
Using FPGA Co-processors for

Improving the execution Speed of

Pattern Recognition Algorithms in

ATLAS LVL2 Trigger

Inauguraldissertation
zur Erlangung des akademischen Grades
eines Doktors der Naturwissenschaften

der Universität Mannheim

vorgelegt von
Dipl. Physiker Andrei Khomich

aus Soligorsk

Mannheim, 2006

Dekan: Prof. Dr. Matthias Krause, Universität Mannheim
Referent: Prof. Dr. Reinhard Männer, Universität Mannheim
Korreferent: Prof. Dr. Peter Fischer, Universität Mannheim

Tag der mündlichen Prüfung: 4. Oktober 2006

ZUSAMMENFASSUNG

ATLAS (A Toroidal LHC ApparatuS) ist einer der vier Detektoren am neuen
Teilchenbeschleuniger Large Hadron Collider (LHC) der Europäischen Or-
ganisation für Kernforschung (CERN), der im Jahr 2007 in Betrieb gehen
wird. Bei ATLAS handelt es sich um einen Mehrzweck-Detektor, der die
Produkte von Proton-Proton-Kollisionen mit der Schwerpunktenergie 14TeV
registrieren wird.

Die pp-Kollisionsrate von 40MHz bedingt ein schnelles und e�zientes
Triggersystem, das die Ereignisrate auf rund 100Hz reduzieren muss. Der
ATLAS-Trigger hat eine dreistu�ge Architektur. Die rein auf Hardware ba-
sierende erste Stufe (LVL1) tri�t Entscheidungen aufgrund der schnellen
Analyse der Daten von den Kalorimeter- und Muon-Sub-Detektoren. Die
nächsten zwei Stufen � 2. Stufe (LVL2) und Ereignis-Filter (EF) � bilden den
�High-Level-Trigger� (HLT). Beide beruhen auf Softwarealgorithmen, die auf
PC-Farmen laufen.

Die Spurrekonstruktion spielt bei der Ereignisauswahl im ATLAS HLT
eine entscheidende Rolle. Die früheste Phase, in der Spurinformationen ver-
wendet werden können, ist der LVL2. Die Ereignis-Verarbeitung muss inner-
halb von 10ms durchgeführt werden. Diese Einschränkung, zusammen mit
der hohen Anzahl an Spuren aufgrund der Vielfach-Kollisionen, stellt sehr
groÿe Herausforderungen an die Spurrekonstruktionsalgorithmen.

Im Rahmen dieser Arbeit wurde ein möglicher Ansatz zur Beschleunigung
der Spurrekonstruktionsalgorithmen unter Einsatz von hybriden, FPGA/CPU-
basierten Systemen untersucht. Der TRT LUT-Hough-Algorithmus � einer
der Spurrekonstruktionsalgorithmen für den ATLAS LVL2 � wurde für diesen
Zweck ausgewählt. Bei diesem Algorithmus handelt es sich um eine �Look-Up-
Tabellen�-basierte (LUT) Hough-Transformation für die Teilchenidenti�ka-
tion im Übergangs-Strahlungs-Detektor (TRT). Dieser Algorithmus wurde
speziell für die B-Physik-Aufgaben entwickelt und beinhaltet eine schnelle
Suche für niederenergetische Teilchenspuren im ganzen TRT-Volumen. Ein
derartiger �Full Scan� benötigt eine extrem hohe Rechenleistung.

Der TRT LUT-Hough-Algorithmus besteht aus einer Spur-Kandidaten-
Suche gefolgt von einem Fit-Verfahren, das durchgeführt wird, um die Spur-

ii Zusammenfassung

Parameter zu bestimmen. Da die zu �ndenden Teilchentrajektorien im Vo-
raus berechnet werden können, ist die Hough-Transformation gut für die
anfängliche Spurensuche im TRT geeignet. Der Algorithmus beruht auf der
Idee, dass jeder Punkt (�Hit�) im dreidimensionalen Detektor-Bild mehreren
möglichen (vorherbestimmten) und durch verschiedene Parameter charakter-
isierten Spuren angehören kann. Alle diese Spuren (�Roads�) werden in der
LUT gespeichert. Jeder weitere Hit vergrö�ssert die Wahrscheinlichkeit für
die Existenz der jeweils zugehörigen Spuren (Histogrammier-Schritt). Das
Histogramm für eine Spur besteht aus einer �bow-tie�-geformten Region von
Histogrammzellen mit Einträgen mit einem Scheitelpunkt im Zentrum der
Region. Die Zelle am Scheitelpunkt des Histogramms enthält im idealen Fall
alle Hits der Spur. Die umliegenden Zellen, die jeweils eine Road repräsen-
tieren, enthalten jeweils nur ein Subset der Hits der Spur. Das Histogramm
für ein komplizierteres Ereignis besteht aus einer Überlagerung der Einträge
von den mehreren Spuren. Die Zellen, die den gesamten Satz von Hits von
jeder Spur enthalten, können als lokale Maxima im Histogramm identi�ziert
werden.

Der TRT LUT-Hough-Algorithmus wurde in C++ implementiert und ins
ATLAS-Softwareframework integriert. Die Zeitmessung der C++-Implemen-
tierung des Algorithmus' zeigt, dass der grösste Teil der Rechenzeit in den
Teilschritten �Histogramming� und �Thresholding / Local Maximum Finding�
verbraucht wird (∼62% der Gesamtverarbeitungszeit). Diese zwei Stufen sind
gute Kandidaten für eine FPGA-Implementierung. Für jeden �Hit� werden in
jeweils einem Schleifendurchgang ∼120 � den vorherbestimmten Spuren zu-
geordneten � Histogrammzähler erhöht. Dies wird in der CPU seriell abgear-
beitet. Im FPGA kann dies parallel erfolgen.

Zum Nachweis der Machbarkeit (�proof of concept�) der Algorithmus-
Beschleunigung mit der Hilfe eines FPGA-Koprozessors wurden die ersten
Stufen des TRT LUT-Hough-Algorithmus' in VHDL implementiert. Der an
der Universität Mannheim entwickelte FPGA-Koprozessor MPRACE (�Multi
Purpose Recon�gurable Accelerator /Computing Engine�) wurde als Hard-
wareplattform für den Test verwendet. MPRACE ist ein FPGA-Koprozessor
in Form einer 64Bit/66MHz-PCI-Karte. Herzstück der Karte ist ein VirtexII-
FPGA des Herstellers Xilinx. Es handelt sich um einen universell nutzbaren
Koprozessor, der bereits für verschiedene Anwendungen eingesetzt wird.

Die Implementierung nutzt sowohl den SRAM auf der Koprozessor-Karte
als auch die internen RAM-Blöcke des FPGAs aus. Die LUT wird im SRAM
gespeichert und das interne Block-RAM wird für die Histogrammierzähler
verwendet. Das FPGA-Design wird durch ein 64MHz-Taktsignal synchron
betrieben.

Die hybride Implementierung des Algorithmus' (der zeitaufwändige Teil

Zusammenfassung iii

des Algorithmus wird durch den FPGA-Koprozessor beschleunigt, alle an-
deren Teile laufen auf der Host-CPU), wurde für den Vergleich in dasselbe
Softwareframework wie die C++-Implementierung integriert. Die rein CPU
basierte Version und die hybride Implementierung liefern identische physikalis-
che Ergebnisse. Die Ergebnisse der Zeitmessung zeigen, dass der in VHDL im-
plementierte zeitkritische Teil auf dem FPGA Koprozessor ca. 4-mal schneller
läuft als auf der modernen Vergleichs-CPU (Intel Xeon 2.4GHz). Der gesamte
Algorithmus läuft unter Nutzung des FPGA-Koprozessors ca. 2-mal schneller.

Für eine noch höhere Beschleunigung muÿ ein weiterer Teil des Algorith-
mus' (�Track Splitting�) für die Ausführung im FPGA implementiert werden.
Wir erwarten, dass die FPGA-Realisierung des �Track Splitting� mindestens
dieselbe Beschleunigung wie die Stufe �Histogramming /Maximum-Finding�
gibt. In diesem Fall wird die hybride Implementierung sogar um einen Faktor
∼3.2 schneller sein als die reine CPU-Implementierung.

Die Speicherbandbreite ist ein kritischer Punkt für die FPGA basierte
Algorithmusausführung. Das Design des MPRACE-Koprozessors erlaubt es,
den On-Board-Speicher mittels aufsteckbarer Subboards zu erweitern. Dies
führt zu einer Verdopplung der Speicherbandbreite und gibt der Algorithmus-
Implementierung zusätzlich einen Beschleunigungsfaktor in der Gröÿenord-
nung von zwei.

Eine zusätzliche Beschleunigung kann erreicht werden, wenn ein FPGA
der neuen Baureihe Virtex4 des Herstellers Xilinx zum Einsatz kommt. Das
VHDL-Design der ersten Stufe des Algorithmus' wurde geringfügig modi-
�ziert und für die Virtex4-FPGA-Architektur synthetisiert. Die Durchführung
des �Place-and-Route�-Prozesses ergibt eine Taktfrequenz für den Design-
Core von ∼180MHz. Das führt zu einem zusätzlichen Beschleunigungsfaktor
von ∼3 und zu einem Gesamtbeschleunigungsfaktor von rund 10.

ABSTRACT

ATLAS (A Toroidal LHC ApparatuS) is one of the four detectors at the Large
Hadron Collider (LHC) facility at the European Organization for Nuclear
Research (CERN) which will start operation in 2007. It is a general purpose
detector which will detect the products of proton-proton collisions with center
of mass energy of 14TeV.

The LHC bunch crossing rate of 40MHz implies fast and e�cient trig-
ger system which must bring the event rate to the order of 100Hz. ATLAS
Trigger has a three-level architecture. The hardware-based �rst level (LVL1)
makes decision from quick analysis of data from calorimeters and muon sub-
detectors. High Level Trigger (HLT) consists of the Level-2 (LVL2) and the
Event Filter (EF). Both are based on software algorithms running on PC
farms.

Tracking has a central role in the event selection at the High Level Trig-
gers of ATLAS. The earliest stage where tracking information can be used
is the Second Level Trigger, where about 10ms will be available for event
processing. This constraint, together with the high multiplicity environment
of ATLAS due to the multiple pp collisions, poses great challenges to the
track reconstruction algorithms.

In the scope of this thesis one of the possible approaches to acceleration
the tracking algorithms using the hybrid FPGA/CPU systems has been
investigated. The TRT LUT-Hough algorithm � one of the tracking algo-
rithms for ATLAS Level2 trigger � is selected for this purpose. It is a Look-
Up Table (LUT) based Hough transform algorithm for Transition Radiation
Tracker (TRT). The algorithm was created keeping in mind the B-physic's
tasks: fast search for low-pT tracks in entire TRT volume. Such a full subde-
tector scan requires a lot of computational power.

The TRT LUT-Hough algorithm consists of a track candidate search fol-
lowed by track-�t performed to determine the track parameters. Since all the
particle trajectories to search for can be calculated in advance a histogram-
ming method based on the Hough Transform is well suited for the initial
track search in the TRT. The algorithm is based on the idea that every hit
in the three-dimensional detector image can belong to a number of possi-

Abstract v

ble (prede�ned) tracks characterized by di�erent parameters. All such tracks
(or roads) are stored in the LUT. Thus every hit increases the �probability�
for the existence of these tracks (histogramming). The histogram for a single
track consists of a �bow-tie� shaped region of bins with entries with a peak
at the centre of the region. The bin at the peak of the histogram will, in the
ideal case, contain all the hits from the track. The roads corresponding to the
other �lled bins share straws with the peak bin, and so contain sub-sets of
the hits from the track. The histogram for a more complex event consists of
a superposition of the entries from the individual tracks. The bins containing
the complete set of points from each track can be identi�ed as local maxima
in the histogram.

This algorithm is implemented in C++ and integrated into software
framework for ATLAS Trigger investigation. Pro�ling of a C++ implemen-
tation of the TRT full scan algorithm shows that the most of the computing
time is spent in access of LUT, incrementing of 8-bit numbers, and a local
maximum �nding. A CPU-only implementation of Histogramming (or Initial
Track Finding) and Thresholding /Local Maximum Finding require ∼62% of
the total processing time. These two steps are good candidates for an FPGA
implementation. The loop over all prede�ned roads for one straw, which is
executed once per hit and increments ∼120 histogram counters, is executed
sequentially in the general purpose CPU. This can be done in parallel in the
FPGA.

First steps of TRT LUT-Hough algorithm was implemented in VHDL as
a proof of concept of the tracking algorithm acceleration with the help of a
FPGA based co-processor. The FPGA coprocessor � MPRACE (Multi Pur-
pose Recon�gurable Accelerator /Computing Engine) developed at the Uni-
versity of Mannheim was used as a hardware platform for testing. MPRACE
is an FPGA-Coprocessor based on Xilinx VirtexII FPGA and made as a
64Bit / 66MHz PCI card. It is a universal co-processor which is used for
di�erent applications.

The implementation takes advantage of both the external SRAM on co-
processor board and the internal RAM blocks of the FPGA. The LUT is
stored in the SRAM and internal block-RAM is used for histogram counters.
The FPGA design is synchronised by a 64MHz clock signal.

Hybrid implementation of the algorithm (when the most time consuming
part of algorithm is accelerated by FPGA co-processor and all other parts are
running on a general purpose CPU) is integrated in the same software frame-
work as a C++ implementation for comparison. Identical physical results are
obtained for both the CPU and the Hybrid implementations. Timing mea-
surements results show that a critical part, is implemented in VHDL runs
on the FPGA co-processor ∼4 times faster than on the more or less modern

vi Abstract

CPU (Intel Xeon 2.4GHz) and the whole algorithm runs ∼2 times faster.
For even higher speed-up, another part of the algorithm (the �Track Split-

ting�) should be implemented in the FPGA as well. We expect that the
FPGA realisation of �Track Splitting� gives at least the same speed-up as
�Histogramming /Maximum Finding�. In this case the hybrid implementa-
tion will be by a factor of ∼3.2 faster than the CPU-only implementation.

The memory bandwidth is a critical point for algorithm implementa-
tion. Design of MPRACE co-processor allows to increase amount of on-board
memory by adding memory expansion mezzanine boards. That increases the
memory bandwidth by factor two and gives to the algorithm implementation
additional speed-up factor close to two.

Additional acceleration can be achieved by using a newer FPGA like Xil-
inx Virtex4. The VHDL design for initial track �nding was slightly modi�ed
and synthesised for the Virtex4 family. After the place and route process the
estimated clock frequency for the design core is ∼180MHz. This leads to
addition speed-up by factor ∼3 and to total speed-up factor close to 10.

CONTENTS

Introduction . 2

1. ATLAS Experiment . 10
1.1 ATLAS Detector . 10

1.1.1 Inner Detector . 12
1.2 Trigger and Data Acquisition System 17

2. Trigger systems in other experiments 23
2.1 Running experiments . 23

2.1.1 BABAR Trigger System 23
2.1.2 CDF Trigger System 24

2.2 Experiments at LHC . 26
2.2.1 CMS Trigger System 26
2.2.2 LHCb Trigger System 27
2.2.3 ALICE Trigger System 28

2.3 Outlook . 30

3. Software for Trigger Studies . 32
3.1 ATLAS Level-2 Reference Software 32
3.2 CTrig . 33
3.3 High Level Trigger Selection Software 34

4. Recon�gurable Computing . 40
4.1 Short introduction . 40
4.2 The FPGA co-processor MPRACE 44

5. Reconstruction Algorithms for Inner Detector 47
5.1 Pixel-Scan . 48
5.2 Precision tracker data preparation 50
5.3 IDSCAN . 51
5.4 SCTKalman . 52
5.5 SiTree . 53

viii Contents

5.6 TRTKalman . 53

6. TRT LUT-Hough Algorithm . 56
6.1 TRT LUT-Hough Algorithm description 56
6.2 VHDL implementation of the TRT LUT-Hough Algorithm . . 61
6.3 Execution Time Measurement Results 68
6.4 TRT LUT-Hough in HLTSSW 71

6.4.1 Magnetic Filed . 72
6.4.2 Track merging . 76
6.4.3 Likelihood approach 77
6.4.4 Results of the review of the LVL2 Inner Detector algo-

rithms . 80

7. Future works for the ATLAS trigger 81

Conclusions . 84

Bibliography . 87

Acknowledgments . 99

LIST OF FIGURES

1.1 The ATLAS Detector . 11
1.2 The ATLAS Inner Detector 12
1.3 Layout of the barrel TRT . 14
1.4 TRT barrel modules (mechanical layout) 15
1.5 TRT barrel geometry for simulation 16
1.6 Longitudinal and radial components of the magnetic �eld as

a function of R and z . 17
1.7 Block diagram of the ATLAS Trigger/DAQ system. 18
1.8 Region-of-Interest (RoI). 19
1.9 Level2 Trigger Architecture A. 20
1.10 Level2 Trigger Architecture B. 21
1.11 Level2 Trigger Architecture C. 22

3.1 A component diagram of the High Level Trigger selection chain 35
3.2 A package diagram of HLTSSW 36
3.3 A simpli�ed schematic diagram of the sequence by which HLT

algorithms request and receive event data. 38
3.4 Two types of Feature Extraction algorithms 39

4.1 Arrangement of Slices within the Xilinx Virtex-4 CLB. 41
4.2 Simpli�ed Virtex-4 General Slice. 42
4.3 A Generic Architecture Overview of modern FPGA (Xilinx

Virtex2-Pro in this case). 43
4.4 Multi Purpose Recon�gurable Accelerator /Computing Engine 44

5.1 Display of simulated H → bb̄ event in the ATLAS barrel Inner
Detector. 49

6.1 A histogram due to an isolated muon in the barrel TRT. . . . 58
6.2 A Histogram created for a B-physics event. 58
6.3 TRT LUT-Hough algorithm 59
6.4 FPGA initial track �nding . 61
6.5 TRT LUT-Hough initial track �nding block diagram 63

x List of Figures

6.6 Block diagram for the internal structure of the main working
part of the TRT LUT-Hough algorithm initial track �nding
and maximum �nding implementation. 64

6.7 Flow diagram of the DMA-on-demand data transfer 66
6.8 FPGA track splitting . 67
6.9 View of one quarter of the ATLAS Inner Detector in the (R, z)

plane. 71
6.10 Single 20 GeV electron events without pile-up. pT distribution

for reconstructed tracks with |η| > 1.8 72
6.11 Trajectories of the particles with various transverse momenta

through the Inner Detector. R− φ view. 73
6.12 Trajectories of muons with transverse momenta of 5GeV for

cases with a constant and a solenoidal magnetic �elds. A view
in a φ− z plane at various η. 73

6.13 Single 20 GeV electron events without pile-up. Distribution of
pT for reconstructed tracks with |η| > 1.8. LUT calculation
done in case with an inhomogeneous magnetic �eld 74

6.14 Single 20 GeV electron events without pile-up. Distribution
of pT for reconstructed tracks with |η| < 0.7. A number of
generated events: 2758 (E�ciency: 97%) 75

6.15 Single 20 GeV electron events with pile-up at luminosity 2 ×
1033. Distribution of pT for reconstructed tracks with |η| < 0.7.
A number of generated events: 1402 76

6.16 A number of reconstructed tracks in TRT barrel. 77
6.17 A number of reconstructed tracks in the TRT barrel after

merging of the track segments with more than 75% of common
hits. 78

6.18 Single 20 GeV electron events with pile-up at luminosity 2 ×
1033. pT distribution for reconstructed tracks with |η| < 0.7.
A number of generated events with |η| < 0.7: 1402 (E�ciency:
97.5%) . 79

LIST OF TABLES

0.1 Modern and future (LHC) colliders and their parameters. . . . 4

5.1 Execution times on a dual Xeon 2.4GHz PC for the Pixel Scan. 50
5.2 Execution times on a dual Xeon 2.4GHz PC for the IDScan. . 52
5.3 Execution times on a dual Xeon 2.4GHz PC for the SC-

TKalman with di�erent seeds. 53
5.4 Execution times on a dual Xeon 2.4GHz PC for the Pixel-

seeded SiTree. 54
5.5 Execution times on a dual Xeon 2.4GHz PC for the TRTKalman. 55

6.1 FPGA resources utilization summary. 69
6.2 Execution times on a Xeon 2.4GHz PC for the TRT LUT-

Hough CPU-only and hybrid implementation. 70

LIST OF ABBREVIATIONS

ASIC Application-Speci�c Integrated Circuit
ATLAS A Toroidal LHC Apparatus

CLB Con�gurable Logic Block
COTS commercial �o�-the-shelf�
CSC Cathode Strip Chambers

DAQ Data Acquisition system
DC Data Collection subsystem
DSP Digital Signal Processor

EDM Event Data Model
EF Event Filter

FEX Feature extraction
FFT Fast Fourier Transform
FPGA Field Programmable Gate Array

HLT High Level trigger
HLTSSW High Level Trigger Selection Software

ID Inner Detector

LEP Large Electron Positron Collider
LHC Large Hadron Collider
LUT Look-Up Table
LVL1 Level-1 trigger
LVL2 Level-2 trigger

List of Abbreviations 1

MDT Monitored Drift Tubes
MPRACE Multi Purpose Recon�gurable Accelera-

tor/Computing Engine

ROB Read-Out Bu�er
RoI Region-of-Interest
RoIC RoI collector
RPC Resistive Plate Chambers

SCT Semiconductor Tracker

T/DAQ Trigger and Data Acquisition system
t2Ref ATLAS Level 2 Reference software
TES Transient Event Store
TGC Thin Gap Chambers
TRT Transition Radiation Tracker
TRT LUT-Hough A look-up table based Hough transform algo-

rithm

ZBT SRAM Zero-Bus-Turnaround SRAM

INTRODUCTION

Last hundred years physicists make their investigations in the world of el-
ementary particles. Particle and High Energy physics is the frontier �eld
which investigates the basic structure of matter, elementary particles and
their interactions. It is one of the most interesting and dynamic branches
of the modern science. Its ultimate aim is to �nd a complete description of
elementary constituents of matter and of forces acting between them. The
description should be as simple as possible.

Through a combination of theory and experiment, a mathematical model
that describes or explains all particle physics observed so far by physicists
has been worked out. This model is called the Standard Model[1]. It is based
on the relativistic quantum gauge �eld theory and consists of elementary
particles grouped into two classes: bosons (particles that transmit forces)
and fermions (particles that make up matter). The bosons have an integer
spin (0, 1, 2, ...). The fermions have an odd half-integer spin (like 1/2, 3/2,
...). There are two types of fermions: leptons and quarks. Latest, according
to what is currently believed (but not yet rigorously proved), is permanently
bound inside hadrons ([1], [2]).

However the Standard Model leaves many unsolved questions. Among
them, is the reason why elementary particles have a mass and why their
masses are di�erent. It is remarkable that such a familiar concept is so poorly
understood. The theoretical answer for this question was done by Peter W.
Higgs in [3], [4], [5]. According to this, the whole of space is �lled with the
�Higgs �eld�, and by interacting with this �eld, particles acquire their masses.
Particles, which interact strongly with the Higgs �eld are heavy, whilst those
which interact weakly are light. The Higgs �eld has at least one new particle
associated with it, the Higgs boson. This very important for the Standard
Model particle is not found experimentally until now. Without experimental
prove of the Higgs boson existence whole Standard Model can not be con-
sidered as proved. There are theoretical limits for mass of the neutral Higgs
boson. A low limit was made by experiments on the LEP (Large Electron
Positron Collider) in the CERN and equal MH > 114.4 GeV at 95% con�-
dence level [6]. An upper limit can be obtained from analysis of experimental

INTRODUCTION 3

measured parameters of the Standard Model (so called �electroweak �t�) and
it is unlikely to be heavier than 260 GeV [7], or up to 1 TeV from the the-
ory. Looking for particles in this energy range is a task for recent and future
experiments..

The Standard Model is a great theory, but physicists believe that it can
not be the �nal �Theory of Everything�. It can be (in the best case) only a low
energy approximation of the more general theory. Nowadays there are several
such theories. A very popular one is called supersymmetry or SUSY for short.
SUSY predicts that for each known particle there is a �supersymmetric� part-
ner. Looking for these partners and some others things of the more general
theory is another tasks for future experiments in the high energy physics.

To perform the experimental research physicists rely on particle colliders,
which employ technologies from the forefront of engineering developments.
Particle accelerators today achieve energies up to 1TeV. Three di�erent types
of collider can be distinguished: hadron-hadron machines, lepton-lepton ma-
chines and hadron-lepton machines. One of the most important collider pa-
rameter is a luminosity. It is a measure of sensitivity and gives the number of
events per second for a cross section of 1cm2. Several accelerators and their
parameters are listed in Table 0.1 (information from Particle Data Group [8]).

One of future colliders the Large Hadron Collider (LHC) will start op-
eration at the European Organisation for High Energy Physics (CERN) in
2007 [9]. The LHC is a particle accelerator which will probe deeper into mat-
ter than ever before. When turned on in 2007, the Large Hadron Collider will
be the worlds biggest and the most powerful particle accelerator. The machine
will send two beams of protons in opposite directions around a 27-km tunnel
at close to the speed of light. Proton beams with energies around 7-on-7 TeV
and beam crossing points of unsurpassed brightness will be collided, provid-
ing the experiments with high interaction rates. It can also collide beams of
heavy ions such as lead ions with total collision energy in excess of 1,250
TeV. When the beams are smashed together, showers of new particles and
a possible glimpse at what the universe looked like in its �rst few moments
will be created for physicists to study.

Five experiments, with huge detectors, will study what happens when
LHC's beams collide. This �mighty �ves� are: ALICE [10], ATLAS [11],
CMS [12], LHCb [13] and TOTEM [14]. Three of them are specialized ex-
periments:

• TOTEM � Total Cross Section, Elastic Scattering and Di�raction Dis-
sociation at the LHC.

• LHCb � experiment for precise measurements of the CP violation and
rare decays.

4 INTRODUCTION

T
ab
.
0.1:

M
odern

and
future

(L
H
C
)
colliders

and
their

param
eters.

C
o
llid

e
r

In
stitu

te
P
a
rticle

s
B
e
a
m

e
n
e
rg
y

(G
eV
)

L
u
m
in
o
sity

(10
3
0cm

−
2s

−
1)

T
im
e
b
e
tw
e
e
n
co
llisio

n
s

(n
s)

K
E
K
B

K
E
K

e −
e
+

8.0
+

3.5
11305

8
P
E
P
II

SL
A
C

e −
e
+

9.0
+

3.1
6777

4.2
L
E
P

C
E
R
N

e −
e
+

101
24

2200
H
E
R
A

D
E
SY

ep
30

+
920

75
96

R
H
IC

B
N
L

pp
100

6
213

T
evatron

F
erm

ilab
pp̄

980
50

396
L
H
C

C
E
R
N

pp
7000

10
4

25

INTRODUCTION 5

• ALICE � dedicated heavy-ion detector to exploit the unique physics
potential of nucleus-nucleus interactions at LHC energies.

Two others, ATLAS and CMS, are general purpose experiments with very
wide physics program which included (but not limited):

• searching the Higgs bosons ([15], [16]),

• B-Physics studies ([17], [18]),

• measurements of top quark properties ([19], [20]),

• some studies �Beyond Standard Model� like supersymmetry ([21], [22]),

• a search for extra dimensions ([23] [24] [25]),

and other interesting investigations (for example [26], [27], [28], [29]).
Detectors are built like the Russian dolls, with one specialized layer �tting

snugly inside the next. Collisions happen right in the middle, and each layer
measures di�erent properties of the emerging particles. The experimental
environment at the LHC is characterized by a high event rate and a large
background. Detectors will produce huge amount of data, which can not be
fully recorded for a future o�ine analysis. The task of the trigger system
is to select rare events and to suppress background events as e�ciently as
possible. This requires at least a partial analysis of the event, which has to be
done before the data is recorded, without disturbing further event detection.

Triggering is one of the greatest challenges at hadron collider experiments.
At the LHC beams will be colliding every 25 ns. The pp interaction leading
to the interesting physics process (referred to as the physics event) will be
accompanied by several minimum bias interactions (∼ 20 at the LHC design
luminosity) producing extremely high multiplicities. Rare events must be
selected from complex raw data, which may contain a million times more
events.

One of the most demanding tasks is usually a track reconstruction from
measured points (detector hits). Various track �nding methods are used in
high energy physics tracking applications. Tracking algorithms can be divided
into two major classes: local and global.

Local methods select one track candidate at a time by starting with a few
points (the track initialization). An algorithm makes predictions as to the
further points belonging to this track candidate and tries to �nd other points
that are appropriate to spatially extend the initial tracklet by following the
rules that de�ne a valid particle track (the track model). If more of them exist
continuously, a track candidate is created; if not, the tracklet is discarded.
Typical members of this group are:

6 INTRODUCTION

The Track Following method, which tries to extend a track �seed� (usually
two or three hits in a low occupancy region) by including hits that
show the best correlation with the track model and the orientation of
the seed. That method always looks only at the next few points, using
most recently found ones to extrapolate the track.

The Kalman �lter can be viewed as a statistically optimal re�nement of track
following. The state of a charged track at any given surface in the
detector can be described by �ve parameters: two for the position, two
for the direction, and one for the curvature (or momentum). A collection
of this parameters is called �state vector�. The Kalman �lter consists of
two steps. In the prediction step the current state vector is extrapolated
to the next detector surface, taking into account multiple scattering and
energy loss. In the �lter step the extrapolated state vector is updated
by taking a weighted mean with measurement.

The Track Road method, which starts from both ends of a possible particle
track. Additional hits are included, if they meet a road of a certain
width around the track candidate, which is compatible with the track
model and the initial hits.

Track Segment methods are an extension of the track following method. El-
ements that are added to the initial seed are also clusters of few hits
and likewise have an orientation.

A disadvantage of all local methods consists in that most of the detector hits
must be touched multiple times, many of them for each attempt to complete
a particle track. Moreover, with increasing hit multiplicity, the computing
time increases more rapidly than linearly.

The global methods do not compute single points or groups of points
individually. Instead, all points undergo the same treatment, whose �rst step
often is a parameter transformation. This transformation produces a list of
track candidates, or at least a structure, in which tracks can be found more
easily than in the original detector image. Important global methods are:

The combinatorial method. All combinations of hits are grouped into all pos-
sible particle tracks and tested against the track model. The track is
accepted, if it is rated as good according to criteria de�ned in the
model. This method can only be applied to detector images with only
a few hits, because the computing e�ort grows extremely fast with the
detector occupancy.

INTRODUCTION 7

Template matching. This method requires a dictionary of all possible classes
(tracks). It compares a detector image to patterns from the dictionary.
Each match indicates existence of the respective track. This approach
is only viable, if the number of possible particle tracks is su�ciently
low to handle the pattern set. The method does not work verry well in
case of noisy data, and especially data with missing detector hits.

The histogramming method. It is an improvement over the pattern matching
approach. In this case, one de�nes a set of n di�erent functions of the
point coordinates and enters the function values in a histogram of n
dimensions (one dimension for each function). An n-dimensional his-
togram has to be visualized as an n-dimensional array of n-dimensional
cells. Each cell contains a counter which is increased by a given weight
when the coordinates of the measurement de�ne a point inside that
cell. Local maxima in the histogram denote the particle tracks, which
are contained in the detector image with the highest probability. The
method is robust against a certain level of noise and missing data.

In histograms of several dimensions, recognizing the track clusters (local
maxima) turns out to be more di�cult than �nding the tracks directly
via a track model. This limits the number of dimensions (n) to one or
two.

The histogramming method is a special case of a general algorithm
which is called the Hough Transform [30, 31]. The histogram represents
a discrete parameterization of all possible particle tracks and can be
�lled by transformation parameters of the detector image.

Algorithms utilizing an Arti�cial Neural Network. A typical neural network of
the �feed-forward� type consists of an appropriate number of nodes
arranged in layers: an input layer, mostly one or two �hidden� layers and
an output layer, which for classi�cation problems can be represented
by a single node. The nodes of each layer feed their outputs to one
or more nodes of a subsequent layer. A node's output is determined
only by the sum of its weighed input values minus a threshold value.
The network is trained with real or realistic data, i.e. the weights and
thresholds are adjusted to produce the correct classi�cation for the set
of input patterns. After the training the network is capable to classify
similar input patterns.

Purely global methods are independent of the order in which points enter the
algorithm. Local methods are not, since the treatment of each point depends

8 INTRODUCTION

on the �track �nding history�. A comprehensive introduction to tracking al-
gorithms, trigger and data acquisition systems is given in [32].

Tracking in trigger systems should be done e�ciently and fast. To be
fast one can use large commercial �o�-the-shelf� (COTS) processor farms to
run in parallel. Another approach is to use hardware co-processors for most
time consuming parts of algorithms which are inherently parallel. Suitable
hardware may be based on DSPs (DSP - Digital Signal Processor), that
feature dedicated functional units for certain operations like FFT or matrix
operations (see, for example, [33]). Recon�gurable Field Programmable Gate
Arrays (FPGA) can be programmed to represent any digital circuit that is
allowed by the amount of existing logic units.

The present thesis will describes the studies of using the FPGA based
co-processor for improving the execution speed of the pattern recognition al-
gorithms from ATLAS High Level Trigger. Improving of physics performance
of this algorithm will be discussed as well.

The �rst chapter introduces the ATLAS detector and its Trigger and Data
Acquisition system.

Chapter 2 discusses various approaches to the trigger systems in currently
running and planed high energy physics experiments

Chapter 3 focuses on the presentation of the ATLAS software infrastruc-
tures for trigger studies.

Chapter 4 gives a short description of the FPGA co-processor board de-
veloped at the University of Mannheim and used in the scope of this thesis.

Chapter 5 shows execution time measurements results for some of the
inner detector track reconstruction algorithms which are common to all B-
physics channels and the standard RoI processing and investigates the feasi-
bility of using a FPGA co-processor for improving their speed.

A TRT LUT-Hough tracking algorithm designed with keeping in mind the
B-physic's tasks (search for low-pT tracks in the entire Transition Radiation
Tracker volume) and the possibility of further use of FPGA co-processor is
described in the chapter 6. Its VHDL implementation for hybrid CPU/FPGA
system (PC with MPRACE co-processor), performance comparison with soft-
ware, C++ implementation, and some improvements for better physics per-
formance are presented as well.

A brief description of the future work for the ATLAS High Level trigger
is done in chapter 7.

Throughout this thesis the following conventions are used: the coordinate
system has its origin at the interaction point. The z-axis is parallel to the
beam, and Cartesian coordinates x, y, or polar coordinates (the radius r
and the azimuthal angle φ) are used to denote positions in the transverse
plane. Instead of the polar angle θ, the pseudorapidity η = − ln tan θ/2 is

INTRODUCTION 9

used. Masses, momenta and energies are expressed in natural units where
h̄ = c = 1 .

Chapter 1

ATLAS EXPERIMENT

The possibility of the acceleration of tracking algorithms used in the experi-
mental high energy physics with a FPGA-based co-processor help is consid-
ered in the scope of this thesis. One of the trigger algorithms for the ATLAS
experiment is used for this task. Therefore, description of the ATLAS exper-
iment (detector and its trigger and data acquisition system) is done in this
chapter.

1.1 ATLAS Detector

Accelerators as the LHC can be seen as the �probe� for observing the world
of elementary particles. The corresponding �eye� is then the detector, where
the incident particles lead to observables e�ects ([34]).

ATLAS (A Toroidal LHC Apparatus) is a multi-purpose 4π detector (cov-
erage up to |η| = 5) designed to operate at the LHC design luminosity of
1034 cm−2s−1 (�rst years � 1033 cm−2s−1). ATLAS has been designed as a
multipurpose experiment, to be capable both detecting and measuring new
physical phenomena predicted by currently available theories (see [35]) and
performing precision Standard Model measurements. At the same time it
must also be open to unexpected signals from unpredicted physics scenarios
and thus has to be sensitive to any kind of event topology.

To meet the physics goals, the ATLAS experiment is designed to mea-
sure all products of the collision that have a su�ciently long lifetime to be
detected. The detector is composed of a number of specialized subdetectors
as shown in the Figure 1.1 1.

The global layout is largely determined by the con�guration of the mag-
net system used for the momentum measurements. The Magnet System [36]
consists of two independent parts. A superconducting solenoid surrounds the
inner tracker. On the outside of this is the calorimeter which is itself sur-

1 All �gures in this chapter are taken from various ATLAS TDRs

1.1. ATLAS Detector 11

Fig. 1.1: The ATLAS Detector

rounded by superconducting air-core toroids consisting of independent coils
with eight-fold φ-symmetry.

This magnet con�guration allows to build a high-resolution, robust stand-
alone Muon Spectrometer [37] with minimal constraints on the Calorimeter
and the Inner Detector. The air-core toroid system, with a long barrel and two
inserted end-cap magnets, generates a large �eld volume and strong bending
power with a light and open structure. Multiple scattering e�ects are there-
fore minimal, and an excellent muon momentum resolution is achieved with
three stations of high-precision tracking chambers. Four di�erent technolo-
gies, namely Monitored Drift Tubes (MDT), Cathode Strip Chambers (CSC),
Resistive Plate Chambers (RPC) and Thin Gap Chambers (TGC), are used
in the muon system, depending on the expected rates and the required space
and time resolutions for each chamber.

The Calorimeter System [38, 39, 40] is located inside the muon spectrome-
ter and consists of an inner electro-magnetic calorimeter and an outer hadron
calorimeter. The �rst will absorb electrons and photons, while the latter will
absorb hadrons, decay products of taus and most other particles except neu-
trinos and muons. The calorimeter speci�c aim is to reconstruct energies
and directions of electrons, photons (electro-magnetic calorimeter), and jets

12 Chapter 1. ATLAS Experiment

Fig. 1.2: The ATLAS Inner Detector

(electro-magnetic and hadronic calorimeters) as well as to measure missing
transverse energy. The electro-magnetic calorimeter and the end-cap regions
of the hadronic calorimeter use a liquid ionization technique. Their passive
parts consist of lead (or copper) absorber plates with liquid argon �lled gaps
in between. The design of the barrel (and extended barrel) of the hadronic
calorimeter is based on a scintillator technique. This part of the calorimeter
consists of scintillating tiles and steel absorber material.

1.1.1 Inner Detector

Inner Detector tracking algorithms will be discussed in later chapters of this
thesis. Therefore the Inner Detector is described more detailed.

The Inner Detector [41] is shown in the Figure 1.2. It is a cylinder of
1.15 m radius and 6.8 m in length centered around the interaction point. The
purpose of the Inner Detector is to make high-precision measurements of the
kinematical parameters of charged particles moving in a solenoidal magnetic
�eld with maximal capability for pattern recognition, particle identi�cation
and triggering. High-precision measurements in the environment with very
large track density can be made with semiconductor tracking detectors, using
silicon microstrip (SCT) and pixel technologies. The highest granularity is
achieved around the vertex region using semiconductor pixel detectors. The

1.1. ATLAS Detector 13

total number of precision layers must be limited because of the material
they introduce, and because of their high cost. Typically, three pixel layers
and eight strip layers (four space points) are crossed by each track. A large
number of tracking points is produced by the straw tube tracker (TRT), which
provides the continuous track-following with much less material per point and
a lower cost. The combination of the two techniques gives very robust pattern
recognition and high precision in both φ and z coordinates.

Pixel Detectors

The pixel detector [42] is designed to provide a very high-granularity, high-
precision set of measurements as close to the interaction point as possible.
The system provides three precision measurements over the full acceptance,
and mostly determines the impact parameter resolution and the ability of the
Inner Detector to �nd short-lived particles such as Bhadrons and τ leptons.
The two-dimensional segmentation of the sensors gives space points without
any of the ambiguities associated with crossed strip geometries, but requires
the use of advanced electronic techniques and interconnections for the read-
out.

The system consists of three barrels at average radii of ∼ 4 cm, 10 cm,
and 13 cm, and �ve disks on each side, between radii of 11 and 20 cm, which
complete the angular coverage. The system is designed to be highly modular,
containing approximately 1500 barrel modules and 700 disk modules. The
pixel modules are designed to be identical in the barrel and the disks. The
individual sensitive element in the barrel (end-cap) is a pixel 50 mm in R−φ
and 300 mm in z(R). The modules are overlapped on the support structure
in order to give hermetic coverage.

Semiconductor Tracker

The Semiconductor Tracker (SCT) system [41] is designed to provide eight
precision measurements per track in the intermediate radial range, contribut-
ing to the measurement of momentum, impact parameter and vertex position,
as well as providing good pattern recognition by the use of high granularity.
The system is an order of magnitude larger in surface area than previous gen-
erations of silicon microstrip detectors, and in addition must face radiation
levels which will alter the fundamental characteristics of the silicon wafers
themselves.

The barrel SCT uses eight layers of silicon microstrip detectors to provide
precision points in the R,φ and z coordinates, using small angle stereo to
obtain a z measurement. Each detector is 6.36× 6.40 cm2 silicon wafer with

14 Chapter 1. ATLAS Experiment

Fig. 1.3: Layout of the barrel TRT

768 readout strips of 80 µm pitch. Each module consists of four singlesided
p-on-n silicon detectors. On each side of the module, two detectors are wire-
bonded together to form 12.8 cm long strips. Two such detector pairs are then
glued together back-to-back at a 40 mrad angle to give a stereo measurement,
separated by a heat transport plate, and the electronics is mounted above the
detectors on a hybrid. The end-cap modules are very similar in construction
but use tapered strips, with one set aligned radially.

The detector contains 61 m2 of silicon detectors, with 6.2 million readout
channels. The spatial resolution is 16 µm in R − φ and 580 µm in z, per
module containing one R − φ and one stereo measurement. Tracks can be
distinguished if separated by more than ∼ 200 µm .

Both the pixel and the SCT systems require a very high mechanical stabil-
ity, cold operation of the detectors, and the removal of the heat generated by
the electronics and the detector leakage current. These two systems together
are called �precision tracker�.

Transition Radiation Tracker

The Transition Radiation Tracker (TRT) [41] is a set of straw detectors, which
can operate at the very high rates because of their small diameter and the
isolation of the sense wires within individual gas volumes. This technique
is intrinsically radiation hard, and allows a large number of measurements
(typically 36) to be made on every track. Electron identi�cation capability is
added by employing Xenon gas to detect transition-radiation photons created

1.1. ATLAS Detector 15

Fig. 1.4: TRT barrel modules (mechanical layout)

in a radiator between the straws. There are two thresholds on the TRT
front-end electronics. Hits from transition-radiation photons are identi�ed as
signals over the higher threshold.

The TRT consists of a central barrel part and two end-cap sections. The
barrel TRT is built from individual modules with between 329 and 793 ax-
ial straws each. These modules arranged in three radial sections, each with
32 modules as shown in the Figure 1.3, covering the radial range from 56 to
107 cm. Each section contains straws arranged in planar layers of roughly con-
stant r, with a total of 73 layers, at a radial distance of roughly 6.8 mm [43].
Layers are grouped into three types of modules (see Figure 1.4). The �rst six
radial layers are inactive over the central 80 cm of their length, in order to
reduce their occupancy, while providing extra coverage of the crack between
the barrel and end-cap sections.

On �rst stages of the ATLAS simulation (up to so called DC1 stage)
a di�erent geometry for the TRT barrel was used. Straws were arranged
in cocentric cylindrical layers. Layers were separated by 6.8 mm in R and
within a layer straws were separated in R − φ by 6.8 mm as shown in the
Figure 1.5 [41].

Those two end-caps each consist of 18 wheels, each containing 8 or 16

16 Chapter 1. ATLAS Experiment

Fig. 1.5: TRT barrel geometry for simulation

planes equidistant along z. Wheels are mounted non-equidistant along z.
The fourteen wheels nearest to the interaction point cover the radial range
from 64 to 103 cm, while the last four wheels extend to an inner radius of
48 cm in order to maintain a constant number of crossed straws over the full
acceptance. To avoid unnecessary increase in the number of crossed straws
and material at medium rapidity, wheels from seventh to fourteenth have
a half as many straws per cm in z as the other wheels. Detailed geometry
description can be found in [41, 42, 43, 44]

Magnetic �eld

The magnetic �eld in the inner detector cavity is produced by a supercon-
ducting solenoid. The solenoid yields a 2T �eld parallel to the beam axis. The
length of the solenoid is less than the length of the inner detector tracking
volume and deviations from a homogeneous �eld are large. In the Figure 1.6
�eld maps for the longitudinal (Bz) and radial (BR) components of the �eld
are shown. Such magnetic �eld con�guration leads to deviation of track tra-
jectory from a perfect helix [45] and degradation in the pT resolution (as
consequence of reduced bending power). Therefore, simulation and track re-
construction algorithms should use a realistic �eld map to reduce inaccuracy
in the reconstruction.

1.2. Trigger and Data Acquisition System 17

0 1 2 3

0

0.25

0.5

0.75

1

0.5

1

1.5

2

z (m)

B
z

(T
)

R (m) 0 1 2 3

0

0.25

0.5

0.75

1

0

0.2

0.4

0.6

z (m)
B

R
 (

T
)

R (m)

Fig. 1.6: Longitudinal and radial components of the magnetic �eld as a func-
tion of R and z

1.2 Trigger and Data Acquisition System

The pp interaction that leads to the interesting physics process (referred to
as the physics event) will be accompanied by several (∼20) minimum bias
interactions occurring simultaneously. ATLAS is a very complex system with
∼ 150×106 channels which will produce approximately 1MByte data for each
event. With a LHC event rate of 40MHz ATLAS will generate ∼40TByte
of data per second which has to be handled by the data acquisition sys-
tem (DAQ). Current data storage technology limits the amount of data that
can be permanently stored to the order of 100MBytes/s. The trigger system
is designed to bridge this gap. The task of the trigger system is to select rare
interesting events, to suppress background events as e�ciently as possible.
It is designed to bring the event rate to the order of 100Hz. The task of
the DAQ is to move the data produced by the ATLAS detector for selected
physics events to the permanent storage for the later analysis.

The ATLAS trigger strategy foresees a reduction of the event rate at
several levels: Level-1 (LVL1) and High Level trigger (HLT) which in turn is
subdivided into Level-2 (LVL2) and Event Filter (EF) [46]. A schematic view
of the ATLAS trigger is shown in the Figure 1.7.

The hardware-based �rst level (LVL1) makes decision from quick analysis
of data from calorimeters and muon subdetectors. The selection is based on
reduced granularity data from a subset of detectors. The muon trigger uses
only trigger chambers to identify high-pT muons. The calorimeter trigger uses

18 Chapter 1. ATLAS Experiment

Fig. 1.7: Block diagram of the ATLAS Trigger/DAQ system.

all of the ATLAS calorimeters, but with reduced granularity. The calorimeter
trigger searches for electromagnetic clusters, jets and large missing in the
total transverse energy. Electromagnetic clusters are characteristic of high-
pT electrons and photons, and taus decaying to hadrons. The data from
these subdetectors are passed to the processors of the muon and calorimeter
triggers. These are custom hardware processors, ASICs (Application-Speci�c
Integrated Circuit) or FPGAs based, with a �xed set of algorithms with
programmable parameters.

When the LVL1 trigger accepts an event, the data are moved from the
pipeline memories on the detector and stored in read-out bu�ers (ROBs)
during the LVL2 processing and event �lter collection time.

To reduce the amount of data requested to a few percent of the full event
size only a part of event data from so called Regions-of-Interest (RoI � regions
of the detector where the LVL1 Trigger found some activity which lead to
accepting an event) is analyzed at Level-2.

The second level trigger uses full granularity, full precision data from the
calorimeter and muon detectors but also from the tracking detectors. There
are about 1.6 RoIs per event in average [46] (event with three RoIs shown in
the Figure 1.8). For each RoI the features from all subdetectors are combined
to provide better particle identi�cation and more precise measurements than
were possible at LVL1.

The important feature of the HLT event selection strategy is a sequen-
tial signature validation. Processing is performed in steps of feature extrac-

1.2. Trigger and Data Acquisition System 19

Fig. 1.8: Region-of-Interest (RoI).

tion (FEX) and hypothesis testing algorithms. Events should be rejected at
the earliest possible step. The HLT event decision is derived in a series of
steps.

After each step when all necessary algorithms have been executed, an
event is checked whether it ful�ls a signature from a list of signatures (so
called a �menu table�) de�ned for this step. In case that at least one signature
of this list is ful�lled the event is accepted in this step and it is passed to
the next step. Otherwise the event processing is stopped and the processor
is free to accept a next event. The de�nition of signatures for the each step
is one part of the con�guration. For this reason the con�guration provides
a hierarchy of menu tables. There is a menu table for each step of event
processing. The menu table of a given step contains a list of trigger signatures
of which one has to be ful�lled in order the event to be accepted in that step.
Connections between signatures of di�erent steps are called �trigger chains�.

Algorithm tables are the second part of the con�guration. Event char-
acteristics (so called �trigger elements�) are re�ned in the seeded and step-
wise event processing by demanding information from more and more sub-
detectors and combining it. This re�nement usually starts from a LVL1 RoI,
which identify a certain active region in the detector, and de�ned by so called
�sequences�, which specify the trigger elements being required as input, re-
�nement algorithms to be run and a trigger element to be created in case
if the algorithm completes it's work successfully. Thus, trigger elements at
the step N are transformed to trigger elements at the step N+1 by means of

20 Chapter 1. ATLAS Experiment

Fig. 1.9: Level2 Trigger Architecture A.

sequences.

The actual processing of raw detector data is restricted to be done by
the algorithms. A speci�c component for the control and con�guration is
called �Steering�. Algorithms can communicate with the Steering only via
the creation or non-creation of trigger elements. The Steering in turn decides
which algorithm runs on which trigger element according to the existence
of trigger elements and ful�lled signatures at the step before. All sequences
of a certain step are collected in the �algorithm table� of that step. The
con�guration has to provide a hierarchy of algorithm tables: for each step
there is one algorithm table.

For the low luminosity phase, the LVL2 trigger will have to process B-
physics event candidates as well as the high-pT ones. Processing B-hadron
events is di�erent from the standard RoI processing [47]. Hadrons containing
b quarks are pairwise produced and decay independently. One of the hadrons
might decay semi-leptonically which could be triggered by an inclusive muon
trigger. The muon from the decay of a B-particle does not indicate the �ight
direction of the other B-hadron. Therefore, B-hadron events are triggered by
a low-pT single muon at LVL1. This muon is con�rmed at LVL2, �rstly in
the muon detector and then in an association with a track from the Inner
Detector (ID). The track search can be initiated from outside using TRT
information or from inside using Pixel data. A full-scan is performed to search
tracks in the entire volume of the TRT or Pixel Detector respectively above

1.2. Trigger and Data Acquisition System 21

Fig. 1.10: Level2 Trigger Architecture B.

very low pT thresholds (∼ 1 GeV). The result of the full-scan is a set of tracks
which are used as track seeds for an algorithm in the semiconductor tracker
(SCT).

The LVL2 trigger has several interfaces to external units, such as the LVL1
trigger, the read-out bu�ers (ROBs), the DAQ system and several functional
units: the RoI builder and supervisor, the preprocessing units, RoI collec-
tors (RoIC), feature extraction (FEX) and global decision systems. Every of
those components can be implemented by several ways. Three various archi-
tectural implementations of the Level2 trigger system have been investigated.
These implementations referred as Architecture A, B and C (see Figures 1.9,
1.10, 1.11) respectively.

In the architectureA processing is partitioned into local and global sec-
tions. The local section regroups all processing procedures up to and including
FEX (ROBs, RoI collectors, and data driven FEXs or DD in the �gure). The
global section collects the FEX outputs and performs the global processing.
The local processing is carried out in fast custom data-driven processors (FP-
GAs) and the global processing in general purpose processors (marked as LP
and GP in the �gure 1.9 respectively).

The architectureB is similar to A but the local processors (LP) is general
purpose processors arranged in several farms so that feature extraction can
be performed in parallel in each subdetector for each RoI.

The architectureC is a single farm of general purpose processors per-
forming the full LVL2 processing for an event. Detailed description of LVL2

22 Chapter 1. ATLAS Experiment

Fig. 1.11: Level2 Trigger Architecture C.

architectures is done in [48, 49, 50]. According to [46], the ArchitectureC is
assumed to represent the �nal choice for the second level trigger.

The target average decision time for LVL2 should be 10 ms. After the
LVL2 trigger accepts an event, the data for that event are transferred to
the Event Filter (EF). EF will have access not only to the full event data
but also to the geometry and calibration constants. The selection algorithms
will require full data decoding and event reconstruction. As an option the
reconstruction can be seeded by LVL2 RoIs and the complete event processing
might not always be necessary. O�ine reconstruction code should be used
at the EF stage as far as possible. Because the EF is the �rst stage of the
trigger which has an access to the full data, it will be used for monitoring
and calibration studies, such as trigger performance and physics quality. The
EF processing will be implemented by a farm of commercial general purpose
processors.

Chapter 2

TRIGGER SYSTEMS IN OTHER

EXPERIMENTS

Dedicated hardware is widely used in the experimental High Energy physics.
Trigger systems from di�erent experiments are described below. At the end
of this chapter I will try to analyse the usage of commercial PC farms and
custom hardware in these triggers and compare them with the ATLAS ap-
proach.

The staged trigger architecture is widespread at various currently opera-
tional and planed high energy physics experiments. In most cases the trigger
strategy is similar. Only the number of trigger levels and their implementa-
tion di�ers from experiment to experiment.

2.1 Running experiments

The most demanding experiments from currently running are CDF [51] and
D0 [52] at the Tevatron (Run IIb), BABAR at the PEPII [53] and Belle at
the KEK [54]. BABAR and Belle have similar physic program � the studies
of rare B-meson decay modes � and similar trigger systems.

2.1.1 BABAR Trigger System

BABAR, the detector for the SLAC PEP-II asymmetric e+e− B Factory op-
erating at the Υ(4S) resonance [53], was designed to allow comprehensive
studies of CP-violation in B-meson decays. Tracks of charged particles are
measured in a multi-layer silicon vertex tracker surrounded by a cylindrical
wire drift chamber. Electromagnetic showers from electrons and photons are
detected in an array of CsI crystals located just inside the solenoidal coil
of a superconducting magnet. Muons and neutral hadrons are identi�ed by
arrays of resistive plate chambers inserted into gaps in the steel �ux return of
the magnet. Charged hadrons are identi�ed by dE/dx measurements in the

24 Chapter 2. Trigger systems in other experiments

tracking detectors and by a ring-imaging Cherenkov detector surrounding
the drift chamber. The trigger, data acquisition and data-monitoring sys-
tems, VME- and network-based, are controlled by custom-designed online
software.

The trigger is implemented as a two-level hierarchy, the Level 1 in hard-
ware followed by the Level 3 in software.

The Level 1 trigger decision is based on detected charged tracks in the
drift chambers above a preset transverse momentum, showers in the electro-
magnetic calorimeter, and tracks detected in the instrumented �ux return
(system designed to identify muons and to detect neutral hadrons). Trigger
data are processed by three specialized hardware processors (FPGA based).
Each of the three Level 1 trigger processors generates trigger primitives, sum-
mary data about the position and energy of particles, which are sent to the
global trigger.

The current drift chamber trigger uses a 2D track reconstruction which
has no z information and thus it cannot distinguish some background events.
The BABAR trigger upgrade will provide 3D tracking capabilities at the
�rst trigger level. New z0pT Discriminator (ZPD) boards will reconstruct 3D
track information and make trigger decisions based upon the z0 origin of the
tracks [55]. The ZPD Track Finder uses a Hough transform based algorithm
which runs on boars with 8 Xilinx Virtex-II FPGAs.

The L3 trigger software comprises event reconstruction and classi�cation,
a set of event selection �lters, and monitoring. This software runs on the on-
line computer farm - a farm of commercial UNIX processors. The �lters have
an access to the complete event data for making their decision, including the
output of the L1 trigger processors and use more sophisticated algorithms.
For example, the drift chambers based algorithm performs fast pattern recog-
nition (track �nding) and track �tting, which determines the �ve helix track
parameters for tracks with pT above 250 MeV/c. To speed up the process of
pattern recognition, algorithm starts with the track segments from the Level
1 system and improves the resolution by using the actual drift chambers
information.

2.1.2 CDF Trigger System

The Collider Detector at Fermilab (CDF) [51] is a general purpose particle
detector which has been taking data again (after accelerator and detector
upgrade) since 2001. It pursues a broad physics program at Fermilab's Teva-
tron proton-antiproton collider, comprising topics as diverse as top quark
production and charmed meson decay.

CDF uses a three-level trigger system. Level-1 and Level-2 use custom

2.1. Running experiments 25

hardware on a limited subset of the data and Level-3 uses a processor farm
running on the full event readout.

On each beam crossing (396 or 132 ns), the data from the entire front-end
is digitized (silicon data is sampled and holded). A pipeline of programmable
logic forms axial drift chamber tracks and can match these with the calorime-
ter and muon chamber data. On the Level 1 accept, front-end boards store the
event into one of four bu�ers (silicon data is digitized and transmitted to the
silicon trigger and event builder). One of the main di�erent from the previous
Level-1 tracking systems is an addition of track �nding, which is normally
available only at Level-2. This allows a matching the track information with
an electromagnetic calorimeter energy cluster for improved electron identi�-
cation or with a stub in the muon system for the better muon identi�cation
and momentum resolution. Also, tracks may be used alone for triggers such
as B0 → π+π−. The Level-1 accept can also be generated based on calorime-
ter energy, missing ET , or the kinematical properties of the observed track
pairs.

The Level-1 track �nding is performed by the drift chamber hardware
track processor, XFT [56]. The track identi�cation is accomplished in two
processes by the Finder and the Linker. The Finder searches for high-pT

track segments in each of the four axial superlayers of the Central Tracker.
The Linker searches for a four-out-of-four match among segments in the
four layers, consistent with a prompt high-pT track. If no track is found,
the Linker searches for a three-out-of-three match among segments in the
innermost three layers.

The Level 2 processing additionally includes calorimeter clustering, elec-
tromagnetic calorimeter data and fast silicon tracking. For each event passed
through Level 1, the Silicon Vertex Trigger (SVT) [57] swims each XFT track
into the silicon detector, associates silicon hit data from four detector planes,
and produces a transverse impact parameter measurement. Three key fea-
tures allow SVT to carry out in a silicon track reconstruction:

• a highly parallel/pipelined architecture;

• custom VLSI pattern recognition (ASIC-based);

• a linear track �t in fast FPGAs;

The �nal Level 2 decision is done in software on a single-board computer, so a
wider range of thresholds and derived quantities are possible (e.g. transverse
mass of muon track pairs), even for information that is in principle available
at Level 1. On Level 2 accept, front-end VME crates transmit data to the
event builder.

26 Chapter 2. Trigger systems in other experiments

At Level 3, a farm of 250 commodity PCs runs full event reconstruction.
This is the �rst stage at which three-dimensional tracks (e.g. for invariant
mass calculation) are available. Events passed through Level 3 are stored on
the permanent storage media for o�ine analysis.

2.2 Experiments at LHC

2.2.1 CMS Trigger System

The CMS experiment [12] employs a general-purpose detector with nearly
complete solid-angle coverage in the LHC machine.

In order to get an adequate event rejection ful�lling the available time
and data bandwidth constraints, the CMS trigger selection is subdivided
into several steps (levels), each one takes a decision using only a part of
the available data. The CMS trigger consists of a First Level Trigger (L1)
implemented using a dedicated programmable hardware and a software High
Level Trigger (HLT) system running on a farm of commercial processors [58].

While the First Level Trigger performs a rapid (latency of the order of
3 µs) decision on the basis of information from the calorimeters and muon
chambers with limited granularity only, at the HLT step the �ne granularity
data from all CMS subdetectors can be accessed and analysed. From a logical
point of view, the particle identi�cation performed by the HLT can be divided
in the following phases:

1. Level 2: only the calorimeter information is used;

2. Level 2.5: partial tracker information, coming from the pixels, is in-
cluded;

3. Level 3: the complete tracker information from the CPU consuming full
charged particle track reconstruction is exploited.

A custom hardware for the real time track �nding based on associative
memory was considered as well [59] but it has been decided that the CMS
High-Level trigger will run on a farm of mass-market processors using a code
that is as close as possible to the o�ine reconstruction code.

In principle, algorithms of arbitrary complexity can be implemented in the
CMS HLT environment. The most severe constraint is posed by the available
CPU time. Several techniques are employed in CMS HLT to reconstruct
high-quality tracks at a minimum computational load [60].

A considerable speed-up is obtained by a regional application of the algo-
rithm. Typically, regions-of-interest are de�ned on the basis of the result of

2.2. Experiments at LHC 27

the preceding trigger level (a calorimetric cluster, the extrapolation of a track
in the muon chambers, etc.) The time performance of the regional approach
allows the implementation of the default o�ine algorithm - the combinato-
rial Kalman �lter based track �nder[61] to be used in the later stages of the
high level trigger. Thus, the obtained track reconstruction is of comparable
quality to the o�ine reconstruction.

For the earlier stages of the high level trigger, speed becomes even more
of a concern. A fast reconstruction based on hit triplets in the pixel detector
has been developed. The algorithm is described in detail in reference [62].
Pixel-only reconstruction is su�ciently fast that global reconstruction of all
tracks with transverse momentum greater than 1GeV can be performed in
the high level trigger. The simpli�ed pattern recognition has to rely on three
hits out of three pixel layers, thus posing a severe requirement on the single
layer e�ciency. Therefore, the robustness of the algorithm against defective
components is much reduced.

2.2.2 LHCb Trigger System

LHCb [13] is designed as a single-arm dipole spectrometer for high precision
studies of CP-violation in the B-hadron system. The polar angular coverage,
between approximately 10 and 350 mrad, gives a high acceptance for B-
hadrons. In the setup still recently foreseen for the LHCb detector, so-called
LHCb-Classic, the tracking stations1 providing space point measurements
along particle trajectories were roughly equally spread out from the end of
the Vertex Locator (VELO) to the entry window of RICH-2. There were nine
such tracking stations: two stations upstream from the magnet (T1, T2),
three stations inside the magnet (T3, T4, T5) and �nally four stations just
downstream of this (T6 to T9).

The trigger system [63] is divided into three distinct levels (Level-0, Level-
1, and HLT) which process an increasing amount of information from the
subdetectors.

The zeroth level (Level-0) trigger identi�es events with particles which
have high transverse momenta pT based on signals in the calorimeters and
muon system; this being a typical signature of b-decays. This level will have a
�xed latency and the processing will be done in hardware residing at the de-
tector. There are four Level-0 subsystems: the calorimeter trigger, the muon
trigger, the pile-up trigger, and the decision unit. The latter collects recon-
structed information of the other three and makes the Level-0 trigger decision.

The Level-1 trigger is the �rst of two software triggers running on a

1 Sets of tracking detectors

28 Chapter 2. Trigger systems in other experiments

commodity CPU farm. Eighteen hundreds CPU's are shared with the High-
Level Trigger. The trigger algorithms run in the same software environment
as the o�ine algorithms. In contrast to the �xed latency of the Level-0 trigger,
Level-1 has variable latency.

The Level-1 scheme is to search for B decay tracks with a high impact
parameter in combination with a large transverse momentum (pT). The pT

requirement serves to reject low-momentum particles which have obtained a
high impact parameter due to multiple scattering. The Level-1 trigger tries
to identify events with a secondary vertex2. Doing standalone pattern recog-
nition on the VELO hits, 3D track candidates are constructed. The impact
parameter of a track with respect to the reconstructed primary vertex is
used to assign a probability that the track originates from a secondary ver-
tex [64, 65].

The higher level triggers use information from all subdetectors and per-
form partial or full event reconstruction. The HLT algorithms run concur-
rently on the same CPU nodes as the Level-1 algorithm, but with a lower
priority. The data from all subdetectors is available at this trigger level. The
track �nding and reconstruction method has been based on the Kalman �l-
ter techniques, which performs simultaneously pattern recognition and track
�t [66]. Information on the particle identity is added to these tracks when
they are matched to muon or electron candidates.

2.2.3 ALICE Trigger System

The ALICE [10] detector is designed to study high energy heavy ion colli-
sions with the aim of observing the predicted phase transition from normal
hadronic matter to plasma of decon�ned quarks and gluons (QGP). It is op-
timized for heavy-ion reactions and, thus it has a very di�erent design than
the other three LHC experiments (ATLAS, CMS, LHCb). The detector has
to be able to track and identify particles from very low (∼100 MeV/c) up to
fairly high (∼100 GeV/c) transverse momentum, to reconstruct short-lived
particles such as hyperons, D and B mesons, and to perform these tasks in
an environment of extreme particle density (up to 8000 charged particles
per unit of rapidity). The high tracks multiplicity has governed the choice
of detectors, and in particular the use of a time-projection chamber as the
principal tracking detector.

Tracking relies on a set of high-granularity detectors: an Inner Track-
ing System (ITS) consisting of six layers of silicon detectors, a large-volume

2 The secondary vertex is a point of decay of a particle which originated at the some
point of a signi�cant �nite distance away from the center of impact (primary vertex)

2.2. Experiments at LHC 29

Time-Projection Chamber (TPC), and a high-granularity Transition Radia-
tion Detector (TRD). TPCs have a long drift time, which means that some
care should be taken to ensure that the tracking e�ciency is not prejudiced
by overlapping tracks from events at times close to the triggered event.

Particle identi�cation in the central region is performed by measuring the
energy loss in the tracking detectors, the transition radiation in TRD, and
the Time-Of-Flight (TOF) with a high-resolution TOF detector. Two smaller
single-arm detectors complete particle identi�cation at the mid-rapidity de-
tecting the Cherenkov radiation with a High-Momentum Particle Identi�ca-
tion Detector (HMPID), and photons with an electromagnetic calorimeter
based on scintillating crystals (the PHOton Spectrometer � PHOS). The de-
tection and identi�cation of muons is performed with a dedicated forward
spectrometer.

Additional detectors located at large rapidities complete the detection
system to characterize the event and to provide the interaction trigger.

The very high multiplicity leads to very complicated events, and e�ec-
tively rules out the extraction of detailed trigger signals inside the allowed
time budget. The design concepts of the ALICE trigger system [67] are simi-
lar to the design concepts of the trigger system in the NA57 experiment [68].
It is foreseen to operate in three di�erent levels � Level 0 (L0), Level 1 (L1)
and Level 2 (L2) � implemented in hardware close to detectors front-end
electronic. These di�erent levels correspond to criteria imposed from di�er-
ent detectors, where the selection criteria get stronger as the trigger number
increases.

At the trigger level no attempt is made to correlate matching solid angles
in di�erent detectors. Instead, trigger signals are treated as characterizing
events as a whole, and trigger conditions are restricted to Boolean combina-
tions of these. More detailed analysis is left to the High Level Trigger (HLT),
which has a much longer time budget.

HLT [67, 69] is a trigger layer logically being located between L2 and the
event building. This trigger layer can perform very complex functions and is
a logically hierarchical commodity cluster. Although it focuses on the largest
data source � TPC, HLT incorporates all relevant detectors. The design of
HLT is guided by two principles:

• pattern recognition and data compression are done as local as possible
in order to bene�t from the natural locality and parallelization in the
data,

• event reconstruction combines relevant information from all detectors.

HLT is the only online instance performing event reconstruction. An HLT

30 Chapter 2. Trigger systems in other experiments

online tracking prototype was constructed and tested at the RHIC STAR
experiment (where it was called the L3 trigger) [70, 71, 72]. Both the selective
trigger and data reduction modes have being working well, however at much
lower occupancies.

A farm of clustered SMP-nodes based on o�-the-shelf PCs and connected
with a high bandwidth low latency network provides the necessary comput-
ing power for HLT. The hierarchy of the farm has to be adapted to both the
parallelism in the data �ow and to the complexity of the pattern recognition.
Data from each sub-sector are transferred via an optical �ber from the de-
tector into receiver nodes of the PC farm. Each receiver node is interfaced
to the front-end electronics via their internal PCI-bus, using a custom PCI
receiver card. These boards provide a FPGA co-processor for data intensive
tasks of the pattern recognition.

There are two di�erent approaches to track parameters estimation [73, 74]:
the sequential feature extraction and the iterative feature extraction. The
sequential method �rst �nds a number of cluster centroids with a �Cluster
Finder� and then uses a �Track Follower� on these space points to extract
the track parameters. The iterative method �rst �nds a number of track
candidates using a suitable de�ned Circle Hough Transform on the raw data
and then assigns clusters to the track candidates. A helix �t on the assigned
clusters �nally determines the track parameters. Some parts of algorithms
can be highly parallelized in hardware and can run directly on the FPGA
co-processors while reading out the data.

2.3 Outlook

As it can be seen from the previous and this chapter, ATLAS has more or
less traditional two stage (or three if count Level2 and Event Filter as a sep-
arate stages) trigger system. The physics tasks of ATLAS close to CMS but
di�erents in detector construction and subdetector sets (for example, there
are no gaseous tracking detectors in CMS) determine the di�erents in the
trigger systems. The regions-of-interest approach is used in the CMS as well
as in the ATLAS. But in CMS foreseen to use full tracking information only
at Level3 and, therefore, more sophisticated (and slow) algorithms (similar
to algorithm from the o�ine analysis code) can be used. Same approach we
have in ATLAS at Event Filter step. However, as soon as we want to make
some tracking analysis at LVL2 we need simple and fast algorithms as well.

Various hardware processors (ASIC, FPGA, DSP etc.) are widely used
for track �nding in trigger applications in running high energy physics ex-
periments. However, it is planed to drop custom hardware at Level 1 and use

2.3. Outlook 31

farms of commercial �o�-the-shelf� (COTS) PC at the earliest possible trig-
ger level in future experiments. This approach has a number of advantages
compared with custom electronics components:

• Parts of the system can be exchanged against more powerful compo-
nents without a redesign of electronics. This requires the compatibility
of new components which is also a widespread issue in industrial appli-
cations.

• The components can be purchased in a short time. Thus recent hard-
ware can be used at the experiment's start-up.

• The components are more cost e�ective than the custom hardware.

• O�ine reconstruction algorithms can be used in the last trigger level
with very small modi�cytions.

ALICE is the only experiment at LHC which has plans to use the custom
hardware (FPGA co-processors) in the High Level Trigger but even there it is
not standalone custom processors, but co-processors which are used together
with �standard�, commercial PCs. As it was mentioned, FPGAs for data
preprocessing will be installed on data receiver cards. Therefore, information
from detectors will be available for trigger farm after processing in FPGAs.

Using systems with hardware co-processors allows to reduce the size of
PC farms which are needed for a tracking algorithm execution without degra-
dation of the execution time and with the same quality of results.

In scope of this thesis I have tried to investigate the feasibility of using
FPGA co-processor for speeding up of some tracking algorithm from the AT-
LAS Level-2 trigger (a part of the High Level trigger). Similar to ALICE,
so called �hybrid FPGA/CPU� approach is used, when a co-processor works
with a standard PC and is used for most time consuming parts of the track-
ing algorithm. It allows more or less easy integration of the custom hardware
into the existing trigger scheme. An object-oriented software design simpli-
�es this task as well. However, in opposite to ALICE, PCs in the ATLAS
Level2 processing farm (LVL2 Processing nodes) will get the data from the
ethernet network and retransfer it to the FPGA co-processor over PCI bus
(if required). Another possibility is to have FPGA co-processor with its own
ethernet interface. However, in this case a complicated mechanism for receiv-
ing LVL1 accept signals and taking decisions which data should be processed
at LVL2 must be implemented in FPGA.

Chapter 3

SOFTWARE FOR TRIGGER

STUDIES

Several algorithms and trigger strategies were considered during the design
and preparation period of ATLAS. To select the best suited ones trigger
testing framework is required.

Long time the ATRIG [75] (ATLAS Trigger Simulation) package was a
standard tool for the trigger simulation studies which runs within the frame-
work of the ATLAS o�ine software. But during last years several other pack-
ages has being created to study di�erent aspects of the trigger system. In the
scope of this thesis we are interested in the software for second level trigger
studies that allows to compare several algorithms or several implementations
of the same algorithm. Frameworks which were used during the work on this
thesis are described below.

3.1 ATLAS Level-2 Reference Software

The ATLAS Level 2 Reference software (t2Ref) [76] has been developed as a
part of the ATLAS Second-Level Trigger Pilot Project. Its goal was to have a
single common source code base for the various activities in the Pilot Project.
The most important requirements were a modular design, which would allow
to modify and optimize the software for di�erent purposes. This includes the
network technology studies in the various hardware testbeds as well as the
physics algorithms development and benchmarks. Emulators were available
for each component in the �nal system which might be implemented in a
special hardware. An emulator can be replaced by the real hardware when
that is available.

Several scenarios were foreseen for the reference software:

• Single feature extraction algorithms. A user should be able to write
an isolated FEX algorithm and run it in a simple framework over a
sequence of events, producing output in any format he or she likes.

3.2. CTrig 33

The algorithms can be used without change in a full system, if they are
written according to some simple rules.

• Single node trigger processing. This mode is a full menu based execution
of multiple FEX algorithms in a common framework. The data is read
from a �le. It is a full functional test of the trigger algorithms and the
steering code.

• Multinode system with skeleton applications. This scenario implements
the full data �ow of the trigger system, but without executing any
algorithms.

• Multinode system with algorithms. It is a complete test of available
systems.

Only the �rst scenario is interesting in the scope of this thesis. The Trigger
Algorithms in the Reference Software are ful�lling several contrary require-
ments. They must be fast, e�cient, and lead to a high overall rejection factor.
Furthermore, they have to �t into the LVL2 Testbed, which has implications
on the implementation of the algorithms, e.g. they must be multiple thread
save.

3.2 CTrig

For a more convenient LVL2 trigger algorithms development and for measur-
ing their performance another �self-contained�, ��exible� and relatively �light-
weight� environment was created. The environment was called CTrig [77] and
was written by John Baines. CTrig was conceived from the need for a rela-
tively small package for the LVL2 simulation which would be faster to com-
pile and run than the full ATLAS o�ine software. The aim was to provide a
environment where the cycle time for "edit-compile-test" was minimised.

CTrig includes code written in C and C++ and runs independently of the
ATLAS frameworks. As an input it uses ASCII data �les which can include
information from the LVL1 and LVL2 trigger simulation. The ASCII �le for-
mat was developed in collaboration with the pilot project reference software
and benchmarking groups. The algorithms are intended to be self-contained
with a minimal and well de�ned interface. Ideally the same algorithms would
be able to run within the ATRIG or CTrig frameworks. It should be rela-
tively simple to recon�gure the main program for di�erent applications. Two
di�erent frameworks were provided for:

• electron ID studies within LVL1 calorimeter RoI.

34 Chapter 3. Software for Trigger Studies

• B physics studies: following a full scan of the TRT, the SCT+Pixel
FEX is run in regions guided by the TRT tracks.

The ultimate test of the algorithms performance can, in general, only be
made by combining information from more than one system. For example the
electron trigger object is formed by combining information from the LVL2
calorimeter, TRT and SCT+Pixel algorithms. CTrig provides the ability to
combine the results from these di�erent systems in common ntuples1. The
results stored in the ntuple for a given system may be either those produced
by the FEX in cTrig or those of the ATRIG FEX read from the �le or
both. This removes the necessity to, for example, run the CTrig SCT+Pixel
algorithm when developing and testing the TRT algorithm. It also allows
results of ATRIG FEX to be used as a reference to compare with results
from an algorithm in cTrig.

3.3 High Level Trigger Selection Software

After years of prototyping and testing the ATLAS High Level Trigger com-
munity should provide a design of event selection software which will run in
a �nal system. The goal is to replace and unify the functionality of existing
online and o�ine trigger implementations ATRIG, CTrig and the LVL2 ref-
erence software. This involves both the infrastructure or framework and the
algorithms. The latter are to be provided either by the PESA group or, in
case of the algorithms for the EF, by the o�ine reconstruction group. Major
parts of the online reconstruction will have to be based on o�ine reconstruc-
tion algorithms. This is an important constraint for the design of the new
High Level Trigger Selection Software (HLTSSW) [78].

It is foreseen to do the HLT selection in two steps: LVL2 and the EF
(see section 1.2). The logical boundary between LVL2 and EF is not precise.
Indeed, �exibility in setting the boundary should be retained in order to pro�t
from the complementary features of both trigger steps. The key roles of the
HLTSSW are �event selection� and �event classi�cation�. Abstract objects
representing candidates of e.g. electrons, jets, and muons are reconstructed
from the event data by a particular set of HLT algorithms and parameters.
An event is selected if the reconstructed objects satisfy at least one physics
signature in the Trigger Menu. At both stages, LVL2 and EF, events are
rejected if they do not pass any of the selection criteria designed to meet
the signal e�ciency and rate reduction targets of the trigger. The result at

1 Data structure which is used in experimental high energy physics (see, for example,
http://wwwasdoc.web.cern.ch/wwwasdoc/hbook_html3/node23.html).

3.3. High Level Trigger Selection Software 35

LVL2Selection

EFSelection

EFClassification

<<RawData>>

LVL2DetailedResult

<<RawData>>

LVL1Result

<<RawData>>

EFDetailedResult

<<seeded by>>

<<seeded by>>

<<produces>>

<<produces>>

LVL1 Result contains
information about
LVL1 Trigger Type and
about primary and secondary
Regions of Interest

The EF Classification
part of the Event Filter
is not yet defined

Fig. 3.1: A component diagram of the High Level Trigger selection chain

one trigger level provides seeds for the next level. The EF detailed result
can be used to assign tags to the events or even assign them to particular
output streams. Event tags may serve to select e�ciently interesting events
for o�ine reconstruction and analysis.

The basic structure of the HLT selection chain is shown in the Figure 3.1
in a simpli�ed form. The starting point for the HLT is the LVL1 Result. It
contains the LVL1 Trigger Type and the information about the primary RoIs
that caused the LVL1 accept, plus the secondary RoIs that are not considered
for the LVL1 accept. Both types of RoIs are used to seed the LVL2 selection.
The concept of seeded reconstruction is fundamental to the LVL2, apart from
the special case of B-physics.

During data taking the HLTSSW will run in an online software environ-
ment provided by the HLT subsystem of ATLAS T/DAQ, with event data
coming via the Data Collection (DC) subsystem. Therefore the HLTSSW
needs to comply with the online requirements, like thread safety, online sys-
tem requirements and services, as well as online performance goals.

It is essential though that the HLTSSW is also able to run directly in the
o�ine environment ATHENA [79] to facilitate development of algorithms, to
study the boundary between LVL2 and EF and to allow performance studies
for physics analyses. Therefore the HLTSSW needs to comply with the control
framework and services that are provided by the o�ine software architecture
team.

The package diagram of the HLTSSW is shown in the Figure 3.2. The
sub-packages are:

• The Steering [80] controls the selection software. It �arranges� the al-
gorithm processing for the event analysis in the correct order, so that
the required data is produced and the trigger decision is obtained. The

36 Chapter 3. Software for Trigger Studies

Fig. 3.2: A package diagram of HLTSSW

Steering Controller [81] is the component of the Steering that imple-
ments the interface to the LVL2 Processing Unit Application (when
running in the LVL2 Processing Unit) and to the Processing Task (when
running in the Event Handler).

• The event data is structured following the Event Data Model (EDM).
The EDM covers all data entities in the event and their relationships
with each other. The data entities span from the Raw Data in byte
stream format (originating from the detector Read-Out Drivers), the
LVL1 Result and all other reconstruction entities up to the LVL2 and
EF Detailed Result.

• The HLT Algorithms [82] are used by the Steering to process the event
and to obtain the data on the basis of which the trigger decision is
taken. The dependency on O�ine Algorithms is especially important
for the implementation of the EF. Trigger versions of O�ine Algorithms
are to be adapted to online requirements. Hence, a common de�nition
of the EDM and the O�ine Event Data Model is desirable in order to
facilitate the reuse of O�ine Algorithms.

• The Data Access Manager [83] handles the event data during the trigger

3.3. High Level Trigger Selection Software 37

processing. It provides the necessary infrastructure for the EDM. For
the LVL2 case the communication with the Read-Out Bu�er (ROB)
Data Collector (or respectively its emulation) to access the ROB Data
fragments is part of the Data Manager. Also shown is the dependence
of the ROB Data Collector on the Read-Out System Data Preparation.

At Level-2, algorithms actively request portions of event data from the
Data Collection System. The relevant data are de�ned by RoIs based on
information from the decision from Level-1 or a previous result in Level-2
processing. For each RoI, the total data volume with respect to the whole
detector is roughly a few percent. Hence, this restricted data access strat-
egy represents a signi�cant reduction in the required HLT processing and
networking resources.

For a given RoI, typically de�ned by an extent in η and φ within the
physical detector volume, a Region Selector [84] translates the physical vol-
ume into a set of o�ine identi�ers. These identi�ers are translated at a sub-
sequent stage into online identi�ers which may then be used to request the
data themselves.

It may seem counterintuitive to use such a scheme (i.e., conversion into
a geometrical region which requires translation into O�ine identi�ers which
then require translation into Online identi�ers). There are, however, a vari-
ety of motivations for the Region Selector. The prime motivation is to gain
access in a uniform and rapid way to event data from sub-detectors which
do not participate in the Level-1 trigger decision (e.g., event data from Inner
Detector tracking information given a Level-1 trigger based on an energy
deposit in the Calorimeters). An additional motivation includes allowing for
possible secondary RoIs as needed by an algorithm which may lie outside the
primary RoI de�ned by Level-1.

Raw data from the ATLAS detector will be delivered in terms of a
ByteStream of data consisting of hierarchically arranged fragments formatted
in a sub-detector-dependent way. This ByteStream data must be converted
into objects which can then be used by the algorithms. Modelling this �ow
and conversion of ByteStream data in a realistic way is vital to an accurate
modelling of the HLT performance and subsequent estimation of required
network and computing resources.

The HLTSSW adopts a scheme whereby the interaction of HLT algo-
rithms with the Data Collection System is hidden behind a call to the Tran-
sient Event Store (TES). Figure 3.3 illustrates this scheme. An algorithm re-
quests data within a certain region by �rst feeding the parameters of the
region to the RegionSelector. The RegionSelector returns a set of O�ine
identi�ers which the algorithms then use to request collections of relevant

38 Chapter 3. Software for Trigger Studies

Fig. 3.3: A simpli�ed schematic diagram of the sequence by which HLT algo-
rithms request and receive event data.

data objects from TES. If TES does not contain the data objects, it requests
these data from a RawDataConverter. The O�ine identi�ers are translated
into Online or Read-out Bu�er (ROB) identi�ers which are used to request
the data from the Data Collection System. The raw data returned from the
Data Collection System are in the ByteStream format and are converted
into data objects and are stored in TES in collections tagged with O�ine
identi�ers. Then TES returns the collections of data objects the algorithm
originally requested.

There are three types of algorithms in HLTSSW. Data Conversion algo-
rithms use a sub-detector speci�c information and should prepare so called
�low level� Features, which are input to the second category of HLT algo-
rithms. Feature Extraction algorithms operate on abstract Features and Trig-
ger Related Data to re�ne the event information. They built upon the Data
Conversion output and extract the necessary input data to derive the Trigger
Decision. It is bene�cial to structure the algorithm processing in such a way
that algorithms from a library of Algorithm Tools carry out common tasks
such as track �tting or vertex �nding.

Two possible subtypes of Feature Extraction algorithms are shown in the
Figure 3.4. The Reconstruction Algorithms process Features and produce new
types of Features, just like the o�ine reconstruction algorithms. The trigger
speci�c is the use of the information in RoI objects to restrict the processing

3.3. High Level Trigger Selection Software 39

Reconstruction
Algorithms

<<FeatureExtraction>>

Hypothesis
Algorithms

<<FeatureExtraction>>

TriggerElements
<<TriRelData>>

TriggerElements
<<TriRelData>>

TriggerElements
<<TriRelData>>

ROIObjects
<<TriRelData>>

ROIObjects
<<TriRelData>>

SCTClusters
<<Features>>

Track
<<Features>>

Track
<<Features>>

Electron
<<Features>>

seed

process create

seed

create

create

process

use

use

Fig. 3.4: Two types of Feature Extraction algorithms

to geometrical regions of the detector, which were identi�ed by the LVL1 sys-
tem. The Trigger Elements used by the Steering to �seed� the Reconstruction
Algorithms represent these trigger relevant aspects of the event. The second
subtype of algorithms is Hypothesis Algorithms. Their task is similar to par-
ticle identi�cation. A Hypothesis Algorithm produces a new Trigger Element
out of reconstructed Features whenever they validate the hypothesis of an
assumed physics object. An example is the validation of an �electron� using
a reconstructed Features as a Calorimeter Cluster and a Track, for which a
new Trigger Element would be created.

In scope of this thesis one of the Reconstruction Algorithms for Transi-
tion Radiation Tracker (TRT LUT-Hough) is implemented in HLTSSW and
possibility of improving of execution speed of di�erent algorithms with re-
con�gurable co-processor help is considered.

Chapter 4

RECONFIGURABLE COMPUTING

4.1 Short introduction

A research-oriented experimental equipment must often to o�er high-perfor-
mance computing capabilities and a high degree of �exibility simultaneously.
There are two primary methods in conventional computing for the execu-
tion of algorithms. The �rst is to use hardwired technology like Application
Speci�c Integrated Circuit (ASIC) or a group of individual components on
a board, to perform the operations in hardware. This hardware is designed
speci�cally to perform a given computation and it is very fast and e�cient for
this task. However, this solution is in�exible in case of changes (even small)
in the algorithms.

The second method is to use software-programmed microprocessors. It is
a far more �exible solution. These processors execute a set of instructions
to perform a computation. By changing these instructions, the functionality
of the system is altered without changing the hardware. However, for the
�exibility one should pay by performance. The processor must read each
instruction from memory, decode its meaning, and only then execute it. This
results in a high execution overhead. The set of instructions that may be
used by a program is determined by processor design. Any other operations
must be built composing existing instructions.

Recon�gurable computing is intended to �ll the gap between hardware
and software, achieving potentially much higher performance than software
with a higher level of �exibility than hardware. Recon�gurable devices like
Field-Programmable Gate Arrays (FPGA) contain an array of logical ele-
ments combined into con�gurable logic blocks (CLB) whose functionality
is determined through programmable con�guration bits. The CLBs are the
main logic resource for implementing sequential as well as combinatorial cir-
cuits. Each CLB element is connected to a switch matrix to access to the
general routing matrix. One CLB from Xilinx Virtex-4 FPGA [85] is shown
in the Figure 4.1. A CLB element contains four interconnected slices. These

4.1. Short introduction 41

Fig. 4.1: Arrangement of Slices within the Xilinx Virtex-4 CLB.

slices are grouped in pairs and each pair is organized as a column. A simpli�ed
Virtex-4 slice is shown in the Figure 4.2.

Any custom digital circuits can be mapped to the recon�gurable hard-
ware. Limiting factors are only the amount of available logic, routing re-
sources, and I/O pins. Because of their �exibility, FPGAs can carry out
di�erent operations simultaneously and independently, so they are an excel-
lent platform for parallel computing. The drawbacks are that FPGAs run at
lower clock frequencies and draw more power than ASICs. For large volume
products, FPGAs are more expensive then ASIC based hardware.

During the early stages of �eld programmable gate arrays, FPGAs were
used primarily as glue logic for chip-to-chip communication or for other bridg-
ing type functionality. With the fast growing amount of the available logic
it becames possible to implement complete functional blocks inside FPGA.
This can be done by the user with a speci�cally created FPGA design or
it can be hardwired inside the chip by the vendor. Components which are
good candidates for a hardwired implementation are �on-chip memory� and
various interface controllers. Current FPGA solutions encompass complete
embedded processors and processing subsystems. But getting internal blocks
of your FPGA to run fast is only half of the battle. Maximum system per-
formance requires e�cient interaction between FPGA and other components
in your system. Modern FPGAs provide powerful high-speed IO interfaces.
Therefore, over the past two decades FPGAs have evolved from a collection
of gates for programmable logic to platform FPGAs integrating system-level
capabilities:

• Clock management.

42 Chapter 4. Recon�gurable Computing

Fig. 4.2: Simpli�ed Virtex-4 General Slice.

• Memories.

• Parallel and serial I/Os.

• Ethernet MACs.

• Microcontroller(s) and microprocessor(s).

The block diagram of a modern FPGA is shown in Figure 4.3.
Of these components on-chip memory is one of the most general-purpose,

because memory in various forms is needed in almost any, more or less com-
plicated design. Modern FPGAs provides internal block RAM, which is more
compact and fast than memory created from logical elements. This embed-
ded block RAM can be con�gured as a true Dual-Port RAM which allows
an independent read and write operations and, therefore allows a fast read-
modify-write cycle, what is particularly useful for the presented tracking
application.

An FPGA is traditionally programmed using a dedicated programming
language, such as Verilog [86] or VHDL [87]. The digital design must �rst
be described at a low abstraction level using one of these languages and
then compiled through several development tools. Results of this process

4.1. Short introduction 43

Fig. 4.3: A Generic Architecture Overview of modern FPGA (Xilinx Virtex2-
Pro in this case).

is a bitstream con�guration �le. It contains the digital design in form that
con�gure the FPGA to perform the task. The initial development is carried
out by a hardware engineer with typical issues to be resolved such as clock
cycles, registers, memory buses, arbitration schemes etc.

Today there are FPGAs with more than 100 000 logic elements. The typ-
ical frequency at which they can run is 150-250MHz. The large number of
logic resources and the fairly high operating frequency make FPGAs operate
in the Tera-Instructions-Per-Second range if the system is decomposed into
parallel subsystems. The inherent parallelism in FPGAs provides the unique
capability to achieve signi�cant acceleration through hardware. This is partic-
ularly important when managing compute-intensive applications. To achieve
performance bene�ts and support a wide range of applications, recon�gurable
systems are often made as a combination of recon�gurable logic and general-
purpose processors. There compute-intensive calculations are mapped to the
recon�gurable hardware and the processors are responsible for controlling the
recon�gurable logic and executing program code that cannot be e�ciently
accelerated.

There are several ways to couple the recon�gurable logic with general-
purpose processors (for example, see [88]). In the most tight couple case re-
con�gurable units can be integrated inside processor (or embedded processor

44 Chapter 4. Recon�gurable Computing

Fig. 4.4: Multi Purpose Recon�gurable Accelerator /Computing Engine

integrated inside recon�gurable hardware). However, the one of the most
popular approaches is to make a recon�gurable unit as a co-processor which
is connected to a bus for peripheral devices (PCI, USB, etc.). In such case a
dedicated hardware is used as a co-processing engine to achieve algorithmic
acceleration. The latter is the most �exible solution which allows a system-
independent coupling.

4.2 The FPGA co-processor MPRACE

In a scienti�c laboratory, the FPGA-based technologies allow scientists to
build systems based on the standard PC-technology, with hardware accel-
eration for fast computing, using an extension board rather than acquiring
specialized processing units. The FPGA processor group at the department
of Computer Science V from the University of Mannheim has developed sev-
eral FPGA based recon�gurable computers (standalone processors [89, 90] as
well as co-processors with Compact-PCI [91] and PCI interfaces [92]).

The FPGA co-processor � MPRACE (Multi Purpose Recon�gurable Ac-
celerator /Computing Engine) [92] developed at the University of Mannheim
was used as a hardware platform in the scope of this thesis. MPRACE is
an FPGA co-processor based on a Xilinx Virtex-II FPGA and is made as a
64Bit/66MHz PCI card shown in Figure 4.4. The main features of this board
are:

4.2. The FPGA co-processor MPRACE 45

Dedicated PCI-to-Local bus bridge PLX9656 [93] with support for 32/64-bit,
33/66MHz PCI operation and 32-bit, 64MHz local bus operation.
Read/Write bandwidth up to 230MB/s.

High capacity FPGA Xilinx Virtex-II [94] XC2V3000-4BF957C with 14 336 sli-
ces (28 672LUTs/FFs), 12DCMs, 96Multipliers, 1728Mbit of internal
block RAM (96RAM blocks×18 kBit), 684 I/Os is used in the �rst ver-
sion of the board. There are also a boards with XC2V6000 FPGA for
tasks with higher resource requirements. The FPGA can be con�gured
via a PCI bus as well as via a �ash-eeprom.

High bandwidth memory subsystem: 4 banks of ZBT SRAM (Zero-Bus-Turn-
around1), each 512 k×36 bits (8Mbytes in total) spec�ed for a clock
frequency of up to 167MHz. Additionally there is a slot for SDRAM
SO-DIMM module with direct connection to the FPGA with a 64 bit
data bus.

Flexible clock system supporting 2 modes: single clock and split clock modes.
In the later case MPRACE provides two clock domains. One is used
by the PLX local-bus and can be set to a frequency of 8, 16, 32 or 64
MHz. The second clock domain is distributed to the FPGA and all other
MPRACE components (SRAM, SDRAM, ...). It can be switched to 8,
16, 32, 64 or 125 MHz. Alternative frequencies have to be generated
inside the FPGA using one of the digital clock managers (DCM).

Extension capability For extension purposes two high speed connectors are
mounted on MPRACE. Each provides 94 signal lines directly attached
to the FPGA with up to 4 clock signals per connector.

Private board-to-board interconnect via a high-speed serial protocol (5 bits
per direction at 200MBit for each bit)

MPRACE is an universal co-processor which is used for various applica-
tions like High Energy Physics DAQ and trigger systems (see [95, 96]), image
processing [97] and astrophysical simulations [98]. To make using of the co-
processor for di�erent tasks simpler, a control software was developed. It
consists of a low-level library for the hardware access and a device drivers for
the Linux and Microsoft Windows operating systems..

1 That is similar to standard synchronous SRAM but has the same timing for read
and write cycles. There is no needs to add wait cycles when changing from read to write
direction.

46 Chapter 4. Recon�gurable Computing

The low-level library is an object-oriented code written in C++ which
provides a complete set of access functions to control the co-processor. This
includes:

• Detecting and initialising the MPRACE hardware.

• Uploading the FPGA con�guration bitstream via PCI.

• Programming the on-board clock system.

• Data reading and writing to / from the FPGA co-processor via pro-
grammed I/O (PIO).

• DMA memory allocation and control of DMA read and write commu-
nication with the board.

All this can be done through the high level user-mode API (an end-user does
not need to use kernel-mode driver calls) and can be used under the Linux
and Windows NT/2000/XP operating systems (more details can be found
in [99]).

An object-oriented design allows more or less easy integration of the
FPGA co-processor into the existing (object-oriented designed) software for
testing and performance comparison.

Chapter 5

RECONSTRUCTION ALGORITHMS

FOR INNER DETECTOR

The �rst requirement in exploiting recon�gurable devices for high-perfor-
mance computing applications is determining if your application is well suited
to acceleration. Some of the ATLAS Inner Detector track reconstruction
algorithms which are common to all B-physics channels and standard RoI
processing have been tested for execution time and assessed for the suitability
for speed-up by using a FPGA co-processor.

The main task of this timing measurements is to check how existing al-
gorithms are �tted to the ATLAS LVL2 timing requirements (∼ 10ms).
However, the algorithms analysis which is done together with the execution
time tests allows us to select the best suited algorithm for the FPGA accel-
eration.

Using FPGA for algorithm acceleration foreseen in the architectureA
of the ATLAS LVL2 Trigger (see section 1.2). FPGA co-processors can �t
into the architectureB and C to reduce the size of the Local Processing
farm(or just processing farm in case of architectureC). Usage of the FPGA
co-processor can give some reasonable speed-up as contrasted to the gen-
eral purpose processor only for those algorithms (or parts of algorithms), for
which there is a possibility to ful�l calculations with a major degree of paral-
lelism. The studies presented here were performed in the C/C++ framework,
CTrig (CTrig-01-15-12), which was the richest set of algorithms available at
the time of study, running on the computer equipped with dual Intel Xeon
2.4GHz, 64 bit/66MHz PCI bus, 1GB DDR RAM main memories with the
CERN Red Hat Linux 7.1. However, only one CPU has been used by algo-
rithms. It is supposed that the algorithms will be included in ATLAS Trigger
software which will have single threaded algorithms by design. All measure-
ments were made using the dataset Y00347 (�le 1: Y00347_1.atrdmp.data)
containing approximately 156 events (B → µ X) with a pile-up at luminosity
1033 cm−2s−1.

Pile-up occurs when the readout of a particle detector includes informa-

48 Chapter 5. Reconstruction Algorithms for Inner Detector

tion from more than one primary beam particle interaction � these multi-
ple interactions are said to be �piling-up�. At the LHC design luminosity of
1034 cm−2s−1 pile-up is a major issue for ATLAS detector because the LHC
beams will produce an average of 23 interactions each time they cross and
the ATLAS detector is sensitive to tracks from more than one bunch crossing
(the beams cross every 25 ns). This means that in addition to the hits of the
physics event that triggers the detector readout, hits caused by many other
interactions are recorded in the readout. The hits from these other interac-
tions are not related to the physics event and represent a serious background.

In the scope of this thesis we are interested in algorithms for track �nd-
ing in the Inner Detector. Typical Inner Detector events for low and high
luminosity are shown in Figure 5.1 (�gure from [41]).

The algorithms are brie�y described and execution time measurements
results are presented in this thesis. The trigger algorithms and their perfor-
mance in terms of e�ciency are described more fully elsewhere (for example
in [82]). The detector geometry was described in section 1.1.1. The main task
of this measurements was to check how existing algorithms �ts to the AT-
LAS LVL2 timing requirements (∼10ms for algorithm execution) and to
have a look how can we (at least theoretically) improve timing with FPGA
co-processor help.

5.1 Pixel-Scan

A �Pixel-scan� algorithm [100] uses only information from the Pixel Detector.
The input data are the pixel cluster positions produced by a separate data
preparation step [101]. In the �rst step of the full-scan algorithm, clusters
are combined in pairs. All combinations of a one cluster per layer in the
inner two planes of the barrel and in two of the end-cap planes are tested. A
pair is retained if the trajectory extrapolation inwards passes within a given
distance of the interaction point. A track is formed if a hit is found close to
the extrapolated track into the third layer barrel layer or in one of the outer
pixel end-cap layers. In both cases the extrapolation is linear.

Therefore the track �nding proceeds independently for every triplet of
layers. Lines connecting every couple of points in layer 1 and layer 2 (so
called �links�) are created for every triplet. This part of the algorithm may
be done in parallel. For example:

• Step 1: Store all points from layer 1 in the co-processor memory

• Step 2: Transfer points from layer 2 one by one into the co-processor
and calculate �links� parameters for this point and every point from

5.1. Pixel-Scan 49

A
T

L
A

S
 B

ar
re

l I
n

n
er

 D
et

ec
to

r
H

→
b

b–

b

b–

A
T

L
A

S
 B

ar
re

l I
n

n
er

 D
et

ec
to

r
H

→
b

b–

b

b–

Fig. 5.1: Display of simulated H → bb̄ event in the ATLAS barrel Inner
Detector. The upper �gure is at low luminosity; the lower �gure is
at design luminosity of 1034 cm−2s−1

50 Chapter 5. Reconstruction Algorithms for Inner Detector

Tab. 5.1: Execution times on a dual Xeon 2.4GHz PC for the Pixel Scan.
The total time is not the sum of the average times shown in the table, but
rather is the average of the total times per event.
Algorithm part Execution time (pT > 0.5)
Prepare cluster table 52.669 ms
Build tracks 4.775 ms
Solve ambiguities 3.451 ms
Create structure 0.076 ms
Delete list of clusters 2.243 ms
Total 60.975 ms

layer 1 in parallel.

But for calculating a single �link� we need six �oating-point numbers (3
coordinates for every point in �link�) and three of them should be read from
the memory. If 32 bit �oating-point numbers are used we should read 96 bits
of data from the memory for only one �link� calculation even without any
parallelism. According to [100] we have ∼ 50 − 75 clusters per layer and for
calculating all links for one point ∼ 150− 225 �oating-point numbers should
be read from the memory.

Therefore, even easily parallelized algorithms (or their parts) are not good
candidates for an FPGA implementation if �oating-point calculations are in
use. Floating-point libraries for FPGA exist ([102] is one example of using
�oating-point arithmetic on FPGA), but the memory bandwidth is a limiting
factor in such cases.

However, one could work with a reduced precision instead of 32 bit
�oats or with �xed-point calculations. In this case, if we use, for exam-
ple, the MPRACE board with the XILINX Virtex-2 FPGA, we will have
96RAMblockswith 18 kBit each were at least 96 numbers can be stored.
Therefore we can calculate 96 �links� in parallel.

The execution time measurements results for this algorithm shown in the
Table 5.1.

5.2 Precision tracker data preparation

The precision tracker data preparation [101] algorithm is divided into four
di�erent steps: data pre-selection, clustering, space-point formation and post-
selection (optional). This set of algorithms process the raw data from the
SCT and pixel detectors into a format suitable for the precision tracker LVL2
Feature EXtraction (FEX) stage. The raw data consists of hits in the format

5.3. IDSCAN 51

produced by the Read-Out Drivers (RODs). Data preparation algorithms
may be implemented in the ROD or in the LVL2 processor, EF processor
or in processors dedicated to the data preparation (e.g. FPGA). All this
algorithms are fast enough. The usage of the FPGA co-processor can give
some reasonable speed-up only if the co-processor will be on the raw data
path between the ROD and the LVL2 processor i.e. if the raw data from the
ROD �rst came to the co-processor and then, after the preparation, come
to the LVL2 processor. Otherwise time for the data transfer from the LVL2
processors memory to the co-processor can eliminates the possible speed-up.

5.3 IDSCAN

IDSCAN algorithm for high-pT track �nding in SCT [103] consists of four
steps: z-�nder, hit �lter, group cleaner and track �tting.

During the �rst step the z position of the event is found. For this the
RoI is divided into many φ bins. In each φ bin, all possible pairs of hits from
di�erent layers are constructed. For each pair the z position of the event
is found by the linear extrapolation and an one-dimensional histogram is
�lled. After �nding the z of the physics event, a two-dimensional histogram
in (φ0,1/pT) space is created. Each bin in that histogram corresponds to a
small solid angle. A track (above certain pT) from the physics event will be
fully contained in one such bin, while a pile-up track from a di�erent z will
cross many bins. Therefore, each bin counts how many di�erent layers have
been hit. If the number of hits in a bin is higher than a prede�ned threshold
all hits in this bin are accepted, else rejected. This step puts hits from the
neighbouring bins into groups and returns these groups as result. The next
step rejects garbage groups and garbage hits in a group and splits groups
that contain many tracks to individual track candidates. For this another
two dimensional histogram in (φ0,1/pT) space is �lled with hit triplets. It
is a bit like Hough transform but for a single triplet only a single bin is
incremented. Track candidates are accepted if groups contain enough hits.
Finally, the track candidates are passed to the Kalman �lter based track
�tter [104].

All three steps have a histogramming phase but in the every case only the
one histogram bin is incremented for the one input value. Therefore some-
thing like a pipelining technique should be used for these steps. As far as a
data transfer from the host memory to the co-processor board can be fast
enough (a DMA transfer, for example), one can transfer several input val-
ues to the board and run bin incrementing for this input values in parallel.
However, on the fast host PC (fast processor with big amount of cache mem-

52 Chapter 5. Reconstruction Algorithms for Inner Detector

Tab. 5.2: Execution times on a dual Xeon 2.4GHz PC for the IDScan.
The total time is not the sum of the average times shown in the table, but
rather is the average of the total times per event.
Algorithm part Execution time
ZFinder 2.072 ms
Hit Filter 9.693 ms
Kalman Filter based �tter 0.725 ms
Last Loop 0.742 ms
Total 13.234 ms

ory and fast main memory) transferring can take more time than doing the
histogramming on the host processor.

The execution time measurements results for this algorithm are shown in
the Table 5.2. It is very fast algorithm which is nearly �t to the LVL2 timing
requirements (10ms) even on 2.4GHz CPU.

5.4 SCTKalman

SCTKalman [105, 106] is an algorithm based on the Kalman �lter. A track
search may be initiated by either an external or an internal seed. For the
purposes of the B-physics trigger, the Si-Kalman FEX uses either pixel or
TRT tracks as external seeds in the pixel-seeded or TRT-seeded mode respec-
tively. The track segment is extended by adding nearby hits layer by layer.
The algorithm takes into account multiple scattering.

The algorithm starts from a small track segment or from a �tted track
of a neighbouring detector, and then extends the candidate tracks by adding
measured points one by one. The �tted parameters and weight matrix of
the candidate track are updated when adding a point, and give an increasing
precision on prediction of the next point. Thus, pattern recognition and track
�tting can be accomplished simultaneously.

It is a consecutive algorithm and it can not bene�t from a FPGA co-
processor usage.

The execution time measurements results for this algorithm shown in the
Tables 5.3.

The reason why there is so big di�erens in execution speed between the
pixel-seeded and the TRT-seeded mode is following. The hit density in TRT
is very high and the reconstruction algorithms can �nd a lot of tracks (not
only tracks from interesting particles, but so called �fake� tracks, tracks from
background or composed from hits from others tracks, as well), which is used

5.5. SiTree 53

Tab. 5.3: Execution times on a dual Xeon 2.4GHz PC for the SCTKalman
with di�erent seeds.

The total time is not the sum of the average times shown in the table, but
rather is the average of the total times per event.
Seeded by: Pixel TRT-LUT TRTKalman
Algorithm part Execution time (pT > 0.5)
Data preparation 0.495 ms 3.510 ms 1.948 ms
SctKalman FEX 11.187 ms 79.447 ms 53.348 ms
Output preparation 3.603 ms 14.439 ms 9.128 ms
Total 15.286 ms 97.396 ms 64.423 ms

for seeding the SCTKalman.

5.5 SiTree

This algorithm associates the locally related hits in the SCT using a �link-
and-tree� method [107, 108]. The basic element used in this algorithm is not
a single space point, but a �link�. The link is a segment of a potential track
with enough hits to determine the track parameters of the segment. If the
tracks being sought are straight lines or circles coming from the interaction
point, only two hits are required to de�ne a link. If the tracks are circles
originating at arbitrary points, at least three hits are necessary to de�ne a
link since three points de�ne a circle. In the current implementations of the
pixel-guided and TRT-guided FEX with the tree algorithm only the two hit
link is used assuming the origin of the track is very close to the interaction
point.

This looks very similar to the Pixel-scan algorithm from the FPGA co-
processor point of view (see section 5.1) and same comments can be applied.
We can build �links� in parallel, but for these we need a �oating-point arith-
metic. However, we can work with a reduced precision or with �xed-point
numbers.

The execution time measurements results for this algorithm shown in the
Table 5.4

5.6 TRTKalman

The TRTKalman algorithm [109] for high-pT track reconstruction consists of
four stages:

• An initial track search using a histogramming method

54 Chapter 5. Reconstruction Algorithms for Inner Detector

Tab. 5.4: Execution times on a dual Xeon 2.4GHz PC for the Pixel-seeded
SiTree.

The total time is not the sum of the average times shown in the table, but
rather is the average of the total times per event.
Algorithm part Execution time (pT > 0.5)
Data preparation 0.409 ms
SctKalman FEX 9.241 ms
Fill output track structures 0.049 ms
Total 9.699 ms

• Fine tuning

• Track �tting

• Track candidate selection

The initial search looks for hits on a straight line in the appropriate
projection. The trajectory of a charged particle is linear in the z − φ plane
and approximates to a straight line in the R−φ plane for particles with high
pT produced close to the origin. The trajectory can be described as:

φ ≈ φ0 + Ct ·R (for Barrel)
φ = φ′

0 + Cz ·R (for End-Cap)
where φ′

0 = φ0−z0 ·Cz; Ct ≈ 0.003·B ·q/pT; Cz = Ct ·tan θ and θ is a polar
angle of the track. Thus all points on the track lie on a line characterized
by a slope C and an intercept φ0. For each hit in a detector, within the
RoI, the value of φ0 is calculated for each value of the slope between −Cmax

and +Cmax. The value of Cmax is determined by the lowest pT track that
is to be sought. Each hit will populate many cells of the histogram, but for
each track in the RoI there will be a bin where all hits on the track have
an entry (provided an appropriate bin size has been chosen). Thus the track
candidates can be identi�ed from peaks in the histogram. If the RoI contains
more than one part of the TRT (−z end-cap, −z barrel, +z barrel and +z
end-cap), the initial search is performed independently in the two parts. The
bin size in φ0 is not �xed but is determined dynamically for each RoI by
the straws with hits. The low-φ and high-φ boundaries of all straws with
hits in the RoI, sorted in the order of increasing φ, determine the division of
the histogram. For speed, some quantities are calculated in an initialisation
phase and stored in look-up tables. For each bin with more than eight (this is
a parameter) hits (out of a maximum of typically 40 straws), the procedure
continues to the �ne tuning stage.

5.6. TRTKalman 55

Tab. 5.5: Execution times on a dual Xeon 2.4GHz PC for the TRTKalman.
The total time is not the sum of the average times shown in the table, but
rather is the average of the total times per event.
Algorithm part Execution time (pT > 0.5)
Detector Geometry Initialization 49.964 ms
Space point production 3.359 ms
Histogramming 92.273 ms
Fitting 24.134 ms
Total 169.73 ms

The execution time measurements results for this algorithm shown in the
Table 5.5

An initial track search which utilizes a Hough transform with look-up
table (most time consuming part of this algorithm) can be done in parallel
inside the FPGA like it is implemented for the TRT LUT-Hough algorithm.

The TRT LUT-Hough algorithm - a look-up table based Hough trans-
form algorithm for TRT - was selected as a best suited algorithm for hy-
brid FPGA/CPU (VHDL/C++) realisation. Description of this algorithm
and timing measurements results are presented in the next chapter.

Chapter 6

TRT LUT-HOUGH ALGORITHM

A look-up table (LUT) based Hough transform algorithm for TRT (TRT
LUT-Hough algorithm) was created keeping in mind the B-physic's tasks
(searching for low-pT tracks in the entire TRT volume) and it is the best
candidate for the acceleration with the FPGA co-processor. Here a short de-
scription of TRT LUT-Hough algorithm is done. Detailed information can
be found in [110, 111]. Results of hybrid realisation of this best case are
discussed in this chapter as well as some works for improving the physics
performance of the algorithm.

6.1 TRT LUT-Hough Algorithm description

The Transition Radiation Tracker (TRT) (see section 1.1.1) provides tracking
information and contributes to the electron identi�cation. TRT straws pro-
vide a two-dimensional position measurement, r-φ in the barrel and z-φ in
the end-caps. Typically, the TRT provides 36 measurements on each track in
the detector acceptance. This results in ∼20 000 hits per event.

The TRT LUT-Hough algorithm consists of a track candidate search fol-
lowed by track-�t performed to determine the track parameters. Since all the
particle trajectories to search for can be calculated in advance a histogram-
ming method based on the Hough Transform is well suited for the initial
track search in the TRT. The Hough transform is a standard method in the
image analysis that allows recognition of global patterns in an image space
by recognition of local patterns in a transformed space [30, 31]. The idea of
the Hough transform is that for a set of points (xi, yi), lying on the straight
line y = a0x + b0, the relations yi = axi + b have to be satis�ed. These re-
lations give the set of straight lines in (a, b) coordinate system, crossing at
(a0, b0). In the presence of measurement errors, i.e. if axi + b− yi = hi, where
hi are random numbers with a known distribution fi(x), one can consider
the function H(~p) =

∑
i fi(hi(~p)), with a vector of parameters ~p, de�ning the

pattern � set of points, lying close to straight line (in this case ~p = (a0, b0)).

6.1. TRT LUT-Hough Algorithm description 57

The algorithm makes use of the fact that the trajectory of a charged par-
ticle produced close to the origin is linear in the φ−z plane and approximates
to an exact circle in the φ − R plane. The assumption of a straight line in
the φ−R is not su�ciently accurate for particles with low-pT. The candidate
search looks for points which lie on a prede�ned line in the appropriate pro-
jection. The trajectory of a particle produced at (R, φ, z) = (R, φ0, z0) can
be described in terms of an intercept, φ0 (φ′

0), and a slope, Ct (Cz), in the
φ−R (φ− z) projection respectively:

sin(φ− φ0) ≈ Ct ·R (φ−R projection)

φ = φ′
0 − Cz · z (φ− z projection)

where φ′
0 = φ0 − z0 · Cz. The slope is inversely proportional to the pT of the

track (in units of GeV):

Ct ≈ 0.003 ·Bz · q/2pT (φ−R projection)

Cz = 0.003 ·Bz · q · tan(θ)/2pT (φ− z projection)

where θ is the polar angle of the track, Bz is z component of the magnetic
�eld strength (in units of T) and q is the particle charge (in units of e).

The TRT LUT-Hough algorithm is based on the idea that every hit in
the three-dimensional detector image can belong to a number of possible
(prede�ned) tracks characterized by di�erent parameters as described above.
All such tracks (or roads) are stored in a Look-Up Table (LUT). Thus every
hit increases the �probability� for the existence of these tracks by one (his-
togramming). The histogram for a single track consists of a �bow-tie� shaped
region of bins with a peak at the centre of the region as shown in Figure 6.1.
The bin at the peak of the histogram will, in the ideal case, contain all hits
from the track. The roads corresponding to the other �lled bins share straws
with the peak bin, and so contain sub-sets of the hits from the track. The
histogram for a more complex (Figure 6.2) event consists of a superposition
of the entries from the individual tracks. The bins containing the complete
set of points from each track can be identi�ed as local maxima in the his-
togram. After a clean-up step followed by a �t the �nal tracks are selected.
The LUT based Hough Transform algorithm for TRT is implemented in C++
and integrated into several software frameworks for the ATLAS Trigger in-
vestigation. An initial version of the algorithm is implemented in VHDL for
the MPRACE board as well. This implementation is integrated into the same
framework (t2Ref and CTrig) for a performance study and comparison with
the C++ implementation. The VHDL implementation is not tested in the
HLTSSW/ATHENA environment but the C++ version of TRT LUT-Hough

58 Chapter 6. TRT LUT-Hough Algorithm

Fig. 6.1: A histogram due to an iso-
lated muon in the barrel
TRT.

Fig. 6.2: A Histogram created for a B-
physics event.

is ported into HLTSSW and all works for algorithm's physics performance
improving is done in that framework.

The entire algorithm, as included in the CTrig software, consists of the
following steps [110, 111] (Figure 6.3):

Initial Track Finding: This uses a LUT-based Hough Transform to �nd po-
tential track candidates. A specially created look-up table (so called
�straw-ordered� LUT) is used here. In the barrel the Hough Transform
is performed from (R, φ) space to (φ, 1/pT) space. This space is divided
in 1024 parts (or bins) in φ and 80 parts in 1/pT. Thus, the LUT consist
of 81 920 prede�ned roads. All prede�ned roads point to the origin. The
assumption of straight lines in the R − φ projection is not su�ciently
accurate for low-pT tracks in magnetic �eld. Therefore prede�ned over-
lapping roads are computed as exact circles in the x − y projection.
The road width increases linearly from 4.5 mm at layer 1 (numbering
from the innermost layer outwards) to 6.8 mm at layer 42 and is then
constant and equal to 6.8 mm from layer 42 to layer 73. With this
de�nition, ∼65 straws are assigned to each road. The prede�ned roads
overlap by 30% - 50% in 1/pT and φ. This roads overlapping prevents
the loss of hits from a track with a trajectory which could otherwise
pass between two prede�ned roads. On the other hand, it can lead
to multiply reconstructed tracks, which have to be eliminated in subse-
quent steps. Each straw is assigned to ∼120 roads (max.130). Therefore
we have two-dimensional table with straw number as an index.

6.1. TRT LUT-Hough Algorithm description 59

Starw ordered

LUT

Bin ordered

LUT

Histogram

Hits

Initial Track

Finding

Threshold /

Max Finding

Fit and Final

Selection

Raw Tracks

Track Candidates

Track Parameters

Address

(Straw number)

Bin number in 1/p
T

Bin number in
 phi

Address

(Track number)

Active Straws

hash table

Split Track

Straw active?

Bin number

Straw

Fig. 6.3: TRT LUT-Hough algorithm

60 Chapter 6. TRT LUT-Hough Algorithm

Thresholding and Local Maximum Finding: This selects potential track candi-
dates and eliminates multiple reconstructed tracks. A cut on the num-
ber of hits is �rst applied to reduce the number of bins to be considered
by a maximum �nding and to eliminate small peaks due to bins with
entries from sub-sets of the hits from more than one track. The maxi-
mum �nding selects as track candidates bins which have more entries
than neighbouring bins (regions for maximum �nding slightly di�erent
in shape in barrel and end-caps). If two neighbouring bins have the
same number of hits, only one bin is chosen as a track candidate.

Track Splitting: This removes hits incorrectly assigned to a track, and splits
tracks that have been erroneously merged. In this step the pattern of
hits associated to a track candidate is analysed. If a potential track
candidate contains Nis consecutive layers without a hit, the track is
split into two separate candidates either side of the gap. If one of the
candidates contains more than Nthr hits, it is retained. If both candi-
dates pass this threshold, the track segment which starts at the lowest
radius is retained. The result of the track splitting step are candidates
that consists of a sub-set of the straws in a road. For this step a �bin-
ordered� LUT is constructed (each bin correspond to a single road).
The list of straws lying within the road is stored in the LUT. To speed-
up the retrieval of the information on which straws in the road have
a hit, a table is �lled once per event with the pattern of 1's and 0's
corresponding to straws with and without hits. This table also stores
threshold information for all active straws.

Track Fitting and Final Selection: This performs a least square �t in the r-
φ (barrel) or z-φ (end-caps) plane. The algorithm uses only the straw
position (i.e. the drift time information is not used). After the �t the
threshold prec

T > pthr
T is reapplied. The �nal track candidates are selected

during this step.

Pro�ling a C++ implementation of the TRT full scan algorithm shows that
the most of the computing time is spent in accesses of LUTs, incrementing
of 8-bit numbers, and the local maximum �nding operations. A CPU-only
implementation of Histogramming (or Initial Track Finding) and Threshold-
ing /Local Maximum Finding requires ∼62% of the total processing time.
These two steps are good candidates for the FPGA implementation because
of both steps can exploit an 80-fold parallelism (80 1/pT blocks) and make
use of the fast internal dual port block RAM. The main di�erence between
the FPGA implementation and the CPU implementation of the Hough trans-
formation is that the loop over all prede�ned roads for one straw, which is

6.2. VHDL implementation of the TRT LUT-Hough Algorithm 61

PCI

BUS

PLX

9656

FIFO
 HistInput
Hits

16

SRAM

(19 bits address, 144 bits data)

Register
Pass

19
 144

FIFO
 Inc 0
 Inc 79

Block RAM Mux

A

 d
 d
 r

A

 d
 d
 r
D

a

t
a

R

 D

 a
 t
a
 W

 D

a

t
a

R

 D

 a
 t
a
 W

. . .

80 blocks

11
 11

Threshold & Local

Maximum Finding

A

 d
 d
 r
 D

a

t
a

R

. . .

80 blocks

A

 d
 d
 r

Data W

Data R

A

 d
 d
 r

Data W

Data R

MPRACE

FPGA

Internal Block RAM

Hits

Results

Addr

(Straw + Pass)

8

10

8
 8

10

8

3

Results

(DMA on Demand)

Hits

(DMA on Demand)

Results

Fig. 6.4: FPGA initial track �nding

performed once per hit for incrementing of ∼120 histogram counters, is exe-
cuted sequentially in the CPU and in parallel in the FPGA.

6.2 VHDL implementation of the TRT LUT-Hough

Algorithm

A part of TRT LUT-Hough algorithm for the TRT barrel was implemented in
VHDL and investigated in t2Ref and CTrig as a proof of concept to demon-
strate the feasibility of ATLAS LVL2 tracking algorithms acceleration with a
FPGA co-processor help. A general schematic view of the VHDL implemen-
tation for the initial track �nding step of the algorithm is shown in Figure 6.4.
This implementation takes advantages of both the external SRAM and the
internal RAM blocks.

The initial track �nding algorithm works as follows. The array of active
straws (hits) prepared in the host memory and transferred over PCI bus to
MPRACE by DMA. For each hit straw, counters are incremented for all roads
containing that straw. The histogram counters for all TRT straws which have
to be incremented are stored in the �straw-ordered� LUT. The construction of
the LUT with overlapping roads in φ and 1/pT guarantees that each active
straw contributes to exactly one or two pre-de�ned φ values of a certain
prede�ned 1/pT. For the barrel, there are 80 �1/pT-blocks� with 1024 possible

62 Chapter 6. TRT LUT-Hough Algorithm

φ each, thus 81 920 patterns are prede�ned. Therefore one or two values out
of 1024 possible values, which have to be incremented, are stored in 11 bits,
because the (possibly) two values are always directly neighboured (10 bits
identify one (always smaller) of the φ values + 1 bit to select should we
increment neighboured (the next one, not the previous) value: �1�, or not:
�0�).

The �straw-ordered� LUT is stored in the external SRAM of the MPRACE
board. An address space of 16 bits for the straws in the �straw-ordered� LUT
is required (if information about symmetry of the detector is not in use).
The SRAM itself has 19 bit addresses, of which 16 are used to identify the
current straw. The LUT stores for each straw address 880 bits of the his-
togram counters addresses (80×11 bits). The word length of the SRAM is
only 144 bits; therefore seven steps (passes) with the same straw address (16
bits) and changing pass addresses (3 bits) are needed for transfer all infor-
mation corresponding to one straw from SRAM (LUT) to FPGA. Using the
information about detector symmetry can signi�cantly reduce the require-
ments for size and word length of the memory for LUT. However in scope
of CTrig we have simulated data for detector geometry without any sym-
metry (see section 1.1.1). The histogram is stored in FPGA's internal RAM
blocks. The implementation pro�ts from a true Dual Port RAM (internal
RAM Blocks) to allow a fast read-modify-write cycle during one external
SRAM cycle. Therefore histogramming for each straw is executed in seven
passes with up to three clock cycles each, whereas the CPU implementation
requires looping sequentially over 130 histogram bins. Time for waiting data
from SRAM can be reduced by using two separate clock signals inside the
FPGA design: one for the SRAM and SRAM controller and another for the
rest of design. The SRAM controller can be synchronized by a clock signal
with higher frequency. Therefore, seven passes for reading LUT data from
SRAM can be done in 3 or 4 �main� clock circles.

The histogramming step is followed by the maximum �nding step. Here a
threshold �lter is applied �rst, then local maximum search is carried out. The
maximum �nding has to be applied in two dimensions (φ and 1/pT). This
is done in parallel for 80 1/pT-blocks and sequentially for 1024 φ-blocks.
Only close neighbours a taken in to account in this procedure. Results are
the histogram counters with values above the threshold and which are local
maximum in both φ and 1/pT. The output information contains the pre-
de�ned φ and 1/pT values of the track (prede�ned from the LUT) and the
number of active straws corresponding to the track. These results stored in
the output FIFO and transferred over PCI bus to the host memory by DMA
for further processing.

Let's consider the VHDL implementation of the initial track �nding and

6.2. VHDL implementation of the TRT LUT-Hough Algorithm 63

library IEEE;
use IEEE.std_logic_1164 .all;

Design Unit Header

DataToFifo(31:0)

Address(19:0)DataToLBus(31:0)

DataFromFifo(31:0)FifoReadClk

DataFromLBus(31:0)

FifoReadEnable FifoReadEmpty

FifoWriteClk FifoWriteAlmostFull

FifoWriteEnable FifoWriteFull

LBClk

LBad(31:0)

LBads

LBdreq(1:0)

LBblast

LBeot
LBdack(1:0)

LBready
LBden

rdRdy1

LBdt_r

rdRdy2

LBw_r

RST

UEot

flushFifo

wrRdy1

wrRdy2

AddressFromLBC(19:0)

DataToLBC(31:0)

DataFromLBC

DataToLBCFifo(31:0)

LBCFifoFull

LBCeot

LBClk

LED

SysClk

SRamAddr(75:0)
hit_fifo_empty

SRamData(143:0)

rdEnable

SRamOE(3:0)

rdHits

SRamWE(3:0)

reset

SRam_BE_AB(3:0)

straw_in(15:0)

SRam_BE_CD(3:0)
wrEnable

SramCS(3:0)

WriteLBCFifo

hit_fifo_rd

I O

I O

LBC

LocalBusClient

scanBblk

scan

LBClk_BUFG

IBUFG_BUFG

SysClk_BUFG

IBUFG_BUFG

LBad(31:0)

LBads

LBblast

LBClk

LBdack(1:0)

LBden

LBdreq(1:0)

LBdt_r

LBeot

LBready

LBw_r

LED

SRamAddr(75:0)

SRamCS(3:0)

SRamData(143:0)

SRamOE(3:0)

SRamRD(3:0)

SRamWE(3:0)

SRamWE2(3:0)

SysClk

RST

int_rst

Project trttest1

Page 1 / 1

Fig. 6.5: TRT LUT-Hough initial track �nding block diagram

maximum �nding steps in more details. The design consists of two big parts
as shown in Figure 6.5:

Local Bus client is responsible for communication with PLX PCI bridge. It
allows data exchange between the FPGA design and the control soft-
ware over the PLX PCI bridge and the host computer PCI bus. The
Local Bus client provides several address ranges for communication
with the rest of the design. Two of them are used: one for hits data and
results and second for control and status data respectively.

Scan block is a main working part of the TRT LUT-Hough algorithm initial
track �nding and maximum �nding implementation. The internal struc-
ture of this part is shown in Figure 6.6. A module for communication
with ZBT memory located in this block as well.

The design synchronization is provided by two di�erent clock signals. One
(�LBClk� in the �gures) is used for local bus operations and limited by the
PLX bridge local bus speed (64MHz). Another (�SysClk�) is used for scan
block synchronization. Asynchronous FIFOs are used as interfaces between
two clock domains.

During algorithm initialization step the co-processor board is initialized
and con�gured and Look-Up tables are created. To write these tables into
the MPRACE ZBT memory a special FPGA con�guration bitstream is used.
After LUT writing, the con�guration bitstream for initial track �nding is

64 Chapter 6. TRT LUT-Hough Algorithm

lib
ra

ry
 I
E

E
E

;
u
s
e

 I
E

E
E

.s
td

_
lo

g
ic

_
1
1
6
4

.a
ll
;

u
s
e

 w
o
rk

.B
lo

c
k
R

a
m

T
yp

e
s

.a
ll
;

u
s
e

 w
o
rk

.F
if
o
T

yp
e
s

.n
u
m

b
e
ro

fh
it
s
ty

p
e

;

D
e
s
ig

n
 U

n
it
 H

e
a
d
e
r

re
s
e
t

E
n
a
b

le

M
a
xF

la
g

(7
9

:0
)

M
e

m
D

a
ta

R

M
e

m
A

d
d

rR
(7

9
:0

)
c
lk

M
e

m
A

d
d

rW
(7

9
:0

)

p
a
u
s
e

M
e

m
D

a
ta

W

re
s
e

t

M
e

m
W

E

c
o

u
n
tO

u
t(
9

:0
)

d
o

n
e

h
itc

o
u
n
t(
7

9
:0

)

A
d

d
re

s
s
F

ro
m

L
B

C
(1

9
:0

)

D
a
ta

T
o

L
B

C
(3

1
:0

)

D
a
ta

F
ro

m
L

B
C

S
c
a
n
C

S

c
lk

rd
E

n
a
b

le

re
s
e

t

s
ta

tu
s
(2

:0
)

w
rE

n
a
b

le

o
u
tS

ta
tu

s

a
d

d
r

d
a
ta

O
u
t(
3

1
:0

)

h
its

In
(1

5
:0

)

re
s
u
lts

In
(3

1
:0

)

L
B

C
F

if
o

F
u
ll

L
B

C
e

o
t

L
B

C
lk

W
ri
te

L
B

C
F

if
o

c
lk

d
_

o
u
t(
3

1
:0

)
m

a
xF

la
g

(7
9

:0
)

fu
ll

n
rO

fH
its

(7
9

:0
)

p
h
i(
9

:0
)

s
c
a
n
_

d
o

n
e

s
in

it

c
lk

g
a
d

d
r_

r(
7

9
:0

)

g
d

a
ta

_
r

g
a
d

d
r_

w
(7

9
:0

)

g
p

h
i(
7

9
:0

)
g

d
a
ta

_
w

p
h
iV

a
lid

w
e

re
s
e

t

A
d

d
r(

1
:0

)

e
ra

s
e

_
d

o
n
e

a
d

d
r_

r1
(7

9
:0

)

a
d

d
r_

r2
(7

9
:0

)

m
a
d

d
r_

r(
7

9
:0

)
a
d

d
r_

w
1

(7
9

:0
)

m
a
d

d
r_

w
(7

9
:0

)

a
d

d
r_

w
2

(7
9

:0
)

m
d

in

d
in

1

m
w

e

d
in

2

re
s
e

t

w
e

1

w
e

2

c
lk

a
d

d
r_

r(
7

9
:0

)

d
o

u
t

a
d

d
r_

w
(7

9
:0

)

c
lk

d
in

w
e

c
lk

L
E

D
e

ra
s
e

_
d

o
n
e

M
u
x_

a
d

d
r(

1
:0

)

h
it_

fi
fo

_
e

m
p

ty

d
o

n
e

m
a
xF

in
d

_
d

o
n
e

m
a
xF

in
d

_
e

n
a
b

le

re
s
e

t

s
tr
a
w

2
p

h
i_

e
n
a
b

le
s
c
a
n
C

S

s
tr
a
w

2
p

h
i_

d
o

n
e

c
lk

R
a
m

A
d

d
r(

7
5

:0
)

e
n
a
b

le

R
a
m

C
S

(3
:0

)

h
itF

if
o

E
m

p
ty

R
a
m

D
a
ta

(1
4

3
:0

)

re
s
e

t

R
a
m

O
E

(3
:0

)

s
tr
a
w

(1
5

:0
)

R
a
m

W
E

(3
:0

)

R
a
m

_
B

E
_

A
B

(3
:0

)

R
a
m

_
B

E
_

C
D

(3
:0

)

d
o

n
e

p
h
i(
7

9
:0

)

p
h
iV

a
lid

re
a
d

H
it

rd
_

c
lk

rd
_

h
its

h
its

O
u
t(
1

5
:0

)

m
a
xF

in
d
e
r

m
a
xf

in
d

U
_
o
u
t

s
a
tu

s
o
u
t

A
d
d
re

s
s
F

ro
m

L
B

C
(1

9
:0

)

D
a
ta

F
ro

m
L
B

C

m
u
x4

o
u
t

o
u
tm

u
x

D
a
ta

T
o
L
B

C
(3

1
:0

)

o
u
tf
if
o

fi
fo

tr
e
e

D
a
ta

T
o
L
B

C
F

if
o
(3

1
:0

)

in
c
re

m
e
n
te

r

in
c
b
lo

c
k

m
e
m

M
u
x

b
lo

c
ra

m
m

u
x

b
lo

c
k
R

A
M

ra
m

b
lo

c
k

c
tr

l

s
c
a
n
c
tr

l

h
it
_
fi
fo

_
e
m

p
ty

s
tr

a
w

in
p

s
tr

a
w

2
p
h
i

h
it
_
fi
fo

_
rd

L
B

C
e
o
t

L
B

C
F

if
o
F

u
ll

L
B

C
lk

L
E

D

rd
E

n
a
b
le

rd
H

it
s

re
s
e
t

S
R

a
m

_
B

E
_
A

B
(3

:0
)

S
R

a
m

_
B

E
_
C

D
(3

:0
)

S
R

a
m

A
d
d
r(

7
5
:0

)

S
ra

m
C

S
(3

:0
)

S
R

a
m

D
a
ta

(1
4
3
:0

)

S
R

a
m

O
E

(3
:0

)

S
R

a
m

W
E

(3
:0

)

s
tr

a
w

_
in

(1
5
:0

)

S
ys

C
lk

w
rE

n
a
b
le

W
ri

te
L
B

C
F

if
o

S
ys

C
lk

S
y
s
C

lk

S
y
s
C

lk

S
y
s
C

lk

S
y
s
C

lk

S
y
s
C

lk

S
y
s
C

lk

S
y
s
C

lk

P
ro

je
c
t
tr

tt
e
s
t1

P
a
g
e
 1

 /
 1

Fig. 6.6: Block diagram for the internal structure of the main working part of
the TRT LUT-Hough algorithm initial track �nding and maximum
�nding implementation.

6.2. VHDL implementation of the TRT LUT-Hough Algorithm 65

loaded into FPGA. This is a quite slow process but it only need to be done
once before the start of data taking and, therefore, has no strict timing
requirements. After the con�guration and the initial reset, the co-processor
is waiting for data.

The TRT LUT-Hough algorithm is supposed to work in the Level-2 trig-
ger, when all hits information for current event is already available. Therefore,
for optimization of data transfer over PCI bus, all hits at �rst are packed (one
unsigned integer number contains information about a straw layer number
and a number of the straw with a hit in the layer) and stored in host mem-
ory. After the last hit information the �end-of-event� marker is stored and
transferred. To send this information to the co-processor the DMA transfer
utilized PLX9656 PCI bridge DMA controller is used. The data is received
by the Local Bus Client and stored in FIFO.

The PLX9656 bridge provides a number of DMA modes being bus-master
for PCI. In all of them the PLX bridge reads data from the PCs memory and
writes this data to a local-bus address or vice versa. The PC memory area
may be a continuous block or a scattered number of bu�er areas (de�ned
by a list of start addresses together with length information). A DMA �ow
control is also available on the local-bus which can delay the DMA operation
if no more data is present (DMA-on-demand). It is asserted by a signal line
between the FPGA and the PLX 9656, called DREQ (DMA Request). For
all DMA operations a number of PIO accesses are required to program a set
of registers inside the PLX 9656 chip.

Presence of the data in the FIFO indicated by the special signal (called
�hit_�fo_empty� in the Figure 6.6). With this signal the �Scan� block is
switched to the �histogramming� stage. Hit information is read from the
FIFO and is used as part of the address for ZBT memory. Seven passes with
the same straw address (16 bits) and changing pass addresses (3 bits) are
needed to transfer from SRAM (LUT) all information corresponding to one
straw to FPGA. Therefore, the value from the �pass� counter is used as the
second part of the address. Data from SRAM (�phi� signal in the picture) is a
�address� of histogram counters which should be incremented. It is registered
and a histogram counters incrementing is done in one clock circle after the
�phiValid� signal is asserted.

The two-dimensional histogram in (φ, pT) space is �lled during this step of
algorithm. As it was already mentioned, we have 1024 steps in φ and 80 steps
in pT. For storing this histogram 80 (from 96 available in the FPGA) internal
RAM blocks are used. Every block corresponds to one of 80 prede�ned pT

values. Eleven bits are used to address one or two (directly neighboured)
from 1024 φ values with selected pT. The true Dual Port RAM organization
allows a fast read-modify-write cycle for the histogram counters.

66 Chapter 6. TRT LUT-Hough Algorithm

SCAN Results available

Store results in output
FIFO

Assert DREQ to signal PLX presence
of data

Is more data available
(FIFO not empty)

Is SCAN complited

No

De-assert DREQ to pause
DMA

Assert EOT to stop
DMA

Send result

Is new result available
(FIFO became not empty)

No

Yes

Yes

Yes

No

Fig. 6.7: Flow diagram of the DMA-on-demand data transfer

After receiving the �end-of-event� marker the design is switched to the
�maximum �nding� stage. During this step we are looking for local maxima
in the histogram data after applying the threshold. Only direct neighbours
are taken in account. The histogram data is read in parallel from 80 RAM
blocks. The results contain a number of hits, pT and φ block number packed
in one world. These results are stored in the output FIFO and transferred
to the host memory using the DMA-on-demand feature of the PLX bridge.
Figure 6.7 shows the �ow diagram of this DMA transfer. The PLX9656 is
pre-initialized for DMA-on-demand by the control software (for example by
CTrig with a running algorithm). To start the transmission the control signal
DREQ is used. When data is available the DREQ signal is asserted and the
PLX9656 starts to fetch (read) the initial track �nding results. They are

6.2. VHDL implementation of the TRT LUT-Hough Algorithm 67

D

a

t
a

R

A

d

d

r

Active

High Threshold

A

d

d
r

D

a

t
a

W

PCI

BUS

PLX

9656

binInput
Bins

17

SRAM

(19 bits address, 144 bits data)

Pass

19
 144

FIFO

Block RAM Mux

. . .

75
 blocks

A

 d
 d
 r

Data W

Data R

A

 d
 d
 r

Data W

Data R

MPRACE

FPGA

Internal Block RAM

Results

Addr

(Bin + Pass)

8

10

8
 8

10

8

Results

3

Results

(DMA on Demand)

Bins/Active straws

Active Straws

writer

Active Straws

FIFO
 Register

Register
 74
 Splitting Logic

74

11x75

2x75

Fig. 6.8: FPGA track splitting

written sequentially into the DMA bu�er memory of the host-PC. It is a
pull-scenario in which the FPGA is the passive and the PLX9656 the active
component. When all available data is transferred but the �maximum �nding�
process is still running, the DREQ signal is de-asserted to pause the DMA
transfer. The transfer will be resumed when new results became available and
DREQ will be asserted again. When all data is transferred and �maximum
�nding� process is ended, the EOT (�End-Of-Transfer�) signal is asserted.
It is lead to �ashing the DMA FIFO in PLX9656 and stopping the data
transmission.

If the track splitting step is also done inside the FPGA, the results of the
local maximum �nding step are read from the FIFO by the �splitting� part
of the design.

A schematic view of the FPGA implementation of the track splitting
step is shown in Figure 6.8. It has similar to initial track �nding and local
maximum �nding input block and ZBT SRAM interface and uses absolutely
the same interface to the internal block RAM. The track splitting step uses
75 internal RAM blocks (each block for one layer/plane) for a hash-table. The
table stores information for each straw in this layer/plane if it is active or not
(�active straws� hash-table), and the threshold information (and, optionally,
the drift-time). The SRAM is used to address the bin-ordered LUT with
histogram bin numbers above the threshold which were a local maximum. The

68 Chapter 6. TRT LUT-Hough Algorithm

LUT outputs all straws which belong to the pattern de�nition layer by layer.
The bin-ordered LUT stores 825 bits (75 layers×11 bits for straw number
in layer). The word length of the SRAM is 144 bits; therefore, six steps
(passes) with the same bin address and changing pass addresses are needed
to transfer all information corresponding to one pattern from SRAM (LUT)
to FPGA. The same technique like in initial track �nding is used. SRAM
address consists of two parts: pattern number created from pT and φ block
number from the previous step and the value from the �pass� counter. Data
from SRAM is locked in the register. Additional speed-up can be achieved
by using separate clock signals for SRAM controller and main design.

Straw numbers from the LUT are used as an address for the �active
straws� hash-table stored in the internal block RAM. This table should be
�lled during the �rst step (�histogramming�), when information about hits
are transferred to the FPGA. We have two 74 bit words from this hash-table:
one of them gives us information about active straws, the second � about high
threshold hits. This information is used to perform the track splitting and
the result is a 28 bit word which contains a number of hits, a number of high
threshold hits, and the �rst and the last hit layer for every track candidate.
This result is passed to the host CPU over PCI bus by �DMA-on-demand�
for the track �t.

It is possible to put both LUTs (straw-ordered and bin-ordered) into
SRAM memory of the MPRACE board if information about detector sym-
metry will be in use. For the barrel the 32-fold symmetry allows to store only
32 φ×80 1/pT = 2 560 bins. Therefore we need a 20 bit address at the SRAM:
16 bits for �straw-ordered� LUT (52 544 straws), 3 bits for passes and 1 bit
for selecting one of LUTs (�bin-ordered� or �straw-ordered�). Without the in-
formation about symmetry we need 21 bit address: 17 bits for �bin-ordered�
LUT, 3 bits for pass and 1 bit for LUT selecting.

6.3 Execution Time Measurement Results

Measurements have been performed on the same platform as described in
Chapter 5 (computer equipped with dual Xeon 2.4GHz CPU, 64-bit, 66MHz
PCI bus, 1024MB DDR RAM main memory with CERN Red Hat Linux 7.1
running CTrig-01-15-12) and the MPRACE board. Only one CPU has been
used by the algorithm (see Chapter 5).

Only initial track �nding and maximum �nding steps of the TRT LUT-
Hough algorithm was implemented in VHDL. The software was compiled
with GNU gcc-2.95. The Mentor Graphics LeonardoSpectrum and the Xilinx
ISE4 software were used for synthesis and place and route. The FPGA design

6.3. Execution Time Measurement Results 69

Tab. 6.1: FPGA resources utilization summary.
Resource Used Percentage
Number of External IOBs 283 out of 684 41%
Number of RAMB16s 95 out of 96 98%
Number of SLICEs 10131 out of 14336 70%
Number of BUFGMUXs 2 out of 16 12%

is synchronised by the 64MHz clock signal. FPGA (XC2V3000-4BF957C)
resources utilization is summarized in the Table 6.1.

A data �le (Y00347_1.atrdmp.data) containing approx. 156 single parti-
cle events with a pile-up at luminosity 1033 cm−2s−1 was used.

Identical results are obtained for the initial track �nding step for both
the CPU and FPGA implementations.

The TRT consists of two subdetector types, the barrel and the end-cap.
Both of them measure in two dimensions, the barrel in r−φ and the end-cap
in z− φ. The algorithms for barrel and end-cap are di�er, but the principles
are identical. For the performance measurements presented here only the
barrel algorithm is used. The TRT barrel is composed of two identical (in
the scope of this document) parts, the left and right barrel half. The following
numbers refer to one half barrel.

The total number of straws is 52 500. The resolution required for the Ini-
tial Track Finding is de�ned by 1024 bins in φ space and 80 bins in 1/pT space
leading to a total search space of 81 920 patterns. The information about bar-
rel symmetry is not used (it was not included in simulation). Measurements
results are shown in Table 6.2.

From these results one can see that a critical part is implemented in VHDL
and runs on the FPGA co-processor ∼4 times faster than on the more or less
modern CPU and the whole algorithm runs ∼2 times faster.

For even higher speed-up, the �Track Splitting� part of the algorithm
should be implemented in the FPGA as well. We expect that the FPGA
realisation of �Track Splitting� gives at least the same speed-up as �His-
togramming /Maximum Finding�. In this case we will have �Track Splitting�
done in ∼285µs instead of 1 246µs and a full extract time will be ∼1 350µs.
Therefore, the hybrid implementation will be by a factor of ∼3.2 faster than
the CPU-only implementation.

One can increase the SRAM word length to 288 bits by adding memory
expansion mezzanine boards. In this case only 4 passes instead of 7 will be
needed for transfer all necessary information for initial track �nding and local
maximum �nding from SRAM to FPGA (for track splitting � 3 passes instead
of 6). That gives additional speed-up factor close to two.

70 Chapter 6. TRT LUT-Hough Algorithm

Tab. 6.2: Execution times on a Xeon 2.4GHz PC for the TRT LUT-Hough
CPU-only and hybrid implementation.

The total time is not the sum of the average times shown in the table, but
rather is the average of the total times per event.
Number of events: 156
Average number of hits in event: 2 167.413
CPU: Pentium-IV XEON 2.4GHz
FPGA board: MPRACE (VIRTEX-II), 64MHz, 64-bit, 66MHz PCI
Pattern-ordered LUT with 80 1/pT and 1024 φ values prede�ned
Threshold: Nthr = 12; Isolation: Nis = 9
Average number of track candidates per event: 57

Task Platform Time(µs)

CPU-only Implementation
Fill event CPU 107.77
Histogramming CPU 2314.03
Threshold/Max Find CPU 376.76
Histo/Thresh/Max CPU 2694.72
Track Splitting CPU 1246.18
Track Fitting CPU 151.91
Final Selection CPU 25.05
Copy tracks CPU 145.62
Extract time CPU 4371.24
Hybrid Implementation
Fill event CPU 115.23
Data converting CPU 24.62
prepare write bu�er CPU 81.55
DMA write/Histogramming PCI/FPGA 433.04
prepare read bu�er CPU 23.44
Max Finding/DMA read FPGA/PCI 22.42
output formatting CPU 17.71
Histo/Thresh/Max FPGA/CPU 612.77
Track Splitting CPU 1274.87
Track Fitting CPU 155.54
Final Selection CPU 24.80
Copy tracks CPU 149.71
Extract time FPGA/CPU 2332.92

6.4. TRT LUT-Hough in HLTSSW 71

Fig. 6.9: View of one quarter of the ATLAS Inner Detector in the (R, z) plane.

Additional acceleration can be achieved by using a newer FPGA like Xil-
inx Virtex4. The VHDL design for initial track �nding was slightly modi�ed
and synthesised for the Virtex4 family using Synplicity Synplify 8.0 and Xil-
inx ISE 7.1. After the place and route process the estimated clock frequency
for the design core is ∼180MHz. This leads to addition speed-up by factor
∼3 and to total speed-up factor close to 10. A co-processor board with Xilinx
Virtex4 is currently under development by the FPGA processor group at the
department of Computer Science V from the University of Mannheim.

6.4 TRT LUT-Hough in HLTSSW

The TRT LUT-Hough algorithm was designed for the ATLAS Level-2 Ref-
erence Software and was ported in to the CTrig (without big changes) and
to the High Level Trigger Selection Software which suppose to be the �nal
design of software for the ATLAS High Level trigger (see section 3.3). The
algorithm was adopted for real (so called DC1 and DC2) geometry. It be-
comes possible to con�gure the algorithm via ATHENA job option �les, to
control it by the common trigger steering component, to get input data (hits
information) from ATHENA services and to store results of work in the com-
mon store (TES). A part of the algorithm for reading the TRT geometry was
changed to get geometry information from the ATHENA services instead of
the ASCII text �le. The algorithm becomes a part of ATHENA and it gives
us a possibility to check physics performance of the TRT LUT-Hough algo-
rithm in conditions very close to real (according to current view on ATLAS
High Level trigger architecture).

The TRT LUT-Hough algorithm was tested with the simulated data for

72 Chapter 6. TRT LUT-Hough Algorithm

Fig. 6.10: Single 20 GeV electron events without pile-up. pT distribution for
reconstructed tracks with |η| > 1.8

high-pT single particle events (pT equal to 20 and 30 GeV) with and without
pile-up in the ATHENA environment. These tests have showed that the track
reconstruction quality varies in di�erent parts of the TRT and is far from the
ideal in case of events with pile-up (even single particle). Works for improving
the recognition quality of the TRT LUT-Hough algorithm was done by the
author and has been described in the rest of this thesis.

6.4.1 Magnetic Filed

One of the possible sources of the errors in reconstruction is an inhomoge-
neous magnetic �eld. The worst quality of reconstruction is observed in the
outer part of TRT end-cap. pT distribution for reconstructed tracks in this
part for single 20 GeV electron events without pile-up is shown in the Fig-
ure 6.10. In this detector region the magnitude of the magnetic �eld is only
30% of the magnitude in the central part of the detector (see section 1.1.1).
But the TRT LUT-Hough algorithm uses a constant �eld approximation. In
a constant �eld, the trajectory of a charged particle of a given momentum
has a constant curvature and can be represented by a straight line after some
conformal transformation. The e�ect of the solenoidal magnetic �eld for the
TRT tracking algorithm has been studied in [45]. In case of the solenoidal
�eld the track curvature changes and in some regions the curvature may
even changes the sign. As an example, one can see the trajectories of muons

6.4. TRT LUT-Hough in HLTSSW 73

Fig. 6.11: Trajectories of the particles
with various transverse mo-
menta through the Inner
Detector. R− φ view.

PT = 5 GeV

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

50 100 150 200 250 300 350 400

Z, cm

φ,
 r

ad

Fig. 6.12: Trajectories of muons with
transverse momenta of
5GeV for cases with a
constant and a solenoidal
magnetic �elds. A view in
a φ− z plane at various η.

in the (R, φ) plane in the Figure 6.11. The Figure 6.12 shows φ − Z projec-
tions of trajectories of muons with transverse momentum pT = 5 GeV in the
end-cap region of the Inner Detector. The most signi�cant deviation of tra-
jectories from a straight line (i.e. constant �eld case) is at η ∼ 1.8 (the layout
of one quarter of the ATLAS Inner Detector in the (R, z) plane with η-lines
is shown in the Figure 6.9; TRT is shown in blue). For η > 2.2 the part of
the trajectory crossing the low-radius part of the outer four TRT wheels is
an almost straight line, but its slope is di�erent from that in the case of the
nominal constant �eld.

The degradation of performance is larger for higher momenta. The rea-
sons are obvious: the measurements of the track position in the region of
inhomogeneous �eld are less precise, since the real �eld bending power is
lower than for the constant �eld case.

The consequence of using the constant �eld approximation in the his-
togramming step of the algorithm is that in the real �eld some points will be
lost as they lie outside the search road. However, it is certainly not favourable
to widen the search road in the high-occupancy conditions expected at high
luminosity. For high-pT tracks (pT above 5 GeV), the average number of hits,
Nhits, is only slightly lower at η = 1.7− 2.0 than in the case of the constant

74 Chapter 6. TRT LUT-Hough Algorithm

Fig. 6.13: Single 20 GeV electron events without pile-up. Distribution of pT

for reconstructed tracks with |η| > 1.8. LUT calculation done in
case with an inhomogeneous magnetic �eld

�eld, while for the low-pT tracks (pT ≤1 GeV) there is a substantial loss of
hits at mid-rapidity.

To recover from these losses, the search roads (and the look-up table) have
to be calculated using the expected actual trajectories of the charged parti-
cles. The fact that the correction factors depend (approximately) only on the
z-position of the straws (according to [45]) makes this correction simpler. As
it was mentioned in section 6.1, at the histogramming stage we are searching
for sets of hit straws satisfying the following straight line conditions:

φ = φ′
0 + Czz; φ′

0 = φ0 − z0Cz; Cz = 0.003 ·B · q · tan(θ)/2pT,

where z0, φ0, θ are the initial z-coordinate, azimuthal and polar angles of
the particle trajectory with an electric charge q in a �eld of strength B (B
in Tesla, pT in GeV, angles in radians). The correction function should be
applied at the histograming stage to obtain a search road with a modi�ed
�slope�:

Csolen
z =

0.003 · q
2pT

∫ L

0

Bsolen(r, z)× dlsolen ≈ Cz · fcorr(z),

where fcorr(z) can be found from the ratio between the change in azimuthal
angle in the solenoidal magnetic �eld,∆φsolen, and in the constant magnetic

6.4. TRT LUT-Hough in HLTSSW 75

Fig. 6.14: Single 20 GeV electron events without pile-up. Distribution of pT

for reconstructed tracks with |η| < 0.7. A number of generated
events: 2758 (E�ciency: 97%)

�eld, ∆φconst:
∆φsolen

∆φconst

=

∫
Bz,solen(z)dlsolen∫
Bz,constdlconst

= fcorr(z)

The algorithm part for the look-up table generation was changed to be
able to calculate the LUT for the case with an inhomogeneous magnetic �eld
(information about magnetic �eld taken from ATHENA). It slightly improves
the algorithm performance for the outer part of the TRT end-cap (see the
Figure 6.13).

For the barrel part of TRT, where the magnetic �eld is close to be con-
stant, the algorithm shows good physics performance (e�ciency (calculated
as ratio between number of reconstructed and number of generated tracks)
>90%) for single particle events without pile-up. But in the case of events
with pile-up it gives a lot of fake tracks. For example, a pT distribution for
reconstructed tracks in the barrel for single 20 GeV electron events with-
out pile-up is shown in the Figure 6.14. The same distribution for single 20
GeV electron events with a pile-up at luminosity 2 × 1033 is shown in the
Figure 6.15.

Two sources of uncorrelated tracks are important in the search for isolated
leptons [112]: the real tracks from the underlying pile-up and the fake tracks
from the random association of hits and track segments.

76 Chapter 6. TRT LUT-Hough Algorithm

Fig. 6.15: Single 20 GeV electron events with pile-up at luminosity 2× 1033.
Distribution of pT for reconstructed tracks with |η| < 0.7. A number
of generated events: 1402

6.4.2 Track merging

The TRT LUT-Hough algorithm gives in results a high number of track
candidates per event. For example, the Figure 6.16 shows the distribution of
the number of reconstructed tracks per event. There we can see that for 69
single particle events in the barrel and end-cap the algorithm has found 379
tracks only in the barrel (an average of ∼20 tracks per event). One of the
possible reasons is following.

Due to physics processes in the Inner Detector (Bremsstrahlung), tracks
in the TRT may not point to the origin. These tracks are reconstructed as
several track segments none of which contain all active straws belonging to
that track. Several reconstructed tracks from one generated track are in most
cases neighbours in the resulted tracks list and they share most of the hits.
Therefore a very simple technique for such �ghosts� removing can be used:
the tracks with more than a prede�ned number of common hits should be
merged. To improve execution speed in the barrel one can just select the
track with the biggest number of hits from the set of tracks with common
hits instead of merging. However, this cannot be done in the end-cap, where
the end-points of the track in�uence the η and pT measurements. Missing hits
can seriously degrade the reconstructed track parameters. Results of track
segments merging in the TRT barrel are shown in the Figure 6.17. Here we

6.4. TRT LUT-Hough in HLTSSW 77

Fig. 6.16: A number of reconstructed tracks in TRT barrel. Tested on 69
events.

can see the reasonable amount of 26 reconstructed tracks in the barrel (one
or two tracks per event mostly).

6.4.3 Likelihood approach

The default parameters used in the algorithm are loose enough to be able
to reconstruct di�erent kinds of particles with a wide range of the pT in the
whole accessible η-region. At the design luminosity the occupancy of TRT is
between 10% and 40%, the higher values are for the inner layer of the barrel
and the long straws in the end-caps. The large number of straws with hits
means that there is a signi�cant probability for a �fake� track candidate to be
formed by a combination of hits from tracks in the minimum bias events. As a
result, the algorithm produces several candidates per real track. The majority
of track candidates in events with pile-up are due to real low-pT tracks.
However, the pT threshold cannot be set very high even if we are looking for
high-pT tracks (electrons) because of the bremsstrahlung e�ect. One of the
methods to choose the best candidate (so called �likelihood approach�) was
described in [113]. The short description of this method is presented here.

Consider the reconstructed track which crossed Ns straws and with num-
ber of hits Nhit. The likelihood approach is based on a calculation of the ratio
Lt/Lb of likelihoods for the hypothesis that hit is produced by the real track:

Lt =

(
Ns

Nhit

)
· PNhit · (1− P)(Ns−Nhit)

78 Chapter 6. TRT LUT-Hough Algorithm

Fig. 6.17: Number of reconstructed tracks in TRT barrel after merging of the
track segments with more then 75% of common hits.Tested on 69
events

or by a minimum bias or a noise:

Lb =

(
Ns

Nhit

)
· PNhit

b · (1− Pb)
(Ns−Nhit)

where P = Pb + Pt · (1 − Pb) is the probability of a hit on a track, Pt is
the probability of a hit caused by the real particle (∼0.95) and Pb is the
probability of a hit from a minimum bias or noise (∼0.15-0.5 depending on
straw length and position). Then the best estimator for the track is that
which maximises the L de�ned as :

L(Nhit, Nhole) = log(Lt/Lb) = w1 ·Nhit + w2 · (Ns −Nhit)

where weights w1 = log(P/Pb) and w2 = log((1 − P)/(Pb)) can be esti-
mated from the experimental data for the real detector or from a Monte-
Carlo simulation. This estimation was done for TRT and results can be found
in [109]. Similar values can be calculated for the likelihood L(NTR, Ns) (in the
case of electron track), where NTR is a number of transition-radiation hits
(hits over the higher threshold on read-out electronics) and for the likeli-
hood L(Ntime, Ns) (in case when drift time information is used). In the TRT
LUT-Hough algorithm the drift time information is not used and the best
discriminator for electron tracks is:

L(Ns, Nhit, NTR) = wh ·Nhit + ws ·Ns + wTR ·NTR

6.4. TRT LUT-Hough in HLTSSW 79

Fig. 6.18: Single 20 GeV electron events with pile-up at luminosity 2× 1033.
pT distribution for reconstructed tracks with |η| < 0.7. A number
of generated events with |η| < 0.7: 1402 (E�ciency: 97.5%)

This method was tested with the TRT LUT-Hough algorithm. Weights
wh, ws, and wTR are calculated for four separate |η| regions to allow the
variation in occupancy and probabilities Pt and Pb. Results for the TRT LUT-
Hough algorithm with the new track selection procedure (pT distribution for
reconstructed tracks in barrel for single 20GeV electron events with pile-up
at luminosity 2× 1033) are shown on the Figure 6.18.

For more improvements in the physics performance and quality of the
track reconstruction in the TRT the track following approach was developed
by D.Emelyanov at RAL. Tracks from Pixel Detector and SCT are used as
seeds for the track extrapolation into the TRT [114]. To minimize amount
of the data to be analysed in the extrapolation step one can use a pre-
calculated Look-Up table in the same way like it is done in the TRT LUT-
Hough algorithm. For testing of this idea the new AlgTool was developed by
the author. This tool takes tracks parameters and returns the set of identi�ers
for straws with hits which belong to the number of prede�ned roads from
the LUT. This approach shows a very good results for the standard RoI
based reconstruction. However, this approach can not be used for B-physic
reconstruction with the initial TRT full scan and seeding from the TRT (as
soon as it require an external seed for track reconstruction in TRT).

80 Chapter 6. TRT LUT-Hough Algorithm

6.4.4 Results of the review of the LVL2 Inner Detector

algorithms

A review of the LVL2 Inner Detector algorithms took place in July/August
2005. The aim was to review the current status of the LVL2 trigger algo-
rithms for the Inner Detector, including the Event Data Model and use of
the geometry information, and to draw up a workplan to consolidate the
software into a set of tools to be used in the �nal system.

The following comments from reviewers related to the algorithmic work
done in this thesis were received:

�Complementary approaches of SiTrack vs. IDscan and TRTxK/LUT vs.
IDscan+extrapolation to the TRT are worth keeping as an option to cope
with unexpected initial detector problems. Proposed to continue to develop
alternative approaches, but in the context of tools with common interfaces.
Retain TRT stand-alone reconstruction, where e�ort allows, as a tool to be
used in commissioning or when there are detector problems in early running.
TRTxK/LUT require quite some work to meet LVL-2 timing requirements
as well as the data preparation steps for the TRT� [115].

The full text of the LVL2 Inner Detector Reviewers Comments can be
found on the web page with the following address:
https://uimon.cern.ch/twiki/bin/view/Atlas/TrigInDetRevComment

According to decisions made during the review of the LVL2 Inner Detector
algorithms, all algorithms should be re-packaged as a set of track �nding tools
based on the global approach for the pattern recognition: histogramming,
LUT; track �tting tools; tools for the simultaneous pattern recognition and
the track �tting � the local pattern recognition. New algorithms will use these
tools to perform the track reconstruction. The tools can also be used in special
monitoring/debugging algorithm wrappers. The �rst step is to de�ne abstract
interfaces for the tools currently ongoing. This approach allows to use the
strongest parts of the algorithms in various combinations, for example, the
pattern recognition from one algorithm can be combined with the �tter from
another or even with the o�ine �tter.

Chapter 7

FUTURE WORKS FOR THE ATLAS

TRIGGER

According to decisions made during the review of the LVL2 Inner Detector
algorithms, TRT stand-alone reconstruction should be retained.

However, there are still a lot of thing to do, including:

Repackage LVL2 ID reconstruction as sets of tools. Existing reconstruction al-
gorithms should be splitted on track �nding tools based on the global
approach for the pattern recognition: histogramming, LUT; track �t-
ting tools; tools for simultaneous pattern recognition and track �tting
� the local pattern recognition, also known as �track following�. New
algorithms will use these tools to perform a track reconstruction. These
tools can also be used in the special monitoring and debugging algo-
rithm wrappers (see the end of previous Chapter).

Timing optimization (including data preparation step): One of the general tim-
ing problem: the ByteStream-to-cluster conversion is done for the whole
ROB (see section 3.3). ROBs most of the time contain data from many
more Detector Elements than algorithms are interested in (the ones
inside an RoI). Signi�cant speed-up can be achieved by not unpack-
ing everything. Works for improvement of the data preparation step
has been started [116]. The RoI size and shape can be (and has to be)
optimized as well.

Test functionalities: Trigger algorithms (and whole Trigger software) should
�t into "ATLAS Software Testing scheme". The data set that produces
a reference result (histograms, rates, etc.) and acceptance mechanism
should be developed for every algorithm. The �rst common ATLAS
frameworks for testing already exist (for example Run Time Tests:
http://www.hep.ucl.ac.uk/atlas/NightlyTests/RTTpage1.html). Test
suites, reference datasets and reference results for trigger algorithms

82 Chapter 7. Future works for the ATLAS trigger

should be created. Tools for Data Quality Monitoring and for identi-
�cation of cabling and conversion problems should be developed. One
should think about tests with various simulated errors as well.

Integration with on-line software: Algorithms should be able to run in multi-
threaded environment (AthenaMT), support re-initialization and fully
conform to other on-line software requirements. Therefore some work
for integration of trigger software with on-line framework should be
done.

Connections with o�-line software: One should compare LVL2 requirements
for tools interfaces and Event Data Model classes with o�-line require-
ments and investigates the possibility of using common base classes.
The geometry information used by LVL2 algorithms should be reviewed
in order to provide this information in the most e�cient way, either di-
rectly from the Geomodel description (o�-line) or from a LVL2-speci�c
cache.

Alignment: Trigger algorithms should be tested against an alignment, cali-
bration, beam spot position and beam axis tilt. First studies of the
misalignment e�ects have been done some times ago [117] but more de-
tailed investigations (trigger performance as a function of misalignment,
trigger performance as a function of dead/ine�cient detectors/read-out
channels) in the new software environments should be done. Sets of al-
gorithms parameters for various initial conditions should be developed.

DataBase con�guration: Currently algorithms parameters are stored in so
called �JobOptions �les�. Information stored in form of python scripts
which are used by Athena and steering code for algorithms con�gura-
tion. But it is not easy to maintain this con�guration information. Trig-
ger algorithms should be con�gurable from the con�guration database.
This work is related to changes in the ATLAS High Level Trigger Selec-
tion software (and probably to changes in the o�-line software frame-
work).

Cosmic run: Algorithms should be prepared (and, probably, slightly modi-
�ed) to be used in the cosmic run. Some preparatory work on the
cosmic running can be started once Monte-Carlo data will be avail-
able. Special algorithms should be developed and tested as well (see,
for example, [118])

Implementation of Trigger menus: Existed algorithms should be grouped and
con�gured for creating a complete trigger menu [80, 119]. Hypothesis

83

algorithms (in addition to feature extraction algorithms) should be cre-
ated as well as di�erent menu con�gurations should be available. A set
of algorithms for di�erent trigger tasks (like e/gamma, tau, jets etc.)
should be selected and tested. One should have a look at con�gura-
tion of algorithms for a full menu to see whether separate con�guration
parameters are needed or whether common parameters can be used
in some cases. Histograms for monitoring track reconstruction perfor-
mance and reference histograms for each of the slices should be de�ned.

Some tools for matching tracks from di�erent algorithms should be cre-
ated. These tools should use combination of information from di�erent
algorithms to improve identi�cation of track parameters.

Tools for Secondary Vertex reconstruction at LVL2 should be devel-
oped.

Strategies for measuring the trigger e�ciencies with the real data (with-
out Monte-Carlo information) should be created.

All trigger menus should be tested on simulated data and e�ciencies
and rates should be estimated for the full menu, not just for one algo-
rithm.

CONCLUSIONS

A possible reduction of the algorithms execution time has a large impact on
the size of LVL2 trigger processing farm. In the scope of this thesis one of
the possible approaches to acceleration the tracking algorithms using the hy-
brid FPGA/CPU systems has been investigated and tested on the simulated
single particle events (B → µ X) with a pile-up at luminosity 1033 cm−2s−1.
The most time consuming part of the algorithm has been accelerated by
the FPGA platform. The usage of the FPGA co-processor can give some
reasonable speedup as contrasted to the general purpose processor only for
those algorithms (or parts of algorithms), for which one there is a possi-
bility to ful�l calculations with a major degree of parallelism. Some of the
track reconstruction algorithms which are common to all B-physics channels
and the standard RoI processing have been tested for execution time and
assessed for suitability for speed-up by using FPGA co-processor in scope
of this thesis. One from these algorithms � TRT LUT-Hough � utilizes very
popular method in track reconstruction: look-up table based Hough trans-
form (histogramming). Most time consuming parts of it were implemented in
VHDL for running on the FPGA co-processor board MPRACE. Our work
shows that the use of the FPGA co-processor can give us speed-up by factor
∼2-3 for the hybrid FPGA/CPU realisation in comparison with the CPU
only implementation.

Algorithm realisation described in this thesis has exacting requirements
on a FPGA co-processor board, especially its memory subsystem. Higher
speed-up (close to factor 10) can be achieved by using a co-processor with a
higher memory bandwidth (in the case of the MPRACE board one can use
both extension slots for two additional SRAM banks) and a newer FPGA (or
even several FPGAs on one board with own memory).

To spend no time for the data transfer between algorithm host and co-
processor, it is better to place FPGA board on the raw datapath from de-
tectors to the trigger PC or trigger farm (PC or farm which will be used
for trigger algorithms), like it is planed to be done in ALICE (see sec-
tion 2.2.3). However this approach requires more complicated and special-
ized co-processor board and FPGA design. According to [120] ALICE col-

CONCLUSIONS 85

laboration has a Hough Transform based HLT algorithm for track �nding
in TPC and has plans to use FPGAs for algorithm acceleration. TPC pro-
vides a three-dimensional information, but its data can be splitted in bins
of pseudo-rapidity and two-dimensional Hough Transform can be used. Fol-
lowing Hough space binning is used ([120]): 100 η bins divided on 80 × 120
bins each. Algorithm is similar to TRT LUT-Hough and some parts of the
VHDL design which has been developed in the scope of this thesis can be
reused. ALICE realization requires lower memory bandwidth as soon as 2D
Hough space has 80× 120 bins (compare to 80× 1024 in TRT LUT-Hough),
therefore, one can expect a higher speed-up.

Developers in high-performance computing area long time have been
intrigued by the potential of recon�gurable computing to accelerate some
computationally-intensive applications. But the barriers to achieving the per-
formance gains that recon�gurable computing can theoretically provide are
well known: the complexity of programming for recon�gurable computing de-
vices and the relatively long hardware development circle. To be used a FPGA
co-processor and a con�guration bitstream (algorithm implementation) for it
should be designed and tested at least one year before the beginning of the
experiment.

From other side, commercial �o�-the-shelf� (COTS) components have a
number of advantages compared to custom electronics components:

• Parts of the system can be exchanged by more powerful components
without a redesign of electronics. This requires the compatibility of new
components which is also a widespread issue in industrial applications.

• The components can be purchased in a short time. Thus recent hard-
ware can be used at the experiment's start-up.

• The components are more cost e�ective then custom hardware.

Recently, the ATLAS TDAQ community has decided not to use custom
hardware in the trigger (except LVL1) and software developers have focused
on �ne tuning applications to run faster on standard microprocessors.

The TRT LUT-Hough algorithm was ported into software framework
(High Level Trigger Selection Software) which will run in a �nal ATLAS trig-
ger system. Improvements in the track candidates selection procedure have
been integrated into the �nal version of the TRT LUT-Hough for higher
quality of reconstruction. For additional improvements more so�sticated �t-
ter can be used. ALICE team ([120]) has interesting idea to count not a hits
but a gaps along the track trajectory during histogramming stage and to
take as a �nal track candidate a peak, but with number of gaps less then

86 CONCLUSIONS

prede�ned threshold for decreasing the number of fake tracks. It would be
interesting to have a look how this approach can be used for ATLAS TRT.

BIBLIOGRAPHY

[1] Gordon Kane. Modern Elementary Particle Physics � The fundamental
Particles and Forces. Addison-Wesley, 1993.

[2] Fritz W. Bopp. Kerne, Hadronen und Elementarteilchen. Eine Ein-
führung. B.G. Teubner, 1989.

[3] Peter Ware Higgs. Broken symmetries, massless particless and gauge
�elds. Physics Letters, 12(2):132�133, 1964.

[4] Peter Ware Higgs. Broken symmetries and masses of gauge bosons.
Physical Review Letters, 13(16):508�509, 1964.

[5] Peter Ware Higgs. Spontaneous symmetry breakdown without massless
bosons. Physical Review, 145(4):1156�1163, 1966.

[6] ALEPH Collaboration, DELPHI Collaboration, L3 Collaboration,
OPAL Collaboration, and The LEP Working Group for Higgs Boson
Searches. Search for the Standard Model Higgs boson at LEP. Physics
Letters, B565:61�75, 2003.

[7] ALEPH Collaboration, DELPHI Collaboration, L3 Collaboration,
OPAL Collaboration, The LEP Electroweak Working, and The SLD
Heavy Flavour Working Group. A combination of preliminary elec-
troweak measurements and constraints on the Standard Model. Tech-
nical report, CERN/EP 2002-091, 2002.

[8] S. Eidelman, K.G. Hayes, K.A. Olive, M. Aguilar-Benitez, C. Amsler,
D. Asner, K.S. Babu, R.M. Barnett, J. Beringer, P.R. Burchat, C.D.
Carone, C. Caso, G. Conforto, O. Dahl, G. D'Ambrosio, M. Doser, J.L.
Feng, T. Gherghetta, L. Gibbons, M. Goodman, C. Grab, D.E. Groom,
A. Gurtu, K. Hagiwara, J.J. Hernández-Rey, K. Hikasa, K. Honscheid,
H. Jawahery, C. Kolda, Kwon Y., M.L. Mangano, A.V. Manohar,
J. March-Russell, A. Masoni, R. Miquel, K. Mönig, H. Murayama,
K. Nakamura, S. Navas, L. Pape, C. Patrignani, A. Piepke, G. Raf-
felt, M. Roos, M. Tanabashi, J. Terning, N.A. Törnqvist, T.G. Trippe,

88 Bibliography

P. Vogel, C.G. Wohl, R.L. Workman, W.-M. Yao, P.A. Zyla, B. Arm-
strong, P.S. Gee, G. Harper, K.S. Lugovsky, S.B. Lugovsky, V.S. Lu-
govsky, A. Rom, M. Artuso, E. Barberio, M. Battaglia, H. Bichsel,
O. Biebel, P. Bloch, R.N. Cahn, D. Casper, A. Cattai, R.S. Chivukula,
G. Cowan, T. Damour, K. Desler, M.A. Dobbs, M. Drees, A. Edwards,
D.A. Edwards, V.D. Elvira, J. Erler, V.V. Ezhela, W. Fetscher, B.D.
Fields, B. Foster, D. Froidevaux, M. Fukugita, T.K. Gaisser, L. Gar-
ren, H.-J. Gerber, G. Gerbier, F.J. Gilman, H.E. Haber, C. Hagmann,
J. Hewett, I. Hinchli�e, C.J. Hogan, G. Höhler, P. Igo-Kemenes, J.D.
Jackson, K.F. Johnson, D. Karlen, B. Kayser, D. Kirkby, S.R. Klein,
K. Kleinknecht, I.G. Knowles, P. Kreitz, Yu.V. Kuyanov, O. Lahav,
P. Langacker, A. Liddle, L. Littenberg, D.M. Manley, A.D. Martin,
M. Narain, P. Nason, Y. Nir, J.A. Peacock, H.R. Quinn, S. Raby, B.N.
Ratcli�, E.A. Razuvaev, B. Renk, G. Rolandi, M.T. Ronan, L.J. Rosen-
berg, C.T. Sachrajda, Y. Sakai, A.I. Sanda, S. Sarkar, M. Schmitt,
O. Schneider, D. Scott, W.G. Seligman, M.H. Shaevitz, T. Sjöstrand,
G.F. Smoot, S. Spanier, H. Spieler, N.J.C. Spooner, M. Srednicki,
A. Stahl, T. Stanev, M. Suzuki, N.P. Tkachenko, G.H. Trilling, G. Va-
lencia, K. van Bibber, M.G. Vincter, D. Ward, B.R. Webber, M. Whal-
ley, L. Wolfenstein, J. Womersley, C.L. Woody, O.V. Zenin, and R.-Y.
Zhu. Review of Particle Physics. Physics Letters B, 592:1+, 2004.

[9] LHC Study group. The Large Hadron Collider. Conceptual design
report, CERN/AC 95-05, 1995.

[10] ALICE Collaboration. A Large Ion Collider Experiment - technical
proposal. Technical report, CERN/LHCC 95-71, 1995.

[11] ATLAS Collaboration. ATLAS technical proposal. Technical report,
CERN/LHCC 94-43, 1994.

[12] CMS Collaboration. The Compact Muon Solenoid - technical proposal.
Technical report, CERN/LHCC 94-38, 1994.

[13] LHCb Collaboration. Letter of intent for a dedicated LHC collider
beauty experiment for precision measurements of CP-Violation. Tech-
nical report, CERN/LHCC 95-5, 1995.

[14] TOTEM Collaboration. Total cross-section, elastic scattering and
di�raction dissociation at the LHC. Letter of intent, CERN-LHCC-
97-49, 1997.

[15] Lidija Zivkovic. Measurements of the Standard Model Higgs parame-
ters at ATLAS. ATLAS Note ATL-PHYS-2004-023, CERN, 2004.

Bibliography 89

[16] Simonetta Gentile. Search for Higgs bosons with the ATLAS detector.
ATLAS Note ATL-PHYS-2004-009, CERN, 2004.

[17] F. Ohlsson-Malek. Prospects of ATLAS and CMS for B Physics and
CP Violation. ATLAS Note ATLAS-CONF-2003-003, CERN, 2003.

[18] Sebastien Viret. Rare B decays at LHC. ATLAS Note ATL-PHYS-
CONF-2005-005, CERN, 2005.

[19] Frederic Kalen Martens. Top physics capabilities at the LHC. ATLAS
Note ATL-PHYS-2004-024, CERN, 2004.

[20] George Stavropoulos. Top physics at ATLAS. ATLAS Note ATL-
PHYS-2004-032, CERN, 2004.

[21] D.R. Tovey. Searches for new physics at the LHC. ATLAS Note ATL-
CONF-2002-005, CERN, 2002.

[22] Gianluca Comune. SUSY with ATLAS: Leptonic signatures, coannihi-
lation region. ATLAS Note ATL-PHYS-CONF-2005-003, CERN, 2005.

[23] Kamal Benslama. Search for extra dimensions with ATLAS at LHC.
ATLAS Note ATL-PHYS-2004-013, CERN, 2004.

[24] C. M. Harrisy, M. J. Palmery, M. A. Parkery, P. Richardsonz, A. Sa-
betfakhriy, and B. R. Webbery. Exploring higher dimensional black
holes at the Large Hadron Collider. ATLAS Note ATL-PHYS-2004-
033, CERN, 2004.

[25] F.M. Brochu. Search for extra-dimensions in the ATLAS experiment.
ATLAS Note ATL-PHYS-CONF-2005-004, CERN, 2005.

[26] B. C. Allanach, K. Odagiri, M. A. Parker, and B. R. Webber. Searching
for narrow graviton resonances with the ATLAS detector at the Large
Hadron Collider. ATLAS Note ATL-PHYS-2000-029, CERN, 2000.

[27] Daniel R. Tovey. Measurement of the neutralino mass. ATLAS Note
ATL-CONF-2003-005, CERN, 2003.

[28] Giacomo Polesello. Prospects for the detection of heavy charginos and
neutralinos with the ATLAS detector at the LHC. ATLAS Note SN-
ATLAS-2004-041, CERN, 2004.

[29] Calin Alexa. Heavy lepton physics in ATLAS. ATLAS Note ATL-
PHYS-CONF-2005-001, CERN, 2005.

90 Bibliography

[30] Paul V. C. Hough. U.S. Patent 3 069 654, December 1962.

[31] J. Illingworth and J. Kittler. A survey of the hough transform. Comput.
Vision Graphics, Image Processing, (44):87�116, 1988.

[32] Rudolf Frühwirth, Meinhard Regler, Rudolf K. Bock, Hans Grote, and
Dieter Notz. Data Analysis Techniques for High-Energy Physics. Cam-
bridge Monographs on Particle Physics, Nuclear Physics and Cosmol-
ogy. Cambridge University Press, 2000.

[33] P.E.L.Clarke, R.Cran�eld, G.J.Crone, B.J.Green, J.A.Strong,
R.E.Hughes-Jones, S.Kolya, R.Marshall, D.Mercer, K.Korcyl,
R.Hatley, R.P.Middleton, F.J.Wickens, and A.Guglielmi. SCI
with DSPs and RISC processors for LHC 2nd level triggering. ATLAS
Internal Note DAQ-No-19, CERN, 1994.

[34] Konrad Kleinknecht. Detektoren für Teilchenstrahlung. B.G. Teubner,
1987.

[35] ATLAS Collaboration. ATLAS detector and physics performance tech-
nical design report. Technical report, CERN/LHCC 99-15, 1999.

[36] ATLAS Collaboration. ATLAS Magnet System Technical Design Re-
port. Technical report, CERN/LHCC 97-18, 1997.

[37] The ATLAS Muon Collaboration. Muon spectrometer technical design
report. Technical report, CERN/LHCC 97-22, 1997.

[38] ATLAS Collaboration. Calorimeter Performance, Technical Design
Report. Technical report, CERN/LHCC 96-40, 1996.

[39] ATLAS LARG Unit. Liquid Argon Calorimeter, Technical Design Re-
port. Technical report, CERN/LHCC 96-41, 1996.

[40] ATLAS Tile Calorimeter Collaboration. Tile calorimeter, technical
design report. Technical report, CERN/LHCC 96-42, 1996.

[41] ATLAS Inner Detector Community. ATLAS Inner Detector Technical
Design Report. Technical report, CERN/LHCC 97-16, 1997.

[42] ATLAS Collaboration. Pixel detector technical design report. Technical
report, CERN/LHCC 98-13, 1998.

[43] R. Bock and P. Le Dû. Detector and readout speci�cations, and bu�er-
RoI relations, for the Level-2 trigger demonstrator program. ATLAS
Note ATLAS DAQ note 62, CERN, 1997.

Bibliography 91

[44] P. Clarke, S. Falciano, P. Le Dû, J.B. Lane, M. Abolins, C. Schwick,
and F.J. Wickens. Detector and read-out speci�cation, and Bu�er-RoI
relations, for Level-2 studies. ATLAS Note ATL-DAQ-99-014, CERN,
1999.

[45] Sergey Sivoklokov. TRT trigger performance in the solenoidal magnetic
�eld. ATLAS Note ATL-DAQ-99-004, CERN, 1999.

[46] ATLAS HLT/DAQ/DCS Group. ATLAS High-Level Triggers, Data
Acquisition and Controls Technical Design Report. Technical report,
CERN/LHCC 2003-022, 2003.

[47] J. Baines, A. Baratella, B. Epp, S. George, V. M. Ghete, L. Guy,
S. Gonzalez, D. Hutchcroft, W. Li, P. Morettini, A. Nairz, F. Parodi,
S. Qian, F. Rizatdinova, D. Scannicchio, M. Sessler, P. Sherwood, S. Si-
voklokov, and M. Smizanska. B-Physics event selection for the ATLAS
High Level Trigger. ATLAS Note ATL-DAQ-2000-031, CERN, 2003.

[48] J. Bystrický, D. Calvet, J. Ernwein, O. Gachelin, Traudl. Hansl-
Kozanecka, J.R. Hubbard, M. Huet, P. Le Dû, I.D. Mandjavidze,
M. Mur, M. Smizanska, and B. Thooris. A sequential processing strat-
egy for the ATLAS event selection. ATLAS Note ATL-DAQ-96-059,
CERN, 1996.

[49] H. Bertelsen, G. Boorman, R. Cran�eld, G.J. Crone, M. Dam, J. Daw-
son, E. Dénes, R.W. Dobinson, D. Francis, B. Green, J.R.H Hansen,
P. Maley, B. Rensch, J.L Schlereth, and J. Strong. A local-global imple-
mentation of a vertical slice of the ATLAS second level trigger. ATLAS
Note ATL-DAQ-98-081, CERN, 1998.

[50] A. Kugel, K. Kornmesser, R. Lay, R. Männer, K.-H. No�z, S. Rühl,
M. Sessler, H. Simmler, H. Singpiel, V. Dörsing, W. Erhard, P. Kammel,
A. Reinsch, L. Levinson, R. Bock, W. Iwanski, K. Korcyl, J. Olszowska,
D. Calvet, J. R. Hubbard, P. Le Dû, I. Mandzavidze, and M. Smizan-
ska. ATLAS Level-2 Trigger Demonstrator-A activity report. part 1:
Overview and summary. ATLAS Internal Note DAQ-NO-085, CERN,
1998.

[51] CDF-IIb Collaboration. The CDF-IIb detector: Technical design re-
port. Technical report, FERMILAB-TM-2198, 2002.

[52] D0 Collaboration. D0 Run IIB upgrade technical design report. Tech-
nical report, FERMILAB-PUB-02-327-E, 2002.

92 Bibliography

[53] The BABAR Collaboration. The BABARDetector. Nuclear Instruments
and Methods in Physics Research Section A, 479:1�116, February 2002.

[54] The Belle Collaboration. The Belle Detector. Nuclear Instruments and
Methods in Physics Research Section A, 479:117�232, February 2002.

[55] S. Baileya, R. Barlow, J. Boyd, G. Brandenburg, X. Chai, N. de Groot,
N. Felt, G. Grenier, V. Halyo, S. Harder, O. Igonkina, W. Innes,
M. Kelly, S. Kolya, S. Lee, U. Mallik, D. Mercer, M. Morii, J. Oliver,
J. Olsen, N. Sinev, D. Su, E. Torrence, and E. Won. Rapid 3D track
reconstruction with the babar trigger system.

[56] E. J. Thomson, C. Ciobanu, J. Y. Chung, J. Gerstenslager, J. Hoftiezer,
R. E. Hughes, M. Johnson, P. Koehn, C. Neu, C. Sanchez, B. L. Winer,
J. Dittmann, J. Freeman, S. Holm, J. D. Lewis, C. J. Lin, T. Shaw,
T. Wesson, K. Bloom, D. Gerdes, N. Goldschmidt, J. Dawson, and
W. Haberichter. Online track processor for the cdf upgrade. IEEE
Transactions on Nuclear Science, 49:1063�1070, June 2002.

[57] B. Ashmanskas, A. Barchiesi, A. Bardi, M. Bari, M. Baumgart,
S. Belforte, J. Berryhill, M. Bogdan, R. Carosi, A. Cerri, G. Chlachidze,
R. Culbertson, M. Dell'Orso, S. Donati, I. Fiori, H. Frisch, S. Galeotti,
P. Giannetti, V. Glagolev, A. Leger, Y. Liu, T. Maruyama, E. Meschi,
L. Moneta, F. Morsani, T. Nakaya, G. Punzi, M. Rescigno, L. Ristori,
H. Sanders, S. Sarkar, A. Semenov, M. Shochet, T. Speer, F. Spinella,
H. Vataga, X. Wu, U.K. Yang, L. Zanello, and A.M. Zanetti. The
cdf silicon vertex trigger. Nuclear Instruments and Methods in Physics
Research Section A, 518:532�536, 2004.

[58] CMS Collaboration. Data Acquisition and High-Level Trigger Techni-
cal Design Report. Technical report, CERN/LHCC 2002-26, 2002.

[59] R. Carosi, G. Iannaccone, and G. Varotto. Real time track �nding in
CMS. CMS Internal Note CMS IN 2000/023, CERN, 2000.

[60] Marcel Vos. Tracking and b and τ tagging in the CMS high level trigger.
CMS Conference Report CMS CR 2006/004, CERN, 2006.

[61] W. Adam, Th. Speer, B. Mangano, and T. Todorov. Track reconstruc-
tion in the CMS tracker. CMS Note CMS NOTE 2006/041, CERN,
2006.

Bibliography 93

[62] S. Cucciarelli, M. Konecki, D. Kotli«ski, and T. Todorov. Track pa-
rameter evaluation and primary vertex �nding with the pixel detector.
CMS Note CMS NOTE 2003/026, CERN, 2003.

[63] LHCb Collaboration. LHCb Trigger Technical Design Report. Techni-
cal report, CERN/LHCC 2003-031, 2003.

[64] Olivier Callot. VELO tracking for the High Level Trigger. LHCb Note
LHCb 2003-027, CERN, 2003.

[65] Olivier Callot. Online pattern recognition. LHCb Note LHCb 2004-094,
CERN, 2004.

[66] Jeroen van Tilburg. Track simulation and reconstruction in LHCb.
PhD thesis, Vrije Universiteit Amsterdam, 2005.

[67] ALICE Collaboration. ALICE Technical Design Report of the Trigger,
Data Acquisition, High-Level Trigger, and Control System. Technical
report, CERN/LHCC 2003-062, 2004.

[68] NA57 Collaboration. Experiment NA57 at the CERN SPS. Journal of
Physics G, 25(2):473�480, February 1999.

[69] R. Bramm, H. Helstrup, J. Lien, V. Lindenstruth, C. Loizides,
D. Rohrich, B. Skaali, T. Steinbeck, R. Stock, K. Ullaland, A. Vestbø,
and A. Wiebalck. High-Level trigger system for the LHC ALICE exper-
iment. Nuclear Instruments and Methods in Physics Research Section
A, 502:441�442, 2003.

[70] STAR Collaboration. STAR detector overview. Nuclear Instruments
and Methods in Physics Research Section A, 499:624�632, March 2003.

[71] F. S. Bieser, H. J. Crawford, J. Engelage, G. Eppley, L. C. Greiner,
E. G. Judd, S. R. Klein, F. Meissner, R. Minor, Z. Milosevich,
G. Mutchler, J. M. Nelson, J. Schambach, A. S. VanderMolen, H. Ward,
and P. Yepes. The STAR trigger. Nuclear Instruments and Methods in
Physics Research Section A, 499:766�777, March 2003.

[72] C. Adler, J. Berger, M. Demello, T. Dietel, D. Flierl, J. Landgraf, J. S.
Lange, M. J. LeVine, Jr. A. Ljubicic, J. Nelson, D. Roehrich, R. Stock,
C. Struck, and P. Yepes. The STAR Level-3 trigger system. Nuclear
Instruments and Methods in Physics Research Section A, 499:778�791,
March 2003.

94 Bibliography

[73] R. Bramm, H. Helstrup, J. Lien, V. Lindenstruth, C. Loizides,
D. Rohrich, B. Skaali, T. Steinbeck, R. Stock, K. Ullaland, A. Vestbø,
and A. Wiebalck. Online pattern recognition for the ALICE High Level
Trigger. Nuclear Instruments and Methods in Physics Research Section
A, 502:443�445, 2003.

[74] Anders Strand Vestbø. Pattern Recognition and Data Compression
for the ALICE High Level Trigger. PhD thesis, Institutt for fysikk og
teknologi, Universitetet i Bergen, May 2004.

[75] J.T. Baines, J. Carter, P.A.M. Eerola, F. Gianotti, T. Hansl, R. Hawk-
ings, D.B. Hubbard, O. Palamara, S. Petrera, S.Yu. Sivoklokov,
M. Smizanska, and A. Watson. ATRIG 1.00: ATLAS Trigger Sim-
ulation User Guide Revision 0.00. ATLAS Note ATL-SOFT-94-017,
CERN, 1994.

[76] Reiner Hauser. The ATLAS Level 2 Reference Software. ATLAS Note
ATL-DAQ-2000-019, CERN, 2000.

[77] John Baines. cTrig - C environment for Trigger Studies.
http://hepunx.rl.ac.uk/atlasuk/simulation/level2/doc/ctrig/.

[78] M. Elsing et al. Analysis and conceptual design of the HLT Selection
Software. ATLAS Note ATL-DAQ-2002-013, CERN, 2002.

[79] ATHENA - Developer Guide. Atlas O�ine Computing web site.
http://atlas.web.cern.ch/Atlas/GROUPS/SOFTWARE/OO/architecture/General/index.html.
document in preparation.

[80] G. Comune, A. Corso-Radu, M. Elsing, M. Grothe, T. Schoerner-
Sadenius, D. Wicke, S. George, A. Lowe, T. Shears, J. T. Baines, and
S. Gonzalez. The algorithm steering and trigger decision mechanism
of the ATLAS High Level Trigger. ATLAS Note ATL-DAQ-2003-031,
CERN, 2003.

[81] S. Gonzalez, W. Wiedenmann, and A. Radu. Use of Gaudi in the
LVL2 Trigger: The steering controller. ATLAS Note ATL-DAQ-2002-
012, CERN, 2002.

[82] S. Armstrong (editor), J. T. Baines, C. P. Bee, M. Biglietti, A. Bo-
gaerts, V. Boisvert, M. Bosman, S. Brandt, B. Caron, P. Casado,
G. Cataldi, D. Cavalli, M. Cervetto, G. Comune, A. Corso-Radu, A. Di
Mattia, M. D. Gomez, A. dos Anjos, J. Drohan, N. Ellis, M. Els-
ing, B. Epp, F. Etienne, S. Falciano, A. Farilla, S. George, V. Ghete,

Bibliography 95

S. Gonzalez, M. Grothe, A. Kaczmarska, K. Karr, A. Khomich, N. Kon-
stantinidis, W. Krasny, W. Li, A. Lowe, L. Luminari, C. Meessen,
A. G. Mello, G. Merino, P. Morettini, E. Moyse, A. Nairz, A. Ne-
gri, N. Nikitin, A. Nisati, C. Padilla, F. Parodi, V. Perez-Reale, J. L.
Pinfold, P. Pinto, G. Polesello, Z. Qian, S. Resconi, S. Rosati, D. A.
Scannicchio, C. Schiavi, T. Schoerner-Sadenius, E. Segura, T. Shears,
S. Sivoklokov, M. Smizanska, R. Soluk, C. Stanescu, S. Tapprogge,
F. Touchard, V. Vercesi, A. Watson, T. Wengler, P. Werner, S. Wheeler,
F. J. Wickens, W. Wiedenmann, M. Wielers, and H. Zobernig. Algo-
rithms for the ATLAS High Level Trigger. ATLAS Note ATLAS-DAQ-
2003-002, CERN, 2003.

[83] J. T. Baines and W. Li. A Data Manager for the ATLAS High Level
Trigger. ATLAS Note ATL-COM-DAQ-2003-021, CERN, 2003.

[84] A.G. Melloy, S. Armstrong, and S. Brandt. An implementation of
Region-of-Interest selection for ATLAS High Level Trigger and o�ine
software environments. ATLAS Note ATLAS-SOFT-2003-005, CERN,
2003.

[85] Xilinx. Virtex-4 User Guide.
http://www.xilinx.com, 2006.

[86] IEEE Comp. Soc. IEEE Standard Description Language Based on the
VerilogTMHardware Description Language. IEEE Std 1364-2001, 2001.

[87] IEEE Comp. Soc. IEEE Standard VHDL Language Reference Manual.
IEEE Std 1076-2002, 2002.

[88] Katherine Compton and Scott Hauck. Recon�gurable computig: A
survey of systems and software. ACM Computig Surveys, 34(2):171�
210, June 2002.

[89] Klaus-Henning No�z. Ein FPGA-Prozessor als 2nd-Level-Trigger für
ATLAS. PhD thesis, Universität Mannheim, 1996.

[90] Jozsef Ludvig. Enable++: Ein universeller FPGA-Triggerprozessor für
das ATLAS-Experiment. PhD thesis, Universität Mannheim, 1998.

[91] Holger Singpiel. Der ATLAS LVL2-Trigger mit FPGA-Prozessoren.
PhD thesis, Ruprecht-Karls-Universität Heidelberg, November 2000.

[92] Andreas Kugel. MPRACE, preliminary documentation.
http://akugel.home.cern.ch/akugel/mpRace/.

96 Bibliography

[93] PLX Technology. PCI 9656 Data Book. PLX Technology.
http://www.plxtech.com.

[94] Xilinx. VirtexTM-II Platform FPGAs: Complete Data Sheet.
http://www.xilinx.com, 2003.

[95] Oliver Brosch. A Kaon Trigger for FOPI. PhD thesis, Ruprecht-Karls-
Universität Heidelberg, May 2004.

[96] Matthias Müller. Evaluation of an FPGA and PCI Bus based Readout
Bu�er for the ATLAS Experiment. PhD thesis, Universität Mannheim,
2004.

[97] Stefan Hezel. FPGA-basiertes Template-Matching mit Distanztrans-
formierten Bildern. PhD thesis, Universität Mannheim, February 2004.

[98] Gerhard Lienhart. Beschleunigung Hydrodynamischer Astrophysikalis-
cher Simulationen mit FPGA-Basierten Rekon�gurierbaren Koprozes-
soren. PhD thesis, Ruprecht-Karls-Universität Heidelberg, July 2004.

[99] Christian Hinkelbein. Control Software for Recon�gurable Coproces-
sors. PhD thesis, Universität Mannheim, October 2005.

[100] A. Baratella, P. Morettini, M. Dameri, and F. Parodi. PixTrig: a Level
2 track �nding algorithm based on pixel detector. ATLAS Note ATL-
DAQ-2000-025, CERN, 2000.

[101] R. Dankers and J. Baines. A data preparation algorithm for the Pre-
cision Tracker LVL2 FEX. ATLAS Note ATL-DAQ-99-001, CERN,
1999.

[102] G. Lienhart, A. Kugel, and R. Männer. Using �oating point arithmetic
on FPGAs for accelerating scienti�c N-Body simulations. In Je�rey
Arnold and Kenneth L. Pocek, editors, FCCM02, Symposium on Field-
Programmable Custom Computing Machines, pages 182�191, Napa Val-
ley, California, USA, April 2002. IEEE Computer Society Press.

[103] N. Konstantinidis, M. Sutton, J. Baines, D. Emeliyanov, F. Parodi,
C. Schiavi, and H. Drevermann. Fast tracking for the ATLAS LVL2
trigger. ATLAS Note DAQ-CONF-2005-001, CERN, 2005.

[104] Dmitry Emeliyanov. A Kalman �lter for track �tting in trigidscan.
ATLAS Note ATL-COM-DAQ-2004-012, CERN, 2004.

Bibliography 97

[105] P. Billoir and S. Qian. Further test for the simultaneous pattern recog-
nition and track �tting by the Kalman �ltering method. Nuclear In-
struments and Methods in Physics Research Section A, 294:219�228,
1990.

[106] P. Billoir and S. Qian. Further test for the simultaneous pattern recog-
nition and track �tting by the Kalman �ltering method. Nuclear In-
struments and Methods in Physics Research Section A, 295:492�500,
1990.

[107] D.G. Cassel and H. Kowalski. Pattern recognition in layered track
chambers using a tree algorithm. Nuclear Instruments and Methods in
Physics Research Section A, 185:235, 1981.

[108] Weidong Li. Track �nding in SCT using a tree algorithm.
http://www.hep.ph.rhbnc.ac.uk/∼li/ctrig/treeAlgorithm.htm.

[109] Sergey Sivoklokov. High-pT Level 2 Trigger algorithm for the TRT
detector in ATRIG. ATLAS Note ATL-DAQ-2000-043, CERN, May
2000.

[110] C. Hinkelbein, A. Kugel, R. Männer, M. Müller, M. Sessler, H. Simmler,
H. Singpiel, J. Baines, R. Bock, and M. Smizanska. Pattern recognition
in the TRT for the ATLAS B-Physics trigger. ATLAS Note ATL-DAQ-
99-012, CERN, 1999.

[111] Matthias Sessler. Algorithms on CPUs and FPGAs for the ATLAS
LVL2 Trigger. PhD thesis, Ruprecht-Karls-Universität Heidelberg,
February 2000.

[112] U. Egede, T. Akesson, D. Froidevaux, and I. Gavrilenko. Fake tracks
in the ATLAS straw detector. ATLAS Internal Note INDET-NO-083,
CERN, 1994.

[113] Igor Gavrilenko. Pattern recognition in TRD/Tracker (TRD/T). AT-
LAS Internal Note INDET-NO-016, CERN, 1992.

[114] Dmitry Emeliyanov. The Probabilistic Data Association �lter for the
fast tracking in ATLAS TRT. ATLAS Note ATL-COM-DAQ-2005-022,
CERN, 2005.

[115] A. DellAcqua (reviewer), S. George (reviewer), W. Wiedenmann (re-
viewer), J. Baines (PESA ID Algorithms coordinator), and M. Elsing
(ID Software coordinator). LVL2 Inner Detector Reviewers Comments.
https://uimon.cern.ch/twiki/bin/view/Atlas/TrigInDetRevComment.

98 Bibliography

[116] Dmitry Emeliyanov. The timing measurements of the Level-2 Trigger
data preparation and track reconstruction algorithms. In preparation.

[117] J. Baines, B. Epp, V. Ghete, A. Nairz, S. Sivoklokov, S. George, G. Hol-
lyman, and D. Hutchcroft. E�ects of inner detector misalignment and
ine�ciency on the ATLAS B-physics trigger. ATLAS Note ATL-DAQ-
2001-006, CERN, 2001.

[118] Thijs Cornelissen. CTBTracking: track reconstruction for the testbeam
and cosmics. ATLAS Note COM-INDET-2006-003, CERN, March
2006.

[119] The PESA Steering Working Group. Steering, con�guration and imple-
mentation of HLT trigger menus. analysis, conceptual design, require-
ments. In preparation.

[120] Cvetan Cheshkov. Fast Hough Transform tracking for the ALICE TPC.
In Workshop on Tracking In high Multiplicity Environments, October
2005.

ACKNOWLEDGMENTS

I would like to thank all the people who have supported me during the work
on this thesis.

I thank Prof. Dr. Reinhard Männer for the possibility to work in his re-
search group, great support, advices and very nice working atmosphere. I
thank all people from FPGA group (current and former members): Maoyuan
Yu, Guillermo Marcus, Stefan Hezel, Oliver Brosch, Holger Singpiel, Har-
ald Simmler. Special thanks to Andreas Kugel, Matthias Müller, and Erich
Krause for the very detailed answers for my, some times naive, questions. I
would like to express personal gratitude to Christian Hinkelbein for long and
very useful discussions about the track recognition and the TRT LUT-Hough
algorithm. It is a real pleasure to work in one group with such people.

I am very grateful to Oleg Krivonos and Gerhard Lienhart for the careful
reading of this thesis and very useful comments.

Thanks must be given to colleagues from ICM: Dzmitry Stsepankou and
Dzmitry Maximov for the interesting discussions and ideas from other then
High Energy physic image processing applications.

I would like to acknowledge the support and help of the ATLAS HLT and
PESA groups, especially Sergey Sivoklokov, John Baines, Dimitry Emeliyanov,
Nikos Konstantinidis, and Steve Armstrong.

