stata 7.0. It is shown that
this model is more difficult to interpret and might imply counterintuitive and
undesired restrictions. This is often overlooked by applied researchers. Section
2.5 compares both models in special cases of nesting structures. The Stata
implementation of the preferred RUMNL model is introduced in section 2.6 and
section 2.7 concludes.

7



2 The Nested Logit Model

2.2 Fundamental Concepts

Discrete Choice models are used to make statistical inferences in the case of
discrete dependent variables. This chapter deals with a special class of discrete
choice models for which there are more than two possible outcomes and the out-
comes cannot be sensibly ordered. A classical example is the travel mode choice.
This chapter uses a well-known data set on this topic to provide empirical exam-
ples. Among others, Greene (2000, example 19.18), Hunt (2000), and Louviere,
Hensher, and Swait (2000, section 6.4) present nested logit estimates based on
them. The data contain 210 non-business travelers between Sydney, Canberra,
and Melbourne. They had four travel modes alternatives: car, train, bus, and
plane.

Section 2.2.1 presents the concept of random utility maximization (RUM)
models. Different types of variables can enter RUM models of discrete choice.
Since this will be important for the following discussion, section 2.2.2 character-
izes these variable types and the specification of their coefficients. Section 2.2.3
presents the RUM interpretation of the well-known conditional logit model and
first estimates.

2.2.1 Random Utility Maximization Models

Econometricians often interpret discrete choice models in terms of underlying
structural models of behavior, called random utility maximization (RUM) mod-
els. They assign a utility level Uij to each alternative j = 1, . . . , J for each
decision maker i = 1, . . . , I. The decision makers are assumed to choose the
alternative from which they derive the highest utility.

The utilities are determined by a large number of characteristics of the de-
cision maker and the alternatives. The researchers have information on some of
those determinants, but not on all. This is reflected by splitting the utilities into
a deterministic part Vij and a stochastic part εij:

Uij = Vij + εij. (2.1)

The probability Pij that individual i chooses some alternative j is equal to the
probability of Uij being the largest of all Ui1, . . . UiJ . With yi ∈ {1 . . . J} denoting
the alternative that decision maker i chooses, this probability is

Pij = Pr(yi = j) = Pr(Uij > Uik ∀ k = 1, . . . , J : k 6= j)

= Pr(εik − εij ≤ Vij − Vik ∀ k = 1, . . . , J : k 6= j).
(2.2)

Given the deterministic parts of the utility functions Vi1, . . . , ViJ , this proba-
bility will depend on the assumptions on the distribution of the (differences

8



2.2 Fundamental Concepts

of) the stochastic error terms εi1, . . . εiJ . For some distributions, there exists a
closed-form solution for this expression. The most prominent examples are the
conditional logit model discussed in section 2.2.3 and the random utility version
of the nested logit model discussed in section 2.3.2.

A look at equation (2.2) reveals two interesting properties of the RUM out-
come probabilities: They are based on utility differences only. The addition of
a constant to all utilities does not change the outcome probabilities. In addition
to that, the scale of utility is not identified: Multiplying each of the utilities
Ui1, . . . , UiJ by a constant factor does not change the probabilities. So RUM
models have to normalize the utilities.

2.2.2 Types of variables and coefficients

The deterministic utility components Vij may consist of different types of deter-
minants. Alternative-specific constants αj for all but one (the reference) alter-
native should enter the model. They capture choice probabilities relative to the
reference alternative that cannot be attributed to the other explanatory vari-
ables. In addition, individual-specific and/or alternative-specific variables may
enter the utilities.

Individual-specific variables describe characteristics of the decision maker.
These variables may influence the relative attractiveness of the alternatives.
Prominent examples are socio-economic variables like income or age. They are
collected in a vector zi for each decision maker i = 1, . . . , I. A parameter vector
γj for each alternative j is associated with the individual-specific variables. Since
only utility differences are relevant for the choice, the parameters for one (the
reference) alternative have to be normalized to zero for identification.1 The other
parameters can be estimated freely. They represent the effect of the individual-
specific variables on the utility of the respective alternatives relative to the refer-
ence alternative. In the travel mode choice example, the respondents were asked
about their household income. The individual-specific variable inci represents
the income of individual i in ten thousand dollars.

Alternative-specific variables vary both over individuals and alternatives. A
prominent example is the price in models of brand choice. In the travel mode
choice data, there is a variable timeij that represents the time (in hours) that
individual i would need for the trip with travel mode j. These variables will be
collected in a vector xij for each decision maker i = 1, . . . , I and each alterna-
tive j = 1, . . . , J . They may enter the utilities in two different ways. Since the
variation over alternatives provides additional ground for identification, a sepa-

1Of course any other value can be chosen for normalization. The normalization to zero
simplifies the interpretation of the other parameters.
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2 The Nested Logit Model

rate parameter for each alternative is statistically identified. In the travel mode
choice example, spending one hour in the own car might be associated with a
lower disutility than spending one hour in the bus. This would be reflected in a
larger βbus than βcar in absolute value.

Including all these variables, the deterministic part of the utility Vij can in
general be written as

Vij = αj + x′
ijβj + z′iγj. (2.3)

On the other hand, researchers often want to estimate a joint coefficient
β for all alternatives. This is possible because of the variation of xij over the
alternatives. These variables will be called generic variables and their coefficients
will be restricted as

βj = β ∀j = 1, . . . , J. (2.4)

With this specification, the joint parameter β of travel time in our example may
be interpreted as the value of time in terms of utility. If price is included as a
generic variable, its parameter is often used to rescale the utility in dollar terms.
Whether or not generic variables enter the model will affect the discussion of the
nested logit model below.

2.2.3 Multinomial/Conditional/McFadden’s Logit Model

The multinomial logit (MNL) and conditional logit (CL) models are probably
the most widely used tools for analyzing discrete dependent variables. The
terminology is not consistent in the literature, but this chapter refers to the
MNL model as a special case of a CL model in which all explanatory variables
are individual-specific. Such a model is implemented in Stata as mlogit, see
[R] mlogit. The more general conditional logit model is implemented as the
clogit command, see [R] clogit. The same model without the interpretation in
terms of an underlying RUM model is often referred to as multinomial logistic
regression. In the following, this chapter will discuss the most general CL model.

Consider a RUM model as described in section 2.2.1. The CL model assumes
that the error terms εi1, . . . εiJ are i.i.d. as Extreme Value Type I. This distri-
bution has a variance of σ2 = π2

6
which implicitly sets the scale of the utilities.

(McFadden 1974) shows that under these assumptions, the resulting probability
PCL

ij that individual i = 1, . . . , I chooses some alternative j = 1, . . . , J has a
straightforward analytical solution:

PCL
ij =

eVij∑J
k=1 eVik

. (2.5)

Table 2.1 shows estimation results for two CL models of the travel mode
choice example. Both consider income and time as explanatory variables and
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Table 2.1: Conditional Logit estimates

Model (A) (B)
Coef. z Coef. z

const×car -4.122 -4.09 -3.886 -3.97
bus -2.614 -2.33 -2.678 -2.68
train -1.153 -1.14 -1.523 -1.60

hinc× car -0.209 -1.66 -0.201 -1.60
bus -0.454 -3.00 -0.457 -3.02
train -0.680 -4.92 -0.678 -4.93

time -0.600 -8.29
time× air -3.364 -7.92 -2.754 -7.43

car -0.572 -7.58
bus -0.609 -6.92
train -0.639 -8.02

Log likelihood -201.34 -202.19

define the outcome air as the reference outcome — i.e. αair and γair are nor-
malized to zero. The deterministic parts of the utility in equation (2.3) are
therefore

Vi,air = βair · timei,air,
Vi,car = αcar + βcar · timei,car +γcar ·inci,
Vi,bus = αbus + βbus · timei,bus +γbus ·inci, and
Vi,train = αtrain + βtrain · timei,train +γtrain ·inci

(2.6)

for both models.
Model A allows for different time parameters βj for all alternatives. The

estimate of all three γj alternatives is negative. This implies that higher income
c.p. decreases the probability to chose any other travel mode rather than fly.
The relative magnitude can also be interpreted: the order of the coefficients
corresponds to the order of the marginal effects of the choice probabilities. All
time parameters are highly significantly negative. This implies that the time
spent for the trip is associated with a disutility and that the probability to
choose any travel mode decreases when it gets slower.

As the results from model A indicate, the time parameters for the alternatives
train, bus, and car are very similar. A test of the hypothesis that they are
actually equal cannot be rejected. So it makes sense to impose equality, that
is to specify time as a generic variable. This has two advantages. It improves
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2 The Nested Logit Model

the efficiency of the estimates and allows an interpretation of the coefficient as
the implicit value of time in terms of utility. But βair is significantly higher in
absolute value than the other parameters. So model B specifies time as a generic
variable and additionally includes an interaction for the air alternative.2 As
expected, the log likelihood value decreases relative to the unconstrained model
A, but this decrease is insignificant. The marginal effects and elasticities do not
change significantly either.

The CL/MNL model is widely used because of its convenient form of the
choice probabilities and due to its globally concave likelihood function that makes
maximum likelihood estimation straightforward. But it imposes strong restric-
tions on the distribution of the error terms. Most notably, they are assumed
to be independently distributed. Note that these terms capture all unobserved
determinants of the choices. If two alternatives are similar, it is plausible to
assume that their errors are positively correlated. In our example, if there are
unobserved individual characteristics that affect the utility of both public trans-
portation modes bus and train similarly, the error terms of those alternatives
are correlated. This is ruled out by the CL model. If the assumption of inde-
pendent error terms is violated, the CL parameter estimates are biased.

2.3 Nested Logit Models I: RUMNL

The basic idea of nested multinomial logit (NMNL) models is to extend the CL
model in order to allow groups of alternatives to be similar to each other in an
unobserved way, that is to have correlated error terms. The general approach
of NMNL models is introduced in section 2.3.1. Section 2.3.2 presents a NMNL
model that is derived from a RUM model and therefore called RUMNL model
in this chapter. Finally, section 2.3.3 extends the CL example for this model. A
Stata implementation of the RUMNL model is introduced later in this chapter,
see section 2.6.

2There may be different reasons for the unequal parameter. Either the disutility of spending
time in the plane is higher than for the other travel modes, or time actually enters the
utility nonlinearly (the mean travel time by air is obviously significantly lower than the
time for the other alternatives), or the situations in which people choose to fly differs in
that time is more crucial. The reason for this will not be further explored at this place
since this chapter is not really about travel mode choice and adding nonlinear terms etc.
complicates the model unnecessarily for the purpose of demonstration.
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2.3 Nested Logit Models I: RUMNL

2.3.1 General Approach

The researcher partitions the choice set into M subsets (‘nests’) Bm, m =
1, . . . ,M .3 So each alternative belongs to exactly one nest. Denote the nest
to which alternative j = 1, . . . , J belongs as B(j):

B(j) = {Bm : j ∈ Bm, m = 1, . . . M} (2.7)

For the travel mode example, one possible nesting structure is depicted in figure
2.1. The number of nests is M = 2. The public transportation modes (train
and bus) share the nest Bpublic = {bus, train} and the other modes (air and
car) share the nest Bother = {car, air}. In our notation, B(bus) is equivalent
to Bpublic just as B(train) is. This notation will help in formulating the choice
probabilities below.

Figure 2.1: Nesting structure for models C through H

In order to develop an intuitive expression for the choice probabilities, it
helps to decompose them into two parts. The probability of individual i choosing
alternative j, Pr(yi = j) is equal to the product of the probability Pr(yi ∈ B(j))
to choose some alternative in nest B(j) and the conditional probability to choose
exactly alternative j given some alternative in the same nest B(j) is chosen
Pr(yi = j|yi ∈ B(j)):

Pj = Pr(y = j) = Pr(y = j|y ∈ B(j)) · Pr(y ∈ B(j)), (2.8)

where the individual subscript i is dropped from now on for the sake of a more
concise notation. In our example the probability to take the bus Pr(y = bus) is
equal to the probability to choose public transportation Pr(y ∈ B(bus)) times
the conditional probability to take the bus given a public transportation mode is

3This can be generalized to various nesting levels in a straightforward way by grouping the
alternatives within such a nest in sub-nests and so on, but this chapter will concentrate on
the simplest case of only one nesting level.
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2 The Nested Logit Model

chosen Pr(y = bus|y ∈ B(bus)). Note that this decomposition is valid in general
by the rules of conditioning. But it is especially useful for thinking about the
nested logit model.

2.3.2 Nested Logit as a RUM Model

The NMNL model can be derived from a RUM model just as the CL model.
Consider a RUM model as described in 2.2.1. The CL model assumes that the
error terms εi1, . . . εiJ are i.i.d. as Extreme Value Type I. Instead, the RUMNL
model assumes a generalized version of this distribution. This special form of
the generalized extreme value (GEV) distribution extends the Extreme Value
Type I distribution by allowing the alternatives within a nest to have mutually
correlated error terms.

For each nest m = 1, . . . ,M , the joint distribution of the error terms has an
additional parameter τm that represents a measure of the mutual correlation of
the error terms of all alternatives within this nest. Actually, this chapter specifies
τm to be equal to

√
1− ρm with ρm representing the correlation coefficient. So it

is an inverse measure of the correlation. Therefore, it is often called dissimilarity
parameter.4 The marginal distribution of each error term is again Extreme Value
Type I.

The RUMNL conditional choice probability to choose alternative j given
some alternative in its nest is chosen Pr(y = j|y ∈ B(j)) corresponds to a simple
CL model for the choice between the alternatives in nest B(j). The utilities are
rescaled by the inverse of the dissimilarity parameter τ(j) of this nest:

Pr(y = j|y ∈ B(j)) =
e

1
τ(j)

Vj∑
k∈B(j) e

1
τ(j)

Vk
, (2.9)

The most intuitive explanation is based on the consideration of the implicit
scaling in the logit model. As seen in section 2.2.1, the RUM choice probabilities
depend on the utility differences. As noted above, the CL model implicitly scales
all utilities such that the error terms have a variance of σ2 = π2

6
. Since they are

assumed to be independent in the CL model, their differences have a variance of
2σ2. But the RUMNL error terms within a nest are positively correlated. The
higher the correlation between the error terms, the lower is the variance of these
differences. With the relationship between the dissimilarity parameter τm and
the coefficient of correlation ρm presented above, it is straightforward to show
that the variance of the difference is 2σ2τ 2

m. By normalizing the utilities by the

4Other equivalent parameterizations are used in the literature. For example, McFadden
(1981) replaces τm with σm = 1− τm and Louviere, Hensher, and Swait (2000) replace τm

with µm = 1/τm.
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2.3 Nested Logit Models I: RUMNL

factor 1
τm

, the variance of this normalized difference becomes 2σ2. Without this
normalization, the utilities in each nest would be scaled by a different factor and
would therefore not be comparable across nests.

The denominator in equation (2.9) represents a (rescaled) measure of the
attractiveness of the nest B(j). The log of this expression for each nest m is
called inclusive value IVm. It corresponds to the expected value of the utility
individual i obtains from the alternatives in nest m:

IVm = ln
∑

k∈Bm

e
1

τm
Vk . (2.10)

The probability Pr(y ∈ B(j)) to choose some alternative from nest k is again
a CL probability for the choice between the nests. The scaled back inclusive
values take the role of the deterministic parts of the utilities:

Pr(y ∈ B(j)) =
eτ(j)IV (j)∑M
m=1 eτmIVm

. (2.11)

Because of the way the dissimilarity parameters enter this equation, they are
also called IV parameters.

Nested Logit models can be estimated sequentially. First estimate a sub-
model for each nest according to equation (2.9). Then calculate the inclusive
values defined in equation (2.10) and estimate a model for the choice of a nest
shown in equation (2.11). See, among others, Train (2003) for a discussion of this
sequential estimation and the necessary decomposition of the the explanatory
variable into nest- and alternative-specific variables. Alternatively, all these
equations can be plugged into equation (2.8). In this way, the marginal choice
probability for alternative j can be obtained as

PRNL
j =

e
1

τ(j)
Vj

eIV (j)
· eτ(j)IV (j)∑M

m=1 eτmIVm

. (2.12)

This probability is the full information likelihood contribution.

The CL model follows in the special case of τm = 1, ∀m = 1, ...,M . This
can be easily checked: the nests merely partition the choice set, so

∑M
m=1 eIVm =∑J

k=1 eVk must hold in this case. The RUMNL model is consistent with RUM if
all τm lie in the unit interval.5 For an introduction to this model also see Train
(2003) and Maddala (1983).

5This condition can be relaxed for local consistency with RUM, see Börsch-Supan (1990).
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2.3.3 Examples

Table 2.2 shows estimation results for two RUMNL models of the travel mode
choice example with the nesting structure depicted in figure 2.1. Model C cor-
responds to a RUMNL version of the CL model A. The log likelihood value
increases considerably by allowing the IV parameters to diverge from unity. A
likelihood ratio test clearly rejects the CL model that implicitly restricts the IV
parameters to unity. The IV parameter τpublic is within the unit interval and
corresponds to a correlation of the two error terms of about .71. The IV param-
eter τother is clearly above 1. This implies that this model is inconsistent with
RUM. This will be ignored for now and discussed in section 2.5.2.

Table 2.2: RUMNL estimates

Model (C) (D)
Coef. z Coef. z

const×car -5.751 -1.60 -6.383 -2.24
bus -2.499 -0.76 -2.782 -1.03
train -1.253 -0.39 -1.786 -0.66

hinc× car -0.354 -0.90 -0.362 -0.93
bus -0.556 -1.94 -0.554 -1.93
train -0.827 -2.90 -0.831 -2.91

time -1.301 -5.6
time× air -7.027 -5.49 -5.878 -5.54

car -1.325 -5.12
bus -1.281 -5.37
train -1.305 -5.54

τ public 0.539 3.69 0.545 3.79
τ other 4.879 3.58 4.801 3.84

Log likelihood -165.12 -165.26

The other parameters tend to be larger in the RUMNL model than in the CL
model. They cannot be compared however since the scaling differs across the
models. One can either compare ratios of coefficients or calculate statistics such
as the estimated marginal effects or elasticities of the choice probabilities with
respect to the explanatory variables. The interpretation within the RUMNL
model is equivalent to the interpretation in the CL model A. Model D in table
2.2 shows a RUMNL model with time entering as a generic variable analogous
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to the CL model B. Again, the interpretation remains the same. The generic
restrictions of model D cannot be rejected by a likelihood ratio test.

2.4 Nested Logit Models II: NNNL

This section discusses a variant of the nested logit model. It will be called non-
normalized nested logit (NNNL) model for reasons that are explained below.
This is the model that is presented as the nested logit model for example pre-
sented by Greene (2000, section 19.7.4). It is also the model implemented in
Stata 7.0 by the command nlogit, see [R] nlogit.

2.4.1 Structure of the Model

A latent variable Ṽj similar to the deterministic part of the utility in a RUM
model is defined as a linear combination of the explanatory variables:

Ṽj = α̃j + x′
jβ̃j + z′γ̃j. (2.13)

If alternative-specific variables enter the model as generic variables, that is with
a common coefficient β̃j for all alternatives, analogous restrictions to equation
(2.4) are imposed:

β̃j = β̃ ∀j = 1, . . . , J. (2.14)

The reason for adding the tilde to the V and the parameters is that the variable
Vj is reserved to represent deterministic utility parts in this chapter and as will

be explained below, this linear combination Ṽj may not be interpreted in this
way.

With the inclusive value for any nest m defined as

ĨV m = ln
∑

k∈Bm

eṼk , (2.15)

the choice probabilities of the NNNL model are

PNNL
j =

eṼj

eĨV (j)
· eτ(j)ĨV (j)∑M

m=1 eτmĨV m

. (2.16)

Comparing these equations to equations (2.10) and (2.12), the relevant difference
is that the deterministic utilities are not scaled by the inverse of the IV param-

eter in the conditional probability within the nest, eṼj

eĨV (j)
. This is the reason for

the calling this model non-normalized nested logit (NNNL) model. As argued in
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2 The Nested Logit Model

section 2.3.2, this implies different scaling of the utilities across nests. In conse-
quence, the interpretation of this model as a RUM model with the deterministic
utility defined as Ṽj is challenged. This can be confirmed formally by considering
what happens in a RUM model when the utility of each alternative is increased
by some value a. According to section 2.2.1, the RUM choice probabilities do
not change. Now have a closer look at equation (2.15). Adding the constant a

to every Ṽj does alter the NNNL choice probabilities.
As a result, this model is not based on a RUM model with the deterministic

parts of the utilities defined as Ṽj as was noted by Hensher and Greene (2000),
Hunt (2000), Koppelman and Wen (1998), and Louviere, Hensher, and Swait
(2000, section 6.5). But the next section argues that it can be interpreted in
RUM terms with other deterministic utilities.

2.4.2 Interpretation of the NNNL as a RUM Model

As a result of the discussion above, the parameters α̃j, β̃j, and γ̃j of a NNNL
model may not be interpreted as the structural parameters of an underlying
RUM model as many researchers tend to do. But how can the parameters be
interpreted? A reformulation of the NNNL model that is motivated from the
insights of section 2.4.1 helps to answer this question. Suppose the deterministic
part of the utility is not defined as Ṽj but as a scaled version V NNL

j of it:

V NNL
j = τ(j)Ṽj = τ(j)

(
α̃j + x′

jβ̃j + z′γ̃j

)
, (2.17)

where τ(j) is the IV parameter of the nest to which alternative j belongs. Adding

the constant a to every V NNL
j means adding a

τ(j)
to Ṽj and the inclusive value

ĨV (j). As can be easily seen from equation (2.16), this leaves the choice proba-
bilities unchanged.

If Ṽj in equations (2.15) and (2.16) are replaced with the equivalent term
a

τ(j)
V NNL

j , the equations become equivalent to the RUMNL equations (2.10) and

(2.12). So the difference between the NNNL and the RUMNL model boils down
to the in the specification of the utilities. While the RUMNL model directly
considers the deterministic utilities and their parameters α, β, and γ, the NNNL
model specifies utility according to equation (2.17).

A researcher with access to NNNL software but not to RUMNL software can
apply a NNNL model and deduce the implicit RUM assumptions and parame-
ters according to equation (2.17). Depending on the nesting structure and the
presence of generic variables, this can be more or less straightforward and more
or less sensible. In some cases, the NNNL parameters “only” have to be rescaled
to recover the RUM parameters. In other cases, the NNNL model implicitly im-
poses restrictions that are usually undesired and unnoticed by researchers and
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readers of their work. The next sections identify these cases in order to illus-
trate the the theoretical arguments and to provide a guideline of how to interpret
NNNL results.

2.4.3 Example 1: Alternative-specific coefficients only

In many applications, no generic variables enter the model. This case will turn
out to be the least problematic for NNNL estimation in the sense that no implicit
restrictions are imposed and the utility parameters can be recovered easily from
the estimates.

The NNNL utility from equation (2.17) can be rewritten as

V NNL
j = τ(j)

(
α̃j + x′

jβ̃j + z′γ̃j

)
= τ(j)α̃j + x′

j(τ(j)β̃j) + z′(τ(j)γ̃j).
(2.18)

So with

αj := τ(j)α̃j,

βj := τ(j)β̃j, and

γj := τ(j)γ̃j,

(2.19)

the utility simplifies to the equivalent of the RUMNL specification (2.3):

V NNL
j = Vj = αj + x′

jβj + z′γj. (2.20)

So assume you have estimated a nested logit model using NNNL software
such as the nlogit command of Stata. The estimates of α̃j, β̃j, and γ̃j do not
directly have a structural interpretation in terms of a RUM model. But the
underlying parameters αj, βj, and γj can be recovered according to equation
(2.19).

As an illustration, table 2.3 shows the results for a NNNL (model E) that
corresponds to the RUMNL model C. Both models are equivalent in terms of
the log likelihood and the implied marginal effects and elasticities. The esti-
mated IV parameters are also identical. But the other parameter estimates
differ. For example, the RUMNL estimate for the structural parameter of
‘hinc×train’ is γ̂hinc×train = −0.474. It can be recovered from the NNNL es-

timates by multiplying the estimated coefficient ̂̃γhinc×train = −0.879 with the
estimated IV parameter of the respective nest τ̂public = 0.539 as can be easily
verified: −0.474 = −0.879× 0.539. Table 2.3 does these calculations for each of
the coefficients. The third column shows the scaling factors which corresponds
to the respective estimated IV parameter. The products of these factors and
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Table 2.3: NNNL estimates without generic variables

Recovering
Model (E) RUM params
Coef. z Factor Par. z∗

const×car -1.179 -1.29 4.879 -5.751 1.60
bus -4.635 -0.73 0.539 -2.499 0.77
train -2.323 -0.38 0.539 -1.253 0.40

hinc× car -0.072 -0.90 4.879 -0.354 0.90
bus -1.031 -1.82 0.539 -0.556 1.94
train -1.534 -2.48 0.539 -0.827 2.90

time× air -1.440 -3.63 4.879 -7.027 5.49
car -0.272 -5.03 4.879 -1.325 5.12
bus -2.376 -4.92 0.539 -1.281 5.37
train -2.420 -4.87 0.539 -1.305 5.54

τ public 0.539 3.69
τ other 4.879 3.58

Log likelihood -165.12

*: Wald test of H0: Rescaled parameter = 0. Shown is the
square root of the test statistic a∼ N(0, 1)

the estimated NNNL coefficient can be found in the fourth column of table 2.3.
Their equality to the RUMNL parameters can be easily verified by a comparison
with the RUMNL results in the first column of table 2.2.

Note that the NNNL parameters cannot be interpreted in terms of RUM
directly. The relative size of the coefficients does not have any meaning before
they are rescaled. The scaling also has to be taken into account when testing
hypotheses based on the parameters. For example the presented asymptotic t-
statistic for γ̃hinc×train for the NNNL model does not correspond to the respective
test for the RUMNL parameter γhinc×train. The tests of the RUMNL parameters
can be reproduced from the NNNL estimates. The appropriate null hypothesis
H0 : γ̃hinc×train × τpublic = 0 can for example be tested using a Wald test. The
respective test statistics for all parameters are shown in the fifth column of table
2.3. They are equivalent to the asymptotic t-statistics of the RUMNL model
(C).6

6The test statistic for the Wald test is a∼ χ2
1. The displayed value is the square root of this

statistic which is a∼ N(0, 1) by the properties of the χ2 distribution with one d.f.
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So in the case without generic variables, the NNNL and RUMNL models are
equivalent. But while the RUMNL model directly estimates the parameters of
interest, the estimated coefficients from NNNL have to be rescaled before they
can be interpreted. This rescaling has also be taken into account when testing
hypotheses. For example, the asymptotic t-statistics from the output of nlogit
do not correspond to tests of intrinsically interesting hypotheses.

2.4.4 Example 2: Inclusion of Generic Variables

As discussed above, the researcher may often want to constrain the coefficients βj

of alternative-specific variables to be equal for each alternative. This constraint
(2.4): βj = β ∀j = 1, . . . , J could easily be imposed for the CL model B and
for the RUMNL model D. However, the corresponding constraints on the NNNL
parameters according to equation (2.14) are not equivalent. Instead of equal
RUM parameters, they impose equal scaled RUM parameters:

β̃j = β̃ ∀j = 1, . . . , J

⇔ 1

τ(j)
βj = β̃ ∀j = 1, . . . , J

⇔ βj = τ(j)β̃ ∀j = 1, . . . , J

(2.21)

The structural parameters βj are not restricted to be equal across alternatives.
Instead, they are constrained to be proportional to the IV parameters of their
nest. The author of this chapter cannot think of a RUM model for which these
constraints could make any sense. Why should the travel time in our example
be associated with more disutility for travel modes that happen to share a nest
with relatively dissimilar alternatives?

Table 2.4 shows NNNL estimates with time specified as a ‘generic’ variable
in the sense of equation (2.21). A comparison of models F and D illustrates that
the NNNL model does not give the same estimates as the RUMNL model in
this case. In particular, the log likelihood values differ. While the corresponding
RUMNL model D shows very different IV parameters for both nests (0.55 vs.
4.80), the estimates of the NNNL IV parameters from model F are relatively
similar for both nests (2.54 vs. 2.64). With the intuition developed so far, this
can be readily interpreted. In the RUMNL model, the IV parameters solely
capture the (dis)similarity of the alternatives within the corresponding nest.
While the public transportation modes appear to be quite similar, the other
modes are not. This is reflected in the RUMNL estimates. The IV parameters
in the NNNL model capture another effect: the relative importance of travel
time for the alternatives within the nest. The diverging IV parameters that are
in accordance with the dissimilarity would imply that travel time is much more
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Table 2.4: NNNL estimates with generic variables

Model (F) (G) (H)
NNNL NNNL RUMNL

Coef. z Coef. z Coef. z
const×car -2.325 -2.56 -2.556 -3.01 -6.645 -3.26

bus -2.364 -2.87 -2.398 -3.03 -6.235 -2.88
train -1.319 -1.73 -1.358 -1.86 -3.531 -1.89

hinc× car -0.138 -1.34 -0.150 -1.47 -0.390 -1.47
bus -0.196 -1.56 -0.191 -1.54 -0.497 -1.64
train -0.352 -3.18 -0.349 -3.24 -0.907 -3.68

time -0.460 -6.75 -0.456 -6.73 -1.185 -5.64
time× air -1.988 -5.39 -2.079 -6.04 -5.405 -5.46

τ public 2.535 4.29 2.600 4.41 2.600 4.41
τ other 2.638 4.36 2.600 4.41 2.600 4.41

Log likelihood -194.01 -194.29 -194.29

important for the car alternative than for the public transportation modes. This
is not the case as is obvious from the previous results. So both effects that are
captured by the same NNNL IV parameters are not in line with each other.

The ‘generic’ specification for the NNNL model implies a counterintuitive
restriction that can hardly be motivated from a RUM model. As a result, spec-
ifications like model F should be avoided. RUM Models like model D can in
general not be estimated with NNNL software like Stata’s nlogit command if
generic variables are present. There are exceptions some of which are discussed
in the next section.

2.5 Special Nesting Structures

Section 2.4.4 argued, that the specification of NNNL models with generic vari-
ables can in general imply implausible binding constraints. This section discusses
special cases for which this is not be true.

2.5.1 Equal IV Parameters across all Nests

If one is willing to assume a priori that the dissimilarity parameters of all nests
in a nesting level have the same value, the scaling problem of the NNNL model
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disappears. The restrictions (2.21) imply essentially the same as the generic
restrictions in a RUMNL model according to equation 2.4. The presence of the
generic variable does not distort the estimates of the NNNL model, since its
parameter is forced to be scaled equally in each nest.

Table 2.4 shows results for a NNNL and a RUMNL model that differ from
the previous ones in that their IV parameters are constrained to be equal. The
RUMNL parameters (model H) can be deduced from the NNNL estimates by
multiplying them with the joint IV parameter. For example the estimated
RUMNL income coefficient for the train alternative is γ̂hinc×train = −0.907. It can

be recovered from the NNNL estimates as ̂̃γhinc×train × τ̂public = −0.349× 2.600.

The problem with this constraint is that it cannot be tested with NNNL
estimates, because the unconstrained model F is misspecified. In contrast, both
RUMNL specifications are valid and a comparison of the log likelihood values of
models D and H clearly shows that this constraint is rejected by the data.

2.5.2 Degenerate nests

If a nest contains only one alternative, it is called a degenerate nest. The dis-
similarity parameter of degenerate nests is not defined in the RUMNL model.
This can be easily seen from equations (2.10) and (2.12). Since the degener-
ate nest B(j) only contains alternative j, its inclusive value (2.10) simplifies to
IV (j) = 1

τ(j)
Vj. The dissimilarity parameter τ(j) cancels out of the choice prob-

ability (2.12). This is intuitive since the concept of (dis)similarity does not make
sense with only one alternative.

In the NNNL model however, the dissimilarity parameter of degenerate nests
does not vanish from the choice probability and may be statistically identified.
As discussed above, the identification in general comes from two sources: the
dissimilarity and the relative importance of the ‘generic’ variables in the respec-
tive nest. Like in the RUMNL model, the former source disappears in degenerate
nests. But the latter source may be present if generic variables enter the model.
Without ‘generic’ variables, the dissimilarity parameters are not jointly identi-
fied with the other parameters. So they can be constrained to any nonzero value.
The only effect of choosing this value is that the respective parameters are scaled
accordingly as discussed in section 2.4.3.

If at least one ‘generic’ variable is included in the NNNL model, the IV
parameter of degenerate nests may be identified along with the other model
parameters. This identification comes from the restriction of equally scaled pa-
rameters 1

τ(j)
βj across alternatives and nests and the parameters only constitute

this scaling. A conventional approach to restrict the IV parameter to be equal
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to unity does not result in a model that is consistent with the underlying RUM
model.

This is demonstrated with the estimates shown in table 2.5. The fact that the
estimated dissimilarity parameter of the nest ‘other’ in table 2.2 is substantially
larger than 1 indicates that the alternatives ‘air’ and ‘car’ should not share a
nest. Therefore, the nesting structure is modified by splitting this nest into two
degenerate nests. The resulting nesting structure is depicted in figure 2.2. In
models I and J shown in table 2.5, the variable ‘time’ purely enters as a generic
variable. The dissimilarity parameters of the degenerate nests ‘air’ and ‘car’
are not identified from the RUMNL model I. As argued above, they cancel out
in the likelihood function. In contrast, all IV parameters are identified in the
NNNL model J. It has two more free parameters than the RUMNL model and
a substantially higher likelihood value.

Figure 2.2: Nesting structure for models I through L

However, these IV parameters do not have anything to do with (dis)simi-
larity. They simply relax the constraint of equal scaling of the generic variable
coefficient across nests. To demonstrate this, models K and L shown in table 2.5
do the same explicitly by estimating a separate ‘time’ coefficient for each nest.
As a result, the IV parameters of the degenerate nests are not jointly identified
with the other parameters of the corresponding nests in the NNNL model and
have to be constrained to any nonzero number. Both models result in the same
log likelihood value and the parameters are equivalent if the NNNL parameters
are rescaled with the value of the corresponding IV parameter. The results are
also equivalent to model J. This supports the assertion that the IV parameters
in model J do nothing more than relax the constraint of equal scaling.

So if there is only one generic variable present in the model, the NNNL esti-
mate of the IV parameter can be interpreted in a straightforward way, although
this is probably not the way the researcher intends to interpret IV parameters.
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Table 2.5: Degenerate Nests

Model (I) (J) (K) (L)
RUMNL NNNL RUMNL NNNL

Coef. z Coef. z Coef. z Coef. z
const×car 1.140 1.97 -19.400 -2.74 -3.613 -3.83 -3.613 -3.83

bus 3.206 6.17 -7.283 -1.48 -1.433 -1.56 -7.283 -1.48
train 3.371 6.19 -5.130 -1.07 -1.010 -1.11 -5.130 -1.07

hinc× car -0.011 -0.10 -0.695 -1.09 -0.130 -1.09 -0.130 -1.09
bus -0.451 -4.31 -2.328 -2.74 -0.458 -3.81 -2.328 -2.74
train -0.505 -4.83 -3.013 -3.13 -0.593 -4.86 -3.013 -3.13

time -0.165 -3.79 -2.319 -4.66
time× public -0.456 -6.17 -2.319 -4.66

air -2.654 -6.73 -2.654 -6.73
car -0.432 -6.11 -0.432 -6.11

τ public 0.073 2.96 0.197 3.78 0.197 3.78 0.197 3.78
τ air — —∗ 1.144 3.86 — —∗ 1 —∗∗

τ car — —∗ 0.186 3.74 — —∗ 1 —∗∗

Log likelihood -212.45 -182.57 -182.57 -182.57
*: Parameter not defined.
**: Parameter normalized to 1.

It is much more direct to explicitly relax the specification of generic variables.
If there is more than one generic variable, the interpretation becomes more ob-
scure. Then the NNNL specification imposes the restriction that the coefficients
of all generic variables differ proportionally across nests. Greene (2000, example
19.18) presents a model in which this problem appears. It is a NNNL model
based on the data used in this chapter. In addition to ‘time’, the generic vari-
able ‘cost’ is included. As a result, the estimates have no clear interpretation.
The RUMNL avoids the danger of misspecification and misinterpretation.

2.5.3 Dummy nests

There is a way to ‘trick’ NNNL software into estimating a RUM consistent nested
logit model with generic variables and without imposing equality of dissimilarity
parameters. Koppelman and Wen (1998) propose to add degenerate dummy
nests and constrain their IV parameters appropriately. This can most easily be
explained by an example.
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2 The Nested Logit Model

Figure 2.3 shows the nesting structure for the travel mode choice example ac-
cording to figure 2.1 with appropriate dummy nests added. For each alternative,
such a degenerate nest is specified. The corresponding IV parameters θ1 through
θ4 are shown next to each nest along with the respective constraint. The two
‘public’ alternatives each have a degenerate dummy nest whose IV parameters
are constrained to be equal to the IV parameter of the ‘other’ nest. Intuitively,
their parameters are first scaled by 1/τpublic. Then the additional dummy nest
scales them by 1/τother. For the two ‘other’ alternatives, this works accordingly.
As a result, the parameters of all alternatives are scaled by 1

τpublic·τother . While

τ1 and τ2 can be allowed to differ, this does not translate into different scaling
across nests.

Figure 2.3: Nesting structure with dummy nests

Table 2.6 shows the results from a specification according to this strategy.
Model M is identical to model D. It could not be reproduced by NNNL since it
contains generic variables and the IV parameters are allowed to differ between
nests. Model N is a NNNL model with the dummy nests added as described
above (NNNL-DN). As can be seen, this specification mimics the RUMNL model
except for the scaling of the parameters for the explanatory variables. The struc-
tural coefficients can be recovered from these estimates by multiplying the esti-
mated coefficients by both estimated IV parameters. For example, the coefficient
for ‘hinc×train is -0.831. it can be calculated from the NNNL-DN estimates as
-0.831 = -0.317 × 4.801 × 0.545.

Depending on the original nesting structure, a large number of dummy nests
may be needed for this strategy. This complicates both the specification and the
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Table 2.6: Dummy nests

Model (M)=(D) (N)
RUMNL NNNL-DN
Coef. z Coef. z

const×car -6.383 -2.24 -2.438 -1.51
bus -2.782 -1.03 -1.063 -0.86
train -1.786 -0.66 -0.682 -0.59

hinc× car -0.362 -0.93 -0.138 -0.92
bus -0.554 -1.93 -0.212 -1.58
train -0.831 -2.91 -0.317 -1.98

time -1.301 -5.60 -0.497 -3.08
time× air -5.878 -5.54 -2.245 -2.69

τ public 0.545 3.79 0.545 3.79
τ other 4.801 3.84 4.801 3.84

Log likelihood -165.257 -165.26

estimation.7 This strategy therefore seems to be a real alternative to RUMNL
only for researchers who just have access to a NNNL implementation.

2.6 Stata implementation of RUMNL

The NNNL model is available for Stata 7.0 users as the nlogit command. As
argued in this chapter, the RUMNL model is preferable in most situations. This
section introduces the command nlogitrum.ado that implements the RUMNL
model. It was used to produce all RUMNL estimates in this chapter. Further-
more, the command nlogitdn.ado is described. It adds dummy nests to any
specified nesting structure as discussed in section 2.5.3.

2.6.1 Installation

The implementation of nlogitrum.ado was presented in Heiss (2002) in the
Stata Journal. The package including the implementation as well as the data
and code for the examples used in this paper is therefore available for automatic
installation. From Stata, the command net search nlogitrum will provide

7The command nlogitdn, introduced in section 2.6.5, automates the generation of dummy
nests and appropriate constraints.
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instructions. Alternatively, the package is available for manual download at
http://www.stata-journal.com/software/sj2-3/st0017/.

2.6.2 Data setup

The data setup for nlogitrum is equivalent to nlogit. That is, a set of categor-
ical variables altsetvarB [ ... altsetvar2 altsetvar1] is generated using nlogitgen.
The tree structure can be visualized using nlogittree. For a thorough descrip-
tion see [R] nlogit.

2.6.3 Syntax

nlogitrum depvar indepvars
[
weight

] [
if exp

] [
in range

]
, group(varname)

nests(altsetvarB [ ... altsetvar2 altsetvar1])
[
notree nolabel clogit

level(#) nolog robust ivconstraints(string) constraints(numlist)

maximize options
]

The syntax is similar to that of nlogit with one major difference. nlogit

insists on explanatory variables for each nesting level and nlogitrum only allows
explanatory variables to directly enter the conditional probabilities of the alter-
natives. There are three reasons for this change. The first reason is that in many
cases it is hard to find a variable that is specific to a nest instead of an alter-
native. So one often ends up throwing nonsense variables into the specification
of nest-specific explanatory variables and constraining their coefficients to zero.
The second reason is that for the RUMNL model, it does not make a difference
at all if a nest-specific variable is specified for a nest or for all alternatives within
the nest. The third reason is that it greatly simplifies the syntax and makes it
equivalent to the syntax of clogit except for the additional options.

The option d1 of nlogit does not exist for nlogitrum. The current version
uses the ml method d0.

2.6.4 Predictions

The syntax for predict after nlogitrum is nearly identical to the syntax after
nlogit estimation. The only difference is that the options xbb and xbb# are
replaced by the option xb, since the linear prediction can only be sensibly defined
for the bottom level (the alternatives).
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2.6 Stata implementation of RUMNL

2.6.5 Generating dummy nests: nlogitdn

The command nlogitdn is a wrapper for nlogit. Its syntax is equivalent to
the nlogit syntax. nlogitdn analyzes the specified nesting structure, adds
appropriate dummy nests and constraints to the specification as discussed in
section 2.5.3, and calls nlogit. It was used for the estimation of model N in
table 2.6.

2.6.6 Examples

In order to help the reader become accustomed to the syntax, the commands
used to produce the example models A through N are listed below. Most variable
names should be self-explanatory. The variable grp identifies the observations
and the variable travel identifies the alternatives and takes the values 0 for air,
1 for train, 2 for bus, and 3 for car. The variable mode is the 0/1 coded dependent
variable. For most NMNL models, the nesting structure is depicted in figure 2.1.
The respective variable type was generated using nlogitgen. For the models I
through L, the nesting structure according to figure 2.2 was generated with the
variable typedeg:

. nlogitgen type = travel(public: 1 | 2, other: 0 | 3 )
new variable type is generated with 2 groups
lb_type:

1 public
2 other

. nlogitgen typedeg = travel(public: 1 | 2, air: 0, car: 3)
new variable typedeg is generated with 3 groups
lb_typedeg:

1 public
2 air
3 car

Since no variables enter the models on the level of the nests, the nonsense
variables nothing1 and nothing2 were generated. The constraints that show
up in the nlogit commands constrain their coefficients to zero. The models
themselves were estimated using the following commands:

. * Model A:

. clogit mode asc_* hinc_* time_*, group(grp)

. * Model B:

. clogit mode asc_* hinc_* time time_air, group(grp)

. * Model C:

. nlogitrum mode asc_* hinc_* time_*, group(grp) nests(travel type)

. * Model D:

. * Model E:

. nlogit mode (travel = asc_* hinc_* time_* )(type=nothing1), group(grp) const(
> 1) d1

. *Model F:

. nlogit mode (travel = asc_* hinc_* time time_air )(type=nothing1), group(grp)
> const(1)
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. * Model G:

. nlogit mode (travel = asc_* hinc_* time time_air)(type=nothing1), group(grp)
> const(1) ivc(other=public)

. * Model H:

. nlogitrum mode asc_* hinc_* time time_air, group(grp) nests(travel type) ivc(
> other=public)

. * Model I:

. nlogitrum mode asc_* hinc_* time , group(grp) nests(travel typedeg) ivc(air=3
> .14159, car=3.14159)

. * Model J:

. nlogit mode (travel = asc_* hinc_* time )(typedeg=nothing2), group(grp) const
> (2)

. * Model K:

. nlogitrum mode asc_* hinc_* timepublic time_air time_car, group(grp) nests(tr
> avel typedeg) ivc(air=3.14159, car=3.14159)

. * Model L:

. nlogit mode (travel = asc_* hinc_* timepublic time_air time_car)(typedeg=noth
> ing2), group(grp) const(2) ivc(air=1, car=1)

. * Model M = Model E

. * Model N:

. nlogitdn mode (travel = asc_* hinc_* time time_air)(type=nothing1), group(grp
> ) const(1)

Note that the IV parameters of ‘air’ and ‘car’ in models I and K do not
actually exist as discussed in section 2.5.2. Since the algorithm does not realize
this beforehand, these parameters have to be restricted to an arbitrary nonzero
number (in the examples, 3.14159 was chosen to illustrate the arbitrariness).

2.7 Conclusions

The name ‘nested logit’ has been given to different models. This chapter argues
and demonstrates that the seemingly slight difference in the specification of the
outcome probabilities can lead to substantially different results and interpreta-
tions thereof. So researchers using a nested logit model (and the readers of their
results) should be aware of the actual variant used.

One of these variants (called RUMNL in this chapter) is derived from a ran-
dom utility maximization (RUM) model that is prevalent in econometrics. The
estimated coefficients can be readily interpreted and simple tests like asymptotic
t-tests directly test hypotheses of interest. This holds irrespective of the type of
included explanatory variables and specified nesting structure.

The alternative (called NNNL in this chapter) implies a varying scaling of the
underlying utilities across alternatives. Depending on the model specification,
it can give equivalent results to those of RUMNL and the structural parameters
can be recovered. But in order to do so, the estimated coefficients have to be
rescaled and this also has to be kept in mind for hypothesis tests. This is the
case if only alternative-specific parameters enter the model. If generic variables
(variables with a common coefficient across alternatives) are present, the NNNL
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model places restrictions on the parameters that are often counterintuitive and
undesired. The reason is that the inclusive value parameters in this case not only
constitute the (dis)similarities of the alternatives, but also the different scaling
of the generic variable coefficients across nests.

Stata 7.0 comes with an implementation of the NNNL model. This chapter
introduces the Stata package nlogitrum that implements the preferred RUMNL
model.
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3 State Space Approaches to
Microeconometric Panel Data Modeling:
Health Trajectories with Initial and
Dynamic Selection through Mortality

3.1 Introduction

Panel data provide repeated observations on the same individuals, firms, or other
units over time. This allows the identification of a much richer set of effects in
a more general setting than pure cross-sectional data. Many microeconometric
models, especially limited dependent variable models, are inherently nonlinear.
This nonlinearity complicates the analysis of panel data models, see Chamberlain
(1984). Heckman (1981b) discusses a general setup for nonlinear panel data
models in the context of binary choice models. In applied research, the vast
majority of nonlinear panel data models specify unobserved heterogeneity as
time-constant fixed or random effects and/or state dependence as a low-order
Markov model.

State space models separate the model into the specification of a latent state
process and a measurement model which connects it to the observed outcomes.
This approach has a long tradition in linear time series models, see Hamilton
(1994). The increase in computational power makes it also feasible for general
nonlinear models. State-space models also provide a general and intuitive basis to
formulate microeconometric panel data models. Commonly used approaches like
random effects models are directly nested within a more flexible and potentially
more plausible specification.

In this chapter, I discuss the general model structure and simulation-based
estimation of state space models. Furthermore, special topics are covered. These
include the specification of the state process in continuous time and joint mod-
eling of multiple dependent variables. As a special case of simultaneous models,
panel attrition can be modeled jointly with the variable of interest to allow for
selectivity correction. To analyze quantitative results of the estimated model,
the simulation of conditional trajectories is discussed.
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These ideas are then applied to modeling the evolution of self-reported health
(SRH). Panel data models usually applied in this literature include Markov chain
and random effects models. I show that a simple and parsimonious state space
model captures the data much better. It is based on a simple process of latent
health in continuous time that generates the SRH answers in the surveys. Fur-
thermore, I discuss the problem of selectivity caused by mortality both in the
initial sample and by panel attrition. With a joint model of SRH and mortality,
I show how these biases can be corrected and demonstrate the selectivity effects.

The chapter is structured as follows. Section 3.2 presents the general model
structure and the requirements on the specification and estimation of state space
models. It also presents a discussion of topics like continuous time modeling of
the state space and selectivity correction in a simultaneous model. In section 3.3,
an empirical application for self-reported health is presented. Different model
specifications are implemented and tested against each other. Section 3.4 dis-
cusses the problem of selection through mortality and presents a joint model of
health and mortality. The effects of different specifications are demonstrated in
simulation exercises. Section 3.5 concludes.

3.2 Nonlinear State-Space Models for Panel Data

3.2.1 Model Structure

A large share of microeconometric models involve sets of unobserved random
variables that are not mutually independent conditional on observable covari-
ates. Examples include panel data models with unobserved heterogeneity, sam-
ple selection models with selection on unobservables, and simultaneous equation
models. State space models specify separate models for the unobserved random
variables (state space) and the connection with the observed variables (measure-
ment). Let yit with i = 1, ..., N and t = 1, ..., T denote the observed dependent
variable of individual i at wave t in N × T dimensional panel data. In general,
yit may be a vector if different outcomes are modeled simultaneously.

Let xi denote a vector of observed strictly exogenous covariates. These can be
constant or or varying over time. In the latter case, xi collects all time-specific
values. In addition, the model is formulated in terms of unobserved random
variables (“states”) uit and possibly i.i.d. random shocks eit. In general, these
can be random vectors if more than one state variable is defined. The complete
model consists of two parts:

State Space
The state space model specifies the joint distribution of the states uit conditional
on the covariates. Let uit be continuously distributed and denote the vector of

34



3.2 Nonlinear State-Space Models for Panel Data

individual state sequences as ui,1:T = [ui1, ...,uiT ]. Assume that its joint p.d.f.
conditional on the covariates f(ui,1:T |xi; θ) is a function known up to a finite-
dimensional parameter vector θ. Furthermore, assume that vectors of random
numbers can be drawn from this distribution.

Measurement
The measurement model specifies the data generating process conditional on
the latent states. So ui,1:T can be treated like the observed covariates xi. Let
yi,1:T = [yi1, ...,yiT ] denote the vector of all individual outcomes. The most
important assumption needed for the further analysis is that the joint distri-
bution of yi,1:T conditional on xi and ui,1:T is known up to a finite number of
parameters. Discrete and continuous dependent variables are in the following
treated jointly. With a slight misuse of terminology, in the following I will refer
to P (yi,1:T |xi,ui,1:T ; θ) as the corresponding probability for yi,1:T conditional on
xi and ui,1:T .

A special case of this class of models can be called contemporaneous state
space models. Conditional on uit, the outcome yit is assumed to be independent
of yis and uis for all s 6= t. It follows that

P (yi,1:T |xi,ui,1:T ; θ) =
T∏

t=1

P (yit|xi,uit; θ). (3.1)

A graphical illustration of such a model is presented in Figure 3.1. The un-
observed states possibly depend on covariates and are dependent over time.
Conditional on uit, the outcomes yit are serially independent. But without this
conditioning, the serial correlation of uit induces serial correlation of yit condi-
tional on xi.

A simple example of a binary panel probit model with a one-dimensional
AR(1) error term may help to clarify the approach. The measurement model is
a straightforward probit model with xi = [xi1, ...,xiT ] and ui,1:T = [ui1, ..., uiT ]
as explanatory variables. Conditional on those, the outcomes are assumed to be
independent. With the parameter vector θ = [β, σ, ρ], the probit specification
implies the measurement model

P (yi,1:T |xi,ui,1:T ; θ) =
T∏

t=1

Φ (xitβ + uit)
yit (1− Φ (xitβ + uit))

1−yit , (3.2)

where Φ denotes the standard normal c.d.f. Let the states uit be specified as a
Gaussian AR(1) process that is independent of xi. The marginal distribution of
each uit is normal with zero mean and variance σ2. Conditional on the past values
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Figure 3.1: Contemporaneous state space models

ui1, ..., ui,t−1, the distribution of uit is normal with mean ρui,t−1 and variance
(1− ρ2)σ2, where |ρ| < 1. The joint density of ui,1:T is therefore

f(ui,1:T |xi; θ) =
1

σ
φ
(uit

σ

) T∏
t=2

1

σ
√

1− ρ2
φ

(
uit − ρui,t−1

σ
√

1− ρ2

)
. (3.3)

3.2.2 Estimation

In this chapter, only maximum likelihood estimation is discussed. For Bayesian
analyses, the main problem of the likelihood evaluation is analogous, so the
discussion can be easily applied. Other methods like GMM suffer from similar
computational problems. Assume that the random variables involved in the
model are independent across cross-sectional units. The likelihood function for
the general panel data state space model can then be written as

L(θ|y,x) =
N∏

i=1

`(θ|yi,1:T ,xi), (3.4)

where y = [yi,1:T : i = 1, . . . , N ] and x = [xi : i = 1, . . . , N ]. The likeli-
hood contributions represent the outcome probabilities, interpreted as a function
of the parameters: `(θ|yi,1:T ,xi) = P (yi,1:T |xi; θ). These likelihood contribu-
tions cannot in general be evaluated explicitly since the model does not provide
P (yi,1:T |xi; θ). However, it can be expressed as an expectation of the known
P (yi,1:T |xi,ui,1:T ; θ) over the conditional state distribution:

P (yi,1:T |xi; θ) =

∫
P (yi,1:T |xi,ui,1:T ; θ) f(ui,1:T |xi; θ) dui,1:T . (3.5)

This multi-dimensional integral cannot be expressed in closed form except for
very special cases. Instead, it can be approximated numerically by different
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methods. It is well known that Monte Carlo integration is a flexible solution to
such problems. For the implementation, a number R of draws from the joint
distribution characterized by f(ui,1:T |xi; θ) has to be generated. For many spec-
ifications, this is straightforward. Geweke (1996), Hajivassiliou and Ruud (1994)
and Train (2003) provide general discussions on univariate and multivariate ran-
dom number generation. For the AR(1) example from section 3.2.1, this can be
done as follows. For each r = 1, ..., R, a random number ur

i1 is drawn from the
univariate normal distribution of the initial state ui1. Then sequentially for each
t = 2, ..., T , a random number ur

it is drawn from the conditional distribution of
uit given u1,t−1 = ur

1,t−1. The resulting vector ur
i,1:T = [ur

i1, ..., u
r
iT ] is a draw from

the joint distribution f(ui,1:T |xi; θ). Alternatively, standard sampling methods
from multivariate normal distributions based on Choleski factorization of the
covariance matrix can be used.

Given these draws, the simulated likelihood contribution is calculated as

P̃ (yi,1:T |xi; θ) =
1

R

R∑
r=1

P (yi,1:T |xi,u
r
i,1:T ; θ). (3.6)

Under mild regularity conditions, the simulated likelihood contribution
P̃ (yi,1:T |xi; θ) is an unbiased estimate of P (yi,1:T |xi; θ) and converges to its true
but unknown value almost surely as R →∞ by a law of large numbers, see for
example Geweke (1996).

For maximum likelihood estimation however, the log likelihood func-
tion involves taking the logarithm of the likelihood contributions. As a
result of Jensen’s inequality, log(P̃ (yi,1:T |xi; θ)) is biased downwards for
log(P (yi,1:T |xi; θ)) with a given finite number of draws R. But with R →∞, the
consistency carries over to the log likelihood. As N → ∞, the maximum sim-
ulated likelihood estimator based on log(P̃ (yi,1:T |xi; θ)) is consistent if R rises
with N . It is asymptotically equivalent to the infeasible maximum likelihood es-
timator based on log(P̃ (yi,1:T |xi; θ)) if R rises fast enough so that R/

√
N →∞

as N →∞. See for example Hajivassiliou and Ruud (1994) for a more detailed
discussion of maximum simulated likelihood estimation. Similar methods based
on simulating moments (McFadden 1989) or scores (Hajivassiliou and McFadden
1998) are discussed in the literature.

This dissertation also discusses alternative approaches to estimation. Instead
of simulation, the integral in equation 3.5 can be approximated by deterministic
integration. Gaussian quadrature and related methods are inherently defined
for one-dimensional integrals. For these problems, they are known to work effi-
ciently (Butler and Moffit 1982). But even if the state space (that is each uit)
is one-dimensional, integration is over all periods and therefore T -dimensional.
The well-known product rule of extending quadrature methods to higher dimen-
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sions requires computational costs that rise exponentially with the number of
dimensions and is therefore infeasible for dimensions larger than 4 or 5.

Chapter 5 proposes and alternative way to extend one-dimensional quadra-
ture to higher dimensions. For a different application, it is shown to strikingly
outperform Monte Carlo integration in terms of accuracy and computational ef-
fort. An alternative is to reformulate equation 3.5 such that the high-dimensional
integral can be split into several lower-dimensional integrals. Chapter 4 discusses
this for state space models that have a contemporaneous structure as defined
above and for which the state space has a markov-property such that only a
limited number of lagged values have independent predictive power for uit. In
this chapter, I concentrate on Monte Carlo integration as described above.

3.2.3 State Space in Continuous Time

In the measurement model, a finite number of values of the latent states
ui1, ...,uiT affect the observed outcomes. Since for the estimation of the model
only draws from their joint distribution is needed, the original formulation of
the state process can easily be defined in continuous time. In the empirical ap-
plication discussed in section 3.3, the states constitute the latent health of the
respondents. Since the time lag between the interviews in the panel data vary
considerably, a formulation of the health evolution in continuous time is more
natural than a model of changes from wave to wave.

Let ui(τ) denote such a process, where τ denotes continuous calendar time.
Assume that the measurement model specifies yit to depend on uit := ui(τt),
where τt may constitute the calendar time at which the corresponding survey was
conducted. So ui,1:T corresponds to a sample from the continuous-time process
ui(τ) at certain points in time τ1, ..., τT . In this chapter, these points in time
are treated as exogenous. A joint model of endogenous sampling times may be
interesting for certain application but will be left for future research.

As long as the joint distribution of ui,1:T can be evaluated from the properties
of their underlying process ui(τ), this specification does not lead to additional
problems for the parameter estimation. Introducing an example for a specifi-
cation that is also used in the application in section 3.3 may help to clarify
the approach. Assume for simplicity a one-dimensional state space. The latent
states evolve according to an Ornstein-Uhlenbeck process with zero mean. It
corresponds to the continuous-time analogue to an AR(1) process in discrete
time. The marginal distribution of ui(τ) is normal with zero mean and variance
σ2. Conditional on a previous realization ui(τ−∆), ui(τ) is normally distributed
with mean ρ∆ui(τ −∆) and variance (1−ρ2∆)σ2, where |ρ| < 1. The correlation
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between ui(τ) and ui(τ −∆) is ρ∆. With uit = ui(τt), the joint distribution of
ui,1:T is normal with zero mean and covariance matrix

σ2


1 ρτ2−τ1 ρτ3−τ1 · · · ρτT−τ1

ρτ2−τ1 1 ρτ3−τ2 · · · ρτT−τ2

ρτ3−τ1 ρτ3−τ2 1 · · · ρτT−τ3

...
...

...
. . .

...
ρτT−τ1 ρτT−τ2 ρτT−τ3 · · · 1

 .

From this multivariate normal distribution, random numbers can be as easily
generated as from the distribution implied by an AR(1) process as discussed
above.

3.2.4 Sample Selection and Panel Attrition

The general model structure discussed in section 3.2.1 allows a model of multiple
dependent variables that depend on the same set of unobserved state variables.
This allows a specification of both a contemporaneous and intertemporal correla-
tion structure between different outcome variables conditional on the covariates
xi. As a special case, a random variable that represents selection into the sample
can be modeled. This allows a straightforward model with selection on observ-
ables and states – a special form of selection on unobservables that explicitly
takes advantage of the panel structure. Since attrition is observed in the data,
this selection process can be estimated. This also allows to correct for initial
sample selection if both sources of selection are driven by the same mechanism.

For the application of state space models to health, selection through mortal-
ity is the most obvious source of selectivity. Let yit = [yh

it, y
m
it ], where yh

it denotes
a measure of interest such as self-reported health and ym

it denotes an indicator of
mortality. So yh

it is observed if ym
it = 0. Assume that conditional on xi and ui,1:T ,

these two outcomes are independent and independent over time. This would
correspond to a classical selection on observables specification if ui,1:T were ob-
served. The measurement model for the observed outcomes can now be written
as

P (yi,1:T |xi,ui,1:T ; θ) =
T∏

t=1

P (yit|xi,ui,1:T ; θ) (3.7)

with

P (yit|xi,ui,1:T ; θ) =

{
P (ym

it |xi,ui,1:T ; θ)P (yh
it|xi,ui,1:T ; θ) if ym

it = 0
P (ym

it |xi,ui,1:T ; θ) if ym
it = 1

(3.8)

If the initial sample were representative for the whole population, this joint
model of health and mortality could be easily estimated since it corresponds to
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the general setup discussed above. A further complication arises in the mortality
example since the selection process has been at work prior to the initial survey
wave. The initial sample consists of respondents who survived up to the first
interview only, so ym

i1 = 0 for all i. This is obviously a selected sample. Because of
the conditional independence assumption, the joint outcome probability taking
into account this initial selectivity can be written as

P (yi,1:T |xi,ui,1:T , ym
i1 = 0; θ) = P (yh

i1|xi,ui,1:T ; θ)
T∏

t=2

P (yit|xi,ui,1:T ; θ), (3.9)

where P (yit|xi,ui,1:T ; θ) is defined as above. Given the sequence ui,1:T , this
does not create additional problems. For the likelihood evaluation, this ex-
pression has to be integrated over the appropriate distribution of ui,1:T . The
conditional independence assumption implies P (yi,1:T |xi,ui,1:T , ym

i1 = 0; θ) =
P (yi,1:T |xi,ui,1:T ; θ), so

P (yi,1:T |xi, y
m
i1 = 0; θ) =

∫
P (yi,1:T |xi,ui,1:T ; θ) f(ui,1:T |xi, y

m
i1 = 0; θ) dui,1:T .

(3.10)
The conditioning on ym

i1 = 0 shows up in the conditional distribution of ui,1:T .
Clearly, the conditional density f(ui,1:T |xi, y

m
i1 = 0; θ) is not equal to the density

f(ui,1:T |xi; θ) which is given by the state space specification. The difference is
driven by the fact that only respondents with a favorable latent state sequence
survive and can be sampled in the initial survey.

One strategy to approximate the integral in equation 3.10 is importance
sampling. Rewrite

P (yi,1:T |xi, y
m
i1 = 0; θ)

=

∫
P (yi,1:T |xi,ui,1:T ; θ)

f(ui,1:T |xi, y
m
i1 = 0; θ)

f(ui,1:T |xi; θ)
f(ui,1:T |xi; θ) dui,1:T .

(3.11)

The importance sampling factor can be written by Bayes’ rule as

qi(ui,1:T ) =
f(ui,1:T |xi, y

m
i1 = 0; θ)

f(ui,1:T |xi; θ)
=

P (ym
i1 = 0|xi,ui,1:T ; θ)

P (ym
i1 = 0|xi; θ)

(3.12)

As long as P (ym
i1 = 0|xi,ui,1:T ; θ) can be evaluated, an importance sampling

algorithm based on equation 3.11 is the following:

1. Draw R sequences u1
i,1:T , ...,uR

i,1:T from the joint distribution f(ui,1:T |xi; θ)

2. For each r = 1, ..., R evaluate Qr
i = P (ym

i1 = 0|xi,u
r
i,1:T ; θ) and P r

i =
P (yi,1:T |xi,u

r
i,1:T ; θ)

3. The simulated likelihood contribution is P̃i =
∑R

r=1 P r
i Qr

i∑R
r=1 Qr

i
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3.2.5 Simulating Conditional Trajectories

Using the same idea of importance sampling as for initial sample selection solu-
tion discussed above, outcome probabilities conditional on any other outcomes
can be evaluated. This is particularly useful for the simulation of conditional
trajectories to study implied features of the estimated models as demonstrated
in the application in section 3.3. In the health application, an example is the
probability that a respondent reports poor health at some age conditional on
SRH in another wave and/or survival to yet another age.

Let yA
i denote a subset of the individual outcome sequence yi,1:T . The re-

searcher is interested in the outcome probability of yA
i conditional on another

subset yB
i of the individual outcome sequence. By conditional independence and

Bayes’ rule, the conditional outcome probability can be written equivalently to
equations 3.11 and 3.12 as

P (yA
i |xi,y

B
i ; θ) =

∫
P (yA

i |xi,ui,1:T ; θ)
P (yB

i |xi,ui,1:T ; θ)

P (yB
i |xi; θ)

f(ui,1:T |xi; θ) dui,1:T .

(3.13)
The importance sampling approximation of this integral is equivalent to
that for initial selectivity correction. Each draw u1

i,1:T , ...,uR
i,1:T from the

joint state distribution is assigned an importance sampling weight qr
i =

P (yB
i |xi,u

r
i,1:T ;θ)∑R

s=1 P (yB
i |xi,us

i,1:T ;θ)
. The simulated conditional outcome probability is the

weighted mean P̃ (yA
i |xi,y

B
i ; θ) =

∑R
r=1 qr

i P (yA
i |xi,u

r
i,1:T ; θ).

3.3 Models of Latent and Self-Reported Health

3.3.1 Data and Descriptive Evidence

This section discusses modeling strategies to study the evolution of individual
health over time. The application is based on panel data from the Health and
Retirement Study (HRS) which is sponsored by the National Institute of Aging
(NIA) and conducted by the University of Michigan. The data version used is
the RAND HRS Data File (Version D). It was developed by the RAND Center
for the Study of Aging with funding from the National Institute on Aging (NIA)
and the Social Security Administration (SSA).

The HRS contains data on different cohorts of elderly Americans. I use a
sample of all cohorts with the only restriction that they are at least 50 years old
at the time of the first interview. This applies to 25,499 respondents. After ex-
cluding respondents with missing information on essential variables, all analyses
are based on a sample of 25,453 respondents. For those, a total of 118,674 ob-
servations are available (excluding observations after the death of a respondent).
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In 4,423 of those cases, the respondent was “lost” from the sample and not even
the mortality status could be ascertained. Those cases are dropped from the
sample. The death of 5,414 respondents is observed during the time covered by
the panel data.

The HRS provides information on a large number of various aspects of health
such as self-reported health, prevalence and incidence of certain health condi-
tions and functional limitations. In this chapter, I concentrate on a frequently
studied measure, the self-reported health (SRH). The wording of this question
in the HRS is “Would you say your health is excellent, very good, good, fair,
or poor?”. This health measure has the advantage that it is very general in the
sense that all aspects of health are included, weighted by the individual percep-
tion. Although the answer to this question is obviously subjective, it contains
considerable objective information. For example, it is a strong predictor for mor-
tality, even when controlling for a large number of relevant covariates. I come
back to a discussion of the objectiveness of this measure below. In 5,587 cases
in the sample, the respondent is known to be alive but does not provide a SRH
answer due to survey or item nonresponse (predominantly the former). This
leaves a total of 103,250 observations of SRH.

The answers to the SRH question are highly persistent. Table 3.1 shows the
transition rates from the answers in one wave to the answers in the next wave
for all waves and all respondents that provide an answer in both adjacent waves.
About half of the respondents give exactly the same answer in two adjacent
waves and another 30-40% change the answer by only one “unit”.

Table 3.1: Health transitions
Previous health Current health

Obs. % poor fair good v. good exc.
poor 6,293 8.3 57.0 30.6 9.3 2.4 0.8
fair 13,704 18.1 16.6 48.0 26.5 7.2 1.6

good 22,915 30.2 4.3 19.1 50.1 22.4 4.1
very good 21,537 28.4 1.7 6.6 27.5 51.0 13.2
excellent 11,467 15.1 1.0 3.1 12.7 33.8 49.4

Total 75,916 100.0 9.7 19.3 30.4 27.8 12.8

There are various explanations for the high persistence of health over time
that is illustrated in Table 3.1. The classical discussion differentiates between
observed and unobserved heterogeneity and true state dependence. True state
dependence is interpreted as the fact that the observed outcome in one wave
structurally affects the outcome of the next wave. A prominent example is labor
force participation: Not working in one period lowers the own market wage
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due to signaling and human capital depreciation and thereby the probability
of working in the next period. Many studies of SRH specify a Markov chain
model in which current health is modeled to depend on lagged SRH outcomes,
see for example Contoyannis, Jones, and Rice (2003). The coefficient of these
lagged outcome variables is usually found to be highly significant. But the
interpretation as causal state-dependence is implausible in SRH studies. The
answer a respondent gives to the SRH question surely has no structural effect
on the true health status in the next wave. Typically, unobserved heterogeneity
is modeled as time-constant fixed or random effect. Hernandez-Quevedo, Jones,
and Rice (2004) for example present a random effects ordered probit model for
the study of SRH.

Table 3.2 provides a more detailed look at the structure of intertemporal
correlation of SRH in the original HRS subsample. It shows the results of a
simple logit regression of poor or fair SRH (the “bad state”) in wave 5 on the
number and timing of bad states in the prior waves and can be seen as a con-
densed description of the runs patterns. There are no other explanatory variables
included, but the picture does not change qualitatively when controlled for ob-
served heterogeneity. Results from such regressions can be requested from the
author. If time-constant heterogeneity drives the persistence of SRH, the num-
ber of previous bad states should be the relevant statistic to predict wave 5 SRH.
The results show that in fact the higher the number of previous bad states, the
higher is the probability of another bad state in wave 5. But in addition, the
timing of those previous bad states plays a significant role. The closer to wave 5
these bad states occur, the higher is their predictive power for the status in wave
5. This rules out time-constant unobserved heterogeneity as the only source of
the intertemporal correlation.

If the results are instead interpreted as state dependence in form of a kth

order Markov chain, only the first k lags should have predictive power. The
results show significant predictive power of all previous waves and additionally
the number of bad states. Obviously, this could be modeled as a saturated 4th

order Markov chain. But in this case, only the last wave is available for analyses
since the have to be conditioned on. Furthermore, there is no reason to believe
that if there were yet an earlier wave available, it would have no predictive
power as would be required by a 4th order Markov chain. Since conditional
on the number of bad states the predictive power of wave 1 and 2 cannot be
statistically distinguished, a strategy could be to model SRH as a third-order
Markov chain with unobserved heterogeneity. But this would create the problem
of initial conditions for the first three waves (Heckman 1981a). When moving
from the binary indicator measure of health to the full 5-point scale, the number
of nuisance parameters would also become very large.
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Table 3.2: Structure of intertemporal correlation of SRH

Logit estimates, dependent variable: poor/fair health in wave 5
Odds Ratio Std. Err. z P

# bad states=0 1.00 (reference)
# bad states=1 4.06 0.50 11.29 0.00
# bad states=2 8.40 1.61 11.11 0.00
# bad states=3 11.92 3.17 9.33 0.00
# bad states=4 39.24 13.18 10.93 0.00
status w1 = bad 1.00 (reference)
status w2 = bad 1.06 0.15 0.43 0.67
status w3 = bad 1.44 0.17 2.99 0.00
status w4 = bad 2.24 0.26 6.85 0.00
Number of obs LL LR chi2(7) Pseudo R2 Prob ¿ chi2
8771.00 -3049.04 3698.25 0.38 0.00

The question is whether there is a possibility to formulate a model that
captures the structure of intertemporal correlation observed in Table 3.2 in a
parsimonious and plausible way. This section departs from classical models of
state dependence and unobserved heterogeneity and develops a state space model
that has both aspects. Health itself is interpreted as a latent state variable with
unobserved heterogeneity. This latent variable follows a stochastic process that
is correlated over time like an AR(1) process so it can be interpreted to be state
dependent. The observed SRH measure is merely an indicator of the current
health status and therefore correlated over time. In a parsimonious way, this
strategy produces the pattern observed in Table 3.2. Health is correlated over the
whole life. But the correlation between SRH in two points in time diminishes the
further they are apart since shocks in the unobserved health status accumulate.

3.3.2 A State-Space Model of Health and SRH

In this section, a simple state space model is suggested in which health is modeled
as a latent state that evolves over time and self-reported health is driven by this
“true” health together with contemporaneous shocks or measurement errors.
Independent and random effects models are discussed as a special case of this
model with parametric restrictions.

Objective health is modeled as a one-dimensional continuous state process
ui1, ..., uiT . Assume that given the current health state, SRH is generated by an
ordered logit model. In the notation of the general model, yh

it ∈ {1, ..., 5} where
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1 denotes “poor” and 5 denotes “excellent” SRH. The measurement model can
be formulated as

yh
it = j ⇔ αj−1 ≤ uit + eit < αj ∀j = 1, .., 5, (3.14)

where the SRH answer is driven by the health stock uit and temporary shocks
eit which are specified as i.i.d. logistic random variables. These variables may
be interpreted as transitory health problems like a cold or random misclassifica-
tions due to the current mood of the respondents or other factors (Crossley and
Kennedy 2002). If the combined expression uit + eit has a value between αj−1

and αj, then the respondent gives answer yh
it = j. The parameters α1 through α4

are estimated, α0 = −∞ and α5 = ∞. This corresponds to a usual ordered logit
model with the unobserved health component as an explanatory variable. Its
coefficient is normalized to unity to scale the latent health state. The conditional
outcome probabilities for each wave are simply

P (yh
it = j|xi,uit, θ) = Λ(αj − uit)− Λ(αj−1 − uit), (3.15)

where Λ denotes the logistic c.d.f.
Health itself is unobserved and represented by a one-dimensional state space.

For each point in time, uit denotes the continuous health status. It is assumed
to be additively separable into two components:

uit = µit + ait. (3.16)

The “deterministic” part µit is modeled as a parametric function of explanatory
variables xit such as age. Throughout this chapter, the assumption of a lin-
ear specification is maintained, but a generalization to any parametric function
would be straightforward:

µt = xtβ. (3.17)

The “stochastic” part ait is modeled as a latent process over time. Throughout
this chapter I assume that the marginal distribution of each ait is normal with
zero mean and a variance of σ2 and independent of the explanatory variables:

ait ∼ N (0, σ2) (3.18)

This assumption can easily be replaced with a different parametric distribution
or for example by allowing for heteroscedasticity.

Different assumptions on the correlation over time are specified and tested.
As a starting point, an independent model is implemented. In the special case
of σ2 = 0, the unobserved states have a degenerate distribution with ait = 0 for
all t = 1, ..., T . The health process and therefore the outcomes are independent
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conditional on the exogenous variables. Alternatively, a random effects model
is specified by assuming that the “stochastic” health part is constant over time:
ait = ai for all t = 1, ..., T . If an ordered probit model of SHR is specified as
the measurement model, a random effects ordered probit model similar to the
specification of Hernandez-Quevedo, Jones, and Rice (2004) is the result.

As already seen in Table 3.2, the random effects specification is unlikely to
capture the structure of intertemporal correlation of SRH. In a third specifica-
tion, I allow correlations of latent health at two different points in time which
depends on the time gap and an unknown correlation parameter ρ. The time
gap between two interviews varies considerably in the HRS. The correlation of
latent health in one and in the next wave plausibly depends on this gap. The
Ornstein-Uhlenbeck (OU) process already discussed in section 3.2.3 allows a
straightforward and natural approach to capture these effects. It is an equiva-
lent to an AR(1) process in continuous time.

The full set of model parameters for this model is θ = [β, α1, ..., α4, σ, ρ].
The random effects model follows as a special case with ρ = 1 and the i.i.d.
specification restricts σ = 0. For these three specifications of the latent health
stock process, the ordered logit model of SRH is estimated. As explanatory
variables, only linear splines of age were included in the health stock equation to
capture the general deterioration of health in a flexible but straightforward way.

Table 3.3 provides an overview over the results. Model 1 is the i.i.d. spec-
ification. It corresponds to a simple ordered logit model with 5 parameters for
the age splines and 4 parameters for the cut points. Model 2 uses the RE speci-
fication. It corresponds to a random effects ordered logit model. In addition to
the parameters in Model 1, the variance of the (normally distributed) random
effect is estimated. Its estimate is highly significantly different from zero and its
magnitude is large compared to the i.i.d. error term in the SRH equation (7 vs.
π2/3 = 3.3). Consequently, the i.i.d. specification of Model 1 is clearly rejected
by a LR test (test statistic = 49922.2 with 1 degree of freedom) . This variance
also leads to a high correlation of SRH over time in the model. Since the random
effect is constant over time, the correlation of ait over time is restricted to 1.

Model 3 relaxes the assumption of perfectly correlated unobserved health
with the Ornstein-Uhlenbeck specification. The estimated correlation between
health at one point in time and health 1 year later is ρ = .96. So the correla-
tion with health 10 years later is ρ10 = .69. The correlation is very high but
significantly smaller than one. Consequently an LR test clearly rejects Model 2
against this specification (test statistic = 621.5 with 1 degree of freedom).

The RE and the OU specification imply different patterns of intertempo-
ral correlation. Figure 3.2 illustrates these differences by showing the path of
predicted probabilities to report poor or fair SRH for a respondent who once
reported poor (left figure) or excellent (right figure) SRH at age 50. In the RE
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Table 3.3: Results: Different specifications of latent health

Model 1: i.i.d. Model 2: RE Model 3: OU
Estimate z-Stat Estimate z-Stat Estimate z-Stat

Latent Health:
variance 0.0000 (restr.) 6.9925 122.71 9.1261 73.82

corr. (1year) — (n.a.) 1.0000 (restr.) 0.9630 1922.50
# individuals 25,453 25,453 25,453

# observations 103,250 103,250 103,250
# parameters 9 10 11

Log-Likelihood -156,165.4 -131,204.3 -130,893.5

Figure 3.2: Random effects vs. Ornstein-Uhlenbeck
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specification, the unobserved health component is constant over time. The slope
of the corresponding lines is completely driven by the age gradient of health. In
the OU specification, unobserved health is highly but not perfectly correlated
over time. In addition to the age gradient, the corresponding lines are driven by
a regression to the mean effect, since the predictive power of health at age 50
decreases over time. The higher estimated health variance compensates for this
so that the “average” predictive power has a similar level. Loosely speaking, this
“average” predictive power identifies the variance of the random effect, since the
average respondent is observed for about eight years. The parameter ρ of the
OU model is identified by the decreasing predictive power which was already
documented in Table 3.2 and drives the regression to the mean which generates
the different slopes in Figure 3.2.

As discussed above, another way to account for the correlation of SRH over
time is a Markov chain model in which current outcome probabilities are con-
ditioned on previous outcomes. This strategy has the advantage that it can be
computationally simpler since lagged dependent variables can be added just as
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any other explanatory variable and a straightforward ordered logit model can be
estimated using standard software. But as argued above, a dependence of the
latent health variable is much more plausible than this direct specification of the
observed outcome. In addition, the conditioning on lagged dependent variables
is problematic for two reasons: For the initial observation, there is obviously no
information on the lagged outcome. This leads to the initial conditions problem
(Heckman 1981a) if outcomes are not conditionally independent. In addition,
missing information for example due to item nonresponse creates a similar prob-
lem. Even if these values are missing at random so that the use as a dependent
variable is not problematic, the information is additionally missing for the next
observation as an explanatory variable. With conditionally dependent observa-
tions, the researcher has to resort to computationally intensive methods so that
the advantage of this approach disappears.

In order to test the proposed modeling approach, I compare the results of
a model with the i.i.d. specification (Model 4) and an OU model (Model 6)
corresponding to Models 1 and 3, respectively, to a first-order Markov chain
model (Model 5) in Table 3.4. This model is an ordered logit model with the full
set of 4 lagged dependent variables in addition to the age splines as explanatory
variables. Since it requires observed lagged dependent variables, I constrain the
sample in all three models and condition on the initial observations. For the OU
model, this is done using the general importance sampling method that is also
used for initial selectivity correction. Because of the high persistence of SRH
already mentioned, the first-order markov chain model fits the data much better
in terms of the likelihood than the i.i.d. specification. But although the OU
specification is more parsimonious, it clearly outperforms the first-order markov
model in terms of the likelihood. Compared to the discussed alternatives, the
state space model with an OU-process for the latent health process succeeds
very well in capturing the intertemporal correlation structure of the data in a
parsimonious way.

Table 3.4: Results: First-order Markov chain vs. state space model

Model 4: i.i.d. Model 5: Markov Model 6: OU
# individuals 22,787 22,787 22,787

# observations 75,915 75,915 75,915
# parameters 9 13 11

Log-Likelihood -114,276.0 -92,141.6 -89,362.0
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3.4 Joint Models of Health and Mortality

Obviously health and mortality are related. Table 3.5 shows mortality rates from
wave to wave in the HRS data. Overall, about six percent of the respondents
die between two waves. Mortality strikingly differs by previous SRH: While only
1.7 percent of respondents who report excellent health at one wave die before
the next wave, more than 20 percent of those who report poor health do.

Table 3.5: Wave to wave mortality (percent)

total by previous SRH
poor fair good v. good excel.

5.96 20.6 9.4 4.4 2.3 1.7

3.4.1 Model Structure

With a joint model of health and mortality, both initial selectivity and panel
attrition due to mortality can be treated in a consistent way. I therefore add a
measurement model for mortality risk depending on the same latent health stock
that drives SRH. Let τ1, ..., τT denote the times of interview in continuous time
where τT is the time of death if the respondent dies during the period covered
by the panel data. The mortality hazard rate at these points in time is specified
as

λi(τt) = λ0e
δuit . (3.19)

For the survival probability between two waves, the the whole path of hazard
rates and therefore health is relevant. Note that the health stock changes over
time due to the change of explanatory variables and the stochastic process of
its unobserved path. The former effects can be easily dealt with. The OU
specification of latent health is based on continuous time, but a hazard rate model
with continuously changing hazard of this form has no closed-form expression.
See Yashin and Manton (1997) for a general discussion of this problem. The
simulation-based estimation suggested above relies on a finite number of relevant
states over time to allow sampling from their joint distribution. I suggest a simple
approximation of the continuous-time problem in discrete time. For all points
in time between τt and τt+1, the hazard rate is based on the linear interpolation

λ̃i(τ) = λ0e
δũi(τ) with ũi(τ) = τ−τt

τt+1−τt
uit + τt+1−τ

τt+1−τt
ui,t+1. (3.20)

Since the estimated correlation of the health process over time is very high, the
variance of ui(τ) conditional on uit and ui,t+1 is very low and by far the most
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variation is created by variations of uit and ui,t+1. So the linear interpolation
should be unproblematic.

With the interpolated hazard rate, the survival probabilities can easily be
derived. Let ym

it for t = 1, . . . , T denote the binary random variable that cor-
responds to survival to τt given survival to τt−1. With δ 6= 0, the conditional
probability of survival is

P (ym
it = 0|xi,ui,1:T ; θ) = exp

(
−(τt − τt−1)

λi(τt)− λi(τt−1)

δ(uit − ui,t−1)

)
. (3.21)

The panel attrition problem discussed so far is similar to the dynamic se-
lection effect (Cameron and Heckman 1998) discuss in a random effects model
for the sequential decision to continue schooling. While in their application the
assumption of initially independent observed and unobserved heterogeneity is
plausible, it is intrinsically inconsistent in our application if the initial time is
defined as the first interview. Since the HRS initially samples respondents aged
50 or older, there has been substantial selectivity prior to the first wave for re-
spondents who are sampled at higher ages. This implies that the age of the
initial interview is positively correlated with the health trajectory prior to the
first wave which in turn is correlated with current and future health. This effect
leads to biased inferences if it is ignored in the analysis and only panel attrition
after wave 1 is modeled. The depreciation of health over time is underestimated
since it is obscured by the selection effect. The same is true for other covariates.
For example if the selection mechanism works identically for men and women
and men are unhealthier and thereby have a higher mortality risk, the observed
cross-sectional health differences between gender are obscured by the differential
selection effect.

With a joint model of health and mortality, it is straightforward to account
for these effects, especially with the OU specification of latent health. Note
that the fact of being interviewed implies conditioning on the outcome that the
individual survived up to the age of the first interview. This can be used to
correct the likelihood by the method for conditioning on outcomes discussed in
section 3.2.4. The specification of the state space has to be slightly modified.
Instead of assuming i.i.d. initial health at wave 1, I assume i.i.d. health at age
50 which is added as an artificial “wave” 0, so ui,0:T = [ui0, . . . , uiT ].

In addition, the measurement specification of SRH is modified by including
age splines as explanatory variables in the ordered logit model. The parameters
of these variables are identified jointly with the parameters in the latent health
equation. The latter capture the age path of mortality risk, whereas the former
capture the age path of SRH. Figure 3.3 depicts the structure of the joint model
of SRH and mortality with a latent health process that drives both outcomes.
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The observed-data likelihood of the joint model for SRH health and mortality
can be evaluated according to equation 3.12.

Figure 3.3: Structure of the joint model

3.4.2 Comparison of Different Specifications

Analogous to Table 3.3, Table 3.6 gives an overview over results from joint models
of SRH and mortality. Model 7 is a simple i.i.d. specification. SRH and mortality
are modeled as independent ordered logit and hazard rate models, respectively.
The model contains 5 parameters for the age splines in each of the outcome
equations, a constant in the mortality equation, and four cut point parameters
in the ordered logit specification. Model 8 involves an unobserved latent health
state modeled as an OU process that drives panel attrition through mortality.
This additionally requires three parameters: Its variance and correlation over
time and its parameter in the mortality equation. The parameter for the SRH
equation is normalized to unity – this identifies the variance.

Model 8 assumes i.i.d. initial health in wave 1. As argued above, indepen-
dence from initial age is an implausible restriction. Model 9 replaces it with the
assumption of i.i.d. health at age 50 and conditions on survival to the age of the
first interview. This specification is also statistically superior in terms of the log
likelihood. Both OU models nest the i.i.d. Model 7 which is clearly rejected by
LR tests.
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Table 3.6: Joint models: Different specifications of latent health

Model 7: i.i.d. Model 8: OU Model 9: OU
initial distribution n.a. wave 1 age 50

# individuals 25,453 25,453 25,453
# observations 103,250 103,250 103,250
# parameters 15 18 18

Log-Likelihood -177,281.1 -150,781.6 -150,438.0

3.4.3 Results and Simulations

Table 3.7 shows the parameter estimates of the preferred Model 9. Since they
are not easy to interpret quantitatively, I show a number of simulation results
that highlight the most important and interesting features of the fitted model.
Unless otherwise indicated, all simulations presented in this section are based
on this most general Model 9. Most of the simulations require some form of
conditioning. The method for doing so was discussed in section 3.2.5.

Table 3.7: Model 9: Parameter estimates
Latent Health SRH Mortality

Std. Dev. σ 3.241 (0.0153)
Correlation ρ 0.982 (0.0006)
Constant 0 (restr.) 0 (restr.) -6.888 (0.0918)
Age splines: 50+ -0.591 (0.0425) 0.461 (0.0434) 0 (restr.)

60+ 0.301 (0.0573) -0.250 (0.0573) 0 (restr.)
70+ -0.013 (0.0443) -0.069 (0.0431) 0 (restr.)
80+ -0.243 (0.0390) 0.184 (0.0374) 0 (restr.)
90+ -0.097 (0.0501) 0.033 (0.0496) 0 (restr.)

Latent health 1 (restr.) -0.330 (0.0057)
Cut points (4 param.)
Standard Errors in parentheses

The marginal density of the unobserved health process ait is normal with
mean zero and estimated standard deviation of σ = 3.2. Its distribution is shown
in Figure 3.4 as the “unconditional” density f(ait). The other two densities are
conditional on SRH for a 50 years old respondent. These are by Bayes’ rule
simply the rescaled densities

f(ait|yh
it = j) = f(ait)

P (yh
it = j|ait)

P (yh
it = j)

. (3.22)

The enormous differences between health states illustrate the importance of the
latent health for SRH.
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Figure 3.4: Unobserved health by SRH at age 50
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Figure 3.5: Survival probabilities
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Since latent health also drives the mortality risk, SRH predicts mortality by
signaling the conditional distribution of latent health as depicted in Figure 3.4.
Figure 3.5 shows the simulated survival probabilities unconditional and condi-
tional on SRH at age 50. The dotted lines for the simulated series indicate 95%
confidence bands. Self-reported health and mortality are strongly connected.
The simulations are based on the method of importance sampling to evaluate
conditional outcome probabilities as discussed in section 3.2.5. The differences
are striking. For example at age 70, only 48.5 percent of those respondents who
report poor health at age 50 are alive, whereas 91.6 percent of those reporting
excellent health survive.

Figure 3.5 also shows the survival rates conditional on survival to age 50
from the life tables for 1997 (National Center for Health Statistics: National
Vital Statistics Report, Vol. 47, No. 28). The simulated unconditional survival
probabilities tend to be slightly higher than the numbers from the life tables.
This might be due to the fact that the HRS samples only individuals who are
initially non-institutionalized. But the differences are small and both lines agree
very well.

Figure 3.6: Densities of unobserved health of the surviving by age

−10 −5 0 5 10
Latent Health

D
en

si
ty

50
70
80
90
100

Because of the strong effect of latent health on mortality and the high in-
tertemporal correlation of latent health, the surviving population is a selected
sample. Figure 3.6 illustrates this selection effect of mortality. It shows the
distribution of the unobserved health state of the surviving population by age.
The weighted kernel density estimates are scaled by survival probabilities so that
the curves integrate to the share of surviving population at the respective age.
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This shows the selection effect of mortality: Those at the lower end of the health
distribution die earlier and therefore drop out of the sample.

Figure 3.7: Poor/fair SRH: Unconditional and surviving population
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The selection effect of mortality on the distribution of latent health shown
in Figure 3.6 directly translates to the trajectories of SRH. Figure 3.7 shows the
simulated paths of the probability to report “poor” or “fair” health by age. The
line labeled “unconditional” corresponds to the underlying true deterioration of
health in the course of aging. This would be observed directly in the data if
no deaths would occur or if health and mortality were independent. Because
unhealthy people have a much higher mortality risk, the cross-sectional morbid-
ity of the surviving population is much lower for the surviving population at
higher ages. Its path is labeled “survivors” and condition on survival up to the
respective age. It corresponds to the expected risk of poor or fair SRH given the
selection-driven distribution of latent health that is shown in Figure 3.6. The
simulated health path of the survivors tracks the cross-sectional means quite
closely.

Each SRH or mortality observation at some age affects the complete predicted
health path. In Figure 3.8, the whole health trajectories conditional on survival
through at least age 80 and 90 are shown. This information has a considerable
impact on the whole path of health because of the high intertemporal persistence
of latent health. For example while the risk of poor or fair SRH for the whole
population at age 50 is 17.5 percent, of those who are alive at age 80 or 90 only
9.6 or 6.3 percent were in poor or fair health at that age, respectively.
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Figure 3.8: Poor/fair SRH by survival to higher ages
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Figure 3.9: Poor/fair SRH: Cohorts and selection

50 60 70 80 90 100
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Age

P
oo

r/
F

ai
r 

S
R

H

Unconditional
Survivors
Observed cohorts
Model without selection

The effects of ignoring differential mortality before and after the first wave can
be seen in Figure 3.9. It shows the “unconditional” and “survivors” trajectories
already known from Figure 3.7. In the initial wave, each respondent is drawn
from the surviving population at the respective age. For different initial ages,
the dotted lines correspond to the true evolution of health over the next ten
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years which corresponds to the maximum time each respondent is tracked in the
data. Model 3 which ignores selection by mortality identifies these individual
paths but falsely assumes that the individual health distribution is independent
of age. As a result, the implied trajectory labeled “model without selection”
lies between the unconditional and the survivors trajectory and has no direct
interpretation.

Figure 3.10: Poor/fair SRH paths by survival and SRH
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Finally, Figure 3.10 shows the SRH trajectories conditional on survival and
SRH at ages 50 and 80. Both survival and excellent SRH are “positive” in-
formation so that the conditional paths of poor or fair SRH are all below the
unconditional path. Health is highly persistent. While conditioning on SRH
at some age has the biggest impact on nearby ages, the whole path is affected
significantly. Excellent SRH at age 80 provides more extreme information on un-
observed health ait than at age 50 since the age gradient of latent health makes
excellent SRH less likely.

3.4.4 Differences by Sex

In the models discussed so far, age was the only covariate. Of course, controlling
for more covariates is straightforward. In this section, sex is considered in addi-
tion to age. The goal is to discuss specification and interpretation of the results.
A dummy variable for female respondents and an interaction term with age is
entered into the latent health equation. These two variables also enter the SRH
equation. The parameters in the former equation therefore capture mortality
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differences between male and female respondents, the latter capture response
differences.

Table 3.8: Model 10: Parameter estimates
Latent Health SRH Mortality

Std. Dev. σ 3.237 (0.0784)
Correlation ρ 0.982 (0.0009)
Constant 0 (restr.) 0 (restr.) -6.779 (0.0957)
Age splines: 50+ -0.614 (0.0242) 0.467 (0.0250) 0 (restr.)

60+ 0.320 (0.0399) -0.265 (0.0388) 0 (restr.)
70+ -0.036 (0.0418) -0.048 (0.0409) 0 (restr.)
80+ -0.245 (0.0383) 0.182 (0.0371) 0 (restr.)
90+ -0.115 (0.0500) 0.051 (0.0486) 0 (restr.)

Female 0.969 (0.2804) -1.315 (0.2445)
Female * age 0.031 (0.0096) -0.003 (0.0086)
Latent health 1 (restr.) -0.334 (0.0063)
Cut points (4 param.)
Log likelihood: -150277.1
LR against Model 9: 321.9018 (4 d.f.)
Standard Errors in parentheses

Table 3.8 shows the parameter estimates for the specification of Model 9,
enriched with these covariates. Women for example are in better “objective
health” identified by mortality risk. But given objective health, they report
worse SRH. The total effect of gender on SRH can be calculated by adding the
two coefficients which leads to a slightly worse SRH for women at higher ages.

Figure 3.11 shows the true morbidity paths and the morbidity of the surviving
population by gender. At age 50, both start at about the same self-reported
morbidity. It increases more rapidly for males. But at the same time, the
selection due to mortality is stronger for men. As a result, SRH of the surviving
population is about the same or even better for the male population in the
cross-sectional data. So while observed SRH is worse for females at high ages in
cross-sectional data, this can be explained by differential mortality alone. The
true paths are the opposite.

Given these results, it is still unclear why women report worse SRH than
men with the same health identified by mortality risk. This effect can be seen
in the negative coefficient for females in the SRH equation. Women have a
much lower mortality risk but still report about the same or even worse SRH
than men. There may be different reasons for that. Health is a complex and
multidimensional concept and SRH represents a summary measure, capturing
all kinds of different health conditions and problems. Case and Paxson (2004)
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Figure 3.11: Poor/fair SRH paths by gender
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argue that an important reason for this “puzzle” might be a different prevalence
of chronic conditions. Women suffer more often from conditions such as arthritis
that have a large effect on well-being but only a minor effect on mortality risk,
whereas men suffer more often from “deathly” conditions such as cardiovascular
diseases.

A different explanation is that given the same objective health, the response
process for SRH differs between males and females. For example, women might
be more willing to admit or simply more aware of being in a bad health status
than men. In a sense, Model 10 provides the opportunity to adjust for those dif-
ferent response scales. The coefficients of the sex variables in the latent health
equation capture differential mortality risk. The coefficients in the SRH equa-
tion capture the response differences given latent health and thereby mortality
risk. This does not strictly correspond to response scales since as argued above
mortality risk and self-reported health are different functions of the complex and
multidimensional concept of health.

Figure 3.12 shows simulations of the risk of poor or fair SRH for females.
The lines labeled “rescaled” represents the simulated path for females adjusted
for their differential responses. These lines show the trajectories for women if
they would give the same answer as men with the same mortality risk.
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Figure 3.12: Poor/fair SRH: Females with male response scales
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3.5 Summary and Conclusions

This chapter discusses the use of state space models for microeconometric panel
data analyses. It has been shown that this class of models provides a very
flexible approach to formulate complex model structures in a straightforward
and parsimonious way. The drawback is that for the analysis one has to resort
to numerical integration techniques which are computationally intensive. But
with modern computers, the computational burden is not prohibitive anymore
and the technological progress can be expected to attenuate it further.

After a general discussion of requirements on the model structure, special is-
sues have been discussed. Latent state processes in continuous time can easily be
combined with observations at certain points in time such as survey interviews.
Panel attrition is merely a special case of joint models for several dependent
variables. The panel dimension directly allows to model sample selection on la-
tent states which effectively uses the time series dimension of the panel data to
identify selectivity.

In an application, a simple and parsimonious model of a latent health state
process fits the data of self-reported health (SRH) much better than the Markov
chain or random effects models frequently applied to this and similar measures.
Furthermore, it was argued and the results show that the evolution of individual
health cannot be studied in an isolated model of SRH and thereby implicitly con-
ditional on survival. Various simulations demonstrate the strong intertemporal
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correlation of health and the strong link between SRH, the underlying health
process and mortality.

Because of differential mortality, the surviving population is a selected sample
and this selection systematically varies by age and sociodemographic character-
istics. Ignoring this selectivity leads to biased results. For example the age
gradient of health is underestimated severely since it is confounded by the sur-
vival of the healthiest. While at the average, elderly females tend to report worse
SRH than males, this can be solely explained by a stronger selection due to a
higher mortality of males.
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4 Sequential Likelihood Evaluation for
Nonlinear Panel Data Models

4.1 Introduction

This chapter discusses the estimation for a certain class of panel data models. It
includes limited dependent or generally nonlinear models with an AR(1) error
term. More general cases for simultaneous models that are driven by the same
error process or multiple processes with certain properties are also covered.

In the straightforward case of a univariate error process, the likelihood func-
tion involves T -dimensional integrals, where T represents the time-series dimen-
sion of the panel data. The usual approach in the econometric literature to
numerically approximate these integrals is Monte Carlo simulation of the full
integral. While the dimension of the integral T does not affect the asymptotic
properties of the simulation approximation as the number of replications R rises,
the accuracy of the approximation worsens as T rises with a given R. Lee (1997)
provides Monte Carlo evidence on this effect for panel probit models.

For applications with a large time series dimension, various attempts have
been made to break up the T -dimensional integral into T one-dimensional inte-
grals to circumvent this problem. Doucet, De Freitas, and Gordon (2001) provide
a discussion of the basics and various topics of such sequential Monte Carlo meth-
ods. These approaches can be seen as generalizations of the Kalman filter, which
is appropriate for linear models with normally distributed error processes. For a
discussion of these approaches to econometric time series models and panel data
models with large time-series dimension see for example Fernández-Villaverde
and Rubio-Ramı́rez (2004), Tanizaki and Mariano (1994), and Zhang and Lee
(2004).

In the typical panel data used in microeconometric applications, the time
dimension is small enough for joint Monte Carlo simulation. However, the com-
putational cost of this approach can be high or even prohibitive if R is chosen
such that the approximation is reasonably precise. It may therefore pay off to fol-
low a similar approach for these applications. I present methods discussed in the
literature and suggest a method that is based on sequential Gaussian quadrature
of T one-dimensional integrals in the case of univariate error processes. This ap-
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proach is straightforward to implement and allows similarly powerful numerical
integration as in random effects models such as in Butler and Moffit (1982). In
an application to an ordered logit model of health with an AR(1) error process,
I show that this method clearly outperforms other methods and requires as little
as 10 to 20 function evaluations to achieve a better precision than full Monte
Carlo simulation with 2000 antithetic random draws.

The chapter is organized as follows. Section 4.2 discusses the class of models
for which the approaches are appropriate. Section 4.3 presents the problem
of and known solutions to the approximation of the likelihood function and
introduces the method of sequential Gaussian quadrature. Section 4.4 presents
an application and compares the performance of different algorithms. Section
4.5 concludes and the appendix section 4.6 presents proofs for the results used
in section 4.3.

4.2 Model Specification

The class of panel data models discussed in this chapter is relatively rich. Sup-
pose a sequence of dependent variables is observed over time for a number N
of cross-sectional units such as individuals, households, or firms. The random
variables involved in the model are assumed to be independent across cross-
sectional units. Let T be the number of observations over time (“waves”) for
each cross-sectional unit.

The vectors Yit for i = 1, ..., N and t = 1, . . . , T contain the dependent
random variables for the corresponding wave. In many applications, it is one-
dimensional, but I allow for the more general case since this does not create
any complications neither in the notation nor in the analysis. The vector of de-
pendent variables may consist of discrete, continuous, or both types of random
variables. Let yit denote the observed outcomes that represent realizations of
Yit. It is modeled as a function of unknown parameters θ, a vector of exogenous
variables xi and two random error vectors ait and eit. The vectors of exogenous
variables are allowed to vary over time. In this case, xi collects all time-specific
values. The measurement model discussed below specifies which part of xi af-
fects the dependent variables at which point in time. The random errors eit are
assumed to be independent over time and might represent measurement errors
or contemporaneous shocks. The D-dimensional vector ait denotes unobserved
variables that are allowed to be dependent over time (“states”). The measure-
ment model specifies the data generating process given values of the unobserved
variables:

yit = g(xi, ait, eit, θ) (4.1)
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To simplify the presentation, let the random variables Yit be discrete. In
the discrete case, the conditional outcome probabilities or the probability mass
function of Yit at yit are of interest. The discussion can be directly translated for
continuous or mixed distributions, in which case the corresponding probability
densities are relevant. Define the conditional outcome probabilities

Pit(yit) = Pr (Yit = yit|xi, θ)

and Pit(yit|a) = Pr (Yit = yit|ait = a,xi, θ)
(4.2)

Assumption 1 (Measurement Model) The conditional outcome probabili-
ties Pit(yit|a) are smooth functions of a which are known up to a finite set of
parameters.

In many microeconometric applications, g(xi, ait, et, θ) is a known parametric
function and et can be integrated out. In these cases, assumption 1 follows di-
rectly. Examples are panel binary or ordered discrete choice models and multi-
nomial or nested logit models with xi and ait as explanatory variables. In other
cases such as the multinomial probit model, Pit(yit|a) might have to be computed
using numerical approximation techniques.

Assumption 2 (Conditional Independence) Conditional on xi and ait, the
outcome probabilities are independent of all other outcomes and states:

Pr (Yit = yit|ait = a, ais,yis,xi, θ) = Pit(yit|a) ∀s = 1, ..., T 6= t.

For the distribution of the latent states, make the following assumptions.

Assumption 3 (Marginal distribution) The states ait conditional on xi and
θ are identically distributed with a known parametric p.d.f. f(a).

Assumption 4 (Transition) Conditional on ai,t−1, the states ait are identi-
cally distributed with a known parametric p.d.f. fc(a|ai,t−1). The states are first-
order Markov such that the distribution of ait conditional on ai,t−1 is independent
of ai,t−s with s > 1.

To clarify these assumptions, consider the following example which corre-
sponds to the example application presented in section 4.4. It is an ordered logit
model with a stationary AR(1) state process and independent error terms. Let
yit ∈ {1, ..., J} denote the realization of a random variable with a finite set of
ordered outcomes.

Measurement: y∗it = xitβ + ait + eit

yit = y ⇔ αy ≤ y∗it < αy+1

States: ai1 ∼ i.i.d. N
(
0, σ2

)
, ait = ρai,t−1 + uit

eit ∼ i.i.d. logistic, uit ∼ i.i.d. N
(
0, (1− ρ2)σ2

)
,
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where |ρ| < 1. In the notation introduced above, the ordered logit specification
implies

Pit(yit|ait) = Λ (αyit+1 − xitβ − ait)− Λ (αyit
− xitβ − ait) ,

where Λ is the logistic c.d.f., α1 = −∞, αJ+1 = ∞, and α2 through αJ are
unknown parameters. This satisfies assumptions 1 and 2. The states ait are
specified as a one-dimensional normally distributed AR(1) process with

f(a) =
1

σ
φ
(a

σ

)
and fc(a|a′) =

1√
1− ρ2σ

φ

(
a− ρa′√
1− ρ2σ

)
,

where φ is the standard normal p.d.f. This state process clearly satisfies as-
sumptions 3 and 4. The vector of model parameters in this application is
[β, σ, ρ, α2, ..., αJ ].

4.3 Evaluation of the Likelihood Contributions

For the estimation of the model parameters with maximum likelihood or
Bayesian analyses, the likelihood functions have to be evaluated. For other
methods such as GMM, similar statistics are needed. By independence over
cross-sectional units, the likelihood function is

L(θ) =
N∏

i=1

`i, (4.3)

where the likelihood contributions `i are the joint outcome probabilities of indi-
vidual i. Let Yi,1:t = [Yi1, . . . ,Yit] and ai,1:t = [ai1, . . . , ait] denote the vectors of
the corresponding sequences up to wave t. Furthermore let f1:t(a1:t) be the joint
p.d.f. of ai,1:t. With this notation, the likelihood contributions can be written
as the joint conditional outcome probabilities

`i = Pr(Yi,1:T = yi,1:T |xi, θ). (4.4)

Because of the presence of the latent process ai,1:T in the conditional outcome
probabilities of the measurement model in assumption 1, this expression can in
general not be evaluated directly. Instead, it can be approximated numerically
as will be discussed in the remainder of this section.
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4.3.1 Joint Integration

Proposition 1 For the class of models described in section 4.2, the likelihood
contribution in equation 4.4 can be rewritten as

`i =

∫
· · ·
∫ ( T∏

t=1

Pit(yit|at)

)
f1:T (a1:T ) da1 · · · daT . (4.5)

For a proof, see section 4.6. Note that if the state space in each wave ait is
D-dimensional, the total dimension of the integral is DT . I discuss several ap-
proaches to evaluate this multidimensional integral numerically. The goal is to
achieve a high accuracy of the numerical approximation with as little computa-
tional cost as possible.

The usual approach in econometrics to approximate multidimensional in-
tegrals is simulation. By assumption 2, the integrand in equation 4.5 can be
evaluated for all a1:T . If draws from f1:T (a1:T ) can be obtained, Monte Carlo in-
tegration of the full integral is feasible. In the example presented above with an
AR(1) state process, draws from this joint distribution can easily be generated.
For each i = 1, ..., N and r = 1, ..., R, first draw a random number ar

i1 from f(a).
Then sequentially for t = 2, ..., T , draw a random number ar

it from fc(a|ar
t−1).

The resulting vector ar
i,1:T = [ar

i1, ..., a
r
iT ] is a draw from f1:T ([a1, ..., aT ]). This

allows the “brute force” simulation of the DT -dimensional integral in equation
4.5.

Algorithm 1: Simulation of the joint probability (JMC)

1. Start with i = 1

2. Draw a number of sequences ar
i,1:T with r = 1, ..., R from the joint

distribution f1:T (a1:T )

3. For each r = 1, ..., R and t = 1, ..., T , calculate P r
it = Pit(yit|ar

it)

4. For each r = 1, ..., R, calculate P r
i,1:T =

∏T
t=1 P r

it.

5. Calculate the simulated likelihood contribution as ˜̀
i = 1/R

∑R
r=1 P r

i,1:T .

6. Repeat steps 2 through 5 for all i = 2, ..., N
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4 Sequential Likelihood Evaluation

Under weak regularity conditions, ˜̀
i is

√
R-consistent by a law of large num-

bers. The joint simulation approach can also be replaced by deterministic multi-
variate integration. By a change of variables, the integral in equation 4.5 would
have to be reformulated by a change of variables to conform to a standard setting
for which deterministic integration rules are available. Usually, the dimension
of the integral is too high for standard product rule integration, but as shown
in chapter 5 and Heiss and Winschel (2005), Smolyak cubature can be a very
powerful alternative to simulation.

4.3.2 Sequential Integration: General Approach

Each numerical integration method suffers from high dimensionality. Smolyak
cubature dramatically reduces the “curse of dimensionality” of product rule
quadrature methods. For a given degree of approximation, the computational
costs do not rise exponentially with the dimension of the integral. But they still
rise significantly, see chapter 5. The same holds for simulation methods. While
by a law of large numbers the convergence rate is independent of the dimension,
the approximation error for given finite number of random draws can increase
substantially with the number of dimensions since the sampling space may be
poorly covered. Doucet and de Freitas (2001) discusses this for nonlinear time
series models and Lee (1997) provides Monte Carlo evidence on this problem for
the GHK simulator for panel probit models.

With a D-dimensional state space in each point in time, the integral in equa-
tion 4.5 has DT dimensions which can quickly become very high for numerical
integration and rises with T . In the following, I discuss methods to separate
the DT -dimensional integral into T separate D-dimensional integrals which are
much easier to approximate. These approaches can be interpreted as a gen-
eralization of the Kalman filter to nonlinear models with possibly nonnormal
disturbances.

By the rules of conditioning, the likelihood contribution can be decomposed
into T factors. For s ≤ t, define Pit|1:s(yit) to be the outcome probability of yit

conditional on the past sequence of observed outcomes up to wave s:

Pit|1:s(yit) =

{
Pr (Yit = yit|xi, θ) = Pit(yit) if t = 1
Pr (Yit = yit|Yi,1:s = yi,1:s,xi, θ) if 2 ≤ t ≤ T

Equivalently, fit|1:s(a) = f(a) if t = 1 and denotes the p.d.f. of ait conditional
on Yi,1:s = yi,1:s.

With this notation, the likelihood contribution can be written by standard
rules of conditioning as

`i =
T∏

t=1

Pit|1:t−1(yit). (4.6)
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4.3 Evaluation of the Likelihood Contributions

In the following, each of these factors will be approximated separately by dif-
ferent methods. Let P̃it denote an approximation of Pit|1:t−1(yit). Then the
approximated likelihood contribution is

˜̀
i =

T∏
t=1

P̃it. (4.7)

The problem with with expression is that these factors are not straightforward
to evaluate. The presence of the unobserved state process makes the outcome
probabilities conditional on the sequence of past outcomes an involved expres-
sion. The model structure discussed in section 4.2 allows to write the conditional
outcome probabilities as D-dimensional integrals:

Proposition 2 The conditional outcome probabilities can be written as

Pit|1:t−1(yit) =

∫
Pit(yit|a)fit|1:t−1(a) da (4.8)

For a proof, see section 4.6. In this formulation, the information on the past
outcomes is captured by the conditional state distribution fit|1:t−1(a). Each past
outcome contains information about the state at that time and thereby about
the current state. The conditional outcome probabilities are the expectations of
Pit(yit|a) with respect to this conditional distribution.

The integrand Pit(yit|a) is a known function by assumption 1. Unfortunately,
the conditional state distribution characterized by the p.d.f. fit|1:t−1(a) is itself
nontrivial. By assumption 3 the marginal p.d.f. f(a) is known, say it is the
normal p.d.f. But conditioning on the past outcomes changes the whole shape
of the distribution.

There are various attempts to solve this problem. Most are developed in
the statistics literature and engineering, where various problems have a similar
structure.1 These methods also generate increasing attention in the econometric
time series literature, see Fernández-Villaverde and Rubio-Ramı́rez (2004). The
methods differ in the accuracy given a number R of evaluations of the integrand
Pit(yit|a), additional computational costs, complexity of implementation, and
other properties like the smoothness of the approximation with respect to the
model parameters. Furthermore, their relative performance depends on the un-
derlying problem with the time-series dimension of the data as a critical factor.

In the following, different approaches known in the time series literature are
briefly discussed. For a more extensive overview, see Tanizaki (2003) and Haug
(2005). One class of algorithms is based on resampling techniques as discussed in

1One of the major applications in engineering is the automatic target recognition for intelli-
gent weapons, e.g. Salmond and Gordon (2001). This is rocket science.
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4 Sequential Likelihood Evaluation

section 4.3.3. Section 4.3.4 discusses other approaches that rely on importance
sampling. Finally, section 4.3.5 discusses a third class of methods that use
deterministic integration rules and introduces an algorithm based on Gaussian
quadrature or Smolyak cubature.

4.3.3 Resampling Techniques: Particle Filters

An obvious numerical approach to the integration problem in equation 4.8 is
to make draws from fit|1:t−1(a) and perform standard Monte Carlo simulation.
The idea of the nonlinear particle filter to obtain such draws was suggested by
Gordon, Salmond, and Smith (1993) and adopted to econometric time series
models by Fernández-Villaverde and Rubio-Ramı́rez (2004). The main idea is
sequential resampling in the bootstrap spirit.

The simulation of P̃i1 for the initial wave is straightforward since the relevant
state distribution is the marginal distribution f(a). For each r = 1, ..., R draw a
value ar

i1 from this distribution and calculate P r
i1 = Pi1(yi1|ar

i1). The simulated
outcome probability is P̃i1 = 1/R

∑R
r=1 P r

i1. For the second wave, draws from
fi2|1(a) are required by equation 4.8. These can be obtained in two steps. Step
1 is to obtain draws a∗r

i1 from fi1|1(a). Given those, step 2 is to obtain draws ar
i2

from fi2|1(a).

Step 1 can be implemented by importance resampling. We know that the
nodes ar

i1 are samples from f(a). From this set of nodes, R values a∗r
i1 are

drawn with replacement, where for each r, s = 1, ..., R the node a∗r
i1 = as

i1 with
probability qr

i1 = fi1|1(a
s
i1)/f(as

i1). The result is a sample from fi1|1(a) (Gordon,
Salmond, and Smith 1993). How the resampling weights qr

i1 can be calculated
will be discussed below. The nodes ar

i1 which are most “compatible” with the
observed yit are resampled more frequently than unlikely nodes. Given these
draws a∗r

i1 , for each r = 1, ..., R obtain a draw ar
i2 from the transition density

fc(a|a∗r
i1 ). The result is a sample from fi2|1(a).

The remaining probabilities can be equivalently evaluated in a sequential
fashion. Given draws ar

it from fit|1:t−1(a), the probabilities P r
it = Pit(yit|ar

it)

and the simulated outcome probabilities P̃it = 1/R
∑R

r=1 P r
it can easily be

evaluated. To prepare the calculations for the next wave, draws a∗r
it from

fit|1:t(a) are obtained by resampling with the resampling probabilities qr
it =

fit|1:t(a
r
it)/fit|1:t−1(a

r
it). Then draw ar

i,t+1 from the transition density fc(a|a∗r
it )

to obtain a sample from fi,t+1|1:t(a). With these, the sequential procedure is
repeated for t + 1 and so on. Proposition 3 provides the key to the evaluation
of the resampling probabilities.
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4.3 Evaluation of the Likelihood Contributions

Proposition 3 The structure of the model discussed in section 4.2 allows to
evaluate the appropriate resampling weights for the nonlinear particle filter as

qr
it :=

fit|1:t(a
r
it)

fit|1:t−1(ar
it)

=
Pit(yit|ar

it)

Pit|1:t−1(yit)
. (4.9)

A proof of this proposition can be found in section 4.6. It is based on Bayes rule.
The numerator and an approximation of the denominator of this expression
have been readily calculated in the sequential algorithm and can be reused. The
particle filter algorithm can be summarized as follows:

Algorithm 2: Nonlinear Particle Filter (NPF)

1. Start with i = 1

2. Start with t = 1 and draw R random numbers ar
i1 from the density f(a).

3. Calculate P r
it = Pit(yit|ar

it) for all r = 1, ..., R and approximate
Pit|1:t−1(yit) as P̃it =

∑R
r=1 P r

it.

4. Draw R values a∗r
i,t+1 from the set [a1

it, ..., a
R
it ] with replacement, where the

rth element is drawn with probability P r
it/P̃it. This yields draws from

fit|1:t(a).

5. For each r, one random number ar
i,t+1 is drawn from the density fc(a|a∗r

it ).
This yields draws from fi,t+1|1:t(a).

6. Repeat steps 3 through 5 for all t = 2, ..., T

7. The individual likelihood contribution is simulated as ˜̀
i =

∏T
t=1 P̃it.

8. Repeat steps 2 through 7 for all i = 2, ..., N

This algorithm is attractive since it is intuitive and easily implemented. Since
the new information contained in each observation is captured sequentially in the
nodes, the method works very well also for long time series. On the other hand,
the resampling creates problems. First, it is computationally burdensome and
the computational costs increase quickly with the number of draws R. Second,
it introduces additional noise compared to the deterministic reweighting of algo-
rithm 3. And third the simulated likelihood contributions are not smooth in the
parameters. While small parameter changes do not affect the resampling, the
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4 Sequential Likelihood Evaluation

simulated likelihood contribution jumps as soon as the parameter change is large
enough to change the resampling. This impedes gradient-based maximization al-
gorithms for the likelihood function (Fernández-Villaverde and Rubio-Ramı́rez
2004).

These problems can be expected to become less relevant with longer time
series or more random draws R, since the resampling noise averages out. With
the typical microeconomic panel data with moderate time dimension, a large
number of draws is needed to reduce resampling noise and capture the shape of
the conditional distributions. For some applications, the distributions fit|1:t(ait)
and fit|1:t−1(ait) differ very much. This creates numerical problems since some
values of qr

it are close to zero whereas others are very high. Recent research
suggests approaches to overcome these problems. Interested readers are referred
to Pitt and Shephard (1999) and van der Merwe, Doucet, de Freitas, and Wan
(2001).

4.3.4 Importance Sampling techniques

Instead of drawing random numbers from the target distribution, importance
sampling allows to draw from a different distribution, the proposal density, and to
capture the differences by reweighting the integrand. The most straightforward
choice of the proposal density is the marginal density f(a). Note that equation
4.8 can be rewritten as

Pit|1:t−1(yit) =

∫
Pit(yit|a)

fit|1:t−1(a)

f(a)︸ ︷︷ ︸
:=qit(a)

f(a) da.
(4.10)

It has already been discussed that it is possible to make draws from the proposal
distribution f(a). As long as the factor qit(a) can be evaluated, the integral in
equation 4.10 can easily be approximated by weighted simulation. Two algo-
rithms to obtain appropriate weights qit(a) are discussed in the following.

The first importance sampling approach discussed is based on draws from the
joint distribution f1:T (a1:T ). As will be shown below, it actually corresponds to
algorithm 1. But it is instructive to present it separately to clarify the sequential
approach and the differences to the subsequently discussed algorithms.

Proposition 4 The importance sampling factor qit(a) can be written as

qit(a) =

∫
· · ·
∫ (t−1∏

s=1

Pis(yis|ais)

Pis|1:s−1(yis)

)
f1:t−1(ai,1:t−1|ait = a) dai,1:t−1
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A proof of this proposition is presented in section 4.6. By combining this results
with equation 4.10,

Pit|1:t−1(yit) =

∫
· · ·
∫

Pit(yit|ait)

(
t−1∏
s=1

Pis(yis|ais)

Pis|1:s−1(yis)

)
f1:t(ai,1:t) dai,1:t. (4.11)

Algorithm 3 describes one way to sequentially generate appropriate weights
based on this result:

Algorithm 3: Importance Sampling with Joint Draws (JSS)

1. Start with i = 1

2. Draw R random vectors ar
i,1:T from the density f1:T (a1:T ).

3. Start with t = 1 and initialize qr
i1 = 1 for all r = 1, ..., R.

4. Calculate P r
it = Pit(yit|ar

it) for all r = 1, ..., R and approximate
Pit|1:t−1(yit) as P̃it =

∑R
r=1 P r

itq
r
it.

5. Update qr
i,t+1 = qr

t
P r

it

P̃it
.

6. Repeat steps 4 and 5 for all t = 2, ..., T

7. The individual likelihood contribution is simulated as ˜̀
i =

∏T
t=1 P̃it.

8. Repeat steps 2 through 7 for all i = 2, ..., N

Proposition 5 Algorithm 3 is equivalent to Algorithm 1 in the sense that they
deliver the same simulated likelihood contributions if the same random draws are
used.

This can be shown by first noting that both algorithms are actually based on
draws from the joint distribution f1:T (a1:T ). As a result, the conditional proba-
bilities P r

it are the same if the same random draws are used since they evaluate
the same function at the same arguments. The sequentially updated weights in
algorithm 3 can be written as

qr
it = qr

t−1

P r
i,t−1

P̃i,t−1

=
t−1∏
s=1

P r
is

P̃is

.
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Therefore, the simulated outcome probability for each wave t can be written as

P̃it =
1

R

R∑
r=1

qr
itP

r
it =

1

R

∑R
r=1

∏t
s=1 P r

is∏t−1
s=1 P̃is

.

So
∏t

s=1 P̃is = 1
R

∑R
r=1

∏t
s=1 P r

is. The simulated likelihood contribution is

˜̀
i =

T∏
t=1

P̃it =
1

R

R∑
r=1

T∏
t=1

P r
it,

which is equal to the corresponding expression in algorithm 1.

A direct consequence of this proposition is that nothing is gained by this
procedure relative to algorithm 1. The reason is that this algorithm is still
based on draws from the joint distribution f1:T (a1:T ). If the dimension of a1:T is
high, a finite number of draws R covers the support of its joint distribution only
coarsely.

For pure time-series models, Tanizaki and Mariano (1994) and Tanizaki
(1999) suggest an algorithm that can be interpreted as a refinement of algo-
rithm 3. The latter approach was based on draws from the joint distribution of
ai,1:T . The Tanizaki (1999) algorithm adopted to panel data draws values from
the marginal distribution of each ait for all i and t using antithetic samples. The
full set of R×R transition probabilities between the states in adjacent waves are
considered. Just as algorithm 3, start from the importance sampling equation
4.10. The weighting factors qit(a) are by definition equal to 1 for t = 1. The
next proposition offers a way to write them in a sequential fashion.

Proposition 6 For t ≥ 2, the importance sampling weights can be written re-
cursively as

qi,t+1(ai,t+1) =

∫
qit(a)

Pit(yit|a)

Pit|1:t−1(yit)

fc(ai,t+1|a)

f(ai,t+1)
f(a) da. (4.12)

A prof is presented in section 4.6. The idea of this algorithm is to simulate
the integrals in both equations 4.10 and 4.12. Given draws [a1

it, ..., a
R
it ] and

[a1
i,t+1, ..., a

R
i,t+1] from f(a) and corresponding previous weights [q1

it, ..., q
R
it ], the

appropriate weights [q1
i,t+1, ..., q

R
i,t+1] can be approximated as

qr
i,t+1 =

1

R

R∑
s=1

qs
it

Pit(yit|as
it)

Pit|1:t−1(yit)

fc(a
r
i,t+1|as

it)

f(ar
i,t+1)

. (4.13)
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Algorithm 4: Sequential importance sampling (SIS)

1. Start with i = 1

2. Start with t = 1 and initialize qr
i1 = 1 for all r = 1, ..., R

3. Draw random numbers ar
it from the density f(a).

4. Outcome probability: Calculate P r
it = Pit(yit|ar

it) for all r = 1, ..., R and
approximate Pit|1:t−1(yit) as P̃it = 1/R

∑R
r=1 P r

itq
r
it.

5. For all r, s = 1, ..., R, calculate c∗it(r, s) =
fc(ar

i,t+1|as
it)

f(ar
i,t+1)

.

6. For all s = 1, ..., R, normalize cit(r, s) = c∗it(r, s)R
∑R

r=1 c∗it(r, s)

7. For all r = 1, ..., R, update the weights qr
i,t+1 =

∑R
s=1 qs

it
P s

it

P̃it
cit(r, s).

8. Repeat steps 3 through 7 for all t = 2, ..., T

9. The individual likelihood contribution is simulated as ˜̀
i =

∏T
t=1 P̃it.

10. Repeat steps 1 through 9 for all i = 2, ..., N

Step 6 corrects for the fact that the approximated densities do not necessarily
integrate to 1 exactly which can lead to an accumulation of these errors (Tanizaki
1999). For a given number of nodes R, this algorithm is computationally more
expensive than algorithm 3. The main source of additional computational costs
is that in step 5, R2 relative densities have to be computed for each i and t. There
are approaches to ease the computational burden of this approach, for example
Tanizaki (2001) suggests to draw random numbers from the joint density of ait

and ai,t+1 conditional on yit instead of integrating over ait.
Importance sampling works best numerically if the proposal and the target

densities are similar so that the importance weights are not too far away from
unity (Geweke 1989). This problem is similar to the mentioned problems with
resampling when the distributions fit|1:t(a) and fit|1:t−1(a) differ “too much”.
The corresponding problem with the sequential importance sampling approach
with f(a) as the proposal density is worse since the importance weights capture
the differences between fit|1:t(a) and f(a). Especially with long time series,
the accumulated information of yi,1:t can drive these densities far apart. This
creates poor approximations of the importance sampling approach. There have
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been approaches to solve this problem by choosing a proposal density that is
closer to fit|1:t(a) than f(a), see for example Julier and Uhlmann (1997).

For the moderate time series dimension typical for microeconometric panel
data models, this problem can be expected to be less severe than for long time
series. Since the modification of the proposal density to account for previous
observations involves significant extra computations and complicates the imple-
mentation considerably, I stick to the simple version of using f(a) as the proposal
density.

4.3.5 Sequential Quadrature

Instead of simulation, the integrals in equations 4.10 and 4.12 can be approxi-
mated using deterministic integration rules. Kitagawa (1987) suggests a linear
spline approximation of the densities. This approach has been found to be dif-
ficult to implement and computationally intensive. Computational costs rise
exponentially with the dimension of the state vector. This finding led to the
predominant use of different simulation techniques in the literature.

I suggest to use quadrature based methods for the numerical integration. This
has two advantages compared to simulation. First, the approximation can be
expected to achieve a high accuracy with a very low number of nodes R and does
not suffer from random noise. This is widely appreciated for one-dimensional
Gaussian quadrature that is appropriate if ait is scalar such as in the AR(1)
example introduced in section 4.4 and applied in section 4.2. Chapter 5 and
Heiss and Winschel (2005) show that Smolyak cubature provides a promising
approach to carry over these advantages to higher dimensions.

The second advantage of deterministic integration is that the nodes ait are
actually identical since the integral is defined over the marginal distributions
and they are assumed to be identical. This allows to do the computationally
expensive step of calculating the R2 conditional distributions fc(a

r
i,t+1|as

it) for all
r and s only once instead of N(T −1) times for each i = 1, ..., N and t = 2, ..., T .
This advantage is especially relevant for panel data with a large cross-sectional
dimension.

The ideas of algorithm 4 can be used equivalently to approximate the integrals
in equations 4.10 and 4.12. Instead of drawing R random numbers ar

it from f(a)
for all i = 1, ..., N and t = 1, ..., T , appropriate nodes ar and weights wr for a
Gaussian quadrature or Smolyak cubature rule are obtained. This is efficiently
implemented in many statistical packages for the univariate case so that it is both
straightforward to implement and quick to calculate in this case.2 The relative

2The implementation used in section 4.4 is based on Matlab code for Gaussian quadra-
ture provided with the textbook of Miranda and Fackler (2002). It is available at
http://www4.ncsu.edu/~pfackler/compecon.

76



4.3 Evaluation of the Likelihood Contributions

densities c(r, s) = fc(ar|as)
f(ar)

can be calculated once for each r, s = 1, ..., R. Given
those and the initialization qr

i1 = 1, the problem can be solved sequentially.
Given qr

it, calculate P r
it = Pit(yit|ar) for all r = 1, ..., R and P̃it =

1/R
∑R

r=1 P r
itq

r
itw

r. To update the weights for the next period, calculate qr
i,t+1 =∑R

s=1 qs
t

P s
it

P̃it
c(r, s)wr for all r = 1, ..., R.

Algorithm 5: Sequential Quadrature (SGQ)

1. Obtain R appropriate nodes ar and weights wr for the deterministic
integration rule corresponding to f(a).

2. For all r, s = 1, ..., R, calculate c∗(r, s) = fc(ar|as)
f(ar)

3. For all s = 1, ..., R, normalize c(r, s) = c∗(r, s)R
∑R

r=1 c∗(r, s)

4. Start with i = 1

5. Start with t = 1 and initialize qr
i1 = 1 for all r = 1, ..., R

6. Calculate P r
it = Pit(yit|ar) for all r = 1, ..., R and approximate

Pit|1:t−1(yit) as P̃it = 1/R
∑R

r=1 P r
itq

r
itw

r.

7. For all r = 1, ..., R, update the weights qr
i,t+1 =

∑R
s=1 qs

t
P s

it

P̃it
c(r, s)wr.

8. Repeat steps 6 and 7 for all t = 2, ..., T

9. The individual likelihood contribution is simulated as ˜̀
i =

∏T
t=1 P̃it.

10. Repeat steps 5 through 9 for all i = 2, ..., N

Again, the normalization in step 3 corrects for potential approximation errors
that accumulate over time as in Tanizaki (1999) and related methods. It is based
on the fact that

∫
fc(ai,t+1|ait) dai,t+1 = 1 for all ait.

4.3.6 Summary of the Algorithms

The algorithms discussed in this chapter differ in the accuracy of approximation,
the computational costs, and the simplicity of implementation. Obviously, JMC
(algorithm 1) is the easiest to implement since the other algorithms all need ad-
ditional calculations such as the evaluation of weights. On the other hand, most
of these calculations are easily implemented as they mainly consist of evaluating
fractions of readily available numbers and replacing the calculation of averages
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with weighted averages. NPF (algorithm 2) is an exception for which a resam-
pling procedure has to be implemented. Computationally efficient resampling
is conceptionally straightforward but a research area in its own right, see for
example Bolić, Djurić, and Hong (2003).

Clearly, JMC is faster than SIS with a given number of function evalua-
tions. For both, NTR random numbers have to be generated. SIS requires the
numerical approximation of NT integrals for the likelihood contributions and
N(T − 1)R integrals for the update of the importance weights. For the latter,
R relative densities have to be computed for each integral. SGQ requires the
solution of the same number of integrals, but the relative densities have to be
computed only once so that the numerical integration basically boils down to a
matrix multiplication.

SGQ has the additional advantage that only DR nodes and weights have to
be determined, whereas JMC and SIS require DNTR draws from f(a). For large
models, this can be computationally burdensome. If all those draws are to be
stored in memory to save on recalculations, this can also quickly cause memory
problems. In the application in section 4.4, DTN ≈ 100, 000. With R = 1000
and each random number requiring 8 bytes, the matrix of random draws would
occupy roughly 800 megabytes of memory, whereas SGQ only needs to determine
and store 2DR = 2000 numbers for nodes and weights which would occupy only
about 16 kilobytes.

The resampling used by NPF is computational burdensome even if sophisti-
cated algorithms are used.3 Another problem with NPF is that the approximated
likelihood contributions are not smooth in the parameters. For maximum like-
lihood estimation, this rules out gradient-based numerical maximization of the
likelihood function. While derivative-free likelihood maximization is possible,
these algorithms require considerably more likelihood evaluations and thereby
create substantial additional costs.

The main question for the comparison of the computational costs is how
many function evaluations R are needed to achieve a given accuracy of approxi-
mation. As argued above, JMC and JSS integrate over DT dimensions whereas
the integral dimension of the other approaches is only D. This suggests that
JMC needs a higher R since the support of a higher-dimensional joint distribu-
tion has to be covered. For the other approaches based on importance sampling
or resampling, numerical problems can arise if the proposal and the target den-
sities are too different. For long time series, this problem is less severe for NPF
than for SIS or SGQ, but for short and moderately long time series as typical for
microeconometric analyses, this difference can be expected not to be severe. As

3In preliminary tests, more than 90% of the total run-time for NPF-based estimation was
spend for resampling.
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discussed above, these problems can be avoided if the proposal densities are cho-
sen more carefully. But this would require substantial additional programming
and computing costs.

SGQ is the only one of the discussed algorithms which is based on determin-
istic integration. For one-dimensional states ait which are typical in microecono-
metric models, it is based on univariate Gaussian quadrature. With R function
evaluations, integrals over polynomials of order 2R− 1 are evaluated exactly by
these methods. Since the typical integrands are smooth functions, they can be
expected to be well approximated by a relatively low-order polynomial. Note
that with R = 10, the order of polynomial exactness is 2×10−1 = 19. For Monte
Carlo integration, 10 random draws is an extremely small number to hope for
sensible results. Since all these arguments are only qualitative and since no gen-
eral quantitative statements are possible, section 4.4 provides empirical evidence
for a typical microeconometric application.

4.4 Application: Ordered Logit Model of Health
with an AR(1) Error Term

In this section, the performance of different algorithms is compared for a typical
microeconometric panel data model. It combines limited dependent variables
with a stationary AR(1) process in the error terms. The application was already
discussed in chapter 3 together with alternative model specifications.

I use panel data from the Health and Retirement Study (HRS) to study the
evolution of individual health over time. This survey is sponsored by the National
Institute of Aging (NIA) and conducted by the University of Michigan. For our
analyses I used the RAND HRS Data File (Version D). It was developed by the
RAND Center for the Study of Aging with funding from the National Institute on
Aging (NIA) and the Social Security Administration (SSA). The HRS contains
data on different cohorts of elderly Americans. I use a sample of all cohorts with
the only restriction that they are at least 50 years old at the time of the first
interview. This applies to 25,499 respondents. After excluding respondents with
missing information on essential variables, all analyses are based on a sample of
25,451 respondents with up to 6 observations over time each. A total of 103,250
observations are available.

In this paper, I concentrate on a frequently studied measure, the self-reported
health (SRH). The wording of this question in the HRS is “Would you say your
health is excellent, very good, good, fair, or poor?”. This 5-scale variable is mod-
eled as an ordered logit model with a stationary AR(1) error term. As discussed
in chapter 3, this specification captures the data much better than random ef-
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fects or markov chain models. I concentrate on SRH and ignore mortality in this
analysis. The model structure was already presented in section 4.2 in a more
general setting. The latent variable y∗it represents the health status of respondent
i at wave t and is modeled as

y∗it = xitβ + ait + eit.

The observed dependent variable takes 5 different outcomes between 1 (“poor”)
and 5 (“excellent”). It is assumed to be generated as

yit = y ⇔ αy ≤ y∗it < αy+1 with 1 ≤ y ≤ 5.

The stochastic specification is

ai1 ∼ i.i.d. N
(
0, σ2

)
, ait = ρai,t−1 + uit

eit ∼ i.i.d. logistic, uit ∼ i.i.d. N
(
0, (1− ρ2)σ2

)
In the general notation, this implies

Pit(yit|ait) = Λ (αyit+1 − xitβ − ait)− Λ (αyit−xitβ−ait
)

f(a) =
1

σ
φ
(a

σ

)
and fc(a|a′) =

1√
1− ρ2σ

φ

(
a− ρa′√
1− ρ2σ

)
,

where Λ is the logistic c.d.f. and φ is the standard normal p.d.f. The vector
of model parameters in this application is [β, σ, ρ, α2, ..., α5]. For the exogenous
variables, only age is considered specified as a linear spline with changing slopes
at ages 50, 60, 70, 80, and 90. Obviously, the effect of covariates that are not
included in the model and are correlated over time is captured by ait.

I estimated this model with different algorithms and different number of
nodes R. The algorithms are:

• JMC: Simulation of the joint outcome probability (algorithm 1) using the
antithetic draws generated by the modified latin hypercube sampler (Hess,
Train, and Polak 2005)4

• SIS: Sequential Monte Carlo integration (algorithm 4) using the antithetic
draws generated by the modified latin hypercube sampler (Hess, Train,
and Polak 2005). Different draws are used for each i = 1, ..., N , but are
held constant for each t = 1, ..., T .

4Preliminary experiments indicate that the antithetic draws perform considerably better than
draws from a standard random number generator.
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• SGQ: Sequential Gauss quadrature (algorithm 5) based on a transforma-
tion of Gauss-Legendre quadrature of the conditional outcome probabilities
and densities.

The main criterion of comparison between the algorithms is the accuracy of
approximation given a number of function evaluations R or, equivalently, the
number R needed for a given level of accuracy. As argued above, the difference
between SIS and JMC is due to the different dimensionality of the integral. As
long as the difference between the marginal and the conditional state distribution
is not too large, SIS can be expected to perform better, since the dimension of
integration is smaller. Otherwise, the importance sampling strategy of SIS can
lead to numerical problems. The computational efficiency of Gaussian quadra-
ture relative to Monte Carlo integration drives the difference between SGQ and
SIS.

Figure 4.1 compares the results for the three approaches with different num-
bers of nodes R. It shows the differences between the approximated log likelihood
at the respective estimated parameters to the value it converges to for all meth-
ods as R → ∞. Since JMC and SIS are based on random draws, the results
depend on the chosen random seed. For these algorithms, 10 estimates were ob-
tained using different random seeds. The solid lines indicate the mean over these
results and the dotted lines represent the minimum and maximum to provide a
rough idea of the simulation noise.

Figure 4.1: Results: Log likelihood difference to limiting value
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It is well known that the simulated log likelihood is biased downward with a
finite R. This is due to the log transformation of the unbiased simulated outcome
probabilities. The results show that this downward bias can be substantial for the
simulation-based algorithms. All methods appear to converge to the same value
with growing R. The proposed SGQ algorithm reaches this limiting value with
only 10 or 20 evaluations, while the SIS algorithm needs about 150 evaluations to
get close to it. The JMC approach typically used in empirical research converges
very slowly. For R less than 100, the maximization algorithm did not converge
at all. Even with 2000 evaluations, notable differences to the limiting value
remain. Remember that Gaussian quadrature with R = 20 approximates the
smooth conditional distributions as a 39th order polynomial, so it it no surprise
that this strategy works very well.

Figures 4.2 and 4.3 show the estimates of the two most interesting parameters
that drive the intertemporal correlation. The qualitative picture is the same as
for the likelihood values. While with at most 20 evaluations, SGQ has reached
its limiting value, SIS needs at least 150 and JMC has still not converged after
R=2000. The simulation-based estimates of the correlation parameter ρ are
biased upward toward 1. This might be due to the fact that the downward
bias of the simulated log likelihood is stronger the higher the simulation noise.
With ρ = 1, the model becomes a random effects model and the integration
is in fact one-dimensional. The simulation of this one-dimensional integral is
more accurate with a given R so the downward bias decreases. A more thorough
investigation of this possible source of systematic bias is left for future research.

As discussed above, the computational costs for a given number R differs
between the algorithms. To provide a complete comparison, Table 4.1 shows
the time in seconds that the implemented algorithms need for each likelihood
evaluation for the example application on a Pentium 4 PC. JMC is more expen-
sive than the other algorithms with a low number R. The reason is the large
number NTR of random numbers to be generated. Since for SIS the same values
for the random numbers are used for each t = 1, ..., T , only NR numbers have
to be generated. SGQ requires only R nodes. Another difference between SIS
and SGQ is that the former needs to evaluate the R2 relative densities for each
i = 1, ..., N , whereas SGQ needs to do this only once.

As discussed above, the computational costs of JMC rise linearly with the
number of draws R. This is due to the rising computational costs of each inte-
gral. For SIS and SGQ, the computational costs rise overproportionally, since in
addition the number of integrals increase. As a result, for large R, JMC is the
fastest algorithm. Noting that SGQ needs a very small number R for accurate
results, the advantage of SGQ is even more pronounced. It does not only require
much less function evaluations R, but it is also the fastest algorithm for small
R.

82



4.4 Application

Figure 4.2: Results: Estimated σ
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Figure 4.3: Results: Estimated ρ
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Table 4.1: Computational Costs
Seconds / Likelihood evaluation

R JMC SIS SGQ
10 52.0 20.3 7.3
50 68.6 51.6 14.3

100 85.8 124.8 31.5
150 105.5 306.1 112.4
200 123.1 678.9 340.7
250 140.8 1171.0 658.5

2000 881.1

4.5 Conclusions

This chapter discusses the numerical approximation of the likelihood for a certain
class of nonlinear panel data models. Limited dependent variable models with
AR(1) error terms are an important example of appropriate models. The numer-
ical difficulties arise because the likelihood function involves multiple integrals.
While methods for multiple numerical integration are available, their accuracy
decreases with a rising dimensionality if the computational effort is held con-
stant. Equivalently, the computational costs for a given accuracy increase with
a rising dimensionality.

This chapter discusses how these models allow to split the multiple integrals
into several integrals with lower dimensions. In the univariate AR(1) example,
the integrals become one-dimensional. Since these integrals are approximated
accurately with relatively low computational costs, the overall approximation can
be expected to perform better than the “brute force” approach to approximate
the joint integral.

There are several approaches to actually implement the sequential evalua-
tion of the likelihood function. In engineering where most of these methods
were developed and in the econometric time series literature where they re-
ceive increased attention, the number of time periods is high compared to the
typical microeconometric panel data. This affects the relative advantages and
disadvantages of the algorithms. I suggest an approach that is plausibly very
powerful for moderate time series dimensions. It is based on Gaussian quadra-
ture for one-dimensional problems and can be extended by Smolyak cubature
for multidimensional problems. This allows very precise approximations with
little computational effort. For high longitudinal dimensions, this approach is
likely to perform less well since the integrands become less well-behaved with
more time-series observations. It will certainly help to investigate the relative
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performance of different algorithms in Monte Carlo study in which the relevant
dimensions of the data and model can be varied. This will be left for future
research.

In an application to an ordered logit model with an AR(1) error term for
panel data with T = 6 observations over time, I show that the proposed method
clearly outperforms the typically used approach of joint simulation and also a
sequential simulation approach. While sequential Gaussian quadrature needs
only 10 to 20 function evaluations R for an accurate parameter estimation, the
joint simulation still suffers from bias with R = 2000. The method is also easily
implemented and needs moderate additional computation for a given R.

4.6 Appendix: Proofs

Proof of proposition 1

The likelihood contribution in equation 4.4 is

`i = Pr(Yi,1:T = yi,1:T |xi, θ)

=

∫
· · ·
∫

Pr(Yi,1:T = yi,1:T |a1:T ,xi, θ)f1:T (a1:T ) da1 · · · daT .

In general,

Pr(Yi,1:T = yi,1:T |a1:T ,xi, θ) =

Pr(Yi1 = yi1|a1:T ,xi, θ) Pr(Yi2 = yi2|Yi1 = yi1, a1:T ,xi, θ) · · ·
Pr(YiT = yiT |Yi,1:T−1 = yi,1:T−1, a1:T ,xi, θ)

By assumption 2,

Pr(Yit = yit|Yi,1:t−1 = yi,1:t−1, a1:T ,xi, θ) = Pit(yit|at) ∀t = 1, ..., T.

So proposition 1 follows directly:

`i =

∫
· · ·
∫ ( T∏

t=1

Pit(yit|at)

)
f1:T (a1:T ) da1 · · · daT .

Proof of proposition 2

By definition,

Pit|1:t−1(yit) = Pr (Yit = yit|Yi,1:t−1 = yi,1:t−1,xi, θ)
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for the non-trivial case of t ≥ 2. Obviously,

Pr (Yit = yit|Yi,1:t−1 = yi,1:t−1,xi, θ) =∫
Pr (Yit = yit|ait = a,Yi,1:t−1 = yi,1:t−1,xi, θ) fit|1:t−1(a) da.

By assumption 2,

Pr (Yit = yit|ait = a,Yi,1:t−1 = yi,1:t−1,xi, θ) = Pit(yit|a),

so proposition 2 follows directly.

Proof of proposition 3

Bayes rule implies

fit|1:t(ait) = fit|1:t−1(ait)
Pr(Yit = yit|ait,Yi,1:t−1 = yi,1:t−1,xi, θ)

Pr(Yit = yit|Yi,1:t−1 = yi,1:t−1,xi, θ)

The denominator is defined as Pit|1:t−1(yit). By assumption 2 the numerator
Pr(Yit = yit|ait,Yi,1:t−1 = yi,1:t−1,xi, θ) = Pr(Yit = yit|ait,xi, θ) which is de-
fined as Pit(yit|ait). So proposition 3 follows directly:

fit|1:t(ait)

fit|1:t−1(ait)
=

Pit(yit|ait)

Pit|1:t−1(yit)
.

Proof of proposition 4

By definition,

qit(a) =
fit|1:t−1(a)

f(a)
.

Bayes’ rule implies

fit|1:t−1(a)

f(a)
=

Pr (Yi,1:t−1 = yi,1:t−1|ait = a,xi, θ)

Pr (Yi,1:t−1 = yi,1:t−1|xi, θ)
.

=

∫
· · ·
∫

Pr (Yi,1:t−1 = yi,1:t−1|ai,1:t−1 = a1:t−1, ait = a,xi, θ)

Pr (Yi,1:t−1 = yi,1:t−1|xi, θ)
f1:t−1(a1:t−1|ait = a) da1:t−1.

Analogous to the argument in the proof of proposition 1, the numerator in this
expression is equal to

Pr (Yi,1:t−1 = yi,1:t−1|ai,1:t−1 = a1:t−1, ait = a,xi, θ) =
t−1∏
s=1

Pis(yis|ais).
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The denominator can be written by standard rules of conditioning as

Pr (Yi,1:t−1 = yi,1:t−1|xi, θ) =
t−1∏
s=1

Pis|1:s−1(yis).

Proposition 4 follows directly.

Proof of proposition 6

By definition,

qi,t+1(ai,t+1) =
fi,t+1|1:t(ai,t+1)

f(ai,t+1)
.

Conditional on ait, Yi,1:t and ai,t+1 are independent. Therefore,

fi,t+1|1:t(ai,t+1) =

∫
fc(ai,t+1|a)fit|1:t(a) da.

Bayes’ rule in combination with assumption 2 implies

fit|1:t(a) = fit|1:t−1(a)
Pit(yit|a)

Pit|1:t−1(yit)
.

Combining these results with the definition qit(a) =
fi,t|1:t−1(a)

f(a)
yields the expres-

sion of proposition 6:

qi,t+1(ai,t+1) =

∫
qit(a)

Pit(yit|a)

Pit|1:t−1(yit)

fc(ai,t+1|a)

f(ai,t+1)
f(a) da
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5 Multidimensional Integration in
Estimation Problems

5.1 Introduction

Many econometric models imply likelihood and moment functions that involve
multidimensional integrals without analytically tractable solutions. This prob-
lem arises frequently in microeconometric models in which all or some of the
endogenous variables are only partially observed. Other sources include unob-
served heterogeneity in nonlinear models and expectations of agents.

There are different approaches for numerical integration. It is well known that
Gaussian quadrature performs very well in the case of one-dimensional integrals
of smooth functions (Butler and Moffit 1982). Quadrature can be extended to
multiple dimensions and is then also called cubature. The most direct extension
is a tensor product of one-dimensional quadrature rules. However, computing
costs rise exponentially with the number of dimensions and become prohibitive
for more than four or five dimensions. This phenomenon is also known as the
curse of dimensionality.

This led to the advancement and predominant use of simulation techniques
for the numerical approximation of multidimensional integrals in the econometric
literature, see for example McFadden (1989) or Börsch-Supan and Hajivassiliou
(1993). Hajivassiliou and Ruud (1994) provide an overview over the general
approaches of simulation and Train (2003) provides a textbook treatment with
a focus on discrete choice models, one of the major classes of models for which
these methods were developed and frequently used.

This chapter is based on joint work with Viktor Winschel and proposes and
investigates the performance of a different approach that can be traced back to
Smolyak (1963). It has been advanced in recent research in numerical mathe-
matics, see for example Novak and Ritter (1999). It is based on one-dimensional
Gaussian quadrature but extends it to higher dimensions in a more careful way
than the tensor product rule. This dramatically decreases computational costs
in higher dimensions.

Just like Gaussian cubature and simulation, Smolyak cubature evaluates the
integrand at certain points and calculates a weighted average of these function
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values. The difference is how these points and weights are derived. The Smolyak
approach is a general method for multivariate extensions of univariate operators
and not only applicable to integration. Another example is function approxima-
tion which has been used for the solution of a overlapping generations model by
Krüger and Kübler (2004).

After introducing the Smolyak approach, the results of Monte Carlo experi-
ments are presented. They directly address the question of interest for estima-
tion: Which method delivers the best estimates with a given amount of com-
puting costs? The experiments are based on a panel data random parameters
logit models which are widely used in applied discrete choice analysis. They
vary the panel data dimensions, the number of alternatives, the dimension of
unobserved taste components and the parameterization of the data generating
process. The results show that the Smolyak-based cubature methods clearly out-
perform simulations based on both random number generators and the modified
latin hypercube sampling proposed by Hess, Train, and Polak (2005).

The chapter is structured as follows: Section 5.2 briefly discusses the cir-
cumstances in which multiple integrals evolve in estimation problems. It then
introduces an example, the random parameters logit model, in somewhat more
detail since it will be used in the Monte Carlo experiments. Section 5.3 discusses
the general approaches to numerical integration and introduces Smolyak-based
cubature. Section 5.4 presents the Monte Carlo design and results. Section 5.5
concludes.

5.2 Econometric Models Requiring Numerical
Integration

The log-likelihood function of microeconometric models can typically be writ-
ten as a sum over a number N of independent log-likelihood contributions
log(`i(θ; data). Maximum likelihood defines the estimated parameter vector θ̂
as

θ̂ = arg max
θ

N∑
i=1

log(`i(θ)). (5.1)

The discussion is focused on maximum likelihood estimation, but the same prob-
lems and approaches are applicable for other methods like GMM or Bayesian
analyses. In many models the likelihood contributions `i(θ) involve multiple
integrals which cannot be expressed in closed form and must be evaluated nu-
merically. The approximation algorithm used is essential for the estimation task.
Numerical maximization involves repeated evaluations of the likelihood function.
Each evaluation in turn involves solving N multiple integrals, where N in prac-
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tice can be several thousand. While the ongoing increase in computational power
makes widespread use of such models feasible, the computational costs are still
high and sometimes prohibitive. Instead of compromising on model specification
or approximation quality, it is therefore important to choose an efficient method
of numerical integration for a given model and accuracy.

There are various reasons why microeconometric models imply multiple inte-
grals in `i(θ). Typically, they represent the expectation of a function over several
random variables. A major reason for their presence is that many models are
specified in terms of latent random variables for which the observed endoge-
nous variables provide only a partial indication. Another source in nonlinear
models is an error term with a mixture distribution such as random effects or
error components models which can be estimated by calculation of integrated
likelihood functions. Finally, dynamic optimization models naturally involve
multiple integrals, see for example Eckstein and Wolpin (1999). For a more gen-
eral presentation see for example Hajivassiliou and Ruud (1994) or Gouriéroux
and Monfort (1996), both from a perspective of simulation.

The random parameters logit (RPL) model or mixed logit model is widely
used for studying choices between a finite set of alternatives. See McFadden and
Train (2000) for an introduction to this model and a discussion of its estimation
by simulation methods. Suppose discrete choices of N individuals are observed.
The data has a panel structure, so that each of the subjects makes T choices.
In each of these choice situations, the individual is confronted with a set of
J alternatives and chooses one of them. These alternatives are described by
K exogenous attributes. The (K × 1) vectors xitj collect these attributes of
alternative j = 1, ..., J in choice situation t = 1, ..., T of individual i = 1, ..., N .

Random utility maximization (RUM) models of discrete choices assume that
the individuals make their choices by evaluating the utility that each of the al-
ternatives yields and then picking the one with the highest value. The researcher
obviously does not observe these utility levels. They are modeled as latent vari-
ables for which the observed choices provide an indication. Let the utility that
individual i attaches to alternative j in choice situation t be represented by the
random coefficients specification

Uitj = x′
itjβi + eitj. (5.2)

It is given by a linear combination of the attributes of the alternative, weighted
with individual-specific taste levels βi. These individual taste levels are dis-
tributed across the population according to a parametric joint p.d.f. f(βi; θ)
with support Ψ ⊆ RK . The i.i.d. random variables eitj capture unobserved
utility components. They are assumed to follow an Extreme Value Type I (or
Gumbel) distribution. Note that this model can be generalized, for example,
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the distribution f(βi; θ) can be specified as a function of observed individual
characteristics.

Our goal is to estimate the parameters θ. Let yitj denote an indicator variable
that has the value 1 if individual i chooses alternative j in choice situation t and
0 otherwise. Denote the vector of observed individual outcomes as yi = [yitj; t =
1, ..., T, j = 1..., J ] and the matrix of all exogenous variables as xi = [xitj; t =
1, ..., T, j = 1..., J ]. Then, the probability that the underlying random variable
Yi equals the observed realization yi conditional on xi and the taste levels βi

can be expressed as

P ∗
i (βi) = Pr(Yi = yi|xi, βi) =

T∏
t=1

∏J
j=1 exp(yitjx

′
itjβi)∑J

j=1 exp(x′
itjβi)

. (5.3)

Suppose the regularity conditions given by McFadden and Train (2000) hold.
The likelihood contribution of individual i as a function of θ can be written as

`i(θ;Yi) = Pr(Yi = yi|xi, θ) =

∫
Ψ

P ∗
i (βi)f(βi; θ) dβi. (5.4)

A solution for this K-dimensional integral does not exist in closed form and has
to be approximated numerically.

5.3 Numerical Integration in Multiple Dimensions

There are several methods to numerically approximate an integral of a function
g over a D-dimensional vector z.

ID[g] =

∫
Ω

g(z) w(z) dz, (5.5)

where w(z) is some weighting function. As discussed above, in estimation prob-
lems, the integral often represents an expected value of g so that w(z) is a p.d.f.
and Ω its support. A computationally feasible approach that is common to all
methods discussed in this chapter is to approximate the integral as a weighted
sum of a number R of the integrand evaluated at certain points, referred to as
nodes:

ID[g] ≈
R∑

r=1

g(zr)wr, (5.6)

where wr is the weights of node zr. The methods differ in the way they derive
the nodes zr and weights wr. For Monte Carlo integration, the zr are equally
weighted draws with wr = R−1 ∀r = 1, ..., R from the density w(z). These
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draws can be generated by different strategies. Classically, a random number
generator is used. Since draws generated by a computer can never be truly ran-
dom, these draws are often labeled pseudo-random draws. These nodes are often
clustered in certain areas. Antithetic sampling algorithms distribute the nodes
more evenly but preserve properties of random numbers. In the Monte Carlo
experiments, pseudo-random Monte Carlo simulation (PRMC) and antithetic
draws from a modified latin hypercube sampling (MLHS) algorithm are used. It
was shown to work well for the estimation of RPL models by Hess, Train, and
Polak (2005).

Polynomial cubature methods are multidimensional extensions of Gaussian
quadrature. They take a different strategy and determine nodes and weights such
that g(z) is approximated by a polynomial of a given order for which the inte-
gral is straightforward to solve. In the econometrics literature, one-dimensional
Gaussian quadrature methods are known to work well if g(z) is a smooth function
and can therefore be well approximated by a (low-order) polynomial (Butler and
Moffit 1982). There are different strategies for the generalization of this approach
to multiple dimensions. The most straightforward method known as the tensor
product rule suffers from the fact that the computational costs rise exponentially
with the dimensionality of the problem. It is therefore of little use for more than
four or five dimensions. Other methods are not as straightforward to implement
and are therefore often considered impractical for econometric analyses (Bhat
2001, Geweke 1996). The complication lies in the calculation of the nodes zr

and weights wr. Given those, they only have to be plugged into equation 5.6.
Since the nodes and weights only depend on the dimension of the problem and
the desired approximation level, it is also possible to use precalculated values.

Multidimensional cubature methods are derived from one-dimensional Gaus-
sian quadrature formulas. The following discussion is based on the case of fully
symmetric weight functions in the sense that the D-variate weighting func-
tion w can be multiplicatively decomposed into D univariate functions w̃ as
w(z) = w̃(z1) · · · w̃(zD) that are all symmetric such that w̃(zd) = w̃(−zd) for all
d = 1, . . . , D. Most problems in econometrics can be expressed in such a way by
a change of variables. See Novak and Ritter (1999) for a discussion of this and
more general cases.

In the case of a one-dimensional variable z, the integral in equation 5.5 can
approximated efficiently by Gaussian quadrature methods. Let

Vi[g] =

R(i)∑
r=1

g(zi
r)w

i
r. (5.7)

denote a one-dimensional quadrature rule. The parameter i ∈ N drives the pre-
cision of this rule. It requires the evaluation of g at a number R(i) of nodes
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which depends on the intended precision. The nodes zi
1, ..., z

i
R(i) and weights

wi
1, ..., w

i
R(i) are given by the quadrature rule. They are constructed such that

Vi[g] evaluates the integral exactly with minimum number of function evalua-
tions if g is a polynomial of a certain degree. It is well known that with R(i) = i,
Gaussian quadrature rules Vi[g] are able to give exact solutions for all polynomi-
als with an order of at most 2i−1. The nodes and weights depend on the weight
function w and the support Ω. For many standard cases, Gaussian quadrature
rules are well known and implemented in many statistical software packages.

In the case of multidimensional z, Gaussian quadrature can be extended by
the product rule as discussed by Tauchen and Hussey (1991). Let i = [i1, ..., iD]
denote the vector of precision indecees for each dimension. The product rule can
be written as

TD,i[g] = (Vi1 ⊗ · · · ⊗ ViD)[g] (5.8)

=

R(i1)∑
r1=1

...

R(iD)∑
rD=1

g(zi1
r1

, ..., ziD
rD

)wi1
r1
· · ·wiD

rD
, (5.9)

where the nodes and weights are those implied by the underlying one-dimensional
quadrature rules Vi1 , ..., ViD . Usually the precision is chosen equally in all dimen-
sions, so the integral is approximated by TD,[i,i,...,i][g]. The curse of dimensionality
lies in the fact that the evaluation of this rule requires R(i)D function evaluations
which rises exponentially with D and is prohibitive for high D.

The Smolyak method proposed in this chapter extends Gaussian quadra-
ture rules to multiple dimensions with substantially less function evaluations.
This is achieved by combining the univariate rules in a “more clever” way than
the product rule. The approach goes back to Smolyak (1963) and is a gen-
eral method for multivariate extensions of univariate operators. Integration was
already discussed in the original paper and is an active research area in numer-
ical mathematics. Instead of taking the sophisticated one-dimensional rule and
näıvely extending it to multiple dimensions by a full product grid, the Smolyak
approach is specifically designed for multidimensional problems.

Given a approximation level k, the Smolyak rule linearly combines product
rules with different combinations of precision indecees i. It can be written as

AD,k[g] =
∑
i∈SD

k

(−1)D+k−|i|
(

D − 1

D + k − |i|

)
TD,i[g] (5.10)

where SD
k = {i ∈ ND : k+1 ≤ |i| ≤ k+D} and |i| = i1+ ...+iD. The sum is over

all D-dimensional vectors of natural numbers i which have a norm within certain
bounds that are governed by D and k. These vectors translate into the number
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5.3 Numerical Integration in Multiple Dimensions

of nodes for each dimension in a tensor product cubature rule. The bound on the
norm has the effect that the tensor product rules with a relatively fine sequence
of nodes in one dimension are relatively coarse in the other dimensions.

Equation 5.10 is based on a linear combination of product rules and those in
turn are based on one-dimensional Gaussian quadrature rules. Any univariate
quadrature rule can serve as a basis for this multivariate extension. A careful
choice can further reduce the computational burden. This is true if for some
i ∈ SD

k , the product rule TD,i evaluates g at the same nodes as for other vectors
in this set. Instead of repeatedly evaluating the function at the same nodes, this
can be done once and only the corresponding weights have to be aggregated. This
is possible if the nodes of the one-dimensional basis rules with a low precision
index i are also used in those with a high precision index j so that {zi

1, ..., z
i
R(i)} ⊂

{zj
1, ..., z

j
R(j)} if i < j. For a discussion of this issue also see (Novak and Ritter

1996).

Different rules for generating sets of nodes with this property for Gaussian
quadrature are discussed by Petras (2003). In the Monte Carlo experiments
for the RPL model shown below, a Smolyak cubature rule based on delayed
Kronrod-Patterson sequences as suggested by Petras is used. It is defined for
w(z) = 1 and Ω = [0, 1]D. This is adequate for the evaluation of expectations
over uniformly distributed random variables and is the extension of a Gauss-
Legendre quadrature rule. A problem that frequently occurs is the expectation
over standard normal random variables. For this case, Genz and Keister (1996)
apply the Smolyak extension to a Gauss-Hermite quadrature rule, also based on
nested sets of nodes, also see Novak and Ritter (1999).

A simple example may help to clarify the approach. Let D = k = 2. This
implies SD

k = {i ∈ N2 : 3 ≤ |i| ≤ 4} = {[1, 2], [2, 1], [1, 3], [3, 1], [2, 2]}. The
strategy of Petras (2003) is based on nested sets of nodes. This is achieved
with delayed Kronrod-Patterson sequences with R(1) = 1, R(2) = 3, and
R(3) = 7. The sets of nodes are [0.5] for i = 1, [0.11, 0.5, 0.89] for i = 2,
and [0.02, 0.11, 0.28, 0.5, 0.72, 0.89, 0.98] for i = 3. The set of nodes for lower i
are subsets of those with higher i.

For all i ∈ SD
k , Figure 5.1 shows the nodes used by the corresponding product

rule. Obviously, the nodes for i = [1, 2] and i = [2, 1] are a subset of the nodes
for i = [1, 3] and i = [3, 1], respectively. The grid for i = [2, 2] adds four distinct
nodes. The complete set of all nodes used by the Smolyak rule only consists of
the 17 nodes depicted in the lower right panel of the graph. The full product rule
with the corresponding degree of exactness would require the evaluation of the
function at the full grid of 72 = 49 nodes. In higher dimensions, this difference
becomes more dramatic. With D = 10 and k = 2, The Smolyak rule needs 1, 201
and the product rule 710 = 282, 475, 249 function evaluations.
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5 Multidimensional Integration in Estimation Problems

Figure 5.1: Construction of the Smolyak grid
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Monte Carlo integration is very general in the sense that under mild regu-
larity conditions, the approximated integral is

√
R-consistent by a law of large

numbers. This convergence rate is independent of the number of dimensions D.
However, the error given a finite number R does increase with D. Gauss quadra-
ture and Smolyak cubature rely on the approximation of g by a polynomial. For
smooth functions this allows a faster convergence than simulation (Gerstner and
Griebel 2003). For a given number of evaluations, the performance depends on
how well g can be approximated by a polynomial of the corresponding order.

Figure 5.2 shows the performance of different methods in terms of absolute er-
rors for a simple example for which a closed-form expression exists:

∫
[0,3]D

λ(z)dz,

where λ is the joint p.d.f. of D i.i.d. logistic random variables. The figure shows
results for D = 2 and D = 5. Since λ is very smooth, the cubature methods
exhibit a much faster convergence rate than simulation. The difference between
the tensor product and the Smolyak rule is apparent from a comparison between
D = 2 and D = 5: The higher the dimension, the more efficient is the Smolyak
relative to the tensor rule.
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5.4 Monte Carlo Experiments

Figure 5.2: Approximation of a Logistic c.d.f. in 5 dimensions

(a) D = 2 Dimensions (b) D = 5 Dimensions
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5.4 Monte Carlo Experiments

A number of Monte Carlo experiments help to evaluate the relative perfor-
mance of the numerical integration algorithms. Different random parameters
logit (RPL) models as discussed in section 5.2 are implemented. The models are
specified for N individuals with T choices between J alternatives each, where
each alternative is characterized by K properties. In most model specifications,
the K individual taste parameters are normally distributed across the population
with mean µ, variance σ2, and zero covariance. Below also results for uniformly
distributed taste levels are reported in order to test the sensitivity of the results
with respect to the specification of the distribution.

As a starting point, a reference model is specified with N = 1000, T =
5, J = 5, K = 10, µ = 1, and σ = 0.5. Then each of these numbers is
varied separately to demonstrate their impact on the approximation errors of
the different methods. For each of these settings, estimates were obtained for
100 artificial data sets. The properties of the alternatives xitj were drawn from
a standard uniform distribution. The model parameters µ and σ were estimated
for each data set.

In order to approximate the integral in equation 5.4 with normally distributed
βi by Gauss-Hermite quadrature, it has to be expressed in terms of standard
normal random variables. This can be easily done by a change of variables:∫

RK

P ∗
i (βi)fβ(βi; µ, σ) dβi =

∫
RK

P ∗
i (µ + L(σ)ei)) φK(ei) dei, (5.11)
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5 Multidimensional Integration in Estimation Problems

where L is the Cholesky factorization of the covariance matrix of βi and φK

denotes the joint p.d.f. of K i.i.d. standard normal random variables.

Two simulation-based and two Smolyak-based estimators are implemented
and compared in terms of performance. In applications of the RPL models,
the predominant method for estimation is maximum simulated likelihood. The
pseudo-random Monte Carlo simulation (PRMC) method uses random numbers
and the modified latin hypercube sampling simulation (MLHS) method uses the
antithetic quasi random numbers suggested by Hess, Train, and Polak (2005)
for the RPL model. In addition, two versions of Smolyak-based cubature for the
approximation of the likelihood contributions discussed in section 5.3 are imple-
mented. In the first part, results from the Genz and Keister (1996) Smolyak
cubature (GKSC) rules for the integration over Gaussian distributions are re-
ported, since equation 5.11 has the form required for this method. In addition,
results obtained by the Petras (2003) Smolyak cubature (PSC) rules are reported
to test for the sensitivity of the results with respect to the choice of the cubature
rule. Both were discussed in section 5.3.

The maximization algorithm for the likelihood function does not affect the
relative performance of the estimators based on different numerical integration
rules. The standard Newton method with numerically approximated gradients
and a BHHH approximation of the Hessian works fine in this application and
was used for all estimates.

Reference Model

Figure 5.3 shows the results for the reference model. The performance measure
on the ordinate is a relative root mean squared error. Given a certain number of
nodes at which the functions are evaluated, the parameters were estimated for
100 simulated data sets using all three methods. For both parameters µ and σ,
the mean squared errors were calculated over the 100 replications. They were
then normalized by the respective variance of the best performing method with
the maximal number of function evaluations. This makes the MSEs of both
parameters comparable between each other and across different model specifica-
tions.

The number of 100 replications with different data sets is sufficient for con-
clusive comparisons. In Figure 5.3, the remaining randomness is visualized with
error bars indicating the 95% confidence intervals for respective result. They
were generated by resampling from the estimated parameters with replacement
and recalculating the performance measure for each of the samples.
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5.4 Monte Carlo Experiments

Figure 5.3: Monte Carlo Results: Reference Model
N = 1000, T = 5, J = 5, K = 10, µ = 1, σ = 0.5
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Table 5.1 shows the same data, but the results are relative to GKSC with
the same number of function evaluations. The confidence intervals take correla-
tions of the results into account. The results are striking. For a large number of
function evaluations R = 1201, all methods perform equally well. But for mod-
erate and small numbers of evaluations, there are enormous differences. While
the Smolyak cubature method only needs 21 evaluation to achieve a negligible
approximation error, the error of MLHS and PRMC is higher by a factor of
1.9 and 3.4, respectively. Put differently: The error of GKSC with 21 function
evaluations is lower than the error of MLHS with 201 and the error of PRMC
with 1201 evaluations.

Table 5.1: Monte Carlo Results: Reference model

RRMSEGKSC
RRMSEPRMC

RRMSERRMSE

RRMSEMLHS

RRMSERRMSE

R est. 95% CI est. 95% CI est. 95% CI
21 1.04 0.98–1.13 3.40 3.04–3.87 1.90 1.73–2.11

201 1.03 1.00–1.08 1.22 1.13–1.33 1.05 1.01–1.10
1201 1.03 1.00–1.08 1.04 1.01–1.06 1.01 0.99–1.02
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5 Multidimensional Integration in Estimation Problems

Varying the Number of Integral Dimensions K

In the following, the results are discussed for similar models in which the pa-
rameters of the data generating process are varied. One of the most important
parameters is the number K of characteristics defining each of the alternatives,
since it equals the dimension of the integral. Figure 5.4 shows the results for
the dimensions K = 4 and 20. The Smolyak-based GKSC method performs well
with a very small number of replications, whereas the simulation-based methods
require significantly more computations. A closer look shows that this effect in-
creases somewhat in higher dimensions: While 201 evaluations suffice for MLHS
to catch the GKSC performance in 4 dimensions, it does not in ten and the
relative difference of PRMC is even higher. The results for other dimensions are
qualitatively the same. They are presented together with tables equivalent to
table 5.1 in the appendix.

Figure 5.4: Monte Carlo Results: Different Dimensions K
All results for: N = 1000, T = 5, J = 5, µ = 1, σ = 0.5

(a) K = 4 Dimensions (b) K = 20 Dimensions

9 33 81 201 441 1305
0.5

1

1.5

2

2.5

3

3.5

4

4.5

# function evaluations (log scale)

R
R

M
S

E

PRMC
MLHS
GKSC

41 801
0.5

1

1.5

2

2.5

3

3.5

4

4.5

# function evaluations (log scale)

R
R

M
S

E

PRMC
MLHS
GKSC

Varying the Variance σ2

Another important parameter of the data-generating process is σ. The higher
its value, the more the integrand varies with the unobserved individual tastes
over which the integration is performed. Figure 5.5 shows the results of models
with σ = 0.25 and 1. As expected, all methods perform worse with a higher σ.
The relative performances remain similar. With very high σ, all methods fail to
give reasonable results.
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5.4 Monte Carlo Experiments

Figure 5.5: Monte Carlo Results, Differences by σ
All results for: N = 1000, T = 5, J = 5, K = 10, µ = 1

(a) σ = 0.25 (b) σ = 1
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Other Variations: N , T , J , and µ

The number N of independent observations corresponds to the number of inte-
grals to be solved for each likelihood evaluation. With a higher N , random fluc-
tuations of the approximation error “average out”, but a systematic bias remains.
This explains the results shown in Figure 5.6 which might be counter-intuitive at
first sight: the higher N , the worse do the simulation-based approaches perform
relative to Smolyak cubature. With rising N , the variance of the simulation-
based estimators decreases, also relative to the sampling variance. But the bias
is largely unaffected by N and since the results are expressed in terms of the
sampling variance, this drives the MSE up.

Variations of the number of alternatives J or the number of individual choice
situations T give similar results. The more data, the higher is the advantage of
Smolyak-based cubature over simulation. The parameter µ does not have any
impact on the performance of the approximation methods. Loosely speaking, it
merely shifts the function to be integrated. These and other results are shown
in the appendix.
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5 Multidimensional Integration in Estimation Problems

Figure 5.6: Monte Carlo Results, Differences by N
All results for: T = 5, J = 5, K = 10, µ = 1, σ = 0.5

(a) N = 500 (b) N = 2000
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Taste Distributions and the Cubature Rules

The original formulation of the model with normally distributed taste levels sug-
gests the Genz/Keister cubature method, since it is appropriate for expectations
over normally distributed random variables. But the problem can also be re-
stated by another change of variables to become an expectation over standard
uniform random variables. The integral in equation 5.11 can be rewritten as

∫
RK

P ∗
i (µ + L(σ)ei)) φK(ei) dei =

∫
[0,1]K

P ∗
i (µ + L(σ)Φ(ui))) dui, (5.12)

where Φ denotes the element-wise standard normal c.d.f. This is the form of inte-
gral that the Smolyak cubature method of Petras (2003) requires. The same idea
can be applied vice versa: if the model specifies βi to be uniformly distributed,
the Petras method can be applied directly and the Genz/Keister method requires
a change of variables.

Figure 5.7 compares the performance of both methods with the simulation
estimators for these different model specifications. The Genz/Keister rule per-
forms slightly better than Petras in the normal case and slightly worse in the
uniform case. But the differences are insignificant and both methods clearly out-
perform the simulation-based estimators. This evidence suggests that the choice
of the Smolyak cubature method is of minor importance for our application.

102



5.5 Conclusions

Figure 5.7: Monte Carlo Results: Petras (2003) vs. Genz/Keister (1996)

All results for: N = 1000, T = 5, J = 5, K = 10, µ = 1, σ = 0.5

(a) Normal βi (b) Uniform βi
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5.5 Conclusions

Multidimensional integrals are prevalent in econometric estimation problems.
Only for special cases, closed-form solutions exist. With a flexible model spec-
ification, the researcher frequently has to resort to numerical integration tech-
niques. For one-dimensional integrals, Gaussian quadrature is known to be a
powerful tool. Its most straightforward extension to multiple dimensions involves
full tensor products of the one-dimensional rules. This implies computational
costs that rise exponentially with the number of dimensions, making it infeasible
for more than four or five dimensions.

The development of simulation techniques made numerical integration avail-
able in general settings. This inspired further development of models for which
estimation was previously infeasible. One important example is the mixed or
random parameters logit (RPL) model which became one of the most widely
used discrete choice models in applied work in recent years. While simulation
techniques provide a powerful and flexible approach, they often still require a lot
of evaluations of the integrand until the approximation error becomes negligible.
Thereby they often impose substantial computational costs.

An intuitive explanation of the advantage of quadrature over simulation in
low dimensions is that it efficiently uses the smoothness of the integrand to re-
cover its shape over the whole domain. This chapter proposes a strategy to
extend this approach and its advantages to multiple dimensions with dramati-
cally less computational costs than the full tensor rule. It is based on the gen-
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5 Multidimensional Integration in Estimation Problems

eral method to extend univariate operators to multivariate settings by Smolyak
(1963) which is also appropriate for problems like function approximation.

Extensive Monte Carlo evidence is presented for the RPL model. The re-
sults show that the computational costs to achieve a negligible approximation
error are much lower with the Smolyak-based approaches than with simulation
estimators. Since they only depend on the dimension of the integral and the
desired approximation level, the nodes at which to evaluate the integrand and
weights can be calculated once or obtained from external sources. Given these,
the Smolyak-based methods are straightforward to implement since they only
involve calculating weighted averages of integrand values.

Recent research in numerical mathematics suggests possible refinements of
the Smolyak approach. First, instead of predefining an approximation level
in terms of the number of nodes, a critical value of the approximation error
which is easily measured can be specified and the required number of function
evaluations can be determined automatically. Second, the approximation does
not have to be refined in each dimension symmetrically. It is also possible to
invest more effort in the most relevant dimensions. These dimensions can also be
determined automatically in an adaptive fashion (Gerstner and Griebel 2003).
Third, quadrature-based methods can handle functions that are not well-behaved
for example due to singularities by piecewise integration. These areas can also
be determined in an automated fashion. The exploration of the usefulness of
these extensions is left for further research.

Well-behaved integrands are typical in econometric analyses. For these,
Smolyak-based cubature provides an efficient and easily applicable alternative to
simulation. The efficiency gains can be invested in a reduction of computer time,
an improvement of the estimates, and/or a more flexible model specification.
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5.6 Appendix: Further results

This appendix presents further results mentioned but not shown in the main
text.

Table 5.2: Monte Carlo Results: Differences by K: 2–10

RRMSEGKSC
RRMSEPRMC

RRMSERRMSE

RRMSEMLHS

RRMSERRMSE

R est. 95% CI est. 95% CI est. 95% CI
Dimension K = 2

5 1.01 0.99–1.05 2.67 2.38–3.05 1.85 1.63–2.12
9 1.01 1.00–1.05 2.31 2.03–2.67 1.22 1.12–1.35

17 1.01 1.00–1.05 1.66 1.49–1.89 1.07 1.01–1.14
45 1.01 1.00–1.05 1.25 1.14–1.40 1.03 1.01–1.07

401 1.01 1.00–1.05 1.02 0.99–1.06 1.00 0.99–1.01
961 1.01 1.00–1.05 1.00 0.98–1.02 1.00 0.99–1.00

Dimension K = 4
9 0.99 0.98–1.03 3.10 2.72–3.60 1.71 1.52–1.95

33 1.00 1.00–1.03 1.55 1.40–1.72 1.10 1.03–1.18
81 1.00 1.00–1.03 1.23 1.13–1.35 1.02 0.99–1.06

201 1.00 1.00–1.03 1.08 1.02–1.13 1.00 0.99–1.02
441 1.00 1.00–1.03 1.01 0.98–1.03 1.00 0.99–1.02

1305 1.00 1.00–1.03 1.00 0.98–1.01 1.00 0.99–1.00
Dimension K = 6

13 0.98 0.96–1.02 3.03 2.67–3.53 1.52 1.39–1.70
73 1.00 1.00–1.03 1.38 1.26–1.52 1.03 0.98–1.09

257 1.00 1.00–1.03 1.07 1.01–1.14 1.01 0.99–1.02
749 1.00 1.00–1.03 1.02 0.99–1.05 1.00 0.99–1.01

2021 1.00 1.00–1.03 1.01 0.99–1.02 1.00 0.99–1.00
Dimension K = 8

17 1.00 0.97–1.05 3.64 3.24–4.14 1.87 1.69–2.10
129 1.00 1.00–1.03 1.35 1.25–1.47 1.00 0.95–1.06
609 1.00 1.00–1.03 1.04 1.01–1.08 1.00 0.98–1.01

2193 1.00 1.00–1.03 1.01 0.99–1.02 1.00 0.99–1.01
Dimension K = 10

21 1.04 0.98–1.12 3.40 3.04–3.89 1.90 1.72–2.12
201 1.03 1.00–1.08 1.22 1.14–1.33 1.05 1.01–1.10

1201 1.03 1.00–1.08 1.04 1.01–1.06 1.01 0.99–1.02
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Table 5.3: Monte Carlo Results: Differences by K: 12–20

RRMSEGKSC
RRMSEPRMC

RRMSERRMSE

RRMSEMLHS

RRMSERRMSE

R est. 95% CI est. 95% CI est. 95% CI
Dimension K = 12

25 0.96 0.90–1.03 3.36 3.07–3.74 1.94 1.78–2.14
289 1.02 1.00–1.05 1.10 1.00–1.19 0.97 0.94–1.02

2097 1.00 1.00–1.03 1.00 0.98–1.02 1.00 0.99–1.02
Dimension K = 14

29 0.96 0.91–1.03 3.28 2.95–3.73 1.86 1.67–2.10
393 1.01 0.99–1.04 1.03 0.95–1.10 0.98 0.92–1.03

3361 1.00 1.00–1.02 1.00 0.98–1.02 1.01 1.00–1.03
Dimension K = 16

33 0.96 0.89–1.07 3.29 2.93–3.74 1.97 1.79–2.20
513 1.00 1.00–1.03 1.05 0.96–1.14 1.00 0.95–1.06

Dimension K = 18
37 1.04 0.93–1.19 3.66 3.29–4.16 2.14 1.95–2.41

649 1.00 1.00–1.03 1.03 0.97–1.10 0.98 0.92–1.04
Dimension K = 20

41 1.03 0.94–1.15 3.14 2.82–3.52 1.97 1.82–2.15
801 0.96 0.91–1.01 1.10 1.05–1.15 1.05 0.99–1.10

10001 1.00 1.00–1.02 1.00 0.98–1.03 1.00 0.97–1.03

Table 5.4: Monte Carlo Results: Differences by σ

RRMSEGKSC
RRMSEPRMC

RRMSERRMSE

RRMSEMLHS

RRMSERRMSE

R est. 95% CI est. 95% CI est. 95% CI
σ = 0.25

21 1.00 0.89–1.14 1.53 1.38–1.72 1.03 0.94–1.14
201 0.99 0.92–1.08 1.01 0.94–1.09 0.99 0.96–1.02

1201 1.00 1.00–1.03 0.97 0.93–1.01 1.02 0.99–1.04
σ = 0.5

21 1.04 0.98–1.12 3.40 3.04–3.89 1.90 1.72–2.12
201 1.03 1.00–1.08 1.22 1.14–1.33 1.05 1.01–1.10

1201 1.03 1.00–1.08 1.04 1.01–1.06 1.01 0.99–1.02
σ = 1

21 2.76 2.52–3.11 2.31 2.23–2.39 1.75 1.69–1.80
201 1.35 1.24–1.50 1.28 1.22–1.35 1.09 1.03–1.14

1201 1.08 1.03–1.16 1.08 1.04–1.12 1.05 1.01–1.09
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5.6 Appendix: Further results

Table 5.5: Monte Carlo Results: Differences by N

RRMSEGKSC
RRMSEPRMC

RRMSERRMSE

RRMSEMLHS

RRMSERRMSE

R est. 95% CI est. 95% CI est. 95% CI
N = 200

21 0.95 0.84–1.09 1.44 1.28–1.64 1.10 1.01–1.21
201 0.99 0.95–1.05 0.98 0.92–1.05 0.98 0.93–1.04

1201 1.00 1.00–1.03 0.99 0.95–1.02 0.97 0.96–0.99
N = 500

21 1.01 0.98–1.07 2.12 1.83–2.57 1.38 1.20–1.64
201 1.02 1.01–1.06 1.07 0.96–1.23 0.98 0.93–1.04

1201 1.02 1.01–1.06 0.95 0.91–1.00 0.99 0.98–1.01
N = 1000

21 1.04 0.98–1.12 3.40 3.04–3.89 1.90 1.72–2.12
201 1.03 1.00–1.08 1.22 1.14–1.33 1.05 1.01–1.10

1201 1.03 1.00–1.08 1.04 1.01–1.06 1.01 0.99–1.02
N = 2000

21 1.06 1.00–1.15 4.58 4.16–5.13 2.36 2.17–2.63
201 1.03 1.00–1.08 1.33 1.24–1.42 1.08 1.03–1.13

1201 1.03 1.01–1.08 1.04 1.02–1.07 1.00 0.99–1.02
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5 Multidimensional Integration in Estimation Problems

Figure 5.8: Monte Carlo Results, Differences by T
All results for: N = 1000, J = 5, K = 10, µ = 1, σ = 0.5

(a) T = 2 (b) T = 3
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(c) T = 5 (d) T = 10
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5.6 Appendix: Further results

Table 5.6: Monte Carlo Results: Differences by T

RRMSEGKSC
RRMSEPRMC

RRMSERRMSE

RRMSEMLHS

RRMSERRMSE

R est. 95% CI est. 95% CI est. 95% CI
T = 2

21 0.93 0.80–1.10 1.61 1.40–1.85 0.97 0.87–1.10
201 1.01 0.86–1.19 0.96 0.89–1.04 0.92 0.87–0.98

1201 1.01 1.00–1.05 1.01 0.97–1.05 1.01 0.99–1.03
T = 3

21 0.96 0.93–1.01 2.18 1.88–2.64 1.36 1.20–1.59
201 1.01 1.00–1.04 1.01 0.94–1.09 0.97 0.92–1.03

1201 1.00 1.00–1.03 0.99 0.96–1.03 1.00 0.99–1.02
T = 5

21 1.04 0.98–1.12 3.40 3.04–3.89 1.90 1.72–2.12
201 1.03 1.00–1.08 1.22 1.14–1.33 1.05 1.01–1.10

1201 1.03 1.00–1.08 1.04 1.01–1.06 1.01 0.99–1.02
T = 10

21 1.37 1.27–1.52 3.32 2.94–3.72 2.04 1.81–2.27
201 1.31 1.21–1.46 1.12 1.04–1.21 1.04 0.99–1.09

1201 1.31 1.22–1.46 0.99 0.98–1.01 0.99 0.98–1.01
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5 Multidimensional Integration in Estimation Problems

Figure 5.9: Monte Carlo Results, Differences by J
All results for: N = 1000, T = 5, K = 10, µ = 1, σ = 0.5

(a) J = 2 (b) J = 3
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(c) J = 5 (d) J = 10
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5.6 Appendix: Further results

Table 5.7: Monte Carlo Results: Differences by J

RRMSEGKSC
RRMSEPRMC

RRMSERRMSE

RRMSEMLHS

RRMSERRMSE

R est. 95% CI est. 95% CI est. 95% CI
J = 2

21 0.94 0.80–1.14 2.06 1.82–2.37 1.15 1.03–1.29
201 1.01 0.97–1.06 1.00 0.92–1.09 0.99 0.92–1.05

1201 1.00 1.00–1.03 0.98 0.95–1.02 1.00 0.98–1.02
J = 3

21 0.93 0.90–0.98 2.69 2.36–3.17 1.50 1.34–1.72
201 1.01 1.00–1.04 1.08 0.99–1.18 0.96 0.91–1.02

1201 1.00 1.00–1.03 1.01 0.98–1.04 1.00 0.98–1.02
J = 5

21 1.04 0.98–1.12 3.40 3.04–3.89 1.90 1.72–2.12
201 1.03 1.00–1.08 1.22 1.14–1.33 1.05 1.01–1.10

1201 1.03 1.00–1.08 1.04 1.01–1.06 1.01 0.99–1.02
J = 10

21 0.99 0.95–1.05 3.58 3.22–4.05 2.04 1.87–2.25
201 1.01 1.00–1.04 1.16 1.08–1.24 1.00 0.96–1.04

1201 1.01 1.00–1.04 1.01 0.99–1.03 1.00 0.99–1.01
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5 Multidimensional Integration in Estimation Problems

Figure 5.10: Monte Carlo Results, Differences by µ
All results for: N = 1000, T = 5, J = 5, K = 10, σ = 0.5

(a) µ = 0 (b) µ = 0.5
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(c) µ = 1 (d) µ = 2
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5.6 Appendix: Further results

Table 5.8: Monte Carlo Results: Differences by µ

RRMSEGKSC
RRMSEPRMC

RRMSERRMSE

RRMSEMLHS

RRMSERRMSE

R est. 95% CI est. 95% CI est. 95% CI
µ = 0

21 0.99 0.96–1.05 3.13 2.79–3.57 1.75 1.58–1.96
201 1.01 1.00–1.04 1.10 1.03–1.17 1.03 1.00–1.07

1201 1.01 1.00–1.03 1.00 0.99–1.02 1.01 1.00–1.02
µ = 0.5

21 1.03 0.98–1.12 3.53 3.16–4.00 1.94 1.77–2.15
201 1.01 1.00–1.06 1.19 1.10–1.30 1.03 0.99–1.07

1201 1.02 1.00–1.06 1.02 1.00–1.05 1.02 1.00–1.03
µ = 1

21 1.04 0.98–1.12 3.40 3.04–3.89 1.90 1.72–2.12
201 1.03 1.00–1.08 1.22 1.14–1.33 1.05 1.01–1.10

1201 1.03 1.00–1.08 1.04 1.01–1.06 1.01 0.99–1.02
µ = 2

21 0.98 0.94–1.04 3.29 2.96–3.71 1.79 1.61–2.00
201 1.01 1.00–1.04 1.25 1.13–1.39 1.02 0.97–1.06

1201 1.00 1.00–1.04 1.05 1.01–1.10 1.00 0.98–1.02
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Börsch-Supan, A. (1990): “On the Compatibility of Nested Logit Models with
Utility Maximization,” Journal of Econometrics, 43, 373–388.
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