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Non-Technical Summary

This paper presents and compares three classes of time-series models for returns of
broad-based stock indices: empirical, classical and behavioral models.

Empirical models usually have no economic foundation and have been derived from
a purely statistical reasoning. As a representative of this class the NGARCH (1,1)-
in-mean model is used. This model assumes, that the (time-varying) volatility is the
only factor that influences the stock returns.

Classical economic return models are consistent with an equilibrium with rational
expectations and von Neumann-Morgenstern utility functions. We propose a time-
series model which is consistent with a representative investor with a general HARA
utility function. This type of utility function allows for decreasing and increasing
(relative) risk aversion. Thus, for example, an investor with decreasing relative risk
aversion likes to invest more in risky assets when his wealth is higher.

Finally, recent experimental studies provide evidence that people do not act
rationally and their choices often do not seem consistent with von Neumann-
Morgenstern utility functions. One of these behavioral phenomena is loss aversion.
This means, that risk aversion of an investor is not constant but increases for
negative stock returns. The classical model is augmented to account for such
behavioral aspects.

All models are tested and compared in a consistent empirical framework. We find
that the standard NGARCH (1,1)-in-mean model performs well. However, the
augmented model derived from an equilibrium model performs better for some
countries (Germany, Japan). For these two countries decreasing (relative) risk
aversion has been found, whereas for the other countries (France, UK, USA) the
relative risk aversion is constant.

But the behavioral components are not significant and, thus, do not improve the
model performance.

Future research should be devoted to the derivation of economically founded and
empirically tractable time-series models. This paper has shown, that equilibrium
return models can lead to interesting time-series models which also empirically
outperform ad-hoc specifications.
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Introduction�

Although over the past decades we have observed a tremendous interest in new
time-series models for asset returns, the geometric Brownian motion might still be
considered as the predominant model for stock prices. This is on the one hand
certainly due to the fact that the Black-Scholes option pricing model is derived from
the assumption that the underlying asset is governed by a geometric Brownian
motion, but on the other hand the geometric Brownian motion is also empirically
tractable and it has a sound economic foundation. This makes it very interesting for
researchers to use. However, there is empirical evidence against the geometric
Brownian motion and more flexible models perform much better. In empirical
applications researchers often use “statistical models”. These purely empirically
motivated time-series models as (G)ARCH models or empirically motivated multi-
factor models usually fit the data better. However, these stochastic processes do not
only lack an equilibrium foundation but some of them have been even proved to be
inconsistent with such an equilibrium. The so-called viability discussion (see, e.g.
Bick, 1990 and He and Leland, 1993) has shown that widely used time-series
models as the Ornstein-Uhlenbeck process and the constant elasticity of variance
model, originally proposed by Cox and Ross (1976), are not viable models of the
market portfolio in a representative investor economy. Other empirically motivated
time-series models as the long-memory processes are in general not arbitrage-free
(see, e.g. Beran, 1994, Beran, 1999, Rogers, 1997, and Beran et al., 2002). Recently,
research focusing on behavioral aspects of asset pricing has been very popular.
These models try to explain asset return characteristics by deviations from the
classical assumption of rational expectations and von Neumann-Morgestern utility
functions. Kahneman and Tversky (1979), and more recently Benartzi and Thaler
(1995), Barberis and Huang (2001) and Barberis, Huang and Santos (2001) argue in
favor of loss aversion. But also mental accounting, overconfidence and many other
“behavioral explanations” for asset return characteristics are used. Thus, the current
state of the literature leaves us basically with the choice between three classes of
models: empirical, classical and behavioral.

This paper does not attempt to resolve this problem by providing a unifying model
but we aim to bridge the gap between these classes of models. We start by deriving
in a representative investor economy with rational expectations and HARA-utility an
extension to the geometric Brownian motion. We compare this model to a standard
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NGARCH-in-mean model1 and to some behavioral ad-hoc specifications. These
behavioral models capture the loss aversion phenomenon by relating the risk
premium, and hence the representative investor’s risk aversion, to past returns, i.e.
recent gains and losses.

The empirical evidence against the geometric Brownian motion as a model for index
returns and returns of individual stocks is compelling. Many studies document
heteroskedasticity of asset returns and the asymmetric volatility phenomenon, i.e.
negative correlation between asset returns and volatility. Thus empirical studies
document non constant volatility of asset returns, this indeed is inconsistent with the
geometric Brownian motion as a model for asset prices.2 Moreover, asset returns
seem to be weakly predictable. Many studies document positive serial correlation of
asset returns on shorter horizons and negative serial correlation on longer horizons.
Related to this are the predictive power of financial ratios and the success of trading
strategies as momentum strategies and the Winner-Loser Effect. Though many
studies find return predictability it is still controversial whether it is economically
significant or simply a statistical artifact.3 However, there is compelling empirical
evidence against the geometric Brownian motion and researchers have proposed
uncountable many alternative, mainly empirically motivated, time-series models.
The class of (G)ARCH models has been most successful. Especially the NGARCH
model captures both aspects, the persistence in return volatility and the negative
correlation with asset returns.

In addition to these empirically motivated time-series models we derive an
alternative equilibrium asset price process which is consistent with HARA-utility of
the representative investor. This process is interesting for several reasons. First, from
a theoretical point of view, it is an interesting extension of the geometric Brownian
motion since it does not imply constant elasticity of the asset specific pricing kernel
but is consistent with declining, constant and increasing elasticity of the asset
specific pricing kernel. To say it in other words, in a representative investor
economy where the asset specific pricing kernel is equal to the standardized
marginal utility of the representative investor, the geometric Brownian motion
implies constant relative risk aversion of the representative investor (see Bick, 1990,
Franke, Stapleton and Subrahmanyam, 1999, Camara, 2001, and Camara, 2003).
The extension proposed in this paper allows also for decreasing and increasing
relative risk aversion. Secondly, as will be shown, this stochastic process is more
                                          
1 NGARCH is the abbreviation of nonlinear asymmetric GARCH. The model was developed by

Engle and Ng (1993) and is due to its flexible news impact curve a suitable model for stock
markets. The NGARCH-model is also often used for option pricing models, see e.g. Duan
(1995).

2 For an overview, see for example Ghysels, Harvey and Renault (1996).
3 For an overview, see for example Cochrane (2001).
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flexible than the geometric Brownian  motion since it allows for non constant
volatility and non constant drift. Finally, this equilibrium based stochastic process is
the same as the displaced diffusion which has been proposed by Rubinstein (1983).
However, Rubinstein did not derive the process in an equilibrium and he proposed
the displaced diffusion as a model for single stocks and not as a model for the
market portfolio. Hence, the derivation in this paper provides an equilibrium
justification to use the displaced diffusion as an alternative model for the market
portfolio. Finally, as a third class of models we consider some ad-hoc specifications.
These stochastic processes account for some sort of loss aversion. In contrast to the
equilibrium based models, the risk premium of these models depends also on past
returns. Hence, if the market went up, i.e. investors gained, the risk premium might
be different than if investors suffered losses.

We analyze the empirical performance of the models for the inflation adjusted
monthly total return MSCI indices for USA, United Kingdom, Germany, France and
Japan for the time period January 1972 to March 2003. We find that the standard
NGARCH-in-mean model performs quite well. However, the equilibrium based
displaced diffusion with a heteroskedastic error term fits better for at least two
indices. Hence, based on our results we would suggest the displaced diffusion with
heteroskedastic error term to model broad-based market indices and to test for
significant deviations from this model. The NGARCH-in-mean model which is
nested in this model seems to be a good alternative.

The organization of the paper is as follows. The following section presents the
alternative time-series models. In Section 2 the data and the methodology are
presented. Empirical results are shown in Section 3. Section 4 concludes.

1 Alternative Return Models

1.1 The equilibrium return model
The predominant model for asset prices S is the geometric Brownian motion

     0,   0 ,   0t t t tdS S dt S dW t T S�� � � � � �             (1)

where �  and �  are constant parameters and W is a one-dimensional standard
Brownian motion defined on a filtered probability space � �, , ,tF F P�  where
� � [0, ]t t T
F

�

 is the filtration generated by W augmented by all the F-null sets, with

TF F� . It has been shown, that this process implies constant elasticity of the asset
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specific pricing kernel which equals 2

�

�
.4 In this case, the representative agent’s

utility function has constant relative risk aversion, i.e. 

� �

� �

� �

2

2
constant

U x
xRRA x x

U x
x

� ��
� �

�� � �� �
�� �

� �
�� 	

.

Since the utility function with constant relative risk aversion is a special case of the
HARA-class, a natural generalization would be a stochastic process which is
consistent with a general HARA-utility function, i.e.

               � �
1 ,  0,   1,  .

1
xU x

�

�
� � � �

� �

� ��
� � � � �� 	

�
 �
� (2)

The HARA-class of utility functions as defined in (2) is the predominant class of
utility functions in financial economics.5 Thus, if one wants to compare popular
empirical time-series models to an equilibrium founded time-series model, it is
natural to consider asset price processes which are consistent with equation (2).

Note that although the HARA-class of utility functions is very widespread in
financial economics and its appealing property that it captures declining, constant
and increasing relative risk aversion, it has the drawback that it is only defined over

the domain 0.
1

x
�

�
� �

�

 Moreover 1� �  implies an upper bound for wealth. This

case is not very sensible in asset pricing since asset price distributions would have to
be bounded from above. Hence, for the further derivation we also restrict 1� � . In
this case, we have to impose the restriction on wealth � �1 .x � �� � �  It follows that
for 0� �  (increasing relative risk aversion) and 0� �  (declining relative risk
aversion) this lower bound is negative or positive, respectively. To avoid any
problems of inconsistency we will therefore derive equilibrium asset prices for an
information process which generates a terminal distribution of the asset price with
lower bound � �1 .� �� �  An information process I characterizes the conditional
expectations of a representative investor about the value of the shares at time T.
Since this process characterizes expectations, it has to be a martingale in a model
with rational expectations. Starting from an information process to derive asset
                                          
4 See for example Bick (1990).
5 To be precise, we also exclude the case of an infinite � . This excludes also the negative

exponential utility function.
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prices is a parsimonious way of modeling the information structure in the economy.
It avoids modeling a complete economy with assumptions on production functions
and information flow (for detailed discussions of information processes see,
Brennan and Xia, 2003, Franke, Stapleton and Subrahmanyam, 1999, and Lüders
and Peisl, 2001). Assuming that asset prices are governed by a geometric Brownian
motion implies that the information process is also governed by a geometric
Brownian motion, i.e.

� �, 0 ,t T tI E S F t T� � � (3)

is governed by

0, 0 ,   0t t tdI I dW t T I�� � � � (4)

where �  is a constant parameter. This stochastic process I however allows for
terminal wealth � �0,T TI S� � � . To avoid terminal wealth � �1TS � �
 � �  we
assume that investors’ expectations are governed by

� �ˆ ˆ1 , 0 ,   t t T TI I t T I S� �� � � � � � (5)

Since in this study we concentrate on broad-based total return indices we can focus
on the pricing of assets without dividend payments. In this case, the price of the
asset at time t is the expected future value of the asset under the equivalent
martingale measure Q, discounted at the risk-free interest rate r

exp , 0 .
t

Q
t t t

t

S E rds S F t t T
�

�
�

�

�

� �� �
� � � � � �	 
� �

	 

 �� �
� (6)

Since equation (6) is true for any 0 t t T�� � � �  it holds also for time T with T̂ TI S� ,

ˆexp , 0 .
T

Q
t T t

t

S E rds I F t T
� �� �

� � � �� 	
 �
� 	� 
� �

� (7)

Equation (7) can be rewritten in the usual pricing kernel notation. For a constant
interest rate r equation (7) can then be written as

� �� � ,
ˆexp , 0 ,t T t T tS r T t E I F t T� �� � � � � �

� �
(8)
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with 0,
,

0,

T
t T

t

�
� �

�
 the forward pricing kernel and � �0, 0,t T tE F� � � . In a

representative investor economy the pricing kernel is equal to the standardized
marginal utility, i.e.

� �

� �
0,

T

T
T

T

T

U S
S

U S
E

S

�

�
� �

�� �
� �

�� 	

. (9)

Inserting equations (2) and (9) into equation (8) yields6

� �� � � �� �� � � �2exp exp 1 1t tS r T t Y T t� � � �� �� � � � � � �� � (10)

It follows from equation (10) that we have the following return-model

� �

� �� �� �
� �
� �� �

� �

� �

1

2 2
1

1

1
exp 1 1ln 1

21
exp

with 0,1 .

t

t

t

t

S
r T t

r
S

r T t

N

� �

� � � �
� �

�

�

�

�

� �� ��
� �� ��

� �� �� �
� �� � 	 � � � �
� �� ��

� � �� �� ��� �� �� �

�

(11)

This can be rewritten as

� � � �� �
� �� �

� �

� �� �� �

1 2
1

1

1 exp 1ln
21

with 0,1 ,

and 
exp 1

t
t

t

t

S r
r

S

N

r T t

� �
� � �

� �

�

�
�

�

�

�

� �� � � �
� � � �� � � �� �� � � 	� 	

�
� �

� (12)

Of course even this extension of the standard Black-Scholes economy to non-
constant elasticity of the pricing kernel is a very simplified model. At least one
would argue that the information process should have stochastic volatility as argued
for example by Lüders and Peisl (2001). Introducing stochastic volatility of the
                                          
6 A proof is given in the appendix. This result is also derived in Lüders (2002).
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information process would capture the phenomenon that the information flow is
more intense in certain periods than in others and hence investors’ uncertainty about
the fair value of the assets is higher during certain periods. A straight-forward way
to account for this randomness in uncertainty would be to model the volatility term
by a GARCH process. We choose the NGARCH(1,1) model since it nests the
GARCH(1,1) model and it makes it possible to test for the asymmetric component
i.e. the leverage effect in the volatility of stock returns. This yields the following
return model

� � � �� �
� �� �

� �

� �

1 2
0 1 1

1

22 2
1 0 1

1 exp 1ln
21

with 0,1 and

t
t t

t

t

t t t t

S r
r

S

N

c

� �
� � � �

� �

�

� � � � � ��

�

� �

�

�

� �� � � �
� � � � �� � � �� �� � � 	� 	

� � � �

� (13)

In the volatility equation 0c � causes an asymmetric news impact curve.7 In case of
0c 
 the volatility of the stock returns exhibits a leverage effect i.e. a negative t�  has

a higher impact on 2
1t�

�
than a positive value. The mean equation of (13) contains, in

addition, the constant term 0� . In equation (12) the constant of the mean is
represented by 2�� , but as the volatility in (13) is time-varying an additional
constant term is needed.

Equations (12) and (13) are our “equilibrium return models” which we might call the
HARA-processes or displaced diffusions.8 Recent research has more and more
questioned the assumptions of von Neumann-Morgenstern utility functions and
rational expectations. Therefore, in the following section we present several
specifications which take into account some of these behavioral patterns.

1.2 Behavioral models
Many articles have recently argued in favor of loss aversion, i.e. people behave
differently if they have suffered losses recently. Hence, their risk attitude does not

                                          
7 See Engle and Ng (1993).
8 Note that due to discounting, our displaced diffusion differs slightly from the version derived

by Rubinstein (1983). Note also that Camara (1999) discusses option prices in a one-period
model when the underlying is three-parameter lognormally distributed. Though Camara (1999)
does not consider stochastic processes in this one period model, the underlying is also governed
by a displaced diffusion since this generates a three-parameter lognormally distributed asset
price.
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only depend on their wealth but also on the change in their wealth level.9 One way to
account for such a behavior would be to let the required risk premium depend
negatively on past returns. Hence, if the market has raised recently, investors (the
representative investor) made profits and thus might be more willing to take further
risks, i.e. the representative investor is less risk averse. Also, if investors faced
losses recently, they require a higher risk premium to take risks which implies that
the representative investor is more risk averse. This motivates to model the risk

premium t�  as 
2

1 1 2
1 1

ln lnt t
t

t t

S S
S S

� � � �

� �

� �� �� � � �
� �� � � 	 
	 
 	 

� �� � � �� �
 �

.

If 1�  is negative, then the drift is smaller after positive past returns and higher after
negative past returns. The quadratic term is included to capture potential nonlinear
effects. 1�  represents the constant part of the risk premium which is equal to
(0.5 )��  in the equations (12) and (13). We add this “behavioral component” to our
two return models from the previous section, i.e. equation (12) and equation (13).
This yields the following two models, where we can, in addition, test for the
“behavioral components”, i.e. 1 20, 0� �� � :

� � � �� �
� �� �

� �

2
1 2

1 1 2 1
1 1

1

1 exp
ln ln ln

1

with 0,1 .

t t t
t

t tt

t

S r S Sr
S SS

N

� �
� � � � �

� �

�

�

�

� �

�

� �� �� � � �� � � �
� �� � � � 	
 � 
 �
 � 
 �
 �� � � �� 
 � 
� 
� 
 � �

�

     (14)

� � � �� �
� �� �

� �

� �

2
1 2

0 1 1 2 1 1
1 1

1

22 2
1 0 1

1 exp
ln ln ln

1

with 0,1 and

t t t
t t

t tt

t

t t t t

S r S Sr
S SS

N

c

� �
� � � � � �

� �

�

� � � � � ��

�

� �

� �

�

�

� �� �� � � �� � � �
� �� � � � � 	
 � 
 �
 � 
 �
 �� � � �� 
 � 
� 
� 
 � �

	 � � �

� (15)

Hence, our behavioral model (15) nests the models (12), (13) and (14). Finally, if �
is zero, model (15) simplifies to

                                          
9 See Barberis and Huang (2001) and Barberis, Huang and Santos (2001).
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� �
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2
21

0 1 1 2 1 1
1 1

1

22 2
1 0 1

ln ln ln

with 0,1 and

t t t
t t

t t t

t

t t t t

S S Sr
S S S

N

c

� � � � � �

�
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�

� �

� �

�

�

� �� �� � � � � �
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 �
 � 
 � 
 �
� �� 
 � 
 � 
� 
� �

	 � � �

� (16)

which would be the purely “behavioral model”.

1.3 Empirical models
In the last two sections we proposed several behavioral respectively equilibrium
models. In empirical research on asset pricing, statistical models for return processes
have been prevalent. Especially the (G)ARCH and (G)ARCH-in-mean models are
very common and researchers have been quite successful in fitting these models to
asset returns. As, for example, the exponential GARCH (EGARCH) of Nelson
(1991), the asymmetric GARCH (AGARCH)  (see Engle and Ng (1993)) and the
GJR-GARCH (see Glosten, Jagannathan and Runkle (1993)) the NGARCH-model
is particularly designed to model an asymmetric behavior of volatility with regard to
return innovations, particularly the so called leverage effect. Therefore we also fit a
pure NGARCH(1,1)-in-mean model

� �

� �

21
0 1 1 1

1

22 2
1 0 1

ln

with 0,1 and

t
t t

t

t

t t t t

S r
S

N

c

� � � �

�

� � � � � ��

�

� �

�

�

� �
� � � �� �

� �

� 	 � 	

� (17)

which we will also compare to the models proposed in the two previous sections. In
section 3 we report inter alia the results of Likelihood Ratio-tests that compare the
six models (12)-(17) and show which of them has the best fit regarding the empirical
behavior of the inflation adjusted stock indices.

2 Data and Methodology
For the estimations we use inflation adjusted stock indices to measure the real
wealth of the representative investor.10 An economic justification for the use of the
real country stock indices as a representation of the real wealth of the investors is the
                                          
10 Approximating representative investor’s wealth by the value of a broad based stock index is

very common, see e.g. also Rosenberg and Engle (2002) who use the S&P500-index. For recent
critical discussions of this approximation see Camara (2001) and Camara (2003).
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well-known home bias, which means that investors prefer domestic stocks to
international stocks and, thus, hold most of their equity portfolio in domestic
assets.11 The stock indices are the country indices of MSCI (Morgan Stanley Capital
International Inc.) for France, Germany, Japan, UK and US. Hence, we consider the
five largest stock markets in the world. All indices are total return indices and, thus,
include all cash flows, for example dividends, paid to the investor. The real stock
index tS  is defined as /t t tS MSCI CPI� , where MSCI indicates the nominal country
stock index and CPI is the seasonally adjusted country specific consumer price
index from the OECD. CPIt is equal to 1.0 in the first period (January 1972). As risk
free nominal interest rate we use the money market rate from the IMF.12 This interest
rate has been converted into real terms (rt ) using the ex-post consumer price
inflation to the same month one year before. All estimations start in January 1972
and end in March 2003 which means that we use 375 months for each country.

The equations (12) to (17) are estimated using maximum likelihood (ML). As the
tables in the appendix reveal the distribution of the residuals is in all countries and
all models significantly different from the normal distribution.13 Nevertheless, we
assume normally distributed residuals in the ML-estimation and apply a pseudo- or
quasi-ML estimation and calculate robust asymptotic covariance matrices.14

In (12)-(15) the mean equations cannot be expressed in the usual form y=f(x,�),
where the dependent variable y is a function of some exogenous variables x and the
parameter vector �. Instead, the mean equation can only be expressed as
g(y,�)=f(x,�), where � � � �� �1( ) ln[ 1 exp ]tg S r� �

�
� � � � . Therefore, to receive

unbiased estimates the likelihood equation has to be augmented by the following
Jacobian term Jt:15 

                                          
11 See e.g. Carmichael and Coen (2003) for the latest developments in this field of research.
12 International Financial Statistics, line 60b.
13 The tables in the appendix exhibit the results of the Jarque-Bera test applied to the standardized

residuals.
14 See e.g. Greene (2000), chapter 11.5.6. According to Weiss (1986) a quasi-ML estimation leads

to a consistent estimation of the parameters if the equations for the (conditional) means and
variances are specified correctly. But as this estimator is inefficient in case of non-normal
standardized residuals some authors choose a distribution that takes leptokurtosis explicitly into
account, as e.g. the standardized multivariate t-distribution. However, when a distribution
different from the normal distribution is used and this distribution is not the true distribution
then the estimates are in most cases not consistent (see Newey and Steigerwald (1997)).
Therefore, we prefer to apply the (conditional) normal distribution.

15 See e.g. Greene (2000), chapter 10.3.1.
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� � � �� �
1

1 1

( ) ( )( , )
(ln ) 1 exp

t
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g g SJ y
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�
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�
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.

For the models (16) and (17) the dependent variable can be expressed directly by
1ln tS
�

 and, therefore, ( ) 1J � � . The likelihood equation to be maximized in the case
of a time-varying conditional variance (models (13), (15)-(17)) is:
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where T is the total number of observations. In case of a constant variance i.e. for the
models (12) and (14) 2

t�  has to be replaced by 2
� .

3 Empirical Results

3.1 Definitions and structure of the tables in the appendix
The results of the estimations are reported in detail in the tables (1) – (5). Each of
the five tables is divided into two parts. Part a) shows the parameter estimates of the
models (12)–(17) and some tests regarding important characteristics of the
standardized residuals, namely, tests on normality, tests on ARCH-effects and tests
on autocorrelation. The estimated parameters of the mean are: 0� , 1� , 2� ,

1 (0.5 )� �� �  and 1 (1 )� � �� � . In equation (12) and equation (14) the term 2
1� �

represents the constant of the mean equation and therefore no additional 0�  is
estimated. 1�  is the “classical” part of the risk premium whereas 1�  and 2�  are the
“behavioral”, autoregressive parts. 1�  indicates the lower bound of the asset price
distribution. If 1 0� �  the lower bound is positive (see section 1.1). The sign of 1�

gives information about the elasticity of the asset pricing kernel. For example, 1 0� �

implies declining elasticity of the pricing kernel if 1� � .

0� , 1� , �  and c  are the parameters of the variance equation. In the models (12) and
(14) only the constant variance 0�  is estimated. A significant parameter c indicates
an asymmetric reaction of the volatility on negative and positive stock return
innovations. In case of nominal stock returns the literature reports a negative c
which measures the leverage effect i.e. a stronger impact of negative return
innovations. As we estimate a model for real stock returns this need no longer be the
case. Like gives the value of the likelihood function in the maximum. The pseudo R2

compares the explanatory power of the models with a basic model that only consists
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of a constant mean and a constant variance. The pseudo R2 is defined as
( )1
( )

Like Basis
Like Model

�  which guarantees that the value is between zero and one.

The Jarque-Bera (JB) test investigates the hypothesis that the (standardized)
residuals are normally distributed. The ARCH tests use one or four lagged squared
residuals and are equal to the test of Engle (1982). The null hypothesis is “no ARCH
effects”. In addition, the results of the Ljung-Box (LB)-Q test using one and four
lagged residuals are reported. Here, the null hypothesis is “no autocorrelation”. For
all of these tests the table shows the p-value in percent. Like is the basis for the
likelihood ratio (LR) tests reported in part b) of the tables. For the LR tests the
following relationships between the models are used (applying the equation
numbering of section 1):

12 14 15;   12 13 15;   17 16 15;   17 13� � � � � � �

This means that, for example, the model (12) is nested in model (14) and both are
nested in model (15). The other rows are to be interpreted similarly.

The test statistic of the LR-tests is calculated as
2*[ (  ) (  )]Like Model A Like Model B�  which is 2

n� - distributed with n degrees of
freedom. Model B is nested in Model A and n is equal to the restrictions of Model B
compared to Model A. Thus, the LR-tests investigate whether the restrictions of
Model B are rejected. The null hypothesis is that both models have the same
explanatory power.

3.2 Interpretation of the empirical results
Which of the proposed models performs best and what are the conclusions for future
empirical research? The LR-tests reported in part b) of the tables show two different
results. For US, UK and France it turns out that model (17), the pure NGARCH
(1,1)-in-mean model, is the best one. Although model (13) has a slightly (but not
significantly) higher explanatory power, model (17) is more parsimonious and
should therefore be chosen for these countries. For Germany and Japan, in contrast,
model (13) is clearly the best one and dominates all other models. The reason for
this result is that the threshold parameter 1�  is highly significant for Germany and
Japan but not for the US and France. This could be interpreted as constant relative
risk aversion for the two latter countries. For Germany and Japan 1�  is significantly
negative indicating a decreasing relative risk aversion. In the estimates for UK it
turned out that 1�  is significantly positive in the models (12)-(15), but in the model
(16) and (17) where this parameter is not part of the model, 1�  becomes significant.
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Overall, the pure NGARCH-in-mean model (17) seems to be the best one for UK in
terms of the LR-test.

The parameter 1�  is in most cases (models and countries) not significantly different
from zero. This is also true for 1�  and 2� . Thus, the real stock returns in our
observation period are not characterized by a positive or time-varying risk premium:
the risk premium is not significantly different from zero. An exception is only model
(17) for the U.K. where 1�  is significantly positive. Interestingly, the behavioral
components of the model, 1�  and 2� , are also not significant and can therefore be
eliminated from the models.

It is no surprise that for most countries the models with NGARCH dominate the
models with constant variance. Only for the US no significant GARCH parameters
could be found. Nevertheless, the models with GARCH also perform best for the US
real stock return. In contrast to nominal stock returns the leverage parameter c is not
negative but either insignificant or significantly positive which could be interpreted
as a reverse leverage effect in the real returns: positive news have a stronger impact
on volatility compared to negative news. There is only one exception: for Germany
the models (16) and (17) exhibit a significantly negative c. But these two models are
dominated by model (13) where c is not significant. Finally, note also that a
significant parameter 1�  also implies a correlation between volatility and asset
returns which is the case for Germany and Japan. More precisely, the negative 1�

induces a positive correlation between returns and volatility. Overall we can
conclude that in contrast to nominal returns, real returns are if at all, then positively
correlated with volatility.

The residual tests show that ARCH effects have to be considered in general by the
models. But in all cases the residuals seem to exhibit no autocorrelation of order one
or of order four. For all models the residual series show clear signs of deviations
from the (standard) normal distribution which is due to a significant leptokurtosis.
Another feature of the empirical results is that the models have only a very low
explanatory power: the pseudo R2 is between 1.3% and 3.2% for the best performing
models of each country.

What can be learned from the estimations of the models (12) – (17)? The NGARCH
(1,1)-in mean model (17) and the model (13) which also contains an NGARCH
(1,1)-in-mean specification are clearly the dominant models. For both models the
residuals are well-behaved with the only exception of leptokurtosis. The augmented
model (13) is preferable for Germany and Japan. For both countries the
economically derived threshold parameter 1�  is significantly negative. Such a
negative threshold parameter leads to relatively high volatility when asset prices are
high, i.e. positive correlation between asset returns and volatility.
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As a conclusion of these results the following modeling strategy can be derived: for
the real stock returns first the augmented model (13) should be estimated and then a
test on the parameter 1�  can be applied which leads in some cases to a reduction of
the model complexity (= model (17)).

4 Conclusion
This paper compares representatives of three model classes for asset returns:
empirical, classical, behavioral. Empirical models usually have no economic
foundation and have been derived from a purely statistical reasoning. As a
representative of this class the NGARCH(1,1)-in-mean model is used. Classical
economic return models are consistent with an equilibrium with rational
expectations and von Neumann-Morgenstern utility functions. We propose a time-
series model which is consistent with a representative investor with a general HARA
utility function. Finally, recent experimental studies provide evidence that people do
not act rationally and their choices often do not seem consistent with von Neumann-
Morgenstern utility functions. One of these behavioral phenomenon is loss aversion.
The classical model is augmented to account for such behavioral phenomenon. All
models are tested. We find that the standard NGARCH(1,1)-in-mean model
performs well. However, the augmented model which includes a threshold
parameter derived from an equilibrium model performs better for some countries
(Germany, Japan). The behavioral components do not improve the model
performance. Hence, for future empirical studies, we suggest to estimate an
NGARCH(1,1)-in-mean model which is augmented by theoretically derived
parameters (see model (13)) and then test for the significance of these parameters
(i.e. 1�  and 1� ).

From a theoretical point of view, this study advocates in favor of an equilibrium
model with general HARA utility function of the representative investor. However,
the theoretical model should be augmented to an information flow which generates
stochastic volatility of the information process, i.e. the representative investor’s
expectations. In this paper we accounted for the stochastic volatility of the
information process heuristically by introducing an NGARCH (1,1) error term.

Future research should be devoted to the derivation of economically founded and
empirically tractable time-series models. This paper has shown, that equilibrium
return models can lead to interesting time-series models which also empirically
outperform ad-hoc specifications.
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Appendix A Proof of Proposition 1

Let � �ˆ 1t tY I � �� � � , then � � � �ˆ 1 1T T TY I S� � � �� � � � � � . It follows from Ito’s

Lemma that , 0 .t t tdY Y dW t T�� � �  Furthermore, we have that T̂I  is three-
parameter lognormally distributed with threshold � �1� �� �  and that TY  is two-
parameter lognormally distributed. Using equations (2), (8) and (9) we get

� �� �

� �

� �
� �� �

� �
� �

� �
1

exp exp 1
``

T
T t

T tT
t

T T t
t

T

U S
E S F E Y FS

S r T t r T t
U S E Y FE F

S

�

�
� �

�

� ��
� � � ��� 	 
 �� 
 
 � 
 
 
 



 �� ��

 �� �� �

�� 	

(A.1)

Since TY  is lognormally distributed, this yields
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(A.2)

Applying Ito’s Lemma yields

� � � �� �� � � �� �2 ˆ1 1 1 , 0 ,   .t t t t T TdS r S dt S dW t T S I� � � � � � �� � � � � � � � � � � (A.3)
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Table 1: USA
a) Model Comparison: Parameter Estimates and Model Characteristics

Equation No.
(12) (13) (14) (15) (16) (17)

0� -- 0.0046 -- -0.0039 -0.005 0.0043

1� -- -- 9.20 24.48 27.76 --

2� -- -- -257.0 -15.43 -6.17 --

1� 1.096 -1.005 1.60 3.29 3.90 -0.961

1� 5.78 -3.70 5.71 -3.90 -- --

0� 0.00196*** 0.00128*** 0.00195*** 0.00135*** 0.0013*** 0.0012***

1� -- 0.029 -- 0.012 -0.0035 0.0197
� -- 0.09 -- 0.098 0.095 0.088
c -- 1.839 -- 1.70 1.72 1.85

Like 963.4 976.19 963.96 976.41 976.32 976.11
R2 (in %) 0.028 1.34 0.086 1.36 1.35 1.33
JB test 0.00 0.00 0.00 0.00 0.00 0.00
ARCH (1) 2.05 55.3 13.4 43.1 46.9 58.5
ARCH (4) 13.4 89.6 29.1 84.1 85.0 89.8
LB-Q (1) 60.5 75.3 91.3 76.7 74.5 74.6
LB-Q (4) 81.9 92.7 82.8 89.8 88.1 91.5

Notes: Significance level: *, **, *** = 10%, 5%, 1%, respectively. Like = maximum value of the
likelihood function. JB test = Jarque-Bera test, ARCH = test on ARCH effects for one or four
lagged squared residuals, LB-Q = Ljung-Box Q test on autocorrelation for one or four lagged
residuals. The results for the tests report the p-value in %.

b) Model Comparison: Likelihood-Ratio Tests of bilateral Relationships:
Is Model (B) equal to Model (A)?

Test: (A) vs. (B) Test Statistic Degrees of Freedom
(13) vs. (12) 25.59*** 4
(14) vs. (12) 1.12 2
(15) vs. (12) 26.02*** 6
(15) vs. (14) 24.90*** 4
(15) vs. (13) 0.43 2
(15) vs. (17) 0.61 3
(15) vs. (16) 0.19 1
(16) vs. (17) 0.42 2
(13) vs. (17) 0.18 1

Notes: Significance level: *, **, *** = 10%, 5%, 1%, respectively. Likelihood-Ratio 
tests for the null hypothesis model (A) = model (B), where model (B) is nested in (A).
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Table 2: Japan
a) Model Comparison: Parameter Estimates and Model Characteristics

Equation No.
(12) (13) (14) (15) (16) (17)

0� -- 0.037*** -- 0.07*** 0.053*** 0.053***

1� -- -- 21.35 -28.4 -7.44 --

2� -- -- 62.70 160.1 264.41** --

1� 0.50 -8.23** 0.26 -17.16*** -19.15*** -18.12***

1� -40.69*** -47.41*** -40.88*** -47.87*** -- --

0� 0.0041*** 0.0014** 0.004*** 0.0013** 0.00038** 0.00034***

1� -- 0.44** -- 0.46** 0.78*** 0.80***
� -- 0.05 -- 0.05* 0.034* 0.023
c -- 1.95 -- 1.93* 1.30 1.52

Like 906.17 917.54 907.21 919.6 914.14 912.52
R2 (in %) 0.59 1.82 0.70 2.05 1.46 1.28
JB test 0.00 0.52 0.00 0.22 0.00 0.00
ARCH (1) 0.22 99.8 0.13 55.7 75.0 54.6
ARCH (4) 1.80 75.2 0.76 69.9 68.1 45.1
LB-Q (1) 19.5 91.1 88.1 54.9 47.6 80.9
LB-Q (4) 52.0 99.8 86.7 69.2 72.6 84.8

Notes: Significance level: *, **, *** = 10%, 5%, 1%, respectively. Like = maximum value of the
likelihood function. JB test = Jarque-Bera test, ARCH = test on ARCH effects for one or four
lagged squared residuals, LB-Q = Ljung-Box Q test on autocorrelation for one or four lagged
residuals. The results for the tests report the p-value in %.

b) Model Comparison: Likelihood-Ratio Tests of bilateral Relationships: 
Is Model (B) equal to Model (A)?

Test: (A) vs. (B) Test Statistic Degrees of Freedom
(13) vs. (12) 22.74*** 4
(14) vs. (12) 2.08 2
(15) vs. (12) 26.94*** 6
(15) vs. (14) 24.85*** 4
(15) vs. (13) 4.20 2
(15) vs. (17) 14.23*** 3
(15) vs. (16) 11.0*** 1
(16) vs. (17) 3.24 2
(13) vs. (17) 10.0*** 1

Notes: Significance level: *, **, *** = 10%, 5%, 1%, respectively. Likelihood-Ratio 
tests for the null hypothesis model (A) = model (B), where model (B) is nested in (A).
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Table 3: UK
a) Model Comparison: Parameter Estimates and Model Characteristics

Equation No.
(12) (13) (14) (15) (16) (17)

0� -- -0.004 -- -0.003 -0.014** -0.0086

1� -- -- 17.62 9.58 10.63 --

2� -- -- 184.83** 38.15 -22.08 --

1� 1.67 3.07 0.92 2.56 5.61** 3.69**

1� 59.84*** 26.60** 58.6*** 30.84** -- --

0� 0.0018*** 0.0006*** 0.0018*** 0.0005** 0.0008*** 0.0008***

1� -- 0.62*** -- 0.63*** 0.54*** 0.58***
� -- 0.10* -- 0.084 0.13** 0.12**
c -- 0.79* -- 0.87 0.78** 0.84**

Like 885.34 892.16 887.33 892.57 891.19 890.82
R2 (in %) 3.06 3.80 3.28 3.85 3.70 3.66
JB test 0.00 0.00 0.00 0.00 0.00 0.00
ARCH (1) 2.69 93.3 6.8 84.6 52.7 80.0
ARCH (4) 22.8 98.6 35.0 98.4 94.3 98.0
LB-Q (1) 26.4 35.1 72.4 69.8 46.0 23.8
LB-Q (4) 32.9 49.7 29.9 55.1 32.7 33.6

Notes: Significance level: *, **, *** = 10%, 5%, 1%, respectively. Like = maximum value of the
likelihood function. JB test = Jarque-Bera test, ARCH = test on ARCH effects for one or four
lagged squared residuals, LB-Q = Ljung-Box Q test on autocorrelation for one or four lagged
residuals. The results for the tests report the p-value in %.

b) Model Comparison: Likelihood-Ratio Tests of bilateral Relationships: 
Is Model (B) equal to Model (A)?

Test: (A) vs. (B) Test Statistic Degrees of Freedom
(13) vs. (12) 13.63*** 4
(14) vs. (12) 3.97 2
(15) vs. (12) 14.46** 6
(15) vs. (14) 10.49** 4
(15) vs. (13) 0.82 2
(15) vs. (17) 3.5 3
(15) vs. (16) 2.77* 1
(16) vs. (17) 0.73 2
(13) vs. (17) 2.68 1

Notes: Significance level: *, **, *** = 10%, 5%, 1%, respectively. Likelihood-Ratio 
tests for the null hypothesis model (A) = model (B), where model (B) is nested in (A).
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Table 4: Germany
a) Model Comparison: Parameter Estimates and Model Characteristics

Equation No.
(12) (13) (14) (15) (16) (17)

0� -- 0.0159 -- 0.002 0.008 0.009

1� -- -- 6.12 0.63 3.24 --

2� -- -- -159.8* -79.8 -37.12 --

1� 0.55 -2.35 1.07 0.68 -1.78 -2.3

1� -36.23*** -35.70*** -35.8*** -36.26*** -- --

0� 0.0055*** 0.02*** 0.0054*** 0.002*** 0.0004*** 0.0004***

1� -- 0.483*** -- 0.471*** 0.72*** 0.72***
� -- 0.15** -- 0.162** 0.17*** 0.17***
c -- 0.041 -- 0.002 -0.27* -0.25**

Like 895.28 903.29 896.89 903.66 896.5 896.28
R2 (in %) 2.02 2.89 2.19 2.93 2.15 2.13
JB test 0.00 0.00 0.00 0.00 0.00 0.00
ARCH (1) 0.05 73.7 0.4 99.9 57.6 45.0
ARCH (4) 0.37 89.1 1.2 87.9 93.3 88.1
LB-Q (1) 39.6 44.8 93.1 64.2 22.6 10.3
LB-Q (4) 45.2 53.1 60.3 50.6 50.1 31.7

Notes: Significance level: *, **, *** = 10%, 5%, 1%, respectively. Like = maximum value of the
likelihood function. JB test = Jarque-Bera test, ARCH = test on ARCH effects for one or four
lagged squared residuals, LB-Q = Ljung-Box Q test on autocorrelation for one or four lagged
residuals. The results for the tests report the p-value in %.

b) Model Comparison: Likelihood-Ratio Tests of bilateral Relationships: 
Is Model (B) equal to Model (A)?

Test: (A) vs. (B) Test Statistic Degrees of Freedom
(13) vs. (12) 16.03*** 4
(14) vs. (12) 3.22 2
(15) vs. (12) 16.77** 6
(15) vs. (14) 13.55*** 4
(15) vs. (13) 0.74 2
(15) vs. (17) 14.76*** 3
(15) vs. (16) 14.32*** 1
(16) vs. (17) 0.44 2
(13) vs. (17) 14.02*** 1

Notes: Significance level: *, **, *** = 10%, 5%, 1%, respectively. Likelihood-Ratio 
tests for the null hypothesis model (A) = model (B), where model (B) is nested in (A).
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Table 5: France
a) Model Comparison: Parameter Estimates and Model Characteristics

Equation No.
(12) (13) (14) (15) (16) (17)

0� -- 0.014 -- 0.037 0.048* 0.0164*

1� -- -- 25.85* -27.2 -34.84 --

2� -- -- -76.38 16.3 1.85 --

1� 0.70 -3.4 0.88 -10.61 -12.32 -3.47

1� 9.49 11.01 9.39 8.89 -- --

0� 0.0034*** 0.0022*** 0.0034*** 0.0026*** 0.003*** 0.0027***

1� -- 0.0073 -- -0.097 -0.131 -0.041
� -- 0.158* -- 0.14* 0.131** 0.146*
c -- 1.11** -- 1.26** 1.34** 1.24**

Like 850.73 862.91 852.65 863.11 862.44 862.01
R2 (in %) 0.11 1.52 0.33 1.53 1.46 1.41
JB test 0.00 11.4 0.00 15.6 12.6 9.4
ARCH (1) 6.7 72.2 13.7 98.2 93.6 71.6
ARCH (4) 0.7 32.2 0.48 20.1 18.3 24.0
LB-Q (1) 6.3 44.9 94.0 63.0 72.2 58.9
LB-Q (4) 22.7 43.9 64.1 51.4 55.0 49.4

Notes: Significance level: *, **, *** = 10%, 5%, 1%, respectively. Like = maximum value of the
likelihood function. JB test = Jarque-Bera test, ARCH = test on ARCH effects for one or four
lagged squared residuals, LB-Q = Ljung-Box Q test on autocorrelation for one or four lagged
residuals. The results for the tests report the p-value in %.

b) Model Comparison: Likelihood-Ratio Tests of bilateral Relationships: 
Is Model (B) equal to Model (A)?

Test: (A) vs. (B) Test Statistic Degrees of Freedom
(13) vs. (12) 24.34*** 4
(14) vs. (12) 3.82 2
(15) vs. (12) 24.73*** 6
(15) vs. (14) 20.90*** 4
(15) vs. (13) 0.384 2
(15) vs. (17) 2.17 3
(15) vs. (16) 1.31 1
(16) vs. (17) 0.86 2
(13) vs. (17) 1.79 1

Notes: Significance level: *, **, *** = 10%, 5%, 1%, respectively. Likelihood-Ratio 
tests for the null hypothesis model (A) = model (B), where model (B) is nested in (A).


