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Non-Technical Summary 
 
Self-financing tax/subsidy mechanisms can be a powerful policy tool to spur welfare-

enhancing investments in oligopolies. Consider environmental regulation settings where 

firms´ investments in clean technologies are costly. Firms may behave strategically by 

refusing to invest, thus saving investment costs, and hoping to force the regulator to adopt 

looser regulation. 

While the literature proposes self-financing regulatory mechanisms to solve hold-up problems 

in Cournot-duopolies, it is unclear whether these mechanisms work for an arbitrary number of 

firms as well. In a market with two firms the regulator can credibly trigger investments in 

emission reductions. If one firm invests and the other does not, the firm that does not comply 

must pay taxes, which are used in turn to subsidize the complying firm. This potentially 

creates a Prisoner's Dilemma for firms and equilibrium may exist in which all firms invest to 

avoid subsidizing others. 

We analyze two different self-financing tax-subsidy mechanisms (announcing the tax rate 

versus announcing the subsidy rate) in a market with an arbitrary number of firms. The main 

results of the paper are as follows: Tax/subsidy mechanisms are applicable to a market with 

an arbitrary number of firms. Announcing the subsidy rate will solve the hold-up problem if 

the investment costs do not exceed the firm's net profit in the absence of regulation if there are 

at least three firms in the market. The investment incentive is even stronger than in a market 

with only two firms. Announcing the tax rate in a market with an arbitrary number of firms 

will also lead to investment by all firms in the subgame perfect equilibrium if marginal 

damage of emissions is large enough. 
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1 Introduction

Self-financing tax/subsidy mechanisms can be a powerful policy tool to spur welfare-enhancing
investments in oligopolies. Consider environmental regulation settings where firmsb4 invest-
ments in clean technologies are costly. Firms may behave strategically by refusing to invest,
thus saving investment costs, and hoping to force the regulator to adopt looser regulation.
Self-financing tax/subsidy mechanisms treat firms alike whether they invest or not. If, how-
ever one firm invests and the other does not, the firm that does not comply must pay taxes,
which are used in turn to subsidize the complying firm. This potentially creates a Prisoner’s
Dilemma for firms and an equilibrium may exist in which all firms invest to avoid subsidizing
others. The regulator can credibly trigger investments in emission reductions.

Hold-up problems are real-world phenomena. For instance, the standards specified by
the 1970 American Clean Air Act were repeatedly delayed. Most dramatically, faced with
industry claims that the proposed emission standards would shut down factories, Congress
amended the Act in 1977, thus both weakening and postponing the standards. Similarly, in
1988 the government delayed standards for the 1989 model year. Further evidence of the
hold-up problem can be found in Weimann (1995), who illustrates how the ”cartel of silence”
on the part of engineers prevents the government from imposing tighter regulations.

Another recent example illustrates credibility problems. In 1998, Congress included a
provision in the highway bill that delayed for six to nine years the first steps towards bringing
states into compliance with the Clean Air Act’s long-standing goal of ”reasonable progress”
towards eliminating man-made haze in specially protected areas. Until Congress intervened,
the Environmental Protection Agency had planned to ask states to file preliminary plans by
1999 showing how they would eventually raise visibility standards gradually over the next
few decades by complying with the new rules that had been proposed two years before.1

While the literature proposes self-financing regulatory mechanisms to solve hold-up prob-
lems with two firms, it is unclear whether these mechanisms work for an arbitrary number
of firms as well.

The paper is organized as follows: Section 2 gives an overview of the related literature
and section 3 develops the basic model. Section 4 describes the tax/subsidy mechanism,
while section 5 analyses different regulations. Section 6 concludes.

2 Relation to the Literature

Our paper relates to different strands of the literature.
Gersbach (2002) has suggested self-financing tax/subsidy mechanisms as a solution for

hold-up problems by announcing subsidies when firms compete in a Cournot-Duopoly.
Additionally, our paper is related to the literature about the original hold-up problem,

where a firm facing a single buyer may find investment unprofitable if, after making the

1See New York Times, May 27, 1998
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investment, the buyer offers to pay only marginal costs. This has been discussed in Klein,
Crawford and Alchian (1978), Joskow (1987), Williamson (1983), and in the incomplete-
contract literature (see the survey by Hart (1995)).

The idea that threats or promises by the government may not be credible has been
discussed in the literature on trade protection (Staiger and Tabellini (1987), Matsuyama
(1990), Tornell (1991)), regulation of utilities (Salant and Woroch (1992)), Gilbert and
Newbery (1994), Urbiztondo (1994)) and privatization (Levy and Spiller (1997)). The hold-
up problem is only solvable if there are means which make governmental regulation credible.
In our paper we design a credible self-financing tax/subsidy scheme to spur investments by
firms.

Our analysis also relates to mechanism design that uses the tools of multi-stage games
and subgame perfect equilibria (see Varian (1994) or Moore (1992) for a review of the liter-
ature). From this perspective, our paper is an example of subgame perfect implementation
of environmental regulation.

Finally, our paper draws on the work about the incentives to adopt clean technologies
in the design of environmental policy instruments. Milliman and Prince (1989) and Jung,
Krutilla and Boyd (1996) examine firms’ incentives to invest in new technology and provide
a ranking of different policy instruments (see also Laffont and Tirole (1996), Requate (1995)
and Requate and Unold (2003)). In our context, we examine incentives to invest in clean
technologies when a firm can influence the tightness of regulation by its investment decision.

3 The Model

We consider an industry with n ≥ 3 firms, producing a homogenous good. The investment
decisions of firms are denoted by Ii, i = 1, ..., n with

Ii =

{
K if firm i invests
0 if firm i does not invest

. (1)

Similarly,

ai =

{
a if firm i has not invested
0 if firm i has invested

(2)

denote emissions per unit of output depending on the investment decisions of firms. Firms
can reduce the emissions per unit of output from a > 0 to zero by investing a fixed amount
of K in clean technologies.

E =
n∑

i=1

aiqi (3)

is the resulting total amount of emissions, where qi denotes the output of firm i.

Q =
n∑

i=1

qi (4)
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is the industry’s output. Social welfare depends on consumer surplus S(Q), on producer
surplus net of investment costs P (Q), on investment outlays I1 + I2 and on the social costs
of emissions D(E). D(E) is the social damage in terms of willingness to pay. Therefore,
social welfare, denoted by W , is given by

W = S(Q) + P (Q)− I1 − I2 −D(E). (5)

We assume that the firms stand in Cournot competition and choose their production
quantities qi, i = 1, ..., n. The inverse demand function is given by

p(Q) = 1− bQ, (6)

where b is a positive constant. Marginal costs are assumed to be zero and independent of
the installation of the abatement technology.

A number of comments are necessary here. First, our central assumption is that firms
cannot be punished directly for not investing. It is impossible for the government to force
firms to invest by penalizing non-investing firms financially or by closing them down. As
discussed at length in the literature on incomplete contracts (see Hart (1995) for a survey),
even when investments are observable, they are not verifiable in courts, and hence penalties
directly dependent on investment behavior are not feasible. This is the case, for example,
when investment in clean technologies is a by-product of other investments or when invest-
ment requires certain types of human capital for implementation. In the latter case firms
can always claim that they are not able to generate the benefits from investment. A clear
example of non-verifiable investments are R&D efforts. Our model is applicable to R&D
where the success probability is high and, for convenience, is assumed in our case to be one.
Second, we assume that the regulator does not pursue revenue objectives, in order to focus
on solving hold-up problems. In turn, our self-financing constraint ensures that no funds
from the government budget become involved. The tax/subsidy mechanism below could be
adapted to include revenue objectives by considering the shadow costs of taxation in the
economy. The scope for solving hold-up problems would, however, decrease.

4 The Tax/Subsidy Mechanism

We consider the following four-stage regulatory tax/subsidy mechanism:

• Stage 1: The government commits to use the following self-financing tax/subsidy
scheme:

(i) All firms pollute Emissions tax t0

(ii) m firms are clean Subsidy to the clean firm / firms, financed
(1 ≤ m ≤ n− 1) by the taxation of the polluting firm / firms.

(tax/subsidy rule)

(iii) No firm pollutes No taxes or subsidies

3



If all firms pollute, the regulator passes on the gains from taxation as a lump-sum
transfer to the consumers. If m (1 ≤ m ≤ n− 1) firms are clean, the tax/subsidy rule
is used. The regulator has two choices. He can set sm, which denotes the subsidy per
unit of product sold for the clean firms, or he can set tm, which denotes the emissions
tax per unit of output for the polluting firms. sm or tm are used if exactly m firms
have invested. The regulation of the two possible scenarios is as follows:

– The regulator sets the subsidy rate sm: He will adjust the taxation of the polluting
firms such that the the self-financing condition is fulfilled. Since there is always an
unique equilibrium in the product market, the regulator knows exactly whether
the self-financing condition will be fulfilled. The regulator may not set the subsidy
rate to such a high value value that the polluting firms could not pay the required
taxes.

– The regulator sets the tax rate tm: The clean firms receive the gains from taxation
as a lump-sum transfer.2

• Stage 2: Firms decide whether or not to invest in emissions reduction.

• Stage 3: The government uses the tax/subsidy scheme and sets t0 and sm or tm.

• Stage 4: Firms compete and produce.3

To simplify the exposition, we assume that a firm will choose the largest production
quantity if different production quantities maximize the profit of the firm. Because the
firms are identical, we consider only equilibria where the firms choose the same production
quantities, depending on their investment decisions.

To ensure that the self-financing condition is fulfilled for every possible combination
of production quantities and the subsidy rate if the regulator sets sm, we supplement our
tax/subsidy mechanism at stage 1. If the regulator sets a too high subsidy rate sm (by acci-
dent) and/or one or more clean firms set a too high production quantity (by accident) and/or
one or more polluting firms set a too low production quantity such that the self-financing
condition cannot be fulfilled, then taxation occurs to the maximal level and subsidies are
adjusted accordingly as well.

This rule controls for strategic considerations of players and for mistakes. The polluting
firms have no incentive to deviate from their profit-maximizing production quantity, given
the regulator implements sm and the equilibrium reactions of the other firms, if net profit of
the polluting firms is nonnegative since deviating yields a net profit of zero.

2In this case, the self-financing condition is always fulfilled because the lump-sum subsidy is zero if there
are no revenues from taxation.

3Each firm is allowed to exit.
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There are n − 1 possible subsidy rates s1, ..., sn−1 and n − 1 possible tax rates t1, ..., tn.
The subsidy rate sm or the tax rate tm is used if exactly m firms have invested. Note that,
given the subsidy rate and the production quantity of the clean firms, the total tax burden
of the polluting firms is of a lump-sum nature if the subsidy rate is announced.

5 Different Regulations

5.1 No Regulation

Without regulatory intervention, firms choose the following production quantities qc
i and

make the following gross profits πc
i (product-market profits) in the unique Nash-equilibrium:

qc
i =

1

(n + 1)b
, i = 1, ..., n, (7)

πc
i =

1

(n + 1)2b
, i = 1, ..., n (8)

The investment outlays K are assumed to be lower than πc
1, such that investment by

all firms is possible. It would be impossible to achieve investment by all firms at higher
investment costs without violating the budget-constraint.

5.2 Standard Emission Taxation

Let us assume that the regulator imposes emissions taxes on the output. The tax rate is
of the welfare-maximizing kind and depends on the number of firms polluting. The tax
revenues are distributed lump-sum to the consumers. Since investing firms are clean and
non-investing firms pollute, we treat ”investing” and ”clean” as well as ”non-investing” and
”polluting” as synonyms from now on.

Let us temporarily suppose that no firm has invested. The optimal tax rate is denoted by
t0 and can be zero or positive. The tax revenues are distributed to consumers as a lump-sum
transfer. The gross profit of firm i (i ∈ {1, ..., n}) is denoted by π0

i and given by

π0
i =

(
(1− bQ)− t0

)
qi. (9)

The firms choose the following quantities, denoted by q0
i , in the unique equilibrium

q0
i =

1− t0

3b
, (10)

whereby t0 ∈ [0, 1]. q0
i is zero for t0 = 1. The profits are given by

π0
i =

(1− t0)
2

9b
. (11)
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The regulator has to choose t0 ∈ [0, 1] to maximize social welfare which is given by

W =
b

2

(
nq0

1

)2
+ nt0q0

1 + nπ0
1 −D

(
naq0

1

)
. (12)

5.3 The Tax/Subsidy Mechanism with the Announcement of the
Subsidy Rate

In this subsection we assume that the standard emission taxation does not yield the invest-
ment by all firms but that investment by all firms is desired from a welfare point of view,
even if the non-investing firms are taxed optimally. Now we are in a situation where invest-
ment by all firms is socially desirable but not all firms will invest if the regulator uses the
standard emission taxation, although the firms are able to finance the investment outlays by
their own profits. This situation is denoted by ”hold-up problem”.

To assure that our calculated subsidy rates are always credible we make the following
assumption: Given m ∈ [1, n − 1] firms have invested; D is of such a functional form that
W is an increasing function of sm if E is an increasing function sm as well.

The intuition is the following. The increase in sm yields a decrease of E and −∂D(E)
∂E

is
assumed to be ”large enough”, wherefore a possible decrease of P +S is at least compensated.
Our assumption is automatically fulfilled if S + P is increasing in sm, which holds in many
cases. In such cases the assumption above is always fulfilled.

In the following we consider the equilibrium-situation. An equilibrium is completely char-
acterized by the tax rate t0, the subsidy rates s1, ..., sn−1, the investment decisions I1, ..., In

and the production quantities q1, ..., qn. The particular tax rate t is determined by the
self-financing condition.

If all firms invest, then the regulator will introduce no regulation. In this case the firms
will choose the production quantities qc

i and make the net profits πi = πc
i −K.

If no firm invests, then the regulator will use the standard emission taxation. In this
case the firms will choose the production quantities q0

i an make the net profits πi = π0
i .

No we consider the situation where (without the loss of generality) the first m firms
invest (1 ≤ m ≤ n − 1). The production quantity which causes no emissions is denoted by
QI =

∑m
i=1 qi. QNI =

∑n
i=m+1 qi denotes the production quantity which causes emissions.

The tax rate t is determined by the self-financing condition:

t = sm
QI

QNI

(13)

The first firmb4s profit (and the profit of every other firm investing) is

π1 = (1− bQ + sm)q1 −K = (1− b(q1 + Q−1) + sm)q1 −K. (14)

From the first order condition of the first firmb4s profit maximization problem follows

q1 =
1− bqn(n−m) + sm

b(1 + m)
. (15)
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The second order condition of a maximum is fulfilled. The n-th firm (and every other
non-investing firm) earns the profit

πn =

(
1− bQ− sm

QI

QNI

)
qn =

(
1− b(qn + Q−n)− sm

QI

n−m−1
n−m

QNI + qn

)
qn, (16)

with Q−n = Q−qn. The following first order condition of the firm n arises (again, the second
order condition of a maximum is fulfilled.):

0 = 1− b (Q−n + 2qn)− (m−n)(1+m−n)QIQNIsm

(QNI+(m−n)(qn+QNI))2

⇐⇒ 0 = 1− b(mq1 + (n−m + 1)qn)− (m−n)(1+m−n)mq1(n−m)qnsm

(qn((n−m)+(m−n)(1+(n−m)))2

(17)

(15) inserted in (17) yields

QNI =

√
4m(1 + m− n)(1 + n)sm(1 + sm) + (n−m(1 + sm))2 + n−m(1 + sm)

2b(1 + n)
, (18)

since QNI = (n − m)qm. Therefore the production quantity which causes no emissions
amounts to

QI = m
b(1+m)

(
1 + sm −

√
4m(1+m−n)(1+n)sm(1+sm)+(n−m(1+sm))2+n−m(1+sm)

2(1+n)

)
. (19)

We choose sm such that the n-th firm makes a profit of zero in the equilibrium since it has
not invested:4

πn =

(
1− b(QI + QNI)− sm

QI

QNI

)
QNI

n−m
= 0 (20)

We find the following subsidy rate, denoted by s∗m, as the solution of the problem:

s∗m =
1

2

(
2 + m

√
m
√

4 + m
− 1

)
. (21)

The subsidy rate s∗m only depends on the number of firms investing m and not on the number
of firms in the market, n. The subsidy rate is a decreasing function of m:

∂s∗m
∂m

= − 2

(m(4 + m))
3
2

< 0 (22)

No we are in a position to calculate the net profit of a firm investing (for example the first
firmb4s profit), denoted by π1(m, n). It depends on m and n:

π1(m, n) = (1− b(QI + QNI) + sm)QI

m
−K

=
{(2+m)(2+m+

√
m
√

4+m+2n)−
√

2
√

m
√

4+m

√
(2+m)

√
m

4+m
(m−2n)+

8+m(10+m[4+m]−2mn+2n2)
4+m

}2

16bm(1+m)2(4+m)(1+n)2
−K

(23)

4This maximizes W by assumption.

7



Note that it is of no advantage for a non-investing firm to choose a production quantity
which lies below QNI

n−m
. By assumption, this firm will be taxed such that it makes a profit

of zero. This firm doesn’t benefit from that kind of behavior and therefore a non-investing
firm produces the quantity QNI

n−m
.

The following proposition contains our main results:

Proposition 1 There are n− 1 subsidy rates s∗1, ..., s
∗
n−1 such that (t0, s∗1, ..., s

∗
n−1, I1 = ... =

In = K, q1 = ... = qn = 1
(n+1)b

) is the unique subgame perfect equilibrium. All firms invest
and no regulation is introduced.

The proof of proposition 1 is given in the appendix. The intuition is the following: The
regulator maximizes social welfare by choosing the particular subsidy rate. Besides, it is a
strictly dominant strategy for the firms, to invest.

In the analysis with two firms, one supplementary assumption is needed to ensure that
all firms invest in the subgame perfect equilibrium. This assumption is K < 1, 8πc

1 − π0
1.

In a market with more than two firms this assumption is not needed since the investment
incentives are stronger if there are more firms in the market, given all other firms have not
invested.

5.4 Tax/Subsidy Mechanism with the Announcement of the Tax
Rate

In this subsection we do not assume that the standard emission taxation does not yield
the investment of all firms in the unique subgame perfect equilibrium. The reason is the
following: As Breitscheidel and Gersbach (2002) worked out, the latter assumption implies
that D is such that the marginal damage of emissions is below a certain value, leading to the
consequence that the regulator has to announce a tax rate that does not lead to zero profit
for the non-investing firms in the subgame perfect equilibrium. Because of that it is not
certain that all firms will invest in the equilibrium. In this subsection we analyze a situation
where the marginal damage of emissions has no upper bound while not assuming that the
standard emission taxation does not yield investment by all firms. Note: In this subsection
we leave the focus of the hold-up problem from subsection 5.3.

We assume that D is of such a functional form that W is increasing in tm (until the
profit of a non-investing firm, which is decreasing in tm, becomes zero). The intuition here
is the following. An increase of tm yields a decrease of E, and D(E) is assumed to be ”large
enough”, such that a possible decrease of P (Q) + S(Q) is at least compensated.

Now we consider equilibrium situations. An equilibrium is completely characterized by
the tax rate t0, the tax rates t1, ..., tn−1, the investment decisions I1, ..., In and the produc-
tion quantities q1, ..., qn. The particular subsidy rate s is determined by the self-financing
condition.
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As in the case with the announcement of the subsidy rate, the firms make the profit
πi = πc

i − K (πi = π0
i ) and produce the quantities qc

i (qi = q0
i ) if all firms invest (no firm

invests).
Suppose without the loss of generality that the first m (1 ≤ m ≤ n − 1) firms have

invested. Again we use the notation QI =
∑m

i=1 qi and QNI =
∑n

i=m+1 qi. As mentioned
above, the subsidy rate s is determined by the self-financing condition:

s = tm
QNI

QI

(24)

The first firmb4s profit (and the profit of every other firm investing) amounts to

π1 =

(
1− bQ + tm

QNI

QI

)
q1 −K. (25)

The first order condition of profit maximization is

∂π1

∂q1

= 1− b(q1 + Q) +
QNI(QI − q1)tm

Q2
I

= 0. (26)

The second order condition is fulfilled and the profit of the n-th firm (and every other
non-investing firm) amounts to

πn = (1− bQ− tm)qn. (27)

The first and second order conditions of profit maximization are

∂πn

∂qn

= 1− b(qn + Q)− tm = 0, (28)

∂2πn

∂(qn)2
= −2b < 0 (29)

From equations (26) and (28) (and mq1 = QI , (n − m)qn = QNI) follow the production
quantities depending on the tax rate:

q1 =
m+tm(n−m)+

√
4(m−1)(m−n)(1+n)(tm−1)tm+(m(tm−1)−ntm)2

2bm(1+n)
, (30)

qn =
−2(n+1)+tm(2−m+3n)+m+

√
4(m−1)(m−n)(1+n)(tm−1)tm+(m(tm−1)−ntm)2

2b(m−n−1)(1+n)
(31)

We choose the tax rate such that the n-th firmb4s profit becomes zero.5 This tax rate is
denoted by t∗m and given by

t∗m =
1

1 + m
. (32)

5This maximizes W in the given framework.
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As in the case of the announcement of the subsidy rate, the tax rate depends only on m and
not on n. The production quantities and the profit of an investing firm are

q1 =
1

b(1 + m)
, qn = 0, π1 =

1

b(1 + m)2
−K. (33)

The subsidy rate is zero since qn = 0. In the appendix we show:

Proposition 2 There are n− 1 tax rates t∗m = 1
1+m

such that (t0, t∗1, ..., t
∗
n−1, I1 = ... = In =

K, q1 = ... = qn = 1
(n+1)b

) is the unique subgame perfect equilibrium. All firms invest and no
taxes or subsidies are introduced.

6 Conclusions

Our main results are the following: The tax/subsidy mechanism is applicable to a market
with an arbitrary number of firms.

Announcing the subsidy rate will solve the hold-up problem if the investment costs do
not exceed the firmb4s net profit in the absence of regulation if there are at least three firms
in the market. The investment incentive is in a certain sense stronger than in a market with
only two firms since the investment costs do not have to be smaller than 1, 8πc

1−π0
1 to reach

an investment of all firms in the unique subgame perfect equilibrium.
Announcing the tax rate in a market with an arbitrary number of firms will also lead to

investment by all firms in the subgame perfect equilibrium if marginal damage of emissions
is large enough. There are no fundamental differences in comparison to the two-firm case.

7 Appendix

7.1 Proof of Proposition 1

Stage 4

The firms behave rationally since they maximize profits by choosing their production
quantities as described in subsection 5.3.

Stage 3

1. All firms have invested:

The regulator introduces no regulation; there are no emissions.

2. One firm has invested:

The regulator maximizes social welfare by choosing the tax rate t0.
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3. m firms have invested (1 ≤ m ≤ n− 1):

Suppose without the loss of generality that the first m firms have invested.

First we will calculate an upper bound of the subsidy rate s∗m. Then we will show
that the profit of a non-investing firm and QNI are decreasing functions of sm in the
relevant range (0 ≤ sm ≤ s∗m = 1

2
( 2+m√

m
√

4+m
− 1)) by using this upper bound.

Social welfare increases by assumption if QNI decreases (if the regulator uses the
tax/subsidy mechanism with the announcement of the subsidy rate). Therefore the
regulator increases social welfare by raising the subsidy rate from 0 to s∗m. The regula-
tor is not allowed to implement a higher subsidy rate than s∗m since the self-financing
condition could not be fulfilled else. Thatb4s why the subsidy rate s∗m maximizes social
welfare.

(a) We consider the function m ∗ s∗m. The first order condition of a maximum is

∂ (m ∗ s∗m)

∂m
=

1

2
(
4 + m(6 + m)
√

m(4 + m)
3
2

− 1) = 0.

This results in
m = 2(

√
2− 1).

The second order condition is fulfilled:

∂ (m ∗ s∗m)

∂m
|m=2(

√
2−1)=

2(m− 2)

m
3
2 (4 + m)

5
2

|m=2(
√

2−1)= 1− 3

2
√

2
< 0

The considered function reaches its maximal value at m = 2(
√

2−1). This implies
the following bounds of s∗m:

0 ≤ ms∗m ≤ (ms∗m) |m=2(
√

2−1)= 3− 2
√

2

=⇒ 0 ≤ s∗m ≤ 3− 2
√

2

m

From 3− 2
√

2 < 1
5

follows

0 ≤ s∗m ≤ 1

5m
.

(b) We still have to show that the profit of a non-investing firm is a decreasing function
of the subsidy rate sm ∈ [0, s∗m]. The profit of a non-investing firm is given by

πn = (1− bQ− sm
QI

QNI
) QNI

n−m

= n−m(1+sm)(1+m−n+(4+3m+2(2+m)n)sm)
2b(1+m)(n−m)(1+n)2

+
(1+m+msm)

√
4m(1+m−n)(1+n)sm(1+sm)+(n−m(1+sm))2

2b(1+m)(n−m)(1+n)2
.
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We have

∂πn

∂sm

< 0

⇐⇒ ∂

∂sm

πn2b(1 + m)(n−m)(1 + n)2 < 0

⇐⇒ λ + µ + ν < 0,

where λ, µ and ν are defined as follows:

λ ≡ (−1−m + n− (4 + 3m + 2(2 + m)n)sm − (4 + 3m + 2(2 + m)n)(1 + sm),

µ ≡
√

4m(1 + m− n)(1 + n)sm(1 + sm) + (n−m(1 + sm))2,

ν ≡ (1 + m + msm)(2 + 4sm − n(1 + n(2 + 4sm)) + m(3 + 5sm + n(2 + 4sm)))√
4m(1 + m− n)(1 + n)sm(1 + sm) + (n−m(1 + sm))2

λ has a maximum at sm = 0:

∂λ

∂sm

= −2(4 + 3m + 2(2 + m)n) < 0,

λ |sm=0= −5− 3n− 2m(2 + n)

µ has a maximum at sm = 0 as well since we have 4m(1 + m− n)(1 + n) < 0 and
n > m(1 + s) (because of sm ≤ 1

5m
):

µ |sm=0= n−m

Therefore we have

λ + µ ≤ λ |sm=0 +µ |sm=0= −(1 + m)(5 + 2n) < 0.

The correctness of ∂πn

∂sm
< 0 is proven if ν ≤ 0 holds. ν > 0 implies

m ≥ −2 + n− 4sm + n2(2 + 4sm)

3 + 2n + 5sm + 4nsm︸ ︷︷ ︸
ξ

.

ξ is an decreasing function of sm an has a lower bond at sm = 1
5

(≥ 1
5m

):

∂ξ

∂sm

= − (2 + n)(1 + 2n)

(3 + 5s + n(2 + 4s))2
< 0

ν > 0 implies

m ≥ ξ |sm= 1
5
= n− 14 + 15n

20 + 14n
> n− 2

and therefore
m = n− 1.

That is why ν > 0 can only hold with m = n− 1. We consider the following two
cases:

12



i. m < n− 1: We have
ν ≤ 0

and therefore
λ + µ + ν < 0.

ii. m = n− 1:
ν = n + (n− 1)sm

is an increasing function of sm and has an upper bound at sm = 1
5m

= 1
5(n−1)

.
We have

ν ≤ n +
1

5

and

λ + µ + ν ≤ −n(5 + 2n) + n +
1

5
= −n(4 + 2n) +

1

5
< 0.

For that reason we have

∂πn

∂sm

< 0 ∀1 ≤ m, m + 1 ≤ n. (34)

Note: Inequality (34) has not to be fulfilled for n = 2. But it is no problem that
the inequality holds for n = 2.

(c) We still have to show that ∂QNI

∂sm
< 0 holds. QNI is described by the following

function:

QNI =

√
4m(1 + m− n)(1 + n)sm(1 + sm) + (n−m(1 + sm))2 + n−m(1 + sm)

2b(1 + n)

QNI is a strictly decreasing function of sm:

∂QNI

∂sm

< 0

⇐⇒
∂(−msm +

√
4m(1 + m− n)(1 + n)sm(1 + sm) + (n−m(1 + sm))2)

∂sm

< 0

⇐⇒ m(−1 +
2 + 4sm − n(1 + n(2 + 4sm)) + m(3 + 5sm + n(2 + 4sm))√

4m(1 + m− n)(1 + n)sm(1 + sm) + (n−m(1 + sm))2
) < 0

⇐= 2 + 4sm − n(1 + n(2 + 4sm)) + m(3 + 5sm + n(2 + 4sm))

≡ f(m, n, sm) < 0

We make a case differentiation:
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i. n = m + 1 :
f(m, n = m + 1, sm) = msm − 1,

∂f(m,n = m + 1, sm)

∂sm

= m > 0

To calculate an upper bound we set sm = 1
5m

:

f(m, n = m + 1, sm =
1

5m
) = −4

5
< 0

=⇒ ∂QNI

∂sm

< 0 if n = m + 1

ii. n ≥ m + 2 :

∂f(m, n, sm)

∂sm

= 4− 4n2 + m(5 + 4n) = 4 + 5m + 4n(m− n)

≤ 4 + 5m− 8n ≤ 4 + 5m− 16− 8m = −12− 3m < 0

To calculate an upper bound we can set sm = 0:

f(m,n, sm = 0) = 2− n(1 + 2n) + m(3 + 2n) ≤ −2(2 + n) < 0

To sum up, we have:
∂QNI

∂sm

< 0 ∀n

Stage 2

The correctness of the proposition is shown if it is a strictly dominant strategy to invest.
We consider without the loss of generality the first firmb4s decision. It is a strictly dominant
strategy to invest for the first firm if the following three conditions are fulfilled:

1. No other firm invests:
π1(1, n) > π0

1 ∀ n ≥ 3 (35)

If the first firm does not invest as well, all firms will be taxed with the tax rate t0 and
the first firm will make the profit π0

1. In case of investment, the first firm is the only
investing firm and its profit amounts to π1(1, n).

2. Some of the other firms invest:

π1(m, n) > 0 ∀2 ≤ m ≤ n− 1, n ≥ 3 (36)

The first firm makes a profit of zero if it does not invest and a profit of π1(m, n) if it
invests.
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3. Every other firm invests:
πc

1 −K > 0 (37)

The first firmb4s profit amounts to πc
1 (zero) if it invests (does not invest).

The inequality (37) is fulfilled by assumption. We still have to show the correctness of
the inequalities (35) and (36).

1. First we consider inequality (35):

π1(1, n) =

(√(
1 + 3

√
5− 2n

)2 − 3
(
3 +

√
5 + 2n

))2

320b (1 + n)2 −K ≡ Π1(1, n)−K > π0
1

⇐= Π1(1, n) > 2πc
1 (,since K < πc

1 and π0
1 ≤ πc

1)

⇐⇒

(√(
1 + 3

√
5− 2n

)2

− 3
(
3 +

√
5 + 2n

))2

≡ h(n) > 640

We make the following case differentiation:

(a) n = 3 :
h(3) = 1024 > 640

(b) n ≥ 4 :

h(n) = 4
(
2n + 5 + 3

√
5
)2

,

∂h(n)

∂n
= 16

(
2n + 5 + 3

√
5
)

> 0,

h(n = 4) = 4(13 + 3
√

5)2 > 640

The inequality (35) is fulfilled.

2. Now we consider inequality (36):

π1(m,n) ≡ Π1(n, m)−K > 0

⇐= Π1(n, m)− πc
1 > 0

⇐⇒ (Π1(n,m)− πc
1)b (n + 1)2 > 0

⇐⇒
{(2+m)(2+m+

√
m
√

4+m+2n)−
√

2
√

m
√

4+m

√
(2+m)

√
m

4+m
(m−2n)+

8+m(10+m[4+m]−2mn+2n2)
4+m

}2

16m(1+m)2(4+m)
− 1

≡ i(m,n) > 0
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Our procedure can be divided into two steps. We will modify the problem with two
variables (m, n) to a problem with only one variable (m) in the first step. In the second
step we will solve the problem with one variable.

(a) Step 1: We will show that i(m,n) is an increasing function of n. We have

∂i(m,n)

∂n
> 0 ⇐⇒ ∂y(m,n)

∂n
> 0

where
y(m,n) ≡ (i(m, n) + 1) ∗ 16m(1 + m)2(4 + m).

∂y(m, n)

∂n
= 2δ(m, n)γ(m, n)

follows, with

δ(m, n) ≡ 2(2 + m) +
√

2m(

φ(m,n)︷ ︸︸ ︷
8 + m(6 + m) +

√
m
√

4 + m(m− 2n))

(4+m)

√
(2+m)

√
m

4+m
(m−2n)+

8+m(10+m[4+m]−2mn+2n2)
4+m

and

γ(m, n) ≡ (2 + m)(2 + m +
√

m
√

4 + m + 2n)

−
√

2
√

m
√

4 + m
√

(2 + m)
√

m
4+m

(m− 2n) + 8+m(10+m[4+m]−2mn+2n2)
4+m

.

It is left to show that δ(m, n) and γ(m, n) are positive for all 2 ≤ m ≤ n−1, 3 ≤ n.
First we consider δ(m, n) and afterwards γ(m, n).

i. Consideration of δ(m,n):

∂δ(m, n)

∂n
= 0 ∀m + 1 ≤ n, n 6= n˜δ(m, n)

has a saltus at

n˜ =
1

2
(m +

2 + m√
m

4+m

)

and is continuous in n else. That is why δ(m,n) can adopt three values, given
m; one for all n < n˜, one for n = n˜ and one for all n > n˜. We consider the
three possible cases in turn:

A. n < n˜:
φ(m,n) > 0 =⇒ δ(m,n) > 0

B. n = n˜:
δ(m,n) = 2(2 + m) > 0
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C. n > n˜: We choose n = 2n˜ since δ(m, n) is independent of n for all
n > n˜.

δ(m, n = 2n˜) = 2(2 + m)−
√

2m(8 + m(6 + m +
√

m
√

4 + m))

(4 + m)
√

8+m(10+
√

m(2+m)
√

4+m+m(4+m))
4+m

is continuous in m for m > 0. Additionally, δ(m,n = 2n˜) is independent
of m, which is shown below. From

∂2δ(m, n = 2n˜)

∂m2
= 0

and the continuity of

∂δ(m,n=2n˜)
∂m

=
4(4+m(5+3m))+

√
2

<0 ∀m≥1

(

︷ ︸︸ ︷
m

2
3

√
4 + m− (2 + m)(4 + m))

√
8+m(10+

√
m(2+m)

√
4+m+m(4+m))

4+m

2(4+m(5+2m))

in m ∀m ≥ 1 follows

∂δ(m,n = 2n˜)

∂m
=

∂δ(m = 2, n = 2n˜)

∂m
= 0 ∀m ≥ 1.

That is why

δ(m, n) = δ(m, n = 2n˜) = δ(m = 2, n = 2n˜) = 4 > 0.

To sum up, we have: δ(m, n) is positive for all 2 ≤ m ≤ n− 1, 3 ≤ n.

ii. Consideration of γ(m,n):

∂γ(m, n)

∂n
= δ(m, n) > 0 ∀2 ≤ m ≤ n− 1, 3 ≤ n.

Therefore γ(m, n) has a minimum (in the relevant range 2 ≤ m ≤ n−1, 3 ≤ n)
at n = m + 1. We have

γ(m, n + 1)

= (2 + m)(4 + 3m +
√

m(
√

4 + m−
√

2
√

2 + m−
√

m
√

4 + m︸ ︷︷ ︸
>(m+1)︸ ︷︷ ︸

>−
√

2

)) > 0.

As a consequence, γ(m, n) and ∂y(m,n)
∂n

are positive for all 2 ≤ m ≤ n−1, 3 ≤ n.
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Since δ(m, n) and γ(m, n) are positive in the relevant range, we know that i(m, n)
has its minimum (given m) at n = m + 1. We define

I(m) ≡ i(m,n = m + 1).

(b) Step 2: We will show that I(m) is positive for all 2 ≤ m. We have

I(m) = −1 +
ς

τ
,

with
τ = 16m(1 + m)2(4 + m)

and

ς = {(2 + m)(4 + 3m +
√

m(
√

4 + m−
√

2
√

2 + m−
√

m(4 + m)))}2

= {(2 + m)(4(1 + m))}2.

The correctness of the last simplification is shown in the following calculation:

4 + 3m +
√

m(
√

4 + m−
√

2

√
2 + m−

√
m(4 + m)) = 4(1 + m)

⇐⇒
√

m︸︷︷︸
>0

(−
√

m +
√

4 + m−
√

2

√
2 + m−

√
m(4 + m)) = 0

⇐⇒
√

4 + m−
√

m︸ ︷︷ ︸
>0

=
√

2

√
2 + m−

√
m(4 + m)︸ ︷︷ ︸

>0

⇐⇒ (4 + m) + m− 2
√

m(4 + m) = 2(2 + m−
√

m(4 + m)),

which always holds. We have

I(m) > 0 ⇐⇒ ς > τ ⇐=
√

ς >
√

τ ⇐⇒
√

ς −
√

τ > 0, (38)

√
τ = 4(1 + m)

√
m
√

4 + m < 4(1 + m)(2 + m) ≡ υ (39)

and √
ς − υ = 0. ∀m ≥ 2.

From the inequality (39) and the conclusion (38) follows I(m) > 0 for all m ≥ 2.

To sum up, inequality (36) is fulfilled.
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7.2 Proof of Proposition 2

Stage 4

The firms behave rationally since they maximize profits by choosing their production
quantities as described in subsection 5.2.

Stage 3

The regulator has to maximize social welfare, given every possible combination of invest-
ment decisions of the firms. We make a case differentiation:

1. All firms have invested:

The regulator introduces no regulation; there are no emissions.

2. No firm has invested:

The regulator maximizes social welfare by using the tax rate t0.

3. m firms have invested (1 ≤ m < n) (without the loss of generality the first m firms):

QNI = (n−m)qn is a strictly decreasing function of tm for tm ∈ [0, t∗m]:

From the first order condition of the n-th firm follows

qn =
1− tm −mq1

b(n−m + 1)
.

qn is a strictly decreasing function of tm if q1 is a strictly increasing function of tm. We
have:

∂q1

∂tm
> 0 ⇐=

∂(4(m− 1)(m− n)(1 + n)(t− 1)t + (m(t− 1)− nt)2)

∂tm
> 0

⇐⇒ 2(m− n)((2− 3m + 2n− 2mn) + (−4 + 5m− 5n + 4mn)tm) ≡ x(n,m, tm).

We consider two cases concerning m in turn:

(a) m ≥ 2: tm ≤ 1
3

x(n, m, tm) ≥ 2(m− n)

(
2

3
+

n

3
− 4m

3
− 2mn

3

)
> 0

(b) m = 1: tm = 1
2

x(n, m, tm) = 2(n− 1)

(
1 + n

2

)
> 0

=⇒ ∂q1

∂tm
> 0

=⇒ ∂QNI

∂tm
< 0
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QNI is zero if tm is t∗m. There are no emissions then. The non-investing firm makes a
profit of zero. Therefore the regulator maximizes social welfare by using the tax rate
t∗m.

Stage 2

The correctness of the proposition is shown if it is a strictly dominant strategy to invest.
We consider (without the loss of generality) the first firm. It is a strictly dominant strategy
to invest for the first firm if the following three conditions are fulfilled:

1. No other firm invests:
1

4b
−K > π0

1 (40)

2. Some of the other firms invest:

1

b(1 + m)2
−K > 0 (41)

3. All other firms invest:
πc

1 −K > 0 (42)

First we consider condition (40):

1

4b
−K > π0

1 ⇐=
1

4b
− 1

(n + 1)2b
>

(1− t0)2

(n + 1)2b
⇐=

1

4
>

2

(n + 1)2

⇐⇒ (n + 1)2 > 8 ⇐= n ≥ 2

Now we consider condition (41):

1

b(1 + m)2
−K > 0 ⇐=

1

b(1 + n)2
> K,

which is fulfilled by assumption.

The condition (42) is fulfilled by the same assumption.
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