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1. INTRODUCTION

Advances in computing are typically achieved through the identification of abstrac-
tions that factor out specifics of an actual processor or machine. In the early times,
abstractions like record, set or arrays helped the emancipation from assemblies and
machine languages.

In the area of concurrent computing for instance, abstractions like threads,
semaphores and monitors were very helpful in understanding concurrent programs
and reasoning about their correctness. In the area of distributed computation, the
remote procedure call abstraction helped factor out the details of the network and
was a key to the popularity of standard distributed middleware infrastructures. In
short, the remote procedure call abstraction hides the possible differences between
languages and operating systems on different machines, and encapsulate serializa-
tion and de-serialization mechanisms to transfer data over the wire.

This abstraction does not however help capture another fundamental character-
istic of distributed systems: partial failures. Basically, if a process of some machine
remotely invokes an operation on a process performing on a different machine, and
the latter machine fails, an exception is raised. The way the failure is detected is
usually achieved using a timeout mechanism. Typically, a timeout delay is associ-
ated with the operation and when it expires, the exception is raised.

Programming with timeouts is however difficult as the adequate way of choosing
the duration of a timeout might vary from a system to another one, and might
even dynamically depend on the load of the system. Basically, failure detectors
are abstract devices that offer abstract information about the operational status of
processes in a distributed system [Chandra and Toueg 1996]. We believe that the
failure abstraction is a fundamental one and should sit as a first class citizen of a
distributed programming library. In fact, and as we survey in this paper, the failure
abstraction can also help classify problems in distributed computing [Chandra et al.
1996].

This paper is structured into three parts which can be read independently: the
first part (Section 2) looks at failure detectors from an engineering point of view
and discusses the advantages of using failure detectors in the design, programming
and analysis of distributed algorithms.

The second part (Section 3) takes a more theoretical perspective and discusses
the role that failure detectors can play to compare and distinguish problem spec-
ifications in distributed systems. We define here the notion of a failure detector
in a precise manner. Our representation is pretty intuitive and is “time-free”. It
is in this sense more coarse-grained than in [Chandra et al. 1996]. Basically, our
definition of a failure pattern is simpler and does not take into account when ex-
actly failures occur. For the purpose of our survey, we believe it to be sufficient to
consider a “time-free” representation.

In the third part (Section 4), we take some perspective to underly some limita-
tions of the failure detector abstraction .

2. FAILURE DETECTOR AS A PROGRAMMING BUILDING BLOCK

Information about the operational state of remote processes is often necessary to
implement reliable distributed services. In this section we argue that the failure
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detector abstraction is a sensible one from an engineering point of view.
In Section 2.1 we first review the standard methods of implementing failure de-

tection (based on timeouts) and discuss their problems. In Section 2.2 we then
informally introduce the failure detector abstraction and argue that it has several
advantages over explicit use of timeouts: (1) It separates the concerns of reason-
ing about failures and reasoning about time and therefore makes programs simpler
to write and analyze; (2) It allows to express information about failures in a way
which is closer to the control logic of many applications, so it allows to write simpler
and more elegant programs; (3) It allows independent implementation and service
sharing and therefore even has the potential of building more efficient applications.

2.1 Failure Detection using Timeouts

2.1.1 Non-Blocking Atomic Commit. Consider the omnipresent problem of non-
blocking atomic commit in a distributed database [Bernstein et al. 1987, Chapter
7]. In a distributed database, data is stored at multiple sites, usually close to the
location where it is used so that read and write operations on the data can be
performed more efficiently. A distributed transaction groups a sequence of read
and write operations together and ensures that either all are executed or none of
them. For example, a bank might choose to store customer account data at the
local branch closest to the customer’s home. A debit of, say, $100 then involves
a read and a write of the local data, but it may be accompanied by a log update
for statistical purposes or the query of a customer’s clearance at a central server.
A transaction ensures that these operations are executed atomically despite site or
communication failures. For simplicity, we will identify a site of the distributed
database with the process of the database management system running on that
site.

More precisely, at the end of the transaction each participating process votes
yes (“I am willing to commit”) or no (“we must abort”), and eventually processes
must reach a common decision, commit or abort . A non-blocking atomic commit
protocol ensures that the following properties hold:

(1) All processes which manage to reach a decision on the outcome of the transac-
tion agree on the decision.

(2) A process cannot reverse its decision.

(3) A commit decision can only be reached if all processes vote yes.

(4) If all processes vote yes and there are no failures, then the decision must be
commit.

(5) Assuming that there are only expected failures, every (surviving) process must
eventually reach a decision.

The terms “expected failures” and “surviving process” in the fifth clause refer to the
particular failure assumption made by the system designers. In practical settings,
this often translates to rarely occurring benign crash failures of processes with
subsequent repair and recovery. For simplicity, unless explicitly stated otherwise, we
will disregard recovery i.e., we assume that a failed process simply stops to execute
steps of its algorithm and does not send or receive messages anymore (messages
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sent to crashed processes are lost). We will call a process which does not crash a
correct process.

2.1.2 Three-Phase Commit. Three-phase commit (3PC) is a well-known proto-
col to implement non-blocking atomic commit. 3PC refines the popular two-phase
commit (2PC) protocol, which is widely used in distributed databases (although
2PC is a blocking protocol, i.e., it does not satisfy the final termination property
of non-blocking atomic commit in every execution). 3PC makes use of a particular
coordinator process.

¿From now on, assume that there are n processes called p1, p2, . . . , pn (n > 1)
and that process p1 plays the role of the coordinator. In general, 3PC works as
follows [Bernstein et al. 1987, p. 242]:

(1) The coordinator p1 sends a vote request to all other processes.
(2) When a process receives a vote request, it responds with either yes or no,

depending on its vote. If it sends no it decides abort , and stops.
(3) The coordinator collects his own vote and the vote messages from all other

processes. If any of these votes was no then the coordinator decides abort ,
sends an abort message to all processes which votes yes, and stops. Otherwise
the coordinator sends a pre-commit message to all processes.

(4) A process which votes yes waits for a pre-commit message or an abort message.
If it receives an abort message, it decides abort and stops. If it receives a pre-
commit message, it responds with an acknowledgement to the coordinator.

(5) The coordinator collects the acknowledgements from all processes. When they
have all been received, he decides commit , sends a commit message to all pro-
cesses, and stops.

(6) Other processes wait for the commit message from the coordinator. When they
receive this message, they decide commit , and stop.

In the absence of failures, it is rather easy to see that the protocol satisfies the
five requirements of the non-blocking atomic commit problem. However, there are
several points in the protocol in which crash failures can cause a process to wait
indefinitely for a message and hinder correct processes from reaching a decision. In
practice, this is prevented using timeouts.

2.1.3 Three-Phase Commit with Timeouts. It makes no sense to wait for a mes-
sage from a crashed process. So how can we find out whether a remote process
is still operational or not? A pragmatic way is to monitor the time it takes for a
process to send a reply. The round-trip delay is a network parameter which denotes
the time it takes to send a message to a remote process and receive an answer from
that process. Usually it is safe to assume a time interval ρ as an upper bound on the
round-trip delay, meaning that if a reply has not arrived after ρ time has elapsed
since sending, then the remote process is not operational anymore. In this case we
say that the process times out after ρ time units and ρ is the timeout interval (or
simply timeout).

In the 3PC algorithm there are several places which should be enhanced with a
timeout mechanism. For example, in step 2, processes wait for a vote request from
the coordinator. The relevant part of the algorithm is depicted at the top of Fig. 1.
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wait for 〈vote request〉 from p1

timeout := clock + ρ

while timeout > clock ∧ ¬〈vote request arrived from p1〉 do
skip

endwhile
if ¬〈vote request arrived from p1〉 then

〈decide abort〉
endif

Fig. 1. Adding explicit timeout actions to potentially blocking program statements in three-phase

commit.

If a process fails to receive such a message, it can unilaterally decide abort since it
could have forced this decision through its own vote anyway. In the algorithm, the
process needs to monitor the time and wait until the timeout period ρ has elapsed.
In case this happens, a timeout action is activated. This is shown at the bottom
of Fig. 1 where the variable clock refers to the value of the real-time clock of that
process. From the figure it should be clear that adding explicit timeouts to the
algorithm quickly obscures the code and makes correctness arguments much more
tricky.

Every statement in the 3PC algorithm which could potentially block needs to
be enhanced with a similar timeout construct. Choosing the correct action upon
timeout is rather tricky in some cases. For example, if a process times out on
either a pre-commit message (in step 4) or the final commit message (in step 6)
from the coordinator, it needs to communicate with the other processes since the
coordinator has presumably failed. In this case, a termination protocol is invoked:
All surviving processes elect a new coordinator which collects the individual states
of all participating processes and enforces a consistent decision. Election is based
on some pre-determined order on processes (like the process identifier). The ter-
mination protocol is reentrant: if the newly elected coordinator fails within the
termination protocol, the same protocol is started anew. In the end, either one
correct process will eventually survive and enforce a decision or all processes will
fail.

2.1.4 Correctness of Timeout-Based Solutions. The timeout intervals are usu-
ally real-time instances obtained from analyzing the characteristics of the underly-
ing network. In fixing the timeout value ρ, there is a notorious tradeoff between
correctness and efficiency. In order to not time out too early (i.e., when the remote
process is not crashed), we would like to set ρ very conservatively, i.e., make it very
large. However, a large value of ρ means that the protocol blocks for a very long
time before making progress again in case of failure. The guideline is to make ρ as
large as necessary but as small as possible.

Determining good timeout values still poses problems even to experienced engi-
neers. The main reason for this is that ρ can only be determined with certainty in
networks which offer certain real-time guarantees and most networks in use today
(like local area Ethernets or the global Internet) do not fall into this category. As
an extreme example, measurements of round-trip delays on the Internet for many
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years [Long et al. 1991; Paxson and Adams 2002] consistently show that there is
a large temporal and spatial variation in round-trip delays and the distribution is
asymmetric with a long tail on the right hand side. This means that fixing a large
timeout value does not necessarily always guarantee correctness of timeout-based
reasoning, it merely decreases the probability of making mistakes. However, the
usefulness and efficiency of the timeout-based 3PC algorithm above crucially de-
pend on good reasoning via timeouts. Continued premature expiration of a too
small timeout may prevent any transaction from commiting successfully. For ex-
ample, it makes sense to wait longer (i.e., have larger timeout values) during the
beginning of the 3PC algorithm in order to increase the probability of all processes
voting yes; for this to happen, they shouldn’t time out prematurely on the vote
request from the coordinator. Towards the end of the algorithm, e.g., when the
coordinator is about to broadcast the commit message, shorter timeouts are feasi-
ble since the result of the transaction has been determined already. In this case, a
wrong but quick suspicion of a slow coordinator may even speed up the transaction
if that coordinator is replaced by a very fast one.

2.1.5 Synchronous Systems. It is possible to characterize those systems in which
timeout-based reasoning is always correct. These systems are characterized by
bounds on the two critical system parameters: the message delivery delay and the
relative processing speed difference. We will denote these bounds by δ (processing
speed bound) and ∆ (message delivery delay bound) and assume that time is mea-
sured in the number of steps which a process has executed. This abstraction does
not limit the generality of the following statements since it is possible to relate the
number of steps of a process to real-time intervals in practice.

The bounds δ and ∆ have the following meaning:

—Processing speeds: In the time it takes for any process to take δ steps, all other
processes must take at least one step.

—Message delivery delay: If a process sends a message m at some point k in the
execution, then m must be delivered after at most ∆ execution steps of the
sending process following k.

A bound ρ on the round-trip delay between two processes p and q can be computed
from δ and ∆ as follows:

ρ = ∆ + δ + δ ·∆
First, it takes at most ∆ steps of the sending process p for the message to travel
from p to q. Then, after at most δ steps of process p the receiving process must
have executed at least one step (which should include receiving the message and
sending a reply). Finally, after at most δ steps of process q the message must arrive
back at p. Since q may operate much slower than p and δ is measured in steps of
q, we need to multiply δ with ∆, yielding an upper bound on the time it takes for
q to execute δ steps.

Because of the bound ∆ on relative processing speeds it is possible for any process
to give bounds on the number of steps any other process in the system has executed.
This means that there exists a notion of global time in the system. Because of
this, these systems are called synchronous. If a system can be characterized as
synchronous, then timeout-based reasoning always leads to correct conclusions.
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In practice, the beforementioned synchrony conditions are usually expressed in
terms of real time. For this it is assumed that events in the system can be related
to some external source of real time. Then the bound δ is the real-time interval in
which processes have to take at least one step, and ∆ refers to that real-time interval
within which every message must be delivered. Concerning processing speeds, it is
sometimes assumed that processes have access to local hardware clocks and that
δ is a bound on the drift rate of these clocks. However this does not mean that
the system is synchronous in the sense above [Cristian and Fetzer 1999]. That
local clocks advance at a steady rate does not mean that processes advance equally
within their local algorithms.

2.1.6 Asynchronous Model. As mentioned above, having a synchronous system
is not realistic in many practical situations. In fact, from an engineering perspec-
tive it makes sense to make very little assumptions about the underlying network
characteristics because this achieves the highest assumption coverage [Powell 1992].
Assumption coverage refers to the probability that the assumptions about the un-
derlying network hold in a particular mission environment. More and stronger
assumptions (e.g., about synchrony) achieve less assumption coverage, and only a
high assumption coverage ensures that the algorithms (e.g., reasoning with time-
outs) work as expected in practice.

The highest assumption coverage (with respect to synchrony) is achieved by
system models which have no timing assumptions whatsoever. These systems are
usually refered to as time-free [Cristian and Fetzer 1999] or asynchronous [Fischer
et al. 1985] (see Schneider [1993] for a discussion of these models). They can be
characterized by the following basic statements:

—A system is modeled as a set of processes connected by reliable communication
channels.

—Communication is by point-to-point message passing using send and receive prim-
itives.

—Usually it is assumed that the network is fully connected, i.e., every process can
directly send messages to every other process.

—There is no order on delivery of messages through the channels.

—Receive and send are distinct atomic operations.

—There is no bound on relative processing speeds of processes and on the message
delivery delays.

These points result in two things: Firstly, messages can take an arbitrary (but finite)
time to travel from one process to the other. This means that a message sent at
some point k during the execution of an algorithm will be received at its destination
after arbitrarily (but finitely) many execution steps following k. Secondly, processes
can be arbitrarily slow, meaning that in the time it takes a process p to take a single
step, another process q can take any finite number of steps. The Internet is usually
modeled as an asynchronous system.

2.1.7 Timeouts in the Asynchronous Model. Unfortunately, because of the ab-
sence of any synchrony assumptions, it is impossible to do timeout-based reasoning
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in asynchronous systems. To see this, consider a process p which monitors the op-
erational state of a process q using timeouts. Since there are no bounds δ and ∆ we
cannot use the formula above to calculate a timeout bound ρ. So even if p sets its
timeout to a very large (finite) value the round-trip time to q can exceed any finite
value. It is merely guaranteed that (if q does not crash), the reply will eventually
arrive at p so at least p will eventually learn that it might have performed incorrect
timeout-based reasoning [Garg and Mitchell 1998a].

2.1.8 Summary. In many practical situations (like in atomic transactions) it
is necessary to know the operational state of a remote process. The most com-
mon way to get this information is to use timeout-based reasoning. Algorithms
which use explicit timeouts quickly become very ugly. Moreover, timeout-based
reasoning is only valid in systems with strict timing guarantees. In other types of
systems, timeout-based reasoning is uncertain or even impossible. This is unfortu-
nate since this weakens the usefulness of timeout-based reasoning exactly in those
(asynchronous) systems which are considered most common in practice. A path
out of this dilemma is to introduce the abstraction of a failure detector, which we
discuss in the following sections.

2.2 Failure Detectors as Useful Distributed Services

In the previous sections we have already talked about using the synchrony bounds
for detecting crash failures of other processes. However, this perspective has mixed
two separate concerns:

(1) the abstract functionality of detecting process crashes, and

(2) a way to implement this abstract functionality using synchrony bounds.

As we show later, we could write a correct 3PC algorithm in systems without any
explicit synchrony assumptions as long as we have a means to still detect process
crashes. Separating these concerns is at the heart of the concept of failure detectors,
which has been introduced by Chandra and Toueg [1996]. Failure detectors are
oracles that produce (possibly incomplete and unreliable) information about the
operational state of processes.

2.2.1 Perfect Failure Detectors. In the understanding of Chandra and Toueg
[1996], a failure detector is composed of several failure detector modules, one at
each process. To introduce the concept, consider a process p which is equipped
with a failure detector module which indicates the operational state (up/down) of
a process q. If the failure detector responds with down, we say that the failure
detector at p suspects q.

Similar to other types of detectors in distributed systems (such as termination
detectors [Dijkstra et al. 1983] or general predicate detectors [Chandy and Misra
1988; Arora and Kulkarni 1998]) the failure detector module at p should guarantee
two things:

—It never suspects q unless q has actually crashed, and

—if q has crashed, then the failure detector module at p will eventually permanently
suspect q to have crashed.
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Obviously, the failure detector can be extended to the two process case by simply
adding a failure detector module to q and requiring that each module detect the
crash of the other process.

Similarly, the definition of such a failure detector can be extended to the n process
case. Here it is important to note that every failure detector module at every process
is responsible for checking the operational states of all other processes in the system.
This means that the output of such a failure detector module is a general predicate
involving all other processes. The failure detectors introduced by Chandra and
Toueg [1996] output a list of suspected processes, but other forms have also been
proposed (as will be seen later).

For an n process system, the first requirement of the failure detector is a compo-
sition of all safety requirements of the individual failure detector modules. It can
be read like this:

—for all processes p: for all processes q:
the failure detector module at p does not suspect q unless q has crashed.

The liveness requirement can be reformulated as:

—for all processes p: for all processes q:
if q crashes, then the failure detector module at p will eventually permanently
suspect q.

When referring to failure detectors, Chandra and Toueg [1996] call the above safety
property strong accuracy and the liveness property strong completeness. A failure
detector satisfying strong accuracy and strong completeness is called a perfect failure
detector. The class of all perfect failure detectors is usually denoted by P. If there
is no confusion, we sometimes also denote by P some failure detector from this
class. A perfect failure detector makes no wrong suspicions and eventually detects
every crash.

2.2.2 Asynchronous Models with Failure Detectors. It is important to stress that
a failure detector is merely defined through the service it offers, not by the way it is
implemented. Because of this, a failure detector is often called an oracle. Of course,
failure detection will most probably be implemented using timeouts in practice,
but the failure detector cleanly hides the details of the underlying system model
and its synchrony bounds behind its service interface. The interface of the failure
detector “looks time-free” and so it makes sense to combine the asynchronous model
with failure detectors and design algorithms in this new model. Of course, this
model is not purely asynchronous anymore (many authors therefore write that the
asynchronous model is augmented with failure detectors), but it allows to describe
and analyze algorithms as if they were running in an asynchronous model. A
failure detector can therefore be regarded as a device which encapsulates synchrony
assumptions in an asynchronous interface.

2.2.3 Non-Blocking Atomic Commit with a Perfect Failure Detector. As an ex-
ample on how to write algorithms using failure detectors, Figure 2 shows the part
of the 3PC algorithm from Fig. 1 using a perfect failure detector. The failure de-
tector abstraction simplifies the text of the protocol. Now the code is similar to
the descriptions commonly found in books on concurrency control (like the one by
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Bernstein et al. [1987]). There, every receive (or wait for) statement is accom-
panied by an on timeout clause specifying what to do when the timer for this
statement elapses. In a sense, these algorithm descriptions already use a failure
detector abstraction to simplify the writing of the protocols without naming it.

Note that now the correctness of the protocol can be analyzed without refering
to timeouts or synchrony bounds. For example, if there are no crashes, the strong
accuracy property of the failure detector ensures that no process will be suspected
and so the protocol behaves like the 3PC protocol for the fault-free case. Similarly,
if the coordinator crashes before sending out vote requests, the strong completeness
of the failure detector guarantees that every process will eventually stop waiting
for a message from the coordinator and advance in the protocol. Overall, reasoning
about the correctness of the algorithm becomes much simpler if the type of failure
detector is used.

wait for 〈vote request arrived from p1 or p1 ∈ P〉
if p1 ∈ P then

〈decide abort〉
endif

Fig. 2. Algorithm code from Fig. 1 using a perfect failure detector P.

2.2.4 Solving Consensus using Failure Detectors. To illustrate another advan-
tages of failure detectors, consider the problem of consensus (see Barborak et al.
[1993] and Turek and Shasha [1992] for surveys on consensus). Like non-blocking
atomic commit, consensus belongs to the class of agreement problems where pro-
cesses must take a consistent decision starting from inconsistent values. The con-
sensus problem is defined using two primitives called propose and decide. Both take
an argument from a fixed set of decision values (usually {0, 1}). If a process invokes
propose(u) we say that it proposes u. Analogously, if it invokes decide(v) we say
that it decides v. A process may decide at most once. In general, an algorithm
which solves the consensus problem must guarantee three properties:

—(Agreement) No two processes decide different values.
—(Termination) Every correct process eventually decides.
—(Validity) The decided value must have been proposed by some process.

The Validity property is a non-triviality property, meaning that it has been added
to exclude trivial solutions where processes do not communicate (e.g., algorithms
where every process always decides 1). More specifically, the above consensus spec-
ification is called uniform consensus [Hadzilacos and Toueg 1994] because it man-
dates that all processes (i.e., even the faulty ones) do not disagree on the decision
value.

Similar to non-blocking atomic commit, consensus can be solved rather easily
using a perfect failure detector. However, consensus can be solved even if the
failure detector is “imperfect”, i.e., if it can make mistakes. An example of such
a failure detector is the eventually perfect failure detector (denoted 3P), a failure
detector which is only perfect after some finite time (before this time it can behave
arbitrarily). The idea of the algorithm is to be conservative, i.e., maintain the
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safety aspect of consensus (Agreement and Validity) always, and only terminate
if the failure detector stops making mistakes. Such algorithms are called indugent
[Guerraoui 2000].

The indulgent consensus algorithms from the literature [Chandra and Toueg 1996;
Dwork et al. 1988; Schiper 1997a; 1997b; Hurfin and Raynal 1999; Brasileiro et al.
2000] operate in a sequence of rounds. Every round is like the first round of the
3PC algorithm sketched above: a coordinator tries to impose a decision value on
all other processes, only that the role of the coordinator changes every round in
round-robin fashion. This protects against relying on some crashed process to be
the coordinator. However, due to the unreliability of the failure detector, a correct
process may not get its chance to succeed in imposing a value on the rest of the
system (the others might have suspected him and advanced to the next round with
a different coordinator). In this situation it must be ensured that no two processes
can impose different decision values onto the system (and cause disagreement). To
prevent this, the algorithms require a coordinator to “lock” a value before decision.
Locking a value ensures that no other value can become the decision value and can
be achieved by “extinguishing” all other values from the system. To lock a value,
it is necessary that a majority of processes are correct.

It is rather easy to show that there is no indugent consensus algorithm if more
than half of the processes can be faulty [Chandra and Toueg 1996; Guerraoui 2000].
A set of n processes can become “virtually partitioned” by information resulting
from wrong suspicions by the failure detector. This means that there can be two
small subsets of processes that suspect all other processes (including those of the
other set) to have crashed. In such a case, each partition can decide different values,
thus violating safety. This situation cannot arise if we have the algorithm guarantee
that every deciding partition must include the majority of processes. In this way
no two partitions can decide differently because they must have a common process
in both. In a sense, requiring a correct majority is the price you have to pay for
making mistakes in detecting crashes.

Interestingly, consensus can even be solved with a failure detector which (in a
precise sense which is defined later in this article) is even weaker than 3P [Chandra
and Toueg 1996]. Like 3P, this failure detector, called “eventually strong” (denoted
3S), belongs to the class of unreliable failure detectors introduced next.

2.2.5 Unreliable Failure Detectors. The existence of a perfect failure detector is
a very strong assumption which makes the model no more realistic than one where
explicit synchrony bounds are added. As shown above, a perfect failure detector
is also not always necessary. This motivates looking for weaker assumptions about
the failure detector modules.

A systematic way to weaken the specification is to try different combinations of
quantors. For example, where strong accuracy read “∀p : ∀q : . . .” we could write
“∀p : ∃q : . . .”. Among these weaker variants it turns out that the combination
∃q : ∀p for safety and ∀q : ∃p for liveness are useful for solving consensus. What do
these combinations mean?

—∃ a correct process q : ∀p : the failure detector module at p does not suspect q
unless q has crashed.
This means there is a correct process which all processes will not falsely suspect.
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So every process except one may be infinitely often falsely suspected to have
crashed. This property is called weak accuracy [Chandra and Toueg 1996] and is
even useful if it only holds eventually (this is termed eventual weak accuracy).

—∀q : ∃ a correct process p : if q crashes then the failure detector module at p will
eventually suspect q.
In terms of liveness this means that for every crash, there is a process which will
detect this crash. This is termed weak completeness [Chandra and Toueg 1996].
Obviously, if at least one process eventually detects the crash of some process
q, then eventually all processes can be made to detect that crash by simply
disseminating the information throughout the network. Thus it is possible to
turn a weakly complete failure detector into a strongly complete failure detector
if there are means to reliably disseminate information in the network.

A failure detector satisfying weak completeness and eventual weak accuracy is called
an eventually weak failure detector. All other combinations of failure detectors and
their names are depicted in Table I. All failure detectors which are allowed to make
mistakes fall into the category of unreliable failure detectors.

accuracy
strong weak eventually strong eventually weak

strong completeness perfect P strong S eventually perfect 3P eventually strong 3S
weak completeness weak W eventually weak 3W

Table I. The failure detector classes of Chandra and Toueg [1996].

Interestingly (as will be discussed in Section 3), the eventually strong failure
detector 3S is the weakest failure detector for solving consensus, given that a
majority of processes are correct. Intuitively, this means that it provides the least
level of timing information to make consensus solvable. Hence, systems which
offer much less timing guarantees than a perfect failure detector can be used to
implement consensus abstractions. Since the underlying failure detector 3S is in
this sense connected to the problem of consensus, there are implementations of 3S
which are optimized with respect to efficiently solving consensus [Larrea et al. 2000;
Chen et al. 2000; Sergent et al. 1999]. This will be important later when we talk
about combining different failure detectors in a single application.

2.2.6 Other Failure Detectors. Other failure detectors have been defined with
different motivations. We give here a brief selection: Chandra et al. [1996] in-
troduced the failure detector Ω which eventually outputs the identity of a correct
process which is trusted by everybody. This failure detector was shown to be
equivalent to 3S in the proof that it is the weakest to solve consensus [Chu 1998].
Aguilera et al. [2000b] presented a failure detector called heartbeat which is use-
ful in designing protocols which are quiescent, i.e., which eventually stop sending
messages. Garg and Mitchell [1998b] define the infinitely often accurate failure
detector (denoted 23P) in the context of predicate detection in faulty systems
[Garg and Mitchell 1998a]. The anonymously perfect failure detector (denoted ?P)
[Guerraoui 2002; Charron-Bost and Toueg 2001] is useful in the context of solving
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non-blocking atomic commit. This failure detector is just like a perfect failure de-
tector, only that it does not output the identities of the failed processes; it merely
outputs a boolean value whether or not some process has crashed. We will return
to this failure detector later in this section.

2.2.7 Justifying Unreliable Failure Detectors. Assuming unreliable failure de-
tectors is much more realistic than assuming a perfect failure detector, because the
properties of unreliable failure detectors can be more easily guaranteed in practice
than those of perfect failure detectors.

It is a common experience that networks perform synchronously “most of the
time”. This means that the system alternates between short periods of instability
(i.e., where no timing guarantees can be made) and long periods of stability (i.e.,
where the system behaves as if it were synchronous). Measurements by Cristian
and Fetzer [1999] have shown that the ratio between the average length of a stable
period to that of an unstable period is [[ 341 : 1 ]] on a standard local area network.
The bottom line of this observation is that failure detection can be implemented
perfectly “most of the time”.

The average length of a stable period was [[ x seconds, ]] a time which is usually
sufficient for an algorithm to terminate, e.g., a transaction to commit. Therefore,
an arguably assumption is that the system is synchronous “forever” after an initial
finite time of asynchrony. This is captured in what became known as the assumption
of partial synchrony [Dwork et al. 1988].

There are two possible variants of partial synchrony, which we will exemplify
using the communication bound ∆:

(1) Either ∆ is known but holds only eventually, or

(2) ∆ exists but is not known.

Analogous definitions of partially synchronous processes can easily be derived using
bound δ instead of ∆.

Both variants of partial synchrony reflect the difficulty of choosing a system’s
timing parameters in practice. The first form, namely that timing bounds hold
eventually, directly reflects the findings from the study of Cristian and Fetzer [1999]
because it is highly improbable that an algorithm starts in a stable period and ends
in an unstable period. The second variant reflects the fact that it is often safe
to assume that some upper bound on message delivery time exists; the difficult
question is how large this bound actually is.

Interestingly, both forms of partial synchrony allow consensus to be solved, even
if both communication and processes are partially synchronous [Chandra and Toueg
1996] and even if merely the ratio between best-case and worst-case round trip de-
lay is bounded [Jean-François Hermant and Josef Widder ]. In terms of failure
detectors, such partially synchronous systems allow to implement eventually per-
fect failure detectors [Chandra and Toueg 1996]. Hence, reasoning with eventually
perfect failure detectors can be justified in practice.

2.2.8 Using and Combining Different Failure Detector Abstractions. The use of
failure detectors can relegate much of the intrinsic knowledge of the network into
lower layers and leave the application only with those issues which it needs to care
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about: reasoning about failures. System engineers only need to agree on the inter-
face of the particular failure detector in question, and two groups can independently
go about designing solutions: one group can start building an application given a
particular failure detector semantics, the other group can choose a network archi-
tecture and a failure detection algorithm such that the failure detector semantics
are satisfied.

Implementing failure detection as a service has another advantage since one im-
plementation of, say, an eventually perfect failure detector can be used by multiple
applications simultanteously. Dissemination of failure detection messages and keep-
ing track of timeouts can be done centrally at a “middleware” layer which is usually
much more efficient than having every application do this on its own. Moreover, if
timeouts are tweaked or adapted, this may be done centrally in the service layer
instead of adapting all different algorithms independently.

Failure detectors can also be used as sources of activation in event-driven ap-
plications. For example, Aguilera et al. [1999] investigate quiescent algorithms,
i.e., algorithms which eventually stop sending messages. They show that failure
detection has no quiescent solutions, but special failure detectors can be used as
a service to build quiescent algorithms (like quiescent reliable broadcast [Aguilera
et al. 2000b]) and terminating ones (like consensus) at higher layers.

non-blocking atomic commit(votei) is

send 〈pi, votei〉 to all

wait until ∀j ∈ {1, . . . , n} : received 〈pj , votej〉 or > ∈ ?P
if > ∈ ?P or ∃j ∈ {1, . . . , n} : votej = no then

outcomei := consensus(abort)

else
outcomei := consensus(commit)

endif

return(outcomei)
end

Fig. 3. Implementing non-blocking atomic commit using ?P and a consensus abstraction [Guer-

raoui 2002].

Finally, we argue here that failure detectors also remedy the problems of asym-
metric or differing timeouts within an application which was discussed at the end
of the previous section. While failure detectors do not offer timing information per
se, different instantiations can separate the concerns of differing timeouts within an
application. In the 3PC algorithm discussed earlier, it was noted that during the
first phase of the algorithm it made sense to have a more conservative (i.e., longer)
timeout to increase the chances that all processes vote yes. During the remainder
of the algorithm, a more aggressive timeout can be used because false suspicions
merely delay the outcome of the algorithm. These two different concerns can be
captured using two different types of failure detectors. It the first phase, it is not
important which process failed, so the anonymously perfect failure detector ?P is
sufficient (recall that ?P outputs ⊥ if no process has failed and > if some process
has failed). In the second phase (including the election within the termination
protocol), it is important to be able to suspect particular processes (especially the
coordinator process), so a failure detector 3P or 3S can be used given a majority
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of correct processes. In fact, the latter failure detector can be encapsulated within
a solution for consensus and non-blocking atomic commit can be formulated in
a surprisingly simple algorithm with only half a dozen lines (see Fig. 3). Hence,
failure detectors even offer fine-grained abstractions where necessary.

2.3 Summary

In this section we have argued that failure detectors are useful abstractions from an
engineering point of view. Firstly, they can be used to hide timeout details behind a
clean operational interface which makes it easier to design, build and analyse fault-
tolerant distributed systems. Secondly, implementation of the failure detection
functionality can be done in a centralized, re-useable fashion which enables solutions
which are more efficient compared to situations in which every application performs
failure detection independently. Finally, failure detectors offer the possibility to
express timing assumptions in a fine-grained manner which is more suitable to be
used directly by application logic than explicit timing information.

3. FAILURE DETECTORS AS A COMPUTABILITY BENCHMARK

Failure detector is a means to abstract out time in distributed programming. A
program assuming a failure detector D works in any physical model where D is
implementable. In a sense, a failure detector hides the synchrony guarantees of the
underlying model from the programmer. The principal theoretical question here
is what are the minimal synchrony assumptions sufficient to solve a given problem
M , or, in other words, the weakest failure detector to solve M .

In the next section (Section 3.1), we present formally the model of an asyn-
chronous system with failure detectors and give a few examples of failure detectors.
In the following sections (Sections 3.2, 3.3 and 3.4), we discuss the weakest fail-
ure detector question in the context of three fundamental problems in distributed
computing: solving consensus (see Section 2.2.4 for a definition), implementing
read-write shared memory in a message-passing system and solving non-blocking
atomic commitment (NBAC).

3.1 Model

In this chapter, we describe the asynchronous message-passing model equipped with
a failure detector [Chandra et al. 1996].

Processes. The system consists of a set of n processes Π = {p1, p2, . . . , pn}
(n > 1). Every pair of processes is connected by a reliable channel. Processes
communicate by reliable message passing.

Failures and failure patterns. Processes are subject to crash failures. We do
not consider Byzantine failures: a process either correctly executes the algorithm
assigned to it, or crashes and stops forever executing any action. A process that
does not crash in a given execution is called correct. A process that is not correct
is called faulty. A failure pattern F , a proper subset of Π, describes the set of
processes that are faulty in the same execution. An environment E , a set of failure
patterns, describes sets of processes that are allowed to fail in the same execution.

A failure detector history H with range R is an infinite sequence (pi1 , d1),(pi2 , d2),. . .,
where for all j ∈ N, pij

∈ Π and dj ∈ R. Informally, H represents the order in
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which processes pi1 ,pi2 ,. . . “see” failure detector outputs d1,d2,. . .. For a given fail-
ure pattern F , we say that a set S of failure detector histories is F -complete if S
satisfies the following properties:

(1) For every infinite sequence σ of process identifiers pi1 , pi2 , . . . in which processes
in F appear finitely often and processes in Π \ F appear infinitely often, S
contains a failure detector history (pi1 , d1), (pi2 , d2), . . ..

(2) Let H ∈ S, and H ′ be any failure detector history obtained from H by removing
finitely many elements. Then H ′ ∈ S.

Let k ∈ N and H = (pi1 , d1), (pi2 , d2), . . . be a failure detector history. We say that
a process p is faulty in step k of H if p appears in H only before its k-th element,
i.e., ∀k′ ≥ k, pik′ 6= p.

Failure detectors. A failure detector D with range RD is a function that maps
each failure pattern F to an F -complete set of failure detector histories with range
RD. D(F ) is thus the set of failure detector histories permitted by D for failure
pattern F . Note that we do not make any assumption a priori on the range of
a failure detector. When any process p performs a step of computation, it can
query its failure detector module of D, denoted Dp, and obtain a value d ∈ RD that
encodes some information about failures.

If D and D′ are failure detectors, (D,D′) denotes the failure detector that outputs
a vector with two components, the first being the output of D and the second being
the output of D′. Formally, R(D,D′) = RD ×RD′ , and for each F , H̃ ∈ (D,D′)(F )
⇔ H̃ = (H,H ′), H ∈ D(F ), H ′ ∈ D′(F ).

Now we introduce a few popular failure detectors in the model we just described:

—The perfect failure detector P [Chandra and Toueg 1996] outputs a set of sus-
pected processes at each process. P ensures strong completeness: every crashed
process is eventually suspected by every correct process, and strong accuracy : no
process is suspected before it crashes.
Formally, RP = 2Π and, for each failure pattern F , and each history H =
(pi1 , d1), (pi2 , d2), . . . ∈ P(F ) ⇔(

∃k ∈ N ∀p ∈ F ∀k′ ≥ k : p ∈ dk′

)
∧(

∀k ∈ N ((p ∈ dk) ⇒ (∀k′ ≥ k : p 6= pik′ ))
)

—The eventually perfect failure detector 3P [Chandra and Toueg 1996] also outputs
a set of suspected processes at each process. But the guarantees provided by 3P
are weaker than those of P. There is a time after which 3P outputs the set
of all faulty processes at every non-faulty process. More precisely, 3P satisfies
strong completeness and eventual strong accuracy : there is a time after which no
correct process is ever suspected.
Formally, R3P = 2Π and, for each failure pattern F , and each history H =
(pi1 , d1), (pi2 , d2), . . . ∈ 3P(F ) ⇔

∃k ∈ N ∀k′ ≥ k : dk′ = F
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—The leader failure detector Ω [Chandra et al. 1996] outputs the identifier of a
process at each process. There is a time after which it outputs the identifier of
the same non-faulty process at all non-faulty processes.
Formally, RΩ = Π and, for each failure pattern F , and each history H =
(pi1 , d1), (pi2 , d2), . . . ∈ Ω(F ) ⇔

∃k ∈ N ∃q ∈ Π \ F ∀k′ ≥ k : dk′ = q

—The quorum failure detector Σ [Delporte-Gallet et al. 2003] outputs a set of pro-
cesses at each process. Any two sets (output at any times and at any processes)
intersect, and eventually every set consists of only non-faulty processes.
Formally, RΣ = Π and, for each failure pattern F , and each history H =
(pi1 , d1), (pi2 , d2), . . . ∈ Σ(F ) ⇔(

∀k, k′ ∈ N dk ∩ dk′ 6= ∅
)
∧(

∃k ∈ N ∀k′ ≥ k dk′ ⊆ Π \ F
)
.

—The failure signal failure detector FS [Delporte-Gallet et al. 2004], originally
called anonymously perfect failure detector in [Guerraoui 2002] outputs green or
red at each process. As long as there are no failures, FS outputs green at every
process; after a failure occurs, and only if it does, FS must eventually output
red permanently at every non-faulty process.
Formally, RFS = {green, red} and, for each failure pattern F , and each history
H = (pi1 , d1), (pi2 , d2), . . . ∈ FS(F ) ⇔

(
∀k ∈ N

(
dk = red ⇒ (∃p ∈ F ∀k′ ≥ k : p 6= pik′ ))

)
∧(

F 6= ∅ ⇒ ∃k ∈ N ∀k′ ≥ k dk′ = red
)
.

Algorithms. The asynchronous communication channels are modeled as a mes-
sage buffer which contains messages not yet received by their destinations. An
algorithm A is a collection of n (possibly infinite state) deterministic automata,
one for each process. A(p) denotes the automaton on which process p is running
algorithm A. Computation proceeds in steps of A. In each step of A, process p
performs atomically the following three actions:

(i) p receives a single message addressed to p from the message buffer, or a null
message, denoted λ (receive phase);

(ii) p queries and receives a value from its failure detector module (query phase);
(iii) p changes its state and sends a message to a single process, according to the

automaton A(p) (send phase).

Note that the received message is chosen non-deterministically from the messages
in the message buffer destined to p, or the null message λ.

Configurations, schedules, and runs. A configuration defines the current state
of each process in the system and the set of messages currently in the message
buffer. Initially, the message buffer is empty. A step (p, m, d) of an algorithm A
is uniquely determined by the identity of the process p that takes the step, the
message m received by p during the step (m might be the null message λ), and the
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failure detector value d seen by p during the step. We assume that messages are
uniquely identified.

We say that a step e = (p, m, d) is applicable to a configuration C if and only
if m = λ or m is in the message buffer of C. For a step e applicable to C, e(C)
denotes the unique configuration that results from applying e to C.

A schedule S of algorithm A is a (finite or infinite) sequence of steps of A. S⊥
denotes the empty schedule. We say that a schedule S is applicable to a configura-
tion C if and only if (a) S = S⊥, or (b) S[1] is applicable to C, S[2] is applicable
to S[1](C), etc. For a finite schedule S applicable to C, S(C) denotes the unique
configuration that results from applying S to C.

A partial run of algorithm A in an environment E using a failure detector D is
a tuple 〈F, I, S〉 where F ∈ E , I is an initial configuration of A, S = (pi1 ,m1, d1),
(pi1 ,m1, d1), . . ., (pik

,mk, dk) is a finite schedule of A, applicable to I, such that
(pi1 , d1), (pi1 , d1), . . ., (pik

, dk) is a prefix of a failure detector history H ∈ D(F ).
A run of algorithm A in an environment E using a failure detector D is a tuple

〈F, I, S〉 where F ∈ E , I is an initial configuration of A, and S = (pi1 ,m1, d1),
(pi1 ,m1, d1), . . . is an infinite schedule of A, applicable to I, such that (pi1 , d1),
(pi1 , d1), . . . is a failure detector history in D(F ), and every correct process receives
every message sent to it.

Problems and solvability. A problem is a predicate on a set of runs (usually
defined by a set of properties that these runs should satisfy). An algorithm A
solves a problem M in an environment E using a failure detector D if the set of all
runs of A in E satisfies M. We say that a failure detector D solves problem M in
E if there is an algorithm A which solves M in E using D.

Reducibility. Let D and D′ be failure detectors, and E be an environment. If, for
failure detectors D and D′, there is an algorithm TD′→D that transforms D′ into D
in E , we say that D is weaker than D′ in E .

If D �E D′ but D′ �E D, we say that D is strictly weaker than D′ in E . If
D �E D′ and D′ �E D, we say that D and D′ are equivalent in E . If D �E D′ and
D′ �E D, we say that D and D′ are incomparable in E .

Algorithm TD′→D that emulates histories of D using histories of D′ is called a
reduction algorithm. Note that TD′→D does not need to emulate all histories of D;
it is required that all the histories it emulates be histories of D.

A weakest failure detector. We say that a failure detector D is the weakest failure
detector to solve a problem M in an environment E if the following conditions are
satisfied:

(a) D is sufficient to solve M in E , i.e., D solves M in E , and

(b) D is necessary to solve M in E , i.e., if a failure detector D′ solves M in E , then
D is weaker than D′ in E .

There might be a number of distinct failure detectors satisfying these conditions.
(Though all such failure detectors are in the just defined sense equivalent.) Hence,
it would be more technically correct to talk about a weakest failure detector to
solve M in E .
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3.2 The weakest failure detector for consensus

In this section, we discuss the seminal “CHT result” obtained by Chandra et al.
[1996]. We show that failure detector Ω is necessary for solving consensus in asyn-
chronous message-passing systems in all environments, i.e., for all assumptions on
when and where failures might occur. Combined with the algorithm that solves
consensus using a failure detector equivalent to Ω given a majority of correct pro-
cesses [Chandra and Toueg 1996], this result implies that Ω is the weakest failure
detector for solving consensus given a majority of correct processes.

3.2.1 Overview of the reduction algorithm. Let E be any environment, D be any
failure detector that can be used to solve consensus in E , and A be any algorithm
that solves consensus in E using D. Our goal is to determine a reduction algorithm
TD→Ω that, using failure detector D and algorithm A, implements Ω in E . Recall
that implementing Ω means outputting, at every process, the identifier of a process
so that eventually, the identifier of the same correct process is output permanently
at all correct processes.

The basic idea underlying TD→Ω is to have each process locally simulate the
overall distributed system in which the processes execute several runs of A that
could have happened in the current failure pattern and failure detector history.
Every process then uses these runs to extract Ω.

In the local simulations, every process p feeds algorithm A with a set of proposed
values, one for each process of the system. Then all automata composing A are
triggered locally by p which emulates, for every simulated run of A, the states of
all processes as well as the emulated buffer of exchanged messages.

Crucial elements that are needed for the simulation are (1) the values from failure
detectors that would be output by D as well as (2) the order according to which the
processes are taking steps. For these elements, which we call the stimuli of algorithm
A, process p periodically queries its failure detector module and exchanges the
failure detector information with the other processes.

The reduction algorithm TD→Ω consists of two tasks that are run in parallel at
every process: the commmuncation task and the computation task. In the com-
munication task, every process maintains ever-growing stimuli of algorithm A by
periodically querying its failure detector module and sending the output to all other
processes. In the computation task, every process periodically feeds the stimuli to
algorithm A, simulates several runs of A, and computes the current emulated out-
put of Ω.

3.2.2 Building a DAG. The communication task of algorithm TD→Ω is presented
in Figure 4. Executing this task, p knows more and more of the processes’ failure
detector outputs and temporal relations between them. All this information is
pieced together in a single data structure, a directed acyclic graph (DAG) Gp.
Informally, every vertex [q, d, k] of Gp is a failure detector value “seen” by q in
its k-th query of its failure detector module. An edge ([q, d, k], [q′, d′, k′]) can be
interpreted as “q saw failure detector value d (in its k-th query) before q′ saw failure
detector value d′ (in its k′-th query)”.

DAG Gp has some special properties which follow from its construction. Let
F ∈ E be the set of faulty processes in the current execution. Then:
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Gp ← empty graph
kp ← 0
while true do

receive message m
dp ← query failure detector D
kp ← kp + 1
if m is of the form (q, Gq, p) then Gp ← Gp ∪Gq

add [p, dp, kp] and edges from all vertices of Gp to [p, dp, kp] to Gp

send (p, Gp, q) to all q ∈ Π

Fig. 4. Building a DAG: process p

(1) The vertices of Gp are of the form [q, d, k] where q ∈ Π, d ∈ RD and k ∈ N.
(2) If v′ = [q, d, k] and v′′ = [q, d′, k′] are vertices of Gp, and k < k′, then (v, v′) is

an edge of Gp.
(3) Gp is transitively closed: if (v, v′) and (v′, v′′) are edges of Gp, then (v, v′′) is

also an edge of Gp.
(4) Let g = [q1, d1, k1] → [q2, d2, k2] → . . . be any path in G. Then H = (q1, d1)

→ (q2, d2) → . . . is a partial failure detector history in D(F ).
(5) For all correct processes p and q, and for every vertex v of Gp, there is a d ∈ RD

and a k ∈ N such that eventually (v, [q, d, k]) is an edge of Gq.

Note that properties (1)–(5) imply that, for every correct process p, k ∈ N, and
set of paths V in Gp, eventually Gp contains a path g, such that (a) every correct
process appears at least k times in g, and (b) for every path g′ in V , g′ · g is also a
path in Gp.

3.2.3 Simulation trees. Now DAG Gp can be used to simulate runs of A. Any
path g = [q1, d1, k1], [q2, d2, k2], . . . , [qs, ds, ks] through Gp gives the order in which
processes q1, q2, . . . , qs “see”, respectively, failure detector values d1, d1, d2, . . . ,
ds. That is, g contains an activation schedule and failure detector outputs for the
processes to execute steps of A’s instances. Let I be any initial configuration of A.
Consider a schedule S that is applicable to I and compatible with g, i.e., |S| = s
and ∀k ∈ {1, 2, . . . , s}, S[k] = (qk,mk, dk), where mk is a message addressed to qk

(or the null message λ).
All schedules that are applicable to I and compatible with paths in Gp can be

represented as a tree ΥI
p, called the simulation tree induced by Gp and I. The set of

vertices of ΥI
p is the set of all schedules S that are applicable to I and compatible

with paths in Gp. The root of ΥI
p is the empty schedule S⊥. There is an edge from

S to S′ if and only if S′ = S · e for a step e; the edge is labeled e. Thus, every
vertex S of ΥI

p is associated with a sequence of steps e1 e2 . . . es consisting of labels
of the edges on the path from S⊥ to S. In addition, every descendant of S in ΥI

p

corresponds to an extension of e1 e2 . . . es.
The construction of ΥI

p implies that, for any vertex S of ΥI
p, there exists a partial

run 〈F, I, S〉 of A where F is the current failure pattern. Thus, if correct processes
appear sufficiently often in S and receive sufficiently many messages sent to them,
then every correct (in F ) process decides in S(I).
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[p2, d2, k2]

[p1, d3, k3]

[p1, d1, k1]

(p1, m
′
3, d3)

S⊥

(a) (b)

(p2, m2, d2)

(p1, m3, d3)

(p2, λ, d2)

(p1, λ, d3)(p1, λ, d1)

Fig. 5. A DAG and a tree

In the example depicted in Figure 5, a DAG (a) induces a simulation tree a
portion of which is shown in (b). There are three non-trivial paths in the DAG:
[p1, d1, k1] → [p2, d2, k2] → [p1, d3, k3], [p2, d2, k2] → [p1, d3, k3] and [p1, d1, k1] →
[p1, d3, k3]. Every path through the DAG and an initial configuration I induce
at least one schedule in the simulation tree. Hence, the simulation tree has at
least three leaves: (p1, λ, d1) (p2,m2, d2) (p1,m3, d3), (p2, λ, d2) (p1,m

′
3, d3), and

(p1, λ, d3). Recall that λ is the empty message: since the message buffer is empty
in I, no non-empty message can be received in the first step of any schedule.

3.2.4 Tags and valences. Let Ii, i ∈ {0, 1, . . . , n} denote the initial configuration
of A in which processes p1, . . . , pi propose 1 and the rest (processes pi+1, . . . , pn)
propose 0. In the computation task of the reduction algorithm, every process
p maintains an ever-growing simulation forest Υp = {Υ0

p,Υ
1
p, . . . ,Υ

n
p} where Υi

p

(0 ≤ i ≤ n) denotes the simulation trees induced by Gp and initial configurations
Ii.

For every vertex of the simulation forest, p assigns a set of tags. Vertex S of tree
Υi

p is assigned a tag v if and only if S has a descendant S′ in Υi
p such that p decides

v in S′(Ii). We call the set tags the valence of the vertex. By definition, if S has a
descendant with a tag v, then S has tag v. Validity of consensus ensures that the
set of tags is a subset of {0, 1}.

Of course, at a given time, some vertices of the simulation forest Υp might not
have any tags because the simulation stimuli are not sufficiently long yet. But this
is just a matter of time: if p is correct, then every vertex of p’s simulation forest will
eventually have an extension in which correct processes appear sufficiently often for
p to take a decision.

A vertex S of Υi
p is 0-valent if it has exactly one tag {0} (only 0 can be decided

in S’s extensions in Υi
p). A 1-valent vertex is analogously defined. If a vertex S

has both tags 0 and 1 (both 0 and 1 can be decided in S’s extensions), then we say
that S is bivalent.1

1The notion of valence was first defined by Fischer et al. [1985] as the set of values than are
decided in all extensions of a given execution. Here we define the valence as only a subset of these

values, defined by the simulation tree.
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It immediately follows from Validity of consensus that the root of Υ0
p can at most

be 0-valent, and the root of Υn
p can at most be 1-valent (the roots of Υ0

p and Υn
p

cannot be bivalent).

3.2.5 Stabilization. Note that the simulation trees can only grow with time,
they never shrink. As a result, once a vertex of the simulation forest Υp gets a tag
v, it cannot lose it later. Thus, eventually every vertex of Υp stabilizes being 0-
valent, 1-valent, or bivalent. Since correct processes keep continuously exchanging
the failure detector samples and updating their simulation forests, every simulation
tree computed by a correct process at any given time will eventually be a subtree
of the simulation forest of every correct process.

Formally, let p be any correct process, i be any index in {0, 1, . . . , n}, and S be
any vertex of Υi

p. Then:

(i) There exists a non-empty V ⊆ {0, 1} such that eventually the valence of S is
permanently V . (We say that the valence of S stabilizes on V at p.)

(ii) If the valence of S stabilizes on V at p, then for every correct process q, even-
tually S is a vertex of Υi

q and the valence of S stabilizes on V at q.

Hence, the correct processes eventually agree on the same tagged simulation
subtrees. In discussing the stabilized tagged simulation forest, it is thus convenient
to consider the limit infinite DAG G and the limit infinite simulation forest Υ =
{Υ0,Υ1, . . . ,Υn} such that for all i ∈ {0, 1, . . . , n} and all correct processes p, Gp

tends to G and Υi
p tends to Upsiloni.

3.2.6 Critical index. Let p be any correct process. We say that index i ∈
{1, 2, . . . , n} is critical if either the root of Υi is bivalent or the root of Υi−1 is
0-valent and the root of Υi is 1-valent. In the first case, we say that i is bivalent
critical. In the second case, we say that i is univalent critical.

Lemma 3.1. There is at least one critical index in {1, 2, . . . , n}.

Proof. Indeed, by the Validity property of consensus, the root of Υ0 is 0-valent,
and the root of Υ1 is 1-valent. Thus, there must be an index i ∈ {1, 2, . . . , n} such
that the root of Υi−1 is 0-valent, and Υi is either 1-valent or bivalent.

Since tagged simulation forests computed at the correct processes tend to the same
infinite tagged simulation forest, eventually, all correct processes compute the same
smallest critical index i of the same type (univalent or bivalent). Now we have two
cases to consider for the smallest critical index: (1) i is univalent critical, or (2) i
is bivalent critical.

3.2.7 Handling a univalent critical index

Lemma 3.2. If i is univalent critical, then pi is correct.

Proof. By contradiction, assume that pi is faulty. Then G contains an infinite
path g in which pi does not participate and every correct process participates
infinitely often. Then Υi contains a vertex S such that pi does not take steps
in S and some correct process p decides in S(Ii). Since i is 1-valent, p decides 1
in S(Ii). But pi is the only process that has different states in Ii−1 and Ii, and
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pi does not take part in S. Thus, S is also a vertex of Υi−1 and p decides 1 in
S(Ii−1). But the root of Υi−1 is 0-valent — a contradiction.

3.2.8 Handling a bivalent critical index. Assume now that the root of Υi is
bivalent. Below we show that Υi then contains a decision gadget, i.e., a finite
subtree which is either a fork or a hook (Figure 6).

S0

(0-valent)

S (bivalent)

(q,m, d)

S⊥

S0

(0-valent)
S1

(1-valent)

S (bivalent)

(q,m, d′)

S⊥

S1

(1-valent)

(q′,m′, d′)

(a) (b)

S′

(q,m, d) (q′,m′, d′)

Fig. 6. A fork and a hook

A fork (case (a) in Figure 6) consists of a bivalent vertex S from which two
different steps by the same process q, consuming the same message m, are possible
which lead, on the one hand, to a 0-valent vertex S0 and, on the other hand, to a
1-valent vertex S1.

A hook (case (b) in Figure 6) consists of a bivalent vertex S, a vertex S′ which is
reached by executing a step of some process q, and two vertices S0 and S1 reached
by applying the same step of process q′ to, respectively, S and S′. Additionally, S0

must be 0-valent and S1 must be 1-valent (or vice versa; the order does not matter
here).

In both cases, we say that q is the deciding process, and S is the pivot of the
decision gadget.

Lemma 3.3. The deciding process of a decision gadget is correct.

Proof. Consider any decision gadget γ defined by a pivot S, vertices S0 and
S1 of opposite valence and a deciding process q. By contradiction, assume that q
is faulty. Let g, g0 and g1 be the simulation stimuli of, respectively, S, S0 and S1.
Then G contains an infinite path g̃ such that (a) g · g̃, g0 · g̃, g1 · g̃ are paths in G,
and (b) q does not appear and the correct processes appear infinitely often in g.

Let γ be a fork (case (a) in Figure 6). Then there is a finite schedule S̃ compatible
with a prefix of g̃ and applicable to S(Ii) such that some correct process p decides
in S · S̃(Ii); without loss of generality, assume that p decides 0. Since q is the only
process that can distinguish S(Ii) and S1(Ii), and q does not appear in S̃, S̃ is also
applicable to S1(Ii). Since g1 · g̃ is a path of G and S̃ is compatible with a prefix
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of g̃, it follows that S1 · S̃ is a vertex of Υi. Hence, p also decides 0 in S1 · S̃(Ii).
But S1 is 1-valent — a contradiction.

Let γ be a hook (case (b) in Figure 6). Then there is a finite schedule S̃ compatible
with a prefix of g and applicable to S0(Ii) such that some correct process p decides
in S0 · S̃(Ii). Without loss of generality, assume that S0 is 0-valent, and hence p
decides 0 in S0 · S̃(Ii). Since q is the only process that can distinguish S0(Ii) and
S1(Ii), and q does not appear in S̃, S̃ is also applicable to S1(Ii). Since g1 · g̃ is a
path of G and S̃ is compatible with a prefix of g̃, it follows that S1 · S̃ is a vertex of
Υi. Hence, p also decides 0 in S1 · S̃(Ii). But S1 is 1-valent — a contradiction.

Now we need to show that any bivalent simulation tree Υi contains at least one
decision gadget γ.

Lemma 3.4. If i is bivalent critical, then Υi contains a decision gadget.

Proof. Let i be a bivalent critical index. In Figure 7, we present a procedure
which goes through Υi. The algorithm starts from the bivalent root of Υi and
terminates when a hook or a fork has been found.

S ← S⊥
while true do

p← 〈choose the next correct process in a round robin fashion〉
m← 〈choose the oldest undelivered message addressed to p in S(Ii)〉
if 〈S has a descendant S′ in Υi (possibly S = S′) such that, for some d,

S′ · (p, m, d) is a bivalent vertex of Υi〉
then S ← S′ · (p, m, d)
else exit

Fig. 7. Locating a decision gadget

We show that the algorithm indeed terminates. Suppose not. Then the algorithm
locates an infinite fair path through the simulation tree, i.e., a path in which all
correct processes get scheduled infinitely often and every message sent to a correct
process is eventually consumed. Additionally, this fair path goes through bivalent
states only. But no correct process can decide in a bivalent state S(Ii) (otherwise
we would violate the Agreement property of consensus). As a result, we constructed
a run of A in which no correct process ever decides — a contradiction.

Thus, the algorithm in Figure 7 terminates. That is, there exists a bivalent vertex
S, a correct process p, and a message m addressed to p in S(Ii) such that

For all descendants S′ of S (including S′ = S) and all d, (1)
S′ · (p,m, d) is not a bivalent vertex of Υi.

In other words, any step of p consuming message m brings any descendant of
S (including S itself) to either a 1-valent or a 0-valent state. Without loss of
generality, assume that, for some d, S · (p, m, d) is a 0-valent vertex of Υi. Since S
is bivalent, it must have a 1-valent descendant S′′.
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If S′′ includes a step in which p consumes m, then we define S′ as the vertex of
Υi such that, for some d′, S′ · (p, m, d′) is a prefix of S′′. If S′′ includes no step
in which p consumes m, then we define S′ = S′′. Since p is correct, for some d′,
S′ · (p, m, d′) is a vertex of Υi. In both cases, we obtain S′ such that for some d′,
S′ · (p, m, d′) is a 1-valent vertex of Υi.

Let the path from S to S′ go through the vertices σ0 = S, σ1, . . . , σm−1, σm = S′.
By transitivity of G, for all k ∈ {0, 1, . . . ,m}, σk · (p, m, d′) is a vertex of Υi. By
statement 2, σk · (p, m, d′) is either 0-valent or 1-valent vertex of Υi.

σ0 = S (bivalent)

Case 1

(0-valent)

(p, m, d)

(0-valent)

(1-valent)

σm = S′

(1-valent)
Case 2

(p′′,m′′, d′′)

σk−1

σk
(p, m, d′)

(p, m, d′)

(p, m, d′)

(p, m, d′)

S⊥

Fig. 8. Locating a fork (Case 1) or a hook (Case 2)

Let k ∈ {0, . . . ,m} be the lowest index such that (p, m, d′) brings σk to a 1-valent
state. We know that such an index exists, since σm · (p, m, d′) is 1-valent and all
such resulting states are either 0-valent or 1-valent.

Now we have the following two cases to consider: (1) k = 0, and (2) k > 0.
Assume that k = 0, i.e., (p, m, d′) applied to S brings it to a 1-valent state. But

we know that there is a step (p, m, d) that brings S to a 0-valent state (Case 1 in
Figure 8). That is, a fork is located!

If k > 0, we have the following situation. Step (p, m, d′) brings σk−1 to a 0-valent
state, and σk = σk−1 · (p′,m′, d′′) to a 1-valent state (Case 2 in Figure 8). But that
is a hook!

As a result, any bivalent infinite simulation tree has at least one decision gad-
get.

3.2.9 The reduction algorithm. Now we are ready to complete the description of
TD→Ω. In the computation task (Figure 9), every process p periodically extracts the
current leader from its simulation forest, so that eventually the correct processes
agree on the same correct leader. The current leader is stored in variable Ω-outputp.
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Initially:
for i = 0, 1, . . . , n: Υi

p ← empty graph
Ω-outputp ← p

while true do

{ Build and tag the simulation forest induced by Gp }
for i = 0, 1, . . . , n do

Υi
p ← simulation tree induced by Gp and Ii

for every vertex S of Υi
p:

if S has a descendant S′ such that p decides v in S′(Ii) then
add tag v to S

{ Select a process from the tagged simulation forest }
if there is a critical index then

i← the smallest critical index
if i is univalent critical then Ω-outputp ← pi

if Υi
p has a decision gadget then

Ω-outputp ← the deciding process of the smallest decision gadget in Υi
p

Fig. 9. Extracting a correct leader: code for each process p

Initially, p elects itself as a leader. Periodically, p updates its simulation forest
Υp by incorporating more simulation stimuli from Gp. If the forest has a univalent
critical index i, then p outputs pi as the current leader estimate. If the forest
has a bivalent critical index i and Υi

p contains a decision gadget, then p outputs
the deciding process of the smallest decision gadget in Υi

p (the “smallest” can be
well-defined, since the vertices of the simulation tree are countable).

Eventually, the correct processes locate the same stable critical index i. Now we
have two cases to consider:

(i) i is univalent critical. By Lemma 3.2, pi is correct.
(ii) i is bivalent critical. By Lemma 3.4, the limit simulation tree Υi contains

a decision gadget. Eventually, the correct processes locate the same decision
gadget γ in Υi and compute the deciding process q of γ. By Lemma 3.3, q is
correct.

Thus, eventually, the correct processes elect the same correct leader — Ω is
emulated!

3.3 The weakest failure detector for a register

In this section, we show that the quorum failure detector Σ is the weakest failure
detector to implement atomic registers in all environments. Combined with earlier
work on state machine replication [Lamport 1978; Schneider 1990], this implies
that (Ω,Σ), the composition of Ω and Σ, is the weakest failure detector for solving
consensus in all environments, i.e., for all assumptions on when and where failures
might occur..

The result was first obtained by Delporte-Gallet et al. [2003]. An alternative



26 · Freiling, Guerraoui, Kouznetsov

“CHT-like” proof, based on exchanging failure detector samples and using the sam-
ples as stimuli for locally simulated runs, was later presented by Eisler et al. [2004].
We review here the proof of Eisler et al. [2004], because it employs the simulation
technique discussed in the previous section.

3.3.1 Read/write shared memory. A register is a shared object accessed through
two operations: read and write. The write operation takes as an input parameter
a specific value to be stored in the register and returns a simple indication ok that
the operation has been executed. The read operation takes no parameters and
returns a value according to one of the following consistency criteria. A (single-
writer, multi-reader) safe register ensures only that any read operation that does
not overlap with any other operation returns the argument of the last write oper-
ation. A (stronger) regular register ensures that any read operation returns either
a concurrently written value, or the value written by the last write operation. The
(strongest) atomic register ensures that any operation appears to be executed in-
stantaneously between its invocation and reply time events. (Precise definitions are
given by Herlihy and Wing [1990; Attiya and Welch [2004].)

The registers we consider are fault-tolerant : they ensure that, despite concurrent
invocations and possible crashes of the processes, every correct process that invokes
an operation eventually gets a reply (a value for the read and an ok indication for
the write).

The classical results [Vitányi and Awerbuch 1986; Israeli and Li 1993] imply
that if a failure detector D is sufficient to implement a safe one-writer one-reader
register for any two processes, then D is sufficient to implement an atomic multi-
writer multi-reader register. Thus, we do not need to specify here whether the
register implemented using D is safe, regular or atomic: all these registers are
computationally equivalent.

3.3.2 The sufficiency part. Recall that the quorum failure detector Σ outputs
a set of processes at each process. Any two sets (output at any times and by any
processes) intersect, and eventually every set consists of only correct processes.

By a simple variation of the algorithm of Attiya et al. [1995] for implementing
registers in a message-passing system with a majority of correct processes, we obtain
an algorithm that implements registers in any environment using Σ. Where the
original algorithm uses waiting until a majority responds to ensure that a read
operation returns the most recently written value, we can use the quorums provided
by Σ to the same effect.

3.3.3 The reduction algorithm. Now we need to show that any failure detector
that can be used to implement registers can be transformed into Σ.

Let E be any environment. Let D be any failure detector that can be used to
implement in E a set of atomic registers {Xp}p∈Π, where for every p ∈ Π, Xp can
be written by p and read by all processes. We present an algorithm that, using D,
implements Σ.

To extract Σ, we assign a particular protocol, i.e., a sequence of operations on the
implemented registers, to every process. In this protocol, denoted A, every process
p first writes 1 in Xp, and then reads the registers {Xq}q∈Π (we assume that each
Xq is initialized to 0). A run in which p is the only process that executes A, is
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Initially:
Σ-outputp ← Π { Σ-outputp is the output of p’s module of Σ }
I ← the initial configuration of A

while true do
wait until p adds a new failure detector sample u to its DAG Gp

repeat
let Gp(u) be the subgraph induced by the descendants of u in Gp

S ← set of all schedules of A compatible with some path
of Gp(u) and applicable to I

until there is a schedule S ∈ S of a complete p-solo run of A
Σ-outputp ← set of all processes that take steps in the schedule S

Fig. 10. Extracting Σ: code for each process p

called a p-solo run of A. A p-solo run in which p completes A, is called a complete
p-solo run of A.

It is important to notice that in any run R of A in which two processes p and q
both complete executing A, either p reads 1 in Xq, or q reads 1 in Xp. Intuitively,
this implies that the sets of processes “involved” in the executions of A at p and q
intersect, which gives us a hint of how to extract Σ from A and D.

Again, the reduction algorithm consists of two tasks: the communication task
and the computation task.

The communication task, in which each process p samples its local module of
D, exchanges the failure detector samples with the other processes, and assembles
these samples in an ever-increasing directed acyclic graph Gp, which is organized
exactly as in Section 3.2 (Figure 4). The computation task, in which p simulates
runs of A and uses these runs to extract its current quorum (the output of its
emulated module of Σ), is presented in Figure 10.

To compute its current quorum, process p first waits until enough “fresh” (not
previously appeared) failure detector samples are collected in Gp. Eventually, Gp

includes a sufficiently long fresh path g such that there is a schedule S of a complete
p-solo run of A, compatible with g. The set of processes that take steps in S
constitute the current quorum of p stored in variable Σ-outputp.

The correctness of the reduction algorithm follows immediately from the following
two observations:

(1) Eventually, at every correct process p, Σ-outputp contains only correct pro-
cesses.
Indeed, there is a time after which faulty processes do not produce fresh failure
detector samples and thus do not participate in fresh schedules of A simulated
by p.

(2) For all p and q, Σ-outputp and Σ-outputq always intersect.
Indeed, assume, by contradiction, that there exist P,Q ⊂ Π such that P∩Q = ∅,
and, at some time t1, p computes Σ-outputp = P and, at some time t2, q
computes Σ-outputq = Q.
By the algorithm of Figure 10, A has a complete p-solo run Rp = 〈F, I, Sp〉
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and a complete q-solo run Rq = 〈F, I, Sq〉 such that the sets of processes that
participate in Sp and Sq are disjoint.
But the two runs Rp and Rq can be composed in a single run R = 〈F, I, S〉
that is indistinguishable from Rp to p, and indistinguishable from Rq to q.
Hence, both p and q complete A in R. Since Rp is a p-solo run, and p cannot
distinguish R and Rp, p reads 0 from register Xq in R. Respectively, q reads 0
from register Xp in R. But this cannot happen in any register implementation:
at least one of the processes p and q must read 1 in the register of the other
process!
The contradiction implies that Σ-outputp and Σ-outputq always intersect.

Thus, for all environments E , Σ is the weakest failure detector to implement
atomic registers in E .

3.3.4 Solving consensus in all environments. Once we determined the weakest
failure detector to implement atomic registers, determining the weakest failure de-
tector for solving consensus in all environments is straightforward. This failure
detector is (Ω,Σ), the composition of Ω and Σ.

Indeed, failure detector (Ω,Σ) can be used to solve consensus in all environments,
by first implementing registers out of Σ, and then consensus out of registers and
Ω [Lo and Hadzilacos 1994].

On the other hand, consensus can be used to implement atomic registers in any
environment [Lamport 1978; Schneider 1990], and thus to extract Σ. Combined
with the fact that Ω is necessary to solve consensus in any environment [Chandra
et al. 1996] (see Section 3.2), this implies that (Ω,Σ) is necessary to solve consensus
in any environment.

3.4 Solving Non-Blocking Atomic Commit

In this section, we discuss determining the weakest failure detector for solving Non-
Blocking Atomic Commit (NBAC) in all environments. This failure detector is
(Ψ,FS), the composition of Ψ, introduced by Delporte-Gallet et al. [2004], and
FS, the failure signal failure detector [Charron-Bost and Toueg 2001; Guerraoui
2002].

3.4.1 Failure detector Ψ. Roughly speaking, Ψ behaves as follows: For an initial
period of time the output of Ψ at each process is ⊥. Eventually, however, Ψ behaves
either like the failure detector (Ω,Σ) at all processes, or, in case a failure previously
occurred, it may instead behave like the failure detector FS by outputting red at
all processes. The switch from ⊥ to (Ω,Σ) or FS need not occur simultaneously at
all processes, but the same choice is made by all processes. Note that the switch
from ⊥ to FS is allowable only if a failure previously occurred. Furthermore, if
a failure does occur processes are not required to switch from ⊥ to FS; they may
still switch to (Ω,Σ).

3.4.2 Using (Ψ,FS) to solve NBAC. The algorithm in Figure 11 uses (Ψ,FS)
to solve NBAC in any environment E . The algorithm is very similar to that of
Fig. 3. Each process p sends its vote to all processes and then waits until the votes
of all processes are received or FS detects a failure by outputting red. If the votes
of all processes are received and are yes, then p sets the myproposal variable to
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non-blocking atomic commit(v): { v is yes or no }
1 send v to all
2 wait until [(for each process q in Π, received q’s vote) or FSp = red]
3 if the votes of all processes are received and are yes then
4 myproposal← 1
5 else { some vote was no or there was a failure }
6 myproposal← 0
7 wait until [Ψp 6= ⊥]
8 if Ψp = red
9 then { henceforth Ψ behaves like FS }
10 return abort
11 else { henceforth Ψ behaves like (Ω, Σ) }
12 mydecision← consPropose(v) { use Ψ to run (Ω, Σ)-based consensus algorithm }
13 if mydecision = 1 then
14 return commit
15 else 16return abort

Fig. 11. Using (Ψ,FS) to solveNBAC: code for each process p

1. Otherwise, if some vote was no or a failure was detected by FS, then p sets the
myproposal variable to 0.

Then each process p waits until the output of Ψ becomes different from ⊥. At
that time, either Ψ starts behaving like FS or it starts behaving like (Ω,Σ). If
Ψ starts behaving like FS (Ψ can do so only if a failure previously occurred), p
returns abort. The remaining case is that Ψ starts behaving like (Ω,Σ). It is shown
in [Delporte-Gallet et al. 2003] that there is an algorithm that uses (Ω,Σ) to solve
consensus in any environment (see also Sect. 3.3). Therefore, in this case, p proposes
myproposal to that consensus algorithm and returns the value decided by that
algorithm. If 1 is decided in the consensus algorithm, then p returns commit. If 0
is decided, then p returns abort.

The Agreement property of NBAC follows from the Agreement property of con-
sensus and the fact that the output of Ψ switches uniformly from ⊥ to (Ω,Σ) or
FS at all processes. If there are no failures, then eventually p receives all the votes.
If a failure occurs, then FS eventually outputs red. Hence, the wait statement in
line 2 is non-blocking. The Termination property of consensus ensures that every
correct process eventually decides.

Assume that p decides commit. By Validity of consensus some process q pre-
viously proposed 1. By the algorithm, q received the votes of all processes and all
the votes were yes.

Assume now that p decides abort. Thus, either Ψp output red, i.e., a failure
previously occurred, or the consensus algorithm (Ω,Σ) returned 0. By Validity of
consensus some process q previously proposed 0. If some process q proposed 0, then
either q received vote no from some process or a failure previously occurred and
was detected by FS. In both cases, Validity of NBAC is ensured.

3.4.3 The weakest failure detector to solve NBAC. Intuitively, (Ψ,FS) precisely
captures the semantics of NBAC. Indeed, if all processes propose 1 the only reason
for an NBAC algorithm not to decide commit is a failure of some process. So
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repeatedly running the algorithm can be used for “anonymously” detecting failures,
i.e., emulating FS. Further, if processes agree on the fact that a failure previously
occurred, then it is safe for them to return abort (the FS part of failure detector
Ψ). Otherwise, processes must be able to reach agreement using there views of
proposed values (the (Ω,Σ) part of failure detector Ψ).

Let E be any environment. Let D be any failure detector that solves NBAC in
E , and let A be any algorithm that solves NBAC in E using D.

There is a straightforward reduction algorithm that transformsD into FS [Charron-
Bost and Toueg 2001; Guerraoui 2002]. Initially, at every process, the reduction
algorithm outputs green. Processes run a series of instances of the NBAC algo-
rithm A using D proposing yes in every instance, as long as commit is decided
in every instance. If abort is decided, then the reduction algorithm switches its
output to red. Clearly, red can only be output if a failure previously occurred, and
if a failure occurs, eventually red is permanently output at every correct process.

Showing that D can be transformed into Ψ is based on a rather involved use
of properties of NBAC and the technique of [Chandra et al. 1996], and we refer
to [Delporte-Gallet et al. 2004] for the description of the corresponding reduction
algorithm.

3.5 Summary

Failure detectors are not only a helpful engineering abstraction but also allow to
compare the synchrony requirements of problems in fault-tolerant computing. In
this section we discussed the associated problem of the weakest failure detector and
presented three examples of weakest failure detector proofs.

4. LIMITATIONS OF FAILURE DETECTORS

The failure detector abstraction has many practical and theoretical virtues, but we
do not want to close this survey without also investigating the limitations of this
abstraction which have been frequent sources of misunderstandings and miscon-
ceptions in fault-tolerant algorithms. We have grouped the discussion about the
limitations around four basic questions which we discuss and put into context.

4.1 What is not a Failure Detector?

The original work on failure detectors [Chandra and Toueg 1996] defines a failure
detector to be a mapping from a failure pattern F to some output range H. The
failure pattern F specifies which processes fail at what time. So anything that can
be defined as a function of failures can be formally called a failure detector.

Not everything that looks like a failure detector can however be defined as a
function of failures. Considering the crash failure model, Charron-Bost et al. [2000]
observed that there exist problems that cannot be solved in asynchronous systems
assuming even a perfect failure detector. For example, determining how many
events a process executed before it crashed cannot be determined using a perfect
failure detector. This is counterintuitive since in a fully synchronous system this
can easily be detected if the failed process broadcasts a message with every event
and an observer waits until a correctly calculated timeout has passed.

Gärtner and Pleisch [2002] managed to specify a device similar to a failure de-
tector that allows to fully emulate a synchronous system. This device works like a
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perfect failure detector, only that — upon suspecting a process — the device re-
turns a dump of the state in which that process crashed. The precise formulation of
this device is not a function of failures anymore, but rather a function of the process
state and the failures in the system. Gärtner and Pleisch [2002] proved that such
a device allows to embed crash events perfectly into the causal history of a compu-
tation. So any problem which can be defined as the result of the causal structure
of a computation can be computed. As another result, they showed that the same
can be achieved with a perfect failure detector if the communication channels are
synchronous (i.e. having a bound δ but not having a bound ∆, see Section 2.1.5).
So at least a perfect failure detector can be regarded as an abstraction of process
synchrony, not of channel synchrony.

4.2 Do Failure Detectors make sense outside of the crash model?

The “classic” failure detectors have been crash failure detectors, i.e., they were
tailored to the crash failure model. There are many other failure models in the
literature. Among those that refer to the incorrect behavior of processes are fail-
stop [Schlichting and Schneider 1983], crash-recovery [Oliveira et al. 1997; Aguilera
et al. 1998; Hurfin et al. 1998], send/receive omission [Hadzilacos 1984; Hadzilacos
and Toueg 1994] and Byzantine [Lamport et al. 1982]. The fail-stop failure model
is just like the crash failure model, except that the crash of a process is easily
detectable by other processes. In the send/receive omission failure model a process
sends or receives only a subset of messages it was supposed to send or receive.
Finally, the Byzantine failure model allows arbitrary behavior of a faulty process.

In general, the type of failure detector which is necessary to solve a problem
depends on the problem itself (e.g., consensus) and the failure model assumed in
the network (e.g., crash). Usually, the failure model indicates what information
the failure detector offers and the problem dictates how the failure detector should
present this information (i.e., the failure detector properties). For example, consider
the crash-recovery failure model where processes can crash and later start execution
again from a predefined point in their program. Since the failure model offers a new
type of behavior, adequate failure detectors should be able to convey information
about this behavior. Consequently, the failure detectors used in the context of
solving consensus in the crash-recovery model [Aguilera et al. 2000a] output a vector
of unbounded counters hinting on how often a process has been suspected.

Considering the consensus problem, failure detector specifications have been ex-
tended to environments where the network may partition [Guerraoui and Schiper
1996; Aguilera et al. 1999] and processes may experience send and receive omissions
[Dolev et al. 1997; Delporte-Gallet et al. 2005]. Lossy links are a usual assumption
in work on consensus in the crash-recovery failure model [Oliveira et al. 1997; Aguil-
era et al. 1998; Hurfin et al. 1998]. In this model, questions of to what extent stable
storage is necessary are also important. Lo and Hadzilacos [Lo and Hadzilacos 1994]
study failure detection and consensus in a shared memory setting. The model of
finite transient failures which is characteristic to the area of self-stabilization [Di-
jkstra 1974; Dolev 2000] has also been studied in the context of failure detectors
[Beauquier and Kekkonen-Moneta 1997; Hutle and Widder 2005].

Fixing the crash model, other problems than consensus have been studied adapt-
ing the failure detection approach. Sabel and Marzullo [1995] consider the election
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problem (see also Larrea et al. [2000]) while Matsui et al. [2000] investigate eventual
leader election of k processes (which they call k-consensus). Issues of group commu-
nication have also been considered (e.g., atomic multicast [Guerraoui and Schiper
1997] and generic broadcast [Pedone and Schiper 1999; Aguilera et al. 2000]). Pred-
icate detection in faulty environments is investigated by Garg and Mitchell [1998a],
Gärtner and Kloppenburg [2000], and Gärtner and Pleisch [2001].

The failure detector abstraction cannot easily be adapted to Byzantine failures
since it is not possible to derive a clean failure detector interface which is orthogonal
to the specification of the algorithm using it. This is because the notion of a failure
is not only related to timing/synchrony but also to application level messages. The
closest we can get are so-called “muteness” detectors [Doudou et al. 1999; Doudou
et al. 2002]. But this approach usually assumes that processes send certain messages
continuously and relay messages to all others if they receive them for the first
time. Kihlstrom et al. [2003] distinguishes between detectable and undetectable
Byzantine failures. Non-detectable failures are either unobservable (a Byzantine
process spontaneously changes his input value) or undiagnosable (they cannot be
tagged to a specific process, e.g. if a process claims that some other process sent him
something). Byzantine failure detectors can only report detectable faults, which can
be further classified into commisson and omission faults, the former being in the
value domain and the latter in the time domain. The omission fault detectors of
Kihlstrom et al. [2003] correspond to the muteness failure detectors of Doudou et al.
[1999].

4.3 Can Randomization be used to implement Failure Detectors?

In 1983, Ben-Or [1983] presented an algorithm which solves consensus in the com-
pletely asynchronous model (i.e., without failure detectors) by using randomization.
In the algorithm, processes repeatedly flip coins to reach a majority of proposed
values, upon which termination is reached. In doing this and because of the prop-
erties of the random coin, it can be shown that the probability of non-terminating
runs diminishes to zero and, hence, termination can be achieved with probability
one. So since both randomization and failure detection can be seperately used to
solve consensus it is legitimate to ask: Can failure detectors be implemented using
randomization?

Aguilera and Toueg [1998] presented an algorithm that uses randomization and
unreliable failure detection to solve consensus. But their approach does not use
randomization to implement failure detectors, rather randomization is used to guar-
antee termination in case the failure detectors never become reliable.

Völzer [2005] studied the relationship between fairness and randomization. He
showed that to solve crash-tolerant consensus it is sufficient to postulate a certain
kind of fairness called hyperfairness. Briefly spoken, hyperfairness looks at situa-
tions in which certain resources are needed (e.g., for a process to terminate) but
which can be independently made available and withdrawn to a process. Hyperfair-
ness means that eventually these resources will be “synchronized” and available to
that process. This special type of fairness can be implemented using randomization
and partial synchrony.
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4.4 Can Failure Detectors be used to Reason about Real-Time?

Failure detectors offer an asynchronous interface for timing information. It is nev-
ertheless sometimes helpful to figure out what kind of synchrony in terms of explicit
time failure detectors do offer.

Strong failure detectors have strong completeness and weak accuracy. This means
that every crash is eventually detected but processes can make mistakes about
other processes except a single same one. Making mistakes means to “time out
too soon”. Thus, implementing a strong failure detector makes it necessary to have
communication and processing speed bounds regarding one “central” process. Note
that this feature is asymmetric: The bounds must hold for communication coming
from the central process, not for communication running towards it.

Eventually Strong failure detectors have strong completeness and eventually weak
accuracy. The situation here is that processes can now make mistakes about all
processes, but must eventually stop making mistakes regarding a single same pro-
cess. Systems which offer an eventually strong failure detector must ensure that
eventually communication and processing speed bounds hold regarding one “cen-
tral” process but only in direction from this process to the other processes. This
was formalized into the concept of an (eventual) source [Aguilera et al. 2001; 2003],
a process whose outgoing channels are (eventually) timely.

As discussed above, perfect failure detectors allow building a system which is very
close (but not equivalent) to a fully synchronous one [Charron-Bost et al. 2000]. It
has still been argued that the use of failure detectors also offers the potential of
building real-time applications by using the approach of late binding [Hermant and
Le Lann 2002]. In this approach, a real-time problem is turned into a “time-free”
problem, e.g., by basing timeliness requirements on certain activation conditions
using time-free extensions to the asynchronous model like failure detectors. In this
context, an asynchronous solution can be devised. Then the solution is bound to
an as weakly synchronous system model as possible (e.g., one of partial synchrony)
and the real-time instants of the activation conditions are computed from the guar-
antees of the underlying model. Since the application satisfies its safety and liveness
properties even if the underlying network transiently violates its timeliness guaran-
tees, this approach allows to build real-time applications with higher assumption
coverage than if real-time were considered from the beginning of the design process.

Along this line of research, the issue of fast failure detectors has been investigated,
i.e., failure detectors which detect failures in a time which is orders of magnitude
less than a round trip delay [Aguilera et al. 2002].

5. SUMMARY

Take the time-free system model which is usually used when reasoning about fault-
intolerant distributed algorithms, add the concept of unreliable failure detectors,
and you get a system model which can be used to reason about fault-tolerant
distributed algorithms. The failure detector abstraction has many virtues as an
engineering tool and as a computability benchmark, but also has some limitations
in expressiveness.
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Gärtner, F. C. and Kloppenburg, S. 2000. Consistent detection of global predicates under a
weak fault assumption. In Proceedings of the 19th IEEE Symposium on Reliable Distributed
Systems (SRDS2000). IEEE Computer Society Press, Nürnberg, Germany, 94–103.
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