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1. Introduction

By Bayen, Flato, Fronsdal, Lichnerowicz, and Sternheimek977 the important
concept of quantization given by deforming the algebra oicfions in “direc-
tion” of the Poisson bracket was introduced [1]. Clearly ifgitive concept of
h-depending “deformation” of classical mechanics into quanmechanics was
around earlier (e.g. Weyl quantization). But in their worknathematically very
precise meaning was given to it.

Since this time the existence of a deformation quantiza&tioevery symplectic
manifold was established in different ways. Some of theqrerénvolved were De
Wilde and Lecomte [11], Fedosov [15], and Omori, Maeda, andhitka [27].
Quite recently this was extended to every Poisson manifgl&dntsevich [21].
Classification results are also available [4, 13, 26, 14, 36]

Even if there is now a very general existence theorem it isadtimportance
to study deformation quantizations for such manifolds Wwhdarry additional ge-
ometric structures. From the whole set of deformation dgmatibn one is looking
for one which keeps the additional structure. In this spir@ article deals with
the deformation gquantization of compact quantizable K@amhanifolds. It was
shown 1993 by Bordemann, Meinrenken, and Schlichenmdjiéng6for compact
guantizable Kahler manifolds the Berezin-Toeplitz gimaiion has the correct
semi-classical behaviour (see Theorem 2.3 below). Shaiftiy [6] was submitted
we had also the result that by the techniques developed thesmes possible to
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construct a deformation quantization [12]. Details werétem up in German [32]
and the result (with few steps of the proof) appeared in [&l, Bhe complete
proof was not published in English.

Compact Kahler manifolds appear as phase spaces of doestisystems and
as reduced phase spaces under a group action. More redbkatiyplay a rather
prominent role in Chern-Simons theory, topological andr@ahsional conformal
field theory. Here typically, the phase spaces to be quahtize moduli spaces
of certain geometric objects. As examples the compactifiedutn spaces of sta-
ble holomorphic vector bundles (maybe with additional &ttiees) on a Riemann
surface show up. The quantum Hilbert spaces appearing sncthitext are the
Verlinde spaces.

Encouraged by the recent interest in deformation quardgizaiolving in these
fields | found it worthwhile to publish the above mentionedulés also in English
and add some pieces to it. By the construction of the defoomajuantization di-
rect relations to the Berezin-Toeplitz quantization, teemetric quantization (via
Tuynman’s relation), and asymptotic operator represemstare given. Hence
what is presented here is more than just another existencé. pr

In the proof the theory of generalized Toeplitz operatongetimed by Boutet
de Monvel and Guillemin [9, 16] is used in an essential manimethe article
[17] which appeared one year later than [6] it was also erplhiby Guillemin
himself in which way the existence of a deformation quatitrafollows from
the general theory of Toeplitz operators. More precisadysihiowed that the sub-
algebra of operators commuting with ti$ action (with respect to the sphere
bundleQ defined in Section 3) modulo Toeplitz operators of degreedefines
via the symbol map a deformation quantization. This folldvesn results on the
principal and subprincipal symbols proved in [9]. Note thasentially the same
idea was employed in [6], in the answer to [12], in [31, 32]] avill be presented
here. Hence, the deformation quantizations obtained wiiicide. One might even
say that suitable reinterpreted nowadays from the pointiex \of deformation
guantization their existence was implicitly already camtéd (at least to a certain
extend) in the Boutet de Monvel - Guillemin theory of Toepliperators.

Only for certain special examples of compact Kahler mads#alirect construc-
tions have been known earlier; see results by Berezin [3}elm and Ortega-
Navarro [23, 24], and Cahen, Gutt, and Rawnsley [10]. Régeiar all Kahler
manifolds (including the noncompact ones) the existence adéformation quan-
tization with “separation of variables” was shown by Kamgie [18]. Separation
of variables says essentially that the deformation quaitibiz “respects” the com-
plex structure. A classification of all such deformation mfiations for a fixed
Kahler manifold was also given by Karabegov. Note that kistence proof is
on the level of the formal deformation quantization. It doest yield Hilbert
spaces and quantum operators like in our approach (whicbritrast is restricted
to the case of quantizable compact Kahler manifolds). peddently, a similar
existence theorem was proven by Bordemann and Waldmanitof¥j &edosov’s
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original approach. Yet another construction was givenmbgdy Reshetikhin and
Takhtajan [28].

Finally, let me stress the fact, that the very essentiakkasfithis work go back
to joint work with Martin Bordemann and Eckhard MeinrenkBretails have been
added by me later on.

The article is organized as follows. In Section 2 the geoimsgt-up is given
and the main result of this article, the theorem on the coostm of the defor-
mation quantization (Theorem 2.2) is formulated. The ayipration results from
[6] are recalled. In Section 3 the necessary details abaufTteplitz structure
introduced by Boutet de Monvel and Guillemin are given. They employed in
Section 4 for the construction of the deformation quanitirafthe star-product),
i.e., the proof of Theorem 2.2. In the concluding Section 8itaghal properties
of the star-product are discussed. It is shown that we hasg2g+x1=g, i.e.,
that the star-product is “null on constants” and that it fislfihe parity condition.
A trace is constructed. By a result of Tuynman for compadtl&g&manifolds the
geometric quantization can be expressed in terms of thezBefeeplitz quan-
tization. Using our theorem we see that the geometric qeetidin yields also a
star-product. This star-product is equivalent to the qocstd one. The Berezin-
Toeplitz star-product will be a local star-product giventigtifferential operators.
It will have the property of “separation of variables”. Thigl be shown in [19].

2. The set-up and the main result

Let (M,w) be a compact (complex) Kahler manifold of complex dimensiolt
should be considered as phase space manifbigith symplectic form given by
the Kahler formw. Denote byC*(M) the algebra of (arbitrary often) differentiable
functions. Using the Kahler form one assigns to evesyC*(M) its Hamiltonian
vector fieldX; and to every pair of function$ andg the Poisson bracket:

w(xfa'):df(')v {fag}:: w(Xf,Xg). (1)

With the Poisson brack€” (M) becomes a Poisson algebra.

Assume (M, w) to be quantizable. This says that there exists an associated
quantum line bundl€L. h, ) with holomorphic line bundld., Hermitian metric
h on L and connectiorid compatible with the metrib and the complex structure
such that the curvature of the line bundle and the Kahlenfarof the manifold
are related as

curv 5(X,Y) :=0Ox0y = OyOx — Oy yy = —T(X,Y) . (2)

X.Y]

Equation (2) is called thguantization conditionlf the metric is represented as
a functionh with respect to local complex coordinates and a local holpfmic
frame of the bundle the quantization condition reads d8logh= w .

The quantization condition implies thatis a positive line bundle. By the
Kodaira embedding theoreinis ample, which says that a certain tensor power
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L™ of L is very ample, i.e., the global holomorphic sections'8f can be used to
embed the phase space manifldnto projective space. Note that the embedding
is an embedding as complex manifolds not as Kahler mamifditie embedding
dimension is given by the Hirzebruch-Riemann-Roch formdiance, quantizable
compact Kahler manifolds are as complex manifolds prajectlgebraic mani-
folds. The converse is also true, see [31, 2]. In the follguire will assume. to
be very ample. It is not very ample we choosg, € N such that the bundlg™ is
very ample and take this bundle as quantum line bundlengpagdas Kahler form
for M. The underlying complex manifold structure is not chandidase note that
for the examples of moduli spaces mentioned in the intraddhere is often a
natural ample or very ample quantum line bundle.

We take the Liouville measur€ = %w” as volume form oM. On the space
of C*-sectiond (M, L) we have the scalar product and norm

@)= [ o). 110]:= 6.9 ©

Let L2(M.L) be the [>-completion of the space @-sections of the bundle and
Mo(M,L) be its (due to compactness i finite-dimensional closed subspace of
holomorphic sections. Lefl : L2(M,L) — I, ,,(M,L) be the projection.

Definition 2.1 For f € C*(M) the Toeplitz operator (Tis defined to be

In words: One takes a holomorphic secti®and multiplies it with the differen-
tiable functionf. The resulting sectiori - s will only be differentiable. To obtain
a holomorphic section one has to project it back on the sugspiholomorphic
sections.

The linear mag¥ :C*(M) — End(T",,,(M,L)), f — T, is theBerezin-Toeplitz
quantization mapBecause in generd Tg = (f-)M(g:) M # M (fg) M = Ty,
it is neither a Lie algebra homomorphism nor an associatigebaa homomor-
phism. From the point of view of Berezin's approach [3] the@torT; has as a
contravariant symbadl (see also [34] for relations to Berezin’s covariant sympols

This defines a map from the commutative algebra of functions honcom-
mutative finite-dimensional (matrix) algebra. The finiieadnsionality is due to
compactness oM. A lot of classical information will get lost. To recover $hi
information one should consider not just the bundlgd, h) alone but all its tensor
powers(L™, 0 h(M) and apply the above constructions for everyNote that
if h corresponds to the metricw.r.t. a holomorphic frame of the bundleL then
h™ corresponds to the metrit™ w.r.t. to the frames®™ for the bundleL™. In this
way one obtains a family of matrix algebras and a family of snap

TM:C*(M) —» End(M o (M,L™),  f—T™. (5)
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This infinite family should in some sense “approximate” thgeraC”(M). (See
[5] and the discussion on strict quantization below.) foredirdtion of such an
approximation.) Indeed this family has the correct serassical behaviour as is
expressed in Theorem 2.3 below.

It also allows to construct a deformation quantization. Aodmation quanti-
zation is given by astar-product | will use both terms interchangeable. To fix
the notation and the factors of i let me recall the definitibma star-product. Let
o/ =C®(M)[[v]] be the algebra of formal power series in the variablever the
algebraC”(M). A productx on .« is called a (formal) star-product if it is an
associativeC[[v]]-linear product such that

1. /v =2C*(M), ie., fxgmodv=f.g,
2. é(f*g—g*f) modv = —i{f,g},

wheref,g € C*(M). We can also write
fxg=Y G(f.gv!, (6)
2.¢

with C;(f.g) € C*(M). TheC; should beC-bilinear in f andg. Conditions 1 and 2
can be reformulated as

Co(f.g)="f-g, and  C(f,9)-Cy(g ) =—i{f.g}. (7)
The aim of this article is to show the following

Theorem 2.2 There exists a unique (formal) star-product ofi(®™)

o)

fxg:= Y viC(f.g), Cj(f.9)eC”(M), (8)
J;) j ]

in such a way that for ,jg € C*(M) and for every Ne N we have with suitable
constants K(f.g) for allm

1\/ 1\N
(M) (m) _ IV rm o 1
[T Tg O<]<N<m> ch(ﬁg)\l KN(f,g)<m> : 9)

This theorem has been proven immediately after [6] was fauisht has been
announced in [31, 33] and the proof was written up in Germd82h In Section 4
| will supply the proof.

Instead of writing (9) we will sometimes use the more intgthotation

(m.1m = (m)
T Ty %<m> Wy —(m—=e). (10)

The asymptotics should always be understood in the abowésprsense.
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In the proof the results expressed in the following theoreenaeded. Denote

1T
by || f||. the sup-norm off onM and by\|Tf(m)\| = Supserhm(M,Lm),s;éO\f\T the
operator norm o, ,(M,L™).
Theorem 2.3 (Bordemann, Meinrenken, Schlichenmaier)
(a) For every fe C*(M) there exists C> 0 such that
C
Hf\loo—aé\le("‘)H§\|f\|oo~ (11)
In particular, limm e [|T™]| = || f]|.
(b) For every fge C*(M)
. 1
Imi[T™. T =T = O(5) as moeo. (12)
(c) Forevery fge C*(M)
1
[T -Tigll = O(~) as m—eo. (13)

These results are contained in Theorem 4.1, 4.2, resp. tio8écin [6]. Note that
part (c) also follows from (9) foN = 1 and generalizes trivially to finitely many
functions.

Our result does not prove a strict deformation quantizatiothe sense of
Rieffel [29]. But it is astrict quantization(see for the definition [22, 30]). Let
| = {n% | me N}u{0} be the topological space with topology coming from the real
line. It has 0 as accumulation point. To evéry |, i 0, i.efi=1/m, one assigns

the aIgebraAl/m = EndT},;(M,L™)) with H.Hl/m the operator norm. To 0 one

assigns the algebiy, := C*(M) with norm||.||; = |.|. The mapi — T/, with

Tf(°°) := f defines by Theorem 2.3 a continuous fieldddfalgebras on the family

(A,) e - From (45) follows thafT respects conjugation. By (12) the additional
condition for a strict quantization is also fulfilled. Due ttte compactness dfl
the mapsT */") for 7 # 0 are never injective. Hence the strict quantization is not

faithful at a fixed leveh, only in the limit; — co.

In [5] and [6] the notion ofL,, resp.gl(N), resp.suN) quasi-limit was used
for this concept. It was conjectured in [5] that for every qaot Kahler manifold
the Poisson algebra of function igHEN) quasi-limit. This was proven in [6]. This
result is of special interest in the theory of membranes.

There is another geometric concept of quantization,gibe@metric quantiza-
tion introduced by Kostant and Souriau. But for compact Kahlanifolds due to
Tuynman [35] (see also [5] for a coordinate independentfptbey have the same
semi-classical behaviour

QM =i.Tm . (14)
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Here Q(fm) is the well-known operator of geometric quantization (widspect

to the quantum line bundld™) corresponding to the prequantum operator
Pf(m) = —0M 4+ if.id and Kahler polarization. Kahler polarization means

xf(ml

Q™ = NMPMAM with the projectors

N L2(M,L™) — o (M, L™) (15)

In (14), A is the Laplacian with respect to the Kahler metric givendayin Sec-
tion 5 | will show that this allows to define a deformation gtization via the
operators of geometric quantization. It will be equivalemthe Berezin-Toeplitz
deformation quantization.

3. Toeplitz structure

In [6] the set-up for the proof of the approximation resultsvgiven. Here | use
the same setting. Let me recall for further reference thenrdafinitions. A more
detailed exposition can be found in [32]. Tak@J,k) := (L*,h~1) the dual of
the quantum line bundle® the unit circle bundle insid&) (with respect to the
metrick) and 17 : Q — M the projection. Note that for the projective space with
guantum line bundle the hyperplane section burdl|ethe bundleU is just the
tautological bundle. Its fibre over the poing PN(C) consists of the line iftN+1
which is represented by In particular, for the projective space the total space
of U with the zero section removed can be identified v@th™! \ {0}. The same
picture remains true for the via the very ample quantum lumedbe in projective
space embedded manifdid. The quantum line bundle will be the pull-backidf
(i.e., its restriction to the embedded manifold) and itsl dsighe pull-back of the
tautological bundle.

In the following we useE \ 0 to denote the total space of the vector burfle
with the image of the zero section removed. Starting fromftimetion k(A) :=
k(A,A) onU we definea’= J-(d —9)logk onU \ 0 (with respect to the complex
structure orJ) and denote by its restriction toQ. Nowda = 7*w (with d = dQ)
andu = %TT*Q A a is a volume form orQ. With respect to this form we take the
L2-completion 12(Q, i) of the space of functions o@. The generalized Hardy
space./Z is the closure of the functions in?(Q, 1) which can be extended to
holomorphic functions on the whole disc bundle. The geimrdlSzego projector
is the projection

M:L3(Q u) — . (16)

By the natural circle actio is a S'-bundle and the tensor powers dfcan be
viewed as associated bundles. The sp#féds preserved by this action. It can be
decomposed into eigenspace’ = ﬂﬁhot%”(m) wherec € St acts on#(™ as
multiplication byc™. Sections oL.™ = U ~™ can be identified with functiong on

Q which satisfy the equivariance conditigriicA ) = c"¢(A). It turns out that this
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identification is an isometry. Recall thaf(M,L™) has a scalar product given in
an corresponding way to (3). Restricted to the holomorpbjeais we obtain an
isometry

o (M, L™) =2 2 (M) (17)

There is the notion of Toeplitz structu(gl, %) as developed by Boutet de Monvel
and Guillemin in [9, 16]. What is needed from there are onbyfibilowing facts.
MM is the Szegod projector (16). The second object is the suifoidn

T={ta(A)|AeQt>0} C T'Q\O (18)

of the tangent bundle dp defined with the help of the 1-forra. They showed
that it is a symplectic submanifold. A (generalized) Toeptiperator of ordek is

an operatoA: .77 — ¢ of the form A=T1-R-N whereRis a pseudodifferential
operator YDO) of orderk on Q. The Toeplitz operators build a ring. The symbol
of A is the restriction of the principal symbol & (which lives onT*Q) to Z.
Note thatR is not fixed byA, but Guillemin and Boutet de Monvel showed that
the symbols are well-defined and that they obey the same aslése symbols of
WDOs. In particular we have the following relations

(AA,) = 0(A)a(A,), O([ALA)) = 1{a(Ay),0(A)}s. (19)

In our context only two Toeplitz operators appear:

(1) The generator of the circle action gives the operBipe= %%. Itis an operator
of order 1 with symbot. It operates on#’(™ as multiplication bym.

(2) For f € C*(M) let M; be the operator on4(Q, i) corresponding to multipli-
cation witht*f. We set! T, =M-M,-MN: .7 — 5 . BecauseV is constant

along the fibres of, T, commutes with the circle action. Hencg = [] Tf(m) ,
m=0

whereT (™ denotes the restriction @ to /(™. After the identification ofy#"(™
with T (M,L™) we see that thesg™ are exactly the Toeplitz operatofs™
introduced in Section 2. In this sen3e is called the global Toeplitz operator
and theTf("‘) the local Toeplitz operatorsl; is an operator of order 0. Let us
denote byt; : X C T*Q — Q — M the composition then we obtain for the symbol

o(T¢) = 5(f).
4. Proof of Theorem 2.2

Let the notation be as in the last section. In particularTjebe the Toeplitz op-
erator,Dy the operator of rotation, anﬂf(m), resp.(m-) their projections on the

eigenspaces? (™ =T, (M,L™).

1 There should be no confusion with the operafpr= Tf(l) introduced above.
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4.1. The definition of theC;(f,g) € C*(M)
The construction is done inductively in such a way that

N—-1
— NN N—]j
Ay =Dy, Ty— ;Dd, T (g (20)

is always a Toeplitz operator of order zero. The operatpiis St-invariant, i.e.,
Dy -Ay = Ay -Dy. Because itis of order zero his symbol is a functiorQiBy the
St-invariance the symbol is even given by (the pull-back ofyraction onM. Take
this function to be the next eleme@f,(f.g) in the star-product. By construction
the operator Ay — T is of order—1 andAy,, = Dy (Ay — TcN(f,g)) is of

Cn(f.9)
order 0 and hence exactly of the form given in (20). The indacstarts with

Ay =TTy, and (21)
0(Ag) = a(T;)o(Tg) = 15(f) - 15(9) = 15(F - 9) . (22)

HenceC,(f,g) = f -gas required.
It remains to show statement (9) about the asymptotics. Aspamnator of order
zero on a compact manifohélN is bounded. Hence the same is true for all its

restrlctlonsA (M to s7(M _|f we calculate them we obtain

N N— j _ <
[T Z}m TJ ol = A < 1AL - (23)

After dividing by mN Equation (9) follows. Bilinearity is clear.

4.2. The Poisson structure
The relationCy(f,g) = f - g was proven above. To show the 2. formula in (7) we
write explicitly (23) forN = 2 and the pair of functionéf, g):

[[PPT(MTE™ — T — mT™ (<K (24)
1(f7g)
A corresponding expression is obtained for the gairf). If we subtract both
operators inside of the norm we obtain (with the triangl@imiity and suitabl&’)

I (T{T™ —TgMT) —mTm ST <K (25)

Dividing by mand multiplying withi we obtain
1
mi [T(™, (™ — T =0(=). 26
Imir™. =T e = O (26)
Using the asymptotics given by Theorem 2.3 (b) for the conatoutwe get

Tm =0(—). 27
| {ng} (et Cl(g,f))H (2) (27)
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Taking the limit form — o« and using Theorem 2.3 (a) we get

1{f.9} = 1(C(f.9) —Cy(9. 7)) || = 0. (28)
Hence {f.g} = i (C,(f.g9) —C,(g, f)). This shows (7).
4.3. The uniqueness B
Itis proven by induction using the asymptotics (9). C?([f g) andC, (f g) be two
such systems of bilinear maps fulfilling the required prtiper Assumé:

for | < N —2. If we subtract the corresponding expressions in (9) aedlusfact
thatT(™ is linear we obtain

1 K
TM i <= 29
Hm'\'*l (CNfl(f,g)fCN,l(fg))H—mN (29)
Hence,
| T =0.
m T e g =0 (30)

With Theorem 2.3 (a) it followsCy_ 1(f, g) Cy_1(f,9). The induction starts
with N = 1. But hereCy(f.g) = Co(f g) = f-gis required.

4.4. The associativity

The proof employs the associativity of the operators usecbtstruct the star-
product and again Theorem 2.3 (a). The relatiba (gxh) = (f xg)xh can be
rewritten in relations for the majes;:

k k
z f Ck | g’ ):IZCI(Ck—I(fag)vh) : (31)
=0

From Theorem 2.3 (a) we knoW=g «— limp .|| T(™ — T{™|| = 0. Hence

it is enough to apply the Toeplitz operaf®f™ to the relation (31) and study the
asymptotics OfTie_hand side™ Tright—hand sider 1 NiS IS done by induction ovex:
k=0:Cy(f,Cy(g,h)) =C,(Cy(f,9),h) is true becaus€,(f,g) = f-g.
Assume the claim to be true up to level 1. The equation (9) for & r <k
multiplied bym’ (N =r + 1) yields
r-1
m [ —S
Tcr(f’g)_mrT T Z)m Te, 7g)+0( ) (32)

Here the symboD(%) is shorthand for the statement that the difference of the

operators on the left and on the right is an operator whosa behaves Iik@(%)
for m— . In particular we obtain fokr=0,1,....k

I-1 1
(m) _ (M (m) o —S -
T =m T s;m' Tedra, (o T O (33)
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Summation ovet yields

k 1-1
1
| —sT(m) -+
Ihs zmT Z %m TCs(f,qu(g,h))—i_O(m) : (34)
The second sum can be rewritten as
i S T K o m
_ m' Tm — _ m T(m . 35
I'Zl |ZI‘ ler(f7ck7|(g7h)) rZ]_ zz;ecs(f=ck—r—s(g=h)) ( )

For such sums we know by induction that (31) is valid. The santne for the
right hand side. If we subtradt(" ) from T.(" ™, it remains

ij'T ijT M4+ O(= ) (36)

By splitting the first sum intd = 0 andl > 1 and using for thé = 0 term the
asymptotic (32) we obtain

k
O T(m ks |7 (M) (m)
m (Tf Z)m T(m +O(m > +|Zlm T on
(37)
1
= mTM(TMT) + o). (38)
A corresponding expression follows for the second sum. Keréince remains

1

(T (M) = (T TIM) +0(5) (39)

Now we ended up with operators which are clearly associafikie operator com-
ing with them term vanishes. Hence associativity follows from Theore3{2).H
5. Additional properties

The introduced star-product has important properties.

5.1. Unit

The unit of the algebr&” (M), the constant function 1, will also be the unit in the
star-product. Such star-products are sometimes calledve the property "null
on constants”.

Proposition 5.1 For the above introduced star-product we have
1xg=g+l=g. (40)

Equivalently,
C.(1,9) =C(9.1) =0, for k>1. (42)
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Proof. For f = 1 we haveT, =id , resp. Tf(m) =id . AlsoCy(1,9) = g=C,(g,1).
Further with (20)

Hence the symbol of; vanishes. But this implie€,;(1,9) = 0= C,(g,1). The
claim follows by trivial induction from (20) . |
5.2. Parity

A star-product is said to fulfill the parity condition if
fxg=0xf. (43)

Considering the formal parameter to be réak{ v) this is equivalent to

Ck(fag) :Ck(37T)a k>0. (44)
We will show

Proposition 5.2 The above introduced star-product fulfills parity.

Lemma 5.3 )

T = TT““) . (45)
Proof. Take anys,t € I', ,(M,L™). For the scalar product we calculaf@{V is the
projector defined in (15))

(ST{MH) = (s N™ft) = (s ft) = (Ts.t) = (T(Ms1). (49)

Hence the claim. [ ]

Proof. (Proposition 5.2) Recall that the identification of the gmtt of L™ with
equivariant functions on the circle bund@@is an isomorphy. Hence the defini-
tion of adjoint operators agree. For the global Toeplitzrap® we obtainT; =

Moo T?(m) = T.. The star-product
gxf=YS vic(gT) (47)
2.V
is given via the asymptotic expansion of

T T = 7T = (T 1) (48)
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For the asymptotic expansion of the last expression we have

T Ty =) Tm =) 1m 4
(T; g J;) m/) C(f9 J;) m) ¢(fg (49)

But this is the complex conjugate of the asymptotic expangibich defines xg.
This shows (43) |

By the parity condition we have d@™(M)[[v]] an anti-involution given by point-
wise complex conjugation on the functions, and by considetiie formal param-
eter to be realf = v).

5.3. Locality and separation of variables

Recall that a star-product is local if for dilg € C*(M) the supporsupp G(f,g)

is contained irsupp fnsupp dfor all j € N,. Using Peetre’s theorem and the fact
that theC; are bilinear this implies that for a local star-product @jecan be given
by bidifferential operators.

One way to proof locality is by studying the symbol calculdsdegree zero
Toeplitz operators which commute with tB& action in more detail (see [17, 9]).
Another possibility (which gives a different perspectivg}o use the fact that the
projection operator§l(™ can be expressed with the help of Berezin-Rawnsley’s
coherent states and the fact that the coherent states aadiZlog” for m — .
The details will appear in [19].

From the locality it follows that the star-product can bedrnieted to open sub-
sets and defines compatible star-products there. For saichrsiducts Karabegov
introduced the notion of star-products wikparation of variable$18] (Borde-
mann and Waldmannn [7] called them star-products of Wick}ylm our conven-
tion this reads ag xk = f -k andkxg = k- g for (locally defined) holomorphic
functions g, antiholomorphic functiond and arbitrary functionk. The above
introduced star-product will be a star-product with sefianaof variables.

More precisely, we expect that tlf% are bidifferential operators of degree
(i, ]) with only holomorphic derivatives in the first entry and oaltiholomorphic
derivatives in the second entry. See Section 5.5 for exanple

5.4. Trace
Proposition 5.4 (Bordemann, Meinrenken, Schlichenmaier) Let f € C*(M)
and let n= dim- M. Denote the trace o&nd(I", ,,(M,L™)) by Tr(™ then

R e A L) B

This result can also be found in [6]. There it was given onlthvai hint of its proof.
Because it is central for the following let me give the detail
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Proof. Let us start with a real valuetl Then the operatof; and the components

T(™ are self adjoint (see (45)). Lem) = dim.7#"(™ and letA(™ A[™ ... ,)\é?r‘r)])

be the eigenvalues of the restrictionTgfon 2™ In particular, these are also the
eigenvalues of (™ onT (M, L™). Following [9] (n = dim_ M) let

1

d(m) -
tn=—S &(A —AM) (51)
" 2, 0

be the discrete spectral measure. By Theorem 13.13 of [@hitarges weakly to
the limit measure

HE) = [ 9(1(2) 20 (52)

with a universal constang, only depending on the manifoll. An important
intermediate result there is the asymptotic expansion gk 13.13 in [9])

Hm(@) ~ 5 a(gn*". (53)
Forg =1 we obtain
1 dm 1 1
il (m — = p(m(m _ -
iZ: A Trm T =y, /M fQ+0(-). (54)

To calculatey, we evaluate (54) fof =1 (i.e.,Tf(m) = id) and obtain

_diml (M, L™) 1

W= T vol(M) 005 (55)
Note that (see p.113 and Thm 5.22 in [25])
dimr, ,(M.L™ = % oYy (56)

Hencey, = vol(P"(C)) . In particular the coefficient depends only on the di-
mension ofM. This shows the claim for real valuefd For complex valued it
follows from linearity by considering real and imaginaryrigaseparately. In [25]
for M the restrictionww,vI of the Fubini-Study Kahler form was used to define
the volume. Here we have to work with the foim Because the de Rham classes
of both forms coincide and the Kahler forms are closed, tlanie will be the
same. [ |

From (53) follows the asymptotic expansion far— « (see also [8])

N SVERY .
TEM (M) W(%(E) rj(f)>, with 7,(f)eC. (57)
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We define theC[[v]]-linear map

00

Tr:C(M)[[v]] = v "C[[v]], Trf:=v™" Z)vjrj(f), (58)
e

such that forf € C*(M) the T (f) are given by the asymptotic expansion (57) and
for arbitrary elements b{[[v]]-linear extension.
Proposition 5.5 The maprlr is a trace, i.e., we have

Tr(fxg) =Tr(gxf) . (59)

Proof. By C][[v]]-linearity it is enough to show this fdr,g € C*(M). The element
f«g—gx f is given by the asymptotic expansion®f” - T\™ — T(™.T (™. Hence
Tr(f xg— g f) is given by the expansion of

Tr(m (Tf(m) .Tg(m) _ Tg(m) .Tf(m)) ) (60)
But for everym this vanishes. Hence (59) follows. |

5.5. Examples
For the spher&?, resp.P1(C) with Kahler form

i _
W= m dzadz, (61)

and the hyperplane bundle as quantum line-bundle expliutations? of the
author (not published) yield (using™ (f) := Tf(m))

. df dg
(m) (M (q) — T(M (m) 727 79 )| =
Iim (|m(T™(H T (g) - TM(fg)) +T ((1+zz) azaz>| 0. (62)
This implies
of dg
_ ) 2

For the case of Riemann surfaces of gegus2 more than half of the article [20]
by Klimek and Lesniewski deals with the proof of the fact esponding to (62).
In the realization of the Riemann surfalgeas quotient spacfze C | |z < 1}/G
with G a Fuchsian subgroup of WU 1) acting by fractional linear transformations
one takes as Kahler form the $1J1) invariant form

ﬁdz/\ dz. (64)

2 Not following the lines of the proof in Section 4 but workingtiva basis of the sections of the
bundles.
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The corresponding quantum line bundle is the canonicaldinlle, i.e., the bun-
dle whose local sections are the holomorphic differentiatem their results fol-
lows 1 2t 9
C(f.g)=—>1-2?22 %99 65
5.6. Deformation quantization via geometric quantization
Via Tuynman’s relation (14) the operat@™ of geometric quantization corre-
sponding to the functiorf can be expressed by the Toeplitz operakdF cor-
responding to the functiorf — %Af. Theorem 2.2 shows that the asymptotic
expansion

(M. om - (m)
QM. QL §<m) S (66)

with suitableD;(f,g) € C*(M) is well-defined in the precise sense as expressed
in the theorem there. We set

00

fxsg:=S viD (f,g). (67)
G J;) j
The first two terms calculate as
Do(f.9)=f-g (68)
1
Dy(1.9) =Cy(f.9) + 5 (A(f-g) —Af-g—T-Ag), (69)

where theCJ- are the coefficients of the Berezin-Toeplitz star-produrcparticular
the conditions (7) are fulfilled for thB’s. Hence, this defines indeed a star-product.
In fact more is valid. If we introduce the linear maps

1
(M)(f)y = f_ —
BI™(f) = f — 5 Af, (70)
and theC[[v]]-linear map induced by
A . A
B(f).:f—vzf:(ld—vz)f (71)

onC®(M)[[v]] we can rewrite (66)

0 1 i
m pm ) 1m
Tam () Taimg J;)<m> Tam(o,(1g) (72)

Taking the asymptotics we gB{ f) x B(g) = B(f x5 0). Note thatB(f) modv =
f, B(1) = 1, and thaB is invertible. The inverse is given by

IR |
B 1:|d+k21?v"Ak. (73)
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Recall that two star-products (over the same manifold) grevalent if there ex-
ists aC[[v]]-algebra isomorphism inducing the identity on the zero orubet.
This implies

Proposition 5.6 The star-product of geometric quantization is equivalenthe
star-product of Berezin-Toeplitz quantization.
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