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1. Introduction

By Bayen, Flato, Fronsdal, Lichnerowicz, and Sternheimer in 1977 the important
concept of quantization given by deforming the algebra of functions in “direc-
tion” of the Poisson bracket was introduced [1]. Clearly theintuitive concept of~-depending “deformation” of classical mechanics into quantum mechanics was
around earlier (e.g. Weyl quantization). But in their work amathematically very
precise meaning was given to it.

Since this time the existence of a deformation quantizationfor every symplectic
manifold was established in different ways. Some of the persons involved were De
Wilde and Lecomte [11], Fedosov [15], and Omori, Maeda, and Yoshioka [27].
Quite recently this was extended to every Poisson manifold by Kontsevich [21].
Classification results are also available [4, 13, 26, 14, 36].

Even if there is now a very general existence theorem it is still of importance
to study deformation quantizations for such manifolds which carry additional ge-
ometric structures. From the whole set of deformation quantization one is looking
for one which keeps the additional structure. In this spiritthe article deals with
the deformation quantization of compact quantizable Kähler manifolds. It was
shown 1993 by Bordemann, Meinrenken, and Schlichenmaier [6] that for compact
quantizable Kähler manifolds the Berezin-Toeplitz quantization has the correct
semi-classical behaviour (see Theorem 2.3 below). Shortlyafter [6] was submitted
we had also the result that by the techniques developed thereit was possible to
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construct a deformation quantization [12]. Details were written up in German [32]
and the result (with few steps of the proof) appeared in [31, 33]. The complete
proof was not published in English.

Compact Kähler manifolds appear as phase spaces of constrained systems and
as reduced phase spaces under a group action. More recently,they play a rather
prominent role in Chern-Simons theory, topological and 2-dimensional conformal
field theory. Here typically, the phase spaces to be quantized are moduli spaces
of certain geometric objects. As examples the compactified moduli spaces of sta-
ble holomorphic vector bundles (maybe with additional structures) on a Riemann
surface show up. The quantum Hilbert spaces appearing in this context are the
Verlinde spaces.

Encouraged by the recent interest in deformation quantization evolving in these
fields I found it worthwhile to publish the above mentioned results also in English
and add some pieces to it. By the construction of the deformation quantization di-
rect relations to the Berezin-Toeplitz quantization, the geometric quantization (via
Tuynman’s relation), and asymptotic operator representations are given. Hence
what is presented here is more than just another existence proof.

In the proof the theory of generalized Toeplitz operators developed by Boutet
de Monvel and Guillemin [9, 16] is used in an essential manner. In the article
[17] which appeared one year later than [6] it was also explained by Guillemin
himself in which way the existence of a deformation quantization follows from
the general theory of Toeplitz operators. More precisely, he showed that the sub-
algebra of operators commuting with theS1 action (with respect to the sphere
bundleQ defined in Section 3) modulo Toeplitz operators of degree�∞ defines
via the symbol map a deformation quantization. This followsfrom results on the
principal and subprincipal symbols proved in [9]. Note thatessentially the same
idea was employed in [6], in the answer to [12], in [31, 32], and will be presented
here. Hence, the deformation quantizations obtained will coincide. One might even
say that suitable reinterpreted nowadays from the point of view of deformation
quantization their existence was implicitly already contained (at least to a certain
extend) in the Boutet de Monvel - Guillemin theory of Toeplitz operators.

Only for certain special examples of compact Kähler manifolds direct construc-
tions have been known earlier; see results by Berezin [3], Moreno and Ortega-
Navarro [23, 24], and Cahen, Gutt, and Rawnsley [10]. Recently, for all Kähler
manifolds (including the noncompact ones) the existence ofa deformation quan-
tization with “separation of variables” was shown by Karabegov [18]. Separation
of variables says essentially that the deformation quantization “respects” the com-
plex structure. A classification of all such deformation quantizations for a fixed
Kähler manifold was also given by Karabegov. Note that his existence proof is
on the level of the formal deformation quantization. It doesnot yield Hilbert
spaces and quantum operators like in our approach (which in contrast is restricted
to the case of quantizable compact Kähler manifolds). Independently, a similar
existence theorem was proven by Bordemann and Waldmann [7] along Fedosov’s
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original approach. Yet another construction was given recently by Reshetikhin and
Takhtajan [28].

Finally, let me stress the fact, that the very essential basics of this work go back
to joint work with Martin Bordemann and Eckhard Meinrenken.Details have been
added by me later on.

The article is organized as follows. In Section 2 the geometric set-up is given
and the main result of this article, the theorem on the construction of the defor-
mation quantization (Theorem 2.2) is formulated. The approximation results from
[6] are recalled. In Section 3 the necessary details about the Toeplitz structure
introduced by Boutet de Monvel and Guillemin are given. Theyare employed in
Section 4 for the construction of the deformation quantization (the star-product),
i.e., the proof of Theorem 2.2. In the concluding Section 5 additional properties
of the star-product are discussed. It is shown that we have 1?g = g?1 = g, i.e.,
that the star-product is “null on constants” and that it fulfills the parity condition.
A trace is constructed. By a result of Tuynman for compact Kähler manifolds the
geometric quantization can be expressed in terms of the Berezin-Toeplitz quan-
tization. Using our theorem we see that the geometric quantization yields also a
star-product. This star-product is equivalent to the constructed one. The Berezin-
Toeplitz star-product will be a local star-product given bybidifferential operators.
It will have the property of “separation of variables”. Thiswill be shown in [19].

2. The set-up and the main result

Let (M;ω) be a compact (complex) Kähler manifold of complex dimension n. It
should be considered as phase space manifoldM with symplectic form given by
the Kähler formω . Denote byC∞(M) the algebra of (arbitrary often) differentiable
functions. Using the Kähler form one assigns to everyf 2C∞(M) its Hamiltonian
vector fieldXf and to every pair of functionsf andg the Poisson bracket:

ω(Xf ; �) = d f(�); f f ;gg := ω(Xf ;Xg) : (1)

With the Poisson bracketC∞(M) becomes a Poisson algebra.
Assume(M;ω) to be quantizable. This says that there exists an associated

quantum line bundle(L;h;∇) with holomorphic line bundleL, Hermitian metric
h on L and connection∇ compatible with the metrich and the complex structure
such that the curvature of the line bundle and the Kähler form ω of the manifold
are related as

curvL;∇(X;Y) := ∇X∇Y�∇Y∇X�∇[X;Y℄ =� i ω(X;Y) : (2)

Equation (2) is called thequantization condition. If the metric is represented as
a function ĥ with respect to local complex coordinates and a local holomorphic
frame of the bundle the quantization condition reads as i∂ ∂ logĥ= ω .

The quantization condition implies thatL is a positive line bundle. By the
Kodaira embedding theoremL is ample, which says that a certain tensor power
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Lm0 of L is very ample, i.e., the global holomorphic sections ofLm0 can be used to
embed the phase space manifoldM into projective space. Note that the embedding
is an embedding as complex manifolds not as Kähler manifolds. The embedding
dimension is given by the Hirzebruch-Riemann-Roch formula. Hence, quantizable
compact Kähler manifolds are as complex manifolds projective algebraic mani-
folds. The converse is also true, see [31, 2]. In the following we will assumeL to
be very ample. IfL is not very ample we choosem02 N such that the bundleLm0 is
very ample and take this bundle as quantum line bundle andm0ω as Kähler form
for M. The underlying complex manifold structure is not changed.Please note that
for the examples of moduli spaces mentioned in the introduction there is often a
natural ample or very ample quantum line bundle.

We take the Liouville measureΩ = 1
n! ω

n as volume form onM. On the space
of C∞-sectionsΓ∞(M;L) we have the scalar product and normhϕ ;ψi := Z

M
h(ϕ ;ψ) Ω ; jjϕ jj :=phϕ ;ϕi : (3)

Let L2(M;L) be the L2-completion of the space ofC∞-sections of the bundleL and
Γhol(M;L) be its (due to compactness ofM) finite-dimensional closed subspace of
holomorphic sections. LetΠ : L2(M;L)! Γhol(M;L) be the projection.

Definition 2.1 For f 2C∞(M) the Toeplitz operator Tf is defined to be

Tf := Π( f �) : Γhol(M;L)! Γhol(M;L) : (4)

In words: One takes a holomorphic sections and multiplies it with the differen-
tiable function f . The resulting sectionf � s will only be differentiable. To obtain
a holomorphic section one has to project it back on the subspace of holomorphic
sections.

The linear mapT : C∞(M)! End
�
Γhol(M;L)�, f ! Tf , is theBerezin-Toeplitz

quantization map. Because in generalTf Tg = Π( f �)Π(g�)Π 6= Π( f g�)Π = Tf g,
it is neither a Lie algebra homomorphism nor an associative algebra homomor-
phism. From the point of view of Berezin’s approach [3] the operatorTf has as a
contravariant symbolf (see also [34] for relations to Berezin’s covariant symbols).

This defines a map from the commutative algebra of functions to a noncom-
mutative finite-dimensional (matrix) algebra. The finite-dimensionality is due to
compactness ofM. A lot of classical information will get lost. To recover this
information one should consider not just the bundle(L;∇;h) alone but all its tensor
powers(Lm;∇(m);h(m)) and apply the above constructions for everym. Note that
if ĥ corresponds to the metrich w.r.t. a holomorphic frames of the bundleL then
ĥm corresponds to the metrich(m) w.r.t. to the frames
m for the bundleLm. In this
way one obtains a family of matrix algebras and a family of maps

T(m) : C∞(M)! End
�
Γhol(M;Lm)�; f ! T(m)

f
: (5)
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This infinite family should in some sense “approximate” the algebraC∞(M). (See
[5] and the discussion on strict quantization below.) for a definition of such an
approximation.) Indeed this family has the correct semi-classical behaviour as is
expressed in Theorem 2.3 below.

It also allows to construct a deformation quantization. A deformation quanti-
zation is given by astar-product. I will use both terms interchangeable. To fix
the notation and the factors of i let me recall the definition of a star-product. LetA =C∞(M)[[ν ℄℄ be the algebra of formal power series in the variableν over the
algebraC∞(M). A product ? on A is called a (formal) star-product if it is an
associativeC [[ν ℄℄-linear product such that

1. A =νA �=C∞(M), i.e., f ?g modν = f �g,

2.
1
ν
( f ?g�g? f ) modν =� i f f ;gg,

where f ;g2C∞(M). We can also write

f ?g= ∞

∑
j=0

Cj( f ;g)ν j ; (6)

with Cj( f ;g)2C∞(M). TheCj should beC -bilinear in f andg. Conditions 1 and 2
can be reformulated as

C0( f ;g) = f �g; and C1( f ;g)�C1(g; f ) =� i f f ;gg : (7)

The aim of this article is to show the following

Theorem 2.2 There exists a unique (formal) star-product on C∞(M)
f �g := ∞

∑
j=0

ν jCj( f ;g); Cj( f ;g) 2C∞(M); (8)

in such a way that for f;g 2C∞(M) and for every N2 N we have with suitable
constants KN( f ;g) for all mjjT(m)

f
T(m)

g � ∑
0� j<N

�
1
m

� j

T(m)
Cj ( f ;g)jj= KN( f ;g)� 1

m

�N : (9)

This theorem has been proven immediately after [6] was finished. It has been
announced in [31, 33] and the proof was written up in German in[32]. In Section 4
I will supply the proof.

Instead of writing (9) we will sometimes use the more intuitive notation

T(m)
f
�T(m)

g � ∞

∑
j=0

�
1
m

� j

T(m)
Cj ( f ;g) (m! ∞) : (10)

The asymptotics should always be understood in the above precise sense.



6 M. SCHLICHENMAIER

In the proof the results expressed in the following theorem are needed. Denote

by jj f jj∞ the sup-norm of f on M and byjjT(m)
f
jj = sups2Γhol(M;Lm);s6=0

jjT (m)
f

sjjjjsjj the

operator norm onΓhol(M;Lm).
Theorem 2.3. (Bordemann, Meinrenken, Schlichenmaier)

(a) For every f2C∞(M) there exists C> 0 such thatjj f jj∞� C
m
� jjT(m)

f
jj � jj f jj∞ : (11)

In particular, limm!∞ jjT(m)
f
jj= jj f jj∞.

(b) For every f;g2C∞(M)jjmi [T(m)
f

;T(m)
g ℄�T(m)f f ;ggjj = O( 1

m
) as m! ∞ : (12)

(c) For every f;g2C∞(M)jjT(m)
f

T(m)
g �T(m)

f �g jj = O( 1
m
) as m! ∞ : (13)

These results are contained in Theorem 4.1, 4.2, resp. in Section 5 in [6]. Note that
part (c) also follows from (9) forN = 1 and generalizes trivially to finitely many
functions.

Our result does not prove a strict deformation quantizationin the sense of
Rieffel [29]. But it is astrict quantization(see for the definition [22, 30]). Let
I := f 1

m jm2Ng[f0g be the topological space with topology coming from the real
line. It has 0 as accumulation point. To every~2 I , ~ 6= 0, i.e~= 1=m, one assigns
the algebraA1=m := End(Γhol(M;Lm)) with jj:jj1=m the operator norm. To 0 one

assigns the algebraA0 :=C∞(M) with normjj:jj0 = j:j∞. The map~! T(1=~)
f

, with

T(∞)
f

:= f defines by Theorem 2.3 a continuous field ofC�-algebras on the family(A~)~2I . From (45) follows thatT respects conjugation. By (12) the additional
condition for a strict quantization is also fulfilled. Due tothe compactness ofM
the mapsT(1=~)

f
for ~ 6= 0 are never injective. Hence the strict quantization is not

faithful at a fixed level~, only in the limit~! ∞.
In [5] and [6] the notion ofLα , resp.gl(N), resp.su(N) quasi-limit was used

for this concept. It was conjectured in [5] that for every compact Kähler manifold
the Poisson algebra of function is agl(N) quasi-limit. This was proven in [6]. This
result is of special interest in the theory of membranes.

There is another geometric concept of quantization, thegeometric quantiza-
tion introduced by Kostant and Souriau. But for compact Kähler manifolds due to
Tuynman [35] (see also [5] for a coordinate independent proof) they have the same
semi-classical behaviour

Q(m)
f

= i �T(m)
f� 1

2m∆ f
: (14)
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Here Q(m)
f

is the well-known operator of geometric quantization (withrespect
to the quantum line bundleLm) corresponding to the prequantum operator
P(m)

f
= �∇(m)

X(m)
f

+ i f � id and Kähler polarization. Kähler polarization means

Q(m)
f

= Π(m)P(m)
f

Π(m) with the projectors

Π(m) : L2(M;Lm)! Γhol(M;Lm) : (15)

In (14), ∆ is the Laplacian with respect to the Kähler metric given byω . In Sec-
tion 5 I will show that this allows to define a deformation quantization via the
operators of geometric quantization. It will be equivalentto the Berezin-Toeplitz
deformation quantization.

3. Toeplitz structure

In [6] the set-up for the proof of the approximation results was given. Here I use
the same setting. Let me recall for further reference the main definitions. A more
detailed exposition can be found in [32]. Take(U;k) := (L�;h�1) the dual of
the quantum line bundle,Q the unit circle bundle insideU (with respect to the
metric k) andτ : Q! M the projection. Note that for the projective space with
quantum line bundle the hyperplane section bundleH, the bundleU is just the
tautological bundle. Its fibre over the pointz2 PN(C ) consists of the line inC N+1

which is represented byz. In particular, for the projective space the total space
of U with the zero section removed can be identified withC N+1 n f0g. The same
picture remains true for the via the very ample quantum line bundle in projective
space embedded manifoldM. The quantum line bundle will be the pull-back ofH
(i.e., its restriction to the embedded manifold) and its dual is the pull-back of the
tautological bundle.

In the following we useE n0 to denote the total space of the vector bundleE
with the image of the zero section removed. Starting from thefunction k̂(λ ) :=
k(λ ;λ ) onU we define ˜a := 1

2i (∂ �∂ ) logk̂ onU n0 (with respect to the complex
structure onU ) and denote byα its restriction toQ. Now dα = τ�ω (with d = dQ)

andµ = 1
2π τ�Ω^α is a volume form onQ. With respect to this form we take the

L2-completion L2(Q;µ) of the space of functions onQ. The generalized Hardy
spaceH is the closure of the functions in L2(Q;µ) which can be extended to
holomorphic functions on the whole disc bundle. The generalized Szegö projector
is the projection

Π : L2(Q;µ)!H : (16)

By the natural circle actionQ is a S1-bundle and the tensor powers ofU can be
viewed as associated bundles. The spaceH is preserved by this action. It can be
decomposed into eigenspacesH = ∏∞

m=0H (m) wherec 2 S1 acts onH (m) as
multiplication bycm. Sections ofLm =U�m can be identified with functionsφ on
Q which satisfy the equivariance conditionφ(cλ ) = cmφ(λ ). It turns out that this
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identification is an isometry. Recall that L2(M;Lm) has a scalar product given in
an corresponding way to (3). Restricted to the holomorphic objects we obtain an
isometry

Γhol(M;Lm)�=H (m) : (17)

There is the notion of Toeplitz structure(Π;Σ) as developed by Boutet de Monvel
and Guillemin in [9, 16]. What is needed from there are only the following facts.
Π is the Szegö projector (16). The second object is the submanifold

Σ = f tα(λ ) j λ 2Q; t > 0 g � T�Qn0 (18)

of the tangent bundle ofQ defined with the help of the 1-formα . They showed
that it is a symplectic submanifold. A (generalized) Toeplitz operator of orderk is
an operatorA :H !H of the form A= Π �R�Π whereR is a pseudodifferential
operator (ΨDO) of orderk on Q. The Toeplitz operators build a ring. The symbol
of A is the restriction of the principal symbol ofR (which lives onT�Q) to Σ.
Note thatR is not fixed byA, but Guillemin and Boutet de Monvel showed that
the symbols are well-defined and that they obey the same rulesas the symbols of
ΨDOs. In particular we have the following relations

σ(A1A2) = σ(A1)σ(A2); σ([A1;A2℄) = i fσ(A1);σ(A2)gΣ: (19)

In our context only two Toeplitz operators appear:

(1) The generator of the circle action gives the operatorDϕ = 1
i

∂
∂ϕ . It is an operator

of order 1 with symbolt. It operates onH (m) as multiplication bym.

(2) For f 2C∞(M) let M f be the operator on L2(Q;µ) corresponding to multipli-

cation withτ� f . We set1 Tf = Π �M f �Π :H !H . BecauseM f is constant

along the fibres ofτ , Tf commutes with the circle action. HenceTf = ∞
∏

m=0
T(m)

f
,

whereT(m)
f

denotes the restriction ofTf toH (m). After the identification ofH (m)
with Γhol(M;Lm) we see that theseT(m)

f
are exactly the Toeplitz operatorsT(m)

f
introduced in Section 2. In this senseTf is called the global Toeplitz operator

and theT(m)
f

the local Toeplitz operators.Tf is an operator of order 0. Let us

denote byτΣ : Σ� T�Q!Q!M the composition then we obtain for the symbol
σ(Tf ) = τ�Σ( f ).
4. Proof of Theorem 2.2

Let the notation be as in the last section. In particular, letTf be the Toeplitz op-

erator,Dϕ the operator of rotation, andT(m)
f

, resp.(m�) their projections on the

eigenspacesH (m) �= Γhol(M;Lm).
1 There should be no confusion with the operatorTf = T(1)

f
introduced above.
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4.1. The definition of theCj( f ;g) 2C∞(M)Cj( f ;g) 2C∞(M)Cj( f ;g) 2C∞(M)
The construction is done inductively in such a way that

AN = DN
ϕ Tf Tg�N�1

∑
j=0

DN� j
ϕ TCj ( f ;g) (20)

is always a Toeplitz operator of order zero. The operatorAN is S1-invariant, i.e.,
Dϕ �AN =AN �Dϕ . Because it is of order zero his symbol is a function onQ. By the
S1-invariance the symbol is even given by (the pull-back of) a function onM. Take
this function to be the next elementCN( f ;g) in the star-product. By construction
the operator AN�TCN( f ;g) is of order�1 andAN+1 = Dϕ(AN�TCN( f ;g)) is of
order 0 and hence exactly of the form given in (20). The induction starts with

A0 = Tf Tg; and (21)

σ(A0) = σ(Tf )σ(Tg) = τ�Σ( f ) � τ�Σ(g) = τ�Σ( f �g) : (22)

Hence,C0( f ;g) = f �g as required.
It remains to show statement (9) about the asymptotics. As anoperator of order
zero on a compact manifoldAN is bounded. Hence the same is true for all its
restrictionsA(m)

N
toH (m). If we calculate them we obtainjjmNT(m)

f
T(m)

g �N�1

∑
j=0

mN� jT(m)
Cj ( f ;g)jj= jjA(m)

N
jj � jjANjj : (23)

After dividing bymN Equation (9) follows. Bilinearity is clear.

4.2. The Poisson structure
The relationC0( f ;g) = f �g was proven above. To show the 2. formula in (7) we
write explicitly (23) forN = 2 and the pair of functions( f ;g):jjm2T(m)

f
T(m)

g �m2T(m)
f �g �mT(m)

C1( f ;g)jj � K : (24)

A corresponding expression is obtained for the pair(g; f ). If we subtract both
operators inside of the norm we obtain (with the triangle inequality and suitableK0)jjm2(T(m)

f
T(m)

g �T(m)
g T(m)

f
)�m(T(m)

C1( f ;g)�T(m)
C1(g; f ))jj � K0 : (25)

Dividing by mand multiplying withi we obtainjjmi [T(m)
f

;T(m)
g ℄�T(m)

i
�

C1( f ;g)�C1(g; f )�jj= O( 1
m
) : (26)

Using the asymptotics given by Theorem 2.3 (b) for the commutator we getjjT(m)f f ;gg� i
�

C1( f ;g)�C1(g; f )�jj= O( 1
m
) : (27)
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Taking the limit form! ∞ and using Theorem 2.3 (a) we getjjf f ;gg� i (C1

�
f ;g)�C1(g; f )�jj∞ = 0 : (28)

Hence f f ;gg = i (C1( f ;g)�C1(g; f )). This shows (7).

4.3. The uniqueness
It is proven by induction using the asymptotics (9). LetCj( f ;g) andC̃j( f ;g) be two
such systems of bilinear maps fulfilling the required properties. AssumeCj = C̃j
for j � N�2. If we subtract the corresponding expressions in (9) and use the fact
thatT(m) is linear we obtainjj 1

mN�1T(m)(CN�1( f ;g)�C̃N�1( f ;g))jj � K
mN : (29)

Hence,
lim

m!∞
jjT(m)(CN�1( f ;g)�C̃N�1( f ;g))jj= 0 : (30)

With Theorem 2.3 (a) it followsCN�1( f ;g) = C̃N�1( f ;g). The induction starts
with N = 1. But hereC0( f ;g) = C̃0( f ;g) = f �g is required.

4.4. The associativity
The proof employs the associativity of the operators used toconstruct the star-
product and again Theorem 2.3 (a). The relationf ? (g?h) = ( f ?g) ?h can be
rewritten in relations for the mapsCj :

k

∑
l=0

Cl ( f ;Ck�l (g;h)) = k

∑
l=0

Cl (Ck�l ( f ;g);h) : (31)

From Theorem 2.3 (a) we knowf = g  ! limm!∞ jjT(m)
f
�T(m)

g jj = 0. Hence

it is enough to apply the Toeplitz operatorT(m) to the relation (31) and study the
asymptotics ofTleft�hand side�Tright�hand side. This is done by induction overk.
k= 0 : C0( f ;C0(g;h)) =C0(C0( f ;g);h) is true becauseC0( f ;g) = f �g.
Assume the claim to be true up to levelk� 1. The equation (9) for 0� r � k
multiplied bymr (N = r +1) yields

T(m)
Cr ( f ;g) = mrT(m)

f
T(m)

g � r�1

∑
s=0

mr�sTCs( f ;g)+O( 1
m
) : (32)

Here the symbolO( 1
m) is shorthand for the statement that the difference of the

operators on the left and on the right is an operator whose norm behaves likeO( 1
m)

for m! ∞. In particular we obtain forl = 0;1; : : : ;k
T(m)

Cl ( f ;Ck�l (g;h)) = ml T(m)
f

T(m)
Ck�l (g;h)� l�1

∑
s=0

ml�sTCs( f ;Ck�l (g;h))+O( 1
m
) : (33)
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Summation overl yields

T(m)
l:h:s: = k

∑
l=0

ml T(m)
f

T(m)
Ck�l (g;h)� k

∑
l=0

l�1

∑
s=0

ml�sT(m)
Cs( f ;Ck�l (g;h))+O( 1

m
) : (34)

The second sum can be rewritten as� k

∑
r=1

mr
k

∑
l=r

T(m)
Cl�r( f ;Ck�l (g;h)) =� k

∑
r=1

mrT(m)
∑k�r

s=0Cs( f ;Ck�r�s(g;h)) : (35)

For such sums we know by induction that (31) is valid. The sameis done for the
right hand side. If we subtractT(m)

r:h:s: from T(m)
l:h:s:, it remains

k

∑
l=0

ml T(m)
f

T(m)
Ck�l (g;h)� k

∑
l=0

ml T(m)
Ck�l ( f ;g)T(m)

h
+O( 1

m
) : (36)

By splitting the first sum intol = 0 and l � 1 and using for thel = 0 term the
asymptotic (32) we obtain

m0

 
T(m)

f
mkT(m)

g T(m)
h
� k�1

∑
s=0

mk�sT(m)
f

T(m)
Cs(g;h)+O( 1

m
)!+ k

∑
l=1

mlT(m)
f

T(m)
Ck�l (g;h)

(37)= mkT(m)
f

(T(m)
g T(m)

h
)+O( 1

m
) : (38)

A corresponding expression follows for the second sum. As difference remains

mk(T(m)
f

(T(m)
g T(m)

h
)� (T(m)

f
T(m)

g )T(m)
h

)+O( 1
m
) : (39)

Now we ended up with operators which are clearly associative, The operator com-
ing with themk term vanishes. Hence associativity follows from Theorem 2.3 (a).�
5. Additional properties

The introduced star-product has important properties.

5.1. Unit
The unit of the algebraC∞(M), the constant function 1, will also be the unit in the
star-product. Such star-products are sometimes called to have the property ”null
on constants”.

Proposition 5.1 For the above introduced star-product we have

1?g= g?1= g : (40)

Equivalently,
Ck(1;g) =Ck(g;1) = 0; for k� 1 : (41)
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Proof.For f � 1 we haveTf � id , resp. T(m)
f
� id . AlsoC0(1;g) = g=C0(g;1).

Further with (20)

A1 = DϕTf Tg�DϕTf g = DϕTg�DϕTg : (42)

Hence the symbol ofA1 vanishes. But this impliesC1(1;g) = 0 = C1(g;1). The
claim follows by trivial induction from (20) . �
5.2. Parity
A star-product is said to fulfill the parity condition if

f ?g= g? f : (43)

Considering the formal parameter to be real (ν = ν) this is equivalent to

Ck( f ;g) =Ck(g; f ); k� 0 : (44)

We will show

Proposition 5.2 The above introduced star-product fulfills parity.

Lemma 5.3
T(m)

f

� = T(m)
f

: (45)

Proof.Take anys; t 2 Γhol(M;Lm). For the scalar product we calculate (Π(m) is the
projector defined in (15))hs;T(m)

f
ti= hs;Π(m) f ti= hs; f ti = h f s; ti = hT(m)

f
s; ti : (46)

Hence the claim. �
Proof. (Proposition 5.2) Recall that the identification of the sections of Lm with
equivariant functions on the circle bundleQ is an isomorphy. Hence the defini-
tion of adjoint operators agree. For the global Toeplitz operator we obtainT�

f =
∏∞

m=0 T(m)
f

= T
f
. The star-product

g? f = ∞

∑
j=0

ν jCj(g; f ) (47)

is given via the asymptotic expansion of

T(m)
g �T(m)

f
= T(m)

g
� �T(m)

f

� = (T(m)
f
�T(m)

g )� : (48)
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For the asymptotic expansion of the last expression we have(T(m)
f
�T(m)

g )� � ∞

∑
j=0

�
1
m

� j

T(m)�
Cj ( f ;g) = ∞

∑
j=0

�
1
m

� j

T(m)
Cj ( f ;g) : (49)

But this is the complex conjugate of the asymptotic expansion which definesf ?g.
This shows (43) �
By the parity condition we have onC∞(M)[[ν ℄℄ an anti-involution given by point-
wise complex conjugation on the functions, and by considering the formal param-
eter to be real (ν = ν).

5.3. Locality and separation of variables
Recall that a star-product is local if for allf ;g2C∞(M) the supportsupp Cj( f ;g)
is contained insupp f\supp gfor all j 2 N0. Using Peetre’s theorem and the fact
that theCj are bilinear this implies that for a local star-product theCj can be given
by bidifferential operators.

One way to proof locality is by studying the symbol calculus of degree zero
Toeplitz operators which commute with theS1 action in more detail (see [17, 9]).
Another possibility (which gives a different perspective)is to use the fact that the
projection operatorsΠ(m) can be expressed with the help of Berezin-Rawnsley’s
coherent states and the fact that the coherent states are “localizing” for m! ∞.
The details will appear in [19].

From the locality it follows that the star-product can be restricted to open sub-
sets and defines compatible star-products there. For such star-products Karabegov
introduced the notion of star-products withseparation of variables[18] (Borde-
mann and Waldmannn [7] called them star-products of Wick type). In our conven-
tion this reads asf ? k = f � k andk? g = k �g for (locally defined) holomorphic
functions g, antiholomorphic functionsf and arbitrary functionsk. The above
introduced star-product will be a star-product with separation of variables.

More precisely, we expect that theCj are bidifferential operators of degree( j; j) with only holomorphic derivatives in the first entry and onlyantiholomorphic
derivatives in the second entry. See Section 5.5 for examples.

5.4. Trace
Proposition 5.4. (Bordemann, Meinrenken, Schlichenmaier) Let f 2 C∞(M)
and let n= dimC M. Denote the trace onEnd(Γhol(M;Lm)) by Tr(m) then

Tr(m) (T(m)
f

) = mn
�

1
vol(Pn(C )) ZM

f Ω+O(m�1)� : (50)

This result can also be found in [6]. There it was given only with a hint of its proof.
Because it is central for the following let me give the details.
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Proof.Let us start with a real valuedf . Then the operatorTf and the components

T(m)
f

are self adjoint (see (45)). Letd(m) = dimH (m) and letλ (m)
1

;λ (m)
2

; : : : ;λ (m)
d(m)

be the eigenvalues of the restriction ofTf onH (m). In particular, these are also the

eigenvalues ofT(m)
f

on Γhol(M;Lm). Following [9] (n= dimC M) let

µm = 1
mn

d(m)
∑
i=1

δ (λ �λ (m)
i

) (51)

be the discrete spectral measure. By Theorem 13.13 of [9] it converges weakly to
the limit measure

µ(g) = γM

Z
M

g( f (z))Ω(z) (52)

with a universal constantγM only depending on the manifoldM. An important
intermediate result there is the asymptotic expansion (Equation 13.13 in [9])

µm(g) � ∞

∑
r=�n

ar(g)mr+n : (53)

Forg� 1 we obtain

1
mn

d(m)
∑
i=1

λ (m)
i

= 1
mn

Tr(m)T(m)
f

= γM

Z
M

f Ω+O( 1
m
) : (54)

To calculateγM we evaluate (54) forf � 1 (i.e.,T(m)
f

= id) and obtain

γM = dimΓhol(M;Lm)
mn �vol(M) +O( 1

m
) : (55)

Note that (see p.113 and Thm 5.22 in [25])

dimΓhol(M;Lm) = vol(M)
vol(Pn(C )) �mn+O(mn�1) : (56)

HenceγM = vol(Pn(C ))�1. In particular the coefficient depends only on the di-
mension ofM. This shows the claim for real valuedf . For complex valuedf it
follows from linearity by considering real and imaginary parts separately. In [25]
for M the restrictionωFSjM of the Fubini-Study Kähler form was used to define
the volume. Here we have to work with the formω . Because the de Rham classes
of both forms coincide and the Kähler forms are closed, the volume will be the
same. �

From (53) follows the asymptotic expansion form! ∞ (see also [8])

Tr(m)(T(m)
f

) � mn

 
∞

∑
j=0

�
1
m

� j

τ j( f )! ; with τ j( f ) 2 C : (57)
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We define theC [[ν ℄℄-linear map

Tr : C∞(M)[[ν ℄℄! ν�nC [[ν ℄℄; Tr f := ν�n
∞

∑
j=0

ν jτ j( f ); (58)

such that forf 2C∞(M) theτ j( f ) are given by the asymptotic expansion (57) and
for arbitrary elements byC [[ν ℄℄-linear extension.

Proposition 5.5 The mapTr is a trace, i.e., we have

Tr( f ?g) = Tr(g? f ) : (59)

Proof.By C [[ν ℄℄-linearity it is enough to show this forf ;g2C∞(M). The element
f ?g�g? f is given by the asymptotic expansion ofT(m)

f
�T(m)

g �T(m)
g �T(m)

f
. Hence

Tr( f ?g�g? f ) is given by the expansion of

Tr(m)(T(m)
f
�T(m)

g �T(m)
g �T(m)

f
) : (60)

But for everym this vanishes. Hence (59) follows. �
5.5. Examples
For the sphereS2, resp.P1(C ) with Kähler form

ω = i(1+zz)2 dz^dz ; (61)

and the hyperplane bundle as quantum line-bundle explicit calculations2 of the
author (not published) yield (usingT(m)( f ) := T(m)

f
)

lim
m!∞
jjm�T(m)( f )T(m)(g)�T(m)( f g)�+T(m)�(1+zz)2 ∂ f

∂z
∂g
∂z

�jj= 0 : (62)

This implies

C1( f ;g) =�(1+zz)2 ∂ f
∂z

∂g
∂z

: (63)

For the case of Riemann surfaces of genusg� 2 more than half of the article [20]
by Klimek and Lesniewski deals with the proof of the fact corresponding to (62).
In the realization of the Riemann surfaceM as quotient spacefz2 C j jzj < 1g=G
with G a Fuchsian subgroup of SU(1;1) acting by fractional linear transformations
one takes as Kähler form the SU(1;1) invariant form

ω = 2i(1�zz)2 dz^dz : (64)

2 Not following the lines of the proof in Section 4 but working with a basis of the sections of the
bundles.
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The corresponding quantum line bundle is the canonical linebundle, i.e., the bun-
dle whose local sections are the holomorphic differentials. From their results fol-
lows

C1( f ;g) =�1
2
(1�zz)2∂ f

∂z
∂g
∂z

: (65)

5.6. Deformation quantization via geometric quantization
Via Tuynman’s relation (14) the operatorQ(m) of geometric quantization corre-
sponding to the functionf can be expressed by the Toeplitz operatorT(m) cor-
responding to the functionf � 1

2m∆ f . Theorem 2.2 shows that the asymptotic
expansion

Q(m)
f
�Q(m)

g � ∞

∑
j=0

�
1
m

� j

Q(m)
D j ( f ;g) ; (66)

with suitableD j( f ;g) 2C∞(M) is well-defined in the precise sense as expressed
in the theorem there. We set

f ?G g := ∞

∑
j=0

ν jD j( f ;g) : (67)

The first two terms calculate as

D0( f ;g) = f �g (68)

D1( f ;g) =C1( f ;g)+ 1
2
(∆( f �g)�∆ f �g� f �∆g) ; (69)

where theCj are the coefficients of the Berezin-Toeplitz star-product.In particular
the conditions (7) are fulfilled for theD’s. Hence, this defines indeed a star-product.

In fact more is valid. If we introduce the linear maps

B(m)( f ) := f � 1
2m

∆ f ; (70)

and theC [[ν ℄℄-linear map induced by

B( f ) := f �ν
∆
2

f = (id�ν
∆
2
) f (71)

onC∞(M)[[ν ℄℄ we can rewrite (66)

T(m)
B(m)( f ) �T(m)

B(m)(g) � ∞

∑
j=0

�
1
m

� j

T(m)
B(m)(D j ( f ;g)) : (72)

Taking the asymptotics we getB( f )?B(g) = B( f ?G g). Note thatB( f ) modν =
f , B(1) = 1, and thatB is invertible. The inverse is given by

B�1 = id + ∞

∑
k=1

1
2k νk∆k : (73)
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Recall that two star-products (over the same manifold) are equivalent if there ex-
ists aC [[ν ℄℄-algebra isomorphism inducing the identity on the zero order part.
This implies

Proposition 5.6 The star-product of geometric quantization is equivalent to the
star-product of Berezin-Toeplitz quantization.
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