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Non–technical Summary

This survey summarizes recent estimation approaches using quantile regression for (right-censored)

duration data. We provide a discussion of the advantages and drawbacks of quantile regression

in comparison to popular alternative methods such as the (mixed-)proportional hazard model or

the accelerated failure time model. We argue that quantile regression methods are robust and

flexible in a sense that they can capture a variety of effects at different quantiles of the duration

distribution. This survey discusses a selection of well known theoretical results and adds some new

theoretical insights on the relationship between the proportional hazard rate model, the presence

of unobserved heterogeneity, and the estimation of quantile regression. Our discussion emphasizes

cases when evidence based on quantile regression implies a rejection of the proportional hazard

model. Quantile regression also allow to estimate hazard rates which are often of interest in

duration analysis and the method can be extended to a nonlinear Box-Cox transformation of

the duration variable. Furthermore, the survey points out that quantile regression can not take

account of time–varying covariates and it has not been extended so far to account for unobserved

heterogeneity and competing risks.

We illustrate our theoretical reasoning by an application of the quantile regression to unem-

ployment duration data for young workers in West-Germany. We find that some variables change

the direction of their influence on unemployment duration across the distribution. This implies

that the basic assumptions for a proportional hazard model is violated in our application. These

empirical findings motivate the use of the estimation approaches discussed in this survey. Our

results indicate that the overall unemployment rate shows no impact on the distribution of unem-

ployment durations and that the duration of unemployment for young workers has become shorter

over time.
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Abstract

Quantile regression methods are emerging as a popular technique in econometrics and

biometrics for exploring the distribution of duration data. This paper discusses quantile

regression for duration analysis allowing for a flexible specification of the functional rela-

tionship and of the error distribution. Censored quantile regression address the issue of

right censoring of the response variable which is common in duration analysis. We compare

quantile regression to standard duration models. Quantile regression do not impose a pro-

portional effect of the covariates on the hazard over the duration time. However, the method

can not take account of time–varying covariates and it has not been extended so far to allow

for unobserved heterogeneity and competing risks. We also discuss how hazard rates can

be estimated using quantile regression methods. A small application with German register

data on unemployment duration for younger workers demonstrates the applicability and the

usefulness of quantile regression for empirical duration analysis.

Keywords: censored quantile regression, unemployment duration, unobserved heterogene-

ity, hazard rate

JEL: C13, C14, J64
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1 Introduction

Duration data are commonly used in applied econometrics and biometrics. There is a variety of

readily available estimators for popular models such as the accelerated failure time model and the

proportional hazard model, see e.g. Kiefer (1988) and van den Berg (2001) for surveys. Quantile

regression is recently emerging as an attractive alternative to these popular models (Koenker

and Bilias, 2001; Koenker and Geling, 2001; Portnoy; 2003). By modelling the distribution of the

duration in a flexible semiparametric way, quantile regression do not impose modelling assumptions

that may not be empirically valid, e.g. the proportional hazard assumption. Quantile regression

are more flexible than accelerated failure time models or the Cox proportional hazard model

because they do not restrict the variation of estimated coefficients over the quantiles. Estimating

censored quantile regression allows to take account of right censoring which is present in typical

applications of duration analysis (Powell, 1984; Fitzenberger, 1997). However, quantile regression

involve three major disadvantages. First, the method is by definition restricted to the case of

time–invariant covariates. Second, there is no competing risks framework yet and third, so far

quantile regression does not account for unobserved heterogeneity, which is a major ingredient of

the mixed proportional hazard rate model.

Quantile regression model the changes of quantiles of the conditional distribution of the du-

ration in response to changes of the covariates. In actual applications of duration analysis, re-

searchers are often interested in the effects on the hazard rate after a certain elapsed duration

and how the hazard rate changes with the elapsed duration (duration dependence). Machado

and Portugal (2002) and Guimarães et al. (2004) have introduced a simple simulation method

to obtain the conditional hazard rates implied by the quantile regression estimates. In this pa-

per, we present a slightly modified version of their estimator. The modifications are necessary to

overcome difficulties in the case of censored data and to fix a general smoothing problem. Using

this method, it is straightforward to analyze duration dependence without having to assume that

the pattern estimated for the so-called baseline hazard in proportional hazard rate models applies

uniformly to all observations with different covariates.

Section 2 discusses important aspects of quantile regression methods for duration analysis and

shows how conditional hazard rates can be obtained from estimated quantile regression coeffi-

cients. Section 3 presents an application of censored quantileregression to German unemployment

duration data that demonstrates the usefulness of the applied methods for empirical research.

Section 4 summarizes.
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2 Quantile Regression and Duration Analysis

This section discusses quantile regression as an econometric tool to estimate duration models and

addresses various issues involved. Quantile regression are contrasted with the popular proportional

hazard rate model. The section provides a short survey on the important methodological aspects,

not all of them will be addressed in the subsequent empirical application.

2.1 Quantile Regression and Proportional Hazard Rate Model

Koenker und Bassett (1978) introduced quantile regressions1 as a regression based method to

model the quantiles of the response variable conditional on the covariates. Our focus is on linear

quantile regression for duration data involving the estimation of the accelerated failure time model

at different quantiles θ ∈ (0, 1) for the completed duration Ti of spell i

(1) h(Ti) = x′iβ
θ + εθ

i ,

where the θ-quantile of εθ
i conditional on xi, qθ(ε

θ
i |xi), is zero and h(.) is a strictly monotone

transformation preserving the ordering of the quantiles. The most popular choice is the log–

transformation h(.) = log(.). The transformation can either be chosen a priori (e.g. as being the

log–transformation) or it can be estimated by choosing among a class of transformation functions

(e.g. among the set of possible Box–Cox–transformations, see e.g. Buchinsky, 1995, or Machado

and Mata, 2000, as discussed in section 2.4). Due to the invariance of quantiles under posi-

tive monotone transformations, quantile regression are not restricted to a linear specification of

the conditional quantiles. In fact, quantile regression model the conditional quantile of the re-

sponse variable qθ(h(Ti)|xi) = x′iβ
θ or, alternatively, due to the invariance property of quantiles

qθ(Ti|xi) = h−1(x′iβ
θ). Modelling conditional quantiles is an indirect way to model the condi-

tional distribution function of log(Ti) given xi. The linear specification allows for differences in

the impact of covariates xi across the conditional distribution of the response variable. However,

the specification imposes that the coefficient is the same for a given quantile θ irrespective of the

actual value of qθ(h(Ti)|xi).

We will discuss the asymptotic distribution for linear quantile regression in the next subsection

for the case of censored quantile regression which nests the case without censoring. The asymptotic

distribution in the case with a smooth transformation function h(.) depending on unknown para-

meters to be estimated can be found in Powell (1991), Chamberlain (1994), or Fitzenberger et al.

1See Buchinsky (1998) and Koenker and Hallock (2002) for surveys. The collection of papers in Fitzenberger,

Koenker and Machado (2001) comprises a number of economic applications of quantile regressions, among others,

the paper by Koenker and Bilias (2001) using quantile regression for duration analysis.
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(2004), who treat the special case of Box–Cox transformation. The asymptotic results generalize

in a straight forward manner to other smooth transformation functions.

A possible problem of quantile regression is the possibility that the coefficient estimates can

be quite noisy (even more so for censored quantile regression) and often non-monotonic across

quantiles. To mitigate this problem, it is possible to obtain smoothed estimates through a

minimum–distance approach. One can investigate, whether a parsimonious relation describes

the movement of the coefficients across quantiles by minimizing the following quadratic form

(β̂ − f [δ])′Ψ̂−1(β̂ − f [δ]) with respect to δ, the coefficients of a smooth parametric specification of

the coefficients as a funtion of θ. β̂ is the stacked vector of quantile regression coefficient estimates

β̂θ at different quantiles and Ψ̂ is the estimated covariance matrix of β̂, see next subsection for

the asymptotic distribution. This approach is not pursued in the application below. We are not

aware of any application of this approach in the literature.

The most popular parametric Cox proportional hazard model (PHM), Kiefer (1988), is based

on the concept of the hazard rate conditional upon the covariate vector xi given by

(2) λi(t) =
fi(t)

P (Ti ≥ t)
= exp(x′iβ̃)λ0(t) ,

where fi(t) is the density of Ti at duration t and λ0(t) is the so called baseline hazard rate. The

hazard rate is the continuous time version of an instantaneous transition rate, i.e. it represents

approximately the conditional probability that the spell i ends during the next period of time

after t conditional upon survival up to period t.

There is a one–to–one correspondence between the hazard rate and the survival function,

Si(t) = P (Ti ≥ t), of the duration random variable, Si(t) = exp
(
− ∫ t

0
λi(s)ds

)
. A prominent

example of the parametric2 proportional hazard model is the Weibull model where λ0(t) = ptp−1

with a shape parameter p > 0 and the normalizing constant is included in β̃. The case p = 1 is

the special case of an exponential model with a constant hazard rate differentiating the increasing

(p > 1) and the decreasing (0 < p < 1) case. Within the Weibull family, the proportional hazard

specification can be reformulated as the accelerated failure time model

(3) log(Ti) = x′iβ + εi

where β = −p−1β̃ and the error term εi follows an extreme value distribution, Kiefer (1988,

sections IV and V).

The main thrust of the above result generalizes to any PHM (2). Define the integrated baseline

hazard Λ0(t) =
∫ t

0
λ0(t̃)dt̃, then the following well known generalization of the accelerated failure

2Cf. Kiefer(1988, section III.A) for nonparametric estimation of the baseline hazard λ0(t).
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time model holds

(4) log(Λ0(Ti)) = x′iβ + εi

with εi again following an extreme value distribution and β = −β̃, see Koenker and Bilias (2001)

for a discussion contrasting this result to quantile regression. Thus, the proportional hazard rate

model (2) implies a linear regression model for the a priori unknown transformation h(Ti) =

log(Λ0(Ti)). This regression model involves an error term with an a priori known distribution of

the error term and a constant coefficient vector across quantiles.

From a quantile regression perspective, it is clear that these properties of the PHM are quite

restrictive. Provided the correct transformation is applied, it is possible to investigate whether

these restrictions hold by testing for the constancy of the estimated coefficients across quantiles.

Testing whether the error term follows an extreme value distribution is conceivable though one

has to take account of possible shifts and normalizations implied by the transformation. However,

if a researcher does not apply the correct transformation in (4), e.g. the log transformation in (3)

is used though the baseline hazard is not Weibull, then the implications are weaker. Koenker and

Geling (2001, p. 462) show that the quantile regression coefficients must have the same sign if the

the data is generated by a PHM.

A strong, and quite apparent violation of the proportional hazard assumption occurs, if for

two different covariate vectors xi and xj, the survival functions Si(t) and Sj(t), or equivalently

the predicted conditional quantiles, do cross. Crossing occurs, if for two quantiles θ1 < θ2 and

two values of the covariate vector xi and xj, the ranking of the conditional quantiles changes,

e.g. if qθ1(Ti|xi) < qθ1(Tj|xj) and qθ2(Ti|xi) > qθ2(Tj|xj). Our empirical application below involves

cases with such a finding. This is a valid rejection of the PHM, provided our estimated quantile

regression provides a sufficient goodness–of–fit for the conditional quantiles.

There are three major advantages of PHMs compared to quantile regressions as discussed in the

literature. PHMs can account for unobserved heterogeneity, for time varying covariates, and for

competing risks in a straight forward way (Wooldridge, 2002, chapter 20). The issue of unobserved

heterogeneity will be discussed at some length below. The estimation of competing risks models

with quantile regression has not been addressed in the literature. This involves a possible sample

selection bias, an issue which has only be analyzed under much simpler circumstances for quantile

regression (Buchinsky, 2001). In fact, this is a dynamic selection problem which, also in the case

of a PHM, requires fairly strong identifying assumptions.

It is natural to consider time varying covariates when the focus of the analysis is the hazard

rate as a proxy for the exit rate during a short time period. This is specified in a PHM as

(5) λi(t) = exp(x′i,tβ̃)λ0(t)
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and there are readily available estimators for this case. It is not possible anymore to transform

this model directly into an accelerated failure time model which could be estimated by regression

methods.

Assuming strict exogeneity of the covariates, it is straight forward to estimate proportional

hazard models with time varying coefficients (Wooldridge, 2002, chapter 20). If under strict

exogeneity the complete time path of the covariates is known, it is conceivable – though often not

practical – to condition the quantile regression on the entire time path to mimick the time varying

effect of the covariates. A natural example in the analysis of unemployment durations would be

that eligibility for unemployment benefits is exhausted after a certain time period and this is known

ex ante. In fact, in such a case quantile regression also naturally allow for anticipation effects which

violates specification (5). In many cases, the time path of time–varying covariates is only defined

during the duration of the spell, which is referred to as internal covariates (Wooldridge, 2002, p.

693). Internal covariates typically violate the strict exogeneity assumption and it is difficult to

relax the strict exogeneity assumption when also accounting for unobserved heterogeneity.

The case of time varying coefficients βt can be interpreted as a special case of time–varying

covariates by interacting the covariates with dummy variables for different time periods. However,

if the specification of the baseline hazard function is very flexible then an identification issue can

arise. Time varying coefficients βt are similar in spirit to quantile regressions with changing

coefficients across conditional quantiles. While the former involves coefficients changes according

to the actual elapsed duration, the latter specifies these changes as a function of the quantile. It

depends on the application as to which approach can be better justified.

Summing up the comparison so far, while there are some problems when using the PHM with

both unobserved heterogeneity and time–varying covariates, the PHM can take account of these

issues in a somewhat better way than quantile regression. Presently, there is also a clear advantage

of the PHM regarding the estimation of competing risk models. However, the estimation of a PHM

comes at the cost of the proportional hazard assumption which itself might not be justifiable in

the context of the application of interest.

2.2 Censoring and Censored Quantile Regression

Linear censored quantile regression, introduced by Powell (1984, 1986), allow for semiparametric

estimation of quantile regression for a censored regression model in a robust way. A survey on

the method can be found in Fitzenberger (1997). Since only fairly weak assumptions on the

error terms are required, censored quantile regression (CQR) is robust against misspecification of

the error term. Horowitz and Neumann (1987) were the first to use CQR’s as a semiparametric
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method for an accelerated failure time model of employment duration.

Duration data are often censored. Right censoring occurs when we only observe that a spell

has survived until a certain duration (e.g. when the period of observation ends) but we do not

know exactly when it ends. Left censoring occurs when spells observed in the data did start before

the beginning of the period of observation. Spells who started at the same time and who finished

before the beginning of the period of observation are not observed. Quantile regression can not

be used with left censored data.3 Left censoring is also difficult to handle for PHMs since strong

assumptions have to be invoked to estimate the model. In the following, we only consider the

case of right censoring which both PHM and CQR are well suited for. Thus, we can only analyze

so–called flow samples (Wooldridge, 2002, chapter 20) of spells for which the start of the spells

lies in the time period of observation.4

Let the observed duration be possibly right censored in the flow sample, i.e. the observed

completed duration Ti is given by Ti = min{T ∗
i , yci}, where T ∗

i is the true duration of the spell

and yci is the spell specific threshold value (censoring point) beyond which the spell can not be

observed. For the PHM, this can be incorporated in maximum likelihood estimation analogous

to a censored regression model (Wooldridge, 2002, chapter 20) and it is not necessary to know

the potential censoring points yci for uncensored observations. In contrast, CQR requires the

knowledge of yci irrespective of whether the observation is right censored. CQR provide consistent

estimates of the quantile regression coefficients βθ in the presence of fairly general forms of fixed

censoring.5 The known censoring points can either be deterministic or stochastic and they should

not bunch in a certain way on or around the true quantile regression line, see the discussion in

Powell (1984).

Estimating linear CQR involves minimizing the following distance function

(6)
∑
i=1

ρθ(ln(Ti)−min(x′iβ
θ, yci))

with respect to βθ, where the so–called “check function” ρθ(z) = θ · |z| for z ≥ 0 and ρθ(z) =

(1− θ) · |z| for z < 0 and yci denotes the known observation specific censoring points. A quantile

regression without censoring is nested as the special case with yci = +∞.

3Two–limit censored quantile regression (Fitzenberger, 1997) can be used in the rare situation when all spells

are observed which start before the start of the observation period and, in case they end before the start of the

observation period, the exact length of the spell is not known.
4Analyzing all spells observed at some point of time during the period of observations involves a so–called stock

sample also including left–censored observations.
5Refer to Buchinsky and Hahn (1998) for a semiparametric extension of CQR to the case when the censoring

points are not known for the uncensored observations (random censoring).
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Powell (1984, 1986) showed that the CQR estimator β̂θ is
√

N–consistent and asymptotically

normally distributed, see also Fitzenberger (1997) for a detailed discussion of the asymptotic

distribution. A crucial feature of this result is that the asymptotic distribution depends only

upon those observations where the fitted quantiles are not censored, i.e. I(x′iβ̂
θ<yci)=1.

The actual calculation of the CQR–estimator based on individual data is numerically very

difficult, since the distance function (6) to be minimized is not convex. This is in contrast to

quantile regression without censoring. There are a number of procedures suggested in the litera-

ture to calculate the CQR–estimator (Buchinsky, 1998, Fitzenberger, 1997, and Fitzenberger and

Winker, 2001).6

For heteroscedasticity–consistent inference, researchers often resort to bootstrapping, see e.g.

Buchinsky (1998) and Fitzenberger (1997, 1998), using the Design–Matrix–Bootstrap (often also

denoted as “pairwise bootstrap”). The covariance of the CQR estimates across quantiles can

easily be estimated by basing those estimates on the same resample. Bilias et al. (2000) suggest a

simplified version of the bootstrap for CQR by showing that it suffices asymptotically to estimate

a quantile regression without censoring in the resample based only on those observations for which

the fitted quantile is not censored, i.e. x′iβ̂
θ <yci.

In the empirical application below we show that several estimated coefficients change their sign

across quantiles and therefore they do not support empirically the proportional hazard model.

2.3 Estimating the Hazard Rate based on Quantile Regression

Applications of duration analysis often focus on the impact of covariates on the hazard rate.

Quantile regression estimate the conditional distribution of Ti conditional on covariates and it is

possible to infer the estimated conditional hazard rates from the quantile regression estimates.

A direct approach is to construct a density estimate from the fitted conditional quantiles

q̂θ(Ti|xi) = h−1(x′iβ̂
θ). A simple estimate for the hazard rate as a linear approximation of the

hazard rates between the different θ–quantiles would be

(7) λ̂i(t) =
(θ2 − θ1)(

h−1(x′iβ̂θ2)− h−1(x′iβ̂θ1)
)

(1− 0.5(θ1 + θ2))
,

where λ̂i(t) approximates the hazard rates between the estimated θ1–quantile and θ2–quantile.7

Two points are noteworthy. First, the estimated conditional quantiles are piecewise constant due

6In light of the numerical difficulties, a number of papers have, in fact, suggested to change the estimation

problem to make it convex (e.g. Buchinsky and Hahn, 1998, Chernozhukov and Hong, 2002, and Portnoy, 2003).
7A similar estimator based on the estimate of the sparsity function is described in Machado and Portugal (2002).

It shares the same problems discussed for the estimator presented in (7).
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to the linear programming nature of quantile regression (Koenker and Bassett, 1978, Fitzenberger,

1997). Second, it is not guaranteed that the estimated conditional quantiles are ordered correctly,

i.e. it can occur that q̂θ1(Ti|xi) > q̂θ2(Ti|xi) even though θ1 < θ2. Therefore, θ1 and θ2 have to be

chosen sufficiently far apart to guarantee an increase in the conditional quantiles.

In order to avoid these problems, Machado and Portugal (2002) and Guimarães et al. (2004)

suggest a resampling procedure (henceforth denoted as GMP) to obtain the hazard rates implied

by the estimated quantile regression. The main idea of GMP is to simulate data based on the

estimated quantile regressions for the conditional distribution of Ti given the covariates and to

estimate the density and the distribution function directly from the simulated data.

In detail, GMP works as follows (see Machado and Portugal, 2002, and Guimarães et al., 2004),

possibly only simulating non–extreme quantiles:

1. Generate M independent random draws θm,m = 1, ...,M , from a uniform distribution on

(θl, θu), i.e. extreme quantiles with θ < θl or θ > θu are not considered here. θl and θu are

chosen in light of the type and the degree of censoring in the data. Additional concerns relate

to the fact that quantile regression estimates at extreme quantiles are typically statistically

less reliable, and that duration data might exhibit a mass point at zero or other extreme

values. The benchmark case with the entire distribution is given by θl = 0 and θu = 1.

2. For each θm, estimate the quantile regression model obtaining M vectors βθm (and the

transformation h(.) if part of the estimation approach).

3. For a given value of the covariates x0, the sample of size M with the simulated durations is

obtained as, T ∗
m ≡ q̂θm(Ti|x0) = h−1(x′0β̂

θm) with m = 1, ...,M .

4. Based on the sample {T ∗
m,m = 1, ..., M}, estimate the conditional density f ∗(t|x0) and the

conditional distribution function F ∗(t|x0).

5. We suggest to estimate the hazard rate conditional on x0 in the interval (θl, θu) by8

λ̂0(t) =
(θu − θl)f

∗(t|x0)

1− θl − (θu − θl)F ∗(t|x0)
.

Simulating the full distribution (θl = 0 and θu = 1), one obtains the usual expression:

λ̂0(t) = f ∗(t|x0)/[1− F ∗(t|x0)].

8f∗(t|x0) estimates the conditional density in the quantile range (θl, θu), i.e. f(t|qθl
(T |x0)<T <qθu(T |x0), x0),

and the probability of the conditioning event is θu− θl = P (qθl
(T |x0)<T <qθu(T |x0)|x0). By analogous reasoning,

the expression in the denominator corresponds to the unconditional survival function, see Zhang (2004) for further

details.
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This procedure (step 3) is based on the probability integral transformation theorem from elemen-

tary statistics implying T ∗
m = F−1(θm) is distributed according to the conditional distribution

of Ti given x0 if F (.) is the conditional distribution function and θm is uniformly distributed on

(0, 1). Furthermore, the fact is used that the fitted quantile from the quantile regression provides

a consistent estimate of the population quantile, provided the quantile regression is correctly

specified.

The GMP procedure uses a kernel estimator for the conditional density

f ∗(t|x0) = 1/(M h)
M∑

m=1

K ((t− T ∗
i )/h)

where h is the bandwidth and K(.) the kernel function. Based on this density estimate, the dis-

tribution function estimator is F ∗(t|x0) = 1/M
∑M

m=1K ((t− T ∗
i )/h) with K(u) =

∫ t

a
K(v) dv.

Machado and Portugal (2002) and Guimarães et al. (2004) suggest to start the integration at zero

(a = 0), probably because durations are strictly positive. However, the kernel density estimator

also puts probability mass into the region of negative durations, which can be sizeable with a large

bandwidth, see Silverman (1986, section 2.10). Using the above procedure directly, it seems more

advisable to integrate starting from minus infinity, a = −∞. A better and simple alternative

would be to use a kernel density estimator based on log durations. This is possible when observed

durations are always positive, i.e. there is no mass point at zero. Then, the estimates for density

and distribution function for the duration itself can easily be derived from the density estimates

for log duration by applying an appropriate transformation.9

In our empirical application below we find that this flexible econometric method can reveal

interesting results that would not show up under stronger conditions. Since the estimated hazard

rates even cross, a proportional hazard model is inappropriate in this case.

2.4 Box–Cox Quantile Regression

The linear specification of the quantile regression is less restrictive as it may seem since because of

the rank preservation of the response variable under strictly positively monotone transformation

h(.), as in equation (1), implying qθ(h(Ti)|xi) = h(qθ(Ti|xi)). A fairly flexible extension of linear

quantile regression as a single index model is given by jointly estimating the transformation h(.)

together with the regression coefficients β. Such a model is also suitable for the generalization

of the accelerated failure time model in equation (4). Horowitz (1996) and Chen (2002) suggest

nonparametric estimators for the transformation h(.) given estimates of the unknown coefficients

9Silverman (1986, section 2.10) discusses further alternatives for this problem.
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β. Their estimators poses formidable problems in finite samples, in particular, when the joint

density of (T, x) is low. Not being practical at this point, their estimation strategy is not pursued

any further here.

A popular parametric choice for the transformation of the dependent variable is introduced by

Box and Cox (1964):

h(T ) = Tλ,i =





(T λ
i − 1)/λ if λ 6= 0

log(Ti) if λ = 0,

where λ can take any value in R. Thus, we obtain a linear model for qθ(Tλ,i|x) = x′iβ
θ and the

quantile for Ti can be written as

(8) qθ(Ti|x) = (λx′iβ
θ + 1)1/λ .

The possibility to estimate λ allows for flexibility in estimating the model in (1). Powell (1991),

Chamberlain (1994), Buchinsky (1995), Machado and Mata (2000), and recently Fitzenberger

et al. (2004) provide further details on Box–Cox quantile regression. The estimator is
√

N–

consistent and the asymptotic covariance matrix follows from standard considerations for nonlinear

estimation.

The actual calculation of the Box–Cox quantile regression can be achieved in a simple way

as follows. Chamberlain (1994) and Buchinsky (1995) suggest the following two step procedure

based on the invariance property of quantiles with respect to a strictly positively monotonic

transformation:

1. estimate βθ(λ) conditional on λ by: β̂θ(λ) = argminβ

∑
i ρθ(Tλ,i − x′iβ) ,

2. estimate λ by solving: minλ∈R
∑

i ρθ(Ti − (λx′iβ̂
θ(λ) + 1)1/λ) .

When implementing the two step procedure, Fitzenberger et al. (2004) encountered the fol-

lowing general numerical problem. For every λ, it is not guaranteed that for all observations

i = 1, ..., n the inverse Box-Cox transformation λx′iβ̂θ(λ) + 1 is strictly positive. However, this is

necessary to implement the second step of Buchinsky’s procedure. It is natural to omit the obser-

vations for which this condition is not satisfied. But this raises a number of problems. First, the

set of observations omitted changes when going through an iterative procedure to find the optimal

λ. Second, it is not a priori clear how such an omission of observations affects the asymptotic

distribution of the resulting estimator. Third, should still the full set of observations be used in

the first step?
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The modification of the estimator suggested in Fitzenberger et al. (2004) consists of using only

those observations in the second step for which the second stage of the estimation is always well

defined for all λ in the finite interval [λ, λ] and it is assumed that the true λ lies in this interval.

The limits of the interval λ and λ are fixed ex ante. The set of admissible observations in the

second step is chosen by estimating the first step above for both λ = λ and λ = λ} and taking

only those observations i for which λx′iβ̂
θ(λ) + 1 > 0 for both values of λ. The first step is still

implemented based on all observations which allows asymptotically for a more efficient estimator.

Fitzenberger et al. (2004) motivate the suggested modification by a theoretical result and an

simulation study. Their Proposition 1 implies for the case of a bivariate quantile regression (one

regressor plus an intercept) that if λx′iβ̂θ(λ) + 1 > 0 holds for both λ = λ and λ = λ} then

the inequality also holds for every λ ∈ (λ, λ). Even though this result does not hold for quantile

regression with more than one regressor, violations only occur under extremely rare circumstances.

The simulation results suggest that the modification works very well in general.

Box–Cox quantile regression can also be implemented in the case of right censoring by adding

the censoring points to the minimization problem in the two steps of the procedure described

above. Simulation experience (simulation results are available upon request) indicates that the

suggested modification by Fitzenberger et al. (2004) works well for censored Box-Cox quantile

regressions only up to an upper and lower bound of λ. These bounds seem to depend on the

simulation design. Further research is necessary on this issue.

2.5 Unobserved Heterogeneity

In duration analysis, unobserved heterogeneity in the form of spell specific, time–invariant location

shifts of the hazard rate or the duration distribution play a key role (Wooldridge, 2002, chapter

20.3.4, van den Berg, 2001). The popular mixed proportional hazard model (MPHM) assumes

that the spell specific effect α enters the specification of the hazard rate in a multiplicative fashion

λi(t) = exp(x′iβ̃)λ0(t)exp(α). Under the assumptions of the MPHM, α is a random effect which

is distributed independently from the vector of covariates. It is well known that ignoring the

presence of the random effect α will lead to misleading evidence on the shape of the baseline

hazard λ0(t) inducing spurious duration dependence due to the sorting of spells with respect to

α. Spells with a low value of α tend to survive relatively long and, thus, one might conclude

that the hazard rate declines with elapsed duration when ignoring the influence of α. In general,

ignoring the random effect α also biases the estimated coefficients for the covariates (Lancaster,

1990, p.65), though the impact is typically small. In the accelerated failure time model (equations

3 and 4), the random effect results in another component of the error term which is independent
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of the covariates. Therefore, with known integrated baseline hazard (Λ0(.)), quantile regression

(or even OLS in the absence of censoring) can estimate consistently the coefficient estimates.

Quantile regression estimate the conditional quantile qθ(Ti|xi). Clearly, the increase in the

conditional quantiles qθ(Ti|xi) for given xi with increasing θ corresponds to the shape of the

hazard rate as a function of elapsed duration. Thus, the increase in the conditional quantile is

affected by the presence of unobserved heterogeneity. If the data generating process is an MPHM,

then ∂qθ(Ti|xi)/∂θ differs from the average increase Eα

{
∂qθ̃(α)(Ti|xi, α)/∂θ

}
evaluated at the

same duration level qθ(Ti|xi) corresponding to the quantile position θ̃(α) for each α. This is due

to the well known sorting effects in α (“low α” types tend to survive longer) and, therefore, the

former term ∂qθ(Ti|xi)/∂θ is typically larger than the latter averaged version across α for small

durations and smaller for larger durations. However, for an MPHM, the presence of a random

effect typically causes only a small bias on the point estimates of the estimated quantile regression

coefficients of the covariates because of the following argument.10 Applying the implicit function

to Si(qθ(Ti|Ci)|Ci) = 1− θ, both for Ci = (xi, α) and Ci = xi, results in

(9)
∂qθ(Ti|Ci)

∂xi

= −
{

∂Si(t|Ci)

∂t
|t=qθ(Ti|Ci)

}−1
∂Si(t|Ci)

∂xi

|t=qθ(Ti|Ci) .

Since S(t|xi, α) = exp{−exp(x′iβ̃)exp(α)Λ0(t)} and S(t|xi) = Eα{S(t|xi, α)}, it follows that

(10)
∂qθ(Ti|Ci)

∂xi

=
−β̃Λ0(t)

λ0(t)

for t = qθ(Ti|Ci) and Ci = (xi, α) or Ci = xi . This argument applies in an analogous way

using a smooth monotonic transformation of the response variable. Thus, the estimated quantile

regression coefficients only depend upon the coefficients β̃ and the shape of the baseline hazard.

The quantile regression coefficients conditional upon α are the same for the same elapsed duration

t irrespective of its rank θ, i.e. the estimated quantile regression coefficients for some unconditional

quantile of the elapsed duration reflect the sensitivity of the respective quantile lying at this elapsed

duration conditional upon the random effect. Put differently, some fixed duration t̄ in general

corresponds to two different ranks θ or θ(α), respectively, when conditioning on Ci = (xi, α)

or Ci = xi, i.e. t̄ = qθ(Ti|xi) = qθ(α)(Ti|xi, α). Then, equation (10) implies that the partial

effects for the different corresponding quantile regressions at this duration t̄ are the same, i.e.

∂qθ(Ti|xi)/∂xi =∂qθ(α)(Ti|xi, α)/∂xi . In this sense, a quantile regression on xi provides meaningful

estimates of partial effects, although the data are generated by an MPHM.

Evidence based on quantile regression can also be informative about the validity of the MPHM.

Analogous to the PHM, a finding of crossings of conditional quantiles constitutes a rejection of

10See Zhang (2004) for detailed Monte Carlo evidence.
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the MPHM. If xi
′β̃ <xj

′β̃ for a pair (xi, xj), then the hazard is higher for xj than for xi for all α

and therefore S(t|xi, α)>S(t|xj, α), see line before equation (10). Integrating out the distribution

of α, one obtains the inequality S(t|xi) > S(t|xj) for all t. Thus, qθ(Ti|xi) > qθ(Tj|xj) for all θ

and therefore the MPHM implies that there should not be any crossings when just conditioning

on the observed covariates. Intuitively, the independence between α and xi implies that a change

in covariates changes the hazard rate in the same direction for all α’s. Therefore all quantiles

conditional on (xi, α) move into the opposite direction. The latter implies that the quantile

conditional on only xi must also move into that direction.

Instead of assuming that the random effect shifts the hazard rate by a constant factor as in

the MPHM, a quantile regression with random effects for log durations could be specified as the

following extension of the accelerated failure time model in equation (3)11

(11) log(Ti) = x′iβ
θ + α + εθ

i

where the random effect α enters at all quantiles. The entire distribution of log durations is shifted

horizontally by a constant α, i.e. log(Ti)−α exhibits the same distribution conditional on xi. α is

assumed independent of xi and εθ
i . The latter is defined as εθ

i = log(Ti)−qθ(log(Ti)|xi, α).12 The

regression coefficients βθ now represent the partial effect of xi also conditioning upon the random

effect α. Such a quantile regression model with random effects has so far not been considered in

the literature. It most likely requires strong identifying assumptions when applied to single spell

data. Here, we use the model in (11) purely as point of reference.

How are the estimated quantile regression coefficients affected by the presence of α, when just

conditioning on observed covariates xi? Using S(log(t)|xi) = Eα{S(log(t)|xi, α)} and result (9),

it follows that13

(12)
∂qθ(log(Ti)|xi)

∂xi

=

∫
f(t̄ |xi)|xi, α)

f(t̄ |xi)|xi)
β θ̃(α) dG(α)

for t̄ = qθ(log(Ti)|xi), where f(.) and F (.) are the pdf and the cumulative of the duration distribu-

tion, respectively, G(.) is the distribution of α, and θ̃(α) = F (qθ(log(Ti)|xi)|xi, α). All expressions

are evaluated at the duration t̄ corresponding to the θ-quantile of the duration distribution con-

ditioning only upon xi. Hence, f(qθ(log(Ti)|xi)|xi, α) is the pdf conditional on both xi and α and

f(qθ(log(Ti)|xi)|xi) the pdf just conditional on xi both evaluated at the value of the quantile condi-

tional on xi. For the derivation of (12), note that f(qθ(log(Ti)|xi)|xi) =
∫

f(qθ(log(Ti)|xi)|xi, α) dG(α).

11The following line of arguments applies analogously to the case with a general transformation h(.).
12If εθ

i is independent of (xi, α), then all coefficients, except for the intercept, can be estimated consistently by

a quantile regression on just xi. Also in this case, all slope coefficients are constant across quantiles.
13Only after submitting this paper, we found out that the result (12) is basically a special case of Theorem 2.1

in Hoderlein and Mammen (2005).
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For the value t̄ = qθ(log(Ti)|xi), θ̃(α) is the corresponding quantile position (rank) in the distri-

bution conditioning both upon xi and α. According to equation (12), the quantile regression

coefficients conditioning only on xi estimate in fact a weighted average of the βθ in equation (11)

where the weight is given by the density ratio for the duration qθ(Ti|xi) conditioning on both

xi and α and only on xi, respectively. Since these weights integrate up to unity, the quantile

regression estimate conditioning on xi correspond to a weighted average of the true underlying

coefficients in equation (11).

One can draw a number of interesting conclusions from the above result. First, if βθ does not

change with θ, then the estimated coefficients are valid estimators for the coefficients in equation

(11). Second, if βθ only change monotonically with θ, then the estimated coefficients will move in

the same direction, in fact, understating the changes in βθ. In this case, the random effect results

in an attenuation bias regarding the quantile specific differences. Third, if one finds significant

variation of the coefficients across quantiles, then this implies that the underlying coefficients in

(11) exhibit an even stronger variation across quantiles. If the variation in the estimates follows

a clear, smooth pattern, then it is most likely that the underlying coefficients in (11) exhibit the

same pattern in an even stronger way.

Though being very popular in duration analysis, the assumption that the random effect and

the covariates are independent, is not credible in many circumstances, for the same reasons as in

linear panel data models (Wooldridge, 2002, chapters 10 and 11). However, fixed effects estimation

does not appear feasible with single spell data. Identification is an issue here.

Summing up, though as an estimation method quantile regression with random effects have not

yet been developed, it is clear that quantile regression conditioning just on the observed covariates

yield meaningful results even in the random effects case. Changing coefficients across quantiles

imply that such differences are also present in the underlying model conditional upon the random

effect. Such a finding and the even stronger finding of crossing of predicted quantiles constitute a

rejection of the mixed proportional hazard model, analogous to the case without random effects

as discussed in section 2.1.

3 Unemployment Duration among Young Germans

The foregoing section gave an overview on the use of quantile regression for duration analysis. The

purpose of this section is to apply censored quantile regression (CQR) to unemployment duration

among German Youth in order to illustrate the applicability of the method. Youth unemployment

is a critical issue in the literature. Our CQR results suggest that a simple proportional hazard

rate model with time–invariant covariates is not justified for the data.

14



3.1 Data and Institutions

We use German register data for the analysis which contains spell information of employment

and un-/nonemployment trajectories of about 500, 000 individuals from West Germany. 14 More

specifically, we use a sample of young unemployed workers that we drew from the IAB employment

subsample (IABS) 1975–1997 (regional file).15 IABS data have recently been used intensively for

the analysis of unemployment duration. Plassmann (2002), Fitzenberger and Wilke (2004), and

Biewen and Wilke (2005) investigate how the entitlement length for unemployment benefit affects

the length of unemployment duration. Fahrmeier et al. (2003), Lüdemann et al. (2004), and

Wilke (2005) investigate general determinants for the length of unemployment duration in West-

Germany. Arntz (2005) analyzes the regional mobility of unemployed workers. The latter three

papers use samples of unemployed aged 26–41. To our knowledge, no research of this type exists

that primarily focuses on unemployment duration for young workers who are less than 26 years

old.

The IAB employment subsample is a 1% sample of the socially insured working population. It

has the general drawback that it does not contain periods of self-employment nor of employment

as life-time civil servant (Beamte). The data provides daily information about the starting and

the ending points of socially secured employment as well as unemployment provided that any form

of unemployment compensation from the federal employment office (BA) is received. Receipt of

social benefits or unemployment periods without the receipt of unemployment compensation are

not recorded. Registered unemployment is therefore not directly observable and unemployment

periods need to be constructed from the employment trajectories given the available information

on income transfers, see Fitzenberger and Wilke (2004) for further details. In this paper, we adopt

the ”Nonemployment” proxy for our analysis, which can be considered as an upper bound of the

true unemployment duration (Fitzenberger and Wilke, 2004):

• Nonemployment (NE): all periods of nonemployment after an employment period which

contain at least one period with income transfers by the German federal labor office. The

nonemployment period is considered as censored if the last record involves an unemployment

compensation payment that is not followed by an employment spell.16

14In this analysis an individual is said to be West German if the last employment period before unemployment

was in West Germany.
15For a general description of the data see Bender et al. (1996) and Bender et al. (2000). We complement our

empirical analysis with some descriptive evidence for the year 1999 computed with the IAB employment subsample

1975-2001 - regional file -.
16A nonemployment spell is treated as right censored if it is not fully observed. All spells are censored at the

end of 1997.
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At least a part of each nonemployment period overlaps with unemployment and rules out purely

out-of-the-labor-market periods. By construction it may contain periods of out of the labor market

and it is therefore an upper bound of the true unemployment duration.

All unemployment periods in our sample require a foregoing employment period. This restric-

tion causes a sample selection issue by ignoring all unemployment periods which do not meet this

requirement. Note that the receipt of unemployment compensation and a foregoing employment

spell are directly related. With the underlying data structure it is therefore hard to identify

unemployment periods for young workers before their first job. Hence, we only consider unem-

ployment after employment. The proportion of excluded unemployment periods is unknown. It

is also not clear whether the results of this paper carry over to school leavers and related groups

without any working experience. Note, that this restriction is not too binding since the majority

of young workers start their working career by obtaining a vocational training degree through

an apprenticeship with a firm which is recorded as employment in the data. Thus, our analysis

covers the cases of young workers experiencing unemployment immediately after completion of

the apprenticeship.

Analogous to Fitzenberger and Wilke (2004) and Wilke (2005) who analyze other age groups,

we focus our analysis on four calender years of entry into Nonemployment to capture different

macroeconomic conditions. Our sample consists of 23.705 spells. We include several demographic

variables, work history variables, and regional information. In order to control for aggregate

and regional labor market conditions, we include indicators for the calender year, quarterly GDP

growth, and the monthly unemployment rate at the state level federal employment office districts

(Landesarbeitsämter). In addition, we control for seasonal unemployment by adding a recall

dummy and a winter dummy, both described below.17 The evolution of group specific unemploy-

ment rates are shown in figure 1 (left graph). It is evident that the unemployment rate of young

people in West-Germany decreased relative to the total unemployment rate. Unemployment rates

for young people in 1997 (with the highest unemployment rate ever in Germany) were below the

maximum numbers during the 1980s. The years 1981 and 1990 are similar in terms of the level of

unemployment as well as 1985 and 1995. Figure 1 (right graph) presents nonparametric estimates

of the quantile functions in the four years of interest and in 1999. In contrast to results on unem-

ployment levels, the quantile functions for 1985 and 1990 are almost identical. Surprisingly, 1981

and 1995 are also similar when we ignore the highest quantiles indicating that longer durations

are lower in 1995 compared to 1981.18 Although the unemployment rate in 1999 was higher than

17Estimating a richer specification showed that age and the educational degree do not have explanatory degree for

the length of unemployment periods. For this reason they are mostly not considered in the presented estimations.
18Note that the estimated quantile function of 1995 predicts less than 700 days at quantile 0.8 and is therefore
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Figure 1: Age group specific unemployment rates in West-Germany (Source: IAB Nuremberg)

(left); nonparametric unconditional quantile functions for < 26 years old (right)

in 1995, the respective quantile function show a reversed different pattern. The quantile function

in 1999 is even weakly below the function in 1990 during the economic boom period. Despite

the descriptive nature of these findings, it is apparent that total unemployment is not a good

predictor of unemployment durations for young workers. The following analysis uses therefore

monthly regional unemployment rates which provide more succinct information.

Specifically, we include the following set of covariates for estimation purposes:

• gender of the unemployed.

• marital status of the unemployed.

• married females. This variable absorbs possible effects of out of the labor force periods or

parental leave periods of females. A child indicator is not used because information about

the presence of children is not available for all years.

• married females in the 1990s. This variable accounts for a possible change in the labor force

participation rate of the females in the 1990s.

• we use 5 business sector categories: agriculture, trade/services/traffic, construction, public

sector, others (mainly production). The variables are grouped according to the similarity of

the results in preliminary estimations.

below the censoring of the data at the end of 1997.
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• wage quintile 4,5. This variables indicates whether the unemployed had pre–unemployment

earnings in the highest 40% of the population earnings distribution.

• quarterly GDP growth rate. This variable is the quarterly change in gross GDP measured

in prices of 1995. It is affected by seasonal variation and by the business cycle in general.

• recall dummy indicating a recall to the former employer at the end of the previous unem-

ployment period.

• four categories for regional information: Rhineland-Palatinate/Hesse, Baden-Wuerttemberg,

Bavaria and northern states/Saarland (reference group). These categories are also con-

structed according to similarity in preliminary estimation results.

• monthly unemployment rate at the state level unemployment office districts which mainly

overlap with the areas of the federal states.

• length of tenure before unemployment: less than one year, 1-3 years (reference category),

more than 3 years.

• three calender year indicators: 1981 (reference year), 1985, 1990, 1995.

• indicator for no completed apprenticeship in 1995.

• winter time indicator, which is one if the unemployment spell starts between October and

March.

Information about the educational degree and age variables are mostly not considered because

preliminary estimates did not suggest that these variables have a sizeable effect. A descriptive

summary of the sample is presented in table 1 in the appendix. Only about 8% of the unemploy-

ment spells are right censored, which is quite a moderate degree of censoring in the context of

duration analysis.

3.2 Estimation Results

We estimate a log-linear version of model (1), i.e.

log(Ti) = x′iβ
θ + εθ

i ,

at each decile, θ = 0.1, 0.2, . . . , 0.9. The CQR model is estimated using the BRCENS algorithm

implemented in TSP. Inference on the CQR coefficients is based on 500 bootstrap resamples using
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the method of Bilias et al. (2000). The estimations involve the 22 covariates of table 1 and the

constant. The estimated coefficients are reported in figures 2 and 3. It is evident that many

of them vary significantly over the quantiles. The magnitude or even the sign of the effect of

a covariate then differs between short-term (lower quantiles) and long-term unemployed (upper

quantiles) indicating the need for a flexible estimation method. For example, the coefficient for

the covariate ”married” is not significant for short unemployment duration but its magnitude

increases continuously and it is highly negative at the upper quantiles. The winter time variable

elongates short duration and shortens long duration. However, the calender time effect has to

be considered jointly with the quarterly GDP growth rate, the calender year dummies, and the

monthly unemployment rate. For this reason, it is hard to interpret this result. As outlined in

the previous section, the Cox-proportional hazard model does not allow for a change of sign of the

partial derivative of the conditional quantile function, as observed very clearly for the coefficient

of the winter dummy.

Let us now turn to a more detailed discussion of the estimation results and compare them to the

results of Lüdemann et al. (2004) for middle aged workers using the same econometric model with

different data. Unmarried females exhibit shorter unemployment spells than unmarried males.

Married males have shorter unemployment duration than unmarried males. Married females have

the longest unemployment duration and the difference to the other groups is very strong. This

reflects periods out of the labor force coinciding with parental leave decisions. Unemployment

periods of married females became shorter during the 1990s. These results are broadly in line with

the findings of Lüdemann et al. (2004). A high level of earnings or a recall to the former employer

in the past induce much shorter long term unemployment periods. The regional unemployment

rate is not significant at any quantile of the distribution and underpins the findings of Lüdemann

et al. (2004) that the unemployment rate does not have an explanatory degree for the length

of unemployment periods in Germany. It is observed that unemployment periods in the South

German federal states are shorter and in particular long term unemployment periods are much

shorter in Bavaria than in the north of Germany. This is in line with the findings of Fahrmeir

et al. (2003) and Arntz (2005) who use other samples of unemployed and different estimation

techniques. The results for length of tenure suggests that unemployment duration are longer if

the foregoing employment spell is short (<1 year) or long (>3 years). Turning to the calender

time effect we find that unemployment periods are shorter in 1985 and 1990. Interestingly, they

have almost the same length in 1981 and 1995, with the exception that periods of long term

unemployment are much shorter in 1995.19 This observation coincides with the shape of the

19The highest quantile in 1995 should be read with caution because estimation results may be affected by the

systematic censoring at the end of the data in 1997.
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Figure 2: Estimated quantile regression coefficients with 90% bootstrap confidence bands, part I

20



0 0.2 0.4 0.6 0.8 1
−0.4

−0.35

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0
Rhineland−Palatinate, Hesse

quantile
0 0.2 0.4 0.6 0.8 1

−0.5

−0.45

−0.4

−0.35

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0
Baden−Wuerttemberg

quantile
0 0.2 0.4 0.6 0.8 1

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0
Bavaria

quantile

0 0.2 0.4 0.6 0.8 1
−0.04

−0.03

−0.02

−0.01

0

0.01

0.02
monthly regional unemployment rate

quantile
0 0.2 0.4 0.6 0.8 1

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25
previous employment duration <1 year

quantile

0 0.2 0.4 0.6 0.8 1
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3
previous employment duration >3 years

quantile

0 0.2 0.4 0.6 0.8 1
−0.5

−0.45

−0.4

−0.35

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0
1985

quantile
0 0.2 0.4 0.6 0.8 1

−0.45

−0.4

−0.35

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0
1990

quantile
0 0.2 0.4 0.6 0.8 1

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2
1995

quantile

0 0.2 0.4 0.6 0.8 1
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3
winter

quantile
0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
no vocational training * 1995

quantile

Figure 3: Estimated quantile regression coefficients with 90% bootstrap confidence bands, part II
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Figure 4: Estimated conditional hazard rates evaluated at sample means of the other regressors.

nonparametric quantile functions in figure 1, right. It is maybe related to policy measures against

long-term unemployment of young workers that were possibly conducted during this period.

As shown in section 2.3 one can also estimate hazard functions using the GMP resampling

procedure. Figure 4 presents different hazard rate estimates based on this methodology. For the

reasons provided at the end of section 2.3 we base our hazard rate estimations on nonparametric

density estimates for the log duration. The number of resamples is 500. Since almost 10% of our

observations are right censored, we draw θm from the uniform distribution on (θl, θu) = (0, 0.9).

Both plots in figure 4 show that the estimated hazard rates are non–proportional over the duration

time. The proportional hazard assumption is apparently violated in this application.20

4 Summary

This survey summarizes recent estimation approaches using quantile regression for (right-censored)

duration data. We provide a discussion of the advantages and drawbacks of quantile regression

in comparison to popular alternative methods such as the (mixed-)proportional hazard model or

the accelerated failure time model. We argue that quantile regression methods are robust and

flexible in a sense that they can capture a variety of effects at different quantiles of the duration

distribution. Our theoretical considerations suggest that ignoring random effects is likely to have

a smaller effect on quantile regression coefficients than on estimated hazard rates of proportional

20Note that we have not tested this statistically based on the estimated hazard rates. So far, no formal test

procedure is available in the literature.
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hazard models. Quantile regression do not impose a proportional effect of the covariates on

the hazard. The proportional hazard model is rejected empirically when the estimated quantile

regression coefficients change sign across quantiles and we show that this holds even in the presence

of unobserved heterogeneity. However, in contrast to the proportional hazard model, quantile

regression can not take account of time–varying covariates and it has not been extended so far to

allow for unobserved heterogeneity and competing risks. We also discuss and slightly modify the

simulation approach for the estimation of hazard rates based on quantile regression coefficients,

which has been suggested recently by Machado and Portugal (2002) and Guimarães et al. (2004).

Our empirical application to unemployment duration data for young workers from West Ger-

many demonstrates the usefulness of the discussed methods. Many estimated coefficients vary

over the quantiles of the duration distribution and we observe changes of their sign. Competing

alternative estimation approaches, such as a proportional hazard rate model with time–invariant

covariates, cannot capture all these effects. Using data for workers aged 26–41, Lüdemann et al.

(2004) observe similar violations of the proportional hazard assumption. Wilke (2005) observes

crossings of the survivor functions. We conclude that the proportional hazard rate assumption is

not justified in standard analysis of unemployment duration in Germany based on time–invariant

covariates. Moreover, we present estimated conditional hazard rates based on quantile regression

coefficients. These figures also suggest that the proportional hazard assumption is violated in our

application. Our findings illustrate the usefulness of quantile regression for duration analysis.
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Appendix

Table 1: Descriptive Statistics

Variable Mean Median Std.Dev. Minimum Maximum

Unemployment Duration (days) 411 151 688 1 6119

continuous variables

quarterly gdp growth 1% 2% 0.035 −7% 4%

regional unemployment rate (in %) 7.8 7.4 2.78 2.8 14.2

Dummy Variable = 1 if Mean

Censored yes 8%

Gender female 41%

Marital status married 16%

Education unskilled∗1995 8%

Professional Group

agriculture 3%

trade/food/servives 5%

construction 16%

public sector 3%

wage quintile 4,5 19%

tenure <1 year 37%

>3 years 23%

Recall yes 9%

federal state Rhineland-Palatinate, Hesse 14%

Baden-Wuerttemberg 13%

Bavaria 20%

calender time winter period 52%

1985 33%

1990 19%

1995 18%
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