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Abstract

We examine image models for segmentation and classification that are based (i) on the
statistical properties of natural images and (ii) on non-negative matrix or tensor codes.

Regarding (i) we derive a parametric framework for variational image segmentation.
Using a model for the filter response statistics of natural images we build a sound prob-
abilistic distance measure that drives level sets toward meaningful segmentations of
complex textures and natural scenes. We show that the approach can be generalized
from binary image segmentation to multiple image regions and is suitable for fast greedy
optimization.

Regarding (ii) we use results from global deterministic optimization to obtain fast and
practical algorithms for non-negative matrix and tensor factorization with sparsity con-
straints. Such problems were previously optimized using variations of projected gradient
descent — a procedure that can be inefficient and difficult to generalize. In contrast,
our approach uses highly efficient solvers from convex optimization to solve a sequence
of quadratic or second-order conic programs. We show that this offers benefits in terms
of efficiency and, in particular, extensibility: Our procedures are very easy to augment
by additional convex constraints. We give numerous examples where such additional
constraints yield improved results in image processing and recognition.
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Zusammenfassung

Wir untersuchen Modelle zur Bild-Segmentierung und -Klassifikation, welche (i) auf
der Statistik natürlicher Bilder sowie (ii) auf nicht-negativen Matrix- und Tensor-Codes
basieren.

Bezüglich natürlicher Bildstatistiken (i) schlagen wir ein parametrisches Modell zur Seg-
mentierung mit Variationsansätzen vor. Dabei leiten wir ein probabilistisches Abstands-
maß für Bildregionen aus der Filterantwort-Statistik natürlicher Bilder her. Integriert in
einen Level-Set-Ansatz liefert dieses Abstandsmaß nichttriviale Segmentierungen kom-
plexer Texturen und natürlicher Bilder. In einem Folgeschritt erweitern wir ein er-
stes binäres Segmentationsverfahren für den Mehrklassenfall und adaptieren es so, daß
schnelle Optimierung möglich wird.

Bezüglich der nicht-negativen Codes (ii) verwenden wir Ergebnisse der deterministi-
schen globalen Optimierung, um schnelle und praktikable Algorithmen für nicht-negative
Matrix- und Tensor-Faktorisierung unter konkaven Nebenbedingungen, welche dünn be-
setzte Ergebnisse erzwingen, zu ermöglichen. Solche Probleme wurden bislang mit Vari-
anten des Gradientenabstiegs-Verfahrens gelöst. Nachteil dieses Verfahrens ist, daß es
langsam und schwierig zu verallgemeinern sein kann. Das in dieser Arbeit entwickelte
Verfahren hingegen verwendet hocheffiziente Ansätze aus der mathematischen Program-
mierung und löst eine Folge von quadratischen bzw. konischen Optimierungsproblemen.
Wir weisen nach, daß dieser Ansatz Vorteile bezüglich Rechenaufwands und Erweit-
erbarkeit hat. Insbesondere sind unsere Ansätze sehr einfach um zusätzliche konvexe
Nebenbedingungen erweiterbar. Zahlreiche Beispiele belegen, dass solche Erweiterung-
en zur besseren Ergebnissen bei Aufgaben der Bildverarbeitung und -erkennung führen
können.
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Chapter 1

Introduction

In this chapter we give a general but brief overview on image segmentation and our
contributions in this thesis.

1.1 Motivation

Image segmentation is the task of partitioning an image I : Ω→ R
n into disjoint regions

Ωi, i = 1, . . . , k, so that the Ωi are visually distinct.

As a computational problem, image segmentation is interesting for at least three reasons:
First, there is a multitude of potential applications. Medical image processing comes to
mind, where doctors measure the size of organs and tissues using images obtained from
their patients. Multimedia applications using image or video encoding can benefit from
robust segmentation results, leading to more efficient image transfer and storage. In
machine vision, image processing is usually a costly operation that should nevertheless
perform in real time. An efficient segmentation algorithm can help to reduce the amount
of visual information that needs to be processed.

Second, image segmentation is interesting because it serves as a testbed for ideas from
other fields such as machine learning and pattern recognition, physics, or engineering.
For instance, in its simplest form, image segmentation can be regarded as a clustering
problem. Clustering algorithms can often be used in an image segmentation framework,
and, conversely, algorithms developed for image processing can be very successful in
clustering problems as well (Section 4).

Finally, image segmentation is interesting because it helps us to understand how we
visually decipher the world: It is no coincidence that the objective formulated at the
beginning of this section sounds so fuzzy. What, actually, constitutes a “visually distinct”
region? In a sense, this is the core question to be solved, and historically, there was and
still is a fruitful exchange of ideas between computational scientists, psychologists, and
neural researchers [Gab46, Mar80, Dau85, Jul62, Tve77].

1



Chapter 1. Introduction

So by studying image segmentation we open a large field of important applications, we
advance pattern recognition research, and have the chance to learn something about a
fundamental problem of visual information processing.

1.1.1 Representation of Images

The unifying question behind the work in this thesis is that of image representation:
What is an image and how should it be modeled in the computer?

In the past, various preliminary answers have been given, some more sophisticated than
others. The two classes of image models we will be mostly interested in are based on
parametric models of natural image statistics and the nonparametric statistics of Markov
random fields.

1.1.2 Models from Natural Image Statistics

One approach toward image modeling is to utilize the statistics of natural images: Since
non-trivial images are not just random collections of pixels in an array but pictures of a
highly structured world their statistics are clearly non-trivial (cf. Section 3.1.3, [GK99,
LPM03]). Analytical forms of filter responses of natural images have been observed very
early [Kre52, RG83, HM99] and were frequently used in image processing applications
[Mal98, JCF95, LR97, BS99].

For the slightly simplified case where images are modeled as superpositions of translu-
cent objects the emergence of non-trivial statistics has been studied analytically [MG01,
SLSZ03]. For occlusion models simulations of the dead leaves model have shown excellent
correspondences [ÁGM99, LMH01]. We refer to [SLSZ03] for a survey on the field.

1.1.3 Models from Non-Negative Matrix Factorization

Above models are usually based on the statistics of pixel values and filter responses at
individual image locations. The reason is that this yields one-dimensional histograms
that are efficient to store and compute. However, in recent years models based on image
patches have also become popular: Starting with MRF statistics collected from image
samples for texture synthesis [EL99] and classification [PLL98, VZ03], patch-based ap-
proaches were used for segmentation [BU02, BSU04, BU04, AAR04], for object detection
[Low99, WWP00, UVNS02, FPZ03, SK04, DS04b, JT05, NJT06], image categorization
[SRE+05], or to build priors for image-based rendering [FWZ05]. Interestingly, the best
patch-based recognition algorithms offer state of the art performance even when object
geometry or shape is not accounted for [DS04b, JT05].

Since image patches are high-dimensional and usually many patches need to be sampled,
data compression techniques are important to reduce computational load and make in-
ference possible. For instance, PCA was successful in providing improved scale invariant

2



1.1. Motivation

feature description [KS04] and has been used for patch-based recognition [FPZ03]. Clus-
tering is a critical step to simplify the statistical estimation problem [WWP00, SRE+05]
and, especially when image patches are sampled densely, significantly influences the per-
formance [JT05]. In unsupervised image categorization there is a third step where latent
variables are estimated [SRE+05].

Interestingly, all three steps: dimensionality-reduction, clustering, and semantic analysis
fit into the same framework of non-negative matrix factorization (NMF).

1. Dimensionality reduction was one of the tasks that motivated NMF. Originally
developed for scientific data sets [SI89, PT94], it was soon applied to images [LS99,
GSV02, WJHT05, BP04].

2. Probabilistic and spectral clustering was recently shown to fit into the NMF frame-
work as well [DHS05, ZS05].

3. Along a similar line, a popular approach for latent semantic analysis is based on
factorizing a matrix of (relative) frequencies [DDL+90, Hof99]. Since frequencies
are non-negative, NMF offers benefits over classical approaches based on singular
value decomposition [XLG03, SBPP06].

Thus, in the context of patch-based image models NMF can answer some key questions
and may function as a building block to use for sophisticated implementations. When
it comes to exercising precise control over a non-negative matrix factorization, sparsity
is important: Sparse image codes, for instance, seem to be better suited for learning
and have a strong tendency to separate images into parts [Ols96, Hoy04], yielding se-
mantically meaningful image bases (Section 4.4). The optimization problems associated
with sparse NMF are computationally intricate, which motivates our study of sparsity-
constrained NMF problems.

1.1.4 Non-Negative Tensor Factorization Models

For image modeling matrix factorizations can be inefficient since they rely on vectorizing
image data, a process which makes it difficult to capture spatial relationships between
neighboring image locations. Tensor factorization has been proposed to address this
problem. In tensor factorization base images are not vectors but outer products of
vectors, i.e., real two-dimensional entities [WW01]. Depending on the specific class of
images under consideration this can yield significant benefits: Since spatial correlations
along the x- and y-axis are modeled explicitly, more efficient compression and improved
performance of machine learning algorithms can be observed [HPS05]. Furthermore,
higher-order decompositions are useful for modeling video or in clustering [DHS05, ZS05].

3



Chapter 1. Introduction

1.2 Overview

After this introduction we briefly present some results from mathematical programming
and variational analysis (Chapter 2). Our exposure is concise and mainly aims at making
this text self-contained. In Chapter 3 we present a novel parametric image model and
derive segmentation algorithms for it. In Chapter 4 we approach the image segmentation
problem from a different point of view and present new solvers for the non-negative
matrix factorization (NMF) problem. Based on NMF, we develop image codes that
yield powerful algorithms for image segmentation and categorization. In Chapter 5 we
discuss the more general case when high-dimensional tensor factorizations are sought.
We put our results to use in Chapter 6 where we tackle some intricate applications.
Chapter 7 concludes the text with a brief outlook.

1.3 Prior Work

The work in this thesis is based on two complementary approaches in computer vision:
One has its foundations in variational calculus and PDE-based image segmentation, the
other in mathematical programming and non-negative models for images.

Concerning the variational approach we follow the region-based methods pioneered by
Mumford and Shah [MS89] and made practical, e.g., by Chan and Vese [CV01]
within a level set framework [TD79, OS88] or by Deriche and Paragios [PD02] in
the geodesic active contour calculus [CKS97, KKO+95]. Here, image regions are ap-
proximated by piecewise smooth functions, and discontinuities in the approximation
correspond to boundaries between adjacent regions.

The statistical features we use in a region-competition framework pioneered by Zhu and
Yuille [ZY96] are based on natural image statistics and filter response histograms which
are popular for image modeling [ZWM97, WZL00, PHB99, LW03]. The corresponding
parametric framework has so far only been used for image [Sim97, Mal98] and texture
modeling [PS00]. Slightly more complex distributions have also been employed for clutter
detection [SLG02].

The second part of this thesis builds on work on non-negative matrix factorization (NMF)
which was first used to model transport processes in the atmosphere [SI89, PT94] and
introduced to the computer vision and machine learning community in a seminal paper
by Lee and Seung [LS99]. Several attempts have been made to further adapt this
model to computer vision applications [Hoy02, GSV02, WJHT04, BP04]. An important
development was the introduction of sparseness constraints [Hoy04] that allow precise
control over sparseness in any given factorization. Akin to NMF, tensor factorization
models where introduced to computer vision relatively recently [WW01, HPS05].

4



1.4. Contributions

1.4 Contributions

Our main contributions are the following:

1. We develop an image segmentation algorithm for natural images that uses a sta-
tistically efficient parametric representation of natural images.

2. We present a fast and mathematically sound optimization algorithm for NMF prob-
lems that makes sparsity-constrained matrix factorization practical.

3. We extend the previously used NMF models by integrating constraints for prior
knowledge, transformation invariance, missing values, or signed data. These ex-
tensions are important in applications where class labels are available for training,
data is missing or corrupted, or sparsity-constrained PCA is needed.

4. We propose sparsity-controlled non-negative tensor (NTF) models and develop a
solver for the corresponding optimization problem [WW01, HPS05]. This allows
for the first time to compute tensor factorization with fully controlled sparseness.

We note that some results in this thesis have previously been published at conferences
and in journals [HS03, HS05a, HS05b, HS05c, HS06a, HS06b].

5



Chapter 1. Introduction

1.5 Notation

R+ non-negative real numbers
R

n n-dimensional real vector space
x> transpose of x
〈x, y〉 inner product between x and y
⊗ Kronecker’s matrix product
� element-wise matrix product: (A�B)ij = AijBij

� element-wise matrix quotient: (A�B)ij = Aij/Bij

vec(M) concatenation of the columns of matrix M
tr(M) trace of matrix M : tr(M) =

∑

iMii

(M)+ remove negative entries: ((M)+)ij = max(0,Mij)

‖x‖ `2 norm of vector x: ‖x‖2 = 〈x, x〉
‖x‖p `p norm of vector x: ‖x‖p = p

√
∑

i x
p
i

‖M‖F Frobenius norm of matrix M : ‖M‖F =
√

tr(M>M)

e vector of ones: e = (1, . . . , 1)>

ei i-th unit column vector: ei = 1, j 6= i⇒ ej = 0
Eij ij unit matrix: Eij = eie

>
j

Em,n m× n matrix with all entries equal to one
M•i i-th column of matrix M
Mi• i-th row of matrix M

Ω image domain: Ω ⊂ R
2 or Ω ⊂ N

2, bounded and open
I set of images: I = 2Ω→R

I individual image: I 3 I : Ω→ R

φ level set function: Ω→ R

V non-negative m× n matrix of vectorized images
W non-negative m× r matrix of basis functions
H non-negative r × n matrix of coefficients

Ln+1 n-dimensional second order cone

6



Chapter 2

Variational Models and
Mathematical Programming

Throughout this text we will use results from variational analysis on the one hand
and mathematical programming on the other. For easier reference and accessibility we
summarize these in this chapter.

2.1 Variational Image Segmentation

In this section we present the central ideas of variational image segmentation as far as
necessary to follow the results in this work. For a more complete overview and rigid
mathematical treatment we refer to the excellent textbooks available such as [AK00,
Sap01] or classics as [GF63]. We recommend [SZ91, DZ01] as a thorough treatment on
shape optimization.

2.1.1 Level Sets

An important question for any segmentation algorithm is how to represent the contours,
∂Ωi, of image regions. Modeling contours as one-dimensional objects has inherent bene-
fits in terms of memory utilization and computational efficiency. This is important when
memory is scarce and CPU time expensive.

However, contour-based region representations are often difficult to handle from an im-
plementation point of view: Usually, one will represent contours by some parametric
curve such as a spline. Then, during curve evolution one has to ensure that the spline
control points remain approximately evenly spaced, that singularities, such as merging
or splitting of contours, are treated appropriately, that smoothness conditions are not
violated, that information from the curve is propagated accurately to control points, etc.
This can lead to numerically fragile solutions that are difficult to program and to use.

7



Chapter 2. Variational Models and Mathematical Programming

An important development to alleviate this problem is due to Osher and Sethian1

[OS88]: They suggest to represent contours as level sets of surfaces, i.e., an one-dimensi-
onal object is described in terms of a two-dimensional entity. While this seems counter
intuitive at first, the approach offers some important advantages such as greater numer-
ical stability, invariance under topological changes of the contour, and natural general-
ization to multiple regions and higher dimensional objects.

Assume, a contour evolution C(t, q) is specified for time t and parametrization q in the
following way: Let N(t, q) denote the normal to C and let F (t, q) be a flow describing
how C evolves over time. Note that we are not interested in tangential flows which
merely change the parametrization of the curve without affecting its geometry. Then,
the evolution is given by [AK00]:

{

∂C/∂t = F (t, q) ·N(t, q)

C(0, q) = C0(q).
(2.1)

Assume that at time t the curve C corresponds to the zero-level of a sufficiently smooth
level set function φt : R+ × Ω → R, i.e., C(t, ·) = {x ∈ Ω : φt(x) = 0}. The question is
then how to change φt in order to obtain curve evolution (2.1).

Assuming φt is differentiable we can insert C and obtain with (2.1)

φt(C(t, q)) = 0

∂/∂t⇒ ∂φ

∂t
+ 〈∇φ, ∂C

∂t
〉 = 0

(2.1)⇒ ∂φ

∂t
+ 〈∇φ, F ·N〉 = 0.

(2.2)

In the level set formulation the curve normal is just the normalized and sign-corrected
gradient of the level set function. By convention, φ is negative in the interior of C and
positive outside. Then N = − ∇φ

|∇φ| and

∂φ/∂t = 〈∇φ, F · ∇φ|∇φ| 〉

⇒ ∂φ/∂t = F |∇φ| .
(2.3)

This is the result we sought: It describes how to express an evolution of C in terms
of φ. With the appropriate initialization to a signed distance function d̄ and Neumann
boundary conditions the evolution is summarized in the Hamilton-Jacobi equation











∂φ/∂t = F |∇φ|
φ0(x) = d̄(x, C0)
∂φ/∂N = 0 ∀x ∈ ∂Ω.

(2.4)

Note that although derived only for C ⊂ Ω the PDE is extended on Ω or on an neigh-
borhood around C without difficulties.

1Similar ideas were developed independently in [TD79].
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2.1. Variational Image Segmentation

2.1.2 Region Based Segmentation

Classical edge-based algorithms examine the image locally, searching closed contours
along regions where the image gradient ∇I is strong. Important representatives among
these so-called active contour models are the snake model [KWT88] and its geodesic
formulation [CKS97, KKO+95], or the balloon model [CC93].

Dually, region-based methods emerged where partitions of maximum homogeneity are
sought. E.g., in the Mumford-Shah functional [MS89] image regions are approxi-
mated by piecewise smooth functions. Discontinuities in the approximation correspond
to boundaries between adjacent regions.

In this work we will adopt the region-based approach. Within this framework an im-
age I is approximated by a piecewise-smooth function u, such that the following energy
functional is minimized [MS89]:

EMS(u, C) = µ · |C|+ λ

∫

Ω
|I − u|2 dx+

∫

Ω\C
g(|∇u|)dx. (2.5)

g is an arbitrary convex even function acting on the gradient magnitude of u. The first
term ensures the length |C| of the contour C is minimized, the second term represents the
approximation error, the last term ensures that the approximation is smooth except for
the closed contour C where jumps can occur. Note that no image gradient is evaluated,
i.e., the functional does not rely on detecting edge clues.

In the simplest case, u is assumed piecewise constant. Then, the last term can be omitted
and an optimal u∗ is simply [MS89]

u∗(x) =

{

1
|Ωin|

∫

Ωin
I(x)dx x inside C

1
|Ωout|

∫

Ωout
I(x)dx x outside C.

(2.6)

Chan and Vese considered this model in a level set formulation [CV01]:

E(φ) = µ

∫

Ω
|∇φ| δ(φ)dx + λ1

∫

Ω
|I − c1|2H(φ)dx + λ2

∫

Ω
|I − c2|2 (1−H(φ))dx. (2.7)

Here, c1 and c2 are the mean gray values of the interior and the exterior region, respec-
tively, and φ, H, and δ are the level set function, the unit step function and Dirac’s
delta. Thus, the first integral in (2.7) measures contour length while the other integrals
measure how well c1 and c2 represent the interior and exterior region.

2.1.3 Shape Derivatives

To prepare for subsequent developments we slightly generalize (2.7) by introducing en-
ergy functions kb(x), kin(x, φ), and kout(x, φ) representing the boundary, interior, and
exterior energy contributions for a given level set function φ at location x. Note that
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we allow the region energy functions to vary with φ, just as c1/2 vary as the contour
changes (eqn. (2.6)). Then, above energy functional reads [JBBA03]

E(φ) =

∫

Ω
kb(x) |∇φ| δ(φ)dx + λ1

∫

Ω
kout(x, φ)H(φ)dx + λ2

∫

Ω
kin(x, φ)(1 −H(φ))dx.

(2.8)
Assuming E is sufficiently smooth, in particular k in and kout are weakly differentiable at
least once [SZ91, Prop. 2.45], the variational update φ̇ = −〈E′(φ), ψ〉, for all ψ sufficiently
smooth, of this level set function reads2:

∂E

∂φ
=

∂

∂φ

[
∫

Ω
kb |∇φ| δdx

]

+

∫

Ω
(λ1k

out − λ2k
in)δψ dx

+

∫

Ω

(

λ1
∂kout

∂φ
H + λ2

∂kin

∂φ
(1−H)

)

ψ dx. (2.9)

The third term, omitted in [CV01], originates formally from applying the product rule
to the area integrals. It thus takes into account that k in and kout also depend on the
level set function φ.

Let us take a closer look at the first term and develop it by the product rule:

∂

∂φ

[
∫

Ω
kb |∇φ| δdx

]

=

∫

Ω
kb

[

δ′ |∇φ|ψ + δ
∇φ
|∇φ|∇ψ

]

dx . (2.10)

With Green’s first theorem the second part becomes

∫

Ω
kbδ
∇φ
|∇φ|∇ψ dx = −

∫

Ω
∇
(

kbδ
∇φ
|∇φ|

)

ψ dx+

∫

∂Ω

kbδ∂φ

|∇φ| ∂nψds

= −
∫

Ω

[

∇kbδ
∇φ
|∇φ| + kb∇δ ∇φ|∇φ| + kbδ∇

( ∇φ
|∇φ|

)]

ψ dx+

∫

∂Ω

kbδ∂φ

|∇φ| ∂nψ ds (2.11)

which in connection with ∇δ ∇φ
|∇φ| = δ′ |∇φ| and (2.10) yields

∂

∂φ

[
∫

Ω
kb |∇φ| δdx

]

= −
∫

Ω

[

∇kbδ
∇φ
|∇φ| + kbδ∇

( ∇φ
|∇φ|

)]

ψ dx

+

∫

∂Ω

kbδ∂φ

|∇φ| ∂nψ ds. (2.12)

Note that we can replace each area integral containing the Dirac impulse into an integral
over the region boundary C = {x : φ(x) = 0}:

∫

Ω
f(x, φ)δ(φ)dx =

∫

C
f(x, 0)ds. (2.13)

2To save horizontal space we abbreviate 〈E′(φ), ψ〉 by ∂E/∂φ.

10



2.2. Convex Programming

Hence we can write

∂E

∂φ
=

∫

C∩∂Ω

kb∂φ

|∇φ| ∂nψ ds+

∫

C

[

−∇kb ∇φ
|∇φ| − k

b div

( ∇φ
|∇φ|

)

+ λ1k
out − λ2k

in

]

ψ ds

+

∫

Ω

(

λ1
∂kout

∂φ
H + λ2

∂kin

∂φ
(1−H)

)

ψ dx. (2.14)

Assuming C ∩ ∂Ω = ∅ and using the shorthands n = ∇φ
|∇φ| and c = div(n) we arrive at

∂E

∂φ
=

∫

C

(

−∇kbn− kbc+ λ1k
out − λ2k

in
)

ψ ds

+

∫

Ω

(

λ1
∂kout

∂φ
H + λ2

∂kin

∂φ
(1−H)

)

ψ dx . (2.15)

This result from shape optimal design [SZ91] was first introduced to computer vision
in [JBBA03]. Note also [Sch92] where shape derivatives of a more general class of
functionals are used for motion estimation.

2.2 Convex Programming

From Chapter 4 on convex programming plays a dominant role in this text as the basic
building blocks of some of our central algorithms are convex programs. Convex pro-
gramming is attractive for multiple reasons: First, convex functions and sets share nice
mathematical properties [Roc72]. In particular, there is a duality theory from which ro-
bust and highly efficient algorithms can be derived [Lue69, Min86, Wri97, Ber99, BV04].
Then, there exist a number of very efficient implementations that allow solving large-
scale problems reliably and fast. In practice, they work almost as “black boxes”, solving
most problems without user intervention or additional parameter optimization. Since
convex programs are also the core problems of important commercial applications, we
can expect market forces to further motivate continuous, high-quality research in this
field.

2.2.1 Quadratic Programming

Quadratic programming (QP) is concerned with minimizing a quadratic functional sub-
ject to linear constraints:

min
x∈Rn

1

2
x>Qx+ f>x

s.t. Ax ≤ b.
(2.16)

Here, Q is required to be symmetric positive semi-definite, so that the problem is convex.
Very efficient and robust solvers are available in software.
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When Q is not positive semi-definite problem (2.16) is NP-hard [FV95]. In this case,
only relatively small problem instances can be solved by methods of global optimiza-
tion [HP95, HT96].

2.2.2 Second Order Conic Programs

Second order cone programming (SOCP) is a generalization of QP and concerned with
minimizing a linear functional over convex quadratic cones intersected with affine sets
[LVBL98]. The second order cone Ln+1 ⊂ R

n+1 is the convex set

Ln+1 :=

{(

x
t

)

= (x1, . . . , xn, t)
>
∣

∣

∣
‖x‖2 ≤ t

}

, (2.17)

The problem of minimizing a linear objective function, subject to the constraints that
several affine functions of the variables are contained in Ln+1, is called a second order
cone program (SOCP):

min
x∈Rn

f>x

s.t.

(

Aix+ bi
c>i x+ di

)

∈ Ln+1 , i = 1, . . . ,m (2.18)

Note, that linear constraints and, in particular, the condition x ∈ R
n
+ are important

special cases. Our approach to sparsity-constrained factorizations, to be developed sub-
sequently (Chapter 4 and 5), is based on this class of convex optimization problems for
which efficient and robust solvers exist [Stu01, Mit03, Mos05].

2.3 Summary

In this short chapter we briefly covered the key results from mathematical programming
and variational optimization used in the subsequent chapters.
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Chapter 3

A Parametric Model for Variational
Image Segmentation

In this chapter we present a model for natural images from which we derive a parametric
distance measure on images useful for segmentation. While parametric models are in
general limited in their descriptive power they are nevertheless attractive in applica-
tions: Properly used, they are efficient computationally and statistically, i.e., results are
computed quickly and all the relevant information is employed.

3.1 Image Models and Filter Statistics

The first problem we are concerned with is that of assigning probabilities to given images:
Let p : I → [0, 1] be a probability density function describing for each image I ∈ I how
often we will encounter I in a given application. Except for highly structured domains,
e.g., for artificial or heavily preprocessed image data, it will be difficult to describe p
accurately. The reasons are, first, that I is very large, e.g. there are 2562562

moderately-
sized gray-value images, ruling out many standard techniques from descriptive statistics.
Second, while images are highly structured objects [GK99, PL02, LPM03] the variations
experienced in the real world are overwhelming, and it is not clear at all how precisely
describe their common characteristics.

An early attempt to deal with this complexity, that will also serve us in the context of
more recent developments, is that of the Markov random field (MRF) [Bes74, GG84]:
Instead of modeling the whole image domain Ω at once concentrate on small subdo-
mains Nx ⊂ Ω that can be modeled with sufficient accuracy. One then assumes the
subdomains to be large enough to account for the relevant statistical dependencies in
the image. By the Hammersley-Clifford theorem [Bes74] this leads, under some
assumptions, to probability density functions that factorize over the cliques cl defined
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by the neighborhoods Nx:

p(I) ∝
∏

cl(x)

φcl(x)(xcl). (3.1)

A classical example is the Ising model from statistical physics [Isi25]. This model con-
siders binary images, Ix ∈ {±1}, and defines an image energy E, s.t. p(I) ∝ exp(−E(I)),
which admits the form

E(I) =
∑

x

αxIx +
∑

x,x′∈Nx

βx,x′IxIx′ . (3.2)

Here, β is an interaction coefficient measuring how strongly two image locations in a
4-neighborhood interact. α corresponds to a prior term determining how likely Ix equals
one. Generalizations to non-binary images and to more complicated prior and interac-
tion functions are generally summarized under auto-models for texture analysis [Bes74,
Sec. 4.1].

The problem of course is that since we are capturing very basic pairwise pixel interactions
only, the Nx need to be large for (3.2) to be a even remotely realistic model. Large subdo-
mains, however, are difficult to model statistically: Thus, the problem we were trying to
solve in the first place reappears. In practice, relatively small subdomains are used and
addition assumptions, notably ergodicity, are made. Still, even crude approximations
yield useful models for many applications ranging from image processing, to mid-level vi-
sion, or texture synthesis. More sophisticated approaches combine feature selection with
second-order MRF representations and perform competitive in texture synthesis [ZG01].
In a different direction, clustering based on textons [MBLS01] is applied to allow MRF
representations perform comparable to filter based methods in recognition [VZ03].

3.1.1 The FRAME Model

The previous example hinted that simple auto-models need to be large, making training
difficult, especially with limited data. A natural approach to reduce the dimensionality
of the learning problem is to apply a set of linear filters to the image and instead of
learning high-order statistics of the image values learn low-order statistics of the filter
responses [Jul62, ZWM97, WZL00, RB05]. This approach offers immediate benefits:
Filters with large support naturally model medium- or large-scale dependencies in the
image without rendering the learning problem more difficult. Also, depending on the
application, one can design special-purpose filters that capture complicated geometries
without risking parameter explosion during learning. And even in the generic case can
filter banks often explain much image variation using relatively few coefficients only.

To implement this idea Zhu, Wu, and Mumford [ZWM97] considered features h :
I → R

n that collect some statistics on filter-response images. In particular, given a set
of filters fi, i = 1, . . . n, operating on I the feature function h computes the marginal
histograms of the filtered images

h(I) = (hist(f1 ∗ I),hist(f2 ∗ I), . . . ,hist(fn ∗ I)) , (3.3)
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where hist(I)j =
∑

x δ(zj − Ix)/ |Ω| is the histogram with bins zj over the image. Im-
plementations with smoothed histograms are also used.

Now it was suggested to define a probability model p over image space that has maximum
entropy among all models matching some observed statistics ĥ0 in expectation. This
yields the maximum entropy optimization problem [Jay57]:

max
p≥0

H(p)

s.t. Ep[h(I)] = ĥ0
∫

p(I)dI = 1

(3.4)

whereH(p) = −
∫

p(I) log(p(I))dI denotes Shannon entropy. Examining the Lagrangean
of (3.4) reveals that an optimal p admits the form of a Gibbs distribution: p(I) ∝
exp(〈θ, h(I)〉), so that the only unknowns are the multipliers θ. These are readily avail-
able by noting that (3.4) is concave in θ and that the log-likelihood

L(θ) =

∫

p̂(I) log(pθ(I))dI

=

∫

p̂(I)

[

〈θ, h(I)〉 − log

(
∫

exp(〈θ, h(J)〉)dJ
)]

dI

(3.5)

has the derivative

∂L/∂θ =

∫

p̂(I)h(I)dI −
∫

p̂(I)

∫

exp(〈θ, h(J)〉h(J))dJ
∫

exp(〈θ, h(J)〉)dJ dI

= Ep̂[h]− Epθ
[h]

= ĥ0 − Epθ
[h].

(3.6)

Thus, if we can compute Epθ
[h] we find a maximum-entropy image model by starting

from any θ and following the gradient ascent rule. In general, this requires sampling
from a Markov chain to find Epθ

[h]: A usually intricate and time consuming process
that nevertheless yields excellent results [ZWM97].

For texture synthesis using a set of handcrafted statistical features above time-consuming
sampling procedure can reportedly be replaced by a more efficient alternative based on
a sequence of projections on admissible sets [PS00]. In this setting, one starts from a
random image and sequentially optimizes each individual constraint hi until convergence
on an image obeying all constraints is achieved. This is similar to the texture synthesis
by Heeger and Bergen [HB95], however, more general image features, in particular,
parametric features, are admissible. Although the approach is heuristic and convergence
is not proven, excellent results are reported.

3.1.2 A Parametric Image Model

The FRAME model presented above accurately reproduces a wide range of synthetic and
natural textures of varying complexity [ZWM97]. As such, it would be an ideal candidate
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for use within an image segmentation algorithm. Unfortunately, training the model, i.e.,
determining suitable filters fi and coefficients θ, is computationally expensive, and it is
not clear whether training from very small image patches, such as small image regions,
is feasible.

Fortunately, compared to synthesis, for segmentation less accurate models are usually
sufficient. This motivates searching for simpler approximations to the FRAME model.
A promising approach is to consider the statistics of natural images: Certain parametric
statistics of natural images were frequently observed and are repeatedly mentioned in the
literature. An early example is the rapidly declining autocorrelation function of television
images [Kre52] or the 1/fα power spectra of natural images [TTC92, RB94, vdSvH96].

More recently, Bessel-K-Forms, axiomatically derived from a transparent dead-leaves
image model, were empirically validated and successfully applied to clutter recognition
and image coding [SLG02, SLSZ03]. Along a similar line are proposals such as, e.g.,
scale mixtures of Gaussians [PSS00, WS00], models derived from stochastic geometry,
such as random superpositions of objects [MG01, SLG02] or the dead leaves model where
occlusions are taken into account [LMH01]. For the latter and for the statistics of simple
derivative filters on log-transformed images, excellent fit to the generalized Laplacian
density

p(z) =
α

2sΓ(1/α)
exp(− |z/s|α) (3.7)

has been empirically established [LMH01].

Model (3.7) is not only particularly convenient to work with, it has also a long tradition:
It was used for DCT coefficients of natural images [RG83] and derivative statistics of
large databases of natural images [HM99]. In connection with different linear filters it
has been successfully employed for image coding [Mal98, JCF95, LR97, BS99, HM99]
and Bayesian image restoration [SA96].

3.1.3 Basic Physics for Images

At first thought, it is not clear how a simple parametric model as (3.7) can even partially
account for the complex statistics of natural images. To understand this better we will
derive an even more elementary image model from first principles.

A Simplified Image Model

In this model, an image represents, at each location x, the sum over many incident “light
rays”. Each light ray k incident at x has an initial energy Ek,x and encounters objects
with reflexion or transmission coefficients αi,k,x until it finally arrives at the image plane:

I(x) ≈
nk
∑

k

Ek,x

ni
∏

i

αi,k,x. (3.8)
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Assumptions. Now we make the following assumptions:

1. Adjacent image locations are statistically independent.

2. Ek,x = 1.

3. 0 < c ≤ αi,k,x ≤ 1.

4. nk and ni are large numbers.

Note that Assumption 1. is obviously not realistic. We will revisit this assumption
later. Assumption 2. is used mainly for convenience. Assumption 3. is realistic: We use
the minimum energy to get a sensor response in the imaging device (film, CCD, photo
receptor cell) for c. Then assumption 3. says that we do not count the light rays that
were essentially absorbed before they could reach the image plane.

Derivation. Let us introduce a random variable zk,x describing the accumulated reflec-
tion coefficients [Geu03]:

zk,x =

ni
∏

i

αi,k,x. (3.9)

As product of bounded RVs zk,x follows a power law distribution [Cha53, LS97, SC97]:

p(zk,x) ∼ z−β
k,x. (3.10)

Note that power law distributions may have infinite first and second moments.

We are interested in

I(x) ≈
nk
∑

k

zk,x. (3.11)

According to the generalized limit theorem by Gnedenko and Kolmogorov such a sum
follows a stable law, also known as α-stable Lévy distribution, [Fel66, XVII.5, Thm. 2],
[GK54, §35] a canonical representation of which is given by its characteristic function
[GK54, §34]:

log f(t) = iγt− |ct|α (1 + iβ · sign(t) · ω(t, α)) , (3.12)

where

ω(t, α) =

{

tan(απ/2), α 6= 1
2
π log |t| , α = 1,

(3.13)

and 0 < α ≤ 2 is called the characteristic exponent. For the other parameters we have
the constraints −1 ≤ β ≤ 1, γ ∈ R, and c > 0.

Special cases with closed form expressions are the Gaussian (α = 2) and the Cauchy
distribution (α = 1, β = 0).
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Figure 3.1: Gray value statistics for natural images. 500,000 pixels were indepen-
dently sampled from the van Hateren database [vHvdS98]. The corresponding gray
value histogram is plotted along with the best fitting α-stable Lévy distribution (see
text) on linear and on logarithmic scale: The theoretical model is an excellent fit for the
data for pixel values up to 6000.

First Experiment: Lévy Fit to Gray Value Histogram

To test our results so far we compute the gray value histogram of 500,000 randomly
sampled pixels from the van Hateren natural image database [vHvdS98] fitted to α-
stable Lévy distribution (3.12) with parameters

(α, β, γ, δ) ≈ (1.01, 1.00, 249.93, 535.56) . (3.14)

The resulting fit 3.1 is excellent except for very bright values (I(x) > 6000) where the
Lévy distribution predicts a slower decline in frequency than empirically observed. It is
not clear whether this discrepancy is due to limitations in the imaging device (saturation)
or indicative for limitations of our mathematical model.

Brightness differences

Now we consider random differences between pixel values. That is, we look at I(x)−I(x ′)
where x and x′ are random, not necessarily adjacent image locations. We need two
propositions from [Nol05]:

Proposition 1. For a stable distribution p we have:

p(x, α,−β,−γ, c) d
= p(−x, α, β, γ, c). (3.15)

Proof. The proof is elementary using the scaling property of the Fourier transformation
on the characteristic function (3.12).
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Proposition 2. If x1 ∼ p(x1, α, β1, γ1, c1) and x2 ∼ p(x2, α, β2, γ2, c2) then x1 + x2 ∼
p(x, α, β, γ, c) with

β =
β1c

α
1 + β2c

α
2

cα
, γ = γ1 + γ2, cα = cα1 + cα2 . (3.16)

Proof. Recall that c > 0. Multiplication of the characteristic functions in the Fourier
domain yields the result.

Thus, we find that the difference statistics computes to

(α, β′, γ′, c′) = (1.18187, 0, 0, 461.407) (3.17)

which, again, is in good correspondence with the empirically observed statistics (Fig-
ure 3.2). For simplicity, we will drop the prime from β ′, c′, γ′ where there is no risk of
confusion.

Writing out the characteristic function with the parameters above yields a Laplacian-like
characteristic function:

log g(t) = − |ct|α . (3.18)

Integration of the characteristic function. To get a simpler form of the corresponding
density we need compute the inverse Fourier transform:

1

2π

∫ ∞

∞
exp(−itx) exp(− |ct|α) dt. (3.19)

Using Taylor expansion of the integration kernel yields
∫ ∞

−∞
exp(−itx) exp(− |ct|α) dt =

∫ ∞

−∞

[ ∞
∑

k=0

1

k!
(−itx)k

]

exp(− |ct|α) dt

(∗)
=

∞
∑

k=0

1

k!
(−ix)k

∫ ∞

−∞
tk exp(− |ct|α) dt,

(3.20)

assuming uniform convergence at (∗). This table shows the first approximations to (3.19)
for different choices of k:

k Approximation

0
Γ(1+ 1

α)
πc

1
Γ(1+ 1

α)
πc

2
Γ(1+ 1

α)
πc − x2Γ (α+3

α )
6πc3

3
Γ(1+ 1

α)
πc − x2Γ (α+3

α )
6πc3

4
Γ(α+5

α )x4

120πc5
− Γ (α+3

α )x2

6πc3
+

Γ (1+ 1

α)
πc

5
Γ(α+5

α )x4

120πc5
− Γ (α+3

α )x2

6πc3
+

Γ (1+ 1

α)
πc

6 −Γ(α+7

α )x6

5040π c7 +
Γ(α+5

α )x4

120πc5 − Γ (α+3

α )x2

6πc3 +
Γ (1+ 1

α)
πc

7 −Γ(α+7

α )x6

5040π c7 +
Γ(α+5

α )x4

120πc5 − Γ (α+3

α )x2

6πc3 +
Γ (1+ 1
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πc

(3.21)
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Figure 3.2: Statistics for pairwise difference of random pixels. I(x1) − I(x2) is
computed for randomly selected pixels x1 and x2. The fit is excellent in [−2000, 2000].
The empirical tails are slightly heavier than the model’s.

We recognize the general rule

∑

k=1,3,...

(−1)
k−1

2 Γ(α+k
α )xk−1

πckk!
(3.22)

and note a slight similarity to the expansion of cos(x).

To the best of our knowledge, there is no closed form representation for series (3.22).
However, for some specific choices of α we recognize the series:

α = 1 : c
π(c2+x2)

Cauchy

α = 2 : 1
2c
√

π
exp(−x2/(4c2)) Gaussian

(3.23)

Unfortunately, convergence of (3.22) is rather slow. Even with k ≤ 100 we have a radius
of convergence for our estimated parameters α and c (eqn. (3.17)) of approximately
x ∈ [−600, 600], which expands to [−1100, 1100] with k ≤ 1000.

Second Experiment: Lévy Fit to Gray Value Differences

Using the samples obtained from the van Hateren database we computed differences
between random pixels and corresponding histograms. Again, our model fits the data
well, except for the tails which are slightly heavier than predicted (Figure 3.2).

Comparison with Generalized Laplacians

The generalized Laplacian model was empirically shown to be an excellent fit for deriva-
tive statistics of the Haar-Wavelet type [HM99]. Such derivative statistics can be ob-
tained when we observe I(x1)− I(x2) where x1 and x2 are neighboring pixels as opposed
to two randomly sampled locations.
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Figure 3.3: Statistics for pairwise difference of neighboring pixels. I(x1)− I(x2)
is computed for neighboring pixels x1 and x2. Fig 3.3(a) shows the fit of the Lévy
distribution for general (non-neighboring) pixel values. Even when the parameters of
the distributions are fitted to the new histogram (Figure 3.3(b)) the results are not
convincing as the log-scale plot (Figure 3.3(c)) reveals.

It is interesting to observe differences between the statistics of the generalized Laplacians
and the Lévy statistics (3.22). For instance, it is easy to see that at the origin the first
derivative of (3.22) exists and is zero. In contrast, the first derivative of the generalized
Laplacian does not exist at the origin, and its upper and lower limits are non-zero.

In Figure 3.3 we show the statistics of gray value differences between neighboring pixels.
The histogram is much stronger peaked at 0. For comparison, we show the Lévy distri-
bution corresponding to the parameters computed above (3.17). Evidently, these are two
very different distributions. Re-fitting the new data improves the results (Figure 3.3(b)),
but the log-scaled plot (Figure 3.3(c)) shows that the Lévy model is qualitatively differ-
ent from the observed histogram.

At this point we need to revisit the assumptions of our model (p. 17): The only difference
between Figure 3.2 and Fig. 3.3 is that in the latter spatial correlations play a role while
they are eliminated in the first experiment. In a sense, the Lévy model provides a
baseline describing how images would look like if there was no highly structured world
outside. Figure 3.3(a) visualizes: The entropy of the Lévy model (≈ 12.2 bit) is about
40% larger than the entropy of the corresponding generalized Laplacian (≈ 8.6 bit). If
the Lévy model were accurate images would look a lot more random.

3.2 A Variational Approach to Image Segmentation

In the light of the ideas above, we decided to capture statistics of natural images us-
ing generalized Laplacians fitted to marginal histograms of linear filter responses. The
Kullback-Leibler (KL) distance between the Laplacians then serves as a distance mea-
sure on the images (cf. Figure 3.4). The following section describes the approach in
detail.
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(a) Image (b) Filter response
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Figure 3.4: Overview. An image (a) is filtered by a linear filter. From the resulting
filter response (b) the marginal histogram (dotted line) is extracted and a generalized
Laplacian (solid line) is fitted to the histogram (c). The parameters (α, s) of the gener-
alized Laplacian serve as image descriptors.

3.2.1 Parameter Estimation

As mentioned above, the basis of our approach is the statistical model

p(z) =
α

2sΓ(1/α)
exp(− |z/s|α)

for the filter response z of a linear filter applied to natural images.

The generalized Laplacian model (3.7) has two parameters, s and α, which are related
to variance σ2 and kurtosis κ of the filter response by

σ2 =
s2Γ(3/α)

Γ(1/α)
κ =

Γ(1/α)Γ(5/α)

Γ2(3/α)
. (3.24)

Figure 3.5 illustrates the nonlinear mapping from the measured statistics (σ, κ) to the
model parameters (s, α) in (3.7). When κ > 9/5 we can solve the right equation nu-
merically for α and determine s via the left equation. Mathematically, we cannot model
distributions with κ ≤ 9/5 as for α → ∞ the generalized Laplacian approaches the
uniform distribution centered at 0, the kurtosis of which equals 9/5. This is not a severe
restriction, however: In the experimental section (Section 3.2.8 and Figure 3.8(a)) we
show that such statistics are very rare in natural images.

We found experimentally (Section 3.2.8) that model (3.7) fits a large range of linear filter
responses very well. In particular, we examined differences between steerable pyramid
filters, quadrature mirror filters, or the well-known Haar wavelet and Daubechies wavelet
of order 3. In the following, these filters are abbreviated by spn, qmfn, haar, and daub3,
where n is an integer encoding the number of filter orientations. These results are
in line with findings on simple derivative filters reported by Huang and Mumford

[HM99, Hua00].
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(a) Filter response parameters.
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Figure 3.5: The role of nonlinear parameter mapping. Standard deviation σ and
kurtosis κ of the filter responses are mapped nonlinearly according to (3.24) to density
parameters α and s. Note, that the left part of (a), where most points are located,
is spread after mapping. Conversely, the area on the right of (a), where relatively few
points are situated, is compressed. The points depicted are 4167 measurements collected
from the van Hateren database using a linear derivative filter. The labeled grid visualizes
the nonlinearity of the transformation.

3.2.2 Choice of Distance Measure

The general idea behind our segmentation approach is to compute two image densities,
pin and pout, for each image. One describes the interior region of a segmentation, the
other describes the exterior region. We will show later (Section 3.3) how to extend this
approach to the multiclass case with more than two image regions.

If pin and pout are our basic image descriptors the question arises how to measure
(dis)similarity between two given densities. This question is important, since in our
variational framework it will be the similarity measure that drives the evolution of seg-
mentation boundaries.

Natural candidates for probabilistic distances measures are the Kullback-Leibler diver-
gence D(p||q) which measures information loss when distribution p is approximated by a
different distribution q [CT91]. χ2 is a very popular statistical goodness-of-fit test that
allows the density parameters to be estimated from data. The Kolmogorov-Smirnov test
is a divergence measure between probability measures that reportedly works well even
with small data samples, and the Anderson-Darling test is a variant which places equal
weight along the cumulative probability function [AD52]. A priori it is not clear which
of these distance measures should be preferred.

To answer this question we carried out a small-scale texture retrieval experiment: The
Brodatz database of texture images [Bro66] was divided into patches. Specifically, we
extracted 16 image patches of size 100× 100 pixels non-overlappingly from 32 Brodatz

images. These patches were filtered with different filter banks, and statistics were ex-
tracted. Then each patch was used as a query patch and the nearest neighbor patch
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was found from the remaining ones using different distance measures. In particular, we
computed σ, κ, α, and s for each image and measured distances using the `1 norm, KL di-
vergence for the generalized Laplacian (KL), non-parametric KL divergence on the filter
response histograms (kl), as well as Kolmogorov-Smirnov (ks), Anderson-Darling (ad)
and χ2, also on the filter response histograms. For each filter bank and each distance
measure we used the max, mean, and median operator to map the distances between
the individual filters in the filter bank to a single number.

The retrieval error rates are depicted in Table 3.1: It reveals that working on the raw
variables σ, κ or α, s is not advisable. The probabilistic distance measures work much
better. The parametric KL divergence (KL) performs very well, especially with the
qmf16 and the sp3 filter bank. Surprisingly, non-parametric KL divergence (kl) fails to
yield acceptable retrieval rates. A possible explanation is that we found it to be quite
sensitive against histogram binning effects, and our particular binning might not have
been optimal for the task at hand. On the other hand, Kolmogorov-Smirnov, Anderson-
Darling, and χ2 perform well on the histogram data.

We find that the parametric KL divergence measure performs competitive with the
non-parametric distance measures. Given its simplicity this is quite surprising. Since
the parametric KL divergence also leads to convenient variational formulations (Sec-
tion 3.2.5) we adopt it for our further experiments.

3.2.3 MDL-Criterion for Segmentation

Our goal is to partition the image domain Ω into two, regions Ωin and Ωout separated by
a contour C such that the local image statistics are “close“ to the global statistics within
Ωin or Ωout, respectively. More precisely, if px denotes the statistics of a small window
Wx centered at image location x, and if pin and pout denote the statistics of the interior
and exterior regions Ωin and Ωout, respectively, then we want to minimize

Emdl(Ωin,Ωout) =

∫

C
ds+

∫

Ωin

D(px||pin)dx+

∫

Ωout

D(px||pout)dx. (3.25)

Here D(p||q) = −
∫

p(z) log(p(z)/q(z))dz is the Kullback-Leibler (KL) distance between
densities p and q. Note that (3.25) fits into Zhu and Yuille’s region competition frame-
work [ZY96] when Pin/out ∝ exp(−D(px||pin/out)) are the probabilities for the region
models and the local image features Ix are given by the distributions px.

The motivation for energy (3.25) is that it can be linked to the length of a hypothet-
ical image code [WB68, Ris78] based on two generalized Laplacians pin and pout: We
encode the filter response image using either pin or pout as models. Assuming densities
are truly Laplacian, encoding a pixel x with model px estimated from Wx has average
length H(px), H denoting Shannon entropy. Encoding it using the model for one of
the regions Ωin or Ωout instead requires a code of average length H(px) +D(px||pin/out).
KL-distance is nonnegative, therefore (3.25) describes the additional coding effort we
face when encoding x with the models for one of the regions. The first integral in (3.25)

24



3
.2

.
A

V
aria

tio
n
a
l
A

p
p
ro

a
ch

to
Im

a
g
e

S
eg

m
en

ta
tio

n

σκ/`1 αs/`1 KL kl ks ad χ2

max avg med max avg med max avg med max avg med max avg med max avg med max avg med

sp0 98 86 108 126 128 285 62 60 94 196 290 298 44 40 56 41 37 53 66 29 53
sp1 54 25 46 55 40 91 25 20 26 40 185 255 31 18 16 28 24 23 44 21 21
sp3 60 23 31 54 36 40 22 12 18 28 193 230 18 16 14 21 17 18 30 17 14
sp5 73 26 25 54 28 35 31 23 19 35 164 220 31 18 14 29 21 14 34 20 14

qmf9 67 16 28 74 35 68 15 13 17 83 235 254 36 12 43 16 11 31 79 14 45
qmf12 71 14 29 69 32 71 15 12 19 71 233 234 32 14 55 20 11 29 75 14 39
qmf16 57 12 30 57 33 71 12 8* 11 44 185 207 32 13 24 22 11 18 58 8* 30
haar 64 19 31 77 36 106 24 12 26 119 309 317 51 12 41 26 17 30 74 14 26

daub3 74 18 39 74 40 79 22 15 18 88 209 218 45 16 42 30 13 30 76 14 35

Table 3.1: Comparison of distance measures. Errors for a texture retrieval experiment are reported for different choices
of filters (rows) and different choices of distance measures (columns). See text for details.
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Chapter 3. A Parametric Model for Variational Image Segmentation

measures the length of the separating contour C, ensuring that the membership relation,
that is, whether a specific point x belongs to Ωin or to Ωout, will be inexpensive to
encode [Lec89].

The KL-distance between two generalized Laplacians p and q with parameters (sp, αp)
and (sq, αq) can be computed conveniently: First, evaluate (3.24) for sample estimates
on the left hand sides, then insert the resulting values for the parameters (sp, αp, sq, αq)
into the following expression:

D(p||q) =
(

sp

sq
)αqΓ(

1+αq

αp
)

Γ( 1
αp

)
+ log

(

sqΓ(1 + 1
αq

)

spΓ(1 + 1
αp

)

)

− 1

αp
. (3.26)

Note, that the hypothetical image code described above is only optimal if adjacent pixels
in the filter response are statistically independent. Spatial correlations of filter responses
at neighboring locations are not exploited. For an efficient real-world coding scheme this
would be mandatory.

3.2.4 Combining Filter Responses

Given the statistics for a set of filter responses, how do we combine information gathered
at different scales and orientations? In this work, we strive for a generic measure not
optimized for any particular set of textures or filters, so feature selection schemes are
not directly applicable.

We propose, as a first approximation, to treat the statistics of individual filter responses
as statistically independent. Under this assumption the individual KL-distances simply
add up so that we can minimize the average distance collected over all linear filters i:

Emdl(Ωin,Ωout) =

∫

C
ds +

∑

i

[
∫

Ωin

D(px,i||pin,i)dx+

∫

Ωout

D(px,i||pout,i)dx

]

(3.27)

Here pin/out,i denotes the probability density function modeling the response of filter i in
region Ωin/out and px,i is the corresponding density for a window Wx centered at location
x in the image plane.

It is known that in reality the independence assumption does not hold. For orthogo-
nal wavelet bases normalization schemes have been proposed to remove dependencies
between filter responses at different scale and orientation [BS99, WSW01]. In this first
implementation of our approach, however, we did not incorporate any such scheme.
While in theory this is clearly suboptimal, our experiments (Section 3.2.8) suggest that
the model is sufficiently accurate for many real-world scenes.

3.2.5 Level Set Formulation

In this section we incorporate our statistical distance measure into a level set formulation.
The update equations determining the dynamics of the segmentation are rigorously
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3.2. A Variational Approach to Image Segmentation

derived, taking into account all region-dependend terms, by computing the first variation
of the corresponding area integrals.

Energy Functional

We minimize energy (3.27) within the region-based variational framework of Chan and
Vese [CV01]. The framework applies to energy functionals of the form

E(φ) =

∫

Ω
kb(x) |∇φ| δ(φ)dx + λ1

∫

Ω
kout(x, φ)H(φ)dx + λ2

∫

Ω
kin(x, φ)(1 −H(φ))dx.

(3.28)

Here φ : R
2 → R denotes the embedding level set function, the zero-level of which

represents segmentation boundaries. H : R → {0, 1} is the step function and δ Dirac’s
delta function. kb(x), kin(x, φ), and kout(x, φ) represent the boundary, interior, and
exterior energy contributions at a location x and for a given level set function φ. Finally,
λ1 and λ2 weight the relative importance of the interior and exterior energy terms against
boundary energy. In the following we usually drop the arguments φ and x for brevity.

Chan and Vese’s original gray-value based image model [CV01] fits into this framework
as a special case with











kb = 1

kin = |u0 − cin|2

kout = |u0 − cout|2 ,
(3.29)

whereas with










kb = 1

kin =
∑

iD(px,i||pin,i)

kout =
∑

iD(px,i||pout,i)

(3.30)

energy (3.27) is obtained.

First Variation and Boundary Update

The variational update φ̇ = −〈E′(φ), ψ〉, ∀ψ, of the level set function reads1 (Sec-
tion 2.1.3, eqn. (2.9)):

∂E

∂φ
=

∂

∂φ

[
∫

Ω
kb |∇φ| δdx

]

+

∫

Ω
(λ1k

out − λ2k
in)δψ dx

+

∫

Ω

(

λ1
∂kout

∂φ
H + λ2

∂kin

∂φ
(1−H)

)

ψ dx. (3.31)

1To save horizontal space we abbreviate 〈E′(φ), ψ〉 by ∂E/∂φ.
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The third term, which is omitted in [CV01], originates from applying the product rule to
the area integrals and thus takes into account that k in and kout also depend on the level
set function φ. After some tedious calculations (Section 2.1.3) and with the shorthands
n = ∇φ

|∇φ| and c = div(n) we arrive at (eqn. (2.15))

∂E

∂φ
=

∫

C

(

−∇kbn− kbc+ λ1k
out − λ2k

in
)

ψ ds

+

∫

Ω

(

λ1
∂kout

∂φ
H + λ2

∂kin

∂φ
(1−H)

)

ψ dx . (3.32)

We point out that this formula was recently derived in a different way in [JBBA03]
based on the calculus of shape optimal design [SZ91] which, in turn, relies on previous
mathematical work like, e.g., [Sim80].

Derivation of the Model’s Area Term

Let us examine more closely the area integral in (2.15). As mentioned above in eqn. (3.30)
we model the local coding cost w.r.t. the interior region as

kin =
∑

i

D(px,i||pin,i). (3.33)

Recall that the probability density functions are given as generalized Laplacians with
two parameters s = s(α, σ2) and α = α(κ) which depend themselves on kurtosis κ and
variance σ2 measured both locally in Wx and globally in Ωin. Therefore, we may write
more precisely

kin =
∑

i

D(p(α(κx,i), s(α(κx,i), σ
2
x,i))||p(α(κin,i), s(α(κin,i), σ

2
in,i))). (3.34)

Here κin,i and σ2
in,i depend on the area Ωin and thus vary with the level set function

φ. Let us drop the index i in the following discussion, thus focusing on a single filter
response only.

With a slight abuse of notation, the derivative then reads

∂kin

∂φ
=

∂D

∂κin

∂κin

∂φ
+

∂D

∂σ2
in

∂σ2
in

∂φ
, (3.35)

where the computation of the partial derivatives ∂D/∂κin and ∂D/∂σ2
in is long but nev-

ertheless elementary: Starting from the analytical formulation of the KL-distance (3.26)
and inserting the relations (3.24) solved for α and s it is easily obtained.

The statistics depending on the area form a hierarchy of region-dependent terms:

κin =

∫

Ωin

(x− µin)
4

|Ωin|σ4
in

dx σ2
in =

∫

Ωin

(x− µin)
2

|Ωin|
dx

µin =

∫

Ωin

x

|Ωin|
dx |Ωin| =

∫

Ωin

dx. (3.36)
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In the level set formulation (3.28) we replace the integrals over Ωin by integrals over
Ω weighted by the step function H. Now, taking the derivative w.r.t. φ yields (cf.
Appendix 3.2.6)

∂σ2
in

∂φ
= −

∫

Ω

(x− µin)
2

|Ωin|2
H dx

∫

Ω
δψ dx+

∫

Ω

(x− µin)
2

|Ωin|
δψ dx (3.37)

and

∂κin

∂φ
=

∫

Ω

−4(x− µin)
3

|Ωin| σ4
in

H dx

[
∫

Ω

−x
|Ωin|2

H dx

∫

Ω
δψ dx+

∫

Ω

x

|Ωin|
δψ dx

]

(3.38)

+ 2σ2
in

∫

Ω

(x− µin)
4

|Ωin|σ8
in

H dx

[
∫

Ω

(x− µin)
2

|Ωin|2
H dx

∫

Ω
δψ dx−

∫

Ω

(x− µin)
2

|Ωin|
δψ dx

]

−
∫

Ω

(x− µin)
4

|Ωin|2 σ4
in

H dx

∫

Ω
δψ dx+

∫

Ω

(x− µin)
4

|Ωin|σ4
in

δψ dx.

With (3.35) these terms form the area derivatives in (2.15).

3.2.6 Derivation of the Area Terms

We start from the relations (3.36) and replace the integrals over Ωin by integrals over Ω
weighted by the step function H. Taking the derivative w.r.t. φ yields

∂σ2
in

∂φ
=

∂

∂φ

∫

Ω

(x− µin)
2

|Ωin|
H dx =

∫

Ω

∂

∂φ

[

(x− µin)
2

|Ωin|

]

H +
(x− µin)

2

|Ωin|
δψ dx (3.39)

and
∂

∂φ

[

(x− µin)
2

|Ωin|

]

= 2
µin − x
|Ωin|

∂µin

∂φ
− (x− µin)

2

|Ωin|2
∂ |Ωin|
∂φ

(3.40)

and finally
∂ |Ωin|
∂φ

=

∫

Ω

∂H

∂φ
dx =

∫

Ω
δψ dx. (3.41)

Collecting these terms and using
∫

Ω(µin − x)H dx = 0 yields (3.37).

The derivation of ∂κ/∂φ proceeds in the very same manner:

∂κin

∂φ
=

∂

∂φ

∫

Ω

(x− µin)
4

|Ωin| σ4
in

H dx =

∫

Ω

∂

∂φ

[

(x− µin)
4

|Ωin| σ4
in

]

H +
(x− µin)

4

|Ωin| σ4
in

δψ dx (3.42)

=

∫

Ω

−4(x− µin)
3

|Ωin|σ4
in

∂µin

∂φ
H − (x− µin)

4

|Ωin|2 σ8
in

(

σ4
in

∂ |Ωin|
∂φ

+ |Ωin|
∂σ4

in

∂φ

)

H +
(x− µin)

4

|Ωin|σ4
in

δψ dx

where

∂µin

∂φ
=

∂

∂φ

∫

Ω

x

|Ωin|
H dx =

∫

Ω

−x
|Ωin|2

∂ |Ωin|
∂φ

H +
x

|Ωin|
δψ dx

= −
∫

Ω

x

|Ωin|2
H dx

∫

Ω
δψ dx+

∫

Ω

x

|Ωin|
δψ dx (3.43)
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Figure 3.6: KL-Segmentation with Normalized Cut. A similarity matrix, derived
from KL-distances between locally fitted generalized Laplacians (see text), was treated
within the classical normalized cut framework. No effort was undertaken to enforce
particularly smooth partitions. The blocky segmentation boundaries are an artifact of
our particular implementation.

and

∂σ4
in

∂φ
=

∂

∂φ

(
∫

Ω

(x− µin)
2

|Ωin|
H dx

)2

= 2σ2
in

∫

Ω

∂

∂φ

[

(x− µin)
2

|Ωin|

]

H +
(x− µin)

2

|Ωin|
δψ dx.

(3.44)

Inserting the various terms into each other, yields (3.38).

3.2.7 Relation to Established Segmentation Approaches

The image model we employ can potentially be useful within alternative segmenta-
tion frameworks based on graph cuts [SM00, KSSC03], density clustering [PHB99], or
within the image parsing framework [TZ02]. For graph cut methods, the KL-distances
D(px||px′) between generalized Laplacians px and px′ is easily translated into a similarity
value wxx′ = exp(−D(px||px′)/c) which can then be treated, for instance, by normalized
cut. In Figure 3.6 we show, as a mere proof of concept, results obtained when such simi-
larity graphs are partitioned by normalized cut. The scaling constant c was chosen as the
mean KL-distance observed in the images, and the images were subsampled to reduce
the size of the eigenvalue problem to approximately 1000 × 1000 matrix entries. The
results roughly resemble those of the level set implementation and could further be im-
proved by integrating a smoothing term in the similarity measure and by implementing
a more sophisticated approximation method [FBCM04] to reduce block-artifacts.

Note, however, that in the graph cut framework there are no explicit models pin and
pout for the complete interior and exterior image regions Ωin and Ωout. Only similarities
between locally estimated image models px are used. In connection with our approach
this might be a drawback as the global estimation over the larger image regions Ω in and
Ωout is usually more reliable than the local models estimated from small image windows:
During a typical PDE evolution the region models pin and pout are refined iteratively
until they represent their corresponding image regions quite accurately. This is not
possible for non-iterative optimization methods.
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Conversely, our framework can benefit from employing alternative image models instead
of parametric generalized Laplacians. Bessel K forms, derived from an image model based
on weighted superposition of transparent objects, are suggested to represent broad image
classes [SLG02]. Similarly, Weibull and power-law distributions were recently proposed
and evaluated on thousands of natural images [GS03]. The beauty of these parametric
models is that, while depending on few parameters only, they apply in rather broad
contexts, and in some cases statistical goodness-of-fit tests are readily available.

When more flexibility in image modeling is needed, in particular for images with regular
textures, mixture models [BCGM98, PD02, WCH03] and non-parametric models [TM01,
RBD03] come into play. These can, in principle, model empirical densities to arbitrary
precision. However, in order to avoid over-fitting within unsupervised settings, care must
be taken that model complexity is kept under control. Also, KL-distances can in general
no longer be evaluated analytically.

Empirical densities represented by histograms of filter responses also provide greater
modeling capacity [ZWM98]. They fit into framework (3.28) when the parametric KL-
distance in (3.30) is replaced by the discrete KL-distance between histograms. However,
this solution might not be optimal as results can be sensitive to the chosen histogram
bin-size. Therefore, more robust statistical measures, such as earth movers distance, χ2,
Kolmogorov-Smirnov, or the Anderson-Darling statistics seem more promising [PRTB99,
RTG00, LW03, GS03].

Ideally, the user would not be required to decide for a particular image model or for the
number of different image regions to expect a priori, but multiple models of different
complexity would compete to explain the image during the course of optimization. This
leads to a model selection problem which can in principle be treated within an MDL
framework [Lec89, HY01]. While extensions of the Chan and Vese framework to multiple
image regions [VC02] and models [CSS06] have been proposed, it is unclear if they
generalize to a full MDL approach with multiple image models of different modeling
capacity. Currently, methods from non-convex optimization are employed to handle
such problems [Lec89, ZLW00].

3.2.8 Experiments

Now we describe extensive computational studies of the performance of our model. We
validate the use of generalized Laplacian densities for steerable pyramid filter response
statistics of natural images, perform experiments in texture retrieval and synthesis to un-
derstand what image features are captured by our model, and show sample segmentations
on natural and artificial images. We compare our approach to a standard second-order
variational model for image segmentation and demonstrate that it performs well.
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sp0 sp1 sp3 sp5 qmf9 qmf12 qmf16 haar daub3

KL-dist 0.018 0.011 0.012 0.014 0.016 0.016 0.017 0.016 0.017
Entropy 2.274 2.070 1.996 2.004 1.933 1.932 1.938 1.994 1.966

KL/entropy 0.008 0.005 0.006 0.007 0.009 0.009 0.009 0.008 0.009

Table 3.2: Model fit. Medians of KL-distances between histograms and parametric
model (3.7) measured over 4167 pictures from the van Hateren database [vHvdS98] for
different sets of filters. For comparison, median entropies of the filter responses are also
reported: Only a small fraction of the information present in the histograms is ignored
(last row).

Filter Selection and Model Validation

Various linear transformations of images have been used in conjunction with the model:
The discrete cosine transform [RG83], steerable pyramids [FA91, SF95, SA96], and dif-
ferent orthogonal wavelets [Mal98, HM99].

Before focusing on segmentation (Section 3.2.8) we conducted experiments to select a
suitable filter bank and to verify that the restriction on the kurtosis of the filter response
to be greater than 9/5 is met in practice (Section 3.2). Following [HM99] we used the
van Hateren database of natural images [vHvdS98] for evaluation and removed multi-
plicative constants from the images by first log-transforming them and then subtracting
their log-means.

Table 3.2 summarizes our results: We display the median of the KL-distance between the
filter response histograms (20 bins) and a generalized Laplacian with identical variance
and kurtosis. For comparison, we also report the histograms’ average entropy and the
median of the quotient of these values. The results show that almost all information in
the histograms is captured by the parametric model. Importantly, the same holds for
densities estimated locally from moderately small image patches (Figure 3.7). In the
following, we perform all experiments using the steerable pyramid bank sp3 with four
oriented sub-band filters and over three scales.

In Figure 3.8(a) we show the log-histograms of the kurtosis κ for each individual filter
determined for all 4167 images of the database. Two things are remarkable: First, the
distribution of κ follows closely a shifted exponential distribution. Second, the minimal
values of κ encountered are well above the critical value of 9/5. Thus, distributions that
violate the kurtosis-constraint of our model do not occur in natural images.

Clearly, during segmentation we also work with small parts of images for which small
values for kurtosis are observed. Especially very homogeneous image regions like sky or
plain street occasionally lead to untypical filter response histograms (Figure 3.7). To see
how frequently this happens in reality, we randomly sampled over 700,000 image patches
of size 102, 202, 302, 402, 502, 752, and 1002 pixels from the van Hateren database. For
each patch size we counted how often the constraint κ > 9/5 was violated. The relative
frequencies are shown in Figure 3.8(b): Only for the two smallest patch sizes, corre-
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patch size sp0 sp1 sp3 sp5

10× 10 0.163 0.144 0.144 0.162
20× 20 0.053 0.045 0.046 0.054
30× 30 0.032 0.025 0.025 0.032
40× 40 0.023 0.017 0.017 0.023
50× 50 0.019 0.013 0.014 0.018

100 × 100 0.010 0.007 0.007 0.009

(a) unstructured (b) histogram

(c) periodic (d) histogram

Figure 3.7: Influence of window size. How does the size of Wx influence the accuracy
of the parametric model px in modeling the filter histogram? In the table the quotient
KL-distance/entropy (cf. Table 3.2) is depicted for 50.000 image patches randomly
selected from the van Hateren database. The bigger the images the more accurate is the
fit between histogram and Laplacian. Two 50×50 image patches representative for very
bad fits are depicted on the right: Unstructured areas like sky or street (Figure 3.7(a))
and areas with regular, periodic structure (Figure 3.7(c)) are most problematic.

sponding to the bars labeled “1” and “2”, violations were found regularly. For patch
sizes of size 30 × 30 or larger violations were very rare. In the segmentation experi-
ments reported below we treated these cases as outliers, replacing κ with a default value
slightly larger than 9/5. We found that this did not lead to a noticeable deterioration
of segmentation quality.

Texture Synthesis Experiment

To get an intuition for which image features are captured by the generalized Laplacians
we synthesized texture images using our model. For computational efficiency we did not
resort to the Gibbs sampler but modified the fast pyramid-based algorithm of Heeger

and Bergen [HB95] instead. This greedy algorithm enforces filter histogram similarity
between a target image and a source image initialized to random noise over different
scale and orientation bands of a steerable pyramid. In contrast to Heeger and Bergen

we did not fit the complete filter histograms but only their generalized Laplacians. A
similar approach was taken in [SLG02] where Bessel K forms and the Gibbs sampler
were used to synthesize texture images from a larger number of linear filter responses.

Figure 3.9 shows some results: While our – from the viewpoint of image synthesis overly
simple – method does not produce realistically looking textures, it appears subjectively
that some discriminative information essential for image segmentation such as predom-
inant orientation is retained.
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(a) Log-histogram of κ for complete images.
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(b) Outlier statistics for small image patches.

Figure 3.8: Check for pathological statistics. Figure (a) shows the log-histogram of
kurtosis κ measured over 4167 images from the van Hateren database [vHvdS98] for a
steerable pyramid filter bank with three scales (rows) and four orientations (columns).
Minimal and median values for κ are listed in the individual image captions. The
histograms are very regular, and for each filter κ is well above 9/5, thus no pathological
cases are present in the database. Figure (b) shows the relative frequency of outliers
with κ < 9/5, measured over approximately 700,000 randomly sampled image patches
of size 102, 202, 302, 402, 502, 752, and 1002, labeled 1 (size 102) to 7 (size 1002). Outliers
are frequent with patch sizes smaller than 30 × 30 only.

Supervised and Unsupervised Segmentation with Level Sets

To learn how our segmentation method performs on a set of standard images, we com-
posed randomly selected textures from the Brodatz database and arranged them in a
texture collage with a cross-shaped inlay of one texture in another (Figure 3.10). We
segmented 100 texture collages using (2.9) without area derivatives and with fixed de-
fault parameters: While in our experience the window size is an important parameter
and should be chosen not too small, the choice of λ1,2 is not critical. In the experiments
we chose λ1 = λ2 = 1 and window size |W | = 80 × 80 pixels. The texture collages were
of size 512 × 512. For comparison, we implemented an image model based on second
order statistics (cf. [ZY96, eqn. (20)]):
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∑
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(3.45)

This model should work well for images where the mean is the most important region
descriptor (Figure 3.13(h)). Our Brodatz-collages are of such type: The individual
texture images usually are quite homogeneous, so filter response differences are likely to
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Texture Histograms Laplacians Texture Histograms Laplacians

Figure 3.9: Texture synthesis. Textures from the VisTex database are reproduced
using the histogram-based algorithm of Heeger and Bergen [HB95] and a simplified
version which uses only image features captured by our model. All images were synthe-
sized using identical filters and the same number of iterations. This illustrates how our
model captures some structure of the image.

Figure 3.10: Sample segmentations. Brodatz texture collages segmented with KL-
distance (solid line) and second order statistics (dotted line) with default parameters
set. The KL-distance captures the cross-shaped inlay better than second order statistics.
Here, we show some examples out of a large number of segmentation experiments, the
statistics of which is given in Table 3.3. The image on the right is not successfully
segmented by either method.

origin from texture boundaries.

We ran both image models for 100 iteration steps, i.e., well after we expected conver-
gence, on each texture collage, using the same variational framework (Section 3.2.5) for
energy minimization. For increased speed we computed the image statistics on a sub-
sampled image and interpolated the result on the whole image. This makes the region
boundaries look slightly smoother than one would otherwise expect. As both models are
affected in exactly the same way this should not affect the model comparison. We finally
determined the percentage of correctly segmented pixels. We found (see Table 3.3) that
the average performance (median) as well as the performance on difficult images (25%
quartile) of our model was significantly better than the performance of model (3.45).

We then evaluated the importance of the area derivatives, which are often omitted
in variational segmentation implementations. We took the first 100 images from the
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reference model proposed model improvement

median 0.65 0.81 25%
q-25 0.47 0.69 47%
q-75 0.81 0.84 4%

Table 3.3: Comparison of segmentation quality. The percentage of correctly seg-
mented pixels on a set of 100 randomly generated Brodatz texture collages is reported
for our model and for a reference model based on second order statistics. The median
and both quartiles are shown. Our model clearly outperforms the reference model on
average and shows much better performance on difficult images.

q-10 q-90

KL-term −4.0 2.6
Area-term −3.6 · 10−5 2.1 · 10−5

Table 3.4: Importance of the area term. The 10% and the 90% quantiles of equa-
tions (3.46) and (3.47) evaluated on 100 images from the van Hateren database are
reported. The contributions of the area term are five orders of magnitude smaller than
the contributions of the KL-term, indicating that for our distance measure the area
derivatives are negligible.

van Hateren database and computed the area derivative term from (2.9)

λ1
∂kout

∂φ
H + λ2

∂kin

∂φ
(1−H) (3.46)

for an initial segmentation consisting of equally spaced squares distributed over the whole
image (Figure 3.13(a)). For comparison, we computed the KL-term

λ1k
out − λ2k

in, (3.47)

and measured the influence over the whole image.

The results (Table 3.4) indicate that for our choice of distance measure the area deriva-
tives are negligible. This validates common practice and allows for simpler implemen-
tations. Note, however, that this might not hold in general: Recently Jehan-Besson et
al. [JBBA03] reported different results for a different choice of distance measure.

Figure 3.11 to 3.13 show some examples for supervised and unsupervised segmentation
of natural images. In Figure 3.11 we examine an image from the Berkeley database
[MFTM01]. The contour was initialized to equally spaced boxes. As stopping criterion
we computed the improvement of the energy functional (3.28) for every time step and
stopped as soon as it dropped below a previously determined threshold. The same
threshold was used for all experiments. The zebra pattern is captured well by our
model: The contour immediately locks onto the zebra pattern and energy (3.28) (not
shown) drops sharply until the zebras are covered.
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(a) t=0 (b) t=10 (c) t=20 (d) t=50

Figure 3.11: Unsupervised segmentation. Zebras are separated from the back-
ground. Contours were initialized to boxes, stopping was determined automatically
according to E(φ)′.

Figure 3.12 shows a more difficult case: A tree standing in front of a house, casting
a sharp shadow on the house. With this image, unsupervised segmentation merely
separates the irregular regions from the homogeneous sky and parts of the streets (Fig-
ure 3.12(e) – 3.12(h)). In contrast, if the contour is initialized in a supervised way
(Figure 3.12(a)) the model captures the visually dominant tree. However, in the final
segmentation (Figure 3.12(d)) relatively large parts of the shadowed house are captured
as well.

In Figure 3.13 we compare our model with second order statistics (3.46) on an image
from the MIT VisTex database [PGM+95]. The MDL criterion (3.25) separates the
trees from the image fore- and background. This is sensible: The trees form an image
region which is relatively expensive to encode while sky and grassland are comparatively
homogeneous. Using one probability model for the trees and one for the rest of the
image thus minimizes the expected coding length of the image. Second order statistics
simply separates the bright sky from the rest of the image, yielding a less appealing
segmentation.

3.3 Multi-Class Segmentation

So far we were concerned with binary image segmentation. In this section we show how
our approach generalizes to multiple classes. In this regard, a multiphase extension of
the level set method has been suggested by Vese and Chan [VC02] which can readily be
employed for minimizing our energy model.

However, performance considerations and modeling aspects make certain extensions de-
sirable which we will discuss:

Proper boundary-length regularization. As illustrated in Figure 3.14(a), the mul-
tiphase level-set representation [VC02] may suffer from noisy boundaries due to the
representation of multiple classes by only few level sets and the corresponding behavior
of the boundary length regularization term (cf. Section 3.3.3).

Length discretization and fast greedy scheme. The greedy optimization scheme
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(a) t=0 (b) t=10 (c) t=25 (d) t=56

(e) t=0 (f) t=5 (g) t=10 (h) t=22

Figure 3.12: Supervised and unsupervised segmentation. With supervised seg-
mentation the tree is separated from house and car. Unsupervised segmentation fails
in this case: Initialization of the filter response model is to unspecific, yielding a rather
uninteresting segmentation into homogeneous (sky, street) and inhomogeneous regions
(car, tree, house). Note the low image contrast in the lower left part of the tree.

suggested in [SC03] often exhibits good performance. However, due to length term
discretization, it may get stuck in a local minimum (Figure 3.14(b)). We explain this
and our solution in Section 3.3.2.

Emergence of nuisance classes. Approaches based on multiscale filter preprocessing,
i.e., texture and motion analysis, commonly suffer from blurred parameter transitions at
region boundaries, causing undesirable classifications (Figure 3.14(c)). We address this
problem in Section 3.3.4.

It is clear that each of these problems considerably hampers the design of robust and
efficient segmentation schemes.

3.3.1 Multiphase Level Sets

An elegant possibility to generalize the Chan and Vese segmentation framework is to
use multiple level set functions instead of just one. There are various possibilities how,
precisely, to do so. In this section we review some and explain how our approach fits
into the picture.

Original Model of Vese and Chan

Vese and Chan extend their gradient-less image segmentation model [CV01] from bi-
nary segmentation with one level set function to 2m-class segmentation using m level
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(a) t=0 (b) t=10 (c) t=20 (d) t=35

(e) t=0 (f) t=4 (g) t=8 (h) t=12

Figure 3.13: Unsupervised segmentation. Unsupervised segmentation of a natural
scene from the VisTex database [PGM+95]. Contours were initialized to boxes, stopping
was determined automatically according to E(φ)′. The contour evolution at different
time steps is displayed for our model (Figure (a)–(d)) and for second order statistics
(Figure (e)–(h)). The trees in the center of the image are the visually most dominant
element which is reflected by the segmentation with our model. Second order statistics
separates the bright sky from the darker rest of the image, failing to capture the visually
dominant trees.

(a) regularization (b) early convergence (c) texture mixing

Figure 3.14: Main technical problems addressed. (a) Due to approximate length
regularization in Vese and Chan’s multiphase model region boundaries are noisy. (b)
Caused by crude discretization in a greedy level set based optimization scheme contour
evolution will always converge on a solution with long region boundaries. (c) Mixing
effects between adjacent textures lead to nuisance classes at region boundaries: In the
figure sky and trees are separated by a small band of grass. (See text for detailed
explanations.)

set functions [VC02]. Formally, they introduce a vector of level set functions φ =
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(φ1, . . . , φm) and the element-wise Heaviside step function H : R
m → {0, 1}m, H(φ) =

(h(φ1), . . . , h(φm)). Two pixels xi and xj belong to the same class iff H(φ(xi)) =
H(φ(xj)). This class membership relation is encoded in 2m characteristic functions
χI : {0, 1}m → {0, 1} which return one for the H(φ(x)) belonging to class I and zero
otherwise.

For gray level image segmentation the energy functional to optimize reads

E =
∑

1≤I≤2m

[
∫

Ω
(cx − cI)2χI(H(φ(x)))dx + λ

∫

Ω
|∇χI(H(φ(x)))| dx

]

. (3.48)

Unfortunately, this is quite intricate since the indicator functions χI : {0, 1}m → {0, 1}
effectively compute conjunctions of thresholded level set functions:

χ1(H(φ)) = h(φ1) · h(φ2) · h(φ3) · · · (3.49)

χ2(H(φ)) = (1− h(φ1)) · h(φ2) · h(φ3) · · · (3.50)

and so on. For the length term the first variation of the gradient of these functions is
needed. This results in long expressions which are expensive to compute and numerically
difficult to handle. As a workaround, Vese and Chan propose a simplified length energy

Elen =
∑

1≤k≤m

∫

Ω
|∇H(φk)| dx. (3.51)

This energy is easier to optimize: Instead of 2m only m gradients must be computed,
and the individual level set functions are decoupled [AK00]. For an alternative approach
that uses m level set functions to represent m regions which compete pairwise only we
refer to [BW06].

Parametric Multiphase Model

Using the notation introduced in the previous section we get a multiphase version of our
parametric image energy (3.27) by

E =

n
∑

I=1

[
∫

Ω
D(px||pI)χIdx+ λ

∫

Ω
|∇χI | dx

]

. (3.52)

The first integral is a data term which captures how well point x is described by the model
for region I. The second integral is proportional to the total length of the boundaries
between regions and serves for regularization.

Song and Chan’s Fast Optimization

Recently, Song and Chan suggested a discrete level set based optimization scheme to
considerably speed up computation of image segmentations [SC03]. It is based on the

40



3.3. Multi-Class Segmentation

Algorithm 3.3.1 Greedy discrete optimization algorithm

Require: some initial segmentation (not necessarily informative)
1: repeat
2: for all classes I in the current segmentation do
3: estimate pI using the filter response and eqn. (3.24)
4: end for
5: for all pixels x in the image do
6: for all classes I in the current segmentation do
7: preliminary assign class label I to pixel x
8: compute energy (3.52) locally at x using length term (3.55)
9: end for

10: finally assign the class label to x which yielded minimal energy in step 8
11: end for
12: until convergence

observation that energy (3.48) depends on the sign of the level set functions φk only.
The magnitude of the level set functions has no influence.

The authors therefore propose to optimize (3.48) by greedily choosing the φk(x) from
{±1} for each pixel x such that the energy is minimized. The length term (3.51) is
discretized by finite forward differences:

Elen =
∑

i,j,k

√

(uk,i+1,j − uk,i,j)2 + (uk,i,j+1 − uk,i,j)2, (3.53)

where uk,i,j = H(φk(x)) represents the k-th level set function at x = (i, j).

Song and Chan report that this algorithm is very efficient and, as no intricate gradients
are computed, also easy to implement.

3.3.2 Greedy Variational Energy Minimization

In this section we present a discrete greedy optimization scheme to minimize energy (3.52)
fast and reliably. The scheme is derived from the iterated conditional modes (ICM) al-
gorithm [Bes86]. Of course, more recent optimization approaches would be applicable as
well [BVZ01, YFW00, SSV+06]. Still, our scheme turns out to be a careful modification
of the algorithm of Song and Chan (Section 3.3.1) and eliminates some major deficiencies
(cf. Section 3.3.3) while preserving efficiency and performance.

We employ an EM-style algorithm (Alg. 3.3.1) to optimize energy (3.52). Starting from
an initial segmentation it alternates between estimating the region densities pI (Step
2–4) and greedily selecting image labels to minimize eqn. (3.52) (Step 5–11).

The speed improvement is significant: Typically, we need only about 5–10 iterations until
a multiclass model converges as opposed to about 30–50 iterations in the original Vese
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and Chan model. As the inner loops of both algorithms are very similar this directly
translates to a speedup of about 10. Of course, our straightforward level set implemen-
tation might benefit from algorithmic improvements such as implicit schemes [VC02],
narrow-band methods [AS95], or AOS schemes [Wei98] which are not easily translated
to the discrete setting.

A further important improvement to previous methods is that Alg. 3.3.1 directly supports
an arbitrary number of classes. It is not restricted to exactly 2m classes. This accelerates
convergence and makes the model more robust as superfluous degrees of freedom are
avoided.

3.3.3 Difficulties with the Boundary Term

The length term in (3.52) is crucial for good performance of our segmentation model:
Since texture is an intrinsically non-local image property it changes smoothly over re-
gion boundaries. Without proper boundary regularization artifacts emerge at region
boundaries (Figure 3.14(c)).

In this context, the models presented in Section 3.3.1 suffer from two problems: First, the
approximation (3.51) of the length energy minimizes each level set contour length inde-
pendently. This is not identical to minimizing the region boundary length of the resulting
segmentation: Figure 3.14(a) shows an example where insufficient length regularization
causes artifacts at the border between trees and sky. Second, discretization (3.53) is
rather crude and causes segmentations to get stuck too early (Figure 3.16, first row).

To solve the first problem we suggest computing the length term by

Elen =
∑

i,j

√

δ(yi+1,j − yi,j) + δ(yi,j+1 − yi,j). (3.54)

Here yi,j denotes the class label at location (i, j) in the image and δ(·) is a function
returning one iff its argument is zero and zero otherwise. This is a discrete version of the
length term in eqn. (3.52) and a refinement of Song and Chan’s proposal (eqn. (3.53))
which performs length regularization not on the labeled image but on individual level
set functions.

While (3.54) ensures that the correct boundary length is minimized, the problem remains
that contour evolution stops too early. Figure 3.15 illustrates this problem. Here, a small
binary image is displayed along with the change in length energy when individual image
pixels are modified. The result shows that no single change decreases length energy.
Thus, no changes are made, and the image is not smoothed any further. Figure 3.16,
first row, demonstrates that this effect is not restricted to artificial situations but appears
in real-world scenarios.

In order to eliminate this problem we need to better estimate the gradient norm |∇χI |
in (3.52), and we need to allow contours to be located in the image with sub-pixel
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(a) binary image

0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0

0.0 0.0 3.4 0.0 0.0

0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0
(b) length pixel ← black

3.4 3.4 2.0 1.4 2.8

3.4 0.5 0.0 0.0 1.4

2.0 0.0 0.0 0.0 2.0

1.4 0.0 0.0 0.5 3.4

2.8 1.4 2.0 3.4 3.4
(c) length pixel ← white

Figure 3.15: Problems with length discretization. In Figure 3.15(a) a binary image
is displayed. Figure 3.15(b) and (c) show the change in Elen according to eqn. (3.54)
when the individual pixel at position (i, j) is turned black or white respectively. Note
that the change in energy is non-negative over the whole picture. Thus, no pixel is ever
changed, no matter how strong the boundary length energy is weighted.

accuracy. The first objective is achieved by using a length term

Elen =
∑

1≤I≤n

∫

Ω
|∇εχI | dx, (3.55)

where the gradient ∇ε is slightly smoothed. Second, sub-pixel accuracy is achieved
by locating contours not exactly on pixel boundaries, but on interpolated positions
depending on the coding costs of adjacent pixels.

3.3.4 Experiments

In this section we report some experiments that validate our analysis and the algorithm.

Length Regularization Term

In Figure 3.16 we show the contour evolution using the discrete formula for the length
term (Figure 3.16(a) – (d)). Although a large length penalty of λ = 100 is chosen
contours do not vanish. In contrast, with the proposed method (Figure 3.16(e) – (l))
contours look less jagged and steadily vanish with t→∞ for λ = 1 as it is expected.

Detecting Texture Boundaries

Texture-mixing effects on region boundaries regularly lead to nuisance classes causing
problems when not explicitly accounted for in the model (Figure 3.14(c)). We avoid
this problem by detecting texture boundaries explicitly: In our model, we compute
image statistics not only for complete image windows Wx, but also for sub-windows
consisting of the left and right and the upper and lower halves of Wx. If the KL-distance
between two halves exceeds a predefined threshold the presence of a texture boundary
is assumed. In this case the window half which fits worst to the current global models
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(a) t=1 (b) t=2 (c) t=5 (d) t=20

(e) t=1 (f) t=5 (g) t=10 (h) t=20

Figure 3.16: Improved discretization of length term. Graylevel segmentation of the
Mathworks grains image using eqn. (3.54) (Figure 3.16(a) – 3.16(d)) and the proposed
method (Figure 3.16(e) – 3.16(h)). We used λ = 100 (!) for the first method and λ = 1
for the proposed length term. The first length term converges after 5 iterations but gets
stuck and fails to enforce proper length regularization (Figure 3.16(d)). In contrast, the
proposed method finds increasingly smoother segmentations due to a proper boundary
length regularization (bottom row).

pI , measured in terms of KL-distance, is discarded. Together, improved length term
and texture homogeneity criterion successfully eliminate misclassified texture boundaries
(Figure 3.17).

3.3.5 Limitations and Further Work

The limitations of our model are illustrated in Figure 3.18, where a completely unsuper-
vised segmentation starting from a random initialization fails.

In Figure 3.18(b), for instance, we need a meaningful initialization in order to find a
segmentation of a van Hateren image into three classes. A completely unsupervised
segmentation starting from an uninformative initialization as in Figure 3.17(a) would
merely separate the right image half (trees) from the left half (street, building, sky).
The same holds for the Brodatz image collage depicted in Figure 3.18(d). In this
case an uninformative initialization would completely miss the image structure which is
easily recognized by a human observer. Figure 3.18(h) finally shows a case where even
a meaningful initialization does not lead to satisfactory results. In this complex image
the parametric model based on generalized Laplacians (eqn. (3.7)) is not discriminatory
enough to distinguish the dominant objects tree, house (partly shadowed by tree), car,
street, or sky.
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(a) t=0 (b) t=1 (c) t=2 (d) t=3

(e) t=4 (f) t=5 (g) t=6 (h) t=7

Figure 3.17: Unsupervised segmentation. The same scene as in Figure 3.14(a) is
segmented into three classes. Depicted are seven ICM-style iterations starting from
an uninformative initial configuration. After three iterations the length term is acti-
vated. Note that after the first iteration sky and grass are put into the same class
(Figure 3.17(b)). One iteration later this error is corrected (Figure 3.17(c)). The algo-
rithm converged within seven iterations on a visually plausible segmentation.

Concerning our statistical model, it is debatable how many more degrees of freedom are
appropriate. While enhancing the descriptive power of the model, additional degrees
of freedom might cause over-fitting effects in the unsupervised setting. More research
is needed in this context. Images like 3.18(h), on the other hand, indicate that there
are cases where integrating more complex models and corresponding prior knowledge
becomes inevitable (cf. [TZ02]).

Concerning our fast optimization scheme, the reader might argue that the greedy strategy
causes susceptibility to arbitrary initializations in situations as shown in Figure 3.18.
According to our experience, this is not the case, however: Just like continuous level set
implementations, we perform gradient descent on a well-defined objective functional and
converge in most cases to a “good” local minimum. We are not aware of any rigorous
approximation result of level set based optimization regarding the combinatorial problem
of computing the globally optimal segmentation. Further work is needed to close this
gap of theory.

Finally, a further limitation from our viewpoint is that our greedy scheme trivially
converges in a serial (Gauss-Seidel) update mode, but that nothing is known about
the convergence of parallel (Jacobian) updates. Due to the discrete formulation of our
scheme, we expect that further work in this direction will elucidate possible connections
between fast schemes motivated by PDE/level set representations and recent work on
efficient MRF-based optimization algorithms.
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(a) t=0 (b) t=5 (c) t=0 (d) t=7

(e) t=0 (f) t=7 (g) t=0 (h) t=7

Figure 3.18: Limits and failure cases of the model. In Figure (a) a completely unsu-
pervised segmentation with random initialization fails. When starting with a reasonable
initialization a useful segmentation into trees, street/grass/sky and building is attained
within 5 iterations (Figure (b)). The Brodatz collage and Berkeley tiger (Figure (d)
and (f)) also require informative initialization. The conferta image with tree, house, and
cars (Figure (h)) is not properly segmented: Its statistics are not described accurately
enough by our model.

3.4 Summary

In this section we proposed a segmentation algorithm based on a parametric model for
images. Using the generalized Laplacian to model filter response statistics of natural
images (Section 3.1.2) we found that a simple and efficient image segmentation algo-
rithm could be derived using a variational approach (Section 3.2). Although the image
model was extremely compact and captured image statistics very approximately only
(Section 3.2.8), good segmentation results have been obtained (Section 3.2.8). This sug-
gests, that for a class of natural images, image segmentation is a surprisingly simple
task, requiring only little information being processed.

On a more practical level, we extended the original binary segmentation to multiphase
level sets and solve several boundary regularization problems arising with texture seg-
mentation (Section 3.3).
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Chapter 4

Image Models from Non-Negative
Matrix Factorization

In the previous chapter we exploited the statistics of linear filter responses on natural
images to derive a parametric image similarity measure that is useful for segmentation
of a large class of images. The strengths of this approach were simplicity, statistical effi-
ciency, and generality: In principle, the model applies to any image that looks sufficiently
“natural”.

However, this generality can be a burden in certain applications: Often, we already
know what kind of image we will encounter, and almost always this will be a class
much narrower than “natural images”. We might expect images of people, of certain
objects, or images coming from a given surveillance camera. In particular, we might
expect images with a dominant periodic structure, such as buildings or cloth, that have
a characteristic and atypical representation in the filter domain. For such applications,
the general approach presented in Chapter 3 will not work optimally.

We thus need models that can be adapted to target more specific image domains. In
this chapter we develop such models (Section 4.2) and their corresponding optimization
algorithms (Section 4.3).

4.1 Linear Image Models

The approach we adopt in this chapter is to use linear models to represent image patches.
In this section, we briefly review common methods. The key properties we are interested
in are reconstruction accuracy, statistical independence properties, decomposability, and
sparseness. All approaches considered have in common that by varying both, the number
of basis functions to use and the algorithm for selecting them, we can tune the system
to respond more specific or more general w.r.t. image classes.
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4.1.1 Optimal Linear Reconstruction (PCA)

Principal components analysis, also known as Karhunen-Loéve expansion, is a widely
established and reliable tool for visualization, statistics, and data analysis. The idea is
to represent a data set V ∈ R

m×n by basis vectors W ∈ R
m×r and coefficients H ∈ R

r×n.
A PCA basis is the optimal basis w.r.t. the mean-square error criterion:

WPCA = arg min
W,H

‖V −WH‖2F . (4.1)

As it turns out [Fuk90, pp. 400], optimization problem (4.1) is solved by singular value
decomposition of the centered covariance matrix of V . Alternatively, for large data
sets, where computing the covariance matrix is impractical, direct methods can be
used [Wib76, GH96, Row97, TB97]. Overall, PCA is a simple, well-motivated, and
efficient tool for detecting linear structures in data.

4.1.2 Statistical Independence (ICA) and Sparseness

Independent components analysis was first introduced as a procedure to maximize mutual-
information between input and output of non-linear information processing units [BS95].
Maximizing the flow of information through a network of such units as a side effect pro-
duces codes with minimal redundancy of the coding matrix W . This property justifies
the term ICA.

Soon after the seminal information theoretic derivation of Bell and Sejnowski was
published, a large body of literature appeared where different approaches toward ICA
were explored (c.f. [Hyv99] for some references). In particular, Bayesian ICA [Mac96]
was suggested as a probabilistic method which makes its underlying assumptions explicit.

The model assumes zero noise, such that WICA is found by maximizing

max
W,H

∏

ij

p(Hij)

s.t. V = WH.

(4.2)

Here, p(Hij) is a prior probability. The original ICA algorithm is gradient ascent on the
log-likelihood corresponding to (4.2) [Mac96].

Note that when p is a sparse prior and when we drop the zero noise assumption the
sparse coding framework of Olshausen and Field results [OF97]. This connection,
reported first in [Ols96], explains why image bases derived from both methods look
strikingly similar [OF96, BS96].

4.1.3 Decomposability (NMF)

A desirable property of image codes is decomposability in the sense that images are
represented by parts: Parts-based representations are inherently more robust against oc-
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Figure 4.1: Parts-based image representation. Results of NMF on an artificial
data set from [FJ03]. The first row shows the image primitives used. Noise corrupted
versions of these were used for training (second row). NMF successfully constructs a
suitable image base (third row). Note that the basis functions are not simply centroids
in image space: They represent parts which must be composed to form the images. Thus,
they are potentially more general without sacrificing image quality/sharpness.

clusion than are their global counterparts. Further, they are usually easier to understand
and analyze since changes to image or model have local effects only.

Parts-based image representations are related, but not identical to statistically inde-
pendent components. The key difference is that from a parts-based representation we
expect to capture well-defined, localized, semantically relevant, “high-level” image fea-
tures, while independent components can in principle be global or very simple local fea-
tures. E.g., when modeling faces a parts-based representation would represent mouth,
eyes, nose, etc. separately (Figure 4.2) while an ICA representation would still yield
global features [BMS02, Figure 13] that have no immediate interpretation.

Regarding learning decomposable image codes we can work with image patches that are
suitably selected for a given task [BU02]. This offers the benefit that images are always
explained in terms of parts that occur in actual images. However, depending on the class
of images considered, such methods might need a large library of parts or templates to
work accurately enough.

On the other hand, we can extend the trusted PCA model (4.1) by a single constraint
to encourage parts-based representations: Since images are non-negative we can force
image bases and coefficients to be non-negative as well. This leads to the non-negative
matrix factorization (NMF) problem:

min
W,H

‖V −WH‖2F
s.t. 0 ≤W,H .

(4.3)

Restricting image bases and coefficients to be non-negative ensures that a contribution
of a basis vector W•i will not be canceled by other basis vectors’ contributions. This
encourages – but does not enforce – localized representations [LS99, DS04a]. E.g., in
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Figure 4.1 the first two image primitives are decomposed (in frame and corners) while
the second two primitives are not. Using additional sparsity constraints (Section 4.2.2)
finally allows to completely rule out non-local basis functions (Figure 4.2).

4.2 Non-Negative Matrix Factorization and Extensions

In the previous introductory section we argued that non-negative constraints are a
promising direction toward localized, parts-based image models. In this section we
explore this direction further and propose various useful extensions to the basic NMF
model.

NMF was originally introduced to model processes in the physical sciences [SI89, PT94].
In recent years, it has become increasingly popular in machine learning, signal processing,
and computer vision as well [XLG03, HH02, SB03].

4.2.1 The Basic Model

As discussed above, the original NMF problem reads (Section 4.1.3, eqn. (4.3))

min
W,H

‖V −WH‖2F
s.t. 0 ≤W,H ,

and essentially is a principal components model where basis and coefficients are restricted
to the non-negative cone. Although there are algorithms that compute the global opti-
mum for such problems [FV93], these algorithms do not yet scale up to the large scale
problems common in, e.g., machine learning, computer vision, or engineering. As a
result, we will confine ourselves to efficiently compute a local optimum by solving a
sequence of convex programs (Section 4.3.2).

4.2.2 Sparsity Control

Although NMF codes tend to be sparse [LS99], it has been suggested to control sparsity
by more direct means. To this end, Hoyer [Hoy04] proposed recently to use the following
sparseness measure for vectors x ∈ R

n
+, x 6= 0:

sp(x) :=
1√
n− 1

(√
n− ‖x‖1‖x‖2

)

. (4.4)

Because of the relations:
1√
n
‖x‖1 ≤ ‖x‖2 ≤ ‖x‖1 , (4.5)

the latter being a consequence of the Cauchy-Schwarz inequality, the sparseness measure
is bounded:

0 ≤ sp(x) ≤ 1 . (4.6)
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Figure 4.2: Motivation of NMF with sparseness constraints. Five basis functions
(columns) with sparseness constraints ranging from 0.1 (first row, left block) to 0.8 (last
row, right block) on W were trained on the CBCL face database. A moderate amount
of sparseness encourages localized, visually meaningful base functions.

The bounds are attained for minimal sparse vectors with equal non-zero components
where sp(x) = 0 and for maximal sparse vectors with all but one vanishing components
where sp(x) = 1. Where appropriate, we will also write sp(M) ∈ R

n, meaning sp(·) is
applied to each column of matrix M ∈ R

m×n and the results are stacked in a column
vector.

Using this sparseness measure, the following constrained NMF problem was proposed
in [Hoy04]:

min
W,H

‖V −WH‖2F
s.t. 0 ≤W,H

sp(W ) = sw

sp(H>) = sh ,

(4.7)

where sw, sh are user parameters. The sparsity constraints control (i) to what extent
basis functions are sparse, and (ii) how much each basis function contributes to the
reconstruction of only a subset of the data V . In a pattern recognition application the
sparsity constraints effectively weight the desired generality over the specificity of the
basis functions.

Instead using of equality constraints, however, we will slightly generalize the constraints
in this work to smin

w ≤ sp(W ) ≤ smax
w and smin

h ≤ sp(H>) ≤ smax
h . This disburdens

the user from choosing exact parameter values sw, sh, which can be difficult to find in
realistic scenarios. In particular, it allows for smax

h = smax
w = 1, which may often be

useful.
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Consequently, we define the sparsity-constrained NMF problem as follows:

min
0≤W,H

‖V −WH‖2F
s.t. smin

w ≤ sp(W ) ≤ smax
w

smin
h ≤ sp(H>) ≤ smax

h ,

(4.8)

where smin
w , smax

w , smin
h , smax

h are user parameters. See Figure 4.2 and Section 4.4 for
examples.

Finally, note that the sparsity parameters need not necessarily be uniform for all entries
in W or H: By choosing more stringent parameters for some basis functions than for
others one can encourage a decomposition into global and local features at the same
time. This resembles a multiscale approach to image coding. Of course, which specific
parameters to choose depends strongly on the application at hand.

4.2.3 Soft Sparsity Constraints

The formulation (4.8) is often convenient for the user since it guarantees that sparseness
constraints are enforced strictly and accurately. In some situations, however, the user
may have no idea about good choices for the sparsity parameters. Instead of running
elaborate and computationally expensive crossvalidation computations it might be pre-
ferred to specify a sparsity prior in the objective function. This way, one will in general
loose any strict guarantee of the resulting sparseness, but it allows to automatically
balance achieved sparseness and reconstruction error. The corresponding optimization
problem is

min
W,H

‖V −WH‖2F + λhe
>sp(H>) + λwe

>sp(W )

s.t. 0 ≤W,H,
(4.9)

where λw,h weight the relative importance of sparseness over the reconstruction error.
Of course, λw and λh have to be specified by the user as well. However, in (4.9) the
sparseness prior is always active while in (4.8) a overly lax sparseness constraint might
not influence the resulting factorization at all. Overall, it depends strongly on the
concrete application at hand which formulation is preferred.

4.2.4 Prior Knowledge

When NMF bases are used for recognition, it can be beneficial to introduce information
about class membership in the training process. Doing so encourages NMF codes that not
only describe the input data well, but also allow for good discrimination in a subsequent
classification stage. We propose a formulation, similar to Fisher-NMF [WJHT05], that
leads to particularly efficient algorithms in the training stage.
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The basic idea is to restrict, for each class i and for each of its vectors j, the coefficients
Hj• to a cone around the class center µi:

min
W,H

‖V −WH‖2F
s.t. 0 ≤W,H (4.10a)

‖µi −Hj•‖2 ≤ λ ‖µi‖1 ∀i,∀j ∈ class(i). (4.10b)

Note that µi depends on H and is implicitly determined through the optimization pro-
cess. As will be explained in Section 4.3, these additional constraints are no more diffi-
cult from the viewpoint of optimization than are the previously introduced constraints in
(4.8). On the other hand, they offer greatly increased classification performance for some
problems (Section 4.4). Of course, if the application suggests, supervised NMF (4.10)
can be conducted with the additional sparsity constraints from (4.8).

4.2.5 Sparse PCA

For data that is non-negative by nature, e.g., image data, certain physical properties,
probabilities, or equities, NMF is particularly well-suited. However, in situations where
negative values occur we want to allow for negative bases and coefficient vectors as well.
This leads to a sparsity-controlled setting similar to PCA [dGJL04, ZHT05, CJ01]. In
particular, the problem considered reads

min
W,H

‖V −WH‖2F
s.t. smin

w ≤ sp(W ) ≤ smax
w

smin
h ≤ sp(H>) ≤ smax

h ,

(4.11)

which equals (4.8) except for the non-negativity constraints that are omitted.

4.2.6 Transformation Invariance

Much variation in images is due to perspective and affine transformations. For recog-
nition we want to ignore such variation. A common solution is to integrate over the
corresponding transformation. The problem then reads:

min
W,H,θ

‖Tθ(V )−WH‖2F
s.t. 0 ≤W,H.

(4.12)

where T is an operator, parametrized by θ, mapping V to transformed images.
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4.2.7 Missing Values

In some applications missing data is a common annoyance. We model this by a binary
m× nmatrix E, s.t. Eij is 0 if and only if the value Vij is missing. The NMF optimization
problem reads accordingly:

min
W,H

‖E � (V −WH)‖2F
s.t. 0 ≤W,H.

(4.13)

Recall that� is the element-wise matrix product. Thus, hidden values are simply ignored
in the objective function. This is similar to Wiberg’s approach for PCA with missing
values [Wib76].

4.3 Solving NMF Problems

In the previous sections, we presented various optimization problems, completely ignor-
ing if and how they can be solved. Since most NMF problems are intricate non-convex
problems it is not obvious that the models can be optimized efficiently. Fortunately, it
turns out that the problems above are highly structured, so that an elegant geometric
description can be found and efficient and robust algorithms can be devised.

In this section we translate the sparsity-constrained NMF problems into the framework
of second-order cone programming (Section 2.2.2). Within this framework, we develop
sequential convex programs that solve the NMF problems quickly and to high accuracy.

4.3.1 Assumptions

Throughout this section we make the following assumptions:

1. The matrices W>W and HH> are positive definite.

2. smin
h < smax

h and smin
w < smax

w in (4.8).

3. The min-sparsity constraints in (4.8) are essential in the sense that all global optima
of the problem without min-sparsity constraints violate at least one constraint on
W and H.

The first assumption is introduced to simplify reasoning about convergence. In appli-
cations, it will regularly be satisfied as long as the number of basis functions r does
not exceed size or dimension of the training data: r ≤ m,n. Assumption two has been
discussed above in connection with (4.8). Finally, assumption three is natural, because
without the min-sparsity constraint problem (4.8) would essentially correspond to (4.3)
which can be solved relatively easily.
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(a) s = 0.1 (b) s = 0.2 (c) s = 0.5 (d) s = 0.9

Figure 4.3: Examples of sparsity cones in R
3. As s increases the sparsity cone widens

and intersects with the boundaries of the non-negative orthant.

4.3.2 Second Order Cone Programming and Sparsity

In this section we show how our sparsity measure relates to second order cones. Through
their close link algorithms based on convex programming become useful for sparsity-
controlled NMF.

On the non-negative cone we can model the sparseness-measure (4.4) using the family
of convex sets parametrized by sparsity-parameter s ∈ [0, 1]:

C(s) :=

{

x ∈ R
n
∣

∣

∣

(

x
e>x/cn,s

)

∈ Ln+1

}

, cn,s :=
√
n− (

√
n− 1)s. (4.14)

Inserting the bounds 0 ≤ sp(x) ≤ 1 for s, we obtain

C(0) =
{

λe , 0 < λ ∈ R
}

and R
n
+ ⊂ C(1). (4.15)

This raises the question as to when we must impose non-negativity constraints explicitly.

Proposition 3. The set C(s) contains non-positive vectors x 6= 0 if:
√
n−
√
n− 1√

n− 1
< s ≤ 1 , n ≥ 3 (4.16)

Proof. We observe that if x ∈ C(s), then λx ∈ C(s) for arbitrary 0 < λ ∈ R, because
‖λx‖2−e>(λx)/cn,s = λ(‖x‖2−e>x/cn,s) ≤ 0. Hence it suffices to consider vectors x with
‖x‖2 = 1. According to definition (4.14), such vectors tend to be in C(s) the more they
are aligned with e. Therefore, w.l.o.g. put xn = 0 and xi = (n−1)−1/2 , i = 1, . . . , n−1.
Then x ∈ C(s) if cn,s <

√
n− 1, and the result follows from the definition of cn,s in (4.14).

Finally, for n = 2 the lower bound for s equals 1, i.e., no non-positive vectors exist for
all admissible values of s.

This argument shows that (cf. Figure 4.3):

C(s′) ⊆ C(s) for s′ ≤ s. (4.17)

Therefore, to represent the feasible set of problem (4.7), we combine the convex non-
negativity condition with the convex upper bound constraint:

{

x ∈ R
n
+

∣

∣ sp(x) ≤ s
}

= R
n
+ ∩ C(s) , (4.18)
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and impose the non-convex lower bound constraint by subsequently removing C(s ′):
{

x ∈ R
n
+

∣

∣ s′ ≤ sp(x) ≤ s , s′ < s
}

=
(

R
n
+ ∩ C(s)

)

\ C(s′) . (4.19)

To reformulate (4.7), we define accordingly, based on (4.14):

Cw(s) :=
{

W ∈ R
m×r

∣

∣W•i ∈ C(s) , i = 1, . . . , r
}

, (4.20)

Ch(s) :=
{

H ∈ R
r×n

∣

∣ Hi• ∈ C(s) , i = 1, . . . , r
}

. (4.21)

As a result, the sparsity-constrained NMF problem (4.7) now reads:

min
W,H

‖V −WH‖2F
s.t. W ∈

(

R
m×r
+ ∩ Cw(smax

w )
)

\ Cw(smin
w )

H ∈
(

R
r×n
+ ∩ Ch(smax

h )
)

\ Ch(smin
h ) .

(4.22)

This formulation makes explicit that enforcing sparse NMF solutions introduces a single
additional reverse-convex constraint for W and H, respectively. Consequently, not only
the joint optimization of W,H is non-convex, but individual optimization of W and H
are also.

4.3.3 Optimality Conditions

We state the first-order optimality conditions for problem (4.22).

To this end, we define in view of (4.14) and (4.22):

f(W,H) := ‖V −WH‖2 (4.23a)

Q := Qw ×Qh, Qw := R
m×r
+ ∩ Cw(smax

w ), Qh := R
r×n
+ ∩ Ch(smax

h ) (4.23b)

Gw(W ) :=

(

‖W•1‖2 −
1

cn,smin
w

‖W•1‖1 , . . . , ‖W•r‖2 −
1

cn,smin
w

‖W•r‖1
)>

(4.23c)

Gh(H) :=

(

‖H1•‖2 −
1

cn,smin
h

‖H1•‖1 , . . . , ‖Hr•‖2 −
1

cn,smin
h

‖Hr•‖1
)>

. (4.23d)

Note that Gw(W ) and Gh(H) are non-negative exactly when sparsity is at least smin
w

and smin
h . For non-negative W and H computing the `1 norm is a linear operation, that

is, W ≥ 0⇒ ‖W•i‖1 ≡ 〈W•i, e〉.
Problem (4.22) then can be rewritten in standard form [RW98]:

min
(W,H)∈Q

f(W,H) , Gw(W ) ∈ R
r
+ , Gh(H) ∈ R

r
+ (4.24)

With the corresponding Lagrangian L and multipliers λw, λh

L(W,H, λw, λh) = f(W,H) + λ>wGw(W ) + λ>hGh(H) (4.25)
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the first-order conditions for a locally optimal point (W ∗,H∗) are:

−
(

∂L

∂W
,
∂L

∂H

)>
∈ NQ(W ∗,H∗) = NQw(W ∗)×NQh

(H∗) (4.26a)

Gw(W ∗) ∈ R
r
+ , Gh(H∗) ∈ R

r
+ (4.26b)

λ∗w, λ
∗
h ∈ R

r
− (4.26c)

〈λ∗w, Gw(W ∗)〉 = 0 , 〈λ∗h, Gh(H∗)〉 = 0 , (4.26d)

where NX(x) denotes the normal cone to a set X at point x.

4.3.4 NMF by Quadratic Programming

Before we address the difficult multiply-constrained NMF problems let us first examine
the basic form. Recall, that the original NMF problem (4.3) reads

min
W,H

‖V −WH‖2F
s.t. 0 ≤W,H.

When we fix W and expand the objective function we obtain:

‖V −WH‖2F = tr
[

(V −WH)>(V −WH)
]

= tr(H>W>WH)− 2tr(V >WH) + tr(V >V )

Together with the non-negativity constraints H ≥ 0, this amounts to solving the QPs:

QP(W>W,W>V•i) , i = 1, . . . n (4.27)

for H•1, . . . ,H•n. Conversely, fixing H yields:

‖V −WH‖2F = tr(WHH>W>)− 2tr(V H>W>) + tr(V >V ) , (4.28)

which leads to the QPs:

QP(HH>,HVi•) , i = 1, . . . ,m , (4.29)

for W1•, . . . ,Wm•.

We emphasize that by using a batch-processing scheme problems of almost arbitrary
size can be handled this way. The only limitation is the number of basis vectors r, the
dimension of the basis vectors m is irrelevant. This is particularly important for image
and video processing applications where m represents the number of pixels which can
be very large.

The algorithm is summarized in Alg. 4.3.1. Note, that the same target function (4.3)
is optimized alternately with respect to H and W . As a result, the algorithm performs
a block coordinate descent (cf. [Ber99]). Furthermore, we may assume that the QPs in
(4.27) and (4.29) are strictly convex, because typically r � m,n.
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Algorithm 4.3.1 QP-based NMF algorithm in pseudocode.

1: initialize W 0, H0 ≥ 0 randomly, k ← 0
2: repeat
3: Hk+1 ← QP-result(W k, V )
4: W k+1 ← QP-result(Hk+1, V )
5: k ← k + 1
6: until

∣

∣

∥

∥V −W k−1Hk−1
∥

∥

F
−
∥

∥V −W kHk
∥

∥

F

∣

∣ ≤ ε

Proposition 4. Under the assumptions of Section 4.3.1, Algorithm 4.3.1 converges to
a local minimum of problem (4.3).

Proof. See [Ber99, Prop. 2.7.1]

4.3.5 Projected Gradient Descent

The first algorithm proposed for solving sparsity-constrained NMF was based on pro-
jected gradient descent [Hoy04]. It alternately optimizes for W and H by moving into
negative gradient direction and subsequently projecting the solution on the feasible set.
Using the shorthand f(W,H) ≡ ‖V −WH‖2F this reads

Hk+1 ← π[Hk − αh∇Hf(W k,Hk)]

W k+1 ← π[W k − αw∇Wf(W k,Hk+1)].
(4.30)

The projection π is performed by solving a sequence of quadratic equations that fix
the `2-norm of the vectors and change the `1-norm appropriately to achieve the desired
sparseness.

Unfortunately, the stepsize α of the gradient descent scheme is not specified in [Hoy04],
so it is difficult to comment on convergence. It is well known that projected gradient
descent schemes can fail to converge to stationary points even in the case of convex
constraints [Wol72, Min86]. Empirically, the algorithm in [Hoy04] seems to converge to
good local optima, although sometimes at a very slow pace (Section 4.4.1).

4.3.6 Tangent-Plane Approach

In this section, we present an optimization scheme for sparsity-controlled NMF which
relies on linear approximation of the reverse-convex constraint in (4.22). As in the case
of unconstrained NMF, we alternately minimize (4.22) with respect to W and H. It
thus suffices to concentrate on the H-step:

min
H

f(H) = ‖V −WH‖2F
s.t. H ∈

(

R
r×n
+ ∩ Ch(smax

h )
)

\ Ch(smin
h ) .

(4.31)
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Recall the assumptions made in Section 4.3.1.

The Tangent Plane Constraints (TPC) Algorithm

The tangent-plane constraint algorithm solves a sequence of SOCPs where the convex
max-sparsity constraints are modeled as second order cones and the min-sparsity cone is
linearized: In an initialization step we solve SOCP ignoring the min-sparsity constrain
and examine the solution. For the rows of H that violate the min-sparsity contraint we
compute tangent planes to the min-sparsity cone and solve the SOCP again with addi-
tional tangent-plane constraints in place. This is repeated until all necessary tangent-
planes are identified. During iteration we repeatedly solve this SOCP where the tangent
planes are permanently updated to follow their corresponding entries in H: This ensures
that they constrain the feasible set no more than necessary. This process of updating
the tangent planes and computing new estimates for H is repeated until the objective
function no longer improves.

In detail, the TPC algorithm consists of the following steps:

Initialization. The algorithm starts by setting smin
h = 0 in (4.31), and by computing

the global optimum of the convex problem: min f(H), H ∈ Ch(smax
h ), denoted by H̃0.

Rewriting the objective function:

f(H) =
∥

∥

∥
V > −H>W>

∥

∥

∥

2

F
(4.32)

=
∥

∥

∥
vec(V >)− (W ⊗ I)vec(H>)

∥

∥

∥

2

2
,

we observe that H̃0 solves the SOCP:

min
H,z

z , H ∈ R
r×n
+ ∩ Ch(smax

h ) ,

(

vec(V >)− (W ⊗ I)vec(H>)
z

)

∈ Lr×n+1 (4.33)

Note that H̃0 will be infeasible w.r.t. the original problem because the reverse-convex
constraint of (4.31) is not imposed in (4.33). We determine the index set J 0 ⊆ {1, . . . , r}
of those vectors H̃0

j• violating the reverse-convex constraint, that is H̃0
j• ∈ C(smin

h ).

Let π(H̃0
j•) denote the projections of H̃0

j• onto ∂C(smin
h ), ∀j ∈ J0. Further, let t0j denote

the tangent plane normals to Ch(smin
h ) at these points, and H0 ← π(H̃0) a feasible

starting point. We initialize the iteration counter k ← 0.

Iteration. Given Jk, k = 0, 1, 2, . . . , we once more solve (4.33) with additional linear
constraints enforcing feasibility of each Hk

j• , j ∈ Jk:

min
H,z

z , H ∈ R
r×n
+ ∩ Ch(smax

h ) ,

(

vec(V >)− (W ⊗ I)vec(H>)
z

)

∈ Lr×n+1

〈

tkj ,Hj• − π(Hk
j•)
〉

≥ 0 , ∀j ∈ Jk (4.34)
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Algorithm 4.3.2 Tangent-plane approximation algorithm in pseudocode.

1: H0 ← solution of (4.33), J 0 ← ∅, k ← 0
2: repeat
3: H̃k ← Hk

4: repeat
5: Jk ← Jk ∪ {j ∈ 1, . . . , r : H̃k

j• ∈ C(smin
h )}

6: tkj ←∇Ch(smin
h )(π(H̃k

j•)) ∀j ∈ Jk

7: H̃k ← solution of (4.34) replacing Hk by H̃k

8: until H̃k is feasible
9: Hk+1 ← H̃k, Jk+1 ← Jk, k ← k + 1

10: until
∣

∣f(Hk)− f(Hk−1)
∣

∣ ≤ ε

Let us denote the solution by H̃k+1. It may occur that because of the additional con-
straints new rows H̃k+1

j• of H̃k+1 became infeasible for indices j 6∈ J k. In this case we

augment Jk accordingly, and solve (4.34) again until the solution is feasible.

Finally, we rectify the vectors H̃k+1
j• by projection, as in the initialization, provided this

further minimizes the objective function f . The result is denoted by H k+1, and the
corresponding index set by J k+1. At last, we increment the iteration counter: k ← k+1

Termination criterion. We check whetherHk+1 satisfies the termination criterion
∣

∣f(Hk+1)−
f(Hk)

∣

∣ < ε. If not, we continue the iteration.

The algorithm is summarized in pseudocode in Alg. 4.3.2.

Convergence Properties

In the following discussion we use matrices T k = (tkj )j∈1,...,r that have tangent plane

vector tkj as j-th column when j ∈ Jk and zeros elsewhere.

Proposition 5. Under the assumptions stated in Section 4.3.1 Algorithm 4.3.2 yields a
sequence H1,H2, . . . of feasible points, every cluster point of which is a local optimum.

Proof. Our proof follows [Tuy87, Prop. 3.2]. First, note that for every k > 0 the solution
Hk of iteration k is a feasible point for the SOCP solved in iteration k + 1. Therefore,
{f(Hk)}k=1,... is a decreasing sequence, bounded from below and thus convergent. By
assumption, no column of W ≥ 0 equals the zero vector. Then, {H : f(H) ≤ f(H k)}
is bounded for each k. Consequently, the sequence {Hk}k=1,... of solutions of (4.34)
and the corresponding sequences {T k}k=1,... of tangent planes are bounded and contain
converging subsequences. Let {Hkν}ν=1,... and {T kν}ν=1,... be subsequences converging
to cluster points H̄ and T̄ .

Because Hkν is the global solution of a convex program we have

f(Hkν ) ≤ f(H), ∀H ∈ C(smax
h ) with T kν>H ≥ 0, (4.35)

60



4.3. Solving NMF Problems

and in the limit ν →∞

f(H̄) ≤ f(H), ∀H ∈ C(smax
h ) with T̄>H ≥ 0. (4.36)

We assumed the tangent plane constraints are regular. Then the constraints active in
T̄ correspond to entries H̄j• ∈ ∂Ch(smin

h ), j ∈ J . According to (4.36) there is no feasible
descent direction at H̄ and, thus, it must be a stationary point. Since the target function
is quadratic positive-semidefinite by assumption, H̄ is an optimum. 2

Thus, the TPC algorithm yields locally optimal W and H. However, this holds for
the individual optimizations of W and H only. The same cannot be claimed for the
alternating sequence of optimizations inW andH necessary to solve (4.8). Because of the
intervening optimization of, e.g., W , we cannot derive a bound on f(H) from a previously
found locally optimal H. In rare cases, this can lead to undesirable oscillations. When
this happens, we must introduce some damping term or simply switch to the convergent
sparsity maximization algorithm described in Section 4.3.7.

On the other hand, if the TPC algorithm converges it does in fact yield a locally optimal
solution.

Proposition 6. If the TPC algorithm converges to a point (W ∗,H∗) and the assump-
tions stated in Section 4.3.1 hold then (W ∗,H∗) satisfies the first-order necessary opti-
mality conditions 4.3.3 of problem (4.22).

Proof. For H∗ we have from (4.34) using the notation from Section 4.3.3

H∗ = arg min
H∈Qh

‖V −W ∗H‖2 (4.37a)

s.t.
〈

tkj , Hj• − π(H∗k
j• )
〉

≥ 0 , ∀j ∈ Jk. (4.37b)

Since tkj = ∇sp(π(H∗k
j• )>) constraint (4.37b) ensures that the min-sparsity constraint is

enforced at H∗ when necessary. Introducing Lagrange parameters λ∗
f , λ̃

∗
h for this convex

problem yields that the result of (4.37) adheres to the first-order condition

−λ∗f
∂

∂H
f(W ∗,H∗)− λ̃∗h

∂

∂H
∇sp(π(H∗k)>)(H∗ − π(H∗k)) ∈ NQh

(H∗)

⇔ −λ∗f
∂

∂H
f(W ∗,H∗)− λ̃∗h∇sp(π(H∗k)>) ∈ NQh

(H∗)

⇔ − ∂

∂H

(

λ∗ff(H∗) +
〈

λ̃∗h, Gh(H∗)
〉

)

∈ NQh
(H∗)

(4.38)

which coincides with the condition on H in (4.26a). The W -part can be treated in the
same way.

Remarks

Problems (4.33), (4.34) are formulated in terms of the rows of H, complying with the
sparsity constraints (4.21). Unfortunatly, matrix W ⊗ I in (4.33) is not block-diagonal,
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so we cannot separately solve for each Hj•. Nevertheless, the algorithm is quite efficient
(Section 4.4).

Multiple tangent-planes with reversed signs can also be used to approximate the convex
max-sparsity constraints. Then problem (4.34) reduces to a QP (Section 2.2.1). Ex-
cept for solvers for linear programs, QP solvers are usually among the most efficient
mathematical programming codes available. Thus, for a given large-scale problem some
additional speed might be gained by using QP instead of SOCP solvers. In particular,
this holds for the important special case when no non-trivial max-sparsity constraints
are specified at all (i.e., smax

h = smax
w = 1).

A final remark concerns the termination criterion (Step 10 in Alg. 4.3.2). While in
principle it can be chosen almost arbitrarily rigid, an overly small ε might not help in the
overall optimization w.r.t. W and H. As long as, e.g., W is known only approximately,
we need not compute the corresponding H to the last digit. In our experiments we chose
relatively large ε so that the outer loop (Steps 2 to 10 in Table 4.3.2) was executed only
once or twice before the variable under optimization was switched.

4.3.7 Sparsity-Maximization Approach

In this section we present an optimization scheme for sparsity-controlled NMF for which
global convergence can be proven, even when W and H are optimized alternately. Here,
global convergence means that the algorithm always converges to a local optimum. As in
the previous sections, we assume our standard scenario (Section 4.3.1) and independently
optimize for W and for H. Thus, it suffices to focus on the H-step.

Our algorithm is inspired by the reverse-convex optimization scheme suggested by Tuy

[Tuy87]. This scheme is a global optimization algorithm in the sense that it finds a true
global optimum. However, as already pointed out in [Tuy87], it does so at a considerable
computational cost. Furthermore, it does not straightforwardly generalize to multiple
reverse-convex constraints that are essential for sparsity-controlled NMF. We avoid these
difficulties by confining ourselves to a locally optimal solution.

The general idea of our algorithm is as follows: After an initialization step, it alternates
between two convex optimization problems. One maximizes sparsity subject to the
constraint that the objective value must not increase. Dually, the other optimizes the
objective function under the condition that the min-sparsity constraint may not be
violated.

The Sparsity-Maximization Algorithm (SMA)

The sparsity-maximization algorithm is described below. A summary in pseudocode is
outlined in Alg. 4.3.3
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4.3. Solving NMF Problems

Initialization. For initialization we start with any pointH 0 ∈ ∂C(smin
h ) on the boundary

of the min-sparsity cone. It may be obtained by solving (4.31) without the min-sparsity
constraints and projecting the solution onto ∂C(smin

h ). We set k ← 0.

First step. Given the current iterate Hk, we consider the program

max
H

g(H) = min
j
{sp(Hj•)}

s.t. H ∈ R
r×n
+ ∩ Ch(smax

h )

f(H) ≤ f(Hk) ,

(4.39)

that maximizes sparsity of the least sparseHj• subject to the constraint that the solution
may not measure worse than Hk in terms of the target function f . This is a convex
maximization problem on a bounded domain. As such, it can in principle be solved to
global optimality [Tuy87]. However, practical algorithms exist for small-scale problems
only.

Thus, we will content ourselves with a local improvement that is obtained by replacing
sp(x) by its first order Taylor expansion at Hk, resulting in the SOCP

max
H,t

t

s.t. H ∈ R
r×n
+ ∩ Ch(smax

h ) (4.40a)

f(H) ≤ f(Hk) (4.40b)

t ≤ sp(Hk
j•) + 〈∇Hj•

sp(Hk
j•),Hj• −Hk

j•〉 , j = 1, . . . , r , (4.40c)

where constraint (4.40b) ensures that the objective value will not deteriorate. In stan-
dard form this constraint translates to

(

vec(V >)− (W ⊗ I)vec(H>)
f(Hk)

)

∈ Lrn+1. (4.41)

We denote the result by H sp. Note that this step maximizes sparsity in the sense that
sp(Hk) ≤ sp(Hsp), due to (4.40c) and the convexity of sp(·).

Second step. While the intermediate solution H sp satisfies the min-sparsity constraint,
it may not be an optimal local solution to the overall problem. Therefore, in a second
step, we solve the SOCP

min
H

f(H)

s.t. H ∈ R
r×n
+ ∩ Ch(smax

h ) (4.42a)
∥

∥

∥
Hj• −Hsp

j•

∥

∥

∥

2
≤ min

q∈C(smin
h

)

∥

∥

∥
q −Hsp

j•

∥

∥

∥

2
, j = 1, . . . , r (4.42b)
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which in standard form reads

min
H,t

t

s.t.

(

vec(V >)− (W ⊗ I)vec(H>)
t

)

∈ Lrn+1 (4.43)

(

Hj• −Hsp
j•

minq∈C(smin
h

)

∥

∥

∥
q −Hsp

j•

∥

∥

∥

2

)

∈ Ln+1 ∀j

H ∈ R
r×n
+ ∩ Ch(smax

h ).

Here, the objective function f is minimized subject to the constraint that the solution
must not be too distant from H sp. To this end, the non-convex min-sparsity constraint
is replaced by a convex max-distance constraint (4.42b), in effect defining a spherical
trust region.

Termination. As long as the termination criterion
∣

∣f(Hk)− f(Hk−1)
∣

∣ ≤ ε is not met
we continue with the first step.

When the algorithm terminates a locally optimal H for the current configuration of W
is found. In subsequent runs, we will not initialize the algorithm with an arbitrary H 0,
but simply continue alternating between step one and step two using the current best
estimate for H as a starting point1. This way, we can be sure that the sequence of Hk

is monotonous, even when W is occasionally changed in between.

Remarks

The requirement that the feasible set has an non-empty interior is important. If smax
h =

smin
h , the approximate approach in (4.40) breaks down, and each iteration just yields
Hk = Hsp = Hk+1. In this situation, it is necessary to temporarily weaken the max-
sparsity constraint. Fortunately, max-sparsity constraints seem to be less important in
many applications.

While convergence is guaranteed (see Prop. 7 below) and high-quality results are ob-
tained (see Table 4.1 in Section 4.4.1), SMA can be slower than the tangent-plane method
presented in the previous section. This is especially the case when smax

h ≈ smin
h . Then, in

order to solve a problem most efficiently, one will start with the tangent-plane method
and only if it starts oscillating switch to sparsity-maximization mode.

Convergence Properties

We check the convergence properties of the SMA.

1Note that while such a scheme could be implemented with TPC as well, it would perform poorly in
practice: Without proper initialization step TPC locks too early onto bad local optima.
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Algorithm 4.3.3 Sparsity-maximization algorithm in pseudocode.

1: H0 ← solution of (4.33) projected on ∂Ch(smin
h ), k ← 0

2: repeat
3: Hsp ← solution of (4.40)
4: Hk+1 ← solution of (4.42)
5: k ← k + 1
6: until

∣

∣f(Hk)− f(Hk−1)
∣

∣ ≤ ε

Proposition 7. Under the assumptions stated in Section 4.3.1 and 4.3.3, the sparsity-
maximization algorithm (Alg. 4.3.3) converges to a point (W ∗,H∗) satisfying the first-
order necessary optimality conditions of problem (4.22).

Proof. Under the assumptions stated in Section 4.3.1, the feasible set is bounded. Fur-
thermore, Alg. 4.3.3, alternately applied to the optimization of W and H, respectively,
computes a sequence of feasible points {W k,Hk} that steadily decreases the objective
function value. Thus, by taking a convergent subsequence, we obtain a cluster point
(W ∗,H∗) whose components separately optimize (4.40) when the other component is
held fixed. It remains to check that conditions (4.26) are satisfied after convergence.

We focus on H without loss of generality. Taking into account the additional non-
negativity condition, condition (4.40c) is equivalent to t ≤ sp(Hj•), because sp(·) is
convex. Moreover, t = smin

h because after convergence of iterating (4.40) and (4.42), the
min-sparsity constraint will be active for some of the indices j ∈ {1, . . . , r}. Therefore,
using the notation (4.23), the solution to problem (4.40) satisfies

max
t,H∈Qh

t∗ = smin
h , f(Hk)− f(H∗) ≥ 0 , Gh(H∗) ∈ R

r
+ (4.44)

Using multipliers λ∗f , λ̃
∗
h, the relevant first-order condition with respect to H is

− ∂

∂H

(

λ∗ff(H∗) +
〈

λ̃∗h, Gh(H∗)
〉

)

∈ NQh
(H∗) . (4.45)

This corresponds to the condition on H in (4.26a). The W -part can be shown in the
same way.

4.3.8 Solving NMF Extensions

In this section we address the NMF extensions described above (Section 4.2.4 – 4.2.7).
Any of the solvers presented so far can be adapted for any of the following extensions and
variants. Consequently, we present only the new ideas for each problem and refer the
reader to the previous descriptions of the basic algorithms. As before, we will describe
how to optimize for H, assuming W constant.
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Exploiting Information from Class Labels

The supervised variant (4.10) of the NMF problem is readily solved by above algorithms
since (4.10b) translates, for each class i and for each coefficient vector Hj• belonging to
class i, into a second order constraint

(

1/niH(i)e−Hj•
λ/nie

>H(i)e

)

∈ Ln+1, ∀i,∀j ∈ class(i). (4.46)

Here, the r × ni-matrix of coefficients belonging to class i is abbreviated H(i) and we
recognize µi = 1/niH(i)e. Adding these constraints to, e.g., (4.40) and (4.42) yields an
algorithm for solving supervised NMF.

Soft Sparsity Formulation

The relaxed form of sparsity-controlled NMF described in (4.9) is optimized by lineariz-
ing sp(x) around Hk, yielding the SOCP

min
H,t,s

t− λhs

s.t.

(

vec(V >)− (W ⊗ I)vec(H>)
t

)

∈ Lrn+1 (4.47)

s ≤ sp(Hk
j•) + 〈∇Hj•

sp(Hk
j•)

>,Hj• −Hk
j•〉 ∀j

H ∈ R
r×n
+ .

Thus, in order to solve (4.9) for H we iteratively solve instances of (4.47) until conver-
gence.

Sparse PCA

Next, we show how to optimize for H when both, W andH may contain negative entries.
The idea is that we factorize any non-zero matrix M ∈ R

m×n into M± = sign(M) ∈
R

m×n and M+ ∈ R
m×n
+ s.t. M = M± � M+. Since sparsity is not affected by sign

changes or multiplicative constants we observe

sp(M) = sp(M+), (4.48)

i.e., it is sufficient to exercise sparsity control on the non-negative part of x. Thus,
the sparsity-controlled NMF algorithms presented above can be used on W+ and H+.
Finally, for those entries in W and H that are close to 0 we subsequently optimize signs
using convex programming.
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First step. Considering H, we first optimize for H+, by solving

min
H+,t

t

s.t.

(

vec(V )− ((I ⊗W )�HS)vec(H+)
t

)

∈ Lrn+1

H+ ∈ (Rr×n
+ ∩ Ch(smax

h )) \ Ch(smin
h )

(4.49)

using any of the techniques presented above. Note that (4.49) is identical to the NMF
case, i.e., it minimizes the original problem for H = H± � H+ but the signs of H are
not allowed to change. The matrix HS is given by

HS = (Ir×r ⊗En×n)� (vec(H±)e>)>. (4.50)

Second step. We then solve for H± using the convex program

min
t,H±∈Hε

t

s.t.

(

vec(V )− ((I ⊗W )�HA)vec(H±)
t

)

∈ Lrn+1

− 1 ≤ H± ≤ 1,

(4.51)

where HA is constructed from H+ analogously to (4.50):

HA = (Ir×r ⊗En×n)� (vec(H+)e>)>. (4.52)

Hε denotes those entries in H+ that are within ε from 0. Entries in H± corresponding
to larger entries in H+ are not optimized in order to prevent an entry in H± with small
norm cancel out an entry with large norm in H+, thus possibly modifying sparseness of
the product H = H± �H+.

Transformation Invariance

To approach problem (4.12) we assume a finite set of linear transformations mapping
the input data V ∈ R

m×n into Tθ(V ) ∈ R
m×n. θi specifies the transformations active

for image i ∈ {1, . . . ,m}.
After each iteration we greedily replace the image data V by its most probable transfor-
mation, i.e., setting V ← Tθ∗(V ) with

θ∗ = arg min
θ

∥

∥

∥
Tθ(V )−W kHk

∥

∥

∥

2

F
. (4.53)

As long as the identity is part of the possible transformations this operation never
increases the objective value to be minimized. However, for large images and many
possible transformations it can be a very slow operation to compute. In this case,
variational techniques and FFT offer greatly improved performance [FJ01].
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Missing Values

All algorithms described above (Section 4.3.4, 4.3.6, 4.3.7) are directly applicable to the
missing values case (4.13): Simply remove the terms with Eij = 0 from the objective
function. In case a complete row (or column) of E equals zero this row (or column)
is completely removed from the problem. This is consistent with the intuition that an
entirely unobserved image (or pixel location) should not influence the resulting factor-
ization.

4.4 Evaluation

In this section we validate our algorithms on very well understood, simple data sets.
The main objective is to draw precise conclusions about correctness and performance of
the algorithms and our particular implementations. Realistic applications on real-world
data sets are treated in Chapter 6.

4.4.1 Comparison with Established Algorithms

To see how our algorithms compare against an established method we computed sparsity-
controlled decompositions into r = 4 basis functions for a subset of the USPS handwrit-
ten digits data set using our methods and projected gradient descent (pgd) as proposed
in [Hoy04]. For different choices of sparseness we report mean and standard deviation
of the runtime and mean residual error2 averaged over 10 runs in Table 4.1. Note that
the stopping criterion used was different for our algorithms and for pgd: We stopped
when after a full iteration the objective value did not improve at least by a constant,
the pgd implementation used3 stopped as soon as the norm of the gradient was smaller
than some ε. As the error measurements shown in Table 4.1 demonstrate, both stopping
criteria yield comparable results. Regarding running time we see that the tangent-plane
approach was usually fastest, followed by sparse-maximization. Also, our algorithms
usually showed relatively small variation between individual runs while the runtime of
pgd varied strongly, dependent on the randomly chosen starting points.

4.4.2 Large-Scale Factorization of Image Data

To examine performance on a larger data set we sampled 10 000 image patches of size
11×11 from the Caltech-101 image database [FFFP04]. Using a QP solver and the TPC
algorithm we computed image bases with r = 2, 4, . . . , 10 and r = 50 basis functions using
smin
w = 0.5. In addition, we varied the stopping criterion from ε ∈ {1, 0.5, 0.25}. Note

2Standard deviation of the residual error was equally negligible for all algorithms.
3We used the pgd code kindly provided by the author of [Hoy04], and removed all logging and

monitoring parts to speed up calculation. Our SOCP solver was Mosek 3.2 from MOSEK ApS, Denmark,
running under Linux.
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sparsity 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
mean time tgp 34.35 35.46 41.30 64.97 66.80 60.86 56.33 51.82 42.50
mean time spm 94.81 106.20 133.52 159.30 173.14 167.06 114.36 78.42 74.96
mean time pgd 517.02 1038.99 218.17 70.24 177.35 189.48 167.94 430.36 322.88
stdv time tgp 3.17 2.64 3.84 5.50 8.51 7.05 4.25 0.76 0.38
stdv time spm 3.48 12.67 23.67 16.45 11.51 11.64 7.69 1.22 1.29
stdv time pgd 278.24 21.21 128.00 8.90 78.12 52.54 95.53 439.34 174.81
mean error tgp 0.82 0.76 0.73 0.72 0.78 0.89 0.99 1.08 1.12
mean error spm 0.81 0.77 0.74 0.73 0.78 0.89 1.00 1.08 1.13
mean error pgd 0.85 0.79 0.74 0.72 0.77 0.88 0.99 1.07 1.12

Table 4.1: Performance Comparison. Comparison of the tangent-plane (tgp) ap-
proach and the sparsity-maxmization algorithm (spm) with projected gradient descent
(pdg). Sparse decompositions of the digit data set were computed. Statistics collected
over 10 repeated runs are reported for runtime (sec.) and residual error ‖V −WH‖2F .

ε r = 2 r = 4 r = 6 r = 8 r = 10

1.00 5.99 49.32 98.91 222.01 278.76
0.50 5.97 54.67 103.93 230.45 256.98
0.25 10.22 72.75 133.23 224.62 363.62

Table 4.2: Large-scale performance. A matrix containing n = 10 000 image patches
with m = 121 pixels was factorized using r basis functions and different stopping criteria
for the TPC/QP algorithm (see text). The median CPU time (sec.) for three repeated
runs is shown. Even the largest experiment with over 100 000 unknown variables is
solved within 6 min.

that the corresponding QP instances contained roughly 100 000 to over half a million
unknowns, so a stopping criterion of ε = 1 translates to very small changes in the entries
of W and H. We did not use any batch processing scheme but solved the QP instances
directly, requiring between 100 MB and 2 GB of memory.

We show the median CPU time over three repeated runs for this experiment in Table 4.2:
While the stopping criterion has only minor influence on the run time the number of
basis functions is critical. All problems with up to 10 basis functions are solved within
6 min. For the large problem with 50 basis functions we measured a CPU time of 3, 5,
and 7 hours for ε ∈ {1, 0.5, 0.25}. Memory consumption was roughly 2 GB. We conclude
that factorization problems with half a million unknowns can be comfortably solved on
current office equipment.

4.4.3 Global Optimization

A potential source of difficulties with the sparsity-maximization algorithm is that the
lower bound on sparsity is optimized only locally in (4.40). Through the proximity
constraint in (4.42) the amount of sparsity obtained in effect limits the step size of the
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Figure 4.4: Paatero experiments. The data set is displayed in Figure 4.4(a): Gaussian
and exponential distributions are multiplied to yield matrix V . In the experiments, a
small amount of Gaussian noise η ∼ N (0, 0.1) is added to the product. The results for
different values of the min-sparsity constraint are shown in Figure 4.4(c) and 4.4(d):
Only a non-trivial sparsity constraint makes recovery of W and H successful.

algorithm. Insufficient sparsity optimization may, in the worst case, lead to convergence
to a bad local optimum.

To see if this worst-case scenario is relevant in practice, we discretized the problem by
sampling the sparsity cones using rotated and scaled version of the current estimate H k

and then evaluated g in (4.39) using samples from each individual sparsity cone. Then
we picked one sample from each cone and computed (4.40) replacing the starting point
Hk by the sampled coordinates. For an exhaustive search on r cones, each sampled with
s points, we have sr starting points to consider.

For demonstration we used the artificial Paatero data set [Paa97] consisting of products
of Gaussian and exponential functions (Figure 4.4). This data set is suitable since it is
not overly large and sparsity control is crucial for its successful factorization (cf. [Paa97]
and Figure 4.4).

In the sparsity-maximization algorithm we first sampled the four sparsity cones corre-
sponding to each basis function of the data for sw ≥ 0.6 sparsely, using only 10 rotations
on each cone. We then combined the samples on each cone in each possible way and
evaluated g for all corresponding starting points. In a second experiment we placed
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Figure 4.5: Recognition and segmentation. Based on sparse NMF, a model for
the digits 2 – 5 (first columns) is built and presented with superimposed digits (third
column) after training. The model consistently assigns the highest probabilities (fourth
column) to the digits forming the image. This shows that NMF models can be relatively
stable against disturbances. A subsequent local optimization retrieves the original digits
(last columns).

1000 points on each sparsity cone, and randomly selected 104 combinations as starting
points. The best results obtained over four runs and 80 iterations with our local lin-
earization method and the sparse enumeration (first) and the sampling (second) strategy,
are reported below:

Algorithm min-sparsity objective value

local linearization 0.60 0.24
sparse enumeration 0.60 0.26

sampling 0.60 0.26

We see that the local sparsity maximization yields results comparable to the sampling
strategies. In fact, it is better: Over four repeated runs the sampling strategies each
produced outliers with very bad objective values (not shown). This is most likely caused
by severe under-sampling of the sparsity cones. This problem is not straightforward to
circumvent: With above sampling schemes a run over 80 iterations takes about 24h of
computing4, so more sampling is not an option. In comparison, the proposed algorithm
finishes in few seconds.

4.4.4 Recognition

Here we examine how NMF codes can be used for image recognition experiments and
how supervised training can improve results.

4On machines with 3GHz P4, 2GB RAM, running Matlab under Linux.
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Superimposed Digits

It has previously been reported that localized NMF is relatively robust against occlusions
and disturbances [LHZC01]. To verify this claim for sparse NMF we repeated an image
recognition experiment, previously approached with credibility networks [HGT00]: A
model for the individual digits 2,3,4,5 from the USPS digit database was built, then new,
more complicated, images were constructed by superimposing images from two different
digits (Figure 4.5). Our model consisted of sparse NMF codes (r = 20, smin

w = 0.6)
for the single digits and a conditional maximum entropy (cMaxEnt) classifier5 p(y|h)
for class labels y and given coefficients h, using mean coefficient values and distance to
randomly chosen reference coefficients as features.

For each combined image we computed h and evaluated p(y|h) for y ∈ {2, 3, 4, 5}. On
a test data set we counted how often the two top-ranking digits, w.r.t. p(y|h), were the
correct digits composing the image.

Five self-selected human subjects (students) achieved classification rates between 65%
and 80% (mean 75%) on our data. The NMF-cMaxEnt classifier described above scored
77% correct on 500 test samples. For the more complex credibility networks a recognition
rate of 78.3% is reported [HGT00] on a test set of 120 binarized images.

Once a decision is made for two digits y1, y2, we can visualize the corresponding segmen-
tation by solving the non-convex program

max
h1,h2

p(y1|h1)p(h1) · p(y2|h2)p(h2)

s.t. h = h1 + h2

0 ≤ h1, h2

(4.55)

i.e., we factor the reconstruction coefficient h into h1 and h2 such that the probability of
the detected digits is maximized. Depending on the features used for training cMaxEnt
and the form of the prior densities p(h) this can be a very difficult problem. It turns
out that for our choice of features and a Parzen estimator for p(h) a conjugate gradient
search already yields meaningful reconstructions (Figure 4.5).

5A cMaxEnt model is the solution to the convex optimization problem [NLM99]

max
p

H(p(y|x))

s.t. 〈f〉 = Ep(f(x))
Z

dp = 1

(4.54)

which defines the most general probability distribution, in terms on Shannon entropy H, on the class
labels subject to the constraint that the feature statistics 〈f〉 ∝

P

i
f(xi) measured on the training data

are met.
Note, that (4.54) models the conditional distribution p(y|x) as a function of y only. x is a known

parameter as it can be measured from the given sample to classify. This is an important simplification
over ordinary MaxEnt [Jay57]: By measuring x one needs to integrate over the label space Y only. It is
thus not important how large the feature space X is. Often, |Y| is finite and small, so cMaxEnt obtains
huge computational savings over traditional MaxEnt models.
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Figure 4.6: KL-Segmentation with NMF. A similarity matrix, derived from KL-
distances between locally fitted generalized Laplacians (Section 3.2), was clustered using
NMF. No effort was undertaken to enforce particularly smooth partitions. The blocky
segmentation boundaries are an artifact of our particular implementation. The results
are competitive with Normalized Cut (Figure 3.6).

Supervised Training

To show that the supervised label constraints (4.10b) can be useful we trained NMF
codes (r = 4) on only 100 samples from the USPS handwritten digit data set. We used
different values for the parameter λ and a very simple conditional maximum entropy
model p(y|h) with mean coefficient values E[hi] as only features for classification. The
number of errors on a 300 sample test dataset is given below:

λ 1e4 1e2 1 1e-2 1e-4 1e-6
#errors 108 82 75 60 58 56

When λ is large, i.e., the supervised label constraint is inactive, the error is about
36% (108 out of 300 samples). This is slightly worse than a corresponding PCA basis
(95 errors) would achieve. As the label constraint is strengthened the classification
performance improves and finally is almost twice as good as in the unsupervised case.

4.4.5 Clustering and Segmentation

Since distance matrices are non-negative by nature, NMF can also beneficial for clus-
tering: Let D ∈ R

n×n
+ be a distance matrix between n objects and let D ≈ WH be its

non-negative matrix approximation. Then we cluster H using any standard algorithm
like k-means or hierarchical clustering.

In Figure 4.6 we show segmentation results using NMF on the distance matrix employed
for the NCut segmentation experiment (Section 3.2.7). The results are similar in segmen-
tation quality. Note that since NMF works in a batch-processing scheme (Section 4.3.4)
we would expect it to scale to larger problems easily.

Note that the k-means clustering step might not be strictly necessary: Recently, a
symmetric variant of NMF has gained interest as a clustering algorithm on its own. In
this context we refer the reader to [ZS05, DHS05].
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Figure 4.7: Sparse PCA experiment. Basis and coefficients for an artificial data
set are shown. Only sparsity-controlled PCA successfully recovers the structure of the
data.

4.4.6 Sparse PCA

As proof-of-concept we factorized the artificial data set examined in [dGJL04] using
PCA and sparsity-controlled PCA. The data set consists of three factors sampled from
V1 ∼ N (0, 290), V2 ∼ N (0, 300), V3 ∼ −0.3V1 + 0.925V2 + η and additional Gaussian
noise. The sparse PCA algorithm iteratively solved (4.49) and (4.51) using the relaxed
optimization framework (4.47) with λw = 0.6 and a constraint limiting the admissible
reconstruction error.

In Figure 4.7 we depict the factors and factor-loadings for PCA and sparsity-controlled
PCA (best result out of three repeated runs). It is apparent that sparsity-controlled
PCA correctly factorizes the data, while classical PCA fails.

4.4.7 Image Modeling

Now we approach image modeling tasks using the tools developed in this chapter.

Translation-Invariant Image Coding

In Figure 4.8 we show the results of transformation-invariant NMF (TNMF) applied
to the artificial data described in [FJ03]: Four image primitives are translated using
circular shifts in both image dimensions and Gaussian noise is added. The resulting
training data set contains 1000 randomly translated images. For these, we learned
image based using a feathering mask to encourage centered bases6. The resulting image
basis not only models the data well, it also has a nice complementary structure: Even
without additional sparseness constraints it tends to avoid modeling the same image
location multiple times [LS99], leading to a true parts-based representation. A possible

6I.e., each basis function was weighted with a Gaussian s.t. pixels near the boundary had slightly less
influence than pixels near the center.
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Figure 4.8: Translation-invariant NMF. Results of translation-invariant NMF on
the artificial data set from [FJ03]. The first row shows the image primitives used.
Shifted and noise corrupted versions of these were used for training (second row). NMF
successfully constructs a suitable image base (third row). Note that the basis functions
are not simply centroids in image space: they represent parts which must be composed
to form the images. Thus, they are potentially more general without sacrificing image
quality/sharpness.

explanation for this behavior is that the parts-based representation offers more degrees
of freedom, making a better fit to the noisy data.

In a more realistic scenario we learned image bases for a skyscraper image (Figure 4.9):
While NMF correctly captures the dominant horizontal and vertical lines, it is forced
to model the same structure multiple times to fit the data well. TNMF removes this
burden, allowing for much finer detail to appear in the basis functions. In fact, looking
closely one can recognize parts of the building and key architectural structures being
modeled.

We also used the PCA and the TNMF image bases for reconstruction: the original
image was divided into 20 × 20 patches and for each patch we determined the optimal
translation w.r.t. the given image bases. The patches were then reconstructed and
assembled to form images 4.9(b) and 4.9(c). As expected, translation-invariance ensures
that the TNMF reconstruction looks notably sharper. It is also closer to the original
image: The Frobenius norm of the residual image was about 7% larger for the PCA
reconstruction than for the TNMF reconstruction.

Modeling Images with Occlusions

As a test case for NMF with missing values, eqn. (4.13), we used a subset of the
MIT/CBCL face data set [CBC00] and partially obstructed some of the images (Fig-
ure 4.10). Then we computed a NMF factorization (r = 10) for the image database. In
one experiment we used standard NMF and replaced the obstructed image content by
zeros. In a second experiment we used model (4.13), flagging the obstructed parts as
missing data.

The results convincingly indicate that special treatment of missing data is beneficial:
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(a) Original (b) TNMF reconstruction (c) PCA reconstruction

PCA:

NMF:

TNMF:

Figure 4.9: Image modeling. Different image bases learned for image 4.9(a) are
shown. PCA learns global properties of image variation. The individual base images
carry no apparent semantic meaning. NMF learns sparse, localized image features, but
represents the dominant image elements (horizontal and vertical bars) multiple times.
Transformation-invariant NMF (TNMF) is less redundant and captures very detailed
image structure which can sometime be recognized as parts from the building. In Fig-
ure 4.9(b) and 4.9(c) reconstructions for TNMF and PCA are displayed. The TNMF
reconstruction appears sharper and is slightly more accurate (see text).

Although we used a relatively small number of basis functions only, standard NMF
actually models the obstructions as part of the dataset. It basically does not reconstruct
the missing image information. We could force stronger regularization by using an even
smaller image base, but then the results would look very blurry.

On the other hand, NMF with missing values correctly uses the information from the
unobstructed images to inpaint the obstructed areas. Since the image database contains
different views from each face, this task is quite feasible and the reconstructions look
almost perfect.

Modeling a Low-Entropy Image Class

A sample application using real-world data is face modeling: Human faces, aligned,
cropped and evenly lit, lead to highly structured images with relatively low entropy.
With such images, sparse NMF appears robust against quantization: We trained a sparse
image code (r = 8, smin

h = 0.3) for face images [CBC00] and a PCA code for comparison.
Then we enumerated possible reconstructions by setting each entry of the coefficient
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Input NMF NMF/MV Reality

Figure 4.10: Image reconstruction with occlusions. Corrupted input data (first
column) is reconstructed using standard NMF (second column) and NMF with missing
variables (third column, NMF/MV). While standard NMF fails to recover the image,
the missing variables approach delivers almost perfect results that are very similar to
the ground truth (last column).

vector to 0 or to 1. The resulting 28 = 256 images are shown in Figure 4.11 and 4.12:
While most NMF “reconstructions” look remarkably natural the corresponding PCA
images mostly suffer severe degradation.

To measure how quantization affects reconstruction performance we used SVD and NMF
to find a large image base (r = 100) on a subset of the face data. Then, we quantized
the reconstruction coefficients H using k-means on each individual row of coefficients
Hj•. The results are shown in Figure 4.13: As expected, SVD offers slightly better
reconstruction performance for large values of k. With stronger quantization, however,
it looses its advantage and NMF performs better.

This is surprising as quantization robustness was not an original design goal of NMF
codes. Adopting a Bayesian perspective we can explain this result by the fact that
as quantization (or noise) increases the influence of prior information becomes more
important. NMF models the prior information that images are non-negative. SVD has
no such constraint and thus suffers more as quantization increases.

4.5 Summary

In this chapter we examined non-negative matrix factorization as a versatile tool for
various image processing and machine learning tasks. We saw that precise sparsity
control over NMF factors and coefficients can be exercised, leading to efficient and elegant
sequential convex optimization algorithms. We extended the sparsity-constrained NMF
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model in various dimensions, accounting for transformation invariance, prior knowledge
about class labels, using hidden variables, or factorizations with negative entries. In
effect, we built a flexible toolbox of useful models, all solved within the same optimization
framework.
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NMF: W ∗ δ(h > ε)

Figure 4.11: Robustness against quantization. The 256 faces corresponding to
previously learned 8bit NMF image code after quantization of the coefficients. The top
left image corresponds to the binary coefficient vector 000000002 , the bottom right image
to 111111112 . The NMF “reconstructions” remain very face-like.
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PCA: W ∗ δ(|h| > ε)

Figure 4.12: Robustness against quantization. The 256 faces corresponding to
previously learned 8bit PCA image codes after quantization of the coefficients. The top
left image corresponds to the binary coefficient vector 000000002 , the bottom right image
to 111111112 . The PCA reconstruction produces many unnatural looking images.
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Figure 4.13: Robustness against quantization. An basis for face images was trained
using NMF (solid blue line) and SVD (dashed black line). The reconstruction coefficients
H where quantized using k-means for k = 2, . . . , 25 (x-axis) and the reconstruction error
f(W,H) was determined (y-axis) for the training data set. SVD shows smaller recon-
struction error with large values for k. NMF is more robust against strong quantization.
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Chapter 5

Non-Negative Tensor Models

Non-negative tensor factorization (NTF) has recently been proposed as sparse and ef-
ficient image representation [WW01, SH05, HPS05]. Until now, sparsity of the tensor
factorization has been empirically observed in many cases, but there was no system-
atic way to control it. In this chapter, we show that a sparsity measure introduced in
Section 4.2.2 applies to NTF and allows precise control over sparseness of the resulting
factorization. We devise an algorithm based on sequential conic programming and show
improved performance over classical NTF codes on artificial and on real-world data sets.

5.1 Motivation

The main motivation for NTF from an computer vision perspective is twofold: First, in
contrast to matrix factorization, where multiple minima are always of concern, tensor
factorizations will be unique under few general conditions [Kru77, SB00]. Second, tensor
factorization of image data can take spacial correlations into account: Unlike in NMF,
where image data is vectorized and pixels are treated as statistically independent, NTF
image factors are outer products of vectors. Thus, adjacent pixels are not assumed to
be completely independent. This explains why it has been reported that compared to
NMF tensor factorization shows a greater degree of sparsity, clearer separation of image
parts, better recognition rates, and a tenfold increased compression ratio [HPS05].

However, until now it was not possible to exercise explicit sparsity control with NTF.
In this chapter, we thus extend our algorithms for sparsity controlled NMF to allow for
fully sparsity-controlled NTF models.

Notation. Unlike in the previous chapter we now represent image data as a tensor of
order 3, e.g., V ∈ R

d1×d2×d3

+ denotes d3 images of size d1 × d2. We are not concerned
about the transformation properties of V , so this simplified 3-way array notation is
sufficient. The factorization is given by vectors uj

i ∈ R
di , where j = 1, . . . , k indexes k

independent vectors. Where convenient, we omit indices of the factors, e.g. ui ∈ R
di×k
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Figure 5.1: Sparse NTF face model. MIT CBCL faces are factorized (k = 10) and
reconstructed using sparsity-control for horizontal factors u1 (see text). The min-sparsity
constraints were 0.0, 0.2, 0.4, 0.6, 0.8 (from left to right). Starting from smin

i = 0.4
reconstructions look increasingly generic and individual features disappear.

is the matrix of k factors corresponding to index i, and u alone is the ordered set of such
matrices.

5.2 The NTF Optimization Problem and Sparseness

In this section we formally state the NTF optimization problem in its original form and
extended by sparseness constraints.

5.2.1 Original NTF Model

The NTF optimization problem admits the general form

min
uj

i∈R
di

∥

∥

∥

∥

∥

∥

V −
k
∑

j=1

3
⊗

i=1

uj
i

∥

∥

∥

∥

∥

∥

2

F

s.t. 0 ≤ uj
i .

(5.1)

Here, image volume V is approximated by the sum of k rank-1 tensors that are outer
products uj

1 ⊗ uj
2 ⊗ uj

3. By using outer products with additional factors uj
i , i > 3, this

generalizes to higher-order tensors. In this work, however, we are concerned with image
volumes only.

It is instructive to compare NTF with the more widespread NMF model: In NMF, image
data is first vectorized, and the resulting non-negative matrix V ∈ R

m×d3

+ , m = d1 ·d2, is

then factorized as the product of two non-negative matrices W ∈ R
m×k
+ and H ∈ R

k×d3

+ .
In short, one optimizes (4.3)

min
W,H

‖V −WH‖2F
s.t. 0 ≤W,H.
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5.3. Solving Sparsity-Constrained NTF

It is clear that the vectorized representation does not take into account the spatio-
temporal correlations of image data or video. In contrast, the NTF analogon to basis
images are rank-one matrices uj

1⊗uj
2 that nicely represent correlations along the x and y

direction of the image plane. The drawback is that with NTF basis images are no longer
arbitrary: The rank-one restriction rules out, e.g., basis images with diagonal structures.
So images with predominantly diagonal structures are represented less efficiently.

5.2.2 Sparsity-Constrained NTF

It has early been reported that NTF codes tend do be sparse, i.e., many entries of the
uj

i equal zero [WW01]. Especially for pattern recognition applications, sparsity is a
key property since it relates directly to learnability [LW86, HW02] and is biologically
well motivated [OF97]. Sparsity also seems to act as a strong prior for localized image
representations [Hoy04]. Such representations are desirable since they naturally focus
on parts and thus are potentially more robust against occlusion or noise than are their
global counterparts.

Thus, it is desirable to extend (5.1) by sparsity-controlling constraints as in the NMF
case (Section 4.2.2), leading to the problem

min
uj

i∈R
di

∥

∥

∥

∥

∥

∥

V −
k
∑

j=1

3
⊗

i=1

uj
i

∥

∥

∥

∥

∥

∥

2

F

s.t. 0 ≤ ui

smin
i ≤ sp(ui) ≤ smax

i .

(5.2)

The parameters smin
i and smax

i are again real numbers in [0, 1] specified by the user for
a given application. We propose solvers for (5.2) in Section 5.3 and validate the model
on artificial and on real-world data in Section 5.4.

5.3 Solving Sparsity-Constrained NTF

In this section, we develop an algorithm for solving problem (5.2). In principle, any
algorithm proposed in Section 4.3 can be adapted for the NTF case. We concentrate on
the sparsity-maximization algorithm (Section 4.3.7).

First, let us rewrite (5.2) as

min
uj

i

∥

∥

∥

∥

∥

∥

V −
k
∑

j=1

3
⊗

i=1

uj
i

∥

∥

∥

∥

∥

∥

2

F

s.t. uj
i ∈ (Rdi

+ ∩ C(smax
i )) \ C(smin

i ), j = 1, . . . , k.

(5.3)
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This notation makes explicit that as before the constraints consist of a convex part
uj

i ∈ {Rdi
+ ∩ C(smax

i )} and a reverse-convex part uj
i 6∈ C(smin

i ). The two fundamental
challenges to address are thus, first, the non-convex objective function, and, second, the
reverse-convex min-sparsity constraint.

5.3.1 The Sparsity Maximization Algorithm (SMA)

We use two strategies to cope with the basic challenges in problem (5.3): First, to address
the non-convexity of the objective function, we apply again an alternate minimization
approach where only one component ui, i ∈ {1, 2, 3}, is optimized at a time while the
other two components are held constant. The resulting objective function is convex
quadratic in each step.

To deal with the second challenge, the reverse-convex min-sparsity constraint, we adopt
the same general approach from global optimization [Tuy87] as in Section 4.3: Given
a current estimate for ui we compute the maximally sparse approximation subject to
the constraint that the reconstruction error does not deteriorate, and, dually, given a
maximally sparse approximation we minimize the reconstruction error subject to the
constraint that the min-sparsity constraint may not be violated.

Let us assume that within the alternate minimization approach (“outer loop”) we op-
timize component ui, while the components Ī := {1, 2, 3} \ {i} remain fixed. Then the

target function f(V, u) :=
∥

∥

∥
V −∑k

j=1

⊗3
i=1 u

j
i

∥

∥

∥

2

F
can be written as

f(V, ui) := ‖vec(V )− Uvec(ui)‖22 , (5.4)

where U is a sparse matrix containing the corresponding entries ui, i ∈ Ī, that are not
currently optimized.

Initialization. We start with any ui that obeys the constraints of (5.3). A simple way
to obtain such an initialization is to first solve the problem ignoring the min-sparsity
constraint, i.e.,

min
ui

f(V, ui)

s.t. uj
i ∈ R

di
+ ∩C(smax

i ), j = 1, . . . , k
(5.5)

which is a SOCP that reads in standard form

min
ui,z

z

s.t. 0 ≤ ui
(

vec(V )− Uvec(ui)
z

)

∈ Lkdi+1

(

uj
i

(cdi,smax
i

)−1e>uj
i

)

∈ Ldi+1, j = 1, . . . , k.

(5.6)
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5.3. Solving Sparsity-Constrained NTF

The resulting ui can then be projected on the boundary of the min-sparsity cone. Ac-
curacy is of no concern in this step, so simple element-wise exponentiation followed by
normalization

π(uj
i ) ∝

(uj
i )

t

∥

∥

∥
(uj

i )
t
∥

∥

∥

2

(5.7)

with suitable parameter t, yields a feasible initialization.

Step one. In the first step we maximize worst-case sparsity subject to the constraint
that reconstruction accuracy may not deteriorate:

max
ui

min
j

sp(uj
i )

s.t. uj
i ∈ R

di
+ ∩ C(smax

i ), j = 1, . . . , k

f(V, ui) ≤ f(V, ūi),

(5.8)

where ūi is the estimate for ui before sparsity maximization. Problems similar to (5.8)
have been solved using cutting plane methods, however, such solvers seem to perform well
for small to medium-sized problems only [Tuy87, HT96]. For the large scale problems
common in computer vision and machine learning, we must content ourselves with a
local solution obtained by linearization of the sparsity cone around the current estimate
ūi. The resulting problem is a SOCP:

max
ui,z

z (5.9a)

s.t. uj
i ∈ R

di
+ ∩ C(smax

i ), j = 1, . . . , k (5.9b)

f(V, ui) ≤ f(V, ūi) (5.9c)

z ≤ sp(ūj
i ) + 〈∇sp(ūj

i ), u
j
i − ū

j
i 〉, j = 1, . . . , k. (5.9d)

Note that sp(x) is convex, so the linearization (5.9) is valid in the sense that min-sparsity
will never decrease in step one.

Step two. In the second step we improve the objective function while paying attention
not to violate the min-sparsity constraints. Given the sparsity-maximized estimate ūi

we solve the SOCP

min
ui

f(V, ui) (5.10a)

s.t. uj
i ∈ R

di
+ ∩C(smax

i ), j = 1, . . . , k (5.10b)
∥

∥

∥
uj

i − ū
j
i

∥

∥

∥

2
≤ min

q∈C(smin
i )

∥

∥

∥
q − ūj

i

∥

∥

∥

2
, j = 1, . . . , k (5.10c)

which is straightforward to translate to standard form. Note that constraints (5.10c)
make sure that the resulting uj

i will not enter the min-sparsity cone. In effect, the reverse-
convex min-sparsity constraint is translated in (5.10) into a convex proximity constraint.
This is similar to trust region approaches common in nonlinear programming.
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Algorithm 5.3.1 The sparsity maximization algorithm in pseudocode.

1: initialize all uj
i using eqn. (5.6) and (5.7), set ū← u

2: repeat
3: for i = 1 to 3 do
4: repeat
5: uold ← u
6: ūi ← solution of (5.9)
7: ui ← solution of (5.10)
8: until |f(V, ui)− f(V, uold,i)| ≤ ε
9: end for

10: until no improvement found in loop 3–9

Termination. After the second step we check whether f(V, ui) improved more than ε.
If it did we jump to step one, otherwise we switch in the outer loop to a different factor
i. The whole algorithm is outlined in Alg. 5.3.1.

5.3.2 Convergence Properties

The convergence properties Alg. 5.3.1 are similar to those examined in Chapter 4. We
therefore will be brief and just outline the general ideas.

Proposition 8. The SMA algorithm (Alg. 1) terminates in finite time for any sparsity-
constrained NTF problem.

Proof (sketch). Revering to Section 4.3 for details we note that:

• Step 1 consists of solving three convex programs and subsequent projections. These
operations will terminate in polynomial time.

• Any current estimate u is a feasible point for the convex programs (polynomial
time) in the inner loop (steps 6 and 7). Thus, with each iteration of the inner loop
the objective value f(V, u) can only decrease or remain constant.

• Since f(V, u) is bounded from below, the inner loop will eventually terminate
(step 8).

• And so will the outer loop (step 10) for the same reason.

The algorithm conveniently converges on a stationary point if the constraints are regular.
Following [Tuy87] we call constraints regular if their gradients are linearly independent
and if removing one would allow for a new optimum with lower objective value. From
a practical viewpoint, this means that in particular we assume smin

i < smax
i , i.e., the

interior of the feasible set is not empty.
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5.3. Solving Sparsity-Constrained NTF

Proposition 9. Under regular sparsity constraints, Alg. 5.3.1 converges on a stationary
point of problem (5.2).

Proof. The first order optimality conditions for problem (5.2) read:

− ∂L
∂u∗i
∈ NQi

(u∗i ), (5.11a)

Gi(u
∗
i ) ∈ R

k
+, (5.11b)

λ∗i ∈ Rk
−, (5.11c)

〈λ∗i , u∗i 〉 = 0, (5.11d)

where i runs from 1 to 3. Here,

L(u, λ1, λ2, λ3) = f(V, u) +
3
∑

i=1

λ>i Gi(ui) (5.12)

is the Lagrangean of the problem and

Gi(ui) =
(

∥

∥u1
i

∥

∥

2
− (cdi,smin

i
)−1

∥

∥u1
i

∥

∥

1
, · · · ,

∥

∥

∥
uk

i

∥

∥

∥

2
− (cdi,smin

i
)−1

∥

∥

∥
uk

i

∥

∥

∥

1

)>
(5.13)

encodes the min-sparsity constraints: Gi(ui) is non-negative if the min-sparsity con-
straints on ui are adhered to. Finally, NQi

in (5.11a) is the normal cone [RW98] to the

convex set Qi = Rdi×k
+ ∩C(smax

i ), i = 1, . . . , 3.

Now assume the algorithm converged (Prop. 8) on a point ũ. Because sp(·) is convex and
the constraints are regular we find that (5.9d) is locally equivalent to z ≤ sp(ũi). In fact,
z = smin

i because the min-sparsity constraint is active for some vector ũj
i : Otherwise we

could remove the constraint without changing the objective value of the solution.

Overall, we find that the solution to (5.9) satisfies

max
z,ui∈Qi

z,

s.t. z = min
i

sp(ui),

0 ≤ f(V, ui)− f(V, ũi),

Gi(ui) ∈ R
k
+.

(5.14)

Then the solution obeys the corresponding first order condition

− ∂

∂ui

(

λ̂fif(V, ui) + 〈λ̂ui, Gi(ui)〉
)

∈ NQi
(u∗i ) (5.15)

which is equivalent to (5.11).
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(a) Ground truth.
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(b) Classical NTF.
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(c) Sparse NTF.

Figure 5.2: Ground truth experiment. We created an artificial data set with known
factors ui (Figure 5.2(a)). We added noise (see text) and used NTF to recover the fac-
tors from V = u1 ⊗ u2 ⊗ u3 + |ν|. While the NTF model without sparsity constraints
failed (Figure 5.2(b)), sparsity-controlled NTF successfully recovered the factors (Fig-
ure 5.2(c)).

5.3.3 Practical Considerations

The SOCP problems (5.9) and (5.10) are sparse but can become very large. Solvers with
support for sparse matrices are crucial1. In applications where the convex max-sparsity
constraints are not used, i.e., only min-sparsity constraints are specified, quadratic pro-
gramming (QP) solvers can be used instead of SOCP solvers. Commercial QP solvers
are usually highly optimized and may be faster than their SOCP counterparts.

5.4 Experiments

In this section we show that our optimization framework works robustly in practice. A
comparison demonstrates that explicit sparsity-control leads to improved performance.
Our results validate that sparsity-controlled NTF can be a useful model in real applica-
tions.

5.4.1 Ground Truth Experiment

To validate our approach we created an artificial data set with known ground truth.
Specifically, we used three equally-sized factors ui with di = 10 and all entries zero
except for the entries shown in Figure 5.2(a). We computed V = u1 ⊗ u2 ⊗ u3 + |ν|,
where ν ∼ N (0, 0.5) was i.i.d. Gaussian noise.

We found that over 10 repeated runs the classical NTF model without sparsity con-
straints was not able to recover any of the factors (Figure 5.2(b)). In contrast, sparsity-
controlled NTF with smin

i = 0.55 yielded useful results in all 10 repeated runs (Fig-
ure 5.2(c)).

1In our experiments we used MOSEK 3.2.1.8 [Mos05].
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5.4. Experiments

feature pixels NMF NTF NTF NTF NTF NTF NTF NTF
smin
1 0.0 0.3 0.4 0.6 0.7 0.8 0.9

ROC (trai) 0.997 0.995 1.000 1.000 0.997 0.997 0.994 1.000 0.991
ROC (test) 0.817 0.817 0.835 0.822 0.789 0.830 0.822 0.860 0.821

ACC-50 (test) 0.611 0.667 0.753 0.600 0.702 0.743 0.728 0.761 0.719

Table 5.1: Recognition performance of sparse NTF codes. We trained a SVM on
a subset of the MIT CBCL face detection data set (see text). Features were raw pixels,
a NMF basis, and a NTF basis with different min-sparsity constraints. We compared
area under ROC for the MIT training data (first row), the MIT test data set (second
row) and recognition accuracy for a balanced test data set with 50% face samples (last
row). NTF with a relatively strong min-sparsity constraint smin

1 = 0.8 performs best.

We conclude that in the presence of noise, sparsity constraints are crucial to successfully
recover sparse factors. Further, we find that at least with the simple data set above the
sparsity maximization algorithm converged on the correct factorization in 10 out of 10
repeated runs.

5.4.2 Face Detection

For the face detection problem, impressive results are reported in [HPS05] where NTF
without sparsity constraints clearly outperformed NMF recognition rates on the MIT
CBCL face data set [CBC00]. We demonstrate in this section that performance can
further be improved by using sparsity-constrained NTF.

In our experiments we used the original training and test data sets provided by CBCL.
In this data sets, especially the test data set is very imbalanced: A trivial classificator
returning “non-face” for all input would obtain 98% accuracy. For this reason, we
consider the area under the ROC curve as a more suitable performance measure: It is
more meaningful for highly imbalanced data sets. We thus trained radial-basis function
SVMs on small subsets (250 samples only) of the CBCL training data set. To determine
the SVM and kernel parameters, we used 5-fold crossvalidation on the training data.
For the resulting SVM we determined the area under the ROC on the test data set. In
addition, we also created a data set ACC-50 consisting of all 472 positive samples in the
test data set as well as of 472 randomly chosen negative test samples.

We compared the following feature sets:

1. the 19× 19 = 361 raw image pixels as found in the CBCL data set,

2. coefficients for 10 NMF basis functions determined on a subset of the faces in the
training data set,

3. coefficients for 10 NTF basis functions determined on a subset of the faces in
the training data set using different values of the min-sparsity constraint on u1.
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Reconstructions using these features are shown in Figure 5.1. Note that the NTF
basis corresponds to an about 10-fold higher compression ratio than the NMF
basis.

The results are summarized in Table 5.1: NMF and raw pixel values perform similar in
this experiment. NTF yields improved results, which is consistent with [HPS05]. Best
results are obtained with NTF with strong sparsity constraint (smin

1 = 0.8).

5.5 Summary

We extended the non-negative tensor factorization model for images [WW01, SH05,
HPS05] by explicit sparseness constraint [Hoy04]. We found that compared to uncon-
strained NTF the extended model can be more robust against noise (Section 5.4.1) and
the corresponding image codes can be more efficient for recognition, especially when
training data is scarce (Section 5.4.2).

From an optimization point of view, we devised an algorithm based on sequential conic
programming (Section 5.3.1) which has desirable convergence properties (Section 5.3.2)
and works well in practice (Section 5.4). Because the algorithm’s basic building blocks
are convex programs, we believe the model could further be extended by additional
convex constraints taking into account prior knowledge about the specific problem at
hand, while still remaining in the sequential convex programming framework.
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Chapter 6

Applications

In this chapter we describe some realistic applications that are not only intrinsically
motivated by our research, but may be of interest to an audience outside the computer
vision community as well.

6.1 Medical Imaging: Recovering SPECT Factors

Single photon emission computed tomography (SPECT) is an imaging technology from
nuclear medicine: Radioactive substances are injected in the blood stream and the result-
ing γ-rays are recorded. As the radio-pharmaceutical travels through the body, different
organs become radioactive and visible for γ-cameras.

In a simplified model used by Nagy, Kuba, and Samal organs are represented by
binary functions fk : R

3 → {0, 1} on the 3D space: fk(x) equals one iff x belongs to
organ k [NKS05]. In a first approximation, one can model the SPECT imaging process
by introducing coefficients ck : R+ → R+ describing the temporal behavior of the radio-
pharmaceutical w.r.t. organ k. Overall, the 3D situation is then given by [NKS05]:

g(x, t) =
∑

k

ck(t) · fk(x) + η(x, t), (6.1)

where η is noise. In our application both, fk and ck, are unknown.

The question, of course, is now: Given a sequence of images, can we recover ck and fk?
To solve the full problem in 3D requires inverting the projection operation. This is not
within the scope of this work. Rather, we will concentrate on how to factorize the organs
directly using the projection data given by the γ-cameras. This is an important first step
toward solving the 3D problem [NKS05].
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(a) t = 0 (b) t = 10 (c) t = 20

(d) t = 30 (e) t = 40 (f) t = 50

Figure 6.1: SPECT sequence. One projection of the simulated SPECT sequence. As
the radio-pharmaceutical travels through the body, different organs become visible and
vanish over time. Note the relatively high amount of noise in the images.

6.1.1 The Dataset

For this study, we use an artificial data set, in medical image processing called phantom,
developed by Backfrieder [BSB99]. It consists of 5 simplified organs corresponding
to heart and aorta, liver and spleen, the renal parenchymas, the renal pelvises, and the
bladder (Figure 6.1). The organs are modeled as homogeneous voxel volumes. We have
four views (projections) of a 64× 64 voxel volume recorded at t = 120 time steps.

Unfortunately, the original volume is not available, so there is no ground truth to test
our factorizations against. However, we do have available a previous factorization of
the data obtained using a combination of factor analysis, varimax rotation [Kai58], and
supervised selection of background regions [ŠKS+87, NKS05].

In the simulation, a radio-pharmaceutical is injected at t = 0, and over time the different
organs become visible. In addition, the dataset is corrupted by a fair amount of noise
which is typical for images recorded by γ-cameras.

6.1.2 Experiments

In order to factorize the data we first ran standard NMF on each of the four projections
independently. The results were not satisfying (Figure 6.2): The organs are not separated
into different factors. In particular, the heart and aorta factor (Figure 6.2(a)) appears in
two other factors (Figure 6.2(b) and 6.2(d)) and, consequently, the diffusion coefficients
are incorrect (Figure 6.2(i)). The latter is particularly unfortunate since the diffusion
coefficients contain important information about the health status of each organ.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 6.2: Factorization of the SPECT sequence (failure). Applying NMF alone
straightforwardly does not yield a successful factorization: Factor (a) is also present in
(b) and (d), factor (e) re-appears in (d). The coefficients (i) are highly unrealistic.

Projection Error FA Error QP Error QP/sp

1 11416.7 3408.3 3409.0
2 11987.5 3307.5 3307.4
3 17891.7 3778.1 3792.8
4 3581.5 3581.5 3579.7

Table 6.1: Reconstruction error for different projections. The reconstruction
error f(W,H) = ‖V −WH‖F for the 4 different projections are listed for the factor
analysis method (second column), NMF/QP (third column) and NMF/QP with sparse
initialization (fourth column). For FA 6 factors have been used, for NMF 5 factors
were sufficient. Note that except for projection 4, where the results are identical, the
reconstruction error of the QP solver is about three times smaller than the error of the
factor analysis method.

Note that the reconstruction error f(W,H) ≡ ‖V −WH‖F is small and in particular
much smaller than the reconstruction error of the previously used semi-supervised factor
analysis method that nevertheless yielded acceptable factorizations (Table 6.1). So it
seems that there are multiple local mimima, only few of which are relevant for the
application at hand.

There are two principal ways to deal with this situation: First, extend the NMF objective
function or the constraints to favor suitable factorizations. The second approach is to
start not from arbitrary initializations but close to favorable solutions.

The characteristics of favorable factorizations are: First, no organ appears in more than
one factor, and, second, the coefficients model the diffusion process realistically. In par-
ticular, we expect the coefficients to be continuous, unimodal functions over time. This
leads directly to two possible additional energy terms: To prevent multiple appearances
of organs we penalize the sum of the mutual inner products e>W>We. To favor con-
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(a) (b) (c) (d) (e)

Figure 6.3: Sparsity-constrained SPECT factors. With a sparsity constraint (sw =
0.6) we obtain a factorization that separates the organs very clearly. These factors can be
used directly or employed as initialization for a subsequent standard NMF optimization.

tinuous, unimodal coefficient functions we additionally penalize ‖∇Hi•‖. The resulting
energy function reads

f̂(W,H) = ‖V −WH‖2F + λ1e
>W>We+ λ2

∑

i

‖∇Hi•‖1 . (6.2)

Note that the new terms are quadratic and linear, respectively, so they are easily in-
tegrated in our previously presented framework (Section 4.3). Unfortunately, from an
application point of view, choosing the new parameters λ1, λ2 in (6.2) is not straightfor-
ward. This is a serious limitation when unsupervised operation is desired.

Surprisingly, the second approach, starting close to favorable solutions, is easier to use:
By applying a sufficiently strong sparsity constraint on W we obtain initializations that
are highly unlikely to model the same organ in multiple factors (Figure 6.3). Start-
ing from such initializations a subsequent standard NMF optimization obtains factors
that combine good reconstruction properties with good identification of the organs (Fig-
ure 6.5). Also, the reconstruction of the diffusion coefficients can improve significantly
(cf. Figure 6.2(i) and 6.4(x)).

The advantage of the sparsity-constrained initialization over (6.2) is that the precise
value of the min-sparsity constraint seems not critical: As long as it is large enough a
sparse solution will be obtained and possibly missing pixels or parts will be restored in
the subsequent standard NMF optimization.

Finally, note that it makes sense to factorize as many projections as possible at once: The
diffusion coefficients are independent of the view and thus should be identical for each
projection. With more views, however, more image information enters the optimization
process, thus allowing views to be factorized correctly that would, on their own, not
provide enough information for unambiguous factorization.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

(p) (q) (r) (s) (t)

(u) (v) (w) (x) (y)

Figure 6.4: Complete factorization of the SPECT sequence. For each view (rows)
five factors fk(x) are depicted using NMF with sparse initialization. Except for one
duplicate in (l)-(m) the the factors correspond to anatomically meaningful regions and
are well separated. In the bottom row we show corresponding diffusion coefficients ck(t)
which look much more realistic than those in Figure 6.2. Note that for visualization
some factors are amplified so that the noise level appears increased.
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t = 0 t = 10 t = 20 t = 30 t = 40 t = 50

Figure 6.5: SPECT sequence reconstruction. Reconstruction of the SPECT se-
quence (second row). The original data is shown for comparison (first row). The data
is almost perfectly reconstructed from the NMF factorization. Note that the noise level
is significantly reduced in the reconstruction.
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6.2 NMF-Based Image Classification

As outlined in the introduction (Section 1.1.3) non-negative matrix factorization (Sec-
tion 4) is applicable to a number of key problems in computational vision. In this
section, we develop as a proof-of-concept a system for weakly supervised learning of
visual concepts.

6.2.1 Factorization for Semantic Analysis

Latent semantic analysis (LSA) is a model from statistical natural language processing
(NLP) [DDL+90]. The idea is to treat text as a collection of topics that represent, in
turn, bags of words. In analogy, Sivic et al. [SRE+05] propose visual words to explain
images. Visual words are representative image patches obtained either through clustering
[MBLS01, JT05] or by mere random sampling [NJT06]. Visual topics then correspond
to collections of image patches which co-occur frequently. They can be found, e.g., by
using LSA. Interestingly, although these models do, in their simplest form, not account
for any geometric relations —there is no general agreement on a “visual grammar” yet—
recognition performance is state-of-the-art as long as the vocabulary of image patches is
chosen large enough [NJT06].

To understand the role of matrix factorizations in these applications, let V ∈ N
m×n
0

denote a matrix where Vij records how often word (image patch) i occurs in document
(image) j. Let the topics be stored in a m × k matrix of word (patch) frequencies W .
The LSA model assumes that the documents can be explained by the weighted sum of
a relatively small number of topics (k � n) so that with weights H ∈ R

k×n

V ≈WH. (6.3)

So, in the bag-of-words model semantic analysis leads to a matrix factorization problem.

Classical Latent Semantic Analysis

The original algorithm for LSA is based on singular value decomposition (SVD): The
matrix V of word counts is factorized to solve problem (4.1). This leads to a low-
dimensional vector space representation of documents in the so-called latent semantic
space.

Representing text documents in latent semantic space offers several benefits. A partic-
ularly important one is that machine learning is often easier to do in low-dimensional
spaces. Also, the tools of differential geometry become available which can lead to
improved classification algorithms [LL05].
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Probabilistic Latent Semantic Analysis and Non-Negative Matrix Factorization

An undesirable property of latent semantic spaces is that since the basis vectors of a SVD
are orthogonal some topics will in general have negative entries. This contradicts the
notion that LSA aims at topics that are given by text semantics: A negative word-count
in a topic can be difficult to comprehend [XLG03, Section 3].

Probabilistic latent semantic analysis (PLSA) is a probabilistic alternative to LSA that
does not share this drawback [Hof99]. Here, the word count matrix Vw,d ∝ p(w, d) is
described probabilistically where the topics are modeled as latent variables, such that
relative word counts p(w|z) and documents p(d|z) are conditionally independent given
the topics:

p(w, d) =
∑

z

p(w|z) · p(d|z) · p(z). (6.4)

To simplify notation, let us assume that w, d, and z are represented by integer ranges
starting from one, so their values and their indices coincide. As pointed out by Hofmann

[Hof99] (6.4) can be then written in matrix notation: With W = (p(w|z))w,z , H
> =

(p(d|z))d,z , and Σ = diag(p(z)), we write

V = WΣH. (6.5)

Of course, all matrices in (6.5) contain probabilities and are thus non-negative. This
notation makes explicit that PLSA is a special NMF problem 1.

From this perspective it is no longer surprising that NMF outperformed LSA in text
classification [XLG03, SBPP06] and works well in probabilistic clustering [DHS05, ZS05].

6.2.2 Patch-Based Image Representations

Unlike with text, for images it is not trivial to decide what constitutes the “words”
counted in the document count matrix V . Two alternatives are, first, to use interest
points [FE87, HS88, SMB00, Low04, KS04, MS04] and locate sparsely sampled patches
[BLP95, WWP00, LS03, FPZ03, AAR04, SRE+05]. The second alternative is to sample

1In fact, note the similarity between the EM update step for W which reads [Hof99, eqn. (4)]:

pnew(w|z) ∝
X

d

Vw,dp(z|d,w) =
X

d

Vw,d

p(d|z)p(w|z)p(z)
P

z′ p(d|z′)p(w|z′)p(z′)
. (6.6)

and the NMF update for W proposed by Lee and Seung [LS00, eqn. (4)]:

Wnew ∝ (W � (V H>))� (WHH>) (6.7)

which, using the probabilistic notation from above, can formally be written as

Ww,z ∝
X

d

Vw,d

p(d|z)p(w|z)
P

d′,z′ p(w|z′)p(d′|z′)p(d′|z)
. (6.8)
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patches or textons densely from the whole image plane [UVNS02, WCM05, NJT06]. In
either case, the sampled image patches are then clustered and the resulting represen-
tatives serve as “words” to be recognized in the images. There is evidence that dense
sampling can yield better recognition rates, although due to the statistics of natural im-
ages (cf. Section 3.1.3) clustering algorithms that rely on estimated mean and variance
of the cluster distributions might be unreliable [JT05].

Next, we describe some experiments with our proof-of-concept system. To be able to
fairly assess the performance of the NMF-based classifier we implement a brute-force
method first. The brute-force method is based on direct and complete search of image
patches in a database of labeled or unlabeled images. While this is wasteful from a
computational point of view the resulting classification rates are important to put the
NMF performance in perspective.

Brute-Force Classification

As base classifier we examine a supervised system that relies entirely on next-neighbor
classification of independently sampled image patches.

Setup. Specifically, in each experiment we randomly sample k image patches qi, i =
1, . . . , k from an image chosen randomly from a database of labeled images. Using the
remaining images from the database, we then estimate the likelihood p(qi|c) that patch qi
is sampled from an image of class c. Then we combine this evidence by a max-likelihood
estimator for the class c:

cML = arg max
c

k
∏

i=1

p(qi|c) . (6.9)

Here, we assume that the patches qi are conditionally independent given class label c.

There are three open questions to be answered in order to implement this system: First,
how do we model p(qi|c)? Second, how large are the patches? Third, how many patches
are to be used?

Concerning p(qi|c), we adopt a simple voting scheme where normalized correlation be-
tween each patch qi and each of the remaining images in the database is computed. The
database image where the largest normalized correlation for patch qi is found casts a
“vote” for its corresponding class2. The class most frequently voted for determines cML.
Concerning size and number of patches we conducted various experiments where the
patch size was chosen from {3, 11, 19, 27} and k was either 5, 10, or 50 (Table 6.2).

2In a preliminary experiment we examined the top-n matches and used histograms to cast soft,
probabilistic votes instead of the all-or-nothing approach. The results were similar.
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k 3 11 19 27

5 0.52 0.68 0.73 0.76
10 0.55 0.79 0.82 0.84
50 0.53 0.90 0.89 0.87

Table 6.2: Classification performance of brute force approach. Images from the
Caltech database were classified using varying number of patches k (rows) and varying
patch sizes (columns). The overall classification performance is reported (see text for
details). A patch size of 11 achieves best results.
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Figure 6.6: Confusion matrix for brute force approach. The rows correspond to
true classes (1: motorcycles, 2: airplanes, 3: faces, 4: cars), the columns to the prediction
of the brute force classifier with 50 patches of size 11×11 (cf. Table 6.2). The car class is
most difficult to classify partly due to relatively little data available. The colors encode
percentages.

Results. We used “Cars 1999 (Rear) 2”, “Motorcycles 2001 (Side)”, “Airplanes (Side)”,
and “Faces 1999 (Front)” from the Caltech-101 image database [FFFP04] for our ex-
periments. Images were converted to gray scale and scaled to 120 × 300 pixels. Overall
we randomly selected 500 images to classify and report the performance in Table 6.2
and Figure 6.6: We obtained classification rates up to 90%. In comparison, a classifier
returning random labels would, since the class labels are uniformly distributed, obtain
33% accuracy on this data set.

While classification accuracy of the simple brute force approach is impressive the com-
putational effort is outstanding: To create the results in Table 6.2 took over a week
of continuous computation3. Huge computing resources would be needed to scale this
approach to larger and more realistic databases.

3We run a Matlab 7.0.1 script on a 3GHz 64bit AMD CPU. Normalized correlation, the computa-
tionally most expensive operation, was implemented as a MEX extension in C.
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NMF-based Classification

In the previous section we have seen that patch-based image representations combined
with a basic statistical model can yield good classification performance on the Caltech
data set. A drawback of this brute-force technique is that it requires a large number
of normalized correlations that are computationally very expensive. In contrast, NMF
factorization, the critical step in the following experiments, takes less than 10 minutes
and often only 30 seconds to compute for our data.

In this section we adopt recent work by Sivic et al. and Nowak et al. to the NMF
setting [SRE+05, NJT06] to solve the classification problem much more efficiently.

Setup. As in Section 6.2.2 we use four classes from the Caltech-101 database (2157
images) and sample 3000 patches on three different scales from each image. Specifically,
the images are scaled by factors {0.7, 1.0, 1.3} and each time 1000 patches of size 9× 9
sampled. Unlike in the in the brute-force approach this is all the information we use
from the images, i.e., we do not look for the globally best matches of the patches in the
image database.

Then we divide the dataset into a test- and a training data set of equal size. Patches from
the training images are clustered into 1000 representatives using only two iterations of
k-means. Then we compute a word-frequency matrix V and binarize it using thresholds
that maximize mutual information between class labels and the resulting binary vector
[NJT06]. Note that the binarization is the only point where information about the true
class labels enters the training process. The resulting binary matrix is factorized by
NMF with varying number of basis functions.

Results. Using the NMF basis and the thresholds determined from the training data
we compute reconstruction coefficients H for the test images. From these coefficients we
obtain cluster labels by assigning each image i the index j that maximizes Hji.

In Table 6.3 we show three different performance measures averaged over 10 repeated
runs: We report the adjusted rand index [Ran71, HA85] and classification accuracy.
The adjusted rand index measures the correspondence between two partitions of a set
of objects. It equals one if the partitions are identical. The expectation of the adjusted
rand index of two random partitions is zero. For the accuracy criterion we search for the
optimal mapping from cluster label to true class label and then measure the classification
error.

We find that with r = 8 NMF basis functions a classification accuracy of 82 percent
can be obtained. Examining a confusion matrix (Figure 6.9) we see that—as in the
brute-force approach—the car class is consistently misclassified. The most likely reason
is that only 5.7% of the images are car images. Since information about the class labels
enters our training process only in the form of thresholds for the binarization step the
car images vanish in the noise of quite diverse backgrounds.
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dimension r adjusted rand index accuracy

2 0.32 0.64
3 0.44 0.74
4 0.46 0.75
5 0.43 0.75
6 0.42 0.78
7 0.39 0.80
8 0.39 0.82
9 0.34 0.81
10 0.33 0.82

Table 6.3: Performance of NMF categorization. NMF image representations using
a varying number of basis functions r. Different performance measures for the clusterings
of a test data set, averaged over 10 repeated runs, are reported (see text). With r = 8
about 82% accuracy is obtained.

Looking at the most descriptive image patches (Figure 6.10) reveals a second drawback
of our data set: Some images in the motorbike and airplane classes have white frames or
borders and sometimes very homogeneous backgrounds. This background is already a
strong clue for class membership. On the other hand, some features clearly concentrate
on semantically relevant image parts as well.

To examine this further we ran a relatively high-dimensional NMF factorization on our
training data set: Using r = 50 basis functions to represent the 1000-dimensional feature
vectors resulted in a sparse factorization where only few patch clusters—those that
frequently co-occur in the images—where active at a time. In Figure 6.11 we show some
results: While many factors model noise or background we see that some face features
(eyes, eyebrows, hair), and parts of the motorbike (wheels, seat) are distinguished. Using
a much larger training data set would probably reduce the influence of background
clutter. Alternatively, using pairs of image patches instead of single patches is also
reported to lead to clearer labellings [SRE+05].

To see that the approach works also in the absence of white frames and homogeneous
backgrounds we repeat our experiment using a database for human pose estimation
[BKS06]. The resulting factorization (Figure 6.12) into r = 4 categories corresponds to
people indoors, people outdoors, soccer players, and background (mostly pictures of an
empty office environment).

6.3 Summary

In this chapter we described applications in medical image processing and image cat-
egorization where NMF plays a key role. In the first case, we saw that control over
sparsity was crucially important to solve the application problem at hand. In the exam-
ple of image categorization we found that a straightforward brute-force approach could
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Figure 6.7: Sample images from the database used. A random sample of the subset
of the Caltech-101 image database used. The classes were motorcycles, airplanes, cars
(side view), and faces. Note that objects are roughly centered and some images have
white frames. The car class is underrepresented compared to the other classes.

already obtain impressive results on a frequently used data set. However, it did so at
a considerable computational cost. Using NMF reduced the processing time of a cate-
gorization from hours to minutes. In the future, it will be interesting to see if and how
variations of NMF can further improve results and whether similar approaches will work
for patch-based image segmentation.
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Figure 6.8: NMF-based image categories. A subset of the Caltech-101 database has
been categorized using 5 NMF bases. The top-ranked images are depicted for each basis
(rows). The first basis corresponds to motorcycles with dark background, the second
basis models motorcycles with light background, basis three and four model airplanes,
and basis 5 corresponds to faces. See text for details of the experiment.
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Figure 6.9: Confusion matrix for NMF categories. The rows correspond to true
classes (1: motorcycles, 2: airplanes, 3: faces, 4: cars). The columns correspond to 5
NMF basis factors (cf. Figure 6.8 and text for details). The motorcycles and the planes
are divided into two subcategories each. Faces are accurately modeled by basis number
5. The car class is confused with a plane class. Note that there were relatively few cars
in the training data set.

106



6.3. Summary

Figure 6.10: Descriptive patches. Descriptive image patches as selected by the NMF
factorization (see text). Note that on the individual patch level categorization can
be quite inconsistent. However, several intuitively relevant features are detected: For
instance, face features are consistently selected, chassis and wheels are relevant, etc.
White frames and borders, an artifact of the Caltech-101 dataset, are descriptive for the
motorcycle image class. (See text for discussion.)
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(a) Motorbike

(b) Face

Figure 6.11: Co-occurring patches as extracted by NMF. NMF with a relatively
big number of basis function (r = 50) was used to find visual words that co-occur
frequently in the database. While this completely unsupervised process captures much
noise some semantically meaningful factors are modeled as well: For instance there is a
group of words that roughly correspond to wheels of a motorbike, or to hair or to eyes.
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Figure 6.12: Analyzing the people database. A database used for human pose
estimation [BKS06] was clustered using NMF: Images of humans and of an human-free
office background are processed. The top-scoring images for four NMF basis functions
are reported. Factor one (first row) models a series of shots of amateur soccer players,
the other factors correspond to people indoors (second row), people outdoors (third row),
and the office background (last row), respectively. No information about soccer players
or indoor/outdoor scenes was provided during the training process.
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Chapter 7

Summary and Outlook

In this thesis we considered image models for segmentation and classification and their
associated optimization problems. Our work can roughly be grouped into two parts:
In the first part we consider PDE-based, variational approaches; in the second part we
adopt a mathematical programming viewpoint to solve sequences of convex programs.

From a practical point of view our main results are that (1) we can obtain surprisingly
sophisticated segmentations of natural scenes using comparatively elementary statistical
image models only (Chapter 3), and (2) that we can improve upon existing algorithms
for matrix and tensor factorizations by adapting results from global optimization theory
(Chapter 4 and 5), resulting in significant improvements in applications (Chapter 6).

Our work also motivates further research in various directions: For instance, we are not
aware of a derivation of the generalized Laplacian distribution from physically realistic
axiomatics. We have shown (Section 3.1.3) that explaining images as records of random
light rays leads to statistics described by α-stable Lévy distributions. The parameters we
found lead to distributions with have much larger entropy than the corresponding gen-
eralized Laplacians. It would be interesting to find the necessary additional assumptions
that lead to the Laplacian image model.

Concerning the non-negative factorizations we have given a number of examples on how
to extend the general framework to model prior knowledge in the form of additional
constraints or slight changes to the objective function. This could be a fruitful direction
for further research. For instance, one can ask how to model video in this framework,
or whether latent semantic analysis can be improved by using objective functions that
treat spurious and missing features asymmetrically.

From the optimization point of view we found the global deterministic optimization
literature to be a rich field to mine for ideas. Of course, in most cases it will be inefficient
to directly use a global deterministic method for the large-scale problems encountered
in computer vision or machine learning. Still, approaches from global deterministic
optimization can provide starting points to derive new optimization algorithms from.
Most likely, one will introduce approximations or shortcuts at one point or another.
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The challenge then is to gain a maximum in speed while paying a minimum in terms of
undesirable properties of the resulting large-scale algorithms.

Finally, mathematical research is needed to unify the two dominant optimization frame-
works used in computer vision: This work is quite characteristic for today’s computer
vision research in that it uses continuous, PDE-based methods on the one hand and
discrete mathematical-programming based methods on the other quite independently.
It is not yet clear how to translate systematically results from one framework to the
other and what, precisely, the benefits and drawbacks of each approach are. We know
from experience that the continuous as well as the discrete approach can yield impressive
results. Bridging the two worlds is an exiting research agenda for the future.
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namic labeling model for variational recognition-driven image segmentation.
Int. J. of Comp. Vision, 66(1):67–81, 2006.

[CT91] Thomas M. Cover and Joy A. Thomas. Elements of Information Theory.
Wiley Interscience, New York, 1991.

[CV01] Tony F. Chan and Luminita A. Vese. Active contours without edges. IEEE
Trans. on Image Proc., 10(2):266–277, February 2001.

[Dau85] J. Daugman. Uncertainty relation for resolution in space, spacial frequency,
and orientation. J. of the Optical Sco. of America, 2(7), 1985.

[DDL+90] Scott C. Deerwester, Susan T. Dumais, Thomas K. Landauer, George W.
Furnas, and Richard A. Harshman. Indexing by latent semantic analy-
sis. Journal of the American Society of Information Science, 41(6):391–407,
1990.

[dGJL04] Alexandre d’Aspremont, Laurent El Ghaoui, Michael I. Jordan, and
Gert R.G. Lanckriet. A direct formulation for sparse PCA using semidefinite
programming. In Adv. in NIPS, 2004.

[DHS05] Chris Ding, Xiaofeng He, and Horst D. Simon. On the equivalence of non-
negative matrix factorization and spectral clustering. In SIAM Int’l Conf.
on Data Mining (SDM), apr 2005.

[DS04a] David Donoho and Victoria Stodden. When does non-negative matrix factor-
ization give a correct decomposition into parts? In Adv. in NIPS, volume 17,
2004.
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non-negative matrix factorization and sequential cone programming. J. of
Mach. Learning Res., (7):1385–1407, July 2006.

[HT96] Reiner Horst and Hoang Tuy. Global Optimization. Springer, Berlin, 1996.

[Hua00] Jinggang Huang. Statistics of Natural Images and Models. PhD thesis,
Division of Applied Mathematics, Brown University, Rode Island, 2000.

[HW02] Ralf Herbrich and Robert C. Williamson. Algorithmic luckiness. J. of
Mach. Learning Res., 3:175–212, 2002.

[HY01] Mark H. Hansen and Bin Yu. Model selection and the principle of minimum
description length. J. of the Americ. Stat. Assoc., 96(454):746–774, 2001.

118



BIBLIOGRAPHY

[Hyv99] Aapo Hyvärinen. Survey on independent components analysis. Neural Com-
putation Surveys, 2:94–128, 1999.

[Isi25] Ernst Ising. Beitrag zur Theorie des Ferromagnetismus. Zeitschrift für
Physik, 31:253–258, 1925.

[Jay57] E. T. Jaynes. Information theory and statistical mechanics. The Physical
Review, 106(4):620–630, may 1957.
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