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Summary

The direct computation of sums

f(xj) =

N/2−1∑

k=−N/2

f̂k e−2πikxj

at arbitrary nodes xj ∈ [−1
2 ,

1
2) (j = 1, . . . ,M ) requires O(NM) arithmetical opera-

tions, too much for practical purposes. For equally spaced nodes xj = j
N (j = −N

2 ,

. . . , N
2 − 1) the computation can be done by the well known fast Fourier trans-

form (FFT) in only O(N logN) arithmetical operations. Recently, the fast Fourier

transform for nonequispaced nodes (NFFT) was developed for the fast approxima-

tive computation of the above sums in only O
(
N logN +M log 1

ε

)
, where ε denotes

the required accuracy.

The principal topics of this thesis are generalizations and applications of the

NFFT. This includes the following subjects:

• Algorithms for the fast approximative computation of the discrete cosine

and sine transform at nonequispaced nodes are developed by applying fast

trigonometric transforms instead of FFTs.

• An algorithm for the fast Fourier transform on hyperbolic cross points with

nonequispaced spatial nodes in 2 and 3 dimensions based on the NFFT and

an appropriate partitioning of the hyperbolic cross is proposed.

• A unified linear algebraic approach to recent methods for the fast computa-

tion of matrix–vector–products with special dense matrices, namely the fast

multipole method, fast mosaic-skeleton approximation and H-matrix arith-

metic, is given. Moreover, the NFFT-based summation algorithm by Potts

and Steidl is further developed and simplified by using algebraic polynomials

instead of trigonometric polynomials and the error estimates are improved.

• A new algorithm for the characterization of engineering surface topographies

with line singularities is proposed. It is based on hard thresholding complex

ridgelet coefficients combined with total variation minimization. The discrete

ridgelet transform is designed by first using a discrete Radon transform based

on the NFFT and then applying a dual-tree complex wavelet transform.

• A new robust local scattered data approximation method is introduced. It

is an advancement of the moving least squares approximation (MLS) and

generalizes an approach of van den Boomgard and van de Weijer to scattered

data. In particular, the new method is space and data adaptive.
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Zusammenfassung

Die direkte Berechnung der Summen

f(xj) =

N/2−1∑

k=−N/2

f̂k e−2πikxj

an beliebigen Knoten xj ∈ [−1
2 ,

1
2) (j = 1, . . . ,M ) erfordert O(NM) arithmetische

Operationen. Für äquidistante Knoten xj = j
N (j = −N

2 , . . . , N
2 −1) kann die Berech-

nung mittels schneller Fouriertransformation (FFT) in nur O(N logN) arithmeti-

schen Operationen durchgeführt werden. Auf unstrukturierten Knotenmengen hat

sich inzwischen ein Algorithmus (NFFT) zur effizienten näherungsweisen Berech-

nung obiger Summen in nur O
(
N logN +M log 1

ε

)
etabliert, wobei ε die gewünschte

Genauigkeit bezeichnet.

Das Hauptaugenmerk dieser Dissertation liegt auf Verallgemeinerungen und An-

wendungen der NFFT. Im Einzelnen beinhaltet dies die folgenden Ergebnisse:

• Es werden schnelle Algorithmen für die näherungsweise Berechnung der dis-

kreten Kosinus- und Sinustransformation auf unstrukturierten Knotenmen-

gen entwickelt, die statt der FFT schnelle trigonometrische Transformationen

verwenden.

• Ein Algorithmus für die schnelle Fouriertransformation auf hyperbolischen

Kreuzen in 2 und 3 Dimensionen mit unstrukturierten Knotenmengen im

Zeitbereich wird aufbauend auf der NFFT und einer geeigneten Unterteilung

der hyperbolischen Kreuze konstruiert.

• Ein einheitlicher algebraischer Zugang zu aktuellen Methoden für die schnel-

le Berechnung von Matrix–Vektor–Produkten mit speziellen vollbesetzten Ma-

trizen, und zwar die
”
fast multipole method“ (FMM), die

”
fast mosaic-skeleton“-

Approximation und die H-Matrix-Arithmetik, wird gegeben. Desweiteren wird

der NFFT-basierte Summationsalgorithmus von Potts und Steidl durch die

Verwendung algebraischer an Stelle von trigonometrischen Polynomen ver-

einfacht, und die Fehlerabschätzungen werden verbessert.

• Ein neuer Algorithmus zur Beschreibung der Beschaffenheit technischer Ober-

flächen mit Liniensingularitäten wird vorgestellt. Er basiert auf einer Kopp-

lung von
”
hard thresholding“ von Ridgeletkoeffizienten mit Verfahren zur Mi-

nimierung der totalen Variation. Die diskrete Ridgelettransformation erhält

man durch Verwendung einer auf der NFFT basierenden diskreten Radon-

transformation und anschließender Anwendung einer speziellen komplexen

Wavelettransformation, der
”
dual-tree complex wavelet transform“.
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• Eine neue robuste lokale Approximationsmethode für gestreute Daten wird

eingeführt. Sie stellt eine Weiterentwicklung der sogenannten
”
moving least

squares“ Approximation (MLS) dar und verallgemeinert einen Ansatz von van

den Boomgaard und van de Weijer auf nichtäquidistante Knoten. Insbeson-

dere ist der neue Zugang raum- und datenadaptiv.
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Notation

N0 := N ∪ {0} set of nonnegative integers

T
d := R

d/Zd the d–dimensional torus,

represented by [−1
2 ,

1
2 ]d with opposing faces identified

i =
√
−1 ∈ C imaginary unit

e ≈ 2.718 base of the natural logarithm log
δj,k := 1 for j = k and zero else (Kronecker-Delta)

k := (k1, . . . , kd)
T ∈ N

d
0 d-dimensional multi-index

|k| := k1 + · · · + kd

x := (x1, . . . , xd)
T d-dimensional column vector

‖x‖ :=
(∑d

t=1|xt|2
)1/2

Euclidean norm

A :=
(
Ajk

)m,n

j,k=1
matrix with m rows and n columns

AT :=
(
Akj

)n,m

k,j=1
transpose of the matrix A

AH :=
(
Ākj

)n,m

k,j=1
conjugate transpose of the matrix A

IN :=
{
− N

2 , . . . ,
N
2 − 1

}
⊆ Z index set, 6

Id
N := IN1

× · · · × INd
⊆ Z

d tensor product index set, 5

Hd
J ⊆ Id

(2J ,...,2J )T index set of hyperbolic cross points in dimension d, 23

Πd
s the space of d-variate polynomials of absolute degree ≤ s

Np normalized cardinal B-spline of degree p, 53

Bp
k dilated and translated versions of Np, 54

Sp(∆) spline space of degree p with sampling nodes ∆ := {tk}2p
k=−p, 54

S(Rd) the Schwartz space

D(Td) the counterpart to the Schwartz space for periodic functions, 20

D′(Td) dual space of D(Td), tempered distributions, 20

Ha(Td) L2-Sobolev space of order a ∈ R, 21

Ea(Td) Korobov space of order a ∈ R, 21

Rθf(s) continuous Radon transform, 73

Rθf(s) discrete Radon transform, 74

Rθf(a, b) continuous ridgelet transform, 77

cθt,j0,k(f), discrete complex ridgelet coefficients

dθt,j,k(f) (smooth resp. detail components), 78
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I. Introduction

Fourier methods play an important role in various areas of applied mathematics

and physics. Originally designed by Fourier (1768-1830) for the solution of differ-

ential equations they became one of the fundamental principles in digital signal

and image processing. The main premise to make Fourier methods applicable

in practice was the development of an algorithm for the fast computation of the

discrete Fourier transform (DFT)

fj =

N/2−1∑

k=−N/2

f̂k e−2πikj/N (j = −N
2 , . . . , N

2 − 1)

by Cooley and Tukey [29] in 1965. The well-known fast Fourier transform (FFT)

needs only O(N logN) arithmetical operations instead of O(N2) arithmetical oper-

ations for the direct computation.

Later, it was discovered that already Gauss found an algorithm for the fast com-

putation of the DFT in connection with his analysis of the orbit of the planetoid

Pallas in 1805. However, this one and other algorithms, e.g., by Runge in 1903,

were disregarded since there were no appropriate computers.

Once the [FFT] method was established it became clear that it had a

long and interesting prehistory going back as far as Gauss. But until the

advent of computing machines it was a solution looking for a problem.

T. W. Körner, Fourier Analysis (1988)

Meanwhile, sophisticated soft- and hardware implementations for the FFT exist.

In particular, we refer to the C subroutine library FFTW [60], whose performance

is typically superior to that of other publicly available FFT software, and is even

competitive with vendor-tuned codes.

However, the FFT requires sampling on an equally spaced grid, which poses a

significant limitation to many applications. The fast Fourier transform for nonequi-

spaced nodes (NFFT) efficiently computes approximations of sums

f(xj) =

N/2−1∑

k=−N/2

f̂k e−2πikxj (j = 1, . . . ,M )

at arbitrary nodes xj ∈ [−1
2 ,

1
2). The computation of the NFFT is based on the

approximation or interpolation of the trigonometric polynomial

f(x) :=

N/2−1∑

k=−N/2

f̂k e−2πikx

1



I. Introduction

by suitable linear combinations of translates of a window function ϕ having good

localization in the time and frequency domain. The arithmetical complexity of the

algorithm is O
(
N logN +M log 1

ε

)
, where ε denotes the required accuracy.

About 20 years ago, first NFFT methods were introduced in the field of digital

signal and image processing [106, 114], but without profound theoretical knowl-

edge. The first papers deriving the theoretical connection between arithmetical

complexity of the algorithm and achieved accuracy were provided by Dutt and

Rokhlin (1993) [41] for the Gaussian bell ϕ and by Beylkin (1995) [12] for B-splines

ϕ. Subsequent work [122, 111, 38] unified the approaches of Dutt, Rokhlin and

Beylkin and provided consistent error estimates based on the split of the overall

error in an aliasing error and a truncation error. These estimates suggested to look

for functions ϕ with better approximating properties. In particular, Kaiser-Bessel-

functions [55, 58] and powers of the sinc-function [90] lead to good results. Further

approaches based on ‘scaling factors’ [104], on minimizing the Frobenius norm of

certain error matrices [105] or on min-max-interpolations [55] were proposed, but

did not bring forth significant improvements. Moreover, there exist algorithms for

the fast summation with nonequispaced nodes in time and frequency domain [44].

In the meantime, there are publicly available software implementations for the

NFFT. One is the C subroutine library of Kunis and Potts [88], another is the

Matlab toolbox by Fessler and Sutton [54].

Contribution

The principal contributions of this thesis are generalizations and applications of

the NFFT. This includes the following results:

NDCT, NDST For real input data we develop fast algorithms for the discrete cosine

transform at nonequispaced nodes (NDCT) and for the discrete sine transform at

nonequispaced nodes (NDST) by applying fast trigonometric transforms. Our ap-

proach is based on the NFFT and is easier than the Chebyshev transform based

derivation by Potts [107] and faster than the algorithm by Tian and Liu [125],

which still uses FFTs. Instead of FFTs we apply fast algorithms for the discrete

cosine transform (DCT-I) and for the discrete sine transform (DST-I).

SNFFT In order to circumvent the so-called ‘curse of dimensionality’ in multivari-

ate approximation, i.e., the number of degrees of freedom depends exponentially

on the dimension, the interpolation on sparse grids and the related approximation

on hyperbolic cross points in Fourier domain have been introduced [136, 120, 17].

Just like the NFFT generalizes the FFT, we generalize the existing algorithms for

the computation of the FFT with frequencies from a hyperbolic cross and spatial

nodes on a sparse grid [6, 136, 78] to arbitrary spatial nodes.

2



Fast Summation The fast computation of special structured discrete sums or from

the linear algebra point of view of products of vectors with special structured dense

matrices is a frequently appearing task, e.g., in the study of particle summations,

in the numerical solution of integral equations and in the approximation by radial

basis functions. Various algorithms were designed to speed up the summation

process. We describe a unified approach to some of these methods coming from

different areas and known under different names. These are the hierarchical and

fast multipole method (FMM) by Greengard and Rokhlin [65], the mosaic-skeleton

approximation by Tyrtyshnikov [127], the panel clustering algorithm [77] and its

more general recent version the H- and H2-matrix concept by Hackbusch et al.

[71, 73].

Recently, a fast summation algorithm based on the NFFT was developed by

Potts and Steidl [109] which allows a simple incorporation of different kernels.

We further develop these ideas and introduce new regularization techniques. Us-

ing algebraic polynomials instead of trigonometric polynomials, we prove more

sophisticated error estimates. We particularly focus on special kernels, namely

the generalized multiquadrics, which play an important role in the approximation

of functions by radial basis functions. Moreover, we modify this approach for the

use with real input data by applying fast trigonometric transforms instead of FFTs.

Ridgelets Ridgelets have been designed by Candès and Donoho [18, 20] to deal

with line singularities effectively by mapping them into point singularities using

the Radon transform. When implementing a discrete ridgelet transform one has to

cope with certain technical difficulties. The basic strategy of the ridgelet transform

is an application of the wavelet transform on the projections of the Radon trans-

form. The Radon transform seems natural and simple on the continuum but it is a

challenging problem for discrete data. Do and Vetterli [34] proposed an orthonor-

mal version of the ridgelet transform based on a discrete Radon transform defined

on the finite grid Z
2
p, where p is a prime number. Unfortunately, the Z

2
p Radon

transform integrates over ‘lines’ which are defined algebraically — due to the arith-

metic modulo p — rather than geometrically. This causes a wrap-around effect,

i.e., texture-like artifacts in reconstructions. Carré and Andres [22] presented a

so-called discrete analytical ridgelet transform (DART) with a flexible redundancy

factor based on discrete analytical lines, which only cause a limited wrap-around

effect. Donoho et al. [37] have proposed an effective discrete ridgelet transform

based on so-called true ridge functions using the Fast Slant Stack (FSS) [4], a

pseudopolar FFT based discrete Radon transform. The essential of the FSS-based

‘true’ ridgelet transform is an interpolation performed using a Dirichlet kernel,

which leads to a transform that is geometrically faithful and has no wrap-around

effect.

In this work, we develop a discrete Radon transform based on the NFFT. As the

FSS, this approach completely avoids linear interpolations. Further, we combine it

with a dual-tree complex wavelet transforms (to achieve approximate shift invari-

ance) and total variation (TV) minimization (to reduce the pseudo-Gibbs artifacts)

for line-feature extraction.

3



I. Introduction

Robust Approximation A popular approach to scattered data approximation is

the moving least squares method (MLS) [46] which requires in contrast to standard

interpolation methods by radial basis functions only the solution of small linear

systems of equations. The size of these systems is governed by the degree of

the polynomials which are reproduced by the method. Another way to look at

the polynomial reproduction property is the Backus-Gilbert approach, which also

offers a possibility for the fast computation of the MLS solution via the NFFT.

Interestingly, similar methods exist in image processing for smoothing noisy

data. The Gaussian facet model [129] is basically the same as the MLS method.

However, the MLS method and its variants have a big drawback. In their averaging

process they smooth edges, since the weights are assigned only data dependent

and do not depend on the distribution of the sampling nodes. This led to the

development of robust estimation procedures and nonlinear filters that also data-

adaptively determine the influence of each data point on the result [118]. Among

the rich variety of these methods, we focus on the robust Gaussian facet model

[129] developed for image processing.

Having the relation between the linear approaches in image processing and scat-

tered data approximation in mind, we modify this robust nonlinear model in such

a way that it can be also applied to scattered data. Moreover, we change the

method slightly towards a generalized bilateral filter approach that does not only

reproduce constants but also polynomials of higher degree.

4



II. Fast trigonometric transforms at
nonequispaced nodes

In this chapter we mainly develop fast algorithms for the discrete cosine trans-

form at nonequispaced nodes (NDCT) and for the discrete sine transform at noneq-

uispaced nodes (NDST). Our approach is based on the fast Fourier transform at

nonequispaced nodes (NFFT) proposed by Steidl et al. [122, 111].

Let N := (N1, . . . , Nd)
T ∈ 2N

d and Id
N :=

{
− N1

2 , . . . ,
N1

2 −1
}
×· · ·×

{
− Nd

2 , . . . ,
Nd

2 −1
}
.

As usual, let the torus T
d be represented by the d-dimensional unit cube

[
− 1

2 ,
1
2

]d
with opposing faces identified. For a finite number of given Fourier coefficients

f̂k ∈ C (k ∈ Id
N ), the d-variate NFFT(N1, . . . ,Nd) computes approximations f̃ of the

trigonometric polynomial

f(x) =
∑

k∈Id
N

f̂k e−2πikx (2.1)

at arbitrary nodes xj ∈ T
d (j = 1, . . . ,M ). In matrix-vector notation this reads as

f = Af̂ , (2.2)

where

f :=
(
f(xj)

)M
j=0

, A :=
(
e−2πikxj

)M
j=0,k∈Id

N

, f̂ :=
(
f̂k

)
k∈Id

N

. (2.3)

For equispaced nodes xj =
( j1

N1
, . . . , jd

Nd

)T
(j ∈ Id

N ) the computation of (2.1) can

be done by the well known fast Fourier transform (FFT) [29] in only O(|Id
N | log|Id

N |)
arithmetic operations. However, the FFT requires sampling on an equally spaced

grid which represents a significant limitation in many applications. Unfortunately,

for arbitrary nodes xj ∈ T
d (j = 1, . . . ,M ), the direct evaluation of (2.4) takes

O(|Id
N |M) arithmetical operations, too much for practical purposes. In the fol-

lowing, we are looking for fast algorithms. The results were previously published

in [50].

This chapter is organized as follows. We start with briefly developing the NFFT.

Details can be found in [111]. For clarity of presentation the ideas behind the

following algorithms will be shown for the univariate case d = 1 first. In Section 2,

we generalize the NFFT to the multivariate setting. Our new fast algorithms for the

NDCT and NDST are presented in Sections 3 and 4. A closer examination of the

inverse NFFT will be given in Section 5 with particular consideration of different

sampling sets, which will be essential for later applications.

5



II. NFFT, NFCT, NFST

1. The NFFT

Let N = N ∈ 2N and therefore IN := I1
N = {−N

2 , . . . ,
N
2 − 1}. We are interested in the

fast evaluation of the 1-periodic trigonometric polynomial

f(x) :=
∑

k∈IN

f̂k e−2πikx . (2.4)

Let ϕ be an even window function so that its 1-periodic version ϕ̃(x) =
∑

r∈Z
ϕ(x+r)

has an absolute convergent Fourier series

ϕ̃(x) =
∑

k∈Z

ck(ϕ̃) e−2πikx

with the Fourier coefficients

ck(ϕ̃) :=

1/2∫

−1/2

ϕ̃(x) e2πikx dx =

∫

R

ϕ(x) e2πikx dx (k ∈ Z).

We introduce the oversampling factor σ > 1, n := σN , and approximate f by

s1(x) :=
∑

ℓ∈In

gℓ ϕ̃

(
x− ℓ

n

)
,

i.e., we want to define gℓ such that s1 ≈ f . Switching to the frequency domain, one

obtains

s1(x) =
∑

k∈Z

ĝk ck(ϕ̃) e−2πikx

=
∑

k∈In

ĝk ck(ϕ̃) e−2πikx +
∑

r∈Z\{0}

n−1∑

k=−n

ĝk ck+nr(ϕ̃) e−2πi(k+nr)x (2.5)

with the discrete Fourier coefficients

ĝk :=
∑

ℓ∈In

gℓ e2πikℓ/n, gℓ =
1

n

∑

k∈In

ĝk e−2πikℓ/n (2.6)

Suppose that the Fourier coefficients ck(ϕ̃) become sufficiently small for |k| ≥ n− N
2

and that ck(ϕ̃) 6= 0 for k ∈ IN . Then, comparing (2.5) with (2.4) suggests to set

ĝk := ĝk+nr =

{
f̂k/ck(ϕ̃) k ∈ IN ,

0 k ∈ In \ IN ,
(2.7)

for r ∈ Z. Now the values gℓ can be obtained from (2.6) by a (reduced) FFT of size

n. This approximation causes an aliasing error.

6



2. Multivariate NFFT

Assume further that ϕ is also well-localized in time domain such that it can be

approximated by a function

ψ(x) = ϕ(x)χ[−m
n

, m
n

](x)

with suppψ = [−m
n ,

m
n ] and cut-off parameter m ∈ N (m ≪ n). Together with its

1-periodic version ψ̃ and with the help of the index set

In,m(xj) := {ℓ ∈ In : nxj −m ≤ ℓ ≤ nxj +m}

an approximation to s1 is defined by

f(xj) ≈ s1(xj) ≈ s(xj) :=
∑

ℓ∈In,m(xj)

gℓ ψ̃

(
xj −

ℓ

n

)
. (2.8)

For fixed xj ∈ T, the above sum contains at most 2m+ 1 nonzero summands. This

approximation causes a truncation error.

In summary, the NFFT approximates f(xj) by computing s(xj) via (2.7), (2.6) and

(2.8) with O(n log n +mM) arithmetic operations. See the next section for a short

analysis of the approximation error.

2. Multivariate NFFT

Starting with the original problem of evaluating the multivariate trigonometric

polynomial (2.1) we have to do a few generalizations of the ideas given in the

previous section. Using the tensor product approach, the window function is now

given by

ϕ(x) := ϕ1(x1) · · ·ϕd(xd) ,

where the ϕt (t = 1, . . . , d) are univariate window functions. Thus, a simple conse-

quence is

ck(ϕ̃) = ck1
(ϕ̃1) · · · ckd

(ϕ̃d) .

The ansatz is generalized to

s1(x) :=
∑

ℓ∈Id
n

gℓϕ̃

(
x −

( ℓ1
n1
, . . . ,

ℓd
nd

)T
)

with n := σN . Along the lines of (2.7) one defines

ĝk :=

{
f̂k

ck(ϕ̃) for k ∈ Id
N

0 for k ∈ Id
n \ Id

N .

The values gℓ can be obtained by a (multivariate) FFT of size n1 × · · · × nd as

gℓ =
1

n1 · · ·nd

∑

k∈Id
N

ĝk e−2πik(ℓ1/n1,...,ℓd/nd)T

(ℓ ∈ Id
n).

7



II. NFFT, NFCT, NFST

Assume now that ϕ is well localized in time domain and can be approximated by

the function ψ(x) = ϕ(x)χD(x) with compact support D := [− m
n1
, m

n1
]× · · · × [− m

nd
, m

nd
].

Let ψ̃ again denote the 1-periodic version of ψ. One then obtains

s(xj) :=
∑

ℓ∈Id
n,m(xj)

gℓψ̃

(
x −

( ℓ1
n1
, . . . ,

ℓd
nd

)T
)
,

where the multi-index set is given by

Id
n,m(xj) :=

{
ℓ ∈ Id

n : nt

(
xj

)
t
−m ≤ ℓt ≤ nt

(
xj

)
t
+m ∀t

}
.

The d-variate NFFT(N1, . . . , Nd) needs

O(σd|Id
N | log |Id

N | +mdM)

arithmetic operations and its approximation error can be split as

|f(xj) − s(xj)| ≤ |f(xj) − s1(xj)| + |f(xj) − s1(xj)|

into an aliasing error and a truncation error. To keep the error small, several

window functions ϕ with good localization in time and frequency domain were

proposed, e.g., the Gaussian [41, 122, 38], cardinal central B-splines [12, 122],

sinc functions [88] or Kaiser-Bessel functions [81, 57]. A detailed analysis of the

approximation errors can be found in the corresponding papers. In general the

approximation error decays exponentially in m, where the basis of the exponent

depends on σ. In our numerical experiments, we will focus on the Gaussian win-

dow function. Then, by [44], the error can be estimated by

|f(xℓ) − f̃(xℓ)|∑
k∈Id

N
|f̂k|

≤ d 2d+1 e−mπ(1−1/(2α−1)) . (2.9)

See also [88] for a numerical comparison of the NFFT with different window func-

tions and different choices for the parameters σ and m.

In matrix-vector notation the NFFT can be described by

Af̂ ≈ BFDf̂

with the sparse matrix B :=
(
ψ̃
(
x−

(
ℓ1
n1
, . . . , ℓd

nd

)T))M

j=1,ℓ∈Id
n

, the Fourier matrix F :=
(
e−2πik(j1/n1,...,jd/nd)T )

j,k∈Id
n

and the ‘diagonal’ matrix

D :=

d⊗

t=1

(
0t

∣∣∣∣∣ diag

(
1

ckt
(ϕ̃t)

)

kt∈INt

∣∣∣∣∣ 0t

)T

with zero matrices 0t of appropriate size.
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3. The NFCT

For the sake of completeness, we also sketch the transposed version of the trans-

form (NFFTT ). Instead of the sum in (2.1), we are now interested in the fast com-

putation of

h(k) =

M∑

j=1

fj e−2πikxj (k ∈ Id
N ) (2.10)

with fj ∈ C and arbitrary xj ∈ T
d (j = 1, . . . ,M ). In matrix-vector notation this

reads as

h = AT f

with h :=
(
h(k)

)
k∈IN

, f :=
(
fj

)M
j=1

and A as defined in (2.3). Therefore, computing

the transposed matrix-vector product

h ≈ DT F BT f .

leads to an algorithm for the fast approximative computation of (2.10) with the

same arithmetical complexity and approximation error as for the NFFT.

3. The NFCT

Let us turn to the discrete cosine transform at nonequispaced nodes (NDCT). For

given real data f̂C
k ∈ R and arbitrary nodes xj ∈ [0, 1/2] (j = 1, . . . ,M ) we are inter-

ested in the fast and robust computation of

fC(xj) = fC
j :=

ν−1∑

k=0

f̂C
k cos(2πkxj) . (2.11)

Choosing N = 2ν and f̂k ∈ R (k = 0, . . . , ν − 1) with f̂k = f̂−k and f̂−ν = 0 in equation

(2.4) we obtain

f(x) =

ν−1∑

k=−ν

f̂k e−2πikx =

ν−1∑

k=0

2εν,k f̂k cos(2πkx),

where εν,0 = εν,ν := 1/2 and εν,k := 1 (k = 1, . . . , ν − 1). Consequently, we have for

f̂C
k = 2εν,k f̂k that fC(x) = f(x). Since ϕ̃ is even, we verify that ck(ϕ̃) = c−k(ϕ̃) and

further by (2.7) that ĝk = ĝ−k (k = 1, . . . , σν − 1). Using this symmetry and (2.6), we

get for ℓ = 0, . . . , σν that

gℓ =
1

2σν

σν−1∑

k=−σν

ĝk e−πikℓ/(2σν) =
1

σν

σν∑

k=0

εσν,k ĝk cos

(
πkℓ

σν

)
. (2.12)

Note that g2σνr−ℓ = gℓ holds for all r ∈ Z. Finally, we compute as in (2.8) the sums

fC(xj) ≈ s(xj) =
∑

ℓ∈I2σν,m(xj)

gℓ ϕ̃

(
xj −

ℓ

2σν

)
. (2.13)

In summary, we obtain the following algorithm for the fast computation of (2.11)

with arithmetic complexity O(σν log(σν) +mM):

9



II. NFFT, NFCT, NFST

Algorithm 2.1 (NFCT).

Input: ν,M ∈ N, σ > 1, f̂C
k ∈ R (k = 0, . . . , ν − 1), xj ∈ [0, 1/2] (j = 1, . . . ,M ).

Precomputation: ck(ϕ̃) (k = 0, . . . , ν − 1), ϕ̃
(
xj − ℓ

2σν

)
(j = 1, . . . ,M ; ℓ ∈ I2σν,m(xj))

1. For k = 0, . . . , ν − 1 compute ĝk :=
f̂C

k

2εν,kck(ϕ̃)
and for k = ν, . . . , σν set ĝk := 0.

2. For ℓ = 0, . . . , σν compute gℓ according to (2.12) by a fast DCT-I of length σn.

3. For j = 1, . . . ,M compute s(xj) by (2.13).

Output: s(xj) approximate values for fC(xj).

4. The NFST

Now we are interested in the fast and robust computation of the discrete sine

transform at nonequispaced nodes (NDST). For given real data f̂S
k ∈ R and arbitrary

nodes xj ∈ [0, 1/2] (j = 1, . . . ,M ) we have to compute

fS(xj) = fS
j :=

ν−1∑

k=1

f̂S
k sin(2πkxj) . (2.14)

We consider again equation (2.4) with N = 2ν and assume that f̂k ∈ R with f̂−k =
−f̂k (k = 1, . . . , ν − 1) and that f̂0 = f̂−ν = 0. Then

f(x) =

ν−1∑

k=−ν

f̂k e−2πikx = −i

ν−1∑

k=1

2f̂k sin(2πkx).

Consequently, we have for f̂S
k = 2f̂k that fS(x) = if(x). This time, equation (2.7)

yields ĝk = −ĝ−k (k = 1, . . . , σν − 1). Thus, for ℓ = 0, . . . , σν equation (2.12) becomes

igℓ =
i

2σν

σν−1∑

k=−σν

ĝk e−πikℓ/(σν) =
1

σν

σν−1∑

k=1

ĝk sin

(
πkℓ

σν

)
. (2.15)

Note that g2σνr−ℓ = −gℓ (r ∈ Z). Finally, we compute as in (2.8) the sums

fS(xj) = if(xj) ≈ is(xj) =
∑

ℓ∈I2σν,m(xj)

igℓ ϕ̃

(
xj −

ℓ

2σν

)
. (2.16)

In summary, we obtain the following algorithm for the fast computation of (2.14)

with arithmetic complexity O(σν log(σν) +mM):

Algorithm 2.2 (NFST).

Input: n,M ∈ N, σ > 1, f̂S
k ∈ R (k = 1, . . . , ν − 1), xj ∈ [0, 1/2] (j = 1, . . . ,M ).

Precomputation: ck(ϕ̃) (k = 1, . . . , ν − 1), ϕ̃
(
xj − ℓ

2σν

)
(j = 1, . . . ,M ; ℓ =∈ I2σν,m(xj))

10



5. Inverse NFFT

1. For k = 1, . . . , ν − 1 compute ĝk :=
f̂S

k

2ck(ϕ̃)
and for k = 0, ν, . . . , σν set ĝk := 0.

2. For ℓ = 0, . . . , σν compute gℓ according to (2.15) by a fast DST-I of length σν.

3. For j = 1, . . . ,M compute is(xj) by (2.16).

Output: is(xj) approximate values for fS(xj).

Since we have derived the fast algorithms for the NDCT and NDST from the

NFFT, the analysis of the approximation error is straightforward.

The NDCT and the NDST can be interpreted as matrix-vector multiplication with

the matrices Cx := (cos 2πkxj)jk and Sx := (sin 2πkxj)jk.

In a similar way as for the NFFT [111] we can develop fast algorithms for the

computation of

ĥC
k :=

M∑

j=1

fC
j cos(2πkxj) (k = 0, . . . , ν),

ĥS
k :=

M∑

j=1

fS
j sin(2πkxj) (k = 1, . . . , ν − 1),

i.e., for the matrix-vector multiplication with the transposed matrices CT
x and ST

x.

We refer to these algorithms as NFCTT and NFSTT , respectively.

5. Inverse NFFT

We consider the following reconstruction or recovery problem. Given the values

yj ∈ C (j = 1, . . . ,M ) of a trigonometric polynomial (2.1) at nonequispaced nodes

xj, the aim of the inverse NFFT (iNFFT) is to reconstruct its Fourier coefficients f̂k

(k ∈ Id
N), i.e., to solve the linear system of equations

yj =
∑

k∈Id
N

f̂k e−2πikxj (j = 1, . . . ,M ). (2.17)

With the notation of (2.3) and y :=
(
yj

)M
j=1

this reads in matrix-vector-notation as

Af̂ = y . (2.18)

Of course, for equally spaced nodes xj =
( j1

N1
, . . . , jd

Nd

)T
(j ∈ Id

N ) the iNFFT becomes

an ordinary inverse FFT (iFFT) which can be easily computed.

In our applications, the number of nodes will be larger than the dimension of

the space of trigonometric polynomials, i.e., M ≥ |Id
N |, so that the linear system

11



II. NFFT, NFCT, NFST

(a) −0.5 0 0.5
−0.5

0

0.5

(b) −0.5 0 0.5
−0.5

0

0.5

(c) −0.5 0 0.5
−0.5

0

0.5

Figure 2.1.: (a) Polar grid, (b) modified polar grid, (c) linogram grid (T = 32, R = 16)

(2.17) is overdetermined. A standard method is to use the least squares approx-

imation with sampling density compensating weights wj > 0, i.e., to solve the

unconstrained minimization problem

∥∥∥y − Af̂
∥∥∥

2

W
=

M∑

j=1

wj

∣∣yj − f(xj)
∣∣2 f̂−→ min . (2.19)

This problem is equivalent to the weighted normal equation of the first kind

AHWAf̂ = AHWy , (2.20)

where W := diag(wj)
M
j=1. Assuming AHWA ≈ I (as it would be for equispaced

nodes and W = diag( 1
N1...Nd

)Mj=1), multiplication with the weight-matrix and the

adjoint matrix can serve as first approximation f̂ ≈ AHWy.

A theoretical consideration for underdetermined systems (2.17) can be found in

[89].

For the numerical solution of (2.20), the NFFT software package [88] provides a

factorized variant of the conjugated gradients method (CGNR, N for ‘Normal equa-

tion’, R for ‘Residual minimization’). This fast iterative CG-type algorithm involves

the NFFT for the fast matrix-vector multiplications in the CG steps.

The crucial point for the fast convergence of this iterative method is the distribu-

tion of the nodes xj. In view of the applications we have in mind, i.e., the discrete

Radon transform in connection with the discrete Ridgelet transform in Chapter VI,

we investigate special grid structures of nodes xj in 2D and restrict ourselves to

the case N = (N,N)T with N ∈ 2N.

Polar grid

The points of the polar grid lie on concentric circles around the origin. Thus, they

are given by a radius rj := j
R (j ∈ IR) and an angle θt := π

T t (t ∈ IT ) as

xt,j := rjθt ,

where θt := (cos θt, sin θt)
T . The total number of points is

M = TR .

12



5. Inverse NFFT

As you can see in Figure 2.1(a), the points of the polar grid leave out the corners

of the unit square. This is the reason why the reconstruction properties for this

grid are limited and visible artifacts are left (see our numerical examples at the

end of this section). Therefore, we modify this grid as follows.

Modified polar grid

In order to fill the corners, we add more concentric circles and throw away those

points not located in the unit square, i.e., R̃ := ⌈
√

2R⌉ and

xt,j := rjθt

with rj and θt as before, but now let j ∈ IR̃, cp. Figure 2.1(b).

The number of points for the modified polar grid can be estimated as follows.

Since the concentration of points decreases with increasing distance from the ori-

gin, the number of points does not increase proportional to the area. But the

points are equally distributed on the rays. So we can instead ‘measure’ the rays.

Each ray of the polar grid is of length 1
2 . So we have a total length of

2π∫

0

1

2
dθ = π .

Let θ ∈ [0, π/4]. Then the ray of the modified polar grid at angle θ is of length 1
2 cos θ .

Because of symmetry, the total length of the rays is

8

π/4∫

0

1

2 cos θ
dθ = 4 log(1 +

√
2) .

So the ratio of these two length is 4
π log(1 +

√
2) ≈ 1.122 and therefore the number

of points for the modified polar grid is about

M ≈ 4

π
log(1 +

√
2)TR .

But the number of points for the modified polar grid is not optimal with respect

to the rate of convergence of the iNFFT (see the convergence rates of our numerical

examples at the end of this section). In discrete settings the following grid has

turned out to be more suitable.

Linogram grid

Instead of concentric circles, the points of the linogram or pseudopolar grid lie on

concentric squares around the origin. Thus, they are given by a slope and an

13



II. NFFT, NFCT, NFST

intercept. Depending on the angle, we distinguish two sets of points. These are

xh
t,j :=

( j
R
,
4t

T

j

R

)T

xv
t,j :=

(
−4t

T

j

R
,
j

R

)T

where j ∈ IR and t ∈ IT/2, cp. Figure 2.1(c). Together, the number of points for the

linogram grid is

M = TR .

Choice of the parameters T and R

For equally spaced nodes, the Fourier matrix A in (2.18) is orthogonal (except

for normalisation) and therefore has condition number 1. In order to achieve a

small condition number and therefore a good reconstruction with our special non

equally spaced grids, too, we will oversample the domain. Thus, we choose the

parameters T and R such that the sampling density is at least that of the equally

spaced grid, i.e.,

∆x1 ≤ 1

N
, ∆x2 ≤ 1

N
. (2.21)

Our numerical examples at the end of this section show that this is a reasonable

choice. For theoretical considerations of the condition number of A in the non

equally spaced case see [5].

As already mentioned above, the polar grid is not suitable for the iNFFT. For the

modified polar grid, we have with x1 = r cos θ that

∆x1 =

∣∣∣∣
∂x1

∂r

∣∣∣∣∆r = |cos θ|∆r ≤ ∆r

and

∆x1 =

∣∣∣∣
∂x1

∂θ

∣∣∣∣∆θ = |r| |sin θ|∆θ ≤ max|r| ∆θ

(analog for ∆x2). With the choice rj = j
R (j ∈ IR̃) and θt = π

T t (t ∈ IT ), it holds that

∆r = 1
R , max|r| =

√
2

2 and ∆θ = π
T . Therefore, in order to satisfy the conditions in

(2.21), we have to choose

R ≥ N and T ≥
√

2

2
πN .

For (the first set of points of) the linogram grid with x1 = j
R (j ∈ IR), we have

∆x1 =
1

R

and with x2 = 4t
T x1 (t ∈ IT ) it holds with max |x1| = 1

2 that

∆x2 =

∣∣∣∣
∂x2

∂t

∣∣∣∣∆t =
4

T
|x1| ≤

2

T

(analog for the second set of points). Thus, we have to choose in this case

R ≥ N and T ≥ 2N .
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5. Inverse NFFT

Choice of the weights

Weights are introduced in equation (2.19) to compensate sampling density. For

every point in the sampling set, we therefore associate a small surrounding area.

In case of the (modified) polar grid, we have small ring segments. The area of

such a ring segment around xt,j (j 6= 0) is

wt,j :=
π

2T

((
|rj | +

∆r

2

)2
−
(
|rj| −

∆r

2

)2
)

=
π

T
∆r |rj|

=
π

TR2
|j| .

The area of the small circle of radius 1
2R around the origin is π

4R2 . Divided by the

multiplicity of the origin in the sampling set, we get

wt,0 :=
π

4TR2
.

For a point xh
t,j (j 6= 0) of the linogram grid we use small surrounding trapezoids.

The area is

wh
t,j :=

2∆x1

TR

((
|t| + 1

2

)(
|j| − 1

2

)
−
(
|t| − 1

2

)(
|j| − 1

2

)

+
(
|t| + 1

2

)(
|j| + 1

2

)
−
(
|t| − 1

2

)(
|j| + 1

2

))

=
4

TR2
|j|

(analog for a point xv
t,j ). Around the origin we have a small square of side length

1
R . Divided by the multiplicity of the origin in the sampling set, the area is

wh
t,0 :=

1

TR2
.

Remark 5.1. Another possible choice for the weights associated to the points of the

grids are Voronoi weights [87]. However, our numerical tests showed that better

results can be achieved with our analytical weights.

Numerical examples

The following numerical examples were computed with the NFFT C-subroutine

library [88], where we chose Kaiser-Bessel window functions with m = 4 and over-

sampling factor σ = 2.

Figure 2.2(a) shows the Shepp-Logan phantom of size 256 × 256 with values in

[0, 1] (Matlab-function phantom(256) ). We now interpret the gray values of the

image as Fourier coefficients f̂k given on the grid I2
N = [−128, 127]2, set y := Af̂ and

then solve the system Af̃ = y to obtain f̃ .
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II. NFFT, NFCT, NFST

(a) (b)

(c) (d)

Figure 2.2.: (a) Shepp-Logan-Phantom (N = 256); absolute error of reconstruction

by adjoint transform with T = 2.5N , R = 1.5N for (b) polar grid (E∞ =
0.4437), (c) modified polar grid (E∞ = 0.0104), (d) linogram grid (E∞ =
0.0739).
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5. Inverse NFFT

M iterations E∞
polar grid 245760 0 4.4374 · 10−01

500 2.2890 · 10−01

1000 2.2670 · 10−01

modified polar grid 275810 0 1.0401 · 10−02

80 1.1626 · 10−06

145 1.1906 · 10−12

linogram grid 245760 0 7.3870 · 10−02

5 1.1285 · 10−06

10 1.1804 · 10−12

Table 2.1.: Comparison of iterative reconstruction of the Shepp-Logan phantom

with different grids (N = 256, T = 2.5N , R = 1.5N ).

In our first test, we compute a straightforward approximation by multiplication

with the weight-matrix and the adjoint. This can be done with the iNFFT algorithm

by only doing the precomputation with f̂0 = 0 and no iteration step. As can be seen

in Figure 2.2(b), with the nodes chosen from the polar grid, there is still much of

the detail left in the absolute error. For the modified polar grid, Figure 2.2(c), and

the linogram grid, Figure 2.2(d), no detail is left in the error of the reconstruction,

but structural errors can be found.

Table 2.1 compares the results of the conjugated gradients method for the dif-

ferent grids. As a measure for convergence, we use the maximal absolute error

E∞(f̃) := max
k∈I2

N

|f̂ − f̃ | .

No convergence is achieved when using the polar grid. The convergence with the

modified polar grid is very slow compared to the linogram grid, even though the

number of nodes is about 12% larger.

Remark 5.2. The rate of convergence can be improved considerably, especially in

case of the modified polar grid, by taking advantage of the fact that the Shepp-

Logan phantom only consits of values inside a circle of radius N
2 , i.e. f̂k = 0 for

‖k‖ > N
2 . By setting all values outside this circle to zero in every iteration step, we

get E∞ ≈ 10−6 after only 7 steps and E∞ ≈ 10−12 after 17 steps.
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III. Fast Fourier transform at nonequispaced
nodes on hyperbolic cross points

In multivariate approximation one has to deal with the so called ‘curse of dimen-

sionality’, i.e., the number of degrees of freedom for representing an approximation

of a function with a prescribed accuracy depends exponentially on the dimension-

ality of the considered problem. This obstacle can be circumvented to some extend

by the interpolation on sparse grids and the related approximation on hyperbolic

cross points in the Fourier domain, see, e.g., [136, 120, 17]. The basic idea is as

follows. Instead of approximating the function

g (x) =
∑

k∈Zd

ĝk e−2πikx

on the standard tensor product grid
{
k = (k1, . . . , kd)

T ∈ Z
d : |k1|, . . . , |kd| < N

}
with

O(Nd) degrees of freedom, it can be approximated with only O(N logd−1N) degrees

of freedom from the set of hyperbolic cross points
{
k = (k1, . . . , kd)

T ∈ Z
d : (1 +

|k1|) · · · (1 + |kd|) < N
}
. Under certain conditions, the corresponding approximation

error deteriorates only by a factor of logd−1N , see Theorems 1.1 and 1.2.

The fast evaluation of trigonometric polynomials with equispaced nodes in space

and frequency domain can be computed by the FFT in only O(Nd logN) arithmetic

operations [29]. If the frequencies are chosen from a hyperbolic cross and the spa-

tial nodes lie on a sparse grid there exist fast algorithms of arithmetical complexity

O(N logdN) [6, 78]. Recently, the FFT has been generalised by the NFFT which re-

quires O(Nd logN +M) arithmetic operations for the evaluation of a trigonometric

polynomial at M arbitrary nodes, see Chapter II. In this chapter, we present an al-

gorithm for the fast evaluation of trigonometric polynomials with frequencies from

the hyperbolic cross, where in contrast to [6, 78], the spatial nodes can be cho-

sen arbitrarily. We will call this algorithm sparse NFFT (SNFFT). The results are

previously published in [48].

The outline of this chapter is as follows. The first section is devoted to the basic

notation and delivers short insight to the results in the field of hyperbolic Fourier

approximation. In Section 2, we show how the NFFT can be coupled with hyper-

bolic crosses. The main idea consists in an appropriate partitioning of the index

set and the application of the NFFT to the resulting blocks. In Section 3, we define

the two dimensional hyperbolic cross and its block partition for the SNFFT. Fast

algorithms for the sparse discrete cosine and sine transforms at nonequispaced

spatial nodes in two dimensions are given in Section 4. In Section 5, we introduce

a modified three dimensional hyperbolic cross which easily can be partitioned into
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III. NFFT on hyperbolic cross points

blocks again. Finally, Section 6 presents numerical examples and a discussion of

the results.

1. Underlying notation and results

The following notation and results are essentially taken from [119], see also [32].

The counterpart to the Schwartz space S(Rd) for periodic functions is defined by

D(Td) :=
{
f ∈ C∞(Td) : ‖f‖ℓ := max

x∈Td

∣∣∣ ∂|ℓ|

∂xℓ1
1 · · · ∂xℓd

d

f(x)
∣∣∣ <∞ for all ℓ ∈ N

d
0

}
,

where C∞(Td) denotes the space of functions that are differentiable for all degrees

of differentiation. Its dual will be denoted by D′(Td) and its elements are often

called tempered periodic distributions.

We denote the Hilbert space of square integrable complex valued functions on

T
d by

L2(Td) :=
{
f : T

d → C : ‖f‖L2(Td) :=
(∫

Td

|f(x)|2 dx
)1/2

<∞
}
.

Its inner product is given by

〈f, g〉L2(Td) :=

∫

Td

f(x)g(x) dx . (3.1)

Functions g ∈ L2(Td) can be interpreted by

g(f) :=

∫

Td

g(x)f(x) dx (f ∈ D(Td)) (3.2)

as elements of D′(Td) and therefore

D(Td) ⊂ L2(Td) ⊂ D′(Td) .

The Fourier coefficients of a distribution g ∈ D′(Td) are definded for all k ∈ Z
d by

ck(g) := g
(
e−2πik · ) .

By equations (3.1) and (3.2) we can write for functions f ∈ L2(Td)

ck(f) = 〈f, e2πik · 〉L2(Td) =

∫

Td

f(x) e−2πikx dx (k ∈ Z
d) (3.3)

and the set of functions { e2πik·}k∈Zd forms an orthonormal basis of L2(Td).
The Hilbert space of complex valued sequences over Z

d will be denoted by

ℓ2(Z
d) :=

{
(ck)k∈Zd :

∥∥(ck)k∈Zd

∥∥
ℓ2

:=
(∑

k∈Zd

|ck|2
)1/2

<∞
}
.
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1. Underlying notation and results

By Parseval’s equality it holds

‖f‖L2(Td) =
∥∥(ck(f)

)
k∈Zd

∥∥
ℓ2
.

For a ∈ R, we define the L2-Sobolev space Ha(Td) by

Ha(Td) :=
{
f ∈ D′(Td) : ‖f‖Ha(Td) :=

∥∥∥
∑

k∈Zd

(
1 + ‖k‖2

2

)a/2
ck(f) e2πik·

∥∥∥
L2(Td)

}
.

With Parseval’s equality it follows

‖f‖Ha(Td) =
∥∥((1 + ‖k‖2

2)
a/2ck(f)

)
k∈Zd

∥∥
ℓ2
.

The Korobov space of order a ∈ R is defined as

Ea(Td) :=
{
f ∈ D′(Td) :

∣∣ck(f)
∣∣ = O

((
(1 + |k1|) . . . (1 + |kd|)

)−a
)
, ‖k‖2 → ∞

}
.

It holds for m ∈ N that

Cm+1([0, 1]d) ∩Cm−1(Td) ⊆ Em+1(Td) .

Furthermore, we have for a ≥ 0 that

H2a(Td) ⊂ Ea(Td)

and for b < a− 1
2 that

Ea(Td) ⊂ Hb(Td) .

Univariate Fourier approximation

Let the discrete Fourier coefficients be defined by

cNk (f) :=
1

N

∑

ℓ∈IN

f
( ℓ
N

)
e−2πikℓ/N (k ∈ IN ).

The connection between Fourier coefficients and discrete Fourier coefficients can

be expressed by the aliasing formula

cNk (f) = ck(f) +
∑

r∈Z

r 6=0

ck+rN(f) . (3.4)

The univariate Fourier approximation operator is given as

LNf(x) :=
∑

k∈IN

cNk (f) e2πikx

=
∑

ℓ∈IN

f
( ℓ
N

) 1

N

∑

k∈IN

e−2πik(x−ℓ/N)

︸ ︷︷ ︸
=:ΛN (x−ℓ/N)

with the fundamental interpolant ΛN . It involves the frequencies from IN and

interpolates at the spatial points from

TN :=
{ ℓ

N
: ℓ ∈ IN

}
.
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III. NFFT on hyperbolic cross points

Interpolation on tensor product grids

Let N := (N, . . . ,N)T ∈ 2N
d. Following the tensor product approach, the discrete

Fourier coefficients are now defined by

cNk (f) :=
1

Nd

∑

ℓ∈Id
N

f
( ℓ

N

)
e−2πikℓ/N (k ∈ Id

N )

and the multivariate aliasing formula is given by

cNk (f) = ck(f) +
∑

r∈Zn

r6=0

ck+rN (f) . (3.5)

For the tensor product interpolation operator LN := Lx1

N · · ·Lxd

N , where Lxt

N denotes

the univariate Fourier approximation along the xtth coordinate, we get

LNf(x) :=
∑

k∈Id
N

cNk (f) e2πikx

=
∑

ℓ∈Id
N

f
( ℓ

N

) 1

Nd

∑

k∈Id
N

e−2πik(x−ℓ/N)

︸ ︷︷ ︸
=:ΛN (x−ℓ/N)

with the fundamental interpolant ΛN. It involves Nd frequencies from the tensor

product grid Id
N and interpolates at the Nd spatial points of the tensor product grid

T d
N := TN × · · · × TN .

The approximation error can be estimated by the following special case of Theorem

2.23 in [119, p. 55].

Theorem 1.1. Let f ∈ Ha(Td), a ≥ 0. Then

‖f − LNf‖L2(Td) ≤ CN−a‖f‖Ha(Td)

with a constant C independent of N and a.

Interpolation on sparse grids

Let J ∈ N0, N = 2J and Nr := 2r, r = 0, . . . , J. The sparse interpolation operator BJ

is defined as the Boolean sum of univariate interpolation operators

BJ :=
⊕

r1,...,rd∈Nd
0
,

r1+···+rd=J

Lx1

Nr1
· · ·Lxd

Nrd
.

It can also be written as difference of usual sums, e.g., in the bivariate case we

can write

BJ =

J∑

r=0

Lx1

Nr
Lx2

NJ−r
−

J−1∑

r=0

Lx1

Nr
Lx2

NJ−r−1
.
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Figure 3.1.: Sparse grid and hyperbolic cross in 2D for N = 26.

Therefore, it interpolates on the O(N logd−1N) spatial points of the sparse grid

Sd
J :=

⋃

r1,...,rd∈N
d
0
,

r1+···+rd=J

TNr1
× · · · × TNrd

with O(N logd−1N) frequencies from the hyperbolic cross

Hd
J :=

⋃

r1,...,rd∈N
d
0 ,

r1+···+rd=J

INr1
× · · · × INrd

.

The sparse grid and the hyperbolic cross are depicted in Figure 3.1 for d = 2 and

N = 26.

An estimate for the approximation error is given by the following special case of

Theorem 2.24 [119, p. 57].

Theorem 1.2. Let f ∈ Ea(Td), a > 1. Then

‖f −BJf‖L2(Td) ≤ CN−a logd−1N‖f‖Ea(Td)

with a constant C independent of N and a.

Comparing this result with Theorem 1.1, we see, that the interpolation error

deteriorates only by a logarithmic factor, whereas the number of used frequencies

is only O(N logd−1N) instead of Nd in the case of the full tensor product grid.

Remark 1.3. In [119] a more general error analysis is done for functions from so

called spaces of dominating mixed smoothness and for a wider class of funda-

mental interpolants satisfying some Strang-Fix-conditions [119, Def. 2.1]. These

conditions are trivially satisfied by our fundamental interpolants ΛN being trigono-

metric polynomials.
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III. NFFT on hyperbolic cross points

2. Coupling NFFT with hyperbolic crosses

Our new fast algorithm for the evaluation of trigonometric polynomials from hy-

perbolic crosses at arbitrary nodes is based on the application of the NFFT to an

appropriate partitioning of the hyperbolic cross.

Our aim is the fast approximate evaluation of the trigonometric polynomial

f(x) =
∑

k∈Hd
J

f̂k e−2πikx (3.6)

at arbitrary nodes xj ∈ T
d (j = 1, . . . , M ) and for a hyperbolic cross Hd

J which

can be partitioned into blocks of indices Hd
J =

⋃
r(I

d
Nr

+ ρr) with frequency shifts

ρr ∈ Z
d. Then, the sum in (3.6) can be split up according to the blocks as

f(xj) =
∑

r

e−2πiρrxj

∑

k∈Id
N r

f̂k+ρr
e−2πikxj (3.7)

with the ‘nonuniform twiddle factors’ e−2πiρrxj . Now we apply the NFFT of size |Id
Nr

|
on every block. Due to the triangle inequality, the overall error remains bounded

by (2.9). The number of arithmetic operations on every block is O(σd|Id
Nr

| log |Id
Nr

|+
mdM). So our main task consists in the construction of an adequate partition of

the hyperbolic cross with only few blocks which leads to a fast overall algorithm.

Remark 2.1. We would like to emphasise a technical detail concerning NFFTs of

short size. Obviously, NFFTs with small N1, . . . , Nd, should be computed directly.

The case where only few Ni are small needs more care. We exemplify our solution

for d = 2 and N1 ≤ m < N2. Splitting up the sum in equation (2.1) into both

dimensions yields

f(xj) = f
(
(xj)1, (xj)2

)
=

∑

k1∈I1
N1

( ∑

k2∈I1
N2

f̂k1,k2
e−2πik2(xj)2

)
e−2πik1(xj)1 . (3.8)

Now the computation can be done in a total of O
(
N1(σN2 logN2 +mM)

)
arithmetic

operations by a one dimensional NFFT for the inner bracket, followed by a direct

computation of the outer sum.

3. NFFT on hyperbolic cross points – the bivariate case

Let J ∈ N and N = 2J . For the sake of simplicity, let J ≥ 2. Anyway, the considera-

tion of the NFFT on the hyperbolic crosses Hd
0 and Hd

1 is unnecessary.

We define the following index sets as building blocks for our partitioning of the

hyperbolic crosses in two and three dimensions. For r ∈ N0, let

H−
r

H0
r

H+
r

:=
:=
:=

{ −2r+1, . . . ,−2r − 1 },
{ −⌊2r−1⌋, . . . , ⌈2r−1⌉ − 1 },
{ 2r, . . . , 2r+1 − 1 },
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3. NFFT on hyperbolic cross points – the bivariate case

where ⌊x⌋ := max{k ∈ Z : k ≤ x} and ⌈x⌉ := min{k ∈ Z : k ≥ x}. Obviously, the sets

H−
r and H+

r are just shifted versions of H0
r , i.e.

H−
r = −

⌈
3
2 2r

⌉
+H0

r and H+
r =

⌊
3
2 2r

⌋
+H0

r . (3.9)

Furthermore, we have that

∣∣H−
r

∣∣ =
∣∣H0

r

∣∣ =
∣∣H+

r

∣∣ = 2r and H0
r1

× · · · ×H0
rd

= Id
(Nr1

,...,Nrd
)T (3.10)

for Nrt := 2rt and r1, . . . , rd ∈ N0.

Let us now define the blocks of the hyperbolic cross in 2D. For the levels r = 0,

. . . , ⌈J
2 ⌉ − 1, let

Hright
J,r

Htop
J,r

H left
J,r

Hbottom
J,r

:=
:=
:=
:=

H0
r × H+

J−r−2,

H+
J−r−2 × H0

r ,

H0
r × H−

J−r−2,

H−
J−r−2 × H0

r ,

HJ,r := Hright
J,r ∪ Htop

J,r ∪ H left
J,r ∪ Hbottom

J,r ,

Hcentre
J := H0

⌊J
2
⌋ ×H0

⌊J
2
⌋ .

Now the partition of the two dimensional hyperbolic cross is given by the disjoint

union

H2
J = Hcentre

J ∪
⌈J

2
⌉−1⋃

r=0

HJ,r .

In Figure 3.2, the blocks are depicted for J = 2, 3, 4 and 5. Since the cardinalities

for these index sets are
∣∣∣Hright

J,r

∣∣∣ =
∣∣∣Htop

J,r

∣∣∣ =
∣∣∣H left

J,r

∣∣∣ =
∣∣∣Hbottom

J,r

∣∣∣ = 2J−2 ,
∣∣∣Hcentre

J,r

∣∣∣ = 22⌊J
2
⌋ ,

the total number of hyperbolic cross points is |H2
J | = (J + 2)2J−1, compared to

|I2
(N,N)T | = N2 = 4J indices for the full tensor product grid.

Following equation (3.7), we are interested in the computation of

f(xj) =
∑

k∈Hcentre
J

f̂k e−2πikxj +

⌈J
2
⌉−1∑

r=0

∑

k∈HJ,r

f̂k e−2πikxj (3.11)

at arbitrary nodes xj ∈ T
2 (j = 1, . . . , M ). We start by computing the centre

block, i.e., the first sum in (3.11) by a bivariate NFFT(2⌊
J
2
⌋, 2⌊

J
2
⌋) with arithmetic

complexity O(J2J +M). Next we consider the following sums

f label
J,r (xj) :=

∑

k∈Hlabel
J,r

f̂k e−2πikxj ,
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III. NFFT on hyperbolic cross points

Figure 3.2.: Partition of the hyperbolic cross in 2D for J = 2, . . . , 5.

where label ∈ {right, top, left,bottom}. We explain the computation of a left block. By

using equation (3.9), we obtain

∑

k∈Hleft
J,r

f̂k e−2πikxj =
∑

k1∈H0
r

∑

k2∈H−
J−r−2

f̂k1,k2
e−2πi

(
k1(xj)1+k2(xj)2

)

= e2πi⌈ 3

2
2J−r−2⌉(xj)2

∑

k∈H0
r×H0

J−r−2

f̂k1,k2−⌈ 3

2
2J−r−2⌉ e−2πikxj .

Due to (3.10) each of these blocks can be computed by a bivariate NFFT(2r , 2J−r−2)
with arithmetic complexity O(J2J +M), see also Remark 2.1.

Since the number of blocks is O(J), the overall complexity for computing f(xj)
for j = 1, . . . , M is O(J22J +JM). We refer to the following algorithm on hyperbolic

cross points as sparse NFFT (SNFFT).

Algorithm 3.1 (SNFFT 2D).

Input: J ∈ N0, f̂k ∈ C for k ∈ H2
J ,

M ∈ N, xj ∈ T
2 for j = 1, . . . , M .

1. Compute the values

f̃(xj) =
∑

k∈Hcentre
J

f̂k1,k2
e−2πikxj

by a bivariate NFFT(2⌊
J
2
⌋, 2⌊

J
2
⌋).
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4. NDCT and NDST on hyperbolic cross points in 2D

2. For r = 0, . . . , ⌈J
2 ⌉ − 1 compute

f̃(xj) = f̃(xj)

+ e−2πi⌊ 3

2
2J−r−2⌋ (xj)2

∑

k∈H0
r×H0

J−r−2

f̂k1,k2+⌊ 3

2
2J−r−2⌋ e−2πikxj

+ e−2πi⌊ 3

2
2J−r−2⌋ (xj)1

∑

k∈H0
J−r−2

×H0
r

f̂k1+⌊ 3

2
2J−r−2⌋,k2

e−2πikxj

+ e2πi⌈ 3

2
2J−r−2⌉ (xj)2

∑

k∈H0
r×H0

J−r−2

f̂k1,k2−⌈ 3

2
2J−r−2⌉ e−2πikxj

+ e2πi⌈ 3

2
2J−r−2⌉ (xj)1

∑

k∈H0
J−r−2

×H0
r

f̂k1−⌈ 3

2
2J−r−2⌉,k2

e−2πikxj

by four bivariate NFFT(2r , 2J−r−2).

Output: f̃(xj) approximate value of f(xj) (j = 1, . . . , M ).

Algorithm 3.1 reads in matrix-vector notation as

AJ f̂ =
[
AJ,0 | AJ−1,1 | . . . | AJ,⌈J

2
⌉−1 | Acentre

J

]



f̂J,0
...

f̂
centre
J


 ,

where the sub-matrices are given by

AJ,r :=
[
A

right
J,r | A

top
J,r | Aleft

J,r | Abottom
J,r

]
, Alabel

J,r :=
(

e−2πikxj

)
j=1,...,M ;k∈Hlabel

J,r

for label ∈ {right, top, left,bottom}.

4. NDCT and NDST on hyperbolic cross points in 2D

Similar algorithms can be constructed for the discrete cosine transform and sine

transform, based on the fast discrete cosine and sine transforms for nonequi-

spaced nodes, developed in Chapter II. The bivariate fast cosine transform at

nonequispaced nodes NFCT(N1, N2) computes approximations of

f(xj) =

N1−1∑

k1=0

N2−1∑

k2=0

f̂k1,k2
cos
(
2πk1(xj)1

)
cos
(
2πk2(xj)2

)

and the bivariate fast sine transform at nonequispaced nodes NFST(N1,N2) com-

putes approximations of

f(xj) =

N1−1∑

k1=1

N2−1∑

k2=1

f̂k1,k2
sin
(
2πk1(xj)1

)
sin
(
2πk2(xj)2

)

27



III. NFFT on hyperbolic cross points

at arbitrary nodes xj ∈ [0, 1
2 ]2 (j = 1, . . . , M ).

A coupling with hyperbolic crosses can be done as follows. Again let N = 2J .

Here we use the index sets depicted in Figure 3.3. For r = 0, . . . , J define

H ′
J,r := {0, . . . , 2J−r − 1} × {⌊2r−1⌋, . . . , 2r − 1} , H ′

J :=

J⋃

r=0

H ′
J,r .

The cardinalities for these index sets are
∣∣H ′

J,0

∣∣ = 2J ,
∣∣H ′

J,r

∣∣ = 2J−1 ,
∣∣H ′

J

∣∣ = (J + 2) 2J−1 .

Figure 3.3.: Hyperbolic cross points for the NFCT in 2D for J = 2, . . . , 5.

Then the sparse NFCT can be computed by

f(xj) =
∑

(k1,k2)T ∈H′
J

f̂k1,k2
cos(2πk1(xj)1) cos(2πk2(xj)2)

=
J∑

r=0

∑

(k1,k2)T ∈H′
J,r

f̂k1,k2
cos(2πk1(xj)1) cos(2πk2(xj)2)

=

J∑

r=0

cos(⌊2r−1⌋2π(xj)2)

2J−r−1∑

k1=0

2r−1−1∑

k2=0

f̂k1,k2+2r−1 cos(2πk1(xj)1) cos(2πk2(xj)2)

+

J∑

r=1

sin(⌊2r−1⌋2π(xj)2)

2J−r−1∑

k1=0

2r−1−1∑

k2=0

f̂k1,k2+2r−1 cos(2πk1(xj)1) sin(2πk2(xj)2) .

Using the fast algorithms from Chapter II we obtain an overall arithmetic complex-

ity of O(J22J + JM).

5. NFFT on hyperbolic cross points – the trivariate case

Let us consider the hyperbolic cross in three dimensions. For r = 1 ,. . . , J − 1, we

define the index sets

H front
J,0 := H2

J × {0} , H front
J,r := H2

J−r−1 ×H+
r−1 ,

Hrear
J,0 := H2

J−1 × {−1} , Hrear
J,r := H2

J−r−1 ×H−
r−1 .
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5. NFFT on hyperbolic cross points – the trivariate case

Figure 3.4.: Hyperbolic cross points in 3D for J = 2, . . . , 5, only the part k1, k2,

k3 ≤ 0 is shown.

A patition of the three dimensional hyperbolic cross is now given by the disjoint

union

H3
J =

J−1⋃

r=0

H front
J,r ∪

J−1⋃

r=0

Hrear
J,r ,

cf. Figure 3.4. The total number of hyperbolic cross points is

∣∣H3
J

∣∣ =
∣∣H2

J

∣∣+
∣∣H2

J−1

∣∣+
J−1∑

r=1

∣∣H2
J−r−1

∣∣
( ∣∣H+

r−1

∣∣+
∣∣H−

r−1

∣∣
)

= 2J−3
(
J2 + 7J + 8

)
.

The arithmetic complexity of the resulting algorithm is O(J32J + J2M), since for

r = 1, . . . , J − 1 we have to compute O(J − r) trivariate NFFTs with complex-

ity O(J2J + M) each. Unfortunately, this algorithm has drawbacks: we have to

compute NFFTs for O(J2) blocks of our partition. Thus, the (asymptotic) arith-

metic complexity for an equal number of nodes and Fourier coefficients M = |H3
J |

is O(J42J ), i.e., not optimal. Furthermore, the second part of the NFFTs for the

blocks is the most time consuming part for interesting problem sizes J.

Therefore, we use a simplification H̃3
J of the hyperbolic cross with H3

J ⊂ H̃3
J ⊂

I3
(N,N,N)T , which can easily be partitioned into only O(J) blocks but has a total
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III. NFFT on hyperbolic cross points

number of O(2
3

2
J) points. For r = 0, . . . , ⌈J

2 ⌉ − 1, we define the following index sets

H̃top
J,r

H̃ left
J,r

H̃ front
J,r

H̃bottom
J,r

H̃right
J,r

H̃rear
J,r

:=
:=
:=
:=
:=
:=

H+
J−r−2 × H0

r × H0
r ,

H0
r × H+

J−r−2 × H0
r ,

H0
r × H0

r × H+
J−r−2 ,

H−
J−r−2 × H0

r × H0
r ,

H0
r × H−

J−r−2 × H0
r ,

H0
r × H0

r × H−
J−r−2 ,

H̃J,r := H̃ left
J,r ∪ H̃right

J,r ∪ H̃top
J,r ∪ H̃bottom

J,r ∪ H̃ front
J,r ∪ H̃rear

J,r .

The centre block is given by

H̃centre
J := H0

⌊J
2
⌋ ×H0

⌊J
2
⌋ ×H0

⌊J
2
⌋ .

The cardinalities for these index sets are
∣∣∣H̃ left

J,r

∣∣∣ =
∣∣∣H̃right

J,r

∣∣∣ =
∣∣∣H̃top

J,r

∣∣∣ =
∣∣∣H̃bottom

J,r

∣∣∣ =
∣∣∣H̃ front

J,r

∣∣∣ =
∣∣∣H̃rear

J,r

∣∣∣ = 2J+r−2 ,
∣∣∣H̃centre

J

∣∣∣ = 23⌊J
2
⌋ .

The modified three dimensional hyperbolic cross H̃3
J is given by

H̃3
J := H̃centre

J ∪
⌈J

2
⌉−1⋃

r=0

H̃J,r ,

cf. Figure 3.5. Thus, the total number of hyperbolic cross points is |H̃3
J | =

2J−26(2⌈
J
2
⌉ − 1) + 23⌊J

2
⌋, compared to |I3

(N,N,N)T | = N3 = 8J+2 indices for the full

tensor product grid.

Similar to equation (3.11), we are now interested in the computation of

f(xj) =
∑

k∈H̃centre
J

f̂k e−2πikxj +

⌈J
2
⌉−1∑

r=0

∑

k∈H̃J,r

f̂k e−2πikxj

at arbitrary nodes xj ∈ T
3 (j = 1, . . . , M ). We compute each of the blocks as in

the two dimensional case and end up with the following algorithm of arithmetic

complexity O(J2J+⌈J
2
⌉ + JM).

Algorithm 3.2 (SNFFT 3D).

Input: J ∈ N0, f̂k ∈ C for k ∈ H̃3
J ,

M ∈ N, xj ∈ T
3 for j = 1, . . . , M .

1. Compute the values

f̃(xj) =
∑

k∈H0

⌊J
2
⌋
×H0

⌊ J
2
⌋
×H0

⌊ J
2
⌋

f̂k1,k2,k3
e−2πikxj

by a trivariate NFFT(2⌊
J
2
⌋, 2⌊

J
2
⌋, 2⌊

J
2
⌋).
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6. Numerical results

Figure 3.5.: Modified hyperbolic cross in 3D for J = 2, . . . , 5, only the part k1, k2,

k3 ≤ 0 is shown.

2. For r = 0, . . . , ⌈J
2 ⌉ − 1 compute

f̃(xj) = f̃(xj)

+ e2πi⌈ 3

2
2J−r−2⌉ (xj)1

∑

k∈H0
J−r−2

×H0
r×H0

r

f̂k1−⌈ 3

2
2J−r−2⌉,k2,k3

e−2πikxj

+ e2πi⌈ 3

2
2J−r−2⌉ (xj)2

∑

k∈H0
r×H0

J−r−2
×H0

r

f̂k1,k2−⌈ 3

2
2J−r−2⌉,k3

e−2πikxj

+ e2πi⌈ 3

2
2J−r−2⌉ (xj)3

∑

k∈H0
r×H0

r×H0
J−r−2

f̂k1,k2,k3−⌈ 3

2
2J−r−2⌉ e−2πikxj

+ e−2πi⌊ 3

2
2J−r−2⌋ (xj)1

∑

k∈H0
J−r−2

×H0
r×H0

r

f̂k1+⌊ 3

2
2J−r−2⌋,k2,k3

e−2πikxj

+ e−2πi⌊ 3

2
2J−r−2⌋ (xj)2

∑

k∈H0
r×H0

J−r−2
×H0

r

f̂k1,k2+⌊ 3

2
2J−r−2⌋,k3

e−2πikxj

+ e−2πi⌊ 3

2
2J−r−2⌋ (xj)3

∑

k∈H0
r×H0

r×H0
J−r−2

f̂k1,k2,k3+⌊ 3

2
2J−r−2⌋ e−2πikxj

by six trivariate NFFT(2r, 2r, 2J−r−2).

Output: f̃(xj) approximate value of f(xj) (j = 1, . . . , M ).

6. Numerical results

Our algorithms were implemented in C and tested on an AMD AthlonTMXP 2700+

with 2GB main memory, SuSe-Linux (kernel 2.4.20-4GB-athlon, gcc 3.3) using
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III. NFFT on hyperbolic cross points
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Figure 3.6.: The error E′
∞ (solid) and the error estimate given in (2.9) (dashed).

Left: Algorithm 3.1 with J = 9 and m = 2, . . . , 13. Right: Algorithm 3.2

with J = 7 and m = 2, . . . , 13.

double precision arithmetic. Further, we have used the libraries FFTW 3.0.1 [60]

and NFFT 2.0.1 [88]. In the following, we compare Algorithm 3.1 and Algorithm

3.2 with the straightforward summation (3.6), denoted by SNDFT (sparse noneq-

uispaced discrete Fourier transform) and with the ’ordinary’ NFFT where N = 2J

and all Fourier coefficients with an index not in the sets H2
J and H̃3

J , respectively,

are set to zero. We have chosen random nodes xj ∈ [−1
2 ,

1
2 ]d and random Fourier

coefficients f̂k ∈ {a+ bi : a, b ∈ [0, 1]}.
All tests use an oversampling factor of σ = 2 and the Gaussian window function.

We precomputed the Gaussian at 105 equispaced evaluations points. Then, a linear

interpolation scheme is used during the NFFT to compute an actual value of the

window function at a certain node xj.

First, we examine the error caused by the various approximations within the

SNFFT in Algorithms 3.1 and 3.2. The relative error

E′
∞ :=

|f(xj) − f̃(xj)|∑
k∈Hd

N
|f̂k|

(3.12)

is shown in Figure 3.6. According to the estimate in (2.9), the error decays ex-

ponentially as m increases. Due to our approximation of the Gaussian window

function, it saturates at a level of 10−10.

Next, we are interested in computation times and memory requirements. Here,

we choose the number of evaluation nodes equal to the number of Fourier co-

efficients on the hyperbolic cross, i.e., M = (J + 2)2J−1 for d = 2 and M =

2J−26(2⌈
J
2
⌉ − 1) + 23⌊J

2
⌋ for d = 3. We compare the computation time and the mem-

ory requirements of the SNFFT, of the straightforward summation SNDFT, and of

the ’ordinary’ NFFT. Table 3.1 shows the theoretical CPU-time and the memory

requirements. The actually required CPU times of all three algorithms are shown

in Figure 3.7. As expected, the SNFFT outperforms the other algorithms. So we
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6. Numerical results

d = 2 d = 3

algorithm time memory time memory

NFFT J22J 22J J23J 23J

SNDFT J222J J2J 23J 2
3

2
J

SNFFT J22J J2J J2
3

2
J 2

3

2
J

Table 3.1.: Theoretical order of magnitude for CPU-time and memory require-

ments.

7 12 17
10

−2

10
0

10
2

10
4

4 6 8 10 12
10

−2

10
0

10
2

10
4

Figure 3.7.: Elapsed CPU-time in seconds (solid) and theoretical orders of magni-

tude given in Table 3.1 (dashed) for the SNFFT (circle), SNDFT (trian-

gle), and NFFT (square). Left: Algorithm 3.1 with J = 4, . . . , 17, m = 4.

Right: Algorithm 3.2 with J = 4, . . . , 12, m = 4.

obtain, e.g., for d = 2, J = 14 and M = |H2
14| = 131072, a CPU-time of 37 seconds for

the SNFFT compared to 37 minutes for the SNDFT.

In the second test, we face the memory requirements of all three algorithms as

shown in Figure 3.8. Here, the SNFFT needs only a constant amount of 2 MByte

more for precomputations than the SNDFT.

The numerical results show the superiority of the proposed algorithms with re-

spect to computing time, whereas the memory requirements and the approxima-

tion error remain bounded.
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III. NFFT on hyperbolic cross points
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Figure 3.8.: Memory requirements in bytes (solid) and theoretical orders of magni-

tude given in Table 3.1 (dashed) for the SNFFT (circle), SNDFT (trian-

gle), and NFFT (square). Left: Algorithm 3.1 with J = 4, . . . , 17, m = 4.

Right: Algorithm 3.2 with J = 4, . . . , 12, m = 4.
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IV. FMM and H-matrices: a unified
approach to the basic idea

This chapter gives a short introduction to a fundamental algorithm for the fast

multiplication of a vector by a fully populated matrix M = (mjk)
N
j,k=1 which of

course must have some special properties. Otherwise the straightforward matrix-

vector multiplication requires O(N2) arithmetic operations. In literature the con-

sidered algorithm appears under three names, namely fast multipole method (FMM),

fast mosaic-skeleton matrix multiplication and fast H-matrix multiplication. Each of

these approaches shows some special features mainly due to the applications the

authors had in mind, but the basic ideas coincide.

The FMM with arithmetic complexity O(N) and its slower variant, the hierar-

chical multipole method with arithmetic complexity O(N logN) were designed by

Greengard and Rokhlin [63, 65] for the particle simulation in R
d. Here

mj,k = K(xj − xk),

where K is the radial function (isotropic kernel) K(x − y) = log ‖x − y‖ if d =
2 and K(x − y) = ‖x − y‖−1 if d = 3. Greengard and other authors have also

used the method for the fast Gauss transform, where K is the Gaussian [68, 69]

and for many other large-scale matrix computations [3, 26, 66, 23, 28, 64, 67,

116]. Further the FMM was adapted to other radial basis functions arising in the

approximation of curves and surfaces by Beatson, Light and co-workers [8, 7, 9,

27].

Tyrtyshnikov et al. [127, 128, 62] have designed algorithms for fast O(N logN)
matrix-vector multiplications from a linear algebraic point of view. Tyrtyshnikov

calls the idea behind the algorithm ‘mosaic-skeleton approximation’ of M and

refers to [130] for an early appearance of the idea. Here the matrix coefficients

are mj,k = K(xj ,xk) where the kernel has to be a modified asymptotically smooth

function [16].

Hackbusch et al. [71, 75, 74, 73, 76, 72] have created the concept of H-matrices,

where H abbreviates ‘hierarchical’. It includes the concept of panel clustering ear-

lier developed by Hackbusch and co-workers in order to solve boundary integral

equations in an efficient numerical way [77, 70]. The matrix entries arise from a

collocation or Galerkin approach and have, e.g., the form

mj,k =

∫

Ωk

∫

Ωj

K(x,y) dxdy ,

where K is the same kernel as in the particle simulation. The original algorithm

is of arithmetic complexity O(N logN). In case of H2-matrices one can develop
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IV. FMM and H-matrices

an O(N) algorithm if in addition a so-called ‘consistency condition’ is fulfilled.

The idea coincides with those of the FMM. We mention that the whole H-matrix

concept is not restricted to fast matrix-vector multiplications but includes also fast

H-matrix inversions via Schur complement methods.

Although we restrict our attention to FMM-like algorithms we like to mention the

existence of other algorithms for the fast matrix-vector multiplication which don’t

fit into the FMM/H-matrix/mosaic-skeleton-matrix concept:

• Wavelet methods [2, 13, 80] are based on an approximation of M by

M ≈ W̃SW ,

where the vector multiplications with the wavelet transform matrices W̃ ,W
require only O(N) arithmetic operations and where S is a sparse matrix con-

taining only O(N logN) nonzero elements.

Note that the wavelet method works without the explicit knowledge of K. For

a completely discrete approach see [85].

• In Chapter V, we will present a method based on the NFFT. Here, one can

find an approximation of M by

M ≈ ByTBx , (4.1)

where the vector multiplications with the sparse matrices By and Bx require

only O(N) arithmetic operations and where T is a Toeplitz matrix which can

be multiplied by a vector with O(N logN) arithmetic operations [109, 110].

• Beylkin et al. [14] have suggested an algorithm based on two-scale relations

of scaling functions arising in wavelet theory or subdivision schemes. This

algorithm is closely related to the NFFT based algorithm, in particular it can

be written in the form (4.1), see [109].

In the following we want to describe the basic idea of both the O(N logN) algo-

rithm and the O(N) algorithm in a simple way. The ideas of this chapter were

previously published in [51] and we mainly profit from [124]. For the sake of

simplicity we restrict our attention to the fast computation of

f = Mα , (4.2)

where

M =
(
K(xk, yj)

)M,N

j=1,k=1
,

and where xk, yj ,∈ [0, 1) are one-dimensional nodes. We assume that, except for

some singular points, the kernel K is sufficiently smooth and satisfies one of the

following conditions

|∂p
xK(x, y)| ≤ Cp!|x− y|−p (p ∈ N), (4.3)

|∂β
x∂

γ
yK(x, y)| ≤ Cp!|x− y|−p (β + γ = p; p ∈ N). (4.4)
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1. Hierarchical splitting into admissible blocks

As typical example we consider the kernel K(x, y) = log |x− y| which satisfies (4.3)

and (4.4) with C = 1/p ≤ 1. In literature a couple of different conditions on the

kernel was considered, see e.g. [16, 127, 13, 85].

Further, we assume for sake of simplicity that both the source nodes xk and

the target nodes yj are uniformly distributed and ordered so that x1 < . . . < xN

and y1 < . . . < yM . Indeed it is sufficient that either source or target points are

uniformly distributed. If this is not the case additional adaptation techniques are

required [23, 86].

The algorithm is based on

• a hierarchical splitting of M into admissible blocks and

• a low rank approximation of each admissible block.

This chapter is organized as follows. In the first section, we define the hierarchi-

cal splitting of M into admissible blocks. Two different low rank approximations

of these blocks are explained in Section 2. The hierarchical algorithm with arith-

metical complexity of O(N logN) is introduced in Section 3 and finally the fast

algorithm with O(N) arithmetic operations is described in detail in Section 4.

1. Hierarchical splitting into admissible blocks

The following notation is mainly adapted from W. Hackbusch and co-workers.

Although its strength becomes more clear in the multi-dimensional setting we find

it also useful in one dimension.

Let I = {1, . . . , N} and J = {1, . . . ,M} be index sets and let X = {xi : i ∈ I} and

Y = {yj : j ∈ J}. Let P(I) be a partition of I, i.e.,

I =
⋃̇

σ∈P(I)

σ.

For σ ∈ P(I) and τ ∈ P(J), let

X(σ) = {xi ∈ X : i ∈ σ}, Y (τ) = {yj ∈ Y : j ∈ τ}.

According to any block of indices b = τ × σ, τ ∈ P(J), σ ∈ P(I), we can consider the

matrix block

M b =
(
mji

)
j∈τ,i∈σ

.

We are mainly interested in so-called admissible blocks. These will be the blocks

which can be approximated by low rank matrices. Let rσ and rτ denote the diam-

eters and cσ and cτ be the centers of X(σ) and Y (τ), respectively, i.e.,

|xi − cσ | ≤ rσ (i ∈ σ), |yj − cτ | ≤ rτ (j ∈ τ )

and let

dist(τ, σ) = min
j∈τ,i∈σ

|yj − xi|
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IV. FMM and H-matrices

be the distance of two clusters τ and σ. Then a block b = τ ×σ is called admissible,

if there exists η ∈ ( 0, 1] so that

η dist(τ, σ) ≥ rτ + rσ. (4.5)

In order to split our matrix into admissible blocks we use a hierarchical splitting

of the index sets I and J. The tree which corresponds to this hierarchical index

splitting is called H-tree by W. Hackbusch. In one dimension we can simply use

the following binary splitting to obtain a binary tree:

Let TI(0) = I. At level ℓ, the vertices of our tree are given by the index sets

σ = σ(ℓ,m) =
{
k ∈ I : xk ∈ [m/2ℓ, (m+ 1)/2ℓ)

}
(m = 0, . . . , 2ℓ − 1).

By TI(ℓ) we denote the corresponding partition of I. We obtain a similar tree TJ

for J. Since our nodes xk and yj are uniformly distributed, each σ ∈ TI(ℓ) has

approximately the same number [N/2ℓ] of indices. Here [a] denotes the integer part

of a. Note that rσ ≈ 1/2ℓ+1 and cσ ≈ (m+1/2)/2ℓ, where both values are smaller than

the right-hand sides. We stop our binary partitioning if each index set contains

only a small number, say ≤ ν, of indices. Let n = [log2(N/ν)] be the number of

levels.

By TJ×I(ℓ) = TJ(ℓ) × TI(ℓ) we denote the tensor block partition of J × I.

Now we can produce a hierarchical splitting of our coefficient matrix M into

admissible blocks. We start at level 2. We split M with respect to the blocks

b = τ × σ ∈ TJ×I(2) and sort admissible and nonadmissible blocks:

M = M2 + N2,

where M2 consists of the admissible blocks of TJ×I(2) and N2 of the other ones.

We proceed with N2, i.e.

N2 = M3 + N3,

where M3 consists of the admissible blocks of TJ×I(3) contained in N2 and N3 of

the other ones. Repeating this procedure up to level n we obtain the final additive

splitting

M =

n∑

ℓ=2

Mℓ + Nn (4.6)

of M into admissible blocks contained in the matrices Mℓ and into a ‘near-field

matrix’ Nn.

It is easy to check that there is only a small number ≤ γ of non-zero blocks in

each row/column of Mℓ. In particular, if η = 2−r (r ∈ N small) then γ = [2/η] + 1.

Therefore, Mℓ consists of no more than 2ℓγ non-zero blocks. The same holds for

Nℓ. Figure 4.1 shows the non-zero blocks of Mℓ (thick lines) for ℓ = 2, 3, 4 in the

cases η = 1 and η = 1/2. Indeed for the upper figure η < 1 can be chosen.
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2. Low rank approximation of admissible blocks

η = 1

η = 1
2

ℓ = 2 ℓ = 3 ℓ = 4

Figure 4.1.: Non-zero blocks of M ℓ

2. Low rank approximation of admissible blocks

Next we will see how admissible blocks can be approximated by low rank matrices.

Of course, supposed that a ‘good’ low rank approximation exists, it is easy to find,

if the singular value decomposition (SVD) of the admissible blocks is accessible.

But the SVD is computationally very expensive, so that approximations based on

the SVD cannot lead to fast algorithms. In this context E. Tyrtyshnikov et al. have

proposed a CGR decomposition of admissible blocks [127, 128], M. Bebendorf an

iterative approximation scheme [10] and W. Hackbusch et al. Taylor expansion

[71, 75, 73] and polynomial interpolation [72].

In this thesis, we consider only the simplest case that K is known and satisfies

one of the properties (4.3) or (4.4).

Approximation by Taylor expansion

Let b = τ × σ be an admissible block and let x ∈ X(σ) and y ∈ Y (τ). If K satisfies

(4.3), then we obtain by Taylor expansion at cσ with respect to x

K(x, y) =

p−1∑

ℓ=0

1

ℓ!
(x− cσ)ℓ ∂ℓ

xK(cσ, y) + Rp(x, y)

=

p−1∑

ℓ=0

1

ℓ!
ϕσ

ℓ (x)ψτ,σ
ℓ (y) + Rp(x, y),

where

ϕσ
ℓ (x) = (x− cσ)ℓ and ψτ,σ

ℓ (y) = ∂ℓ
xK(cσ, y).
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IV. FMM and H-matrices

For the approximation error we have by (4.3) that |x̃ − y| ≥ (rτ + rσ)/η and conse-

quently

|Rp(x, y)| =
1

p!
|x− cσ|p |∂p

xK(x̃, y)| ≤ C
|x− cσ |p
|x̃− y|p ,

where x̃ = cσ + θ(x− cσ) (θ ∈ (0, 1)), and by the admissibility condition (4.5) that

|Rp(x, y)| ≤ Cηp

(
rσ

rτ + rσ

)p

.

Thus, if η ≤ 1, then M b =
(
K(xk, yj)

)
j∈τ,k∈σ

can be approximated with a small error

by

M b ≈ M̃ b = (Ψτ,σ)T D Φ
σ (4.7)

where D = diag (1/ℓ!)ℓ∈P with index set P = {0, . . . , p− 1} and

Φ
σ =

(
ϕσ

ℓ (xk)
)
ℓ∈P,k∈σ

∈ R
p,|σ|, Ψ

τ,σ =
(
ψτ,σ

ℓ (yj)
)
ℓ∈P,j∈τ

∈ R
p,|τ |.

The error decays exponentially with increasing p. Since M̃b is a matrix of rank

≤ p its multiplication with a vector requires only O(p(|σ| + |τ |)) arithmetic opera-

tions. Note that E. Tyrtyshnikov calls the rank-1 matrices
(
ψτ,σ

ℓ (yj)
)
j∈τ

(
ϕσ

ℓ (xk)
)T
k∈σ

skeletons.

If K satisfies (4.4), then we obtain by bivariate Taylor expansion at (cσ, cτ )

K(x, y) =

p−1∑

ℓ=0

1

ℓ!

(
(x− cσ)∂x + (y − cτ )∂y

)ℓ
K(cσ, cτ ) + Rp(x, y)

=
∑

0≤ℓ+m≤p−1

1

ℓ!m!
∂ℓ

x∂
m
y K(cσ, cτ ) (x− cσ)ℓ(y − cτ )

m + Rp(x, y)

=
∑

0≤ℓ+m≤p−1

1

ℓ!m!
∂ℓ

x∂
m
y K(cσ, cτ )ϕσ

ℓ (x)ψτ
m(y) + Rp(x, y),

where

ϕσ
ℓ (x) = (x− cσ)ℓ and ψτ

m(y) = (y − cτ )m.

For the approximation error we have by (4.4) that

|Rp(x, y)| =
1

p!

∣∣(x− cσ)∂x + (y − cτ )∂y

∣∣pK(x̃, ỹ)

≤ C

(
|x− cσ| + |y − cτ |

)p

|x̃− ỹ|p

where x̃ = cσ + θ(x − cσ), ỹ = cτ + θ(y − cτ ) (θ ∈ (0, 1)), and by the admissibility

condition (4.5) that

|Rp(x, y)| ≤ Cηp.

Thus, if η < 1, then M b =
(
K(xk, yj)

)
j∈τ,k∈σ

can be approximated with small error

by

M b ≈ M̃ b = (Ψτ )T Aτ,σ
Φ

σ (4.8)

40



2. Low rank approximation of admissible blocks

where

Φ
σ =

(
ϕσ

ℓ (xk)
)
ℓ∈P,k∈σ

∈ R
p,|σ|, Ψ

τ =
(
ψτ

m(yj)
)
m∈P,j∈τ

∈ R
p,|τ |

and Aτ,σ =
(
aτ,σ

m,ℓ

)
m,ℓ∈P

∈ R
p,p with

aτ,σ
m,ℓ =

1

ℓ!m!
∂ℓ

x∂
m
y K(cσ , cτ ) if 0 ≤ ℓ+m ≤ p− 1

and aτ,σ
m,ℓ = 0 otherwise. Again the error decreases exponentially with increasing p.

Since M̃ b is a matrix of rank ≤ p(p + 1)/2 its multiplication with a vector requires

only O(p(|σ| + (p + 1)/2 + |τ |)) arithmetic operations. Of course we can also use a

Taylor expansion of K such that Aτ,σ is a fully populated p× p matrix.

Example 2.1. Let K(x, y) = log |x− y|. Then

aτ,σ
m,ℓ =





log |cτ − cσ | for ℓ = m = 0,

− (−1)ℓ

ℓ+m (cτ − cσ)−ℓ−m
(ℓ+m

ℓ

)
for ℓ+m ≤ p− 1,

0 otherwise.

Approximation by polynomial interpolation

We need some notation first. Let Lm denote the Lagrange polynomials

Lm(x) :=

p−1∏

ℓ=0
ℓ 6=m

x− cℓ
cm − cℓ

(m = 0, . . . , p− 1),

where cℓ := cos
(

2ℓ+1
2p π

)
∈ [−1, 1] (ℓ = 0, . . . , p − 1) are the zeros of the Chebyshev

polynomial of the first kind Tp. With the linear transformation

λ[a,b] : [−1, 1] → [a, b], x 7→ b+ a

2
+
b− a

2
x ,

we can define the basis polynomials for arbitrary intervals [a, b] by

L[a,b]
m := Lm ◦ λ−1

[a,b] (m = 0, . . . , p− 1).

With c
[a,b]
ℓ := λ[a,b](cℓ) (ℓ = 0, . . . , p− 1) it holds

L[a,b]
m

(
c
[a,b]
ℓ

)
=
(
Lm ◦ λ−1

[a,b]

)(
λ[a,b](cℓ)

)
= Lm(cℓ) = δml

and therefore

L[a,b]
m (x) =

p−1∏

ℓ=0
ℓ 6=m

x− c
[a,b]
ℓ

c
[a,b]
m − c

[a,b]
ℓ

.
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IV. FMM and H-matrices

Now, let b = τ × σ be an admissible block and let [a, b] ⊇ X(σ) resp. [c, d] ⊇ Y (τ)
be the convex hull, which we denote again with σ resp. τ . If K satisfies (4.3), then

we obtain by Lagrange interpolation on σ with respect to x

K(x, y) =

p−1∑

ℓ=0

K(cσℓ , y)L
σ
ℓ (x) +Rp(x, y)

=

p−1∑

ℓ=0

ϕσ
ℓ (x)ψτ,σ

ℓ (y) +Rp(x, y) ,

where

ϕσ
ℓ (x) := Lσ

ℓ (x) and ψτ,σ
ℓ (y) := K(cσℓ , y) .

For the approximation error we have by (4.3) that

|Rp(x, y)| ≤
rσ

22p−1p!
|∂p

xK(x̃, y)| ≤ C

22p−1

|x− cσ |p
|x̃− y|p ,

where x̃ = cσ + θ(x− cσ) (θ ∈ (0, 1)), and by the admissibility condition (4.5) that

|Rp(x, y)| ≤
C

22p−1
ηp

(
rσ

rτ + rσ

)p

.

Thus, if η ≤ 1, then M b can again be approximated with small error by equation

(4.7), where D is the identity matrix.

If K satisfies (4.4), then we obtain by tensor product polynomial interpolation on

σ × τ

K(x, y) =

p−1∑

ℓ=0

p−1∑

m=0

K(cσℓ , c
τ
m)Lσ

ℓ (x)Lτ
m(y) +Rp(x, y)

=

p−1∑

ℓ=0

p−1∑

m=0

aτ,σ
m,ℓϕ

σ
ℓ (x)ψτ

m(y) +Rp(x, y)

where

aτ,σ
m,ℓ := K(cσℓ , c

τ
m) , ϕσ

ℓ (x) = Lσ
ℓ (x) and ψτ

m(y) = Lτ
m(y) .

For the approximation error we have by (4.4) that

|Rp(x, y)| ≤ p

22p−1p!

∣∣(x− cσ)∂x + (y − cτ )∂y

∣∣pK(x̃, ỹ)

≤ C

22p−1

(
|x− cσ| + |y − cτ |

)p

|x̃− ỹ|p

where x̃ = cσ + θ(x − cσ), ỹ = cτ + θ(y − cτ ) (θ ∈ (0, 1)), and by the admissibility

condition (4.5) that

|Rp(x, y)| ≤
Cp

22p−1
ηp.
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3. The hierarchical O((N +M) logN)-Algorithm

Again, we have an approximation of the form (4.8) with small error.

One advantage when using polynomial interpolation is that only the kernel func-

tion K(x, y) has to be known, but no derivates. Moreover, the interpolation polyno-

mials can easily be interpolated, which is advantageous particularly with regard

to Galerkin methods.

Example 2.2. Let again K(x, y) = log |x− y|. Then

aτ,σ
m,ℓ = log |cσℓ − cτm| .

In the following, we assume that each admissible block M b can be approximated

with only small error by a matrix M̃ b of one of the following forms

M̃ b = (Ψτ,σ)T Dτ,σ
Φ

τ,σ, (4.9)

M̃ b = (Ψτ )T Aτ,σ
Φ

σ, (4.10)

where

Φ
• ∈ R

p×|σ|, Ψ
• ∈ R

p×|τ |, A• ∈ R
p×p

and D• ∈ R
p×p is a diagonal matrix. The first representation (4.9) may be simply

obtained from an SVD, while (4.10) is of the form (4.8). The approximation (4.7)

corresponds to a mixture of both forms and a fast matrix-vector multiplication

algorithm follows straightforward if we have algorithms for (4.9) and (4.10).

Note that one can use level-dependent approximations of admissible blocks M b

where the rank of the approximating matrix M̃ b depends on the decomposition

level ℓ of the H-tree, see [73].

Now (4.6) can be approximated by

M ≈
n∑

ℓ=2

M̃ℓ + Nn, (4.11)

where the blocks in M̃ ℓ are low rank approximations of the form (4.9) or (4.10) of

the admissible blocks in M ℓ. W. Hackbusch calls the matrix on the right-hand side

of (4.11) an H-matrix (in case of (4.10) an uniform H-matrix) and E. Tyrtyshnikov

a mosaic-skeleton approximation of M .

If we have an approximation of type (4.10) then M̃ ℓ can be further rewritten as

M̃ℓ = blockdiag(Ψτ )Tτ∈TJ (ℓ) Aℓ blockdiag(Φσ)σ∈TI (ℓ), (4.12)

where Aℓ ∈ R
p2ℓ,p2ℓ

has the non-zero blocks Aτ,σ ∈ R
p,p at the ‘position’ of the

non-zero blocks of M ℓ.

3. The hierarchical O((N + M) log N)-Algorithm

Assume that the non-zero blocks of M ℓ are of the form (4.9). Using (4.11) the

matrix-vector multiplication (4.2) can be computed approximately by

f = Mα ≈
n∑

ℓ=2

M̃ℓα

︸ ︷︷ ︸
far-field

+ Nnα︸ ︷︷ ︸
near-field

= fF + fN .
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IV. FMM and H-matrices

We call the computation of the first n− 1 matrix-vector products on the right-hand

side ‘far-field computation’ and the last matrix-vector multiplication ‘near-field

computation’.

Since multiplication with a block M̃ b requires O(p(|σ| + |τ |)) arithmetic opera-

tions, where |τ | ≤ M/2ℓ, |σ| ≤ N/2ℓ, and there are no more than 2ℓγ such blocks in

M̃ ℓ, the computation of M̃ ℓα requires O(p(M +N)) arithmetic operations. Adding

this up over all levels, we get an arithmetic complexity of O(p(N +M) logN) for the

far-field computation. Note that the approximation error becomes smaller with

increasing p.
Since Nn has at most γ non-zero blocks per row each with ≤ ν columns, the

near-field correction requires O(Mνγ) arithmetic operations.

Since ν, γ and p are constants, the whole algorithm requires O((N + M) logN)
arithmetic operations.

4. The fast O(N + M)-Algorithm

In this section we introduce a fast algorithm of arithmetic complexity O(N +M).
The algorithm is only practicable if the admissible blocks of the matrix can be

approximated by an expression of the form (4.10). In addition, the matrices Φ
σ

and Ψ
τ have to be ‘nested’, i.e., fulfill the following consistency conditions: let

σ′, σ′′ ∈ TI(ℓ + 1) be the sons of σ ∈ TI(ℓ) and let τ ′, τ ′′ ∈ TJ(ℓ + 1) be the sons of

τ ∈ TJ(ℓ). Then they have to fulfill

Φ
σ = [Cσ,σ′

Cσ,σ′′
]

(
Φ

σ′
0

0 Φ
σ′′

)
=
[
Cσ,σ′

Φ
σ′
, Cσ,σ′′

Φ
σ′′]

, (4.13)

Ψ
τ = [Cτ,τ ′

Cτ,τ ′′
]

(
Ψ

τ ′
0

0 Ψ
τ ′′

)
=
[
Cτ,τ ′

Ψ
τ ′
, Cτ,τ ′′

Ψ
τ ′′]

. (4.14)

Then the matrices in (4.10) are called H2-matrices and the corresponding algorithm

either FMM or fast H2-matrix multiplication.

For Φ
σ ∈ R

p×|σ| and Ψ
τ ∈ R

p×|τ | arising from Taylor expansions as in (4.8) the

consistency conditions are clearly fulfilled: since

(x− cσ)ℓ =
(
(x− cσ′) − (cσ − cσ′)

)ℓ

=

ℓ∑

m=0

(
ℓ

m

)
(cσ′ − cσ)ℓ−m(x− cσ′)m

for all ℓ = 0, . . . , p− 1, we obtain

(
(xk − cσ)ℓ

)T

k∈σ′
=

ℓ∑

m=0

Cσ,σ′

ℓ,m ((xk − cσ′)m)Tk∈σ′ ,

(
(xk − cσ)ℓ

)T

k∈σ′′
=

ℓ∑

m=0

Cσ,σ′′

ℓ,m ((xk − cσ′′)m)T
k∈σ′′ .
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4. The fast O(N +M)-Algorithm

Thus (4.13) is fulfilled with the lower triangular matrix Cσ,σ′
=
(
Cσ,σ′

ℓ,m

)
ℓ,m∈P

, where

Cσ,σ′

ℓ,m =

{
0 for ℓ < m,( ℓ
m

)
(cσ − cσ′)ℓ−m for ℓ ≥ m.

Let us now consider polynomial interpolation. It holds

span{Lσ
ℓ : ℓ = 0, . . . , p− 1} = span{Lσ′

m : m = 0, . . . , p− 1} = Πp−1 .

Thus, there exists coefficients Cσ,σ′

ℓ,m with

Lσ
ℓ (x) =

p−1∑

m=0

Cσ,σ′

ℓ,m Lσ′

m(x) .

Since we use Lagrange polynomials, one can easily see that

Cσ,σ′

ℓ,m = Lσ
ℓ (cσ

′

m)

and therefore the consistency conditions hold.

Note that it is often also sufficient if the consistency conditions (4.13) and (4.14)

are satisfied only approximately, i.e., up to a small error, see [42, 40].

For ℓ = 2, . . . , n− 1, let

DΦ
ℓ,ℓ+1 = blockdiag

(
[Cσ,σ′

Cσ,σ′′
]
)

σ∈TI (ℓ)
∈ R

p2ℓ,2p2ℓ

denote the transform matrices arising from the consistency conditions for all σ ∈
TI(ℓ). Then the consistency condition at level ℓ reads as

blockdiag (Φσ)σ∈TI (ℓ) = DΦ
ℓ,ℓ+1 blockdiag (Φσ)σ∈TI (ℓ+1) .

Now successive application of the consistency condition leads to

M̃ ℓ = blockdiag
(
Ψ

τ
)T
τ∈TJ (ℓ+1)

(
DΨ

ℓ,ℓ+1

)T
Aℓ DΦ

ℓ,ℓ+1 blockdiag
(
Φ

σ
)
σ∈TI (ℓ+1)

= . . .

= blockdiag(Ψτ )Tτ∈TJ (n)(D
Ψ
n−1,n)T · · · (DΨ

ℓ,ℓ+1)
T Aℓ ×

×DΦ
ℓ,ℓ+1 · · ·DΦ

n−1,n blockdiag(Φσ)σ∈TI (n). (4.15)

The important observation is that the factors blockdiag(Φσ)σ∈TI (n) and blockdiag(Ψτ )σ∈TI (n)

appear in all matrices M̃ ℓ (ℓ = 2, . . . , n) and that the factors DΦ
i,i+1 and DΨ

i,i+1 ap-

pear in all matrices M̃ ℓ with ℓ ≤ i.
Using (4.15) and (4.11) we can formulate the whole algorithm now. (For read-

ers familiar with the FMM we have written the FMM notation of the algorithm in

brackets, where FFE stands for far-field extension and LFE for near-field exten-

sion.)

45



IV. FMM and H-matrices

Algorithm 4.1.

1. Forward Transform (FFE → FFE)

Initialization:

xn = blockdiag
(
Φ

σ
)
σ∈TI (n)

α ∈ R
p2n

Arithmetic complexity: O(pN)

For ℓ = n− 1, . . . , 2 compute

xℓ = DΦ
ℓ,ℓ+1xℓ+1.

Arithmetic complexity: Since DΦ
ℓ,ℓ+1 consists of 2ℓ non-zero blocks of the form

[Cσ,σ′
Cσ,σ′′

] ∈ R
p,2p we have an amount of ≤ 2p2 2ℓ arithmetic operations in step

ℓ. This adds up over all levels to O(2p2 N
ν ) arithmetic operations.

2. Multiplication Phase (FFE → LFE)

For ℓ = 2, . . . , n compute

yℓ = Aℓ xℓ.

Arithmetic complexity: There are at most 2ℓγ non-zero blocks on level ℓ and

each block in Aℓ is of size p× p. Thus the computation of Aℓxℓ requires O(p22ℓ)
arithmetic operations which adds up to O(p2N/ν) arithmetic operations over all

levels.

3. Backward Transform (LFE → LFE)

In the far-field it remains to compute

fF =

n−1∑

ℓ=2

blockdiag
(
Ψ

τ
)T
τ∈TJ (n)

(DΨ
n−1,n)T · · · (DΨ

ℓ,ℓ+1)
T yℓ.

We apply Horner’s rule. Set

z2 = y2

and compute for ℓ = 3, . . . , n the vectors

zℓ = (DΨ
ℓ−1,ℓ)

T zℓ−1 + yℓ.

Arithmetic complexity: Multiplication with (DΨ
ℓ,ℓ+1)

T requires as in Step 1 only

O(2p22ℓ) operations such that we have a total of O(p2N/ν) arithmetic opera-

tions.

Final multiplication:

fF = blockdiag
(
Ψ

τ
)T
τ∈TJ (n)

zn.

Arithmetic complexity: O(pM)

46



4. The fast O(N +M)-Algorithm

4. Near-Field Correction:

Compute fN = Nn α directly and add fF .

Arithmetic complexity: O(Mνγ) as in the hierarchical algorithm.

Choosing ν = p the arithmetic complexity of the whole algorithm is

O(p(N +M)) = O(N +M),

where p is a constant which regulates the approximation error.

47



IV. FMM and H-matrices

48



V. Fast NFFT based summation of radial
functions

In Chapter IV we gave a short introduction to the basic ideas of the FMM/H-

matrix/mosaic-skeleton-matrix concept for the fast multiplication of a vector by a

fully populated matrix M =
(
mjk

)M,N

j,k=1
. The computation of sums of the form

N∑

k=1

αkK(yj − xk) (xk, yj ∈ R
d)

for j = 1, . . . , M is a special case with mjk = K(yj −xk), e.g., for the kernel K(x) =
log‖x‖ in R

2. Recently, Potts and Steidl [109, 110] have proposed a fast summation

algorithm based on the fast Fourier transform for nonequispaced nodes (NFFT)

which requires O(N logN) arithmetic operations and has the following advantages:

– it resembles the well-known algorithm for the fast multiplication of vectors

with Toeplitz matrices based on the FFT,

– the incorporation of new kernels is very simple,

– it has a simple structure consisting of the blocks FFT – NFFT – fast summa-

tion.

In this chapter, we further develop the ideas from [109]. We introduce new reg-

ularization techniques with B-splines and algebraic polynomials. Based on the

approach with algebraic polynomials we prove error estimates for our approxi-

mative summation algorithm. These error estimates are more sophisticated than

those for the regularization with trigonometric polynomials in [109]. The later still

involve numerical computations and consequently are only valid for a bounded

number of parameters. In [109] only kernels of the form

K0(x) = log‖x‖, Kβ(x) =
1

‖x‖β
(β ∈ N) (5.1)

were considered. Here, we add estimates for the parameter-dependent generalized

multiquadrics

K−1(x; c) =
(
‖x‖2 + c2

) 1

2 , Kβ(x; c) =
(
‖x‖2 + c2

)−β

2 (β ∈ N odd) (5.2)

which play an important role in the approximation of functions by linear combi-

nations of radial basis functions (RBF) [59].
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V. Fast NFFT based summation of radial functions

The results of this chapter were previously published in [52]. A modification for

real input data is also possible together with the NFCT and NFST, see Remark 1.1

and [50].

This chapter is organized as follows. The next section describes our summation

algorithm in 1D. One essential step of this algorithm consists in an appropriate

kernel regularization which we consider in detail in Section 2. Error estimates for

our algorithm with regularization by algebraic polynomials and the consequences

for the choice of the parameters of the algorithm are derived in Section 3. Section

4 briefly sketches the generalization of the algorithm to the multivariate setting.

Finally, Section 5 contains numerical results, mainly in 2D.

1. Fast Summation at one-dimensional nodes

In this section, we recall the idea of the fast summation algorithm in 1D introduced

in [109]. Our aim consists in the fast evaluation of sums

f(x) :=

N∑

k=1

αkK(x− xk) (xk ∈ R), (5.3)

at M nodes yj ∈ R (j = 1, . . . , M ) for even kernels K(x) = K(|x|). The kernel

function K is in general a non-periodic function, while the use of Fourier methods

requires to replace K by a periodic version. Without loss of generality we may

assume that the nodes are scaled, such that |xk|, |yj| < 1
4 − εB

2 and consequently

|yj − xk| < 1
2 − εB. The parameter εB > 0, which we specify later, guarantees that K

has to be evaluated only at points in the interval [−1
2 + εB ,

1
2 − εB ]. This simplifies

the later consideration of a 1-periodic version of K. Beyond a special treatment

of K near the boundary ±1
2 , we have to take care about properties of K in the

neighborhood of the origin. The kernels (5.1) considered in [109] are C∞ except

of the origin, where they have a singularity. The parameter-dependent kernels

K = Kβ(x; c) in (5.2), or its derivatives in case β = −1, have a singularity at zero if

c→ 0.

To deduce a fast summation algorithm for (5.3) we replace the kernel K by a 1-

periodic smooth kernel K̃ by modifying K near the boundary and near the origin:

K̃(x) :=





KI(x) for x ∈ [−εI , εI ],
KB(x) for x ∈ [−1

2 ,−1
2 + εB ] ∪ [12 − εB ,

1
2 ],

K(x) else,

(5.4)

where 0 < εI <
1
2 − εB < 1

2 . The functions KI and KB will be chosen such that K̃ is

in the Sobolev space Hp(T) for an appropriate parameter p > 0 which controls the

smoothness of K̃. Various regularizations K̃ of K are proposed in Section 2. If p is

large enough, then we may assume that K̃ can be approximated with sufficiently

small error by the trigonometric polynomial

Tn(K̃)(x) :=
∑

ℓ∈I1
n

bℓ e2πiℓx, (5.5)
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1. Fast Summation at one-dimensional nodes

where

bℓ :=
1

n

∑

j∈I1
n

K̃
( j
n

)
e−2πijℓ/n (ℓ ∈ I1

n) .

Now the original kernel K can be decomposed as

K =
(
K − K̃

)
+
(
K̃ − Tn(K̃)

)
+ Tn(K̃), (5.6)

where the summand in the middle becomes small for a sufficiently large para-

meter n ∈ N which we will specify later. We neglect this summand in (5.3) and

approximate f by

f̃(x) :=

N∑

k=1

αk(K − K̃)(x− xk) +

N∑

k=1

αkTn(K̃)(x− xk). (5.7)

Instead of f we evaluate f̃ at the nodes yj (j = 1, . . . , M ). Indeed this can be done

in a fast way by the following two steps:

1) Near field computation (first sum in (5.7))

To achieve the desired complexity of our algorithm we suppose that either the N
points xk or the M points yj are ‘sufficiently uniformly distributed’, i.e., we suppose

that there exists a small constant ν ∈ N such that each subinterval of [−1
4 ,

1
4 ] of

length 2εI contains at most ν of the points xk or of the points yj, respectively.

This implies that εI depends linearly on 1/N , respectively 1/M . In the following we

restrict our attention to the case

εI ≈ ν

2N
. (5.8)

Then, since |yj − xk| < 1
2 − εB and supp(K − K̃) ∩ [−1

2 + εB ,
1
2 − εB ] = [−εI , εI ], the

evaluation of
N∑

k=1

αk(K − K̃)(yj − xk) (j = 1, . . . , M )

requires ≤ νM , i.e., O(M) arithmetic operations.

2) NFFT based summation (second sum in (5.7))

By (5.5), the evaluation of the second sum in (5.7) can be rewritten as

N∑

k=1

αkTn(K̃)(yj − xk) =

N∑

k=1

αk

∑

ℓ∈I1
n

bℓ e2πiℓ(yj−xk)

=
∑

ℓ∈I1
n

bℓ

(
N∑

k=1

αk e−2πiℓxk

)
e2πiℓyj .

This expression can be handled based on the NFFT as follows:

51



V. Fast NFFT based summation of radial functions

1. The sums

aℓ =

N∑

k=1

αk e−2πiℓxk (ℓ ∈ I1
n)

can be obtained by an NFFTT (n).

2. Then we compute the products

dℓ = bℓaℓ (ℓ ∈ I1
n).

3. Finally we use the NFFT(n) to compute
∑

ℓ∈I1
n

dℓ e2πiℓyj (j = 1, . . . , M ) .

These three steps require O(M +N + n log n) arithmetic operations.

In summary, our summation algorithm requires

O(M +N + n log n)

arithmetic operations. The relation between M,N and n determined by the ap-

proximation error of the algorithm will be specified in Section 3.

Once the basic idea of the algorithm is clear, it remains to specify the regular-

ization procedure and to give estimates of the approximation error introduced by

omitting K̃ − Tn(K̃) in the kernel approximation.

Remark 1.1. A modification for even kernels K is possible [50]. Choose the re-

placing kernel K̃ in (5.4) even. Instead of approximating K̃ with the trigonometric

polynomial in (5.5), we can now approximate K̃ with the cosine polynomial

Cn(K̃)(x) :=
n−1∑

ℓ=0

bℓ cos(2πℓx) , where bℓ :=
2εn,ℓ

n

n∑

j=0

εn,jK̃

(
j

2n

)
cos

(
πℓj

n

)

with εn,0 := εn,n := 1/2 and εn,ℓ := 1 (ℓ = 1,. . . ,n − 1). Along the lines of step 2, the

evaluation of the analog second sum in (5.7) can be rewritten as

N∑

k=1

αkCn(K̃)(yj − xk) =

N∑

k=1

αk

n−1∑

ℓ=0

bℓ cos
(
2πℓ(yj − xk)

)

=
N∑

k=1

αk

n−1∑

ℓ=0

bℓ
(
cos(2πℓyj) cos(2πℓxk) + sin(2πℓyj) sin(2πℓxk)

)
.

The expressions in the inner brackets of

n−1∑

ℓ=0

bℓ

(
N∑

k=1

αk cos(2πℓxk)

)
cos(2πℓyj) +

n−1∑

ℓ=1

bℓ

(
N∑

k=1

αk sin(2πℓxk)

)
sin(2πℓyj)

can now be obtained by NFCTT /NFSTT . This will be followed by 2n multiplications

with bℓ and completed by NFCT/NFST to compute the outer summations.
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2. Kernel Regularization

2. Kernel Regularization

Since K given by (5.2) is differentiable and even, we have thatK(j)(x) = (−1)jK(j)(−x).
To ensure that

K̃(x) :=





KI(x) for x ∈ [−εI , εI ],
KB(x) for x ∈ [−1

2 ,−1
2 + εB ] ∪ [12 − εB ,

1
2 ],

K(x) else,

is in Hp(T), we need that the function KI fulfills the conditions

K
(j)
I (εI) = K(j)(εI),

K
(j)
I (−εI) = K(j)(−εI) = (−1)jK(j)(εI)

(5.9)

and the function KB the conditions

K
(j)
B

(
1

2
− εB

)
= K(j)

(
1

2
− εB

)
,

K
(j)
B

(
1

2
+ εB

)
= K(j)

(
−1

2
+ εB

)
= (−1)jK(j)

(
1

2
− εB

) (5.10)

for all j = 0, . . . , p− 1. Then, the periodicity of K̃ follows by setting

KB

(
−1

2
+ x
)

:= KB

(1

2
+ x
)

(x ∈ [0, εB ]) .

As simple regularizing functions KI and KB we propose

– algebraic polynomials,

– trigonometric polynomials,

– splines.

The regularization by trigonometric polynomials was considered in [109]. However

the error estimates in [109] are not satisfactory since they involve numerical com-

putations which can be done only up to a fixed number p ∈ N. We briefly sketch

the spline approach and consider the regularization by algebraic polynomials in

more detail.

2.1. Regularization by spline interpolation

The normalized cardinal B-splines Np of degree p are recursively defined by

N0(x) :=

{
1 for x ∈ [0, 1),

0 otherwise,

and

Np(x) :=
x

k
Np−1(x) +

p+ 1 − x

k
Np−1(x− 1) (p ∈ N).
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Figure 5.1.: B-splines Bp
k.

Note that suppNp = [0, p + 1].

In our application we deal with intervals [m− r,m+ r] (r > 0), more precisely with

[−εI , εI ] and [12 − εB ,
1
2 + εB ]. At the interval [m− r,m+ r] we choose the equispaced

nodes ∆ := {tk = m − r + 2r
p k : k = −p, . . . , 2p} and introduce the dilated and

translated versions of Np with respect to these spline nodes

Bp
k(x) := Np

(
p(x−m+ r)

2r
− k

)
,

see Figure 5.1.

The set of B-splines {Bp
k}

p−1
k=−p forms a basis of the spline space

Sp(∆) := {s ∈ Cp−1[m− r,m+ r] : s|[tk,tk+1] ∈ Πp, k = 0, . . . , p− 1}.

Proposition 2.1 (Spline interpolation). For given aj, bj (j = 0, . . . , p− 1) there exists

a unique spline S ∈ Sp(∆) which satisfies the interpolation conditions

S(j)(m− r) = aj, S(j)(m+ r) = bj (j = 0, . . . , p− 1)

at the endpoints of an interval [m− r,m+ r] (r > 0). This spline can be written as

S(x) =

p−1∑

k=−p

ckB
p
k(x)

where the coefficients ck are the solution of the two p× p linear systems

p∑

k=1

c−k(B
p
−k)

(j)(m− r) = aj ,

p∑

k=1

ck−1(B
p
−k)

(j)(m− r) = (−1)jbj

(j = 0, . . . , p− 1)

with the same coefficient matrix.
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The proposition is a direct consequence of [30, Theorem 1] and the fact that

(Bp
−k)

(j)(m− r) = (−1)j(Bp
k−1)

(j)(m+ r) .

Since our kernels are even, we have by (5.9) and (5.10) for our application that

aj = (−1)jbj. Hence it remains to solve only one p×p system to obtain all coefficients

ck. Of course, for large p ∈ N, this system is ill-conditioned. However, we will only

need small values of p in our algorithm, and, for p ≤ 16, the corresponding systems

can be solved without substantial errors.

Finally note that the fast evaluation of the spline S(x) can be realized by the

de Boor algorithm [31].

2.2. Regularization by polynomial interpolation

To construct polynomials KI and KB of degree 2p − 1 which fulfill the 2p Hermite

interpolation conditions (5.9) and (5.10), respectively, we use the following two-

point Taylor interpolation, see, e.g., [1, Corollary 2.2.6]:

Proposition 2.2 (Two-point Taylor interpolation). For given aj, bj (j = 0, . . . , p − 1)

there exists a unique polynomial P of degree 2p− 1 which satisfies the interpolation

conditions

P (j)(m− r) = aj , P (j)(m+ r) = bj (j = 0, . . . , p− 1) (5.11)

at the endpoints of an interval [m − r,m + r] (r > 0). This polynomial can be written

as

P (x) =

p−1∑

j=0

p−1−j∑

k=0

(
p− 1 + k

k

)

(
(x−m+ r)j

j!

(
x−m− r

−2r

)p(x−m+ r

2r

)k

aj

+
(x−m− r)j

j!

(
x−m+ r

2r

)p(x−m− r

−2r

)k

bj

)
.

(5.12)

As in the spline case, the representation (5.12) can be further simplified if we

have even kernels and (5.9), (5.10) in mind.

Corollary 2.3. For given aj and bj = (−1)jaj (j = 0, . . . , p− 1) the unique polynomial

P of degree 2p− 1 which satisfies (5.11) at the endpoints of an interval [m− r,m+ r]
(r > 0) is given by

P (x) =
1

2p

p−1∑

j=0

γj(1 − y2)j
(
(1 − y)p−j + (1 + y)p−j

)
, (5.13)

where y := x−m
r and

γj :=

j∑

ℓ=0

(
p− 1 + ℓ

ℓ

)
rj−ℓ

2ℓ(j − ℓ)!
aj−ℓ.
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Proof. By (5.12) we obtain for our special setting that

P (x) =
1

2p

p−1∑

j=0

p−1−j∑

k=0

(
p− 1 + k

k

)
rj

2k

aj

j!

(
(1 + y)j+k(1 − y)p + (1 − y)j+k(1 + y)p

)
.

Now the change of the summation order results in the desired formula

P (x) =
1

2p

p−1∑

j=0

j∑

ℓ=0

(
p− 1 + ℓ

ℓ

)
rj−ℓ

2ℓ

aj−ℓ

(j − ℓ)!

(
(1 + y)j(1 − y)p + (1 − y)j(1 + y)p

)
.

In the next section we will estimate the approximation error introduced by our

fast algorithm. For this purpose we will need an estimate for the pth derivative of

KI and KB, respectively.

Theorem 2.4. For p ∈ N, the pth derivative of the polynomial P in (5.13) can be

estimated by

max
x∈[m,m+r]

∣∣P (p)(x)
∣∣ ≤ p!

(
3

2

)p

r−p γ,

where

γ :=

p−2∑

ℓ=0

(
p− 1 + ℓ

ℓ

)
rp−1−ℓ

2ℓ(p− 1 − ℓ)!
|ap−1−ℓ| .

Proof. Since the two-point Taylor interpolation polynomial reproduces polynomials

of degree at most 2p− 1, we obtain for the polynomial ≡ 1 by Corollary 2.3 that

1

2p

p−1∑

j=0

(
p− 1 + j

j

)
(1 − y2)j

2j

(
(1 − y)p−j + (1 + y)p−j

)
= 1. (5.14)

On the other hand, if we reorder the sum in (5.13) with respect to the coefficients

al (l = 0,. . . ,p− 1), then (5.14) is just the coefficient of a0. Thus, a0 does not appear

in the pth derivative of any polynomial P of the form (5.13).

Now, since d
dx y = 1

r , the pth derivative of (5.13) can be written as

P (p)(x) =

(
1

2r

)p p−1∑

j=1

γ̃j
dp

dyp

[
(1 − y2)j

(
(1 − y)p−j + (1 + y)p−j

)]
, (5.15)

where

γ̃j :=

j−1∑

ℓ=0

(
p− 1 + ℓ

ℓ

)
rj−ℓ

2ℓ(j − ℓ)!
aj−ℓ .
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We consider Qj(y) := dp

dyp

[
(1 − y2)j 2Rj(y)

]
with

Rj(y) :=1
2

(
(1 − y)p−j + (1 + y)p−j

)

=1 +

(
p− j

2

)
y2 +

(
p− j

4

)
y4 + . . .

+

{
yp−j for p− j even,

(p− j)yp−j−1 for p− j odd.

Obviously Rj(y) is an even polynomial in y of degree at most p − j with positive

coefficients and therefore

R
(ℓ)
j (y) ≥ 0 for y ≥ 0 and max

y∈[0,1]
|R(ℓ)

j (y)| = R
(ℓ)
j (1). (5.16)

By applying the Leibniz rule we get

Qj(y) = 2

p∑

k=0

(
p

k

)
dk

dyk

[
(1 − y2)j

] dp−k

dyp−k
[Rj(y)]

= 2

p∑

k=j

(
p

k

)
dk−j

dyk−j

dj

dyj

[
(1 − y2)j

] dp−k

dyp−k
[Rj(y)]

and further by the Rodrigues formula of the Legendre polynomials, i.e., Pj(x) =

(−1)j 1
2jj!

dj

dxj [(1 − x2)j ],

Qj(y) = (−1)j2j+1j!

p∑

k=j

(
p

k

)
P

(k−j)
j (y)R

(p−k)
j (y).

We know that maxy∈[0,1] |P (k−j)
j (y)| = P

(k−j)
j (1) (see, e.g., [100]). Consequently, we

obtain together with (5.16) that

max
y∈[0,1]

∣∣Qj(y)
∣∣ = 2j+1j!

p∑

k=j

(
p

k

)
P

(k−j)
j (1)R

(p−k)
j (1) =

∣∣Qj(1)
∣∣ . (5.17)

On the other hand we conclude by the Leibniz rule that

Qj(y) =
dp

dyp

[
(1 − y2)j

[
(1 − y)p−j + (1 + y)p−j

]]

=
dp

dyp

[
(1 − y)p(1 + y)j + (1 − y)j(1 + y)p

]

=p!

j∑

k=0

(
p

k

)(
j

k

)
(−1)k

(
(1 − y)k(1 + y)j−k(−1)p

+ (1 + y)k(1 − y)j−k
)
.

57



V. Fast NFFT based summation of radial functions

Now |Qj(1)| can be easily estimated by

|Qj(1)| = p!

∣∣∣∣∣

j∑

k=0

(
p

k

)(
j

k

)
(−1)k

(
δk,02

j−k(−1)p + 2kδk,j

)∣∣∣∣∣

= p!

∣∣∣∣(−1)p2j +

(
p

j

)
2j(−1)j

∣∣∣∣

= 2jp!

∣∣∣∣(−1)j
(
p

j

)
+ (−1)p

∣∣∣∣

≤ 2jp!

((
p

j

)
+ 1

)
.

Combining this with (5.15) and (5.17), we obtain for x ∈ [m,m+ r] that

∣∣P (p)(x)
∣∣ ≤

(
1

2r

)p p−1∑

j=1

|γ̃j | |Qj(1)|

≤ p!

(
1

2r

)p



p−1∑

j=1

(
p

j

)
2j +

p−1∑

j=1

2j


 max

j=1,...,p−1
|γ̃j |

= p!

(
1

2r

)p(
(1 + 2)p − 2p + 2p − 3

)
max

j=1,...,p−1
|γ̃j |

< p!

(
3

2r

)p

max
j=1,...,p−1

|γ̃j| .

It remains to estimate max |γ̃j |. By definition of γ̃j it follows

|γ̃j| =

∣∣∣∣∣

j−1∑

ℓ=0

(
p− 1 + ℓ

ℓ

)
rj−ℓ

2ℓ(j − ℓ)!
aj−ℓ

∣∣∣∣∣

≤
j−1∑

ℓ=0

(
p− 1 + ℓ

ℓ

)
rj−ℓ

2ℓ(j − ℓ)!
|aj−ℓ| =: sj.

Now one can easily check that sj ≤ sj+1 for 1 ≤ j ≤ p−2. Thus, max
j=1,...,p−1

|γ̃j| ≤ sp−1 =

γ and we are done.

Now we apply Theorem 2.4 and Corollary 2.3 with respect to our special polyno-

mials KI and KB, i.e., we consider the intervals [−εI , εI ] and [12 − εB ,
1
2 + εB ] and set

aj := K(j)(−εI) = (−1)jK(j)(εI) and aj := K(j)(1
2 − εB), respectively. The result can

be summarized as follows:
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Corollary 2.5. The polynomials KI and KB which satisfy (5.9) and (5.10), respec-

tively, are given by (5.13) with y = x
εI

, y = x−1/2
εB

and γj = γ
I/B
j , respectively, where

γI
j :=

j∑

ℓ=0

(
p− 1 + ℓ

ℓ

)
(−1)j−ℓεj−ℓ

I

2ℓ(j − ℓ)!
K(j−ℓ)(εI),

γB
j :=

j∑

ℓ=0

(
p− 1 + ℓ

ℓ

)
(−1)j−ℓεj−ℓ

B

2ℓ(j − ℓ)!
K(j−ℓ)

(
−1

2
+ εB

)
.

The polynomials fulfill the estimates

max
x∈[0,εI ]

∣∣∣K(p)
I (x)

∣∣∣ ≤ p!

(
3

2

)p

ε−p
I γI , (5.18)

max
x∈[ 1

2
−εB , 1

2
]

∣∣∣K(p)
B (x)

∣∣∣ ≤ p!

(
3

2

)p

ε−p
B γB (5.19)

with

γI :=

p−2∑

ℓ=0

(
p− 1 + ℓ

ℓ

)
εp−1−ℓ
I

2ℓ(p− 1 − ℓ)!

∣∣∣K(p−1−ℓ)(εI)
∣∣∣ , (5.20)

γB :=

p−2∑

ℓ=0

(
p− 1 + ℓ

ℓ

)
εp−1−ℓ
B

2ℓ(p− 1 − ℓ)!

∣∣∣∣K(p−1−ℓ)

(
1

2
− εB

)∣∣∣∣ . (5.21)

3. Error Estimates

Beyond the well-known errors appearing in the NFFT computations which are

discussed for example in [109], our algorithm introduces the errors |f(yj) − f̃(yj)|
(j = 1, . . . , M ). By (5.6), (5.7) and (5.3), we obtain for |y| ≤ 1

4 − εB

2 that

∣∣∣f(y) − f̃(y)
∣∣∣ =

∣∣∣∣∣
N∑

k=1

αk

(
K̃(y − xk) − Tn(K̃)(y − xk)

)∣∣∣∣∣

≤
N∑

k=1

|αk| ‖Kerr‖∞,

where

‖Kerr‖∞ := max
|x|≤ 1

2

|Kerr(x)| , Kerr(x) := K̃(x) − Tn(K̃)(x). (5.22)

Lemma 3.1. Let K be an even kernel and let K̃ ∈ Hp(T) be defined by (5.4). Then,

for 2 ≤ p≪ n, the following estimate holds true: ‖Kerr‖∞ ≤ C
(p−1)πpnp−1

1

2∫
0

|K̃(p)(x)|dx.
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Proof. The proof follows by standard arguments. By Fourier expansion of K̃ and

(5.5) we obtain for x ∈ [−1
2 ,

1
2 ] that

Kerr(x) =
∑

k∈Z

ck(K̃) e2πikx −
∑

ℓ∈I1
n

bℓ e2πiℓx,

where the Fourier coefficients ck(K̃) are defined in (3.3). Further, it follows by the

aliasing formula (see (3.4)) that

Kerr(x) =
∑

k∈I1
n

∑

r∈Z

r 6=0

ck+rn(K̃) e2πikx( e2πirnx − 1).

Since K̃ is even, we can estimate

‖Kerr‖∞ ≤ 4

∞∑

k= n
2

∣∣ck(K̃)
∣∣ .

By construction we have that K̃ ∈ Hp(T) which implies that

ck(K̃) = (2πik)−p ck
(
K̃(p)

)

so that

‖Kerr‖∞ ≤ 4




∞∑

k= n
2

(2πk)−p




1

2∫

− 1

2

∣∣K̃(p)(x)
∣∣ dx.

For p ≥ 2 the above sum can be estimated by an upper integral

‖Kerr‖∞ ≤ 2
(
1 + p−1

n

)

(p − 1)πpnp−1

1

2∫

− 1

2

∣∣K̃(p)(x)
∣∣ dx.

Since p≪ n, this implies the assertion with a constant C ≈ 4.

Now we obtain by the definition of K̃ that

1

2∫

0

∣∣K̃(p)(x)
∣∣ dx =

εI∫

0

∣∣K(p)
I (x)

∣∣ dx+

1

2
−εB∫

εI

∣∣K(p)(x)
∣∣ dx+

1

2∫

1

2
−εB

∣∣K(p)
B (x)

∣∣ dx

and for the polynomials KI and KB in Corollary 2.5 by (5.18), (5.19)

1

2∫

0

∣∣K̃(p)(x)
∣∣ dx ≤ p!

(
3

2

)p (
ε1−p
I γI + ε1−p

B γB
)

+

1

2
−εB∫

εI

∣∣K(p)(x)
∣∣ dx. (5.23)
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It remains to estimate K(p) and the values γI , γB which depend on K(j)(εI) and

K(j)(1
2 − εB), respectively. Therefore we have to estimate the derivatives of K.

For the kernels (5.1) and j ∈ N we have

∣∣K(j)
β (x)

∣∣ =
(j + β − 1)!

(β − 1)!
|x|−(j+β) (x 6= 0; β ∈ N0), (5.24)

where we set (−1)! := 1 in case β = 0.

Theorem 3.2. For β ∈ N0, let K = Kβ be defined by (5.1) and K̃ by (5.4) with KI

and KB given by Corollary 2.5, where εI ≤ min{εB , 1
2 − εB}. Then, for 2 ≤ p ≪ n, the

error ‖Kerr‖∞ in (5.22) can be estimated by

‖Kerr‖∞ ≤ Cβ
(p+ β − 2 + δ0,β)!

εp+β−1
I

3p

πpnp−1
(5.25)

with a constant Cβ independent of p, n and εI .

Proof. We consider the summands in (5.23). By (5.24) we obtain that

1

2
−εB∫

εI

∣∣K(p)(x)
∣∣ dx =

(p+ β − 1)!

(β − 1)!

1

2
−εB∫

εI

|x|−(p+β) dx

≤ (p+ β − 2)!

(β − 1)!
ε
−(p+β−1)
I .

Since εI ≤ min{εB , 1
2 −εB} it follows by (5.20), (5.21) and (5.24) that γBε1−p

B ≤ γIε1−p
I .

Thus it remains to estimate γIε1−p
I . By (5.20) and (5.24) we get

γIε1−p
I ≤ 1

εp−1+β
I

p−2∑

ℓ=0

(
p− 1 + ℓ

ℓ

)
(p− 2 − ℓ+ β)! 2−ℓ

(β − 1)!(p − 1 − ℓ)!

≤ 1

εp−1+β
I

(
p− 2 + β

β − 1

) p−1∑

ℓ=0

(
p− 1 + ℓ

ℓ

)
2−ℓ,

where we set
(

n
−1

)
:= 1 in case β = 0. Using y = 0 in (5.14) we see that the last sum

equals 2p−1 so that

p!

(
3

2

)p

γIε1−p
I ≤ p(p+ β − 2 + δ0,β)! 3p

2(β − 1)!
ε
−(p+β−1)
I .

Combining these estimates with (5.23) and Lemma 3.1 we obtain the assertion.

Of course, for small c, the derivatives of the generalized multiquadrics Kβ(x; c)
behave similar to those of Kβ(x). The following lemma estimates the derivatives of

the generalized multiquadrics by taking c into account.
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Lemma 3.3. The derivatives of

K(x) = Kβ(x; c) := (x2 + c2)−
β

2 (β ∈ N odd)

can be estimated by

∣∣∣K(j)
β (x; c)

∣∣∣ ≤
4

√
π
(
1 + 2c2

x2

)
(j + β − 1)!

√
2

j

Γ
(β

2

)
(x2 + c2)

j+β

2

.

Proof. We use the well-known formula [112]

Kβ(x; c) =
1

cβΓ
(β
2

)
∞∫

0

e−t(x2/c2+1)t(β−2)/2 dt .

By differentiation we obtain

K
(j)
β (x; c) =

1

cβΓ
(β
2

)
∞∫

0

dj

dxj

[
e−tx2/c2

]
e−tt(β−2)/2 dt .

Using the Rodrigues formula of Hermite polynomials , i.e., Hj(x) = (−1)jex
2 dj

dxj

[
e−x2]

,

we can rewrite this as

K
(j)
β (x; c) =

1

cβΓ
(β
2

)
∞∫

0

(−1)j e−tx2/c2Hj

(
x
√

t
c

)(√
t

c

)j
e−tt(β−2)/2 dt .

Now we substitute y = x
√

t
c and obtain

K
(j)
β (x; c) =

2(−1)j

Γ
(β
2

)
xj+β

∞∫

0

e−y2

Hj(y) e−y2c2/x2

yj+β−1 dy .

Since the integrand is even, this is equal to

K
(j)
β (x; c) =

(−1)j

Γ
(β
2

)
xj+β

∞∫

−∞

e−y2

Hj(y) e−y2c2/x2

yj+β−1 dy .

By the Cauchy-Schwarz inequality we get

∣∣∣K(j)
β (x; c)

∣∣∣ ≤ 1

Γ
(β
2

)
|x|j+β




∞∫

−∞

e−y2

H2
j (y) dy




1

2




∞∫

−∞

e−y2(1+2c2/x2)y2(j+β−1) dy




1

2

.
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By the normalization of the Hermite polynomials, i.e.,

∞∫

−∞

e−x2

Hj(x)Hm(x) dy =

{
0 for j 6= m,

2jj!
√
π for j = m,

the first integral is equal to 2jj!
√
π. To evaluate the second integral we set α2 :=

1 + 2c2

x2 and use that

∞∫

−∞

e−α2y2

y2(j+β−1) dy =
1

α2(j+β)−1
Γ(j + β − 1

2) ≤ 1

α2(j+β)−1
(j + β − 1)! .

Combining these estimates we arrive at

∣∣∣K(j)
β (x; c)

∣∣∣ ≤
4

√
π
(
1 + 2c2

x2

) (
(j + β − 1)! j! 2j

)1/2

Γ
(β
2

)
(x2 + 2c2)

j+β
2

.

Theorem 3.4. For odd β ∈ N ∪ {−1}, let K = Kβ( · ; c) be defined by (5.2) and K̃ by

(5.4) with KI and KB given by Corollary 2.5, where εI ≤ min{εB , 1
2 − εB}. Further, let

0 < c ≤ εI . Then the error ‖Kerr‖∞ in (5.22) can be estimated by

‖Kerr‖∞ ≤ Cβ
(p+ β − 2 + 2δ−1,β)!

(ε2I + c2)
p+β−1

2

(3
√

2)p

πpnp−1

with a constant Cβ independent of p, n and εI .

Proof. The proof follows the same lines as the proof of Theorem 3.2.

First we obtain for β ∈ N by Lemma 3.3 and since c2 ≤ ε2I that

1

2
−εB∫

εI

|K(p)(x)|dx ≤ C (p + β − 1)!
√

2 p

Γ
(β
2

)

1

2
−εB∫

εI

(x2 + c2)−(p+β)/2 dx

≤ C (p + β − 2)!
√

2 p+1

Γ
(β
2

) (ε2I + c2)−(p+β−1)/2.

Next we have for β ∈ N by (5.20) and Lemma 3.3 that

γIε1−p
I ≤ C

√
2

p−1

Γ
(β
2

)
(ε2I + c2)(p+β−1)/2

×

p−2∑

ℓ=0

(
p− 1 + ℓ

ℓ

)
(p − 2 − ℓ+ β)!

(p− 1 − ℓ)!




√
ε2I + c2

2
√

2εI




ℓ

(5.26)
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V. Fast NFFT based summation of radial functions

and since c2 ≤ ε2I further

γIε1−p
I ≤ Cβ

(p− 2 + β)!
√

2
p−1

(p− 1)! (ε2I + c2)(p+β−1)/2

p−1∑

ℓ=0

(
p− 1 + ℓ

ℓ

)
2−ℓ

≤ Cβ
(p− 2 + β)! (2

√
2)p−1

(p− 1)! (ε2I + c2)(p+β−1)/2
.

This results in

p!

(
3

2

)p

γIε1−p
I ≤ Cβ

p (p+ β − 2)! (3
√

2)p

2
√

2
(ε2I + c2)−(p+β−1)/2 .

Substituting of these estimates in (5.23) and applying Lemma 3.1 we obtain the

assertion for β ∈ N.

The case β = −1 follows similarly by using the fact that the Hardy multiquadric

K−1(x; c) = (x2 + c2)
1

2 fulfills

K
(j)
−1(x; c) = c2K

(j−2)
3 (x; c) (j = 2, 3, . . . ) .

Note that the right hand side of (5.26) also converges under the weaker condition

c2 < 7ε2I so that one can prove similar estimates with dp, d > 3
√

2, instead of (3
√

2)p

assuming weaker conditions than c2 < ε2I .

We will use the estimates in the Theorems 3.2 and 3.4 to specify the parameters

εI , p and n of our algorithm. Since both cases can be handled in the same way, we

restrict our attention to Theorem 3.2. Using the Stirling formula p! ≤ 1.1
√

2πp
( p

e

)p
we can rewrite our error estimate as

‖Kerr‖∞ ≤ C̃β ε
−β
I

(
3

eπ

p− 1

εI n

)p−1 (p+ β − 2 + δ0,β)!
√

2π(p − 1)

(p− 1)!
.

Thus, choosing εI such that 3(p−1)
e π εIn < 1, our error decays exponentially in p. In our

numerical examples we choose

εI =
p

n
. (5.27)

While (5.27) steers the error, condition (5.8) on εI is necessary to keep the near

field computation linear in M . Now (5.27) and (5.8) together imply that

n ≈ 2Np

ν
. (5.28)

If M = N , then the near field computation requires approximately

νN
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4. Fast Summation at multidimensional nodes

and the NFFT computations

n log n+ O(N) =
2Np

ν
log

(
2Np

ν

)
+ O(N)

arithmetic operations. One should choose ν such that both operation counts are

balanced. It seems that ν ≈ 2
√
p, respectively by (5.28),

n ≈ √
pN

is a good choice.

4. Fast Summation at multidimensional nodes

In this section we briefly explain how to extend our one-dimensional scheme to

higher dimensions d ≥ 2 and rotation-invariant kernels K(x) = K
(
‖x‖

)
. We focus

on the fast computation of

f(yj) :=
N∑

k=1

αkK(yj − xk) =
N∑

k=1

αkK
(
‖yj − xk‖

)
(xk, yj ∈ R

d) (5.29)

for j = 1, . . . , M . Similar as in Section 2 we regularize K near 0 and near the

boundary of [−1
2 ,

1
2)d to obtain a smooth periodic kernel K̃:

K̃(x) :=





KI

(
‖x‖

)
if ‖x‖ ≤ εI ,

KB

(
‖x‖

)
if 1

2 − εB < ‖x‖ < 1
2 ,

KB

(
1
2

)
if ‖x‖ ≥ 1

2 ,

K
(
‖x‖

)
otherwise.

Here we choose KI as in Corollary 2.3. But instead of (5.10) we require that the

polynomial KB fulfills the conditions

K
(j)
B

(
1

2
− εB

)
= K(j)

(
1

2
− εB

)
(j= 0, . . . , p− 1),

K
(j)
B

(
1

2

)
= δ0,j K

(
1

2

)
(j= 0, . . . , p− 1).

(5.30)

The unique solution KB of (5.30) is given by Theorem 2.2, but now it does not have

the symmetry of Corollary 2.3.

Then we approximate K̃ by the Fourier series

Tn(K̃)(x) :=
∑

ℓ∈Id
n

bℓ e2πiℓx ,

where

bℓ :=
1

nd

∑

j∈Id
n

K̃
( j

n

)
e−2πijℓ/n (ℓ ∈ Id

n) .
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V. Fast NFFT based summation of radial functions

Now we can decompose the original kernel as

K = (K − K̃) +
(
K̃ − Tn(K̃)

)
+ Tn(K̃)

and, by neglecting the summand in the middle, we approximate f by

f̃(x) :=

N∑

k=1

αk(K − K̃)(x − xk) +

N∑

k=1

αkTn(K̃)(x − xk). (5.31)

Instead of f we evaluate f̃ at the nodes yj ∈ R
d (j = 1, . . . , M ) by the following two

steps:

1) Near field computation (first sum in (5.31))

To achieve the desired complexity of our algorithm we suppose that either the N
points xk or the M points yj are ‘sufficiently uniformly distributed’ in the ball with

radius 1
2 − εB, i.e., we suppose that there exists a small constant ν ∈ N such that

each ball with radius εI contains at most ν of the points xk or of the points yj,

respectively. This implies that εI depends linearly on N−1/d, respectively M−1/d. In

the following we restrict our attention to the case

εI ≈ 1

2

( ν
N

)1/d
. (5.32)

Then, as in one dimension, the computation of the first sum requires only ≤ ν M
arithmetic operations.

2) NFFT based summation (second sum in (5.31))

The evaluation of the second sum in (5.31) is done exactly in the same way as in

one dimension, but with d-dimensional NFFTs of size n now, which really involve

a multidimensional setting. This computation part requires O(nd log n + N + M)
arithmetic operations.

To obtain an exponential error decay in p, we have to choose again εI ≈ p
n ; see

(5.27). On the other hand, we have to ensure (5.32) for an efficient near field

computation. Thus,

n ≈ 2p

(
N

ν

)1/d

.

To get a balanced arithmetic complexity of both parts of our algorithm one may

choose n ≈ √
pN1/d if N = M .

5. Numerical results

Our algorithms were implemented in C using double precision arithmetic and

tested on an AMD Athlon(tm) XP 1800+, 512MB RAM, SuSe-Linux 8.2.
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Figure 5.2.: Error E in dependence on p for various kernels in 2D with N = 5122,

n = 512; regularization by spline interpolation (left) and by polynomial

interpolation (right).

Throughout our experiments we apply the NFFT/NFFTT package [88] with Kaiser-

Bessel functions and oversampling factor σ = 2.

For simplicity we have chosen M = N in our summation algorithm and randomly

distributed nodes yj = xj (j = 1, . . . , N ) in {x : ‖x‖ ≤ 7
32}, i.e., εB = 1

16 . The

coefficients αk were randomly distributed in [0, 1]. Moreover, we set εI = p
n .

We are interested in the error

E := max
j=1,...,N

|f(xj) − f̃(xj)|
|f(xj)|

. (5.33)

Figure 5.2 shows the behavior of E in 2D for various kernels in (5.1) and (5.2)

with spline regularization (left) and regularization by algebraic polynomials (right).

Here we have chosen N = 5122 points, n =
√
N and c = 1/

√
N as parameter of the

generalized multiquadrics. Further we use the truncation parameter m = 8 in the

NFFT computations. First we observe that the error E with spline regularization

is slightly better than the error with regularization by algebraic polynomials. Fur-

ther, the results confirm the exponential error decay with increasing p proved in

the Theorems 3.2 and 3.4. In the following we will always use regularization by

polynomial interpolation.

Figure 5.3 presents the 1D error E in dependence on p for the Hardy multi-

quadric (left) and the inverse Hardy multiquadric (right) with various scaling pa-

rameters c. Here we took n = N = 1024. Further we use the truncation parameter

m = 8 in the NFFT computations. As expected, for decreasing c, the error increases

until c = 1
N , where it is approximately the same as for c = 0 in both cases. For

c = 1, the error is about the same for both multiquadrics. In this case, we can

also apply the algorithm without inner regularization, i. e. without near field com-

putation. The corresponding curve is drawn with symbol △. Note that without

inner regularization n does not depend on N and the complexity of our algorithm
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Figure 5.3.: Error E in dependence on p for the Hardy multiquadric (left) and

the inverse multiquadric (right) in 1D with various parameters c and

n = N = 1024. Here c = 1∗ denotes the algorithm without near field

computation.

becomes linear in N .

Figure 5.4 compares the computational time in dependence on the number N of

two-dimensional points for the direct computation of (5.29) and for our algorithm.

As kernel function we have used K(x) = log‖x‖. The parameters for our algorithm

were n = 2
√
N and p = 4 to achieve an accuracy of E ≤ 10−6. Further we use the

truncation parameter m = 4 in the NFFT computations. Note that the computation

time for the near field computation includes the time for the search of all points

in the near field which requires O(logN). The direct computation for N = 220

was only estimated based on the computational time and error for the first 1000
points, since the direct computation would take about 66 hours. Comparing this

time with about 1.6 minutes required by our algorithm, the time saving for large

problem sizes N becomes clear.

Finally, Table 5.1 compares the computational times required by our algorithm

and by the algorithm proposed by Beatson et al. in [27]. In order to achieve an

error E ≈ 10−6 in our algorithm, we have chosen m = 4 and p = 3. Further we

have adapted the length n ≈ √
pN of our NFFT such that the incorporated FFTs

show a good performance. As in [27] the multiquadric parameter was c = 1√
N

and

the coefficients were αk = 1 for all k = 1, . . . , N . The computational times for

the Beatson algorithm were taken from Table 9.1 in [27]. Note that a different

hardware was used for both algorithms so that the time for the direct computation

may serve as a measure for comparison.
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Figure 5.4.: Computational time versus the number N of points in 2D for the direct

summation and our algorithm with n = 2
√
N and K(x) = log |x|.

our algorithm Beatson et al.

N n direct fast direct fast

2000 96 2.70 · 10−1 6.0 · 10−2 2.97 · 10−1 7.8 · 10−2

4000 144 1.02 · 10+0 1.50 · 10−1 1.19 · 10+0 2.03 · 10−1

8000 180 4.48 · 10+0 3.10 · 10−1 4.75 · 10+0 4.84 · 10−1

16000 216 2.32 · 10+1 7.20 · 10−1 2.50 · 10+1 9.84 · 10−1

32000 288 9.33 · 10+1 1.83 · 10+0 1.10 · 10+2 2.23 · 10+0

Table 5.1.: Computational times (in seconds) of the algorithm of Beatson et al. in

[27] and of our algorithm for K(x) =
√
x2 + c2 in R

2.
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VI. NFFT-based Ridgelet Transform

Over the past few years, wavelet methods have been applied for the analysis

of functional surfaces including nano-surfaces. Unfortunately, the usual dis-

crete wavelet transform (DWT) suffers from shift-sensitivity, poor directionality

and pseudo-Gibbs artifacts. Recently, a dual-tree complex wavelet transform (DT

CWT) combined with total variation (TV) minimization has been applied by Ma et

al. [94, 93] to solve the above problems. However, wavelet-based techniques show

a poor performance at representing line singularities. In this chapter, we pay at-

tention to extract line scratches from engineering surfaces by applying the discrete

ridgelet transform.

Ridgelets have been designed by Candès and Donoho [18, 20] to deal with line

singularities effectively by mapping them into point singularities using the Radon

transform. It should be noted that several other geometric multiresolution struc-

tures such as curvelets by Candès and Donoho [21], bandelets by LePennec and

Mallat [91] or contourlets by Do and Vetterli [33] have been proposed to restore

local image features in a different way. Moreover, these methods have to compete

with anisotropic diffusion filtering [132].

When implementing a discrete ridgelet transform one has to cope with certain

technical difficulties. The basic strategy of the ridgelet transform is an application

of the wavelet transform on the projections of the Radon transform. The Radon

transform seems natural and simple on the continuum but it is a challenging

problem for discrete data.

Do and Vetterli [34] proposed an orthonormal version of the ridgelet transform

based on a discrete Radon transform defined on the finite grid Z
2
p, where p is

a prime number. Unfortunately, the Z
2
p Radon transform integrates over ‘lines’

which are defined algebraically — due to the arithmetic modulo p — rather than

geometrically. This causes a wrap-around effect, i.e., texture-like artifacts in re-

constructions.

Carré and Andres [22] presented a so-called discrete analytical ridgelet trans-

form (DART) with a flexible redundancy factor based on discrete analytical lines,

which only cause a limited wrap-around effect. By using an arithmetical thick-

ness they choose the best discrete approximation of the Euclidean line for each

line direction. The innovative step of this transform is the construction of discrete

analytical lines in the Fourier domain, which allows a fast perfect backprojection

without interpolation or iteration.

Other discrete ridgelet transforms have been also explored by Donoho et al. In

[121], they offer a discrete transform with exact reconstruction, stability against

perturbations, and low computational complexity. It uses the linogram grid by
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VI. NFFT-based Ridgelet Transform

means of a simple nearest-neighbor interpolation scheme. In [37], an effective

discrete ridgelet transform based on so-called true ridge functions was proposed

using the Fast Slant Stack (FSS) in [4], a pseudopolar FFT based discrete Radon

transform, followed by fast 1D wavelet transforms. The essential of the FSS-based

‘true’ ridgelet transform is an interpolation performed using a Dirichlet kernel,

which leads to a transform that is geometrically faithful and has no wrap-around

effect. But an iterative approximation process is required for the inverse trans-

form.

In this chapter, we develop a discrete complex ridgelet transform based on the

NFFT. This ridgelet transform uses the NFFT for the computation of the discrete

Radon transform. As the FSS, this approach completely avoids linear interpola-

tions and requires only O(n2 log n) arithmetic operations. Then, 1D DT CWTs are

applied to the projections of the Radon transform. The DT CWT was introduced by

Kingsbury [82, 83] to cope with the lack of translation and rotation invariance of

the (decimated) wavelet transform in an efficient way. For a mathematical treat-

ment of the DT CWT see also [115, 103]. Replacing the DWT by approximate shift

invariant DT CWT improves the quality of ridgelet denoising remarkably.

For denoising or feature extraction, a shrinkage function is applied to the ridgelet

coefficients. However, this usual shrinkage is far from optimal and leads to blurred

edges and pseudo-Gibbs artifacts. Therefore, we combine thresholding with TV

minimization in order to reduce these artifacts.

TV minimization was first introduced by Rudin, Osher and Fatemi [113] for de-

noising, and then has been widely studied in image processing and computer

vision (e.g. restoration, inpainting, blind deconvolution). Recently, the TV model

has been combined with computational harmonic analysis (e.g. wavelets, wavelet

packets, curvelets, etc.) to reduce both the pseudo-Gibbs and staircasing artifacts

[96, 25, 39, 93, 123]. The idea of coupled TV minimization used in this chap-

ter is similar to [39, 93], but applied for complex ridgelet coefficients and in two

dimensions. The ridgelet transform combined with TV minimization attempts to

give a better restoration of ridgelet coefficients, since it does not set the nonsignif-

icant ridgelet coefficients simply to zero, but typically inputs optimal small values

to cancel the oscillations (pseudo-Gibbs artifacts) in the vicinity of discontinuities

and eliminate the ripples, while perfectly preserving the strong edges and shapes

of features.

Although NFFT-based Radon transform, DT CWT and TV minimization are not

new, they are combined for the first time. The main ideas of this chapter are also

published in [49].

This chapter is organized as follows. First, we introduce the continuous Radon

transform in Section 1. In Section 2, we explain our NFFT-based discrete Radon

transform. Then, the continuous ridgelet transform is introduced in Section 3.

Our new discrete complex ridgelet transform and its inverse are described in Sec-

tion 4. Thereafter, we explain hard thresholding and combine it with TV minimiza-

tion in Section 5. Numerical experiments show the good performance of our new

method for feature extraction and denoising in Section 6.
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1. Continuous Radon Transform

1. Continuous Radon Transform

In this section we introduce the continuous Radon transform. As general reference

we recommend the books of Natterer [101] and Natterer, Wübbeling [102].

The (two dimensional) continuous Radon Transform maps a function on R
2 into

the set of its integrals over the straight lines of R
2. More precisely, for an angle

ϕ ∈ [0, 2π), θ := (cosϕ, sinϕ)T ∈ S1, and an offset s ∈ R, let xθ = x1 cosϕ+ x2 sinϕ = s
specify a straight line of R

2. Then, the Radon transform for f ∈ L2(R2) is defined

as

Rθf(s) := Rf(ϕ, s) :=

∫

xθ=s

f(x) dx =

∫

R2

f(x)δ(s − xθ) dx (6.1)

with the Dirac delta function δ, i.e., δ(0) = 1 and zero else.

With the orthogonal complement θ⊥ = (− sinϕ, cosϕ)T , we can also write

Rθf(s) =

∫

R

f
(
sθ + tθ⊥) dt .

Note that—by abuse of notation— Rθf(s) denotes the projection along θ⊥ onto sθ.

The Fourier transform and the Radon transform are connected by the so-called

‘projection theorem’ or ‘Fourier Slice Theorem’ [101].

Theorem 1.1. Let f ∈ S(R2), where S(R2) denotes the Schwartz space. For ϕ ∈
[0, 2π), θ := (cosϕ, sinϕ)T , and σ ∈ R it holds

f̂(σθ) = R̂θf(σ) .

Proof. We have that

R̂θf(σ) =

∫

R

Rθf(s) e−2πiσs ds

=

∫

R

∫

R

f(sθ + tθ⊥) e−2πiσs ds dt .

With the substitution x = sθ+tθ⊥ for the integration variable, we get with dx = ds dt
and s = θx that

R̂θf(σ) =

∫

R2

f(x) e−2πiσθx dx

= f̂(σθ) .

By Theorem 1.1 the continuous Radon transform can be written as

Rθf(s) =

∫

R

f̂(σθ) e2πisσ dσ . (6.2)
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2. Discrete Radon Transform

In this section, we are interested in an efficient and high quality discrete Radon

transform based on the NFFT, e.g., applied in [108].

Let discrete data fk = f( 1
Rk) (k ∈ I2

N , R ≥ N ) be given. Since none or only few

of these discrete data points would fall on a given straight line xθ = s, we have

to modify the approach of equation (6.1). The idea is to smear the straight lines

somewhat in the sense that discrete data points close-by the straight line will be

included. This can be done by approximating the Dirac delta function in equation

(6.1) with a kernel function

KR(x) :=
∑

r∈IR

wr e2πirx . (6.3)

Now, we can introduce a semi-discrete Radon transform as the discrete analog of

equation (6.1), i.e.,

Rθf(s) :=
∑

k∈I2
N

fkKR

(
s− 1

R
kθ
)
. (6.4)

The second question is how to discretize the set of straight lines xθ = s. Based on

the results of Chapter II, Section 5, we will restrict to the following discrete set of

straight lines.

The offset will be equally subdivided, but instead of specifying an angle, we use

the slope. Two different types of lines have to be distinguished. These are

x1 +
4t

T
x2 =

s

R
and − 4t

T
x1 + x2 =

s

R
(t ∈ IT/2, s ∈ IR).

They differ only by their slopes in x1 and x2, respectively. Their directions are given

by

θh
t :=

(
1,

4t

T

)T
and θv

t :=
(
−4t

T
, 1
)T

with t ∈ IT/2. To simplify matters, we introduce the symbol θt (t ∈ IT ) defined by

θt := θh
t+T/4 for t < 0 and θt := θv

t−T/4 for t ≥ 0.

Using this discrete set of straight lines together with the definition of the kernel

function in equation (6.4), we define the discrete Radon transform as

Rθt
f
( s
R

)
=
∑

r∈IR

wr

∑

k∈I2
N

fk e−2πik ( r
R

θt) e2πirs/R (t ∈ IT , s ∈ IR). (6.5)

Obviously, a fast algorithm for the computation of the discrete Radon transform

is given by computing the inner sum of equation (6.5) by a 2D NFFT at the knots of

the linogram grid, followed by a multiplication with the Fourier coefficients of the

kernel function and finished by computing the outer sum by 1D iFFTs for every

direction θt.

Since the last step can be easily inverted by 1D iFFTs and the first step can be

inverted (approximately to arbitrary accuracy if R ≥ N and T ≥ 2N ) by 2D iNFFT
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3. Continuous Ridgelet Transform

as discussed in Chapter II, Section 5, we also have a fast algorithm for the inverse

discrete Radon transform.

By choosing the Dirichlet kernel

DR/2−1(x) :=

R/2−1∑

r=−R/2+1

e2πirx =
sin(R − 1)πx

sin(πx)

or the Fejér kernel

FR/2−1(x) :=

R/2−1∑

r=−R/2+1

(
1 − |r|

R/2

)
e2πirx =

2

R

(
sin(R/2)πx

sin(πx)

)2

in (6.3), i.e., in particular w−R/2 = 0 and w−r = wr (r ∈ IR), we assure real values

for the discrete Radon transform.

In Figure 6.1, we compare the results of the discrete Radon transform with

these kernels. In (a) you can see an (256 × 256) pixels image of an object used in

[34]. It is considered in order to compare our later algorithm with other methods

conveniently. Figure 6.3 (b) shows the object contaminated with additive zero-

mean Gaussian white noise. As can be seen from Figure 6.1, the discrete Radon

transform with Fejér kernel (d) results in less noisy projections compared to the

ones with Dirichlet kernel (c).

Remark 2.1. Using a (modified) Dirichlet kernel in our definition of the discrete

Radon transform (6.5) leads essentially to the same notion of discrete Radon trans-

form as proposed by Averbuch et al. [4]. They call their transform Fast Slant Stack.

For the computation of the inner sum in (6.5), these authors use the so-called

pseudopolar FFT based on the Chirp-Z transform as alternative for the NFFT. Re-

cently, Candès et al. also apply the unequispaced FFT (USFFT) for the efficient

computation of the curvelet transform [19].

3. Continuous Ridgelet Transform

The (two dimensional) continuous ridgelet transform can be defined as follows. Let

the function ψ ∈ L2(R) be a wavelet, i.e., it fulfills the admissibility condition

∫

R

|ψ̂(ω)|2
|ω| dω <∞ .

A ridgelet ψθ,a,b with orientation parameter θ := (cosϕ, sinϕ)T , ϕ ∈ [0, 2π), scale

parameter a > 0 and location parameter b ∈ R is defined by

ψθ,a,b(x) := a−1/2 ψ

(
xθ − b

a

)
. (6.6)
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VI. NFFT-based Ridgelet Transform
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Figure 6.1.: (a) An object (N = 256) with (b) some Gaussian white noise added

(SNR = 0.81). Projections taken along one direction with the discrete

Radon transform (T = R = 2N ) of the object (dashed line) resp. noisy

object (solid line) incorporating (c) the Dirichlet kernel resp. (d) the

Fejér kernel.
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4. Discrete Ridgelet Transform

This function is constant along lines xθ = c. In the orthogonal direction it is a

wavelet. Now, the continuous ridgelet transform for f ∈ L2(R2) is defined as

Rθf(a, b) :=

∫

R2

f(x)ψθ,a,b(x) dx . (6.7)

By a change of the integration variable in (6.7) to x = sθ + tθ⊥, we can write

Rθf(a, b) = a−1/2

∫

R

∫

R

f
(
sθ + tθ⊥)ψ

(
s− b

a

)
dt ds

= a−1/2

∫

R

Rθf(s)ψ

(
s− b

a

)
ds . (6.8)

Thus, ridgelet analysis can be seen as a form of wavelet analysis in the Radon do-

main. Furthermore, by using Plancherel’s Theorem and the Fourier Slice Theorem,

we get

Rθf(a, b) = a1/2

∫

R

R̂θf(σ)ψ̂(aσ) e2πibσ dσ

= a1/2

∫

R

f̂(σθ)ψ̂(aσ) e2πibσ dσ ,

which compares excellently to equation (6.2).

For f ∈ S(R2) there exists a reconstruction formula (see, e.g., [18])

f(x) =

2π∫

0

∞∫

−∞

∞∫

0

Rθf(a, b)ψθ,a,b(x)
da

a3
db

dϕ

4π
.

4. Discrete Ridgelet Transform

Based on the connection of the continuous ridgelet transform and the Radon

transform expressed in equation (6.8), we propose to compute the discrete ridgelet

transform of fk (k ∈ I2
N ) by the following two steps:

1. Compute the discrete Radon transform Rθt
f( s

R) (t ∈ IT , s ∈ IR) by (6.5).

2. Compute a 1D discrete wavelet transform of Rθt
f( s

R) for every θt.

Let’s have a closer look at step 2. Let the projection Rθf in direction θ be repre-

sented by a wavelet decomposition of the form

Rθf =
∑

k∈Z

cθ,j0,kφj0,k +
∑

j≤j0

∑

k∈Z

dθ,j,kψj,k (6.9)
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VI. NFFT-based Ridgelet Transform

where φj0,k denotes the scaling function at the coarsest level j0 associated to the

orthogonal wavelet basis
{
ψj,k := ψ

(
(x− b)/a

)
: a = 2−j , b = k2−j , k, j ∈ Z

}
. Then, the

coefficients cθ,j0,k =
〈
Rθf, φj0,k

〉
and dθ,j,k =

〈
Rθf, ψj,k

〉
refer to the smooth compo-

nents at level j0 and the detail components at level j in direction θ, respectively.

Discrete wavelet transform (DWT) suffers from shift sensitivity, which is caused

by aliasing due to the transform having maximal decimation at each level. Many

wavelet techniques, including undecimated wavelet transform and complex wavelet

transform, have been explored to solve this problem, but they either require highly

redundant computational cost or absent perfect reconstruction and good filter

characteristics. Based on the Z-transform theory of linear time invariant sys-

tems, Kingsbury [82, 83] proposed the dual-tree complex wavelet transform (DT

CWT), which adds perfect reconstruction to approximate shift invariance of com-

plex wavelets. In contrast to the O(n log n) undecimated DWT, which is log n times

redundant in 1D and 3 log n times redundant in 2D, the DT CWT is only slightly

redundant by a factor of 2 in 1D and 4 in 2D. Thus, the computational complexity

of DT CWT remains O(n), the same as for the decimated DWT.

Furthermore, the complex ridgelet transform can provide better phase informa-

tion; a useful property for many applications. In [95] Ma showed that the ridgelet

transform can achieve approximate shift invariance by the use of the DT CWT.

Unfortunately, textural artifacts are still unavoidable since the finite Z
2
p Radon

transform is used as a building block in [95]. However, the DT CWT used in this

work is well-motivated by this prior attempt.

The DT CWT is a special discrete complex wavelet transform, which is essentially

a combination of two different real wavelet transforms by a sophisticated dual

tree. More precisely, we have two wavelet decompositions of the form (6.9) with

scaling functions φr
j0,k, φi

j0,k and wavelets ψr
j,k, ψi

j,k, respectively. We set φj0,k :=
1√
2
(φr

j0,k − iφi
j0,k) and ψj,k := 1√

2
(ψr

j,k − iψi
j,k). Then the DT CWT can be seen as the

real part of a decomposition of the form (6.9) with the outputs of the dual tree

interpreted as the real and imaginary parts of the complex coefficients

cθt,j0,k(f) := 1√
2

〈
Rθt

f, φr
j0,k

〉
+ i 1√

2

〈
Rθt

f, φi
j0,k

〉
,

dθt,j,k(f) := 1√
2

〈
Rθt

f, ψr
j,k

〉
+ i 1√

2

〈
Rθt

f, ψi
j,k

〉
.

Therefore, we will call the proposed ridgelets complex ridgelets. Note that the

filter/wavelet design for the DT CWT is rather sophisticated. In our experiments,

we will use the nearly orthogonal (13,19)-tap filters at level 1 and the 18-tap Q-

shift filters constructed in [83] for the higher levels.

In summary, we obtain the following algorithm for the fast computation of the

discrete complex ridgelet transform:

Algorithm 6.1 (Discrete Complex Ridgelet Transform (DCRT)).

Input: discrete function f :=
(
fk

)
k∈I2

N

.
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4. Discrete Ridgelet Transform

1. For t ∈ IT and r ∈ IR compute

f̂θt,r := wr

∑

k∈I2
N

fk e−2πik ( r
R

θt)

by 2D NFFT at the points r
Rθt of the linogram grid.

2. Obtain the discrete Radon transform for every direction θt by computing

Rθt
f
( s
R

)
=
∑

r∈IR

f̂θt,r e2πirs/R

for every s ∈ IR by 1D iFFT of f̂θt,r.

3. Compute the complex ridgelet coefficients

cθt,j0,k(f) and dθt,j,k(f)

by 1D DT CWT of Rθt
f for every direction θt.

Output: discrete complex ridgelet coefficients cθt,j0,k(f), dθt,j,k(f).

Remark 4.1. The linogram grid together with unequispaced fast Fourier transform

(USFFT) was recently also applied by Candès et al. for the efficient computation of

the curvelet transform [19]. In the second generation of curvelets, the USFFT is

used to evaluate the frequency angular partitioning supported on parallelepiped

tilings (sheared grid) at a series of disjoint scales. In some sense, the use of the

USFFT in [19] and of the NFFT in this work both analogously view a special grid as

a nonequispaced grid in Cartesian coordinate system. However, Candès et al. don’t

involve the ridgelet transform. Also the USFFT, which is based on zero-padding

and Taylor expansion, is itself very different from the NFFT used in this work.

The Inverse Complex Ridgelet Transform

The inverse discrete complex ridgelet transform can be achieved by inverting the

steps of Algorithm 6.1 one after the other in reverse order.

Since the second step of Algorithm 6.1 can be easily inverted by 1D FFTs and

the first step can be inverted (approximately to arbitrary accuracy) by 2D iNFFT as

discussed in Chapter II, Section 5, we also have a fast algorithm for the inverse

discrete Radon transform. The algorithm possesses low arithmetic costs and leads

to a good reconstruction quality similar to that of filtered backprojection.

Algorithm 6.2 (Inverse Discrete Complex Ridgelet Transform (iDCRT)).

Input: discrete complex ridgelet coefficients cθt,j0,k(f), dθt,j,k(f).

1. Optain the Radon transform

Rθt
f
( s
R

)

for s ∈ IR by computing the inverse 1D DT CWT of the ridgelet coefficients for

every direction θt (t ∈ IT ).
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VI. NFFT-based Ridgelet Transform

(a) (b)

Figure 6.2.: The iDCRT of only one non-zero coefficient shown by 2D (a) and 3D

surface (b), respectively.

2. For r ∈ IR compute

f̂θt,r =
1

R

∑

s∈IR

Rθt
f
( s
R

)
e−2πirs/R

by 1D FFT for every direction θt.

3. For k ∈ I2
N compute fk by solving the linear system

f̂θt,r = wr

∑

k∈I2
N

fk e−2πik ( r
R

θt)

with the CGNR-based 2D iNFFT at the points r
Rθt of the linogram grid.

Output: discrete function f :=
(
fk

)
k∈I2

N

.

Figure 6.2 shows a discrete complex ridgelet, i.e., the iDCRT of a point (all

ridgelet coefficients are zero but one). In Figure 6.2 (a) and Figure 6.2 (b) the

obtained 2D resp. 3D surface is depicted. Unlike FRIT, it can be seen that the

DCRT is free from wrap-around artifacts. The similar sample was given using re-

cent DART in [22]. Our method is also better than DART in terms of the influence

of the wrap-around artifacts in comparison to the displayed illustrations. However,

we note that it is non-smooth along the ridge shown in Figure 6.2 (b).

5. Combination of Hard Thresholding with TV minimization

The combination of ordinary wavelet shrinkage with TV minimization was suc-

cessfully applied in various papers [25, 39, 93, 96]. In this work we apply the

technique with respect to our ridgelet coefficients. We mainly follow the approach

in [39].
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5. Combination of Hard Thresholding with TV minimization

Many problems such as denoising and feature extraction can be written as the

model

f = ftrue + ε ,

where f is the observed function, ftrue is the function (or component) to estimate

and ε is white Gaussian noise or, more generally, an unwanted component. Our

aim is to restore ftrue without artifacts, i.e., recover the smooth parts of ftrue while

preserving the discontinuities.

The hard thresholding function τ is defined for x ∈ C as

τ(x) :=

{
x, |x| ≥ σ,

0, |x| < σ.

We restrict our attention to hard thresholding although other thresholding func-

tions as soft thresholding or garotte thresholding can be used, too. Applying

hard thresholding with some fixed threshold σ to the complex ridgelets coeffi-

cients dθt,j,k(f) of our discrete function f and applying the iDCRT (Algorithm 6.2)

results in a function f (0). The indices of the ridgelet coefficients retained after hard

thresholding are recorded in Λ, i.e.,

Λ :=
{
(θt, j, k) : |dθt,j,k(f)| ≥ σ

}
.

Unfortunately, wavelet thresholding produces artificial oscillations near discon-

tinuities, a phenomenon known as ‘pseudo-Gibbs phenomenon’ or ‘side-band ef-

fect’. To lower the pseudo-Gibbs artifacts we will use TV minimization. For a

function f : R
2 ⊇ Ω → R with |∇f(x)| ∈ L1(R2) the total variation functional is

defined by

TV(f) =

∫

Ω

∣∣∇f(x)
∣∣dx . (6.10)

TV functionals as regularizing terms became very popular in image processing.

Meanwhile, there exists a broad literature on this topic. In particular, relations

between TV regularization and wavelet shrinkage were examined in [123, 135].

To circumvent computational difficulties arising from the non-differentiability of

the modulus at zero, the TV functional is often replaced by

Jβ(f) =

∫

Ω

√∣∣∇f(x)
∣∣2 + β2 dx , (6.11)

with a small parameter β, see [131]. In the following, we restrict our attention to

(6.11) and use the following discrete version for f :=
(
fk

)
k∈I2

N

Jβ(f) =
∑

k

√∣∣(δ1f)k
∣∣2 +

∣∣(δ2f)k
∣∣2 + β2 , (6.12)
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VI. NFFT-based Ridgelet Transform

where (δ1f)k = fk1+1,k2
−fk1,k2

, (δ2f)k = fk1,k2+1−fk1,k2
. More precisely, for our given

f let

U :=
{
u :=

(
uk

)
k∈I2

N

: cθt,j0,k(u) = cθt,j0,k(f) ∀(θt, k),

dθt,j,k(u) = dθt,j,k(f) ∀(θt, j, k) ∈ Λ
}
.

Then we are looking for the solution of the constrained minimization problem

min
u∈U

Jβ(u) . (6.13)

Let the linear subspace V of functions on I2
N be given by

V :=
{
v :=

(
vk

)
k∈I2

N

: cθt,j0,k(v) = 0 ∀(θt, k),

dθt,j,k(v) = 0 ∀(θt, j, k) ∈ Λ
}
.

Then it holds that U = f (0) + V , i.e., U is an affine and hence convex space. Since

the functional (6.12) is convex, too, problem (6.13) has a solution. Given a positive

sequence (tℓ)
∞
ℓ=0 with limℓ→∞ tℓ = 0 and

∑∞
ℓ=0 tℓ = ∞, it was shown in [39] that

a solution of (6.13) can be computed by the following projected gradient descent

scheme

f (ℓ+1) = f (ℓ) − tℓPV

(
∇fJβ(f (ℓ))

)

with our hard-thresholded function f (0) as initial guess. Here, PV (g) denotes the

projection of g onto V , i.e., the inverse discrete complex ridgelet transform of

cθt,j0,k(v) := 0, dθt,j,k(v) :=

{
0 for (θt, j, k) ∈ Λ,

dθt,j,k(g) else.

It is applied to the gradient ∇f of the discrete modified TV functional (6.12) given

by

∇fJβ(f) := (2fk1,k2
− fk1,k2+1 − fk1+1,k2

)
[
(fk1,k2+1 − fk1,k2

)2 + (fk1+1,k2
− fk1,k2

)2 + β2
]−1/2

+ (fk1,k2
− fk1−1,k2

)
[
(fk1−1,k2+1 − fk1−1,k2

)2 + (fk1−1,k2
− fk1,k2

)2 + β2
]−1/2

+ (fk1,k2
− fk1,k2−1)

[
(fk1+1,k2−1 − fk1,k2−1)

2 + (fk1,k2
− fk1,k2−1)

2 + β2
]−1/2

(6.14)

for the inner points (k1, k2) ∈ I2
N and corresponding modifications at the boundary

∂I2
N .

Algorithm 6.3 (TV Minimization of Complex Ridgelet Coefficients (DCRT with TV)).

Input: discrete (noisy) data f , threshold σ, time step size tℓ

1. Compute the discrete complex ridgelet coefficients cθt,j0,k(f), dθt,j,k(v) by DCRT

(Algorithm 6.1).
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6. Numerical results

2. Apply hard thresholding and record indices of retained coefficients in Λ.

3. Compute initial guess f (0) by iDCRT (Algorithm 6.2) of the retained ridgelet

coefficients.

4. Minimize the TV norm of f (ℓ) by doing the following steps for ℓ = 0, 1, . . . :

a) Compute the subgradient g(ℓ) of f (ℓ) by (6.14).

b) Compute the discrete complex ridgelet coefficients cθt,j0,k(g
(ℓ)), dθt,j,k(g

(ℓ))
by DCRT (Algorithm 6.1).

c) Compute PV (g(ℓ)) by applying the iDCRT (Algorithm 6.2) to the coefficients

cθt,j0,k(v) := 0, dθt,j,k(v) :=

{
0 for (θt, j, k) ∈ Λ,

dθt,j,k(g
(ℓ)) else.

d) Set

f (ℓ+1) := f (ℓ) + tℓPV (g(ℓ)) .

Output: denoised discrete data f (ℓ)

6. Numerical results

In our numerical experiments, we always use the NFFT [88] with the Gaussian

window function, cut-off parameter m = 4 and oversampling factor σ = 2. The

DT CWT is due to Kingsbury [84] and applied with the Near-symmetry (13,19)-tap

biorthogonal filters at level 1 and 18-tap Q-shift filters in a cascaded way at beyond

level 1. We will denote with DRT the discrete real ridgelet transform, in which we

use DWT (Sym4 wavelets [36]) in the second step instead of the DT CWT; and FRIT

stands for Do and Vetterli’s finite Z
2
p ridgelet transform [35].

As a measure of quality we use the signal-to-noise ratio (SNR) defined by

SNR = 20 log10

‖z − z̄‖2

‖n‖2

with z standing for the original signal with mean z̄, and n representing noise.

In our first test, we compare different methods for edge-preserving denoising of

an image with line singularities. It will show the good performance of the proposed

method. We use the noisy object of Figure 6.1 (b). First, Figure 6.3 (a) shows the

result obtained using the robust local approximation method (RMLS) of Chapter

VII. There is still some textural noise left. By varying the parameters, we can

remove this noise at the cost of clear edges. Figure 6.3 (b) shows the result ob-

tained using our own Matlab implementation of the 2D TV minimization algorithm

by Chambolle [24]. The edges are frayed and the staircasing effect can be seen.

Figure 6.3 (c) shows the result obtained using the edge-enhancing anisotrop diffu-

sion filtering algorithm (eed) of Weickert [133]. A universal hard thresholding was

applied to the wavelet/ridgelet coefficients of the next images. Figure 6.3 (d) shows
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VI. NFFT-based Ridgelet Transform

(a) RMLS (SNR = 17.67) (b) TV (SNR = 19.41) (c) eed (SNR = 20.53)

(d) DWT (SNR = 12.90) (e) FRIT (SNR = 13.17) (f) DRT (SNR = 16.65)

(g) DCRT (SNR = 19.16) (h) DCRT with TV (SNR = 20.40) (i) TV after DCRT (SNR = 20.57)

Figure 6.3.: Denoising using different methods.
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Figure 6.4.: The center profile taken across the original object (shown as dashed

line) and the reconstruction by (a) DCRT (shown in Figure 6.3 (g)) and

(b) DCRT with TV (shown in Figure 6.3 (h)), respectively.

the result obtained using (9,7)-tap DWT. As we know, it causes non-smoothness

along the edges. Figure 6.3 (e) shows the result obtained using FRIT. It suffers

from strongly textural artifacts. Figure 6.3 (f) shows the result obtained using the

DRT. Figure 6.3 (g) shows the result obtained using the DCRT. The DCRT with TV

result in Figure 6.3 (h) shows a better result with less line-like artifacts, as well as

in terms of the signal to noise ratio (SNR). It can be seen from Figure 6.3 (g) and

(h) that the proposed framework is effective in recovering straight edges, even for

so heavy noisy background. Generally speaking, a more oscillating wavelet basis

used in the second step produces less artifacts, as mentioned in [34], but costs

more computational burden because of its larger support. A similar denoising

sample using the Fast Slant Stack based ridgelet transform and DART with a very

oscillating wavelet basis (Daubechies20) is depicted in [22, Figure 3]. There seem

to be less disturbing artifacts than in the DRT result, but the edges are not very

clear. Figure 6.3 (h) in this chapter shows the result obtained using the DCRT

with TV where we chose tℓ = 0.1 (ℓ = 1, . . . , 120). It is much more effective in re-

ducing undesirable artifacts including the pseudo-Gibbs artifacts while preserving

the edges. However, it is somewhat disillusioning, that the result in Figure 6.3 (i),

which was obtained from Chambolle’s TV algorithm applied to the DCRT result, is

quite as good as the presented method even though it is less sophisticated.

Figure 6.4 shows a comparison of the center profile taken across the original

object and Figure 6.3 (g) and (h), respectively. The effectivity of DCRT with TV can

be seen more clearly from these profiles.

The simple thresholding scheme is effective for the ridgelet methods in denoising

the piecewise smooth image with line singularities, because the line singularities

are represented by a few large coefficients while noise unlikely generates signifi-

cant coefficients. From the view of the hybrid approach, the DCRT just combines

the multiresolution analysis of DT CWT with the anisotropy of the Radon trans-

form. DCRT with TV offers an better choice of reconstructed coefficients in the
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VI. NFFT-based Ridgelet Transform

(a) raw measured surface (b) FRIT (c) DRT

(d) DCRT (e) DCRT with TV (f) DT CWT with TV

Figure 6.5.: Extraction of scratches from a honed surface of automotive engine

cylinder.

procedure of thresholding.

In our second test, we apply the proposed method to extract straight scratches

in the bands of roughness and waviness, in order to study the functional perfor-

mance of the 3D surface topography of systems according to different applications.

The extracted information could be fed back to monitor and manufacturing pro-

cesses, or to study actual contact stress, loaded area, asperity volume and lubri-

cation regimes occurring during the initial stages of wear of surfaces in service.

Figure 6.5 shows a typical engineering surface: a honed surface from an au-

tomotive engine cylinder. This kind of surface includes the form, waviness and

roughness components that almost submerge the main features of the deep val-

leys/scratches. Usually, the most important features that effect the performance

of the cylinder are scratches whose distribution and amplitude will considerably

influence the flow of gas or air in a pressure balance of an engine.

Figure 6.5 (a) is the raw measured surface including the form, waviness and

roughness components. Figure 6.5 (b) is the extracted surface using FRIT followed

by removing form error. It is far way from satisfaction because of the strongly

texture-like artifacts. Figure 6.5 (c) is the extracted surface using the DRT. As

we supposed, the DWT suffers from shift aliasing, which leads to the line-like

artifacts in the extracted surface by DRT. Figure 6.5 (d) is the extracted surface

using DCRT. The edge-preserving scratches are nicely restored. But the pseudo-

Gibbs artifacts resulting from the aberrant ridgelet coefficients are still visible.
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(a) (b)

Figure 6.6.: The center profiles taken across (a) the DCRT extracted surface

(shown in Figure 6.5 (d)) and (b) the DCRT with TV extracted surface

(shown in Figure 6.5 (e)), respectively.

Figure 6.5 (e) is the extracted surface using the DCRT with TV where tℓ = 0.001
(ℓ = 1, . . . , 100). The non-smooth artifacts are reduced remarkably. This is due

to the fact that DCRT with TV allows the reconstruction of some small ridgelet

coefficients, which are canceled by thresholding. Furthermore, the elimination of

pseudo-Gibbs artifacts can be seen more clearly from their center profiles shown in

Figure 6.6, in which Figure 6.6 (a) and (b) are taken across the extracted surfaces

using DCRT and DCRT with TV, as shown in Figure 6.5 (d) and (e), respectively.

The experiments show that the method is more efficient in removing the pseudo-

Gibbs oscillations when DT CWT and TV are joined. As to the method when one

uses TV minimization only, i.e., combining TV with DRT instead of DCRT, one

needs much more iterations than when using DCRT with TV, in order to eliminate

the strong line-like artifacts caused by shift variance of DWT. In such a case, the

intrinsic scratches will be smoothed over to some extent.

Figure 6.5 (f) shows the extracted surface using the TV-based DT CWT method

with 500 iterations proposed in [93]. The method has a good performance but

in terms of the extraction of scratches, setting a high threshold to kick out the

point-like features causes the intrinsic features to be destroyed and some shallow

scratches to be missed. This is because wavelets lack of line sensitivity.

In our last test, we examine the decay of the ridgelet coefficients. Our pro-

posed method is an overcomplete system. Although it shows good performance for

denoising and feature extraction, the main disappointment is the relatively slow

decay of the coefficients in ridgelet domain. Figure 6.7 gives two examples to show

the decreasing rearrangement of the ridgelet transform coefficients, in compari-

son to the orthogonal FRIT. The upper line shows the rearrangement of the Object

used in the second test. The Object can not be represented as a summation of

a few global linear singularities, thus it is not in the optimal class of the ridgelet

transform [34]. The lower line shows those of a typically optimal class: HalfDome,

i.e., the mutilated Gaussian g(x1, x2) = 1{x2>0} e−x2
1−x2

2. The delay of coefficients of
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VI. NFFT-based Ridgelet Transform

(a) (b)

(c) (d)

Figure 6.7.: Decreasing rearrangement of ridgelet coefficients of Object (upper) and

HalfDome (lower). (a) and (c): real line denotes DRT coefficients and

dot-dashed line denotes DCRT coefficients; (b) and (d): FRIT coeffi-

cients. Vertical coordinate denotes the absolute value of coefficients,

Horizontal coordinate denotes the ratio of rearranged coefficients to

all coefficients. Note the difference of the horizontal coordinate in (d).
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6. Numerical results

Figure 6.8.: Histogram of the coarsest subband dθ,j0,k of HalfDome. The dot-dashed

line denotes the sketch of normal distribution.

the proposed ridgelet transform is much slower than that of FRIT, especially for

the optimal class.

However, leaving out the captious criticism, the proposed ridgelet transform is

very effective to sparsely represent line singularities. Figure 6.8 shows the his-

togram of the coarsest subband dθ,j0,k of HalfDome. The distribution is character-

ized by a very sharp peak (at zero) with an extended tail. The highly non-Gaussian

distribution implies that the transform is very spare. Other experiments of real

surfaces with line scratches display similar distributions. It is rare to meet nat-

ural images with global linear singularities, but for engineering surfaces, many

kinds of those belong to the optimal class of ridgelet transform. So, application of

ridgelets to this field is of practical interest.

We remark, that using the Dirichlet kernel instead of the Fejér kernel in (6.5)

yields to slightly worse results.
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VII. Robust local approximation of
scattered data

A popular approach to scattered data approximation is the moving least squares

method (MLS) which requires in contrast to standard interpolation methods by

radial basis functions only the solution of small linear systems of equations. The

size of these systems is governed by the degree of the polynomials which are repro-

duced by the method. The MLS approximation is theoretically well examined, see,

e.g., [46] and the references therein. In particular, the Backus-Gilbert approach

offers another way to look at the polynomial reproduction property which in turn

determines the approximation order of the method.

On the other hand, there exist various local linear methods for smoothing noisy

data in image processing. One example is the Gaussian facet model introduced

by van den Boomgaard and van de Weijer [129] in the linear scale-space con-

text. Interestingly, this method is basically the same as the MLS technique with a

Gaussian weight function. The only difference consists in the fact that in scattered

data approximation we know the (noisy) function only at some special, in general

nonequispaced nodes and no data are given within these nodes, while in denoising

problems in image processing the noisy function is known on the whole grid. This

leads to an ansatz with shifted basis functions in the MLS approach in contrast to

the Gaussian facet model.

In their averaging process, the MLS method and its variants give similar weights

to data within a similar distance from the evaluation point, where neighbors are

heavier weighted even if these neighbors are on very different levels of the func-

tion. Consequently, edges are smoothed. This led to the development of robust

estimation procedures and nonlinear filters that also data-adaptively determine

the influence of each data point on the result. To this end we are looking for tonal

(data) and spatial adaptive methods. Among the rich variety of these methods,

see, e.g., [118] and the references therein, we focus on the robust Gaussian facet

model [129]. Having the relation between the linear approaches in image process-

ing and scattered data approximation in mind, we modify this robust model in

such a way that it can be also applied to scattered data. Moreover, we change the

method slightly towards a generalized bilateral filter approach that does not only

reproduce constants but also polynomials of higher degree.

This is our first attempt to incorporate robust estimators in scattered data ap-

proximation. A couple of theoretical questions is still open. In particular, the con-

vergence behavior of the algorithm and its dependence on the distribution of the

scattered nodes as well as stability properties were not examined up to now. More-

over, it should be possible to further speed up the performance of the algorithm
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VII. Robust local approximation of scattered data

by using the NFFT, which was recently also applied by Fasshauer and Zhang [47]

for scattered data approximation with MLS. The main ideas of this chapter were

previously published in [53].

This chapter is organized as follows. First, we consider the linear methods used

independently in image processing and scattered data approximation, where we

start with the continuous MLS method in Subsection 1.1 and move to the discrete

method in Subsection 1.2. In Subsection 2.1, we use these results for introducing

our robust scattered data approximation method. Its power is demonstrated by

numerical examples in Subsection 2.2.

1. MLS from different points of views

The aim of this section is twofold. Firstly, we want to show the relation between

the well examined MLS method in approximation theory and the Gaussian facet

model recently introduced in the context of linear scale-space theory by van den

Boomgaard and van de Weijer [129]. It is not hard to see that both methods

differ only by an ansatz with shifted basis functions such that applied to spaces of

polynomials they lead to the same result. However, we find it useful to direct the

attention of people from the image processing society to theoretical results from

approximation theory and vice versa, to benefit from new ideas in image processing

for the approximation of scattered data.

Secondly, the MLS results of this section will serve as the basis for our robust

approach in Section 2. In particular, we will use the MLS approximation as initial

input for our iterative algorithm.

1.1. Continuous MLS

Let

V := span{ϕj : j = 1, . . . ,M}
be an M-dimensional space of real-valued functions defined on R

d. Although some

results can be formulated in this general setting, we will restrict ourselves to poly-

nomial spaces. More precisely, let V := Πd
s be the space of d-variate polynomials of

absolute degree ≤ s. Then V has dimension M =
(s+d

s

)
. Our main reason for the

restriction to polynomial spaces is that Πd
s can be also spanned by the translates

of ϕj with respect to an arbitrary fixed x ∈ R
d, i.e.,

V = span{ϕj(· − x) : j = 1, . . . ,M} . (7.1)

Let w be a non-negative weight function with moments
∫

Rd

w(t) dt = 1 and

∫

Rd

tαw(t) dt <∞ for all α ∈ N
d
0, |α| ≤ 2s .

Then

〈p, q〉w :=

∫

Rd

p(t)q(t)w(t) dt
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1. MLS from different points of views

is an inner product on V with norm ‖p‖2
w =

∫
Rd p

2(t)w(t) dt.

Now the continuous MLS problem can be formulated as follows, see, e.g., [11]: for

a given function f ∈ L∞(Rd) and x ∈ R
d find the coefficients cj = cj(x) such that

u(x, t) :=

M∑

j=1

cj(x)ϕj(t) (7.2)

minimizes the functional

J (x) :=

∫

Rd

(
f(t) − u(x, t)

)2
w(t − x) dt . (7.3)

Then

u(x) = u(x,x) =
M∑

j=1

cj(x)ϕj(x) (7.4)

can be taken as an approximation of f(x). Obviously, for arbitrary fixed x ∈ R
d,

the function u(x, ·) is the w(· − x)-orthogonal projection of f onto V .

On the other hand, we obtain by (7.1) that the polynomial ũ(x, ·) of the form

ũ(x, t) :=

M∑

j=1

aj(x)ϕj(t − x) (7.5)

which minimizes (7.3), i.e.,

∫

Rd

(
f(t) − ũ(x, t)

)2
w(t − x) dt =

∫

Rd

(
f(x + t) −

M∑

j=1

aj(x)ϕj(t)
)2
w(t) dt (7.6)

is also the w(·−x)-orthogonal projection of f onto V . Consequently, u(x, t) = ũ(x, t)
and

u(x) = ũ(x,x) =
M∑

j=1

aj(x)ϕj(0) . (7.7)

The approximation (7.7) of f , where the coefficients aj = aj(x) are determined

by the minimization of (7.6) is exactly the approximation method that van den

Boomgaard and van de Weijer have considered [129]. In particular, they have used

monomials ϕj, where ϕ1 ≡ 1, as basis functions in (7.7), so that they have only to

compute u(x) = a1(x). This simplification of MLS by using shifted monomials was

also mentioned by Fasshauer in [45] and examined in detail by Belytschko et al.

in [92].

The minimization problem (7.6) can be solved for any fixed x ∈ R
d by setting

the gradient with respect to a(x) :=
(
aj(x)

)M
j=1

to zero. Using the vector notation

ϕ(t) :=
(
ϕk(t)

)M
k=1

, this leads to

a(x) = G−1
(〈
f(x + ·), ϕk

〉
w

)M

k=1
=
(〈
f(x + ·),

(
G−1ϕ(·)

)
j

〉
w

)M

j=1
, (7.8)
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VII. Robust local approximation of scattered data

where
(
G−1ϕ(·)

)
j

denotes the jth component of the vector and where the Gramian

G is given by

G :=
(
〈ϕj , ϕk〉w

)M
j,k=1

.

In summary, we obtain by (7.7) and (7.8) that

u(x) =
〈
f(x + ·),

M∑

j=1

(
G−1ϕ(·)

)
j
ϕj(0)

〉
w

=

∫

Rd

f(x + t)q(t)w(t) dt =

∫

Rd

f(x + t)ψ(t) dt , (7.9)

where

q(t) :=
M∑

j=1

(
G−1ϕ(t)

)
j
ϕj(0) and ψ(t) := q(t)w(t) . (7.10)

In other words, u is the correlation of f with the function ψ.

Van den Boomgaard and van de Weijer have used the monomials of absolute

degree ≤ s as basis of Πd
s. We can orthogonalize this basis with respect to 〈·, ·〉w

so that the new basis fulfills 〈ϕj , ϕk〉w = ‖ϕj‖2
wδjk (j, k = 1, . . . , M ). Then G =

diag
(
‖ϕj‖2

w

)M
j=1

is a diagonal matrix and the polynomial q in (7.10) can be repre-

sented alternatively as

q(t) =

M∑

j=1

ϕj(0)

‖ϕj‖2
w

ϕj(t) . (7.11)

The function ψ has various properties.

Proposition 1.1. The function ψ in (7.10) fulfills the moment condition
∫

Rd

tαψ(t) dt = δ0α (|α| ≤ s) (7.12)

and has for all p ∈ Πd
s the reproducing property

∫

Rd

p(t + x)ψ(t) dt = p(x) . (7.13)

Proof. Let {ϕj : j = 1, . . . ,M} be w-orthogonal. Then it is easy to check that the

Christoffel-Darboux kernel

K(t,x) =

M∑

j=1

1

‖ϕj‖2
w

ϕj(x)ϕj(t)

is a reproducing kernel in Πd
s with respect to 〈·, ·〉w, i.e.,

∫

Rd

p(t)K(t,x)w(t) dt = p(x) for all p ∈ Πd
s .
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1. MLS from different points of views

In particular, we obtain for the monomials p(t) = tα with |α| ≤ s and x = 0 by

(7.11) that ∫

Rd

tαK(t,0)w(t) dt =

∫

Rd

tαψ(t) dt = δ0α .

By the binomial formula this implies for any fixed x ∈ R
d that

∫

Rd

(t + x)αψ(t) dt = xα .

Consequently, (7.13) holds true.

In the following, we are mainly interested in radial weights w.

Proposition 1.2. Let w(t) = ω
(
‖t‖
)

be a radial weight function. Then the function ψ
in (7.10) is also radial.

Proof. On the one hand, the polynomial p(y) :=
∑s′

k=0 γk y
2k with s′ := ⌊s/2⌋ which

satisfies ∫

Rd

‖t‖2jp
(
‖t‖
)
ω
(
‖t‖
)
dt = δ0j (j = 0, . . . , s′)

is uniquely determined and p
(
‖t‖
)
∈ Πs

d. Since on the other hand the polynomial

q ∈ Πs
d in (7.10) is also uniquely determined by the moment condition (7.12), it

suffices to show that p
(
‖·‖
)

actually fulfills

∫

Rd

tα p
(
‖t‖
)
ω
(
‖t‖
)
dt = δ0α . (|α| ≤ s) (7.14)

Switching to polar coordinates, the left side of (7.14) reads as

∞∫

0

r|α|+d−1 p(r)ω(r) dr

∫

Sd−1

tα dS ,

where dS is the element of the (d − 1)-dimensional measure on the unit sphere

Sd−1 in R
d. If α contains any odd component, then it is easy to check by the or-

thogonality of sin and cos functions, that
∫
Sd−1 tα dS = 0, cf. [56, p. 80]. Otherwise,

we have by definition of p with |α| = 2j that

∞∫

0

r|α|+d−1p(r)ω(r) dr =

∫

Rd

‖t‖2j p
(
‖t‖
)
ω
(
‖t‖
)
dt = δ0α .

Example 1.3. The most popular weight function is the Gaussian

w(t) := π−d/2 e−‖t‖2

.
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VII. Robust local approximation of scattered data

By the separability of the d-variate Gaussian, orthogonal polynomials with respect

to the d-variate Gaussian weight are given by the tensor products of the univariate

Hermite-polynomials

Hn(y) := (−1)n ey2 dn

dyn
e−y2

.

Using their three-term recurrence relation

H0(y) = 1, H1(y) = 2y,

Hn+1(y) = 2yHn(y) − 2nHn−1(y),

we see that H2n+1(0) = 0 and H2n(0) = (−1)n (2n)!
n! . Moreover, it is well known that

〈Hn,Hk〉w = 2n n! δnk, so that
H2n(0)

‖H2n‖2
w

=
(−1)n

4nn!
.

Consequently, we obtain for even s and t := (t1, . . . , td) by (7.11) that

ψ(t) =
∑

|α|≤s,
α even

d∏

j=1

Hαj
(tj)

(−1)βj

4βjβj !
w(t)

(
βj :=

αj

2

)

=
∑

|α|≤s,
α even

d∏

j=1

dαj

dtαj
ω(tj)

(−1)βj

2αjβj!

=
∑

|α|≤s,
α even

dα

dtα
w(t)

(−1)|α|/2

2|α|β1! · · · βd!

=

s/2∑

r=0

(−1)r

22rr!

∑

|α|=2r,
α even

r!

β1! · · · βd!

dα

dtα
w(t)

=

s/2∑

r=0

(−1)r

4rr!
∆rw(t) ,

where ∆w(t) :=
∑d

j=1
∂2

∂t2j
w(t) is the Laplacian of w and ∆rw(t) its rth iterate.

In particular, we have for d = 2 that

s 0 2 4

ψ w(t) w(t) − 1
4∆w(t) w(t) − 1

4∆w(t) + 1
32∆2w(t)

.

These special functions were also computed by van den Boomgaard and van de

Weijer [129]. Fasshauer and Zhang [47] found the corresponding polynomials q in

the context of the so-called approximate approximation. For the relation of q to

generalized Laguerre polynomials see [97] and the references therein. Since the

convolution of a function f with the Laplacian of the Gaussian can be considered
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1. MLS from different points of views

as backward diffusion, the convolution with ψ for s ≥ 2 leads to a better reproduc-

tion of f in particular at edges. This is another way of looking at the improvement

of the approximation by a better polynomial reproduction with increasing s. The

influence of the additional sharpening terms in ψ is illustrated in [129] and in our

examples in Subsection 2.2.

Other weights used in the scattered data literature are the Wendland functions

[134]. In contrast to the Gaussian these functions have a compact support. For

d = 2 and s = 1 the corresponding functions ψ can be found in [45].

Another popular weight function in image processing is the characteristic func-

tion w(x) := χ{x:‖x‖∞≤C}, which leads to the so-called Haralick facet model [79].

Remark 1.4. The computation of our approximating function u of f in (7.9) requires

the discretization of the correlation integral. If we use the rectangular quadrature

rule over a grid of mesh size h and equispaced integration nodes {xk := hk : k ∈ Z
d},

we obtain

u(x) ≈ hd
∑

k∈Zd

f(xk)ψ(xk − x).

If we replace w by its dilated version wσ = 1
σdw( ·

σ ), then ψ with respect to wσ

becomes ψσ = 1
σdψ( ·

σ ) and the discretized continuous MLS approximation of f with

respect to wσ with σ =
√
Dh is

u(x) ≈ u√Dh = D−d/2
∑

k∈Zd

f(xk)ψ

(
xk − x

h
√
D

)
. (7.15)

The right-hand side of (7.15) is known as approximate approximation of f . V.

Maz′ya and G. Schmidt [98] have proved that for f ∈ L∞(Rd) ∩ Cs+1(Rd) and a

function ψ satisfying the moment condition (7.12), the following error estimate

holds true

‖f − u√Dh‖C = O
(
hs+1 + ε(ψ,D)

)
,

where ε(ψ,D) denotes a saturation error which can be controlled by appropriately

choosing the dilation factor σ of the generating function ψ.

Note that [98] contains also error estimates if nonequispaced nodes xk are used in

(7.15).

1.2. Discrete MLS

In scattered data approximation, the function f is in general only known at noneq-

uispaced nodes xk ∈ R
d (k = 1, . . . , N ), where N ≥ M . Instead of using a continu-

ous MLS approach with a discretization of the convolution integral at these nodes,

we prefer a discrete MLS approach. Basically, we have the same setting as in

Subsection 1.1, (7.2)–(7.4), except that we want to minimize

J(x) :=

N∑

k=1

(
f(xk) − u(x,xk)

)2
w(xk − x) (7.16)
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VII. Robust local approximation of scattered data

instead of (7.3). For fixed x ∈ R
d, this is a weighted least squares problem for the

coefficients cj = cj(x) which has the solution

c(x) =
(
ΦW (x)ΦT

)−1
ΦW (x)f , (7.17)

where c(x) :=
(
cj(x)

)M
j=1

, f :=
(
f(xk)

)N
k=1

and

Φ :=
(
ϕj(xk)

)M,N

j,k=1
, W (x) := diag

(
w(xk − x)

)N
k=1

.

Here we have to assume that the points xk ∈ R
d are distributed such that Φ has

full rank, i.e., not all xk lie on the zero set of a polynomial of degree ≤ s. Then, by

(7.4),

u(x) = ϕ(x)T c(x) (7.18)

is taken as approximation of f(x).

Remark 1.5. In the case s = 0, i.e., V = {1} and M = 1, we obtain that Φ = (1, . . . , 1)
and consequently by (7.17) and (7.18) that

u(x) = c1(x) =

N∑
k=1

f(xk)w(xk − x)

N∑
k=1

w(xk − x)

. (7.19)

The approximate value u(x) of f(x) is the weighted average of the values f(xk),
where the weights decrease with an increasing distance of xk from x. This approx-

imation is known as Shepard’s method [117], which originally looked like

u(x) =

N∑

k=1

f(xk)wk(x) with wk(x) :=
‖x − xk‖−µk

∑N
j=1‖x − xj‖−µj

(µk > 0).

The weight functions wk are normed, continuous and positive. With the convention

wk(xj) := δkj they have the interpolating property u(xk) = f(xk). Further, it can be

shown by differentiation of the function u that the approximation has a peak at xk

for 0 < µk < 1, a corner for µk = 1 and a horizontal tangent plane for µk > 1 [61].

We will have a look at this method again in connection with bilateral filters.

Remark 1.6. From the Backus-Gilbert approach [15] it is well-known that, for an

appropriate function g, the function ψg which solves the constrained minimization

problem

1

2

N∑

k=1

ψ2
g(xk,x)

g(xk,x)
−→ min

subject to the polynomial reproducing property

N∑

k=1

p(xk)ψg(xk,x) = p(x) for all p ∈ Πd
s (7.20)
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is given by (
ψg(xk, x)

)N
k=1

= ϕ(x)T
(
ΦD Φ

T
)−1

ΦD ,

where

D := diag
(
g(xk,x)

)N
k=1

.

Usually, g(x,xk) := w(xk − x) is chosen in the literature. Then, by (7.17), we can

rewrite (7.18) in the form

u(x) =

N∑

k=1

f(xk)ψw(xk,x) . (7.21)

This approach is also known as quasi-interpolation of f . If f is a polynomial of

absolute degree ≤ s, then, by the constraint (7.20), it is reproduced exactly, i.e., u
coincides with f .

Note that on the other hand, the discrete MLS problem can be considered with

the shifted ansatz (7.5), where one has to minimize a discrete functional corre-

sponding to (7.6). This leads directly to the form (7.21) of u.

2. Robust local approximation of scattered data

In [129], R. van den Boomgaard and J. van de Weijer suggested a robust Gaussian

facet model for various applications in image processing. Robust estimators clas-

sically dealt with statistical outliers, but can be also used to better reconstruct

edges. In this section, we want to use the robust facet approach in a slightly

more general form for the approximation of (noisy) scattered data. Furthermore,

we propose a novel method which seems to be more related to the idea of bilateral

filters.

2.1. Generalized bilateral filters

In order to make our approximation more sensible with respect to edges we intro-

duce a differentiable function ρ in J which punishes small differences harder but

sees larger differences more gently, i.e., instead of (7.16) we minimize the func-

tional

Jρ(x) :=

N∑

k=1

ρ
((
f(xk) − u(x,xk)

)2)
w(xk − x) .

In (7.16) we have simply used ρ(s2) = s2. In this section, we apply

ρ(s2) :=
√
s2 + ε2 (ε≪ 1) (7.22)

which results (approximately) in a weighted ℓ1-norm of
(
f(xk) − u(x,xk)

)N
k=1

in Jρ,

and

ρ(s2) = 1 − e−s2/(2m2) (7.23)

99



VII. Robust local approximation of scattered data

which gives an approximation of a weighted ℓ0-norm. The function (7.23) was

suggested in [129].

Computing the gradient of Jρ(x) with respect to cℓ(x) (ℓ = 1, . . . , M ) and setting

this gradient to zero, leads to the following nonlinear system of equations

ΦW (x)Bρ(x)ΦT c(x) = ΦW (x)Bρ(x)f , (7.24)

where

Bρ(x) := diag
(
ρ′
(
(f(xk) − u(x,xk))

2
))N

k=1
(7.25)

= diag
(
ρ′
(
(f(xk) −

M∑

ℓ=1

cℓϕℓ(x − xk))
2
))N

k=1
.

Note that for ρ defined by (7.22) or (7.23) the function ρ′(s2) is a monotone decreas-

ing function in s2. In contrast to the diagonal matrix W (x) appearing in (7.17), we

incorporate now the diagonal matrix W (x)Bρ(x) which does not only depend on

the nodes xk, but also on the data f(xk). Thus, we obtain both a node and data

dependent method. We solve (7.24) by a fixed point iteration, i.e., we compute

successively

c(i+1)(x) =
(
ΦW (x)B(i)

ρ (x)ΦT
)−1

ΦW (x)B(i)
ρ (x)f ,

where

B(i)
ρ (x) := diag

(
ρ′
(
(f(xk) −

M∑

ℓ=1

c
(i)
ℓ (x)ϕℓ(xk − x))2

))N

k=1

and set

u(i+1)(x) := ϕ(x)T c(i+1)(x) . (7.26)

As initial vector c(0)(x) we use the values obtained from the discrete MLS in Sub-

section 1.2. The question of convergence of this iterative method is still open.

Remark 2.1. If s = 0, then we obtain as in Remark 1.5, that u(i)(x) = c
(i)
1 (x), in

particular, after one iteration,

u(1)(x) =

N∑
k=1

f(xk)w(xk − x)ρ′
(
(f(xk) − u(0)(x))2

)

N∑
k=1

w(xk − x)ρ′
(
(f(xk) − u(0)(x))2

) . (7.27)

For x := xj (j = 1, . . . , N ) and input u(0)(xj) := f(xj), the approximation (7.27)

is known as bilateral filter [43, 126]. In contrast to Shepard’s method (7.19) do

the weights of the values f(xk) in (7.27) not only decrease with an increasing

distance of xk from x, but also with an increasing distance of f(xk) from f(x) (or

its approximation u(0)(x)). Thus the averaging process is reduced at edges.
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2. Robust local approximation of scattered data

Based on Remark 2.1 and Remark 1.6 we propose the following new approxi-

mation method which can be considered as a generalization of the bilateral filter.

Obviously, the division by
∑N

k=1w(xk − x)ρ′
(
(f(xk) − u(0)(x))2

)
in (7.27) ensures at

each iteration step i that u(i) reproduces constants f ≡ C. By Remark 1.6, the

idea of using bilateral filters for scattered data approximation can be generalized

such that polynomials of arbitrary absolute degree ≤ s are reproduced. We have

to compute

u(i+1)(x) := ϕ(x)T
(
ΦW (x)D(i)

ρ (x)ΦT
)−1

ΦW (x)D(i)
ρ (x)f , (7.28)

where

D(i)
ρ (x) := diag

(
ρ′
(
(f(xk) − u(i)(x))2

))N

k=1
.

In contrast to B
(i)
ρ in (7.25), where we find it difficult to interpret the differences

f(xk) − u(i)(x,xk), our diagonal matrix D
(i)
ρ contains the approximated differences

f(xk) − f(x) ≈ f(xk) − u(i)(x). The function ρ′ may be any appropriate decreasing

function. Moreover, as initial data u(0) we can take any reasonable approximation

of f . Of course, for s = 1, both methods (7.26) and (7.28) coincide.

Remark 2.2. In a very recent work, Mrázek, Weickert and Bruhn [99] deal with a

number of widely-used nonlinear methods for digital image processing. Especially,

they consider iterated bilateral filters and so-called local M-smoothers, which cor-

respond to our robust method (7.28) for x := xj (j = 1, . . . , N ) and s = 0. While

local M-smoothers use the initial image f in (7.28), the iterated bilateral filters use

the evolving image u(i)(x) in step i+ 1. In this case, one has to stop after a certain

number of iterations in order to avoid obtaining a flat image.

2.2. Numerical results

In this section, we present numerical examples with the proposed algorithms in

one and two dimensions. The algorithms were implemented in C. As weight func-

tion w, we have always used a dilated Gaussian function wσ(y) = e−y2/(2σ2) which

we have truncated for |y| > 3σ. For this thesis, we have restricted ourselves to

the nonlinear function ρ(s2) = 1 − e−s2/(2m2) in (7.23). However, we have computed

various examples with the function ρ in (7.22) as well. In 2D, these results look

very similar to those obtained by applying (7.23). The corresponding images can

be found at our web page

http://kiwi.math.uni-mannheim.de/˜mfenn/RMLS.html

The nonlinear methods were always performed with five iterations, since we ob-

served reasonable convergence in all our experiments within ≤ 5 iteration steps.

Figure 7.1 shows a onedimensional example with the ‘ramp’-signal. The first row

contains the original 256 pixel data in (a) and 64 scattered data points (uniformly

distributed random numbers) with some Gaussian noise added in (b) (SNR = 8 dB).

The following rows of Figure 7.1 show the results of the MLS approximation in (c)–

(e), of iteration scheme (7.26) with the diagonal matrix Bρ in (f)–(h), and of our
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(a) 0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

(b) 0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

(c) 0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

(d) 0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

(e) 0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

(f) 0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

(g) 0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

(h) 0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

(i) 0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

(j) 0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

(k) 0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

Figure 7.1.: (a) original signal; (b) scattered noisy signal (1/8 of the original data,

SNR = 8); (c)–(e) MLS approximation; (f)–(h) method (7.26); (i)–(k) our

generalized bilateral filter (7.28).
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2. Robust local approximation of scattered data

generalized bilateral filter (7.28) with the diagonal matrix Dρ in (i)–(k), where the

polynomial reproduction degree increases from s = 0 to s = 2 from left to right. The

parameters σ for the node-dependent weights and the parameter m for the data-

dependent weights were chosen such that the optical impression was the best. In

the MLS approximations, we have taken σ = 3/64, and in the nonlinear schemes

(7.26) and (7.28), the parameters σ = 6/64 and m = 0.2. As initial data for the

iterative algorithms we have always used the results from the MLS approximation

with the same degree of polynomial reproduction. However, it should be noted that

our algorithm (7.28) has shown a quite robust behavior with respect to the choice

of the initial data. Even very rough initial data approximations, e.g., a simple

linear approximation, has led to nearly the same results (i)–(k).

As expected, the MLS approximation smoothes at edges. This effect can be

reduced by using the data dependent iteration schemes. However, the nonlinear

method (7.26) still introduces some artefacts at edges. The same effect can be

observed in 2D.

Since the original signal is piecewise linear, the methods which reproduces

quadratic polynomials (right column) do not bring some further improvements.

Figure 7.2 compares scattered data approximation in 2D. We took the 256 × 256
pixel image ‘trui.png’ in (a), added some Gaussian noise with SNR = 16 dB in

(b). Finally, we chose randomly 1/16 of the data in (c). The images (d)–(f) in the

second row of Figure 7.2 show the results of the MLS approximation for s = 0, 1, 2
from left to right. The parameter σ = 6/256 was chosen such that the images look

best. However, we have also computed the images with respect to that parameter

σ which gives the best SNR. The results are reported at our web page. The third

and fourth row present the results for the nonlinear methods (7.26) and (7.28),

respectively, with an increasing degree of the polynomial reproduction s = 0, 1, 2
from left to right. Here σ = 6/256, too, and the parameter m was chosen such that

we have obtained the best SNR. In general, we had m ∈ [0.18, 0.28]. The SNR of

each image can be found in the caption of Figure 7.2. The quality of the images

improves with an increasing degree of polynomial reproduction. As expected, the

nonlinear methods produce somewhat sharper images. In order to observe this

effect more carefully, the reader may have again a look at details of the images at

our web page. The best result was obtained with our generalized bilateral filter

(7.28) and s = 2. Note that one iteration step takes less than two seconds here.

Figure 7.3 is based on a data set frequently used in numerical examples for

scattered data approximation: we are given 873 scattered data points representing

certain contour lines of a glacier. First, we applied the MLS method with σ = 6/128
and s = 2. The contour plots evaluated at the 128 × 128 grid are presented in

(b). Part (c) of the figure shows the result for our algorithm (7.28) applied with

σ = 8/128, m = 15 and s = 2. The corresponding 3D plot can be seen in (a).

The contour plots (b), (c) reveal the differences of both methods. Although the

MLS approximation (b) is quite good, our nonlinear method (c) better reconstructs

smaller structures. For example, the peaks in the middle right part of the images

are smoothed by the MLS, but retain by our algorithm.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 7.2.: (a) original image; (b) noisy image (SNR = 16); (c) scattered noisy image

(1/16 of the data); (d)–(f) MLS with s = 0 (SNR = 7.62), s = 1 (SNR =
7.73), s = 2 (SNR = 9.79); (g)–(i) method (7.26) with s = 0 (SNR = 8.70),

s = 1 (SNR = 8.58), s = 2 (SNR = 10.48); (j)–(l) our generalized bilateral

filter (7.28) with s = 0 (SNR = 8.82), s = 1 (SNR = 9.41), s = 2 (SNR =
10.62).

104



2. Robust local approximation of scattered data
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Figure 7.3.: Approximation of 873 scattered data points from the ‘glacier’ at the

128 × 128 grid; (a) 3-D plot of (c); (b) original data (dotted) and contour

plot of the MLS approximation with s = 2, (c) our generalized bilateral

filter (7.28) with s = 2.

105





Bibliography

[1] R. P. Agarwal and P. J. Y. Wong. Error Inequalities in Polynomial Interpola-

tion and Their applications, volume 262 of Mathematics and its Applications.

Kluwer Academic Publishers Group, Dordrecht, 1993.

[2] B. Alpert, G. Beylkin, R. Coifman, and V. Rokhlin. Wavelet-like bases for

the fast solution of second-kind integral equations. SIAM J. Sci. Comput.,

14(1):159–184, 1993.

[3] C. R. Anderson. An implementation of the fast multipole method without

multipoles. SIAM J. Sci. Statist. Comput., 13(4):923–947, 1992.

[4] A. Averbuch, R. Coifman, D. Donoho, M. Israeli, and Y. Shkolnisky. Fast

Slant Stack: A notion of Radon Transform for Data in a Cartesian grid which

is Rapidly Computible, Algebraically Exact, Geometrically Faithful and In-

vertible. SIAM J. Sci. Comput., submitted for publication.
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