
ALGEBRAIC ATTACKS ON

CERTAIN STREAM CIPHERS

Inauguraldissertation
zur Erlangung des akademischen Grades
eines Doktors der Naturwissenschaften

der Universität Mannheim

vorgelegt von

Diplom-Mathematiker Frederik Armknecht
aus Worms

Mannheim, 2006

Dekan: Professor Dr. Matthias Krause, Universität Mannheim
Referent: Professor Dr. Matthias Krause, Universität Mannheim
Korreferent: Professor Dr. Willi Meier, Fachhochschule Nordwestschweiz

Tag der mündlichen Prüfung: 30. November 2006

Abstract

To encrypt data streams of arbitrary lengths, keystream generators are
used in modern cryptography which transform a secret initial value, called
the key, into a long sequence of seemingly random bits. Many designs are
based on linear feedback shift registers (LFSRs), which can be constructed
in such a way that the output stream has optimal statistical and periodical
properties and which can be efficiently implemented in hardware. Partic-
ularly prominent is a certain class of LFSR-based keystream generators,
called (ι, m)-combiners or simply combiners. The maybe most famous ex-
ample is the E0 keystream generator deployed in the Bluetooth standard
for encryption.

To evaluate the combiner’s security, cryptographers adopted an adver-
sary model where the design and some parts of the input and output are
known. An attack is a method to derive the key using the given knowledge.
In the last decades, several kinds of attacks against LFSR-based keystream
generators have been developed. In 2002 a new kind of attacks came up,
named ”algebraic attacks”. The basic idea is to model the knowledge by
a system of equation whose solution is the secret key. For several exist-
ing combiners, algebraic attacks represent the fastest theoretical attacks
publicly known so far.

This thesis discusses algebraic attacks against combiners. After provid-
ing the required mathematical fundament and a background on combiners,
we describe algebraic attacks and explore the two main steps (generating
the system of equations and computing the solution) in detail. The effi-
ciency of algebraic attacks is closely connected to the degree of the equa-
tions. Thus, we examine the existence of low-degree equations in several
situations and discuss multiple design principles to thwart their existence.
Furthermore, we investigate ”fast algebraic attacks”, an extension of alge-
braic attacks.

3

Zusammenfassung

Um Datenströme beliebiger Länge zu verschlüsseln werden in der mod-
ernen Kryptographie Schlüsselstromgeneratorern eingesetzt, welche einen
geheimen Initialwert, den so genannten Schlüssel, in einen langen Strom
scheinbar zufälliger Bits zu transformieren. Viele Designs basieren auf lin-
earen Rückkopplungsschieberegistern (in Englisch: linear feedback shift
registers (LFSRs)), welche so konstruiert werden können, dass die Ausgabe-
ströme optimale statistische und periodische Eigenschaften aufweisen, und
welche effizient in Hardware implementiert werden können. Besonders be-
deutend ist eine spezielle Klasse der LFSR-basierten Schlüsselstromgenera-
toren, welche (ι, m)-Combiner oder einfach nur Combiner genannt werden.
Das vielleicht bekannteste Beispiel ist der E0 Schlüsselstromgenerator, ein-
gesetzt im Bluetooth Standard zur Verschlüsselung.

Um die Sicherheit eines Combiners zu evaluieren wenden Kryptographen
ein Feindmodell an, in welchem sowohl das Design als auch Teile der
Ein- und Ausgabe bekannt sind. Ein Angriff stellt eine Methode dar, das
vorhandene Wissen zu nutzen, um den geheimen Schlüssel abzuleiten.
In den letzten Jahrzehnten wurden unterschiedliche Arten von Attacken
gegen LFSR-basierten Schlüsselstromgeneratoren entwickelt. 2002 kam
ein neues Verfahren auf, genannt ”algebraische Attacke”. Die zugrundelie-
gende Idee ist es, das Wissen durch eine Gleichungssystem darzustellen,
dessen Lösung dem geheimen Schlüssel entspricht. Algebraische Attacken
stellen für manche existierende Combiner die bisher schnellsten öffentlich
bekannten Angriffe dar.

Diese Arbeit behandelt algebraische Attacken gegen Combiner. Nach
der Bereitstellung des notwendigen mathematischen Fundaments und des
Hintergrundes zu Combinern erklären wir algebraische Attacken und un-
tersuchen die beiden Hauptschritte (Erstellen des Gleichungssystems und
Berechnung der Lösungen). Die Effizienz der algebraischen Attacken ist
eng verknüpft mit dem Grad der Gleichungen. Aus diesem Grund er-
forschen wir die Existenz solcher Gleichungen mit niedrigem Grad und
diskutieren mehrere Designprinzipien zur Vermeidung ihrer Existenz. Aus-
serdem untersuchen wir die so genannten ”schnellen algebraischen Attak-
ken”, eine Erweiterung der algebraischen Attacken.

4

Acknowledgements

It belongs to the most pleasant and most difficult ”duties” of an author
to thank all the people who contributed directly or indirectly to his work.
Pleasant as it gives the opportunity to credit all the helpful persons, which
can never happen often enough. Difficult as the list is far too big to be
covered in a few lines and many are likely to be overlooked. Nonetheless, I
will try to do my best in expressing my gratitude at least to those who had
the most impact on my work.

First and foremost, I wish to thank my two PhD supervisors, Prof. Dr.
Matthias Krause and Prof. Dr. Willi Meier1, for their support and the
both pleasant and fruitful collaborations. I’ve always considered it to be
an enormous luck to have the possibility of working and discussing with
two such gifted minds. Matthias deserves additional credit for handling all
the administrative problems of becoming a PhD - including but not limited
to making sure that there would always be sufficient money to keep me
going.2

Additional thanks go to Dr. Stefan Lucks. I enjoyed our inspiring brain-
storming sessions and profited more than once from his broad and deep
knowledge on cryptography. A special thank goes to my former colleague
and good friend Dr. Erik Zenner, whose support accompanied me from the
first day when he guided me through the University’s campus until the end
when he proofread most of my thesis. Without his good advices, the start
would have been much harder.

I heartily thank all the nice colleagues at the University of Mannheim
which made my work environment such a pleasant place, especially Dirk
Stegemann for his technical support and for proofreading parts of my the-
sis.

I would also like to stress how pleasant the contact and work was and
is with the cryptographic community. It is amazing to see and to talk
to so many talented and intelligent people. And the fact that even the
most prominent crypto experts treat us newcomers with respect cannot be
esteemed enough.

No words can express my gratitude to my wife Ricarda for all the won-
derful years we spent together and for the years to come. She and our son
Leonard enrich my life more than anything else. They help me to keep my
focus on what really matters in life. Therefore, this work is dedicated to
her.

1Actually, the title of the thesis is a homage to one of his famous papers.
2This work was partially supported by grant Kr 1521/7-2 of the DFG (German Research

Foundation).

5

To my wife Ricarda

ii

Contents

1 Introduction 3

2 Preliminaries 9

2.1 Keystream generators . 10

2.2 Mathematical preliminaries . 17

2.2.1 Groups . 17

2.2.2 Rings . 17

2.2.3 Fields . 19

2.2.4 Multivariate polynomials 20

2.2.5 Extension fields and finite fields 22

2.3 Functions over finite fields . 26

2.4 Linear feedback shift registers 29

2.5 (ι, m)-combiners . 35

2.5.1 A toy (2,0)-combiner . 37

2.5.2 The Geffe generator . 38

2.5.3 The summation generator 38

2.5.4 The E0 keystream generator 39

2.6 Attacks on (ι, m)-combiners . 41

3 Algebraic attacks 45

3.1 Principles . 46

3.2 Generating a system of equations 49

3.2.1 Simple combiners . 49

3.2.2 Combiners with memory 50

3.2.3 Z-functions . 52

3.3 Computing the solution . 59

3.3.1 Gröbner bases . 59

3.3.2 Linearization . 65

3.3.3 Other methods . 69

3.3.4 Experimental results . 70

3.4 Summary and effort estimation 73

iii

Contents

4 On the equations in algebraic attacks 79

4.1 Criteria for low degree equations 80

4.1.1 Previous works and algebraic immunity 80

4.1.2 Z-functions and annihilators 82

4.1.3 The sets XZ . 83

4.1.4 Annihilators . 88

4.1.5 On Z-functions and r-functions 90

4.2 Finding low degree equations 95

4.2.1 Using Gröbner bases . 95

4.2.2 A straightforward algorithm 95

4.2.3 An algorithm adapted to permutation invariant (ι, m)-
combiners . 102

4.2.4 A quadratic time algorithm 107

4.3 Design principles . 109

4.3.1 Properties of the lowest annihilator degree 109

4.3.2 Simple combiners . 111

4.3.3 Combiners with memory 113

4.4 Algebraic attacks with related keys 115

5 Fast algebraic attacks 123

5.1 Principles . 124

5.2 On the precomputation step . 135

5.2.1 A new sufficient criterion for the correctness 136

5.2.2 An improved precomputation algorithm 147

5.3 Divide-and-conquer fast algebraic attacks 157

5.4 Adapted precomputation steps with minimized run length . . 160

5.4.1 Motivation . 160

5.4.2 A special representation of Boolean function 164

5.4.3 Connecting attributes A to certain sets ΩA 168

5.4.4 Efficient precomputation steps with the minimum run
length . 171

5.5 Immunity of simple combiners against fast algebraic attacks . 175

5.5.1 Boolean Functions . 175

5.5.2 How to set up Equations for Arbitrary Functions 178

5.5.3 How to set up Equations for Symmetric Functions . . . 184

5.5.4 Fast Algebraic Attacks on the Majority Function 191

5.5.5 Experimental Results . 195

6 Conclusion 197

Bibliography 201

iv

Contents

Index 215

1

Contents

2

1 Introduction

3

1 Introduction

Modern cryptography

Historically, cryptography arose as a means to ensure the privacy of the in-
formation that communicating parties send to each other, even in the pres-
ence of an adversary with access to the communication channel. While first
approaches were based on steganography, i.e., hiding messages in such a
way that no one except for the intended recipient knows of the existence
of the message, later on one tried to encrypt messages. Encryption is the
process of obscuring information to make it unreadable without special
knowledge.

Not surprisingly, cryptography was mainly the domain of the military,
secret agencies and diplomats for a long time. However, the increased de-
mand for confidential data exchange, last but not least pushed by the up-
coming electronic communication, made cryptography also of interest for
the regular citizen. But it was not before the early 1970s that two events
brought it into the public domain: the creation of a public encryption stan-
dard (DES), and the invention of public-key cryptography.

Since then cryptography evolved a lot and broadened its scope. Although
modern cryptography covers various subjects such as digital cash, authen-
tication and electronic voting, encryption still remains the fundamental ob-
jective.

Keystream generators

In multiple occasions, there exists a need for encrypting data streams with
high speed, e.g., for phone calls or video streams. Especially designed for
this task are stream ciphers. Many stream ciphers used in practice and dis-
cussed in theory are based on keystream generators. A keystream gener-
ators produces an output stream of arbitrary length, named the keystream,
after it has been initialized with a secret value, called the key. The keystream
is then combined with the data stream to encrypt it. A legal receiver who
knows the secret key and the used keystream generator can produce the
same keystream by himself and decrypt the encrypted data stream.

For several reasons, linear feedback shift registers (LFSRs) have turned
out to be very advantageous building blocks for keystream generators. They
can be efficiently implemented in hardware and generate streams with good
statistical properties. Examples for LFSR-based keystream generators used
in practice are E0 from the Bluetooth standard for wireless communica-
tion, A5/1 used in the GSM-encryption, and RC4 used in SSH, HTTPS, and
WLAN.

If the keystream generator is to be used in a cryptographic setting, it
should be impossible (or at least practically infeasible) for someone not

4

knowing the secret key to decrypt the encrypted data stream. Of course,
an attacker could simply try to guess the secret key. We call this strategy
a brute force attack. In order to avert this approach, modern key sizes are
chosen of length of 128 bits or more. However, one cannot exclude the
possibility that a potential adversary has some knowledge about both the
keystream generator and the keystream. Thus, he might exploit possible
structural weaknesses to break the scheme. To understand and evalu-
ate the security of keystream generators, cryptographers developed several
kinds of methods and attacks in the last decades. The underlying goal of
cryptanalysis is not destructive, but constructive: Only by improving the
understanding of possible weaknesses, it is possible to construct new de-
sign principles.

The newest attacks, dating back to 2002, are ”algebraic attacks”. The ba-
sic idea is to model the attacker’s knowledge by a system of equation whose
solution reveals the secret key. For several existing LFSR-based keystream
generators, algebraic attacks represent the fastest theoretical attacks pub-
licly known so far. Another remarkable fact is that under certain conditions
the effort grows only polynomial with the key size. This differs from most
attacks which have an exponential effort.

On this thesis

Since the upcoming of the first papers on algebraic attacks, cf. for example
[Cou02, CouM03], the theory of algebraic attacks has evolved a lot, includ-
ing the extension to a broader class of keystream generators [ArmK03], the
introduction of fast algebraic attacks [Cou03, Arm04a], or the connection to
annihilators [MeiPC04, Arm05a]. Hence, some statements or results in the
earlier papers are no longer up-to-date. This fact and the steadily growing
number of papers on this subject make it difficult for newcomers to orient
on this field.

Therefore, one of the main goals of this thesis, apart from presenting
own results of course, is to provide a comprehensible and comprehensive
description of the main results concerning algebraic attacks. We will try
to cover most main results on algebraic attacks and describe them in their
context. Of course, the content and the presentation are influenced by our
viewpoint and our results. Thus, we recommend the papers cited in this
work for further reading.

To be self-contained, we pay attention to prove almost all statements1 and
to require as little knowledge as possible. Actually, we assume only some
basic linear algebra. Everything else will be introduced and explained. The-

1If not otherwise stated, we conducted the proofs by ourself.

5

1 Introduction

ory is only introduced if and when it is needed.

Furthermore, we will give examples for the majority of the definitions and
statements. This hopefully makes it easier for the reader to understand
the sometimes very technical content. Of course due to the rather theo-
retic nature of most parts, a certain amount of notations and definitions
is unavoidable. Therefore, we included an index at the end of the thesis,
which allows the reader to quickly look up the most important terms. These
terms are also highlighted in bold in the main text to be easily recognizable.
Also included at the beginning of the index is a list of the most important
notations.2

Due to the rapidly growing number of publications on this field, it is out
of hope to cover all results or to be up to date. Already in the time be-
tween April 2006, when we stopped writing down new content, and August
2006, when we finalized the text, several papers appeared which are not
mentioned in this text. However, our hope is that the thesis suits as a
good starting point for understanding algebraic attacks and some of the
developments.

The thesis is organised as follows:

• Chapter 2 provides the general framework and the mathematical back-
ground of the thesis and introduces important notions and concepts.
After introducing the ideas of keystream generators in Section 2.1, we
provide the mathematical theory used throughout the thesis in Sec-
tion 2.2. We presuppose for this purpose only basic knowledge in lin-
ear algebra. As the system of equations in algebraic attacks consists
of functions over finite fields, we explore this topic in Section 2.3. In
Section 2.4, we will learn more about LFSRs, and in Section 2.5 about
the type of LFSR-based keystream generators that we will consider in
the thesis. The chapter concludes with Section 2.6 where we give a
short overview of already existing attacks.

• Chapter 3 describes algebraic attacks on LFSR-based keystream gen-
erators. We explicate the basic principles in Section 3.1,namely that
algebraic attacks are based on creating and solving a system of equa-
tions. Consequently, we describe in Section 3.2 how to generate the
system of equations, including our extensions to combiners with mem-
ory [ArmK03] and examine in Section 3.3 various methods to find the
solutions. At the end, we give a rough effort analysis in Section 3.4.

• The efficiency of algebraic attacks is closely related to the existence of
low-degree equations and how to find them. Chapter 4 is dedicated

2However, we could not always understand the ordering chosen by LaTeX.

6

completely to this topic. This includes a complete framework on the
existence of such equations in Section 4.1 for combiners with memory
over arbitrary finite fields [Arm05a], algorithms to find them in Section
4.2, including our special algorithms for permutation invariant com-
biners from [Arm04b], and design principles to avoid them in Section
4.3 (with our proposal for combiners with memory from [ArmKS05]).
At the end, we describe in Section 4.4 our algebraic attacks based
on generating low-degree equations by exploiting linear keyschedules
[ArmLP04] or using fault attacks [ArmM05].

• Chapter 5 is on fast algebraic attacks. Their basic idea is to use the
special structure of the system of equations to reduce the degree be-
fore starting to solve it, which is described in Section 5.1. In Sec-
tion 5.2, we explain our results from [Arm04a] on the precomputa-
tion step. After briefly addressing another variant of fast algebraic
attacks in Section 5.3, we explain in Section 5.4 extensions of the pre-
computation step to reduce the data effort to a minimum (both from
[ArmA05]). The chapter concludes with Section 5.5 on our results on
the immunity of simple combiners against fast algebraic attacks from
[ArmCGKMR06].

• Chapter 6 provides final conclusions.

Publications:

The contents of this thesis are based on a number of publications by the
author. We give here a complete list of our publications:

1. F. Armknecht: A Linearization attack on the Bluetooth Keystream Gen-

erator, Cryptology ePrint Archive, Report 2002/191, 2002.

2. F. Armknecht and M. Krause: Algebraic Attacks on Combiners with

Memory, Crypto 2003.

3. F. Armknecht: Improving Fast Algebraic Attacks, Fast Software En-
cryption 2004.

4. F. Armknecht, S. Lucks: Linearity of the AES Key Schedule, 4th AES
Coenference, 2004.

5. F. Armknecht, J. Lano, and B. Preneel: Extending the Resynchroniza-

tion Attack, Selected Areas in Cryptography 2004.

6. F. Armknecht: On the Existence of low-degree Equations for Algebraic

Attacks, Cryptology ePrint Archive, Report 2004/185, 2004.

7

1 Introduction

7. F. Armknecht: Algebraic Attacks and Annihilators, WEWORC 2005.

8. F. Armknecht and W. Meier: Fault Attacks on Combiners with Memory,
Selected Areas in Cryptography 2005.

9. F. Armknecht and G. Ars: Introducing a New Variant of Fast Alge-

braic Attacks and Minimizing Their Successive Data Complexity, My-
crypt 2005.

10. F. Armknecht, M. Krause, and D. Stegemann: Design Principles for

Combiners with Memory, Indocrypt 2005.

11. F. Armknecht, J. Brandeis and E. Ilinykh: Experimental Results on

Algebraic Attacks on Stream Ciphers, Sicherheit 2006.

12. F. Armknecht, C. Carlet, P. Gaborit, S. Künzli, W. Meier, and O. Ru-
atta: Efficient Computation of Algebraic Immunity for Algebraic and

Fast Algebraic Attacks, Eurocrypt 2006.

13. F. Armknecht and M. Krause: Constructing single- and multi-output

Boolean functions with maximal algebraic immunity, ICALP 2006.

8

2 Preliminaries

9

2 Preliminaries

2.1 Keystream generators

Shannon described the principle of encryption in [Sha49] as a modification
of his well-known communication model, proposed in [Sha48]. Involved
are two entities, usually referred to as sender and receiver. The sender’s
goal is to confidentially transmit some data, named the plaintext, to the
receiver. For this purpose he has access to two different communication
channels:

Secret channel: The secret channel is completely confidential. None of the
data transmitted over this channel can be eavesdropped by anybody
except sender and receiver. However, the usage of this channel is
limited to certain time points, e.g. when sender and receiver are in the
same place.

Public channel: The public channel can be used anytime to transmit data
of arbitrary size. Yet, it is insecure in so far as anybody can listen to
the transmitted messages.

As the usage of the secret channel is limited to certain periods, it cannot
always be used to transmit the plaintext. On the other hand, as an adver-
sary has access to the public channel, the plaintext cannot be send on this
way either.

One possibility to conceal the messages from eavesdroppers is to use a
cryptosystem to encrypt it. This means that the data is modified before
submission in such a way that the transmission, called the ciphertext,
reveals no obvious information about the underlying message. Only a le-
gitimate receiver should be able to un-do the modification of the data to
recover the original meaning.

The formal notion of a cryptosystem is the following:

Definition 2.1. [Sti02, Def. 1.1] A cryptosystem or cipher is a five-tuple

(P, C,K, E, D), such that the following conditions are satisfied:

• P is a finite set of possible plaintexts.

• C is a finite set of possible ciphertexts.

• K, the keyspace, is a finite set of possible keys.

• E : K × P → C is the encryption algorithm

• D : K × C → P is the decryption algorithm

• For each K ∈ K, it holds that D(K, E(K, P)) = P for all P ∈ P.

10

2.1 Keystream generators

According to the established notation, we write EK(.) for E(K, .) and sim-
ilarly DK(.) for D(K, .). Sender and receiver now use the following protocol
to exchange confidential messages:

1. At first they agree on a secret key K ∈ K. Therefor, the secret channel
is used to exchange all necessary data. This has to be done only once.

2. Given a plaintext P ∈ P, the sender uses the encryption function EK

to encrypt the plaintext P to the ciphertext C := EK(P).

3. Thereafter, the ciphertext C is sent via the public channel to the re-
ceiver.

4. A receiver, who knows the employed secret key K, decrypts the ci-
phertext by P = DK(C).

The whole situation is displayed in Figure 2.1.1.

secret channel

public channel

K K

P PCE D

Figure 2.1.1: Shannon’s model of encryption

Observe that any potential eavesdropper listening to the public channel
gets to know only C but not P . If an adversary is still able to derive some
information on P and/or K, the cryptosystem should certainly be regarded
as insecure. This leads us directly to the question on how to evaluate the
security of a cryptosystem.

First of all, it is necessary to introduce a third party, called the attacker.
Following Kerckhoffs’ principle [Ker83], it is assumed that an attacker
has access to all public information. That includes both any data trans-
mitted via the public channel and the definitions of the cryptosystem, that
is the five-tuple (P, C,K, E, D). An attacker’s goal is to derive some secret
information, for instance the plaintext P and/or the secret key K. The
algorithm deployed by him will be called attack.

Different definitions of attackers and attack models exist (e.g., see [Rue89,
Rue92], and [Zen04, Chapter 2]). However, we will concentrate only on the
following instance. An attacker is able to operate on a uniform compu-
tational model, like a Turing machine, whose computational behaviour is

11

2 Preliminaries

similar to that of a programmable microprocessor. Or, less formal, the at-
tacker has access to a personal computer to perform the computations of
his attack. One single operation will be called a basic operation. To eval-
uate the efficiency of an attack, we will consider the following three values:

1. The number of data needed, e.g. the amount of plaintext and/or ci-
phertext.

2. The run time to perform the attacker, that is the number of basic
operations.

3. The amount of memory required to store information for an attack.

Of course, different attackers may have access to machines with differ-
ent capabilities. Thus, it doesn’t make sense to refer to exact times and
memory requirements when evaluating an attack. On the other hand, if
one compares two different machines, any basic operation performed on
one machine can be likewise executed by a constant number of basic op-
erations on the other one. Therefore, to keep the evaluations of attacks
independent from the deployed machine, we will describe the number of
basic operations and memory consumptions in the usual O-notation:

Definition 2.2. Let f : N→ R be a function from the set of integers to the set

of real numbers. By O(f), we denote the set

O(f) := {g : N→ R | ∃c > 0, ∃n0 ≥ 0 : ∀n > n0 : g(n) < c · f(n)}

That is, any attack needs an amount of data in O(d), a number of (basic)
operation in O(o) and a memory of size in O(m) where d, o, and m are some
mappings from N to R and the input is normally the key size.

For certain applications in practice, e.g. encryption in mobile phones,
there is a need for cryptosystems that are able to encrypt data of arbitrary
length as fast as possible. One possibility, which is widely used, are stream
ciphers based on keystream generators. Examples are the keystream gen-
erator E0 from the Bluetooth standard for wireless communication [Blu99],
A5/1 used in the GSM-encryption [BriGW98, ZenWL00], and RC4 used in
SSH, HTTPS, and WLAN [FluMS01]. Keystream generators are finite state
machines with an additional output function to produce sequences of out-
puts of arbitrary length. We first give a formal definition:

Definition 2.3. A keystream generator consists of the following compo-

nents:

• an internal state,

12

2.1 Keystream generators

• a finite set K of possible internal states,

• an update function Υ : K → K ,

• a finite set Z called the keystream alphabet, and

• an output function f : K → Z∗.

At the beginning, the internal state is initialized to a key (or initial state)

S0 ∈ K. Then, the following operations are performed repeatedly:

1. An output zt ∈ Z is computed by zt = f(St).

2. The internal state is updated according to St+1 := Υ(St).

We say that a clock is the time period within the two operations described

above are executed. That is, in clock t the output zt is produced and St

changed to St+1. The stream z0, z1, . . . of outputs is called the keystream.

Remark 2.4. Usually one would prefer to choose a bijective update function

Υ. Otherwise, different keys might eventually lead to the same keystream,

which might weaken the cryptographic security if the other components are

not appropriate designed.

The idea of keystream generators is derived from the one-time pad, in-
troduced in [Ver26]. Let P = C = K = {0, 1}n for some integer n ≥ 1. The
encryption algorithm is defined as EK(P) := K⊕P where ⊕ denotes the com-
ponentwise XOR. The corresponding decryption function is DK(C) = K⊕C.
It has been proved in [Sha49] that this cryptosystem is perfectly secure if
K is used only once (therefore the name one-time pad) and is chosen uni-
formly distributed from {0, 1}n. Thereby, perfectly secure means that if an
attacker knows only C, then it is impossible for him to gain any information
about P and/or K, even with unlimited time, memory and computational
resources.

Of course, the one-time pad is infeasible for practical applications, as it
would require to manage keys of the same size as the data that has to be
encrypted. Thus, instead of using random keys of the same size as the mes-
sage, one uses smaller keys to initialize a keystream generator to generate
pseudo-random bitstreams of the length of the plaintext, giving a pseudo
one-time pad. A formal definition of the cryptosystem is the following:1

1Although other kind of stream ciphers exist we will consider only these which are based
on keystream generators as defined in [Sti02]. Notice that for practical applications
further definitions are required, e.g. how to initialize the stream cipher and if, how,
and when the value K should be updated.

13

2 Preliminaries

Definition 2.5. [Sti02, Def. 1.6] A (synchronous) stream cipher based on

a keystream generator is a tuple (P, C,K,Z, E, D) together with a keystream

generator KSG, such that the following conditions are satisfied:

• P is a finite set called the plaintext alphabet

• C is a finite set called the ciphertext alphabet

• K, the keyspace, is a finite set of possible keys

• Z is a finite set called the keystream alphabet

• The keystream generator takes a key K ∈ K as input to generate a

string z0, z1, z2, . . ., called the keystream, of arbitrary length with zt ∈ Z
for all t ≥ 0.

• E : Z ×P → C is the encryption algorithm

• D : Z × C → P is the decryption algorithm

• For each z ∈ Z, it holds that D(z, E(z, P)) = P for all P ∈ P.

Sender and receiver encrypt their messages as follows:

1. Sender and receiver agree on a secret key K ∈ K. Therefor, the secret
channel is used to exchange all necessary data. This has to be done
only once.

2. Let P = (p0, p1, p2, . . .) with pt ∈ P denote the plaintext. The sender uses
K and the keystream generator to generate a keystream z0, z1, z2, . . .
and encrypts P to C := (c0, c1, c2, . . .) with Ct := Ezt(pt). C is send to the
receiver over the public channel.

3. The receiver, who has knowledge of the secret key K, can generate the
same keystream z0, z1, z2, . . . on his own.

4. Knowing the keystream, the receiver decrypts pt = Dzt(ct).

Figure 2.1.2 sketches this setting.
In cryptography, the stream cipher is claimed to be secure if and only if

the underlying keystream generator is secure. For the security analysis of a
keystream generator, we consider the following attack model.2 An attacker
knows all public information as for example the exact specifications Υ and
f of the keystream generator. Additionally, he is able to observe the values

2Notice that other kind of attacks can be found in open literature as distinguishing at-
tacks and predicting attacks.

14

2.1 Keystream generators

secret channel

KK

public channel

KSG KSG

ztzt

pt ptctE D

Figure 2.1.2: Encryption with a keystream generator

of some of the keystream elements zt. The attacker’s goal is to find out the
secret key K. If he is successful, he can compute the keystream for himself
and easily decrypt the whole ciphertext.

The simplest attack is the so called brute force attack, where the adver-
sary exhaustively tries all K ′ ∈ K until a candidate is found that matches
to the observed information. That is random values K ′ ∈ K are used to
initialize the keystream generator and to produce some keystream. If this
keystream is equal to the one observed, then the guess was seemingly cor-
rect. Observe that this attack requires a number of operations that is in
O(|K|). If an attacker wants to attack more than one entity of keystream
generator, he can alternatively precompute for each possible key the corre-
sponding keystream and store it in memory. Then, he could quickly look up
in this table for each observed keystream the appropriate key. Of course,
the time effort for the precomputation would be still in O(|K|), likewise the
memory requirements.

To avoid this kind of attack, nowadays key sizes are chosen such that the
time and/or memory requirements for a brute force attack are by several
magnitudes higher than it would be feasible in practice, even if an attacker
would have access to many super computers. Consequently, an attack is
claimed to be successful if it requires less time than it would require to try
all possible keys and less space than the storage of all keys would need.
However, we want to stress that a successful attack not necessarily means
that the attack is also practical.

For security and synchronisation reasons, one would like to avoid that
too much data is encrypted under the same key. Thus, in practice one
has normally a secret master key K̂, from which regularly different keys

15

2 Preliminaries

are derived. This means that sender and receiver agree on a key schedule,
which settles when and how the next key is computed from K̂. But as
in cryptography, each component should be as strong as possible, we will
consider the keystream generator on its own and refer to the initial state as
the secret key. In Section 4.4, we will come back to this topic and see that
specific key schedules can weaken the employed keystream generator.

16

2.2 Mathematical preliminaries

2.2 Mathematical preliminaries

In this section, we provide some mathematical preliminaries which are
needed for the rest of the thesis. Readers who are familiar with algebra
may skip this section. Indeed, we recommend to read remarks 2.26 and
2.44.

We start with the definitions of the basic structures group, ring and field.

2.2.1 Groups

Definition 2.6. Let G be a set, together with an operation ◦ : G × G → G.

(G, ◦) is called a group if it satisfies the group axioms below:3

Associativity: For all a, b, and c in G, (a ◦ b) ◦ c = a ◦ (b ◦ c).

Neutral element: There is an element e in G such that for all a in G, e ◦ a =
a ◦ e = a.

Inverse element: For all a in G, there is an element b in G such that a ◦ b =
b ◦ a = e, where e is the identity element from the previous axiom.

If a ◦ b = b ◦ a for all a, b ∈ G, then the group is called abelian .

Usually, one encounters two different notations for the group operation:
+ or ·. In the first case, the neutral element is denoted by 0 and the inverse
of x by −x. In the case of the dot-notation, the neutral element is labeled
with 1 and the inverse of x with x−1. Obviously, these notations are in-
spired by the commonly used notations in Q, the set of rational numbers.
Consequently, one writes xr for the r-times product of x, i.e. xr = x · . . . · x,
and r · x for x + . . . + x. In both cases, r = 0 gives the neutral element, i.e.
x0 = 1 and 0 · x = 0.

Example 2.7. Let Z denote the set of integers, i.e. Z = {0, 1,−1, 2,−2, . . .}.
(Z, +) is a group with the neutral element zero and the inverse −x. On the

other side, (Z, ·) is not a group as no elements except +1 and -1 have an

inverse. For example, 2 · x 6= 1 for all x ∈ Z, showing that 2 has no inverse in

(Z, ·).

2.2.2 Rings

Definition 2.8. Let R be a set, together with two operations +, · : R×R→ R,

called addition and multiplication. (R, +, ·) is a ring if

3According to the established notation, we write a ◦ b instead of ◦(a, b).

17

2 Preliminaries

1. (R, +) is an abelian group with identity element 0.

2. There exists a neutral element 1 regarding the multiplication.

3. (a · b) · c = a · (b · c) for all a, b, c ∈ G.

4. Multiplication distributes over addition:

a) a · (b + c) = (a · b) + (a · c)
b) (a + b) · c = (a · c) + (b · c)

Definition 2.9. Let n be an integer. By Zn, we define the set of integers

{0, . . . , n−1} together with the operations x◦y := (x◦y) mod n where ◦ ∈ {+, ·}
Example 2.10. (Z, +, ·) and (Zn, +, ·) are rings.

Example 2.11. In Z2, only two elements do exist: 0 and 1. The operations

+ and · are
+ 0 1
0 0 1
1 1 0

and
· 0 1
0 0 0
1 0 1

Definition 2.12. Let (R, +, ·) be a ring. A subset I ⊆ R is an ideal in R if the

following three conditions are fulfilled:

1. 0 ∈ I

2. For all x, y ∈ I, it is x + y ∈ I

3. For all x ∈ I and c ∈ R, it is c · x ∈ I

Example 2.13. Consider the ring (Z, +, ·) and n ∈ Z. The set In := {x ∈
Z | n divides x} is an ideal in Z.

Definition 2.14. Let R be a ring and G ⊆ R a finite subset. Then, the set

〈G〉 := {
∑

g∈G

cg · g | cg ∈ R} (2.2.1)

is an ideal in R. It is called the ideal generated by G. If G = {g} contains

only one element, the ideal 〈g〉 := 〈G〉 is called a principal ideal.

Example 2.15. Consider Z[x, y, z], the ring of polynomials over Z in some

unknowns x, y, and z. Then,

〈
x · y, y2 + z

〉
= {α · x · y + β · (y2 + z)|α, β ∈ Z}

is the ideal in Z[x, y, z] generated by G = {x · y, y2 + z}.
The ideal In ⊂ Z is generated by the element n. In other words, In := 〈n〉.

18

2.2 Mathematical preliminaries

Definition 2.16. Let R be a ring and I ⊆ R an ideal. A subset B ⊆ I is called

a basis of I if I = 〈B〉.

Theorem 2.17. Let R be a ring and I ⊆ R an ideal. We define by R/I a

set of equivalence classes in R where two elements a, b ∈ R are equivalent iff

a− b ∈ I. Then, R/I is a ring again.

Proof. For a ∈ R, we denote by [a] := {b ∈ R|a − b ∈ I} its equivalence class.
We show that [a] + [b] = [a + b] and [a] · [b] = [a · b]. Then, R/I inherits the ring
properties directly from R.

Let a, b ∈ R and x ∈ [a] and y ∈ [b]. Then, there exist α, β ∈ I such that
x = a + α and y = b + β. Some simple computations reveal:

x + y = a + α + b + β = (a + b) + α + β
︸ ︷︷ ︸

∈I

∈ [a + b]

x · y = a · b + a · β + b · α + α · β
︸ ︷︷ ︸

∈I

∈ [a · b].

Definition 2.18. The ring R/I is called the quotient ring.

Example 2.19. 1. Let R = Z and I = In = 〈n〉. Then, R/I = Z/In = Zn.

2. Let R = R[x] the ring of polynomials in R and I := 〈x2 − x〉. Then, in R/I
the equivalence classes [x2] and [x] are equal. Therefore, R/I consists

of the equivalence classes [a], [x] and [x + a] with a ∈ R. In other words,

R/I can be seen as a polynomial ring where only degrees 0 and 1 occur.

2.2.3 Fields

Definition 2.20. Let (R, +, ·) be a ring. This structure is called a field if

(R \ {0}, ·) is a group. In other words, a ring is a field if each element in R
except the additive neutral element 0 has a multiplicative inverse.

Let F be a field and 1 denote its identity element regarding multiplication.

If c ≥ 1 exists such that 0 = c · 1 = 1 + . . . + 1
︸ ︷︷ ︸

c times

, then the smallest constant

c ≥ 0 with this property is defined to be the characteristic of F. If no such c
exists, then the characteristic of F is defined to be zero.

Example 2.21. The set of rational numbers Q, the set of real numbers R,

and the set of complex numbers C are perhaps the widest known fields. All

of them have characteristic 0. The smallest field is the ring Z2, which contains

only two elements (see also Example 2.11). It has characteristic 2.

19

2 Preliminaries

Proposition 2.22. The ring Zn is a field if and only if n is a prime number.

Proof. As we already know that Zn is a ring, it suffices to show that each
non-zero element has a multiplicative inverse if and only if n is a prime
number.

Let x ∈ Zn be an element which has a multiplicative inverse. Hence, an
element y ∈ Zn exists with x · y = 1 mod n. Thus, there is a k ∈ Z such
that x · y = k · n + 1 or, equivalently, x · y − k · n = 1. Let g := gcd(x, n) be the
greatest common divisor of x and n. As g divides x and n, it divides also
1 = x · y − k · n. This shows that g necessarily is equal to 1.

On the other hand, gcd(x, n) = 1 is also a sufficient condition. If the
greatest common divisor is equal to 1, then integers α, β ∈ Z exists such
that α · x + β · n = 1. Hence, α · x = 1 mod n.

Altogether, x 6= 0 has a multiplicative inverse if and only if it is co-prime
to n. Therefore, Zn is a field if and only if all 1 ≤ x ≤ n− 1 are co-prime to n.
This is only true if and only if n is a prime.

2.2.4 Multivariate polynomials

An important ring is the ring of (multivariate) polynomials over a field F.
Therefor, we fix some notations:

Definition 2.23. For E := (e1, . . . , en) ∈ Nn and variables X := (x1, . . . , xn),
we define the monomial

mE(X) := m(e1,...,en)(x1, . . . , xn) := XE := xe1
1 · . . . · xen

n (2.2.2)

with the special case m0(X) = X0 := 1. A term is an expression c · XE with

c ∈ F. The ring F[x1, . . . , xn] is defined as the set of multivariate polynomials

f(x1, . . . , xn) =
∑

E∈Nn

fE ·XE , fE ∈ F, (2.2.3)

where only finitely many coefficients fE are not equal to zero. The addition

and multiplication are defined by

f(x1, . . . , xn) + g(x1, . . . , xn) :=
∑

E∈Nn

(fE + gE) ·XE

f(x1, . . . , xn) · g(x1, . . . , xn) :=
∑

A∈Nn

∑

B∈Nn

fA · gB · xa1+b1
1 · . . . · xan+bn

n

with A = (a1, . . . , an) and B = (b1, . . . , bn).

20

2.2 Mathematical preliminaries

Definition 2.24. Let f(x1, . . . , xn) =
∑

E∈Nn fEXE 6≡ 0 be given. The degree of

f is defined by

deg(f) := max
E
{|E| | fE 6= 0} (2.2.4)

where |E| = |(e1, . . . , en)| =
∑n

i=1 ei.

Example 2.25. For f(x1, x2, x3) := x1 · x2 + x2
2 · x3, the degree of f is equal to

three.

Remark 2.26. To distinguish between indeterminates and elements from a

field, we will use bold letters in the second case. Furtheron, capital letters

stand for tuples (or vectors) whereas small letters stand for single elements

or indeterminates. If f : Fn1 × . . . × Fnι → F, we sometimes express f by

f(X1, . . . , Xι) where Xi := (xi,1, . . . , xi,ni
).

Example 2.27. For f : Fn → F, f(x) ∈ F[x] stands for a polynomial f with the

variable x whereas f(x) denotes the evaluation of f on the input x ∈ F.

For f : Fn1 × . . . × Fnι → F, f(X1, . . . , Xι) refers to a multivariate polyno-

mial in the unknowns X1 = (x1,1, . . . , x1,n1), . . . , Xι = (xι,1, . . . , xι,nι) whereas

f(X1, . . . , Xι) denotes the image of (X1, . . . , Xι) ∈ Fn1 × . . . × Fnι under the

function f .

Definition 2.28. A polynomial p(x) =
∑d

i=0 ci · xi ∈ F[x] of degree d is called

monic if cd = 1.

Theorem 2.29. Let F be a field and {0} 6= I ⊆ F[x] be a an ideal. Then, I is a

principal ideal, generated by one unique monic polynomial m(x) ∈ F[x] which

has the lowest degree of all polynomials in I.

Proof. Let d := min{deg(f(x))|f(x) ∈ I \ {0}} and m(X) ∈ I be a monic poly-
nomial with deg(m(x)) = d. Next, let m′(x) ∈ I be an arbitrary monic polyno-
mial, which has the same degree d. If m(x) 6= m′(x), then m(x) −m′(x) is a
non-zero polynomial in I of degree < d what contradicts the definitions of d
and m(x). Hence, m(x) is unique.

Now, let f(x) ∈ I be arbitrary. Then, p(x), r(x) ∈ F[x] exist such that

f(x) = p(x) ·m(x) + r(x)

with r(x) ≡ 0 or deg(r(x)) < deg(m(x)). But as we have seen that no non-
zero polynomials exist with a degree strictly smaller than deg(m(x)), it must
be r(x) ≡ 0. This shows that f(x) is divisible by m(x) and therefore I =
〈m(x)〉.
Definition 2.30. A polynomial f(x) ∈ F[x] is called irreducible, if for any

two polynomials g(x), h(x) ∈ F[x] with g(x) ·h(x) = f(x), it is that either g(x) ≡ c
or h(x) ≡ c for c ∈ F.

21

2 Preliminaries

The property of being irreducible depends on the base field F, as the
following example shows:

Example 2.31. The polynomial x2 − 2 ∈ Q[x] is irreducible, but x2 − 2 =
(x−

√
2) · (x +

√
2) ∈ R[x] is not.

Likewise, x2 +1 ∈ R[x] is irreducible, but x2 +1 = (x + i) · (x− i) ∈ C[x] is not.

2.2.5 Extension fields and finite fields

This subsection is on extension fields and finite fields. We start with the
definition of extension fields:

Definition 2.32. Let F ⊆ F′ be two fields. F′ is called an extension field of

F. Furthermore, for F a field and α1, . . . , αn be elements not necessarily in F,

we define by F[α1, . . . , αn] the set of all (formal) finite sums

∑

E=(e1,...,en)∈Nn

cE · αe1
1 · . . . · αen

n

with cE ∈ F.4

Example 2.33. R is an extension field of Q and C is an extension field of Q

and R.

Definition 2.34. Let F ⊆ F′ be two fields. α ∈ F′ is called algebraic over F

if a non-zero polynomial f(x) ∈ F[x] exists such that f(α) = 0.

Example 2.35. As f(x) = x2 − 2 ∈ Q[x] gives zero on
√

2 ∈ R,
√

2 is algebraic

over Q.

Theorem 2.36. Let F ⊆ F′ be two fields and α ∈ F′ be algebraic over F. There

exists one unique monic polynomial m(x) ∈ F[x] with the lowest degree such

that m(α) = 0. m(x) is called the minimal polynomial of α.

Proof. Consider the set I := {f(x) ∈ F[x] | f(α) = 0}. One sees easily that I is
an ideal in F[x]. Thus, by Theorem 2.29, I = 〈m(x)〉 where m(x) fulfills the
conditions above.

In Proposition 2.39, we encountered fields where the number of elements
is finite, namely the fields Zp with p being a prime. We will describe now
how extension fields of Zp can be defined. But first, we motivate the theory
by a similar construction.

4This corresponds to the definition of F[x1, . . . , xn] in Definition 2.23.

22

2.2 Mathematical preliminaries

Example 2.37. As usual, we refer by R to the field of real numbers. As it

is widely known, the equation x2 + 1 = 0 has no solution in R. However, this

has mathematicians not kept from defining a root of this polynomial, namely

the so-called imaginary number i. That is, i is an identifier for a solution of

x2 − 1 = 0. Likewise, one can say that x2 − 1 is the minimal polynomial of i.
The interesting part is that one can compute with i like with any other real

number x, as its behaviour is completely defined by its minimal polynomial.

For example, take the two expressions x + i · y and u + i · v with x, y, u, v ∈ R.

Then, (x + i · y) + (u + i · v) = (x + u) + i · (y + v) and

(x + i · y) · (u + i · v) = x · u + i · (x · v + y · u) + i2 · y · v.

But the last can be simplified. As we know that i is by definition a root of

x2 − 1, it holds that i2 = −1. Thus, one can replace i2 by −1 and gets

(x + i · y) · (u + i · v) = x · u + i · (x · v + y · u)− ·y · v.

Probably, the content of the example was already known to most of the
readers. It is more or less common knowledge that appending i, the root of
x2 − 1, to the field R results in an extension field of R, namely the field of
complex numbers C.

However, what we want to emphasize is the basic idea behind: Starting
from a field F and polynomial p(x) where one root is not in F, one appends
this ”missing” root α to F. It turns out that F[α] is an extension field of F.
This is important as the same approach allows to construct extension fields
to other fields, in particular to Zp.

Theorem 2.38. Let p be a prime and f(x) = f0 + . . . + fd−1 · xd−1 + xd ∈ Zp[x]
be an irreducible polynomial of degree d. Then, if α is an identifier for a root

of f(x), then Zp[α, α2, . . . , αd−1] is a field with pd elements.

Proof. First, we take a look at the operations in Zp[α, α2, . . . , αd−1]. Any ele-
ment can be expressed as c0 + c1 · α + . . . + cd−1α

d−1 with ci ∈ Zp. This shows
that exactly pd different elements exist. The addition with a second element
c′0 + . . . + cd−1α

d−1 is defined componentwise, that is

(
c0 + c1 · α + . . . + cd−1α

d−1
)
+
(
c′0 + . . . + c′d−1α

d−1
)

= (c0+c′0)+. . .+(cd−1+c′d−1)·αd−1.

For multiplication, we consider only the product with α as the rest follows
by induction. Hereby, we make use of the fact that 0 = p(α) = p0 + . . . + pd−1 ·
αd−1 + αd. Thus, it holds that αd = −(p0 + . . . + pd−1 · αd−1) and therefore:

α(c0 + c1α + . . . + cd−1α
d−1) = c0α + c1α

2 + . . . + cd−1α
d

= c0α + c1α
2 + . . .− cd−1 · (p0 + . . . + pd−1α

d−1).

23

2 Preliminaries

Thus, addition and multiplication are well-defined in Zp[α, α2, . . . , αd−1]. The
ring properties follow easily from the properties of Zp.

What remains is to show is that Zp[α, α2, . . . , αd−1] is actually a field. As
any x ∈ Zp has its inverse x−1, it suffices to show that α has an inverse.
At first, it holds that the constant term p0 of p(x) is not equal to zero.
Otherwise, p(x) could be divided by x what is a contradiction to its ir-
reducibility. Because of p1 · α + . . . + pd−1 · αd−1 + αd = −p0, the element
(−p0)

−1 · (p1 + . . . + pd−1 · αd−2 + αd−1) is an inverse of α.

The theorem explained how to construct fields with pd elements. The
following proposition shows that such a field is unique up to isomorphism.

Proposition 2.39. [LidN86, Chapter 2] Let F be a finite field, that is a field

with a finite number of elements. Then, |F| = pd =: q for p, d ≥ 1 and p being

a prime number. Any two finite fields of the same size q are isomorphic. This

allows to speak of the field Fq.

Furthermore, in finite fields the so-called field equations are valid: xq = x

for all x ∈ Fq.

Apart from the field equations and the associated polynomial xq−x, there
exist a group of other polynomials which will be important later. Let p(x) ∈
Fq[x] be an irreducible polynomial and α ∈ Fqd be one of its roots. By the field

equation, it holds that αqd−1 − 1 = 0. That is α is a root of the polynomial
xqd−1 − 1. As this holds for any root of p(x), this implies that p(x) divides
xqd−1 − 1.

Definition 2.40. Let F = Fq be a finite field. f(x) ∈ Fq[x] is called primitive

if f(x) divides the polynomial xqd−1−1 but none of the polynomials xe−1 with

e < qd − 1.

For the sake of computability and representability, finite fields are the
first choice in the context of computers. Hence, it is no surprise that (as
far as we know) all cryptosystems are defined over finite fields.

Of specific importance is the finite field F2 as the elements can be repre-
sented by one bit. Besides, the operations in F2 have their counterpart as
basic bit operations. The addition in F2 corresponds to the XOR-operation
and the multiplication to the AND-operation. Thus, calculations in F2 can
be efficiently performed. Following widely used conventions, we will ex-
press the addition in F2 sometimes by the symbol for XOR, namely ⊕.

Remark 2.41. Describing finite fields in detail, as we have done it here,

might seem exaggerated. However, there are two reasons for our approach.

Firstly, the interplay between extension fields and roots of polynomials will

become important later in the context of linear feedback shift registers when

24

2.2 Mathematical preliminaries

we will analyze their minimal polynomials (Section 5.2.2). Thus, this section

might serve as a warm-up.

Secondly, finite fields are widely used in cryptography, so it is important

to get used to them. Unfortunately, we had the impression that many peo-

ple have their difficulties with finite fields in the beginning. On the other

hand, the concept of C (computing with it and its relation to R) is normally no

problem for people interested in cryptography. As both principles are related,

pointing out this similarity might help readers who are new to finite fields to

get familiar with this subject.

25

2 Preliminaries

2.3 Functions over finite fields

In this section, we provide some basic facts on functions over finite fields
and introduce some notations. We start with some trivial remarks on func-
tions.

Let Zq be the ring of integers modulo q. Each e ∈ Zq can be identified
with exactly one integer e′ in the range 0, . . . , q − 1. This allows to define
the absolute value of e by |e| := e′. This notion can be extended to Zn

q by
|(e1, . . . , en)| := ∑n

i=1 |ei| for E = (e1, . . . , en) ∈ Zn
q . We refer to this value also as

the weight wt(E) of E = (e1, . . . , en). By F, we denote a finite field. If we want
to specify the number q of elements in F, we write Fq instead. Furthermore,
we use Fn and Fn

q for n ≥ 1 to specify the vector spaces of dimension n over
the finite fields F and Fq, respectively.

In this section, we consider functions Fn → Fm for n, m ≥ 1. As each
f : Fn → Fm can be splitted into its component functions f = (f1, . . . , fm)
with fi : Fn → F, we will mostly be interested in the case m = 1.

In cryptography, it is often desired for a function that each output has
the same amount of preimages:

Definition 2.42. A function Fn
q → Fq is called balanced, if each image z ∈ Fq

has the same number of preimages. This means that |f−1(z)| = qn−1 for each

value z ∈ Fq.

In the case of finite fields, it holds the special property that every function
Fn → F can be expressed by a multivariate polynomial in n unknowns:

Theorem 2.43. Each function f : Fn
q → Fq, n ≥ 1, has a unique expression

f(X) = f(x1, . . . , xn) =
∑

E∈{0,...,q−1}n

fE ·XE (2.3.5)

in F[x1, . . . , xn]. (2.3.5) is called the algebraic normal form (ANF) of f .

Proof. Fix an arbitrary function f : Fn
q → Fq. We show that f can be ex-

pressed as a multivariate polynomial f ∗ ∈ Fq[x1, . . . , xn]. To do so, we intro-
duce the functions

δ(y1,...,yn)(x1, . . . , xn) = δY (X) :=

n∏

i=1

(1− (xi − yi)
q−1).

Each variable xi occurs only in powers of q − 1 or less.
Now, let x ∈ F and look at xq−1. As we know from the field equations,

it holds that 0 = xq − x = x · (xq−1 − 1). Thus, if x 6= 0, then the second
factor needs to be zero, which implies that xq−1 = 1 if x 6= 0. Therefore,

26

2.3 Functions over finite fields

it holds that δY (X) = 1 if and only if X = Y . Consider now the following
multivariate polynomial

f ∗(x1, . . . , xn) :=
∑

Y ∈Fn
q

f(Y) · δY (X). (2.3.6)

For each X ∈ Fn, all terms of the sum in f ∗(X) are equal to zero except the
product f(X) · δX(X) = f(X). Hence, it holds that f ∗(X) = f(X). Thus, f ∗

is a representation of f .

The uniqueness follows from a simple counting argument. Observe that
exactly |Zn

q | = qn different monomials XE with E ∈ Zn
q exist, implying that

the total number of different expressions (2.3.5) is qqn

.
On the other hand, any function f : Fn

q → F is uniquely defined by its
outputs, i.e. f(X) ∈ Fq, X ∈ Fn

q . Thus, the number of functions Fn
q → Fq

equals likewise qqn

. Therefore, the algebraic normal form has to be unique.

The uniqueness of the algebraic normal form (2.3.5) allows to define the
notion of the degree of a function f : Fn → F. We will later refer frequently
to the number of monomials in Fq[x1, . . . , xn] of degree ≤ d, for which we

introduce the identifier µq(n, d) . For q = 2, it holds that µ2(n, d) =
∑d

i=0

(
n
i

)
.

Later, we will be interested if functions with certain properties exists such
that the degree is less than or equal to a given value d.

Remark 2.44. For the rest of thesis, we will always implicitly identify each

function Fn
q → Fq with its unique expression as a multivariate polynomial

with exponents in {0, . . . , q − 1}. Thus, whenever we refer to the degree of

f we speak of the degree of this specific representation as a multivariate

polynomial. More formally speaking, we assume that all computations are

done in the ring Fq[x1, . . . , xn]/ 〈xq
1 − x1, . . . , x

q
n − xn〉 (see also Example 2.19).

Furthermore, we will implicitly use the fact that p · f(X) = 0 for all f(X) ∈
Fpd[X]. In particular, it holds that f(X) + f(X) = 0 for all f(X) ∈ F2[X], where-

fore we will sometimes write +f(X) instead of −f(X) and vice versa.

Example 2.45. We consider F3[x1, x2], the ring of multivariate polynomials in

two variables over F3. Let f(x1, x2) := x2
1 · x2 and g(x1, x2) := x1 · x2

2. As stated

above, the product f · g would be identified with x1 ·x2 as x2
1 ·x2 ·x1 ·x2

2 = x3
1 ·x3

2

and the facts that x3
1 = x1 and x3

2 = x2 due to the field equations. Thus,

the degree of f · g is equal to two. This shows that (unlike to the case of

non-finite fields), the degree of the product of two functions can be less than

the degrees of its factors. This property will play an important role later in

Chapter 4 when we treat the problem of the existence of certain functions

with a low degree.

27

2 Preliminaries

In some cases, we will encounter symmetric functions:

Definition 2.46. f(x1, . . . , xn) ∈ F[x1, . . . , xn] is called symmetric, if for any

permutation π on the set {1, . . . , n} it holds that

f(x1, . . . , xn) = π(f) := f(xπ(1), . . . , xπ(n)). (2.3.7)

Example 2.47. Let n := 3 and f(x1, . . . , x3) := x1 + x2. f is not symmetric as

for π := [1→ 1, 2→ 3, 3→ 2] the function π(f) = x1 + x3 is different from f .

The probably most trivial example for a symmetric function is f(x1, . . . , xn) =
x1 + . . . + xn.

28

2.4 Linear feedback shift registers

2.4 Linear feedback shift registers

On the search for valuable keystream generators, linear feedback shift reg-
isters (LFSRs) turned out to be a good choice. Despite of their hardware
friendly implementation, at least if F = F2, they can be used to produce
sequences with good statistical properties. In this chapter, we recapitulate
some basic facts about LFSRs and lay the foundation for further analysis
in following chapters. For further reading, we recommend the book by Lidl
and Niederreiter [LidN86].

Definition 2.48. Let F be a finite field. A linear feedback shift registers
of length n is a finite state machine with an internal state of size n and a

linear feedback function Λ :=
∑n

i=1 λi−1 ·xi ∈ F[x1, . . . , xn]. An LFSR is regularly

clocked. At each clock, a specific entry of the internal state is output, then

the internal state is updated according to Λ. Let S0 := (s0, . . . , sn−1) ∈ Fn

denote the content of the internal state at the beginning and L(x1, . . . , xn) :=
(x2, . . . , xn, Λ(x1, . . . , xn)). Then, at each clock, two operations are executed:

1. Output one entry of the internal state.

2. Update the internal state St to St+1 with L:

St+1 := L(St) = (st+1, . . . , st+n−1, Λ(St)) = (st+1, . . . , st+n−1,

n−1∑

i=0

λi · st+i). (2.4.8)

The output at clock t is usually defined to be st, that is the left-most entry

of St. We call the sequence (st)t≥0 the LFSR sequence. Sometimes, we will

identify L with its matrix expression5,

L :=











0 0 λ0

1
. . .

... λ1

0
. . .

. . .
...

...
...

. . .
. . . 0

...

0 . . . 0 1 λn−1











, (2.4.9)

and set St+1 := St · L. Particularly, it holds that St := S0 · Lt. The matrix L is

also called the feedback matrix. Observe that λ0 6= 0 would imply that the

update of the internal state is reversible.

Figure (2.4.3) displays a schematic figure of an LFSR. LFSRs can be used

5For simplicity, we refer to both the linear mapping and the corresponding matrix with
L.

29

2 Preliminaries

·λ0·λ1·λn−1

stst+1st+n−1

Figure 2.4.3: Schematic picture of an LFSR

to produce streams (st)t≥0 of arbitrary length. The advantage of LFSRs is
that they can be implemented efficiently in hardware (at least for the case
F = F2). That makes them particularly interesting for restricted devices as
mobile phones. Another advantage is that LFSRs and their sequences are
mathematically well understood.

Remark 2.49. We will from now on assume that L is regular, that is λ0 6= 0.

Definition 2.50. A sequence S = (st)t≥0 is called periodic, if ρ ≥ 1 exists

such that st = st+ρ for all t ≥ 0. ρ is called the period of S. If no other value

ρ′ < ρ is a period of S, we call ρ the least period.

Lemma 2.51. Let S be an LFSR-sequence over a finit field Fq. Then S is

periodic with a period 1 ≤ ρ ≤ qn.

Proof. Let St ∈ Fn
q denote the internal states of the LFSR. As the number of

elements in Fn
q is finite, namely qn, there have to be two clocks 0 ≤ t0 < t1 ≤

qn such that St0 = St1. As L was assumed to be regular, it holds that

St0−1 = L−1(St0) = L−1(St1) = St1−1.

This shows that S0 = St1−t0 and therefore S is periodic with period t1 − t0 ≤
qn.

Example 2.52. Let F := F2, n := 2 and L :=

(
0 1
1 1

)

. Then, initializing the

initial state S0 to (1, 1) gives

t 0 1 2 3 4 5 6 7 8 . . .

St 1 1 0 1 1 0 1 1 0 . . .

1 0 1 1 0 1 1 0 1

,

yielding the bit stream 1, 1, 0, 1, 1, 0, 1, 1, 0, . . . with a period of 3. Here, each

entry in the second row displays one value of St. For example, it holds that

S0 = (1, 1), S1 = (1, 0), S2 = (0, 1) and so on.

If F = F3, then the same values of n and L result in

30

2.4 Linear feedback shift registers

t 0 1 2 3 4 5 6 7 8 9 10 . . .

St 1 1 2 0 2 2 1 0 1 1 2 . . .

1 2 0 2 2 1 0 1 1 2 0

,

and the stream 1, 1, 2, 0, 2, 2, 1, 0, 1, 1, 2, In this case, the sequence has a

period of 8.

Definition 2.53. Let S := (st)
b
a with a ≤ b denote a sequence sa, . . . , sb over a

ring R where b = ∞ is possible. S is called a linear recurring sequence if

r ≥ 1 and λ0, . . . , λr−1 ∈ R, not all zero, exist such that

st+r =

r−1∑

i=0

λi · st+i (2.4.10)

holds for a ≤ t ≤ b− r.

By equation (2.4.8), it holds st+r −
∑r

i=1 λi · st+i−1 = 0 for the outputs of an
LFSR for any clock t ≥ 0. This shows that an LFSR-sequence is a linear
recurring sequence as well.

By Lemma 2.51 any LFSR-sequence is periodic with period ρ ≤ qn. For
cryptographic reasons, one is interested in sequences with periods a big as
possible. However because of L(0, . . . , 0) = (0, . . . , 0), the all-zero initial state
S0 := (0, . . . , 0) produces the all-zero sequence, that is St = (0, . . . , 0) for all
t ≥ 0. In particular, if St = (0, . . . , 0) for one t, then St′ = (0, . . . , 0) for all t′ ≥ t.
Therefore the best one can hope for is a sequence of period qn − 1 where
every value in Fn

q \ {(0, . . . , 0)} occurs once before the same state reappears.
We will call such a sequence a maximum sequence.

Consider two different maximum sequences. As the successor L(S) of
each state S is uniquely defined, the order of the states must be the same.
This shows that each maximum sequence (st)t≥0 can be transformed in any
other maximum sequence (s′t)t≥0 by simply shifting the indices, i.e. δ ∈ Z

exists such that st = s′t+δ for all t. Particularly, the property of a sequence
being maximum is independent of the chosen initial value, as long as it is
not equal to the zero vector. Consequently, it depends only on the linear
feedback function L whether the sequence (st)t≥0 is maximum or not. In
the following, we derive a criterion on L which is sufficient and necessary
to make maximum sequences possible.

Definition 2.54. Let S := (s)∞1 be a linear recurring sequence over an arbi-

trary field F. A polynomial p(x) = xr +
∑r−1

i=0 λi · xi ∈ F[x] is called a character-
istic polynomial of S if (2.4.10) holds for all t.

31

2 Preliminaries

For a polynomial p(x) =
∑

i cix
i, we define its companion matrix Lp by

Lp :=











0 0 λ0

1
. . .

... λ1

0
. . .

. . .
...

...
...

. . .
. . . 0

...

0 . . . 0 1 λn−1











Observe that the companion matrix of a characteristic polynomial is just
the feedback matrix.

The notion of characteristic polynomials is a useful tool to examine the
properties of LFSRs and linear recurring sequences. However, a sequence
S has more than one characteristic polynomial:

Example 2.55. Let F = F2 and S := (110110110 . . .) = (110). As S has a period

of three, a canonical characteristic polynomial is x3 + 1.On the other hand,

it holds for all t ≥ 0 that st + st+1 + st+2 = 0. Hence, another characteristic

polynomial is p′(x) = x2 + x + 1.

Now, consider S ′ := (111 . . .) = (1). Although S and S ′ are different, both

share the same characteristic polynomial x3 + 1.

As the previous example shows, a characteristic polynomial of a linear
recurring sequence is not sufficient to characterize the sequence. How-
ever, we will see next that amongst all characteristic polynomial exists one
unique polynomial m(x) which helps to examine and to distinguish linear
recurring sequences.

Theorem 2.56. Let S := (st) be a linear recurring sequence over an arbitrary

field F. The set Charpols(S) of characteristic polynomials of S is a principal

ideal in the ring F[x]. More formally, it holds that Charpols(S) = 〈m(x)〉 for a

polynomial m(x) ∈ F[x].

Proof. We first show that Charpols(S) fulfills all three conditions to be an
ideal:

1. 0 ∈ Charpols(S)

2. ∀p(x), p′(x) ∈ Charpols(s) : p(x) + p′(x) ∈ Charpols(s)

3. ∀p(x) ∈ Charpols(s), q(x) ∈ F[x] : q(x) · p(x) ∈ Charpols(S)

The first point is obvious as the all-zero polynomial easily fulfills equation

(2.4.10). Now let p(x) =
∑n

i=0 λi · xi and p′(x) =
∑n′

i=0 λ′
i · xi be two elements of

Charpols(S). This implies that
∑n

i=0 λi · st+i = 0 and
∑n′

i=0 λ′
i · st+i = 0 for all t.

32

2.4 Linear feedback shift registers

In particular the sum of both expressions is zero again which shows that
p(x) + p′(x) is a characteristic polynomial again.

Finally, we consider p(x) =
∑r

i=0 λi ·xi ∈ Charpols(S) and q(x) =
∑n

j=0 dj ·xj ∈
F[x]. The product of p(x) and q(x) can be written as p(x) · q(x) =

∑n
j=0 dj ·

(
∑r

i=0 λi · xi+j) . Furthermore, one can easily see that

n∑

j=0

dj · (
r∑

i=0

λi · st+i+j)

︸ ︷︷ ︸

=0

= 0

for all t. The fact that the terms inside brackets equal to zero is due to that
p(x) is a characteristic polynomial. This shows that Charpols(S) is an ideal
and hence, by Theorem 2.29, a principal ideal.

Observe that each multiple of a characteristic polynomial is a character-
istic polynomial. On the other hand, amongst all characteristic polynomials
exists one which is the smallest in terms of the degree, called the minimal
polynomial of the sequence.

Definition 2.57. Let S := (st)
∞
0 be a linear recurring sequence over an ar-

bitrary field F and Charpols(S) = 〈m(x)〉 . The polynomial m(x) is called the

minimal polynomial and its degree the linear complexity ℓc(S) of S. We

will sometimes use the notation min(S) for the minimal polynomial of a se-

quence.

Theorem 2.58. An LFSR can produce a maximum sequence if and only if

the minimal polynomial is primitive.

Proof. Recall that a polynomial p(x) ∈ F[x] of degree n is defined to be primi-
tive if and only if it divides the polynomial xqn−1− 1 but no other polynomial
xd−1 with d < qn−1. Now let S 6≡ (0) be a non-trivial sequence generated by
an LFSR with least period ρ. This is equivalent to that st+ρ = st for all t and
hence xρ − 1 is a characteristic polynomial of S. By Theorem 2.56, xρ − 1
must be multiple of the minimal polynomial m(x). On the other hand, as ρ
is assumed to be the least period, m(x) does not divide a polynomial xρ′ − 1
with ρ′ < ρ.

This shows that S is maximum if and only if m(x) divides the polynomial
xqn−1 − 1 but no other polynomial xd − 1 with d < qn − 1. This is exactly the
definition of a polynomial being primitive.

Now, let S = (st) be a periodic sequence, that is st+ρ = st for all t ≥ 0.
Then, S can be generated by an LFSR of length ρ with the linear function

L(x1, . . . , xρ) := (x2, . . . , xρ, x1)

33

2 Preliminaries

and the initial state (s0, . . . , sρ−1). Of course, this doesn’t exclude shorter
LFSRs which might generate the same sequence (see also Example 2.52).
The question of the shortest LFSR that can generate S is answered by the
Berlekamp-Massey algorithm:

Theorem 2.59. Let S be a linear recurring sequence with linear complexity

ℓ. The Berlekamp-Massey algorithm [Mas69] can reconstruct in time O(ℓ2)
the minimal polynomial of the shortest LFSR that can generate S if at least 2ℓ
successive LFSR-sequence elements are given.

In Section 5.2, we will learn more on LFSRs and their minimal polynomi-
als. In particular, we will show that LFSR-sequences can be expressed and
analyzed by the roots of their minimal polynomials. This is connected to
the theory of extension fields from finite fields discussed in Section 2.2.5.

34

2.5 (ι, m)-combiners

2.5 (ι, m)-combiners

LFSRs provide a (hardware-)efficient way to produce sequences of arbitrary
length with good statistical properties (see [Gol82]). Though, from a cryp-
tographic point of view, LFSRs represent rather bad keystream generators.
The reason is that an attack can be performed by solving a system of linear
equations.

More formally, let K = (k0, . . . , kn−1) be the unknown initial state and L
be the known feedback matrix. This setting would produce a keystream
k0, k1, k2, . . . where (kt, . . . , kt+n−1) = K · Lt. Thus, if an adversary knows the
values kt1, . . . , ktm

of the keystream elements at the m clocks t1, . . . , tm, he
can use his knowledge to set up the following system of linear equations:

kt1 = K · Lt1 · P
. . .

ktm
= K · Ltm · P

(2.5.11)

where P = (1, 0, . . . , 0)t denotes the projection on the first entry. If the rank
of (2.5.11) is r, then he knows that the value of K belongs to the kernel
of dimension n − r. As solving a system of linear equations is efficiently
possible in practice (if n is not too big what is the case for cryptographic
reasonable values of n), this attack is a realistic threat for this kind of
keystream generators.

Thus, to strengthen LFSR-based keystream generators, one has to incor-
porate some kind of non-linearity. So far, designers have mainly pursued
the following three strategies:

1. Make the clocking irregular

2. Apply a non-linear function to the outputs from several LFSRs (or
several outputs from one LFSR) and output the result

3. Add a second finite state machine with a non-linear update function
and combine the contents of both internal states to compute the out-
put

An irregular clocking means that the number of clockings between two
outputs is not constant. Famous representants of the irregularly clocked
LFSR-based keystream generators are the shrinking generator [CopKM93],
the selfshrinking generator [MeiS94] and A5/1 which is used in GSM mo-
bile phone systems in most European countries (see also [BriGW98]). Al-
though irregularly clocked LFSR-based keystream generators have gained
some attentions in cryptography, we will not discuss them any further. The
reason is that until now, no algebraic attacks are known against them.

35

2 Preliminaries

The two other approaches can be described by a general kind of keystream
generator, which we call (ι, m)-combiners. A formal definition is the follow-
ing:

Definition 2.60. Let F be a finite field. A (ι, m)-combiner consists of the

following components:

• s LFSRs with lengths n1, . . . , ns and feedback matrices L1, . . . , Ls.

• An internal state S ∈ Fm × Fn where n = n1 + . . . + ns.

• A matrix L over F of size n× n, defined by

L :=






L1 0
. . .

0 Ls




 .

• A (projection) matrix P over F of size n× ι.

• A non-linear next memory state function. Ψ : Fm × Fι → Fm.

• An output function f : Fm × Fι → F.

If m ≥ 1, then we speak of a combiner with memory, else of a simple
combiner.

The generation of the keystream works as follows. First, the internal
state is initialized to a value S0 := (Q0, K) ∈ Fm × Fn where K ∈ Fn is the
LFSRs’ initial states and the content of Q0 ∈ Fm is called the memory. As
discussed in Section 2.4, the content of the LFSRs is updated by the matrix

L. More precisely, K = (K
(1)
0 , . . . , K

(s)
0) where K

(i)
0 is the i-th LFSR’s initial

state.
In many cases, only some of the LFSRs’ entries are used for the compu-

tation of the actual keystream element and the next state of the memory
register. This is expressed by the projection matrix P . This means that only
the values in K · Lt · P are involved in the computations at clock t. Conse-
quently, we define an abbreviation Kt for K · Lt · P and call it the input of
the (ι, m)-combiner. The memory is updated via Qt+1 := Ψ(Qt, Kt), whereas
the keystream element zt is computed by zt = f(Qt, Kt). Thus, the update
function Υ is defined by

Υ(St) = Υ(Qt, K · Lt) = (Ψ(Qt, K · Lt · P), K · Lt+1). (2.5.12)

In the following we assume that Υ is bijective (see Remark 2.4) what implies
that L is regular and Ψ(Q, X) : Fm → Fm is bijective for all X ∈ Fι. A
schematic picture of a (ι, m)-combiner is given in Figure 2.5.4.

36

2.5 (ι, m)-combiners

-

-

6

-

�
�

�
�7S

S
S
Sw-

- -

-Memory

LFSRs

Ψ

Kt zt

Qt+1Qt

f

Figure 2.5.4: A (ι, m)-combiner

Notice that a sequence zt, . . . , zt+r of outputs depends only on Qt and
Kt, . . . , Kt+r. We express this fact by defining the extended output func-
tion fΨ(Qt, Kt, . . . , Kt+r) = (zt, . . . , zt+r). For the sake of simplicity, we use the
same notation fΨ for different values of r.

Observe that the key size of a given (ι, m)-combiner can be easily altered
by changing L and P but keeping the same update and output functions Ψ
and f . Hence, it is natural to treat the production of the internal stream
K0, K1, . . . and the computation of the keystream z0, z1, . . . separately. In
particular, one could use other mechanisms to produce the internal stream
as for example cellular automata (e.g., see [Wol86]).

In the following, we give some examples for (ι, m)-combiners, all defined
over F = F2. We will later come back to them to illustrate various concepts.

2.5.1 A toy (2,0)-combiner

We start with a very simple keystream generator. It uses two LFSRs of
lengths two and three, respectively. Their initial states are denoted by
A0 = (a0, a1) and B0 = (b0, b1, b2). The minimal polynomial of LFSR A is
defined as ma(x) := x2 + x + 1. That is, the sequence (at) produced by LFSR
A fulfills the recursion at+2 = at+1 + at. The second minimal polynomial is
set to mb(x) := x3 + x2 + 1, which implies that bt+3 = bt+2 + bt. In this case, it
is K := (a0, a1, b0, b1, b2). The feedback matrix L and the projection matrix are
defined as

L :=









0 1 0 0 0
1 1 0 0 0
0 0 0 0 1
0 0 1 0 0
0 0 0 1 1









and P :=









1 0
0 0
0 1
0 0
0 0









.

At each clock t, the keystream element zt is generated by the function zt =
f(Kt) = f(at, bt) = at · bt + at + bt. Hereby, at, bt and zt are identifiers for the
output from LFSR A, LFSR B and the keystream bit at clock t, respectively.

37

2 Preliminaries

Let for example be A0 := (1, 1) and B0 := (1, 0, 1). Table 2.5.1 displays
the first eleven LFSR bits and keystream bits. As the minimal polynomials
ma and mb are primitive, the sequences (at) and (bt) have the maximum
period of 22 − 1 = 3 and 23 − 1 = 7, respectively. Furthermore, one sees that
the keystream consists of far more values ’1’ than ’0’. This is because of
the fact that the output function is not balanced. Thus, the toy cipher is
cryptographically weak. Notice that the toy cipher is a simple combiner, i.e.
m = 0.

t 1 2 3 4 5 6 7 8 9 10 11

at 1 1 0 1 1 0 1 1 0 1 1

bt 1 0 1 0 0 1 1 1 0 1 0

zt 1 1 1 1 1 1 1 1 0 1 1

Table 2.5.1: The first eleven clocks of the toy cipher with initial state
(1,1,1,0,1)

2.5.2 The Geffe generator

The Geffe generator is an (3, 0)-combiner and was introduced in [Gef73]. At
each clock, an input of three bits is used to generate one keystream bit.
The output function is defined by

z = f(a, b, c) =

{
a , c = 1
b , else

(2.5.13)

So far, we concerned only simple combiners, that is m = 0. Next, we will
give two examples for combiners with memory, i.e. m > 0.

2.5.3 The summation generator

The summation generator is a (ι, ⌈log2 ι⌉)-generator and has been intro-
duced by Rueppel in [Rue85]. It is based on integer addition. This means
that both the input bits and the memory state are treated as integers and
added together. The result forms the output and the next memory state.

More formally, at each clock t there are ι input bits kt,1, . . . , kt,ι and the

memory state Qt ∈ F
⌈log2 k⌉
2 . The integer sum of these values is computed,

i.e. At := kt,1 + . . . + kt,ι + Qt where Qt is taken as a value in {0, . . . , 2⌈log2 k⌉}.

38

2.5 (ι, m)-combiners

Qt 0 0 0 0 0 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3

|Kt| 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

At 0 1 2 3 4 1 2 3 4 5 2 3 4 5 6 3 4 5 6 7

zt 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
Qt+1 0 0 1 1 2 0 1 1 2 2 1 2 2 2 3 1 2 2 3 3

Table 2.5.2: The various input/output possibilities for the summation gen-
erator with k = 4 input bits and m = 2 memory bits

Then, the output and the next memory state Qt+1 are computed by

zt := At mod 2 = (kt,1 + . . . + kt,ι + Qt) mod 2 (2.5.14)

Qt+1 := At div 2 =

⌊
(kt,1 + . . . + kt,ι + Qt)

2

⌋

(2.5.15)

Observe that the values of the output zt and Qt+1 remain the same if one
permutes the inputs Kt = (kt,1, . . . , kt,ι). That is, these computations depend
only on the value |Kt| of the inputs. We refer to this kind of (ι, m)-combiners
as permutation invariant combiners.

Table 2.5.2 displays the various input/output possibilities for the case
k = 4 and m = 2.

2.5.4 The E0 keystream generator

The keystream generator E0 is part of the Bluetooth specifications [Blu99]
for wireless communications. It consists of 4 regularly clocked LFSRs of
lengths 25, 31, 33 and 39, respectively, yielding a key size of 128 bits.
Additionally involved are m = 4 memory bits. With each clock, an output
bit zt is produced depending on the inputs Kt = (kt,1, kt,2, kt,3, kt,4) of the four
LFSRs and the four memory bits Qt = (qt, pt, qt−1, pt−1). This means that E0

is a (4, 4)-combiner. Then the next memory bits Qt+1 = (qt+1, pt+1, qt, pt) are
calculated and so on. We see that the memory bits qt and pt are used in
both clocks t and t+1. The output bit zt and the memory bits are computed
by the following equations

zt = kt,1 + kt,2 + kt,3 + kt,4 + pt (2.5.16)

Qt+1 = (qt+1, pt+1, qt, pt) (2.5.17)

= (S1
t+1 + qt + pt−1, S

0
t+1 + pt + qt−1 + pt−1, qt, pt), (2.5.18)

39

2 Preliminaries

where

St+1 = (S1
t+1, S

0
t+1) =

⌊
kt,1 + kt,2 + kt,3 + kt,4 + 2 · qt + pt

2

⌋

. (2.5.19)

The values for Q0 and the contents of the LFSRs must be set before the
start, the other values will then be calculated.

40

2.6 Attacks on (ι, m)-combiners

2.6 Attacks on (ι, m)-combiners

By and by, cryptographers developed numerous attacks on (ι, m)-combiners.
In this section, we provide a short overview of existing attacks. For a more
detailed survey, we suggest [Zen04] which has served as a guideline for this
section.

Statistical tests

Recall that the idea of keystream generators was to imitate the one-time
pad where a random bit string was XORed to the message. Though the
keystream is not really random, at least it shouldn’t show any statistical
particularities. Thus, several statistical tests, e.g. see [BekP82, Gol82,
Knu81, Mau90], were developed to check if the keystream can be distin-
guished from a truly random sequence. This includes that the keystream
shouldn’t have a low period or a low linear complexity.

Time-memory-data tradeoff

As the update function Υ was assumed to be bijective, it suffices to find
out the value of one of the internal states St, as S0 = Υ−t(St) can be eas-
ily reconstructed then. The basic idea behind time-memory-data tradeoff
attacks is to perform a brute force attack over a smaller keyspace and to

compute for each of the candidates S
(i)
0 corresponding keystream elements

z
(i)
0 , . . . , z

(i)
N . If these occur in the observed keystream, the attacker is able to

find out the actual internal state St and consequently the initial state S0.
For further reading, we refer to [BirS00].

Guessing attacks

As already discussed in Section 2.1, the size of the key space K makes a
brute force attack usually infeasible. In guessing attacks, the adversary
guesses first some parts of the secret key what, together with the observed
keystream, imposes some conditions on the remainder. In certain cases, it
is possible to discard a huge fraction of the remaining candidates without
actually checking them.

This can be achieved in several ways. One example is the linear consis-
tency test (LCT) described in [ZenYR89] for simple combiners which makes
use of linear update function L. The guessing yields a system of linear
equations in the remain of the secret key. Either this system of equations

41

2 Preliminaries

possesses no solutions, which proves the guess to be incorrect, or it leaves
a (hopefully small) set of remaining candidates which can be tested.

A similar approach is pursued in backtracking attacks. But as opposed
to LCT, here parts of secret key are guessed bit by bit, yielding linear equa-
tions at a time. Thus, instead of building the whole system of linear equa-
tions at once, it is generated successively. If at one step the new equations
yield a contradiction, the last guess is modified until the contradiction is
resolved. If this is not possible, the attacker tracks back to the last but one
guess, changes this value and the according equations and proceeds. For
an elaborately treatment of these attacks, we recommend [Zen04].

BDD-based attacks

As the specifications of the (ι, m)-combiner are known to the attacker, each
observed keystream element zt provides the information that St ∈ f−1(zt)
which is a strict subset of Fι+m if f is not constant. Thus, if one could keep
track of these information in an efficient way, this would make it eventually
possible to identify the secret key.

In [Kra02], it was showed that binary decision diagrams (BDDs) provide
such a method. A BDD is a data structure which allows to compactly store
certain Boolean functions. Additionally, BDDs can be efficiently combined
which allows to manage their information. More on BDDs can be found in
[Weg87].

The attack from [Kra02] works as follows. At each clock, the information
gained are expressed by BDDs of small size. It was showed that for some
keystream generators, e.g. E0, the theoretically estimated time and memory
effort to combine these BDDs and thus recovering the secret key was less
than for all previous attacks. The experimental results in [Sch02, Ste04]
confirmed the general applicability and indicated that the asymptotic be-
haviour is as predicted. At the same time, it turned out that memory is
actually the bottle neck. In [KraS06] BDD-based attacks were combined
with guessing attacks described above, yielding a lower memory effort by
only slightly increased running time.

Correlation attacks

One of the most important and successful classes of attacks are correlation
attacks. Although most concepts should work for (ι, m)-combiners over
arbitrary fields, the attacks are usually described for the case F = F2, so
we regard only this scenario. Correlation attacks on simple combiners are

42

2.6 Attacks on (ι, m)-combiners

based on finding and exploiting linear functions l : Fk
2 → F2 such that

|Pr[l(Kt) = zt]| 6=
1

2
(2.6.20)

for all t. That is, a linear combination of the inputs is correlated to the
keystream bits. In [Sie84, XiaM88], it was proved that the higher the resis-
tance against such linear combinations, the lower the linear complexity of
the keystream. Thus, correlation attacks are in principal always possible.

The first correlation attack was described in [Sie85]. Later on, in [MeiS88,
MeiS89], faster algorithms taken from coding theory [Gal63] were proposed.
The huge number of following publications, e.g. see [MihG90, CheS91,
Pen96, ZenH88, ZenYR89, Ziv91a], demonstrates the community’s strong
interest in this subject. All of these proposals have in common that they
require that the number of monomials in the LFSR’s minimal polynomial
is low. Alternative algorithms which works without this limitation have
been given in [JohJ99, JohJ99b, CanT00, CheJS00, Fil00, JohJ02]. Each
of these attacks have their advantages and drawbacks. For most cases,
the best way is to combine these approaches, e.g. see [MihFI00, MihFI01,
ChoJM02]

Although combiners with memory, i.e. (ι, m)-combiners with m ≥ 1 were
primary proposed in [Rue85] to avoid correlation attacks, it eventually
turned out in [MeiS92, Gol93, Gol96] that linear combinations similar to
(2.6.20) are possible. The difference however is that one has to consider
linear combinations between the inputs Kt and keystream bits zt of several

consecutive clocks instead of only one as for simple combiners.6

Some final remarks

We want to stress that this is only a very brief overview of existing at-
tacks and is far from being complete. Nonetheless, it shows how nu-
merous the approaches are to cryptanalyze (ι, m)-combiners. Given that
the first attacks are dating back to the eighties, the appearance of com-
pletely new kinds of attacks as BDD-attacks [Kra02] and algebraic attacks
[CouM03, ArmK03] almost twenty years later show that cryptanalyzing
(ι, m)-combiner is still an important cryptographic task.

Of course, some attacks might be useless for one cipher but very suc-
cessful for other. Some presume the knowledge of many keystream bits
but need only little memory space (e.g., correlation attacks) whereas for

6We will encounter the same issue again later in Section 3.2 in the context of finding
equations for algebraic attacks in the case of simple combiners and combiners with
memory.

43

2 Preliminaries

others it is just the other way around (e.g., BDD-attacks). Hence, only in
the rarest cases it is possible to say that one attack is actually ”better”
than another. While evaluating an attack, one should always take into ac-
count the estimated number of operations, memory and data. Often, it is
only possible to give a rough estimate, making the comparison additionally
difficult.

Regarding the number of operations, to the best of our knowledge all
attacks have in common that either no precise estimates are possible or
that this value is exponential in the keysize n. In this sense, algebraic
attacks stand out as, in certain cases, it is possible to predict the number
of operations being polynomial in n.

44

3 Algebraic attacks

45

3 Algebraic attacks

3.1 Principles

In this section, we give a general description of algebraic attacks on (ι, m)-
combiners. As explained in Section 2.1, the security model is that an ad-
versary knows the specification of the combiner and additionally some of
the keystream elements zt. His goal is to use this knowledge to recover the
initial settings S0 = (Q0, K) of the memory bits and the LFSRs. Usually,
the size of the memory register is small compared to the LFSRs registers.
Hence, once K has been found out, Q0 can easily be reconstructed either
by exploiting the structure of the keystream generators or by exhaustively
trying all values. Therefore, we concentrate on attacks where the primal
goal is to find out the value of K and refer to K as the secret key.

Observe that each part zt, . . . , zt+r−1 of known keystream reveals some in-
formation on the corresponding inputs Kt, . . . , Kt+r−1 and hence on K. Nor-
mally, the values of Kt are not yet uniquely determined but at least one can
derive some conditions on those. This means that each piece of new infor-
mation, that is each known value zt, allows to reduce the set of possible
values for K. If the attacker gathers enough information, then finally this
set is reduced to one element which is simply the value of K. Thus, each
part of the keystream provides some partial information on K. If one has
enough partial information at his disposal, he can (at least theoretically)
combine them to get ultimately the value of K.

The difficult part is how to manage these partial information such that
one can finally determine the value of K by practical means (or at least
within a time effort which is below brute force). Thus, one could say that
finding an efficient attack is equivalent to finding an efficient way to orga-
nize the information. For example, in the BDD-attack presented by Krause
in [Kra02], each partial information is stored as special kind of graph,
namely a binary decision diagram.

One possibility could be to simply store the set of possible keys and to
cross out for each piece of new information the values which can impossibly
produce these parts of keystream. But this approach is infeasible as it
would require to store a huge set of values at the beginning. Hence, one
needs other ways to collect and to manage the restrictions on the values of
K.

However, the maybe most intuitive approach would be to express the
partial information by equations. This would lead to a system of equations
with its solution being exactly the value of K. This is more or less the idea
behind the algebraic attacks.

Before we explain them in their generality, we demonstrate them on the
toy cipher from Section 2.5.1. Table 3.1.1 displays the first states of the
LFSRs and the expressions of the produced keystream bits zt.

46

3.1 Principles

t At Bt zt = at · bt + at + bt

0 (a0, a1) (b0, b1, b2) z0 = a0 · b0 + a0 + b0

1 (a1, a0 + a1) (b1, b2, b0 + b2) z1 = a1 · b1 + a1 + b1

2 (a0 + a1, a0) (b2, b0 + b2, b0 + b1 + b2) z2 = (a0 + a1) · b2 + (a0 + a1) + b2

3 (a0, a1) (b0 + b2, b0 + b1 + b2, b0 + b1) z3 = a0 · (b0 + b2) + a0 + b0 + b2

Table 3.1.1: The first clocks of the toy cipher

One sees that the information from the last column lead directly to a
system of equations (3.1.1) in the known keystream elements zt and the
unknown key elements a0, a1, b0, b1, b2.

z0 = a0 · b0 + a0 + b0

z1 = a1 · b1 + a1 + b1

z2 = (a0 + a1) · b2 + (a0 + a1) + b2

z3 = a0 · (b0 + b2) + a0 + b0 + b2
...







(3.1.1)

Hence, if enough values zt are known to an attacker, he can set up a
system of equations as described in (3.1.1) and solve it to get the secret
key. In principle, this is the idea of an algebraic attack.

Algorithm 3.1 sketches the principles of an algebraic attack on an (ι, m)-
combiner.

Algorithm 3.1.
Algebraic attack on an (ι, m)-combiner

Input: An (ι, m)-combiner, initialized to a secret value S0 = (Q0, K),
and the knowledge of some the keystream elements zt generated

by this setting

Output: The secret key K

1: Set up a system of equations in the unknowns K and the observed

values zt

2: Recover K by solving the resulting system of equations

3: return K

Of course, this leaves several open questions, some of them being:

1. How does one set up a system of equations for an arbitrary (ι, m)-
combiner?

47

3 Algebraic attacks

2. Are some systems of equations ”better” than others? If yes, how can
one find the ”best ones”?

3. Which method is best suited to compute the solution?

In the following sections, we will consider these questions step by step.

48

3.2 Generating a system of equations

3.2 Generating a system of equations

In this section, we discuss how to generate a system of equations that can
be used for an algebraic attack. Here, we rather concentrate on the type of
equations and postpone the question if such equations exist and how they
can be found to Section 4.1.

3.2.1 Simple combiners

In this section, we consider the problem how to get a system of equations
for a given simple combiner. As we have seen in the previous section, an
obvious approach is to use the equation z = f(X) implicated by the output
function f to construct the following system of equations:

f(K1) = z1

f(K2) = z2

f(K3) = z3

. . .







(3.2.2)

An adversary can insert the known values zt into (3.2.2) to get a system
of equations in the unknowns Kt and the known values zt. Furtheron,
he can exploit in the case of LFSR-based keystream generators, that Kt is
equivalent to K · Lt · P where P ∈ Fn×ι and L ∈ Fn×n are publicly known
matrices. Hence, he gets for each known zt one equation

f(K · Lt · P) = zt. (3.2.3)

However, this doesn’t need to be the best one can get as the following
example shows:

Example 3.1. Let us look again at the toy cipher from Section 2.5.1. The

keystream generation is defined by

f(at, bt) = at + bt + atbt = zt (3.2.4)

where at and bt are the output bits from LFSRs A and B, respectively. As al-

ready discussed in Section 3.1, equation 3.2.4 implies a system of quadratic

equations at + bt + atbt + zt = 0 for all t ≥ 0. Indeed, one can do better. For

example, one could multiply each equation with at, giving

0 = (f(at, bt) + zt) · at = at(1 + zt). (3.2.5)

Recall that the degrees ≥ q are always reduced to q − 1 as explained in Re-

mark 2.44. Hence, equation (3.2.5) implies a system of linear equations in

49

3 Algebraic attacks

the variables of at only. Strictly speaking, the situation is as this. If zt = 1,

then (3.2.5) reduces to the trivial equation 0 = 0 which provides no informa-

tion. But, whenever zt = 1, equation (3.2.5) tells us that at = 0. Of course,

this linear system on A will always be underdefined but it helps already to

reduce the number of possibilities.

A similar approach is possible regarding B.

As we have seen, the ”original” equation (3.2.4) is not necessarily the
best choice to set up a system of equations. Therefore, we generalize the
description a little. If an adversary knows a valid equation

F (X, f(X)) = 0 (3.2.6)

where f(X) = z is the output equation for the considered cipher, each
known value zt implies one equation

F (K · Lt · P, zt) = F (Kt, zt) = 0. (3.2.7)

An example is the equation 0 = F (at, bt, zt) = at(1 + zt) from example 3.1.
Finally, one can say that the first step consist mainly in finding an ap-

propriate F such that (3.2.6) holds. This question has been first considered
in [CouM03] and further examined in [MeiPC04]. Once such an F is found,
the generation of a system of equations is quite straightforward.

Observe that the degree of the functions in equation (3.2.7) are bounded
by maxz{deg(F (X, z))} which is independent of the key size. This will play
a very important role later for the linearization method (Section 3.3.2) to
solve the system of equations.

3.2.2 Combiners with memory

Next, we will put our focus on combiners with memory. Again, we start
with the output equation

f(Qt, Kt) = zt. (3.2.8)

Assume now that one uses (3.2.8) to set up the following system of equa-
tions1:

f(Q0, K0) = z0

f(Q1, K1) = z1

f(Q2, K2) = z2

. . .







(3.2.9)

In this case, we encounter the problem that each equation contains the
unknown Qt. As the number of unknowns is hence always bigger than the

1For simplicity, we assume for the moment that the adversary knows all keystream ele-
ments zt.

50

3.2 Generating a system of equations

number of equations, this specific system of equations remains unsolvable,
no matter how many clocks one considers. Indeed, the unknowns Qt are
not independent from each other: each Qt is uniquely defined by Q0 and
K0, . . . , Kt−1. Hence, one could derive functions Ψt : Fm+(t−1)ι → F such that
Qt = Ψt(Q0, K0, . . . , Kt−1) and insert them into (3.2.9):

f(Q0, K0) = z0

f(Ψ1(Q0, K0), K1) = z1

f(Ψ2(Q0, K0, K1), K2) = z2

. . .







(3.2.10)

This leaves only the unknown Q0 which can be simply guessed. But this
approach poses two other difficulties. Firstly, it might be complicated or
at least expensive to compute the functions Ψt. Secondly, it might not
longer be true that the degrees of the equations in (3.2.10) are bounded by
a constant d, independent of the key size. But this is a necessary condition
to apply the linearization method (Section 3.3.2), which is the only method
so far that allows an accurate estimation of the effort. In some cases, this
might be not a problem and other, likewise efficient algorithms to solve the
system of equations may exist. But in general, we cannot expect that this
approach leads to an effective attack.

However, if it would be possible to to get rid of the unknowns Qt, the
situation would be similar as for simple combiners and, above all, allow-
ing the usage of the linearization method. Actually, this is possible if one
considers several clocks in one equation instead of only one as it has been
done before. This approach has been first presented by us in [Arm02].

Definition 3.2. Let a (ι, m)-combiner and r ≥ 1 be fixed. A function F :
Fr·ι+r → F is called an r-function for the (ι, m)-combiner if

F (X1, . . . , Xr, y1, . . . , yr) = 0 (3.2.11)

is true where X1, . . . , Xr denotes r successive inputs to the output function

f and Y := (y1, . . . , yr) the corresponding outputs. That is, each time the

attacker knows the values of r successive keystream elements zt, . . . , zt+r−1,

the following equation in K is true:

F (Kt, . . . , Kt+r−1, zt, . . . , zt+r−1) = 0. (3.2.12)

Example 3.3. In Example 3.1, an 1-function is given by (3.2.5):

F (X, y) = F (x1, x2, y) := x1(1 + y).

Another one can be derived from (3.2.4):

F (X, y) = F (x1, x2, y) := f(x1, x2) + y = x1 + x2 + x1x2 + y.

51

3 Algebraic attacks

In general, the 1-functions F (X, y) in the case of simple combiners are ex-

actly those functions which comply with (3.2.6).

Once an r-function is known, it can be used to set up a system of equa-
tions in the known outputs zt and the unknown initial state K. Observe
that the degree of the equations derived from (3.2.12) are again bounded,
here by

max{deg(F (X1, . . . , Xr, y1, . . . , yr))|(y1, . . . , yr) ∈ Fr}.
As we have seen, the existence of 1-functions is obvious for the case of
simple combiners. In [ArmK03], we proved the existence of (m+1)-functions
for general (ι, m)-combiners with memory. We will present later a slightly
generalized version of this Theorem.

3.2.3 Z-functions

Summing up, algebraic attacks on both simple combiners and combin-
ers can use systems of equations build from r-functions. Indeed, for sev-
eral reasons we approve a slightly different approach to generate the sys-
tem of equations. To motivate this, assume that s different r-functions
F1, . . . , Fs are known. Then each sequence of r known keystream elements
zt, . . . , zt+r−1 implies the following s equations

F1(Kt, . . . , Kt+r−1, zt, . . . , zt+r−1) = 0
...

Fs(Kt, . . . , Kt+r−1, zt, . . . , zt+r−1) = 0.







(3.2.13)

We will see later in Section 3.3 that a high number of equations can support
the solving step enormously. Thus, it would make sense to use each of
these equations for generating a system of equations. However, it might be
that some of the equations are redundant due to several reasons. In this
case, incorporating all s equations would increase the effort to solve the
system of equations as one would have to deal with all of them although
they provide no additional information.

For example, let F be an r-function and g : Fr → F be an arbitrary func-
tion. Let Y = (y1, . . . , yr). Then,

F ′(X1, . . . , Xr, Y) := g(Y) · F (X1, . . . , Xr, Y) (3.2.14)

is obviously an r-function, too. But F ′ provides no more information than
F already does. The reason is that substituting y1, . . . , yr by concrete values
Z := zt, . . . , zt+r−1 ∈ Fr yields

F ′(Kt, . . . , Kt+r−1, Z) := g(Z)
︸ ︷︷ ︸

∈F

·F (Kt, . . . , Kt+r−1, Z).

52

3.2 Generating a system of equations

Thus, F ′ collapses to a constant multiple of F and F ′(Kt, . . . , Kt+r−1, Z) = 0
provides the same information on Kt, . . . , Kt+r−1 as F (Kt, . . . , Kt+r−1, Z) = 0.
In general, it may be difficult or at least time-consuming to decide if (3.2.13)
contains redundant equations for certain values z1, . . . , zr.

Another problem could be as follows. Assume that two different r-functions
F and F ′ are given. Furthermore, assume that for two different values
y1, . . . , yr and y′

1, . . . , y′

r
in Fr it holds that

deg(F (X1, . . . , Xr, y1, . . . , yr)) < deg(F ′(X1, . . . , Xr, y1, . . . , yr) but
deg(F (X1, . . . , Xr, y

′

1, . . . , y′

r
)) > deg(F ′(X1, . . . , Xr, y

′

1, . . . , y′

r
).

Thereby, we mean the degree in the remaining unknowns X1, . . . , Xr. If
an adversary uses the linearization method (see Section 3.3) to solve the
system of equations, he prefers equations with a degree as low as possible.
Hence, in this case it would make sense to use F each time the considered
known part of keystream sequences equals y1, . . . , yr but not F ′. On the
other hand, if the keystream sequence is equal to y′

1, . . . , y′

r
, it would be

better to use F ′ to set up an equation and not to use F .

Summing up, one has to be careful when using r-functions as substi-
tuting y1, . . . , yr by concrete values might cause some unwanted side ef-
fects. Therefore, we prefer a slightly different approach. Instead of using
(or looking for) equations in unknowns y1, . . . , yr and to insert the observed
keystream elements into it, we propose to work with functions which are
valid on the inputs of f if the corresponding output is equal to some fixed
values. The next definition makes this idea more precise.

Definition 3.4. Let Kt ∈ Fι be the inputs of the output function f at clock t
and (zt) denote the produced keystream. A function FZ : Fι·r → F for Z ∈ Fr

is called a Z-function if whenever a part zt, . . . , zt+r−1 of the keystream is

equal to Z then FZ is zero on the corresponding (possibly unknown) inputs

Kt, . . . , Kt+r−1. In other words, it must hold for any t ≥ 0 that

(zt, . . . , zt+r−1) = Z ⇒ FZ(Kt, . . . , Kt+r−1) = 0. (3.2.15)

Example 3.5. Obviously, FZ :≡ 0 is trivially a Z-function. In the case of

simple combiners, on easily gets (z)-functions F(z) for each z ∈ F by F(z)(X) :=
g(X) · (f(X)− z).

More on the existence and properties of Z-function will be given in Sec-
tion 4.1. For the moment, we postpone the question how to find such
equations and simply assume that, for a fixed r ≥ 1, Z-functions FZ are
known to the attacker for every Z ∈ Fm. Thus, if he knows the values
zt1, . . . , zt1+r−1, zt2, . . . , zt2+r−1, . . . , ztN

, . . . , ztN +r−1 of the corresponding

53

3 Algebraic attacks

keystream elements, he can use this knowledge to generate the following
system of equations:

F(zt1 ,...,zt1+r−1)(Kt1 , . . . , Kt1+r−1) = 0

F(zt2 ,...,zt2+r−1)(Kt2 , . . . , Kt2+r−1) = 0

. . .
F(ztN

,...,ztN +r−1)(Kt1 , . . . , KtN+r−1) = 0







(3.2.16)

In some cases, we will abbreviate (zt, . . . , zt+r−1) by Zr
t . For example,

(3.2.16) could be rewritten to

FZr
t1

(Kt1 , . . . , Kt1+r−1) = 0

FZr
t2

(Kt2 , . . . , Kt2+r−1) = 0

. . .
FZr

tN
(Kt1 , . . . , KtN+r−1) = 0







(3.2.17)

By definition, Kt is equivalent to K ·Lt ·P where P ∈ Fι×n and L ∈ Fn×n are
publicly known matrices. Hence, the adversary can rewrite (3.2.16) to

F(zt1 ,...,zt1+r−1)(K · Lt1 · P, . . . , K · Lt1+r−1 · P) = 0

F(zt2 ,...,zt2+r−1)(K · Lt2 · P, . . . , K · Lt2+r−1 · P) = 0

. . .
F(ztN

,...,ztN +r−1)(K · LtN · P, . . . , K · LtN+r−1 · P) = 0







(3.2.18)

This finally leads to a system of equations in the known keystream words
zt and the secret key K. Due to the linearity of P and L, each equation in
(3.2.18) has a degree equal to or lower than maxZ{deg(FZ)}.

Actually, one can generalize this a little. Assume that for each value

Z ∈ Fr, there are i(Z) linearly independent Z-functions F
(1)
Z , . . . , F

(i(Z))
Z with

the same degree. Then, whenever (zt, . . . , zt+r−1) equals Z, one can include

54

3.2 Generating a system of equations

all i(Z) equations into the system of equations. This is displayed in (3.2.19).

F
(1)
Zr

t1
(Kt1 , . . . , Kt1+r−1) = 0

. . .

F
(i(Zr

t1
))

Zr
t1

(Kt1 , . . . , Kt1+r−1) = 0







F
(1)
Zr

t2
(Kt2 , . . . , Kt2+r−1) = 0

. . .

F
(i(Zr

t2
))

Zr
t2

(Kt2 , . . . , Kt2+r−1) = 0







...

F
(1)
Zr

tN

(KtN , . . . , KtN+r−1) = 0

. . .

F
(i(Zr

tN
))

Zr
tN

(KtN , . . . , KtN+r−1) = 0







(3.2.19)

Observe that an adversary needs to know the values of at least r succes-
sive keystream elements to set up one valid equation. If one derives the
Z-equations directly, the value of r is in general rather moderate as the
effort increases with r (see Section 4.2). An example is r = 4 in the case of
E0 (see [ArmK03]). However, in fast algebraic attacks (see Chapter 5), one
uses linear combinations of a huge number of Z-equations to get one new
equation with a lowered degree. For these new equations, the value of r can
be very high. For example, it was estimated for E0 that r = 8.822.188 for E0

(see [Cou03, Arm04a]). Thus, the value r, which is the number of succes-
sive keystream elements needed to set up one Z-function based equation,
is a parameter which should be considered when evaluating the complexity
of an algebraic attack. Hence, we define a specific notion for it:

Definition 3.6. Let FZ be Z-function for Z ∈ Fr. Then, r is named the run
length of FZ.

Remark 3.7. The name run length is inspired by the fact that a run of r
known successive keystream elements is required to use FZ for building one

equation in the key K.

Example 3.8. To illustrate the concept of Z-functions we consider again the

toy keystream generator from Section 2.5 with the output function f(a, b) =
a · b + a + b. One sees easily that f(a, b) = 0 if and only if (a, b) = (0, 0). Thus,

whenever a keystream element zt is equal to zero, we know immediately that

(at, bt) = 0, yielding the two (0)-functions F
(1)
(0) (a, b) := a and and F

(2)
0 (a, b) = b.

For the output zt = 1, we define the trivial (1)-function F(1)(a, b) := f(a, b)− 1 =
a · b + a + b− 1.

55

3 Algebraic attacks

Let K = (11101) be the secret key. The first eleven inputs and keystream

elements are
t 0 1 2 3 4 5 6 7 8 9 10

at 1 1 0 1 1 0 1 1 0 1 1
bt 1 0 1 0 0 1 1 1 0 1 0

zt 1 1 1 1 1 1 1 1 0 1 1

Assume now that an adversary gets knowledge of the first eleven outputs,

i.e. (z0, . . . , z10) = (1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1). Using the Z-functions defined

above would lead to the following system of equations:

0 = F1(a0, b0) = a0b0 + a0 + b0 − 1
. . .

0 = F1(a7, b7) = a7b7 + a7 + b7 − 1

0 = F
(1)
0 (a8, b8) = a8

0 = F
(2)
0 (a8, b8) = b8

0 = F1(a9, b9) = a9b9 + a9 + b9 − 1
0 = F1(a10, b10) = a10b10 + a10 + b10 − 1

(3.2.20)

Observe that this system of equations is independent of the method how the

internal bit streams (at) and (bt) are generated. Generally, it is assumed that

an adversary also knows the definition of the keystream generator. In this

case, he would know that at = at−1 + at−2, t ≥ 2, and bt = bt−1 + bt−3, t ≥ 3.

Incorporating these information into (3.2.20) gives a system of equations in

K = (a0, a1, b0, b1, b2) where each equation is either linear or quadratic. This is

displayed in Table 3.2.2. The equations in the last column form the following

system of equations:

1 = a0 + b0 + a0b0

1 = a1 + b1 + a1b1

1 = a0 + a1 + b2 + a0b2 + a1b2

1 = a0 + b0 + b2 + a0b0 + a0b2

1 = a1 + b0 + b1 + b2 + a1b0 + a1b1 + a1b2

1 = a0 + a1 + b0 + b1 + a0b0 + a0b1 + a1b0 + a1b1

1 = a0 + b1 + b2 + a0b1 + a0b2

1 = a1 + b0 + a1b0

0 = a0 + a1

0 = b1

1 = a0b2 + a0 + b2

1 = a1 + b0 + b2 + a1b0 + a1b2

(3.2.21)

Remark 3.9. Although we prefer to use Z-functions to generate system of

equations, in some cases r-functions are the better tool. One example are

56

3.2 Generating a system of equations

t at bt zt Equations

0 a0 b0 1 0 = F1(a0, b0) = a0b0 + a0 + b0 + 1

1 a1 b1 1 0 = F1(a1, b1) = a1b1 + a1 + b1 + 1

2 a0 + a1 b2 1
0 = F1(a0 + a1, b1)

= (a0 + a1)b2 + a0 + a1 + b2 + 1

3 a0 b0 + b2 1
0 = F1(a0, b0 + b2)

= a0(b0 + b2) + a0 + b0 + b2 + 1

4 a1 b0 + b1 + b2 1
0 = F1(a1, b0 + b1 + b2)

= a1(b0 + b1 + b2) + a1 + b0 + b1 + b2 + 1

5 a0 + a1 b0 + b1 1
0 = F1(a0 + a1, b0 + b1)

= (a0 + a1)(b0 + b1) + a0 + a1 + b0 + b1 + 1

6 a0 b1 + b2 1
0 = F1(a0, b1 + b2)

= a0(b1 + b2) + a0 + b1 + b2 + 1

7 a1 b0 1 0 = F1(a1, b0) = a1b0 + a1 + b0 + 1

8 a0 + a1 b1 0
0 = F

(1)
0 (a0 + a1, b1) = a0 + a1

0 = F
(2)
0 (a0 + a1, b1) = b1

9 a0 b2 1 0 = F1(a0, b2) = a0b2 + a0 + b2 + 1

10 a1 b0 + b2 1
0 = F1(a1, b0 + b2)

= a1(b0 + b2) + a1 + b0 + b2 + 1

Table 3.2.2: A system of equations using z-functions and the knowledge of
the minimal polynomials for the toy cipher.

fast algebraic attacks (see Chapter 5) where it is necessary that the system

of equations is build of r-functions. But this poses no problem, as one can

easily construct an r-function from Z-functions. Let

δZ(y1, . . . , yr) :=

{
1 , (y1, . . . , yr) = Z

0 , else
.

Then, one can construct an r-function F from the Z-functions by

F (X1, . . . , xr, y1, . . . , yr) :=
∑

Z∈Fr

δZ(y1, . . . , yr) · FZ(X1, . . . , Xr).

In the next section, we will treat the question of solving this type of sys-
tems of equations. It will turn out that for the methods considered, the
degree of the Z-functions plays an important role in the efficiency of the
solving step. In other words, the lower the degrees, the faster it is possible
to compute the solution and thus to recover the secret key. Consequently,
an attacker prefers low degree Z-functions. In Chapter 4, we will face this

57

3 Algebraic attacks

problem again. If the degrees of the Z-functions are not all equal, he might
omit those with the higher degrees and concentrate only on those with the
lowest degree. For instance, in Example 3.8, one could use only the lin-
ear (0)-functions to get a system of linear equations. Finally, we sum up
algebraic attacks with Z-functions in Algorithm 3.2.

Algorithm 3.2.
An algebraic attack on a (ι, m)-combiner using a system of equa-

tions composed of Z-functions

Input: A (ι, m)-combiner, initialized to a secret value S0 = (Q0, K)
and the knowledge of some the keystream elements gener-

ated by this setting

Output: The secret key K

1: Fix r ≥ 1 and find i(Z) Z-functions for each Z ∈ Fr (see Sec-

tion 4.1 for more details)

2: Initialize an empty system of equations

3: For each run of known keystream elements (zt, . . . , zz+r−1) =
Zr

t , add the following equations to the system of equations:

F
(1)
Zr

t
(Kt, . . . , Kt+r−1) = 0

. . .

F
(i(Zr

t))
Zr

t
(Kt, . . . , Kt+r−1) = 0

4: Recover K by solving the resulting system of equations

5: return K

58

3.3 Computing the solution

3.3 Computing the solution

In the previous sections, we discussed different possibilities how to gener-
ate a system of equations whose solution reveals the LFSRs’ initial state.
Of course, this is only half the battle. Not less important is the question
how to solve these systems efficiently, which is the topic of this section.
We assume from now on that a system of equations has been constructed,
depending on the known parts of the keystream, and the goal is to find a
common root. We hereby implicitly assume that the system of equations
has only one solution which is K.

In the following, we will describe various methods to solve a system of
equations over a finite field F. Let the system of equations be given by:







f1(x1, . . . , xn) = 0
f2(x1, . . . , xn) = 0

. . .
fN(x1, . . . , xn) = 0

(3.3.22)

Actually, the idea to express a cipher by a system of equations is not new.
Already Shannon mentioned in his seminal paper [Sha49] that breaking a
good cipher should require ”as much work as solving a system of simultane-

ous equations in a large number of unknowns of a complex type.” The reason
for this recommendation is that solving systems of nonlinear equations is
difficult in general. For example, it has been proven that finding a solution
of a system of quadratic (!) equations is an NP-hard problem [HasPS93].
This means that probably2 no polynomial time algorithms exist for solv-
ing general systems of non-linear equations over finite fields. Nonetheless,
Gröbner bases algorithms have established themselves as a indispensable
tool to solve systems of polynomial equations and other problems which
can be reduced to this kind of system. As the computation of Gröbner
bases is useful also for other problems related to algebraic attacks, we give
now a short introduction to this topic. For a more detailed treatment of this
subject, we suggest the book by Cox, Little and O’Shea [CoxLS96].

3.3.1 Gröbner bases

The theory of Gröbner bases has been initiated by Bruno Buchberger in
his PhD thesis [Buc65], named after his supervisor Wolfgang Gröbner, as
a tool to solve the ideal membership problem (see below). Simultaneously,
he described the first algorithm to compute Gröbner bases and proved its

2Otherwise, it would hold that P = NP what is doubted by most complexity theoreticians.

59

3 Algebraic attacks

correctness and termination. The most efficient methods over a finite field
F publicly known so far are F4 and F5, both due to Faugère [Fau99, Fau02].

Gröbner bases are special bases of ideals I in polynomial rings. For ob-
vious reasons, we will concentrate only on Fq[x1, . . . , xn], that is polynomials
over finite fields. For certain problems, Gröbner bases are helpful as the
answers can be directly read out the basis or can be solved directly with
the basis. One such problem is the ideal membership problem: Given an
ideal I ⊆ Fq[x1, . . . , xn] and f ∈ Fq[x1, . . . , xn], is f ∈ I? Another problem is
that of solving a system of equations. If

I := 〈f1(x1, . . . , xn), . . . , fN(x1, . . . , xn), xq
1 − x1, . . . , x

q
n − xn〉 ,

that is I is the ideal generated by the equations for which we want to find a
solution plus the field equations, then certain Gröbner bases allow to read
out the solution of (3.3.22) immediately.

An important fact is that Gröbner bases per se are not unique. Prior to
the computation of a Gröbner basis, a term ordering has to be fixed.

Definition 3.10. Let F[X] := F[x1, . . . , xn] be the ring of multivariate polyno-

mials in n unknowns over some field F. A term ordering is a relation ≺ on

the set of monomials XE, E ∈ Nn, such that

1. ≺ is a total ordering. This means that for any monomials XA and XB it

holds that either XA = XB, XA ≺ XB or XB ≺ XA.

2. If XA ≺ XB then XA ·XC ≺ XB ·XC for each monomial XC.

3. ≺ is a well-ordering. This means that every nonempty set of monomials

has a smallest element under ≺.

We call a term ordering graded if |A| < |B| implies that XA ≺ XB where |A|
denotes the weight of A (see definition on page 26).

In most cases the term ordering is of high significance for the speed of
the algorithm. Unfortunately, there is no guideline on how to choose the
term ordering. In most cases it is unknown a priori which term ordering
would result in the fastest computation.

Once a term ordering is specified, the terms of a function f can be ordered
with respect to this ordering. In particular, there exists one term which is
the greatest in respect to the chosen ordering:

Definition 3.11. Let f =
∑

E cE · XE 6≡ 0 and ≺ be a term ordering on the

monomials XE. The head term HT(f) of f is defined to be the largest term

of f with respect to the fixed ordering ≺. This means that HT(f) := cE′ · XE′

with XE′
= max≺{XE|cE 6= 0}.

For a set F of polynomials, we define HT (F) := {HT (f) | f ∈ F}.

60

3.3 Computing the solution

Remark 3.12. The notion of the head term is well defined as a term ordering

is a total ordering by definition. This implies the existence of one unique

largest element.

One possibility to define a term ordering is presented in the following
proposition:

Proposition 3.13. Let F[x1, . . . , xn] be the ring of multivariate polynomials in

n unknowns over some field F. Furthermore, let R be the ring such that each

f ∈ F[x1, . . . , xn] can be expressed by

f = f(x1, . . . , xn) =
∑

E∈Nn

cEXE.

Then, any ordering ≺R on Rn induces a term ordering ≺K[X] on k[X] by

XE ≺k[X] XE′ ⇐⇒ E ≺R E ′.

For example, one can use the graded reverse lexicographic ordering grevlex
(see following definition). We will call the induced term ordering also grevlex.

Definition 3.14. The graded reverse lexicographic order (grevlex) on Nn
q

is defined as follows. For two elements A := (a1, . . . , an), B := (b1, . . . , bn) ∈ Nn
q ,

it is that A ≺ B if either |A| < |B| or if |A| = |B| and ai < bi for the largest

i ∈ {1, . . . , n} with xi 6= yi.
3

Example 3.15. For the grevlex-ordering of the elements in N3, it holds for

example

(000) ≺ (100) ≺ (010) ≺ (001) ≺ (110) ≺ (101) ≺ (011) ≺ (111).

This implies the following ordering of monomials in F2[x1, x2, x3]:

1 ≺ x1 ≺ x2 ≺ x3 ≺ x1x2 ≺ x1x3 ≺ x2x3 ≺ x1x2x3.

For example, this yields that HT(1 + x1 + x3 + x1x2x3) = x1x2x3 and HT(x2 +
x3 + x1x2 + x2x3 + x1x3) = x2x3.

Now, we are ready to give the definition of a Gröbner basis:

Definition 3.16. Let I be an ideal in the ring F[x1, . . . , xn] and a term ordering

≺ be fixed. A set G = {g1, . . . , gs} ⊆ I is called a Gröbner basis of I with

respect to ”≺” if for every f ∈ I there exist gi ∈ G such that HT(gi) divides

HT(f).

3Recall the definition of the weight |A| of A from page 26.

61

3 Algebraic attacks

Gröbner bases G are special bases of an ideal I (see Definition 2.16).
Apart from I = 〈G〉, G has additional properties which make them useful
for solving certain problems.

As mentioned above one of these problems is the ideal membership prob-
lem, being the question whether a function f is an element of an ideal
I. Given a Gröbner basis of I it can be solved as follows. If f = 0, then
f ∈ I is certainly true. If none of the terms HT(gi) divides HT(f), then
f 6∈ I by the definition of a Gröbner basis. Thus, the remaining case is
that HT(gi) divides HT(f) for some i but f 6= 0. Let T be the term such
that T · HT(gi) = HT(f) and set f ′ := f − T · gi. Now, it obviously holds
that HT(f) ≺ HT(f ′). As for each term only finitely many smaller terms
exists, a finite repetition of this step eventually leads to the case that either
f = 0, which shows that f ∈ I, or to the case that the head term of f is not
divisible by any head term HT(gi), thus f 6∈ I.

Gröbner bases are often bigger than necessary. By eliminating unneeded
generators, it is possible to derive a minimal Gröbner basis. Unfortunately,
a given ideal may have many minimal Gröbner bases. Fortunately, it is pos-
sible to specify one minimal basis which is unique, the so-called reduced
Gröbner basis:

Definition 3.17. A reduced Gröbner basis G for a polynomial ideal I is a

Gröbner basis for I such that:

1. HT(g) = Xα for all g ∈ G, that is the head term has the coefficient 1

2. For all g ∈ G, no monomial of g lies in 〈HT(G \ {g})〉

Remark 3.18. Let a graded term ordering be fixed and G = {g1, . . . , gs} be

the reduced Gröbner basis of an ideal I which contains the field equations.

Despite its uniqueness (see [CoxLS96, Proposition 6 in 2.7] for a proof), it has

another useful property. By definition, for any f ∈ I it holds that at least

one HT(gi) divides HT(f). In particular, if deg(f) = d, then at least one gi has

a degree ≤ d. Thus, reduced Gröbner bases can be used to check whether

I contains functions with a degree lower than a given bound. This property

will become useful on several occasions concerning algebraic attacks.

Before we proceed on Gröbner bases, we want to point out that there
exist some parallels between reduced Gröbner bases and the reduced row
echelon form in linear algebra:

62

3.3 Computing the solution

Example 3.19. Let

f ′
1 := 3x1 + 5x2 + 5x4 + 3x5,

f ′
2 := x1 + 4x2 + 6x3 + 5x4 + 1x5,

f ′
3 := 5x1 + 6x2 + 5x3 + x4 + 2x5,

f ′
4 := 6x1 + 3x2 + 2x3 + x4 + 4x5

f ′
5 := x1 + 4x2 + 2x3 + 2x4 + 6x5.

be some linear functions in F7[x1, . . . , x5] and I := 〈f ′
1, . . . , f

′
5〉. Choosing the

grevlex-ordering, it holds that x1 ≺ . . . ≺ x5.

Next, we compute the row echelon form for the matrix given by the linear

functions f ′
i . Thereby, each column represents one monomial xi. More con-

cretely, the first column represents x1, the second x2, and so on.








3 5 0 5 3
1 4 6 5 1
5 6 5 1 2
6 3 2 1 4
1 4 2 2 6









∼









3 5 0 5 3
0 0 6 1 0
0 0 5 2 4
0 0 2 5 5
0 0 2 5 5









∼









3 5 0 5 3
0 0 6 1 0
0 0 0 0 4
0 0 0 0 5
0 0 0 0 5









∼









1 4 0 4 0
0 0 1 6 0
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0









(3.3.23)
The last matrix is in the reduced row echelon form and describes new linear

functions

f1 := x1 + 4x2 + 4x4,

f2 := x3 + 6x4,

f3 := x5.

Obviously, G := {f1, f2, f3} is a basis of I with HT(f1) = x1, HT(f2) = x3, and

HT(f3) = x5. The coefficients of the head terms are all equal to 1. Further-

more, none of the monomials of the fi is a multiples of a head terms from

another function. Thus, the basis given by the reduced echelon form is the

reduced Gröbner basis of I. In other words, the reduced Gröbner basis can

be computed with usual Gaussian elimination if only linear functions are

considered.

The previous example shows that some similarities exist between the the-
ory and methods of linear algebra and of Gröbner bases. Of course, this
is no 1-to-1 correspondence, as the theory of Gröbner bases has to deal
with products of polynomials, whereas in linear algebra only linear combi-
nations matter. However, this comparison may help to shed some light on
the ideas behind Gröbner bases.

The following theorem shows the connection between reduced Gröbner
bases and the solution of a system of equations. For a proof we refer to
[Ars05, Proposition 1.14].

63

3 Algebraic attacks

Theorem 3.20. Consider a system of equations as displayed in (3.3.22) over

a finite field Fq. Define the ideal

I := 〈f1, . . . , fn, xq
1 − x1, . . . , x

q
n − xn〉 . (3.3.24)

Then, for any term ordering, the reduced Gröbner basis of I is equal to

1. {x1 − x1, . . . , xn − xn} if (x1, . . . , xn) is the unique solution of (3.3.22).

2. {1} if (3.3.22) has no solution.

In particular, one can easily read the solution from the reduced Gröbner basis.

Example 3.21. To illustrate this approach, we consider again the toy cipher

from Section 2.5. In Example 3.8, the following system of equations is valid

in the case that the first eleven keystream bits are equal to 11111111011:

f1 = a0 + b0 + a0b0 + 1
f2 = a1 + b1 + a1b1 + 1
f3 = a0 + a1 + b2 + a0b2 + a1b2 + 1
f4 = a0 + b0 + b2 + a0b0 + a0b2 + 1
f5 = a1 + b0 + b1 + b2 + a1b0 + a1b1 + a1b2 + 1
f6 = a0 + a1 + b0 + b1 + a0b0 + a0b1 + a1b0 + a1b1 + 1
f7 = a0 + b1 + b2 + a0b1 + a0b2 + 1
f8 = a1 + b0 + a1b0 + 1
f9 = a0 + a1

f10 = b1

f11 = a0b2 + a0 + b2 + 1
f12 = a1 + b0 + b2 + a1b0 + a1b2 + 1

(3.3.25)

Let I := 〈f1, . . . , f12, a
2
0 − a0, . . . , b

2
2 − b2〉 (F2[a0, a1, b0, b1, b2] and consider the

grevlex-ordering with a0 ≺ a1 ≺ b0 ≺ b1 ≺ b2. Then, the reduced Gröbner basis

of I is G := {a0 + 1, a1 + 1, b0 + 1, b1, b2 + 1} which allows to easily read out the

secret key K = (a0, a1, b0, b1, b2) = (1, 1, 1, 0, 1).

Several examples exist where the application of Gröbner bases algorithms
has been quite successful for cryptanalysis. As an example, we refer to the
attack on HFE [FauJ03]. Of course, due to the hardness of the underlying
problem, Gröbner bases algorithms can have in the worst case a run time
exponential in the number n of unknowns. Even worse, no methods are
known so far to estimate the complexity a priori.

However, if the number of equations N is bigger than the number of un-
knowns, the complexity can drop significantly. For example, in [BarFS03]
it was showed that the run time of the Gröbner basis algorithm F5 over F2 is

64

3.3 Computing the solution

sub-exponentialO(e
n log log n

log n) if N , the number of equations, is in O(n·log2(n)).
In [ArsF03], the case of simple combiners over F2 and the usage of F5 were
explicitly examined. The authors showed that if N ≥ µ2(d) =

∑d
i=0

(
n
i

)
lin-

early independent equations are given with d ≤
⌊

ι+1
2

⌋
, then the reduced

Gröbner basis can be computed within O(µq(d)ω) where ω is the exponent
for solving systems of linear equations. Observe that µ2(d) ∈ O(nd) and thus
the overall complexity is polynomial in n for fixed d.4

3.3.2 Linearization

As mentioned before, the problem of finding a solution to a random system
of quadratic equations is NP-complete. On the other hand, the case of
linear systems of equations is rather easy as they can be solved efficiently
by Gaussian elimination. Here, efficiently means that time and memory
effort are polynomial in the number of unknowns. The reason is that if the
number of linearly independent equations equals the number of unknowns,
one can eliminate them step by step in the equations by computing the row
echelon form to get the value of each monomial.

For the case of non-linear equations, one also has to deal with products
of unknowns. The key idea of linearization is to re-write the system of
non-linear equations in n unknowns as a new system of linear equations
with a significantly increased number of unknowns, which can be easily
solved by Gaussian elimination. More precisely, if the number of linearly
independent equations is equal to the number of monomials, then one can
apply the same algorithm to eliminate the monomials step by step as in the
case of linear systems of equations.

Example 3.22. Consider the following system of non-linear equations over

F2:
x + y = 1

y + xy = 0
xy = 0

As xy occurs only in the third equation, this equation can be used to eliminate

xy in the second one. This leaves only y, so that it can be eliminated in the

first line. What remains is the following system of equations:

x = 1
y = 0

xy = 0

4Although nowhere stated, we assume that F5, which is based on processing iteratively
generated matrices, just becomes the linearization method (see next section) in the
particular case mentioned above, as they have both the same time and space efforts.

65

3 Algebraic attacks

From this, we can easily read the solution x = 1 and y = 0. Thus, by

successively eliminating the monomials in these equations, the solution could

be easily computed.

Assume that the multivariate polynomials in 3.3.22 are linearly indepen-
dent and let E ⊆ {0, . . . , q − 1}n be the set of occurring exponents, that is

fi =
∑

E∈E c
(i)
E XE for 1 ≤ i ≤ N . In other words, each occurring monomial

has an exponent in E. Hence, there are exactly |E| different monomials in
this system of equations. By introducing a new identifier for each monomial
of degree > 1, one gets a new system of linear equations, but with the num-
ber of unknowns increased from n to |E|. Thus, we linearized the system of
non-linear equation. If N = |E| − 1, then one can triangulate the system of
equations and solve it analogously to Gaussian elimination. The time and
memory effort are in O(|E|3) and O(|E|2), respectively. The complexity can
be further reduced by using improved algorithms as for example the one
from Strassen [Str69].

Remark 3.23. Some might be wondering about the condition N = |E| − 1 as

many papers state N = |E| to be the requirement. Actually, both descriptions

are correct, depending on how one treats the constant monomial 1. Consider

a system of N linearly independent equations, given by

fi(X) =
∑

E∈E

(fi)E ·XE = ci (3.3.26)

with i = 1, . . . , N , (fi)E , ci ∈ Fq, and E ⊆ {0, . . . , q − 1}n. We assume that it has

only one solution which can be found by linearization.

Now, we distinguish between two different cases. In the first case, 1 for-

mally does not belong to the set of involved monomials {XE | E ∈ E}. This

means that (0, . . . , 0) 6∈ E . Hence, if N = |E|, one can transform (3.3.26) by

linear transformations to XE = cE, cE ∈ F, E ∈ E .
However, if one treats the constants as multiples of the monomial 15, then 1

would belong to the set of involved monomials. This implies that (0, . . . , 0) ∈ E
and that (3.3.26)is homogeneous, i.e. ci = 0. The matrix derived from the

functions fi(X) has the size N × |E| and has a kernel of dimension one. In

particular, it holds N = |E| − 1.

In a nutshell, if 1 is not counted as one of the monomials, then the condi-

tion is N = |E|, else N = |E| − 1. Both perspectives points are equal as the

underlying systems of equations are the same.

Before we analyze the effort of this approach for the case of combiners
with memory, we illustrate the linearization method on the following exam-
ple:

5This is our viewpoint.

66

3.3 Computing the solution

Example 3.24. We consider again the system of equation (3.3.25). As each

equation is quadratic or linear, not more than
(
5
2

)
+
(
5
1

)
+ 1 = 16 different

monomials can be present (including the constant monomial 1). Indeed, this

is only a rough upper bound. Due to the structure of the (z)-functions, the list

of actually involved monomials is smaller and consists of only the following

eleven monomials:

a0, a1, b0, b1, b2, a0b0, a1b0, a0b1, a1b1, a0b2, a1b2

Next, we rewrite (3.3.25) as a matrix-vector-product:























1 1 0 1 0 0 1 0 0 0 0 0
1 0 1 0 1 0 0 0 0 1 0 0
1 1 1 0 0 1 0 0 0 0 1 1
1 1 0 1 0 1 1 0 0 0 1 0
1 0 1 1 1 1 0 1 0 1 0 1
1 1 1 1 1 0 1 1 1 1 0 0
1 1 0 0 1 1 0 0 1 0 1 0
1 0 1 1 0 0 0 1 0 0 0 0
0 1 1 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
1 1 0 0 0 1 0 0 0 0 1 0
1 0 1 1 0 1 0 1 0 0 0 1























︸ ︷︷ ︸

=:M

·























1
a0

a1

b0

b1

b2

a0 · b0

a1 · b0

a0 · b1

a1 · b1

a0 · b2

a1 · b2























︸ ︷︷ ︸

=:V

=























0
0
0
0
0
0
0
0
0
0
0
0























(3.3.27)

Thus, the vector

VK := (1, a0, a1, b0, b1, b2, a0 · b0, a1 · b0, a0 · b1, a1 · b1, a0 · b2, a1 · b2),

derived from the secret key K belongs to the kernel of M . Observe that we

reduced the problem of solving the system of non-linear equations (3.3.25) to

computing the kernel space of the matrix M . In this case, the kernel space

has dimension 1 and is generated by the vector (1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1).
From this, one can easily read out the solution a0 = 1, a1 = 1, b0 = 1, b1 = 0
and b2 = 1. which is consequently generated by VK.

The whole linearization method is described in Algorithm 3.3.

67

3 Algebraic attacks

Algorithm 3.3.
Solving a system of equations with the linearization

method

Input: A system of equations f1(X) = 0, . . . , fN(X) = 0 with fi(X) ∈
Fq[X].

Output: All roots

1: Let E ⊂ {0, . . . , q − 1}n be the set of all occurring exponents, that is

fi(X) =
∑

E∈E c
(i)
E XE for all fi.

2: Choose an arbitrary ordering in E .
3: Create an empty matrix M of size N × |E|. The rows are indexed

by the functions fi and the columns by the exponents E ∈ E .
4: For all fi and E ∈ E , the entry in row fi and column E is set to c

(i)
E

5: Compute with Gaussian elimination a basis of the kernel of M ,

that is a maximum set of linearly independent vectors V ∈ F
|E|
q

such that M · V =
−→
0 .

6: Derive from the kernel vectors all roots.

7: return K

Observe that, as we assume that the system of equations has one unique
solution, step 6 is quite easy. In general, one cannot expect to (efficiently)
use the linearization method because of the following two reasons. Firstly,
the degree of the functions fi may be as high as n ·(q−1) such that the effort
to compute the kernel is exponential in n. Secondly, the number of equa-
tions might not be big enough, such that the linearized system of equations
has more than one solution, although the original system of equations has
only one.

However, the systems of equations occurring in algebraic attacks are far
from being random. On the contrary, they possess the following remarkable
properties:

1. The degree of the equations are all bounded by a value d which is
independent of n.

2. The more keystream elements zt are known, the more equations can
be generated.

This makes (ι, m)-combiners perfect candidates for an algebraic attack with
linearization.

However, algebraic attacks with linearization have their drawbacks too.
First of all, they require that an attacker can set up at least µq(n, d)−1 differ-
ent equations. Apart from being a rather unrealistic assumption, it implies

68

3.3 Computing the solution

the additional problem of storing and accessing these equations. Hence, it
is not surprising that our simulations indicated that memory is the bottle
neck of this approach (see Section 3.3.4). Finally, there is still the open
problem of how to determine the number of keystream elements needed
to get enough linearly independent equations. In practice, one wouldn’t
know which keystream elements need to be known to generate sufficiently
many linearly independent equations. Instead, one would use the known
keystream elements piece by piece to generate equations. At this one can-
not exclude the possibility that some of the equations are not linearly in-
dependent from the others. Therefore, it is an open question to derive a
general estimation on how many and which keystream elements need to be
known. Anyway in [ArmK03] we made some simulations regarding reduced
versions of E0. We generated a keystream and generated equations until the
number of linearly independent equations was equal to µq(n, d)−1. Let N be
this value. It turned out for the test cases considered that N was close to
the number of monomials. Therefore we assume that not much more than
µq(n, d) known successive keystream elements are needed in most cases,
but a concise answer to this question is not in sight.

Despite of these problems, from a complexity theoretical point of view
the linearization approach possesses several interesting properties. First of
all, if we ignore the problem how to get enough equations in practice, the
estimated time and space efforts are polynomial in n but exponential in d.
This is quite surprising as attacks usually have an effort exponential in n.
Moreover, Gaussian elimination is a well studied method which has under-
gone several improvements (e.g., see Strassen’s method [Str69]) where the
time and memory effort are known more or less precisely.

3.3.3 Other methods

If not enough linearly independent equations are available, the kernel space
has a dimension greater than 1 and therefore contains other vectors which
are not derived from VK. In this case, one might exhaustively test all vectors
if the dimension of the kernel space is not too big. If this is not feasible,
improved versions of linearization may succeed. We give a brief overview
over existing methods.

In [KipS99], Kipnis and Shamir presented the relinearization algorithm
for solving a system of quadratic equations over the finite field F2. The
XL algorithm (XL stands for eXtended Linearization), introduced at Euro-
crypt’00 [CouKPS00] by Shamir, Patarin, Courtois and Klimov, can be seen
as a simplified and improved version of relinearization. Given a system of
nonlinear equations, additional equations (and possibly new terms also)

69

3 Algebraic attacks

may be gained by multiplying all equations with all possible monomials of
some degree ≤ D. In the lucky case, one gets enough new equations. The
XL algorithm has proved to be useful in the cryptanalysis of the Toyocrypt
cipher [Cou02]. It is an open question under which conditions the XL algo-
rithm is successful. The authors proved that XL is as least as powerful as
relinearization. On the other hand, in [ArsFIKS04] it was shown that XL is
inferior compared to Gröbner bases algorithms as F4 and F5.

In [CouP02], the XSL algorithm, an extension of XL which uses the spar-
sity of systems of equations, was introduced by Courtois and Pieprzyk. XSL
stands for eXtended Sparse Linearization. In the XSL algorithmthe equa-
tions are carefully multiplied by selected monomials. The idea is to use
products of monomials that already appear in the system of equations. In
their paper, they discuss how the XSL algorithm may be useful to mount
attacks on AES and Serpent. Indeed, the correctness and the complexity of
these attacks were subject of ongoing discussions. Recently, in [CidL05], it
was showed that the XSL algorithm is not capable of solving the system of
equations derived from AES.

We want to point out that these algorithms are not necessarily less suited
to solve special systems of equations. In certain cases, a clever adaption
of these ideas may lead to better results. However, for a general treatment
of algebraic attacks, Gröbner bases methods and linearization are the two
most important algorithms in algebraic attacks.

3.3.4 Experimental results

As explained in the previous section, Gröbner bases methods and lineariza-
tion are the state-of-the-art algorithms to solve systems of equations ap-
pearing in algebraic attacks. We address now the question whether these
algorithms imply practical attacks. Here, we suppose that an adversary
is able to observe as many keystream elements as he wants, and the only
difficulty lies in generating and solving a system of equations.

For this purpose, we cite our experimental results on algebraic attacks
on reduced versions of E0 from [ArmBI06]. Here, the original LFSRs of the
E0 were replaced by shorter LFSRs to reduce the keysize. To generate the
systems of equations, we used the Z-functions of degree 4 over r = 4 clocks,
derived in [ArmK03] for the original E0. We tested three different kinds of
attacks: brute force, algebraic attacks using the linearization method and
using the Gröbner bases algorithm F4. In the first case, all possible values
of K were tried until the correct one was found. In the second case, we
produced keystream bits and created the according equations until the
systems of equations could be solved by linearization. In the third case,

70

3.3 Computing the solution

|K| Brute force Linearization Gröbner bases

Time Data Time Memory Data Time Memory Data

16 11s 40 < 1m ≤6.04 ≤ 211.3 2m 2 s 65.49 350

17 32s 42 < 1m ≤9.85 ≤ 211.65 17m 42 s 180.08 350

18 46s 44 < 1m ≤15.63 ≤ 211.98 39m 23 s 303.37 350

19 1m 28s 46 < 1m ≤24.19 ≤ 212.3 1h 12m 460.27 350

20 3m 44s 48 < 1m ≤36.61 ≤ 212.6 2h 31m 696.63 350

22 18m 13s 52 52s ≤79.13 ≤ 213.15 14 h 14m 2150.33 400

23 20m 33s 54 1m 9s ≤113.37 ≤ 213.41 > 24h >3060.92 500

24 1h 12m 56 2m 2s ≤159.96 ≤ 213.66 - -

25 2 h 58 3m ≤222.55 ≤ 213.9 - -

26 4h 22m 60 4m 38s ≤305.64 ≤ 214.13 - -

27 - - 6m 36s ≤414.74 ≤ 214.35 - -

28 - - 9m 21s ≤556.57 ≤ 214.56 - -

29 - - 16m 6s ≤739.21 ≤ 214.76 - -

30 - - 20m 51s ≤972.36 ≤ 214.96 - -

Table 3.3.3: Experimental results on different attacks on E0 with reduced
key sizes

we limited the number of known keystream bits and tried to solve it with
an implementation of the Gröbner bases algorithm F4. The results are
displayed in table 3.3.4. The time effort is given in hours, minutes and
seconds, the memory consumption in megabytes and data is the number
of keystream bits assumed to be known. The memory consumption for the
brute force attack was constantly 3.1 megabytes.

The results are not directly comparable. The simulations have been con-
ducted for different occasions and were originally not intended for a di-
rect comparison. The linearization method and F4 have been written in
Java, the brute force attack simulated in the computer algebra system
Magma. Brute force and Gröbner bases have both been simulated on the
same computer, a Pentium 4 with 3.5 GHz and 3 Gigabytes RAM. The lin-
earization attack has been simulated on a Pentium 4-M with 1.8 GHz and
512 Megabytes RAM. Since the amount of data and memory has not been
recorded during the simulations on linearization, we provide some upper
bounds instead. To compute the Gröbner bases, we used the F4 algorithm
and results from [BecW93].

Nevertheless, the simulation results give some clues about the attacks’
behaviour with respect to the key size. As expected, the linearization
method is the most successful, outperforming the two other attacks by
far. It was possible to derive the secret value K for |K| ≤ 30 within a rea-

71

3 Algebraic attacks

sonable amount of time of several minutes. Indeed, instances with key
sizes of 34 and higher were intractable due to memory shortness. Further
on, the knowledge of several kilobytes of keystream has to be required, a
rather unrealistic assumption.

In this respect, Gröbner bases are much more realistic. It was possible
to find the value of K even if only the moderate amount of 350 keystream
bits is known. Indeed, we found out that the attack is only feasible if the
amount of data is significantly larger than |K|. Even worse, our naive brute
force attack implementation proved to be faster and required less data and
memory. However, we expect the opposite situation for larger key sizes.

Another problem are the memory requirements. Since the memory is
mainly used to store sparse matrices, this bound may be pushed further by
developing appropriate data structures and algorithms. Nevertheless, the
experiments indicate that memory is again the bottle neck of this attack.

Concluding, one can say that algebraic attacks work in principle. In
particular, the comparatively low time effort of the linearization method
indicates that this approach actually beats other approaches. However,
one has to admit that these attacks are far from being practical. De-
spite the memory requirements, the necessity of knowing huge parts of
the keystream makes algebraic attacks based on linearization a rather the-
oretical construct than a realistic threat. Nonetheless, one must not for-
get that the whole area is relatively young, making further improvements
imaginable. For example, so far a systematic examination of guessing some
keybits to simplify the system of equations, as it has been done for example
in [KraS06], has not been made. E. Zenner and D. Bernstein suggest that
parallel computing might help to overcome some of the memory problems
[Zen06]. Besides, the whole complexity is closely related to the degree of
the equations. If one would find, for example, quadratic Z-functions for E0,
the situation would change dramatically as overdefined system of quadratic
equations can be solved within few days in certain cases [Ars04]. Thus, the
existence of low-degree Z-functions, methods to find them or design princi-
ples to avoid them is an important subject. Consequently, a lot of work has
been done on these questions, which will be presented in the next chapter.

72

3.4 Summary and effort estimation

3.4 Summary and effort estimation

Coming to the end of this chapter, we give a short summary of what we have
discussed so far. As sketched in Algorithm 3.1, algebraic attacks are based
on constructing and solving systems of equations in the known keystream
elements zt and the unknown key K. Different ways exist for setting up
the system of equations and computing the solution. From our point of
view, it is preferable in the general case to build the system of equations
from Z-functions and to solve it with the linearization method (see Section
3.3.2).

The advantage of the linearization method is that it is (more or less) easy
to analyze. Given enough linearly independent equations, the final step
consists in using Gaussian elimination to compute the solution, from which
K can be easily recovered. However, it is still an open problem to deter-
mine in advance the number of known keystream elements required for a
successful attack. Simulations on reduced versions of E0 in [ArmK03] indi-
cated that most of the equations are linearly independent if all considered
keystream elements are successive. But this doesn’t need to be true in
other cases, making further research necessary.

We end this chapter with an estimation on the effort of algebraic attacks.
We thereby concentrate on the general case where Z-functions are used for
the equations and linearization is deployed for computing the solution. Let
µq(n, d) and µq(ι·r, d) denote the number of monomials of degree ≤ d in n and
ι · r variables, respectively. The first step consists in finding Z-functions.
Observe that this has to be done only once, as the Z-functions can be re-
used for further attacks on the same (ι, m)-combiner with different keys.
For this step, it is not possible to specify the exact amount, as (again) vari-
ous different approaches exist. In some cases, one can find them by careful
analysis of the (ι, m)-combiner (e.g., see [ArmK03, LeeKHHM04, ChoP04]).
A general method to find Z-functions of degree ≤ d will be given in the
next chapter, which is based on computing the kernel of a matrix of size
|XZ| × µq(ι · r, d) where XZ is the set of all possible values for Kt, . . . , Kt+r−1 if
(zt, . . . , zt+r−1) is equal to Z. A formal definition and additional explanations
will be given in the next chapter. Here we will only use that |XZ| is upper
bounded by qm+(ι−1)·r.

The space required to store the matrix is in O(qm+(ι−1)·r×µq(ι ·r, d)) and the
number of basic operations in F to compute the kernel is in O(qm+(ι−1)·r ×
µq(ι·r, d)2).6 We ignore the effort to set up the matrices as it is comparatively
low. As this step has to be repeated for any Z ∈ Fr

q, the total effort is the

6For simplicity, we consider only naive Gaussian elimination and ignore more advanced
methods.

73

3 Algebraic attacks

value given above multiplied by qr. As already mentioned, other approaches
might exist in some cases to get Z-functions, but as far as we know this is
the only one which works in general.

The next step is to set up a system of equations, built from the Z-
functions derived in the first step. As we use linearization in the final step
to get the solution, we assume that the equations are stored in a matrix
of appropriate size. More precisely, the matrix has µq(n, d) columns, where
each column corresponds to exactly one of the µq(n, d) possible monomials.
In the concrete case the number of monomials will probably be lower, re-
sulting in both a lower time and memory consumption. But for the general
estimation, we have to consider the upper bound.

The rows represent the different equations. That is, for each equation
FZ(Kt) = 0, FZ(Kt) can be expressed by a linear sum of the µq(n, d) monomi-
als, which can be bijectively mapped to a vector of size µq(n, d). We assume
that this bijection can be performed with about O(µq(n, d)) operations. So,
the space and time effort to generate the matrix is in O(N · µq(n, d)) with
N being the number of rows respectively equations. We hereby neglect the
time to read the r keystream elements and to access the Z-functions as
this amount is comparatively low. As N ≥ µq(n, d)− 1 is a necessary condi-
tion to finally have enough linearly independent equations, we assume for
simplicity that N = c · µq(n, d) with c ≥ 1. Then, we have an overall time and
space effort of approximately µq(n, d)2.

The final step is to compute a non-trivial nullvector of the generated
matrix, which is doable with Gaussian elimination. The time effort is in
µq(n, d)3 .

Finally, we take a look at the number of keystream elements an attacker
needs to know to apply a successful attack. Let N denote the number of
runs zt, . . . , zt+r−1 the attacker has knowledge of. Observe that the knowl-
edge of one run is required to set up one equation. This means that the
overall number of known keystram elements is between N + r − 1, if all
elements are successive, and r ·N , if they are all distinct.

Next, we will derive a lower bound for N . As µq(n, d) grows with d, an
attacker would prefer only equations with the minimum degree. Thus, we
assume that he considers for each Z ∈ Fr only those Z-functions which
have the lowest degree. However, it still could be that the degree for one
choice of Z is higher than for the other (e.g., see Example 3.8). Thus, we
define Z ⊆ Fr to be the set of these values Z such that the degree of the
Z-functions are minimal. More formally, it holds that deg(FZ) = deg(FZ′)
for all Z, Z ′ ∈ Z but deg(FZ) < deg(FZ′) if Z ∈ Z and Z ′ ∈ Fr \ Z. Now, if we
assume for any Z ∈ Z that exactly a fraction of N/qr known runs is equal to
Z and as each of this parts gives i(Z) many Z-functions, the total number
of equations based on the Z-functions is i(Z) ·N/qr. As this holds for each

74

3.4 Summary and effort estimation

Step Time Space Keystream

Finding
Z-functions

O(qm+ι·r · µq(ι · r, d)2) O(qm+ι·r · µq(ι · r, d)) -

Setting up
linearized

system of eqs.
O(µq(n, d)2) O(µq(n, d)2) ≥ qr·µq(n,d)

P

Z∈Z i(Z)

Solving O(µq(n, d)3) O(µq(n, d)2) -

Table 3.4.4: Effort estimations for an algebraic attack on a (ι, m)-combiner
with keysize n, based on Z-functions and linearization

Z ∈ Z, we have altogether N/qr ·∑Z∈Z i(Z) equations. As we require that
this value is at least µq(n, d)−1 (see above), we get the following lower bound
for N :

N ≥ qr · µq(n, d)
∑

Z∈Z i(Z)
.

The whole algebraic attack is summarized in Algorithm 3.4 and the efforts
in Table 3.4.4.

From a theoretical point of view algebraic attacks are very interesting.
Observe that the main time effort is O(µq(n, d)3) = O(nd·3) in the case of
F = F2. Recall that the Z-functions depend only on the update function f
and the memory update function Ψ, but not on the choice of the LFSRs. In
particular, the degree d remains constant, even if one chooses to increase
the keysize n. That means that the number of operations grows only poly-
nomial in the keysize n. As far as we know, this is the only class of attacks
with this property. For all the other attacks mentioned in Section 2.6, the
time effort is exponential in n or unpredictable. Thus, algebraic attacks
have a far better asymptotic runtime than any other attack published so
far.

Consequently, for some (ι, m)-combiners, the theoretically estimated time
effort for an algebraic attack lies below the estimates for other attacks
[CouM03, ArmK03, Cou03, LeeKHHM04, ChoP04].

One example is the Bluetooth keystream generator E0, for which we pro-
posed an algebraic attack in [ArmK03]. By analyzing the functions f and
Ψ, we derived one Z-function of degree four for each Z ∈ F4

2. Table 3.4.5
displays the efforts for this algebraic attack, compared to the best previ-
ously published attack. Later on, fast algebraic attacks [Cou03] improved
this attack.

75

3 Algebraic attacks

Algorithm 3.4.
Algebraic attack on a (ι, m)-combiner with Z-functions and lineariza-

tion

Input: A (ι, m)-combiner, initialized to a secret value S0 = (Q0, K) and

the knowledge of some the keystream elements generated by this

setting

Output: The secret key K

1: (Only once) Fix r ≥ 1 and find i(Z) Z-functions for each Z ∈ Fr.

2: (Only once) Let Z ⊆ Fr be the set of these values Z such that

deg(F
(i)
Z) is minimal.

3: Initialize an empty system of equations.

4: For each sequence of known keystream elements

(zt, . . . , zz+r−1) = Z, add the following equations to the sys-

tem of equations if Z ∈ Z. Otherwise, do nothing.

F
(1)
Z (K · Lt · P, . . . , K · Lt+r−1 · P) = 0

. . .

F
(i(Z))
Z (K · Lt · P, . . . , K · Lt+r−1 · P) = 0

5: If the number of linearly independent equations is one less than

the number of monomials in the system of equations, linearize the

system of equations and solve it with Gaussian elimination

6: Recover K from the solution

7: return K

To the best of our knowledge, the algebraic attacks on E0 are still the
fastest attacks on single E0. As the Bluetooth keystream generator consists
of applying E0 once to generate 128 bit internal bits, permuting them by a
known permutation and feeding them into E0 again to finally generate the
keystream, any attack on E0 can be extended to an attack on the whole
stream cipher. The attack is applied twice: first to reconstruct the internal
bits and second to get the original LFSRs’ initial states. But, as in the
Bluetooth encryption system the secret key is changed after 2745 clocks,
an attacker never gets the required number of 223 keystream bits.7 Thus,
algebraic attacks are the fastest attacks on E0 but not on the Bluetooth
stream cipher. For the Bluetooth cipher exist efficient correlation attacks
[LuV04, LuMV05], exploiting the linear keyschedule.

7An alternative could be to use Gröbner bases (Sec. 3.3.1), but here the time effort cannot
be estimated.

76

3.4 Summary and effort estimation

Attack Time Precomp. Memory Keystream

Backtracking
[FluL01] const · 273 - ≈ 10638 const · 243

BDD-based
[Kra02] const · 277 - const · 277 ≈ 128

Algebraic attack
[ArmK03] const · 267.58 - const · 246.14 const · 223.07

Fast alg. attacks
[Cou03] const · 254.51 const · 243 const · 236.84 const · 223.44

Table 3.4.5: Attack efforts for some attacks on E0.

Of course, the estimates regarding algebraic attacks say little about their
practicability. For example, they require the knowledge of many keystream
elements which is rather unrealistic. Another problem is the huge memory
requirements. So, it is no surprise that our simulations showed that mem-
ory is actually the bottle neck of the whole attack (see Section 3.3.4). Thus,
apart from the excellent theoretical estimations for the efforts, practical
algebraic attacks are out of reach for the moment.

However, one mustn’t forget that the basic idea of algebraic attacks on
(ι, m)-combiners is relatively young, dating back to 2003 (e.g., see [CouM03,
ArmK03]). The rapidly growing number of publications on this subject
proves the community’s interest on these attacks. So, further improve-
ments might be found in future, making these attacks theoretically and

practically interesting.

77

3 Algebraic attacks

78

4 On the equations in algebraic
attacks

79

4 On the equations in algebraic attacks

4.1 Criteria for low degree equations

As mentioned before, the existence of low degree Z-functions is crucial
for an (efficient) algebraic attack. Following our discussions from Section
3.3.2, we face in this section the question of their existence. Therefor, we
restate our general framework from [Arm04b, Arm05a] which is an exten-
sion of prior results in [ArmK03, MeiPC04].

4.1.1 Previous works and algebraic immunity

In the case of simple combiners over F = F2, Courtois and Meier [CouM03]
were the first to consider the question when functions F(z) : Fι → F of degree
≤ d exist such that F(z)(Kt) = 0 whenever zt = z. Furtheron, they examined
the existence of equations (3.2.6) with a low degree. They presented several
different scenarios in which appropriate functions F exist. Later on, this
has been simplified to one criterion in [MeiPC04]. It turned out that for
each function F it either holds F · f ≡ 0 or F · (f ⊕ 1) ≡ 0 (see also example
3.5). They named functions g such that F · g ≡ 0 as annihilators of F (see
also Definition 4.2).

Furthermore, they introduced the notion algebraic immunity

AI(f) := min{deg(g) | f · g ≡ 0 or (f ⊕ 1) · g ≡ 0}. (4.1.1)

As each balanced Boolean function in n unknowns has an algebraic im-
munity of ≤ ⌈n/2⌉ (see [CouM03] for a proof), they called a function f with
AI(f) = ⌈n/2⌉ an algebraically immune function. In other words, for alge-
braically immune functions all possible 1-functions have a degree of ⌈n/2⌉
or higher, which is the best one can hope for.

The introduction of the term ”algebraic immunity” was an important step
for understanding algebraic attacks and consequently evoked numerous
subsequent works (e.g., see [Car04, DalGM04, Lob05, QuFL05, BraP05,
DalGM05, DalMS05, Car05, ArmCGKMR06]). However, for several reasons
we think that both the name ”algebraic immunity” and the definition of
algebraic immunity should be slightly adapted. First of all, a designer might
be misled to believe that an algebraically immune output function provides
the best resistance against algebraic attacks. But this is not necessarily the
case as fast algebraic attacks (see [ArmCGKMR06] or Chapter 5, especially
Section 5.5.4) or divide-and-conquer attacks (see [Gol04] or Section 5.3)
might be possible. This is illustrated by the following example.

Example 4.1. Consider the output function f : F3
2 → F2, (a, b, c) → z := a ⊕ c ·

(a ⊕ b) from the Geffe-Generator (see Section 2.5.2). Here, a, b and c denote

80

4.1 Criteria for low degree equations

the outputs from three LFSRs A, B and C and z the corresponding keystream

bit. One can check1 that AI(f) = 2 = ⌈3/2⌉. Hence, f is algebraically immune.

Every valid equation F (a, b, c, z) = 0 has a degree of 2 or more.

However, f is not optimal. Take for example F (a, b, c, z) := c · (f(a, b, c)⊕ z) =
c · (b⊕ z). The degree of F is 2, but it is independent of a. In addition, we can

exploit the structure of F (a, b, c) = c · b + c · z to apply a fast algebraic attack

to mount a system of linear equations in c only.2 By solving it, one gets the

initial values of LFSR C. Once these are known, each clock t where zt and

ct are known reveals immediately that at = zt if ct = 0 or bt = zt if ct = 1.

Thus, figuring out the initial states from A and B again only requires to solve

a system of linear equations.

Summing up, the whole cipher can be broken by solving three systems of

linear equations, although AI(f) = 2 shows that only quadratic 1-functions

exist. This shows that the definition of algebraic immunity is not enough to

characterize the vulnerability of a simple combiner against algebraic attacks.

Thus, an algebraically immune function might still be vulnerable against
other kinds of algebraic attacks. In [DalMS05, Remark 1], the authors come
to the same conclusion and propose to rename it to annihilator immunity.

A second drawback of the definition is that it fits only for simple com-
biners over the field F2 but not for general (ι, m)-combiners over arbitrary
fields.

In [Arm05a], the ideas from [MeiPC04] (and in fact from [ArmK03] too)
have been extended to a general theoretic framework which allows to set
up a criterion for the existence of low degree equations for general combin-
ers over arbitrary finite fields. In principle, it shows that there is a 1:1-
correspondence between valid equations and annihilators of a specific set.
Thus, the security of a (ι, m)-combiner against standard algebraic attacks
is closely connected to the question if these sets have low degree annihi-
lators. This leads to a slightly different definition of ”algebraic immunity”
which fits to a broader class of keystream generators (see Definition 4.20).
However, to avoid confusion with the well-established definition ”algebraic
immunity” but to point out the connection with it, we will introduce the
new term ”lowest annihilator degree” (or short lad) to reflect this circum-
stance and will not use ”algebraic immunity”. We want to stress that we
are not aiming to replace the term or definition of ”algebraic immunity”.
Our reasons to use an alternative definition and name in this thesis are

1. to address simple combiners and combiners with memory over arbi-
trary finite fields by the same theory and

1Appropriate algorithms will be presented later in Section 4.2.
2How this can be achieved will be discussed in Chapter 5.

81

4 On the equations in algebraic attacks

2. to avoid a mistake between the widely known and accepted definition
of ”algebraic immunity” and our definition.

4.1.2 Z-functions and annihilators

First, recall the definition of Z-functions: a function FZ is a Z-function if for
each part of the keystream that is equal to Z it is zero on the corresponding
inputs. More formally, a Z-function fulfills

∀Q, X1, . . . , Xr : fΨ(Q, X1, . . . , Xr) = Z ⇒ FZ(X1, . . . , Xr) = 0 (4.1.2)

where fΨ is the extended output function (see definition on page 37). That
is FZ gives zero on the projection of the preimage of Z = (z1, . . . , zr) under
fΨ. We introduce the following identifier for this set:

X(z1,...,zr) = XZ := {(X1, . . . , Xr) | ∃Q : fΨ(Q, X1, . . . , Xr) = Z}. (4.1.3)

For the case that r = 1, we omit the indices and write X(z) instead of X(z1).
One sees that FZ is a Z-function if and only if it is zero on the set XZ. This
leads to the notion of annihilators:

Definition 4.2. Let S be a subset of Fn. An annihilator of S is a function

g : Fn → F such that g(X) = 0 for all X ∈ S. The set of annihilators of S is

denoted by

ann(S) := {g : g annihilator of S}. (4.1.4)

Let f : Fn → F be a function. g : Fn → F is an annihilator of f if f · g ≡ 0, i.e.

f(X) · g(X) = 0 for all X ∈ Fn. Furtheron, we define the set

ann(f) := {g : g annihilator of f}. (4.1.5)

With the observations made above, the following theorem is quite straight-
forward:

Theorem 4.3. For a given (ι, m)-combiner and Z ∈ Fr, a function F : Fr·ι → F

is a Z-function if and only if F is an annihilator of the set XZ.

Hence, to derive Z-functions with a degree less or equal than a given
bound d, one can proceed as follows:

1. Compute the set XZ.

2. Look for annihilators of XZ with a degree less or equal than d.

82

4.1 Criteria for low degree equations

In some cases, more direct methods may exist. However, this approach is
(at least in theory) generally applicable. In the rest of this section, we will
examine more the sets XZ and the theory of annihilators.

As far as we know, it was proposed in [ArmK03] for the first time to
consider the sets XZ and to examine their properties.3 It was also pointed
out that Z-functions can be found by solving a system of linear equations.
In the next section, we will take a closer look on how to actually compute
Z-functions and present better methods.

4.1.3 The sets XZ

By definition, the set XZ consists of all inputs which can lead to the output
Z. Observe, however, that XZ is defined only by the functions f and Ψ
but doesn’t take into account the matrices L and P . This means, that for
(Xt, . . . , Xt+r−1) ∈ XZ, it is not guaranteed that K ∈ Fn exists such that
Xi = K · Li · P .

Nonetheless, it makes sense to define XZ in this way. As long as r is
smaller than the length of the shortest LFSR, the conditions Xi = K · Li · P
yield an underdefined system of linear equations, so that the existence of
such a K is warranted. As the effort for computing annihilators for XZ

grows exponentially with r, the value of r will be in the most practical cases
rather low, at least smaller than the length of the shortest LFSR. Thus,
incorporating L and P into the definition would not imply any additional
constraints in these cases. This shows in particular that the same Z-
functions remain valid if one increases the key size n and changes the
matrices L and P accordingly.

In the case of simple combiners, i.e. m = 0, one can give a simpler
description of the set X(z):

Proposition 4.4. In the case of simple combiners, i.e. without any additional

memory, it is X(z) = {(X1, . . . , Xr) | f(X1, . . . , Xr) = z} = f−1(z).

In the case of combiners with memory, the connection between the set
XZ, the output function f and the memory update function Ψ is not that
apparent. As far as we know, no better methods exist than to generate for
all inputs (X1, . . . , Xr) ∈ Fr·ι and Q ∈ Fm the outputs Z and then to sort them
into the set XZ (see Algorithm 4.1).

3In [ArmK03], the sets XZ were called NCritC(Z).

83

4 On the equations in algebraic attacks

Algorithm 4.1.
Computation of the sets XZ for a given (ι, m)-combiner

Input: A (ι, m)-combiner with extended output function fΨ : Fr·ι → Fr

Output: The sets XZ for all Z ∈ Fr

1: Set XZ := ∅ for all Z ∈ Fr

2: for all (X1, . . . , Xr) ∈ Fr·ι do
3: for all Q ∈ Fm do
4: Compute Z := fΨ(Q, X1, . . . , Xr)
5: XZ ← XZ ∪ {(X1, . . . , Xr)}
6: end for
7: end for
8: return S

Example 4.5. To illustrate Algorithm 4.1, we consider the summation gen-

erator with ι = 2 and m = 1. Table 4.1.1 displays all possible input-output

combinations over r = 2 clocks. From this, one can derive for a given output

Z ∈ F2
2 the set of all possible inputs.

Take for example the output Z = (0, 0). We check for every (X1, X2) ∈
F2

2 × F2
2 if a memory state Q exists such that FΨ(Q, (X1, X2)) = (0, 0). The

results are given below. ”-” means that none of the memory states fits to

the according inputs and outputs. Due to space restriction, we write (0000)
instead of ((0, 0), (0, 0)) etc.

Input Q Input Q Input Q Input Q

0000 0 0100 - 1000 - 1100 -

0001 - 0101 1 1001 1 1101 0

0010 - 0110 1 1010 1 1110 0

0011 0 0111 - 1011 - 1111 -

We see that the set of preimages of Z = (0, 0) contains only the half of all

16 possible inputs. In a similar way, one can determine all sets XZ:

X(0,0) = {(0000), (0011), (0101), (0110), (1001), (1010), (1101), (1110)}
X(0,1) = {(0001), (0010), (0100), (0111), (1000), (1011), (1100), (1111)}
X(1,0) = {(0000), (0011), (0100), (0111), (1000), (1011), (1101), (1110)}
X(1,1) = {(0001), (0010), (0101), (0110), (1001), (1010), (1100), (1111)}

(4.1.6)

Note that each output Z can be produced by only half of the 16 possible

inputs X1, X2.

84

4.1 Criteria for low degree equations

Q 0 0 0 0 0 0 0 0

X1 (0,0) (0,0) (0,0) (0,0) (0,1) (0,1) (0,1) (0,1)
X2 (0,0) (0,1) (1,0) (1,1) (0,0) (0,1) (1,0) (1,1)

Z 00 01 01 00 10 11 11 10

Q 0 0 0 0 0 0 0 0

X1 (1,0) (1,0) (1,0) (1,0) (1,1) (1,1) (1,1) (1,1)
X2 (0,0) (0,1) (1,0) (1,1) (0,0) (0,1) (1,0) (1,1)

Z 10 11 11 10 01 00 00 01

Q 1 1 1 1 1 1 1 1

X1 (0,0) (0,0) (0,0) (0,0) (0,1) (0,1) (0,1) (0,1)
X2 (0,0) (0,1) (1,0) (1,1) (0,0) (0,1) (1,0) (1,1)

Z 10 11 11 10 01 00 00 01

Q 1 1 1 1 1 1 1 1

X1 (1,0) (1,0) (1,0) (1,0) (1,1) (1,1) (1,1) (1,1)
X2 (0,0) (0,1) (1,0) (1,1) (0,0) (0,1) (1,0) (1,1)

Z 01 00 00 01 11 10 10 11

Table 4.1.1: All possible input-output combinations over 2 clocks for the
summation generator with ι = 2 inputs and m = 1 memory bits

As discussed in Section 2.5, the summation generator belongs to the class

of permutation invariant combiners. This means that (beside of Qt of course)

only the value |Xt| plays a role in the computation of the output zt and the

next memory state Qt+1. Thus, one can rewrite the sets XZ in (4.1.6) to

X(0,0) = {[00], [02], [21], [11]}
X(0,1) = {[01], [20], [22], [10], [12]}
X(1,0) = {[10], [12], [00], [02], [21]}
X(1,1) = {[11], [01], [20], [22]}

(4.1.7)

where [x1x2] = {(X1, X2) ∈ F4
2 | |X1| = x1, |X2| = x2}.

Observe that no assumptions are made on the method how the inputs are
generated. Thus, the theory in this section remains valid if other finite state
machines than LFSRs are exploited to create the internal input stream.4

4Indeed, for an algebraic attack, a linear finite state machine is crucial as otherwise the
degree of the equations in K can go up.

85

4 On the equations in algebraic attacks

Only the output function f and the next memory state function Ψ play a
role in the existence of Z-functions. This has the advantage that a designer
can adapt the keysize (i.e., the size of the LFSRs) without risking that the
degree of the Z-functions change. In Section 4.3, we will discuss several
design principles how to design (ι, m)-combiners such that it is guaranteed
that no Z-functions with a degree below a given bound exist. This then
provides some security against algebraic attacks.

Summing up, the existence of (low degree) Z-functions depends only on
the set XZ and hence only on f and Ψ. The first observation is that non-
trivial Z-functions do only exist if XZ is a real subset of Fι·r as ann(Fι·r)
contains only the all-zero function. Thus, we turn our attention first to the
question whether XZ is a real subset of Fr or not. By Proposition 4.4 we
know that XZ = f−1(z). Hence, as long as f is not a constant function, it is
sure that XZ ⊂ Fr. But in the case of combiners with memory, the situation
is not that clear. Especially, if r is small, one often encounters the case that
XZ = Fr. However, if r > m, the following theorem, which is an extension
of a theorem from [ArmK03], shows that at least for one value Z it holds
that XZ ⊂ Fr. This guarantees the existence of Z-functions for arbitrary
(ι, m)-combiners if r is not too small.

Theorem 4.6. Consider an arbitrary (ι, m)-combiner over a finite field Fq.

There exists at least one output Z ∈ Fm+1
q such that |XZ| ≤ 1

q
· qι·(m+1). This

means that this specific output cannot be generated by all possible inputs in

Fι·(m+1).

Proof. Note that (Q, X1, . . . , Xm+1) uniquely determines the output Z ∈ Fm+1
q

and therefore Fm+ι·(m+1) =
.⋃

Z f−1
Ψ (Z). Further, by definition it is |f−1

Ψ (Z)| ≥
|XZ|.

Assume that the proposition is not true, i.e., |XZ| > qι·(m+1)−1 for each
Z ∈ Fm+1. This leads to the contradiction

qm+ι(m+1) = |Fm+ι(m+1)| = |
.⋃

Z∈Fm+1
f−1

Ψ (Z)| =
∑

Z∈Fm+1

|f−1
Ψ (Z)|

≥
∑

Z∈Fm+1

|XZ| >
∑

Z∈Fm+1

qι(m+1)−1 = qm+1 · qι(m+1)−1 = qm+ι(m+1).

Hence, |XZ| ≤ 1
q
· qι·(m+1) for at least one Z ∈ Fm+1 and thus XZ (F

ι·(m+1)
q .

Thus, we know so far that Z-functions always exist if the combiner is
reasonably designed (e.g., no constant output function f). Next, we exam-
ine the question how to get the sets XZ. If the values of r, ι and m are not
too big, then one can compute the sets XZ by exhaustively computing the

86

4.1 Criteria for low degree equations

values fΨ(Q, X1, . . . , Xr) = (z1, . . . , zr) for all Q ∈ Fm
q and X1, . . . , Xr ∈ Fι

q

and by then including (X1, . . . , Xr) to the set X(z1,...,zr) (see also Algorithm
4.1).

A more refined method is to first compute the sets XZ′ for Z ′ ∈ Fr′ with
r′ < r and then to use them to build the sets XZ. In the case of simple
combiners, this is comparatively easy:

Proposition 4.7. Let a fixed simple combiner with output function f be given.

If the inputs X1, . . . , Xr from r clocks are independent5, then it holds for all

Z = (z1, . . . , zr) that

XZ = X(z1) × . . .×X(zr). (4.1.8)

Proof. W.l.o.g., we can take r = 2, as the rest follows by induction. It holds
for all (z1, z2) ∈ F2:

X(z1,z2)
def
= {(X1, X2) ∈ F2k | f(X1) = z1, f(X2) = z2}

X1,X2 indep.
= {X1 ∈ Fι | f(X1) = z1} × {X2 ∈ Fι | f(X2) = z2}
def
= X(z1) ×X(z2).

Not surprisingly, the situation is different for combiners with memory as
the following example shows:

Example 4.8. Consider Example 4.5 with the summation generator over F2

with ι = 2 inputs. From Table 4.1.1, one can derive all preimages of the

outputs 0 and 1. For example, it holds that

f(0, (0, 0)) = 0, f(1, (0, 1)) = 0, f(1, (1, 0)) = 0, f(0, (1, 1)) = 0,
f(1, (0, 0)) = 1, f(0, (0, 1)) = 1, f(0, (1, 0)) = 1, f(1, (1, 1)) = 1.

This means that for any output z ∈ F2 and any input X ∈ F2
2 exists at least

one memory state Q such that f(Q, X) = z. Therefore, it holds that X(0) =
X(1) = F2

2. On the other hand, it is displayed in (4.1.6) that XZ ⊂ F4
2 for all

Z ∈ F2
2.

Hence, equation (4.1.8) does not hold for combiners with memory. One
can only say that XZ||Z′ ⊂ XZ × XZ′. Nonetheless, it is possible to put XZ

5This is for example the case if r is smaller than the length of the shortest LFSR involved
and if at each clock only the current outputs from the LFSRs are used to compute the
keystream.

87

4 On the equations in algebraic attacks

together from smaller sets. For this purpose, we define the following two
sets:

XQ,Z := {(X1, . . . , Xr) | fΨ(Q, X1, . . . , Xr) = Z}
XZ,Q := {(X1, . . . , Xr) | ∃Q′ : fΨ(Q′, X1, . . . , Xr) = Z, Ψr(Q′, X1, . . . , Xr) = Q}
XQ,Z contains all inputs which produce the output Z if the state of the

memory is equal to Q at the beginning. In contrary, XZ,Q contains all inputs
which produce the output Z if the state of the memory is equal to Q at the

end. Then, one easily sees that

XZ||Z′ =
⋃

Q

XZ,Q ×XQ,Z′. (4.1.9)

This corresponds to the expression for simple combiners if one sets XQ,Z :=
XZ,Q′ := XZ.

4.1.4 Annihilators

As it has been pointed out at the beginning of this section, Z-functions are
exactly the annihilators of the sets XZ. In the following, we will present
several statements on annihilators.

Definition 4.9. For a function f : Fn → F, its support and its kernel are

defined by

supp(f) := {X ∈ Fn : f(X) 6= 0} and ker(f) := {X ∈ Fn : f(X) = 0}.
It holds that supp(f) ∪ ker(f) = Fn.

Example 4.10. Let f(x1, x2) ∈ F2[x1, x2] defined by f(x1, x2) := x1 + x2. Then,

it is f(0, 0) = f(1, 1) = 0 and f(0, 1) = f(1, 0) = 1. Thus, ker(f) = {(0, 0), (1, 1)}
and supp(f) = {(0, 1), (1, 0)}.
Lemma 4.11. Let f, g : Fn → F be arbitrary. Then g is a multiple of f if and

only if supp(g) ⊆ supp(f).

Proof. Let g be a multiple of f , i.e., a function h exists such that g(X) =
f(X) · h(X) for all X ∈ Fn. Choose X ∈ supp(g). Then, g(X) 6= 0 implies that
f(X) 6= 0 and thus X ∈ supp(f). This shows that supp(g) ⊆ supp(f).

Now assume that supp(g) ⊆ supp(f). We define a function h as follows:

h(X) :=

{
0, X 6∈ supp(g)

g(X) · (f(X))−1, X ∈ supp(g)

Observe that h is well defined as supp(g) ⊆ supp(f) implies that f(X) 6= 0 for
X ∈ supp(g). Now, one can easily check that g = f · h, which concludes the
proof.

88

4.1 Criteria for low degree equations

Definition 4.12. Let S ⊆ Fn. We define the characteristic function δS : Fn →
F of S by

δS(X) :=

{
1 , X ∈ S
0 , else

(4.1.10)

The following proposition describes the connection between both annihi-
lators of a function and annihilators of a set:

Proposition 4.13. Let f : Fn → F and S ⊆ Fn. It holds that

ann(f) = ann(supp(f)) and ann(S) = ann(δS). (4.1.11)

Proof. Let f : Fn → F be an arbitrary function. Then it holds for any function
g : Fn → F:

g ∈ ann(f) ⇔ f · g ≡ 0

⇔ ∀X ∈ Fn : f(X) · g(X) = 0

⇔ ∀X ∈ Fn : [f(X) 6= 0⇒ g(X) = 0]

⇔ ∀X ∈ Fn : [X ∈ supp(f)⇒ g(X) = 0]

⇔ g ∈ ann(supp(f)).

The second claim follows from the fact that supp(δS) = S.

Theorem 4.14. Let f ∈ F[x1, . . . , xn]. Every annihilator of f is a multiple of

δker(f).

Proof. Let g be an annihilator of f . Then, supp(g) ⊆ ker(f). Otherwise, the
existence of an X ∈ supp(g)∩ supp(f) would imply g(X) · f(X) 6= 0, which is a
contradiction to the assumption that g is an annihilator of f . Lemma 4.11
and the fact that supp(δker(f)) = ker(f) concludes the proof.

Corollary 4.15. Let f ∈ Fq[x1, . . . , xn]. ann(f) is a principal ideal in Fq[x1, . . . , xn]
and is generated by 1− f q−1.

Proof. In any finite field Fq the field equation xq = x is true. This show in
particular that xq−1 = 1 for x 6= 0. It follows that

f q−1(X) =

{
1 , X ∈ supp(f)
0 , else

.

Hence f q−1 = δSupp(f) and 1 − f q−1 = δker(f). Finally, by Theorem 4.14, any
annihilator is a multiple of δker(f) = 1− f q−1.

89

4 On the equations in algebraic attacks

Corollary 4.16. For a (ι, m)-combiner and Z ∈ Fr, the set of Z-functions is

the ideal 〈1− δXZ
〉.

Proof. By Theorem 4.3, the set of Z-functions is equal to ann(XZ). By Propo-
sition 4.13, it holds that ann(XZ) = ann(δXZ

). Corollary 4.15 yields that the
set of Z-functions is the ideal

〈
1− δq−1

XZ

〉
.

Hence, we only have to show that δq−1
XZ

= δXZ
. As the images of δXZ

are
in {0, 1} by definition and because of 0q−1 = 0 and 1q−1 = 1, it holds that
δq−1
XZ

(X) = δXZ
(X) for all X. Thus, δq−1

XZ
= δXZ

.

4.1.5 On Z-functions and r-functions

In this section, we combine the results from the previous sections to char-
acterize Z-functions and r-functions for a fixed (ι, m)-combiner. First, we
recall the difference between these two notions. Let as usual zt ∈ F de-
note the keystream element produced by clock t and Kt and Qt the cor-
responding inputs coming from the LFSRs’ initial states and the memory,
respectively. That is, it holds that f(Qt, Kt) = zt for all clocks t.

Then, an r-function is a function F : Fι·r+r → F such that

F (Kt, . . . , Kt+r−1, zt, . . . , zt+r−1) = 0

for all t. In some cases, as for example for fast algebraic attacks (see Chap-
ter 5), it is preferable to set up the system of equations by r-functions.

On the other hand, we briefly sketched in Section 3.2.3 some situa-
tions where Z-functions are the better choice. Informally, one could say
that a Z-function is an r-function where the input zt, . . . , zt+r−1 is speci-
fied. It must hold for a Z-function FZ that FZ(Kt, . . . , Kt+r−1) = 0 whenever
(zt, . . . , zt+r−1) = Z.

The following theorem connects both notions:

Theorem 4.17. Let a (ι, m)-combiner be fixed. A function F (X1, . . . , Xr, z1, . . . , zr) :
Fι·r+r → F is an r-function if and only if it has the form

F (X1, . . . , Xr, z1, . . . , zr) =
∑

Z∈Fr

δZ(z1, . . . , zr) · FZ(X1, . . . , Xr) (4.1.12)

where FZ denotes a Z-function and δZ(z1, . . . , zr) is defined to be equal to 1

if Z = (z1, . . . , zr), and equal to zero otherwise.

Proof. That the right hand side of (4.1.12) gives an r-function is easy to see.
Hence, we only need to show that any r-function, i.e. the left-hand side,
can be written in the form of the right-hand side.

90

4.1 Criteria for low degree equations

First, any function F (X1, . . . , Xr, z1, . . . , zr) can be expressed by

F (X1, . . . , Xr, z1, . . . , zr) =
∑

Z∈Fr

δZ(z1, . . . , zr) · F ′
Z(X1, . . . , Xr)

for some arbitrary functions F ′
Z. By the definitions of r-functions and

Z-functions, F is an r-function if and only if F (X1, . . . , Xr, z1, . . . , zr) is a
(z1, . . . , zr)-function. Because of F (X1, . . . , Xr, Z) = F ′

Z(X1, . . . , Xr), each F ′
Z

must be a Z-function. That concludes the proof.

Now, Corollary 4.16 and Theorem 4.17 immediately imply

Corollary 4.18. Let a (ι, m)-combiner and r ≥ 1 be fixed. Then, any r-

function has the form

F (X1, . . . , Xr, z1, . . . , zr) =
∑

Z∈Fr

δZ(z1, . . . , zr) ·gZ(X1, . . . , Xr) · (1−δXZ
(X1, . . . , Xr)).

Corollary 4.19. For a simple combiner, i.e. m = 0, over F = F2, any 1-function

F (X, z) can be written as

F (X, z) = (z ⊕ 1) · h0(X) · f(X) + z · h1(X) · (f(X)⊕ 1) (4.1.13)

= z · (f · (h0 + h1) + h1) + h0 · f (4.1.14)

with h0(X) and h1(X) being arbitrary Boolean functions.

Proof. Let f be the output function of the simple combiner. Because of
X(z) = f−1(z), it holds that

δX(0)
(X) = f(X)⊕ 1 and δX(1)

(X) = f(X).

The rest follows by Corollary 4.18.

To the best of our knowledge, all algebraic attacks on (ι, m)-combiners
published so far use systems of equations build from r-functions or Z-
functions. Of course, for a successful attack, the equations should be such
that the solving step at the end is supported as much as possible. In
the case of linearization, which is the only method so far that allows an
effort estimation in advance (see also Section 3.3), this would mean that
the degree is as low as possible. Therefor, we introduce the notion of the
lowest annihilator degree.

Definition 4.20. Let S ⊂ Fn for a finite field F and n ≥ 1 an integer. We

define its lowest annihilator degree (lad) by

lad(S) := min{deg(g)|g 6≡ 0, g ∈ ann(S)} (4.1.15)

91

4 On the equations in algebraic attacks

If ann(S) consists only of the all-zero-function, we define lad(S) :=∞. We say

that S is d-immune if lad(S) > d.

Consequently, we define the lad of a function f : Fn → F by lad(f) :=
lad(supp(f)) and call the function d-immune if it has no annihilators of de-

gree ≤ d.

For an attack on a (ι, m)-combiner using Z-functions, the lowest anni-
hilator degree gives a lower bound on the degree of the equations. More
precisely, any Z-function has a degree of at least lad(XZ).

Definition 4.21. Let a (ι, m)-combiner be fixed and r ≥ 1. Then, we define

lad(r) := minZ∈Fr{lad(XZ)}. (4.1.16)

Thus, lad(r) tells the lower bound of the degree of equations involving r
clocks, which in a certain sense gives a feeling of the resistance against
algebraic attacks with linearization. As any r-function can be equally in-
terpreted as an r + ǫ-function, it necessarily holds that lad(r + ǫ) ≤ lad(r).

In fact, the values lad(r) might decrease with increasing r. Any crypto-
graphically reasonable (ι, m)-combiner should be designed such that two
different keys lead to different keystreams. Thus, if enough keystream el-
ements are known, the secret key K is uniquely defined. So, if a fixed
keystream Z ∈ Fr∗ can be produced by only one key K, then XZ = {K},
implying many linear annihilators. In this case, it holds that lad(r∗) = 1,
independent of the values of lad(r) for r ≤ r∗.

As an example, we can consider the lowest annihilator degree in the con-
text of E0. In [ArmK03], we stated that lad(r) = 4 for r = 4 . . . 6. On the other
hand, in [Cou03, Arm04a] it was showed that lad(8, 882, 188) ≤ 3. In fact,
as the initial state of the whole E0 keystream generator is described by 132
bits, the knowledge of more than 8 million keystream bits should specify
the initial setting uniquely. That is, it presumably holds lad(8, 882, 188) = 1,
although no linear annihilators are known so far.6

Finally, we want to point out that the notion of the lowest annihilator
degree is an extension of the notion of algebraic immunity. The reason is
that for a simple combiner with output function f , it holds that

AI(f) = lad(1).

If the conditions from Proposition 4.7 are met, i.e. XZ = Xz1× . . .×Xzr
, then

it follows that lad(r) = lad(1).

6The knowledge of such annihilators would imply a practical break of E0 if that many
keystream bits are known.

92

4.1 Criteria for low degree equations

In some cases, it might be difficult to find the value of lad(S) for a given
set S. In Section 4.2, we will discuss several algorithms to compute for a
given set S annihilators with the minimum degree, i.e. lad(S). However, in
the case of F = F2, the size of S already implicates some bounds on lad(S),
as we will show now.7

Theorem 4.22. For any non-zero Boolean function f of degree ≤ d, it holds

that

2n−d ≤ | ker(f)| ≤ (2d − 1) · 2n−d.

Both bounds can be achieved.

Proof. We prove the theorem by induction over n for a fixed degree d. We
will show only the upper bound. The lower bound follows from

| ker(f)| = 2n − | ker(f ⊕ 1
︸ ︷︷ ︸

deg=d

)| ≥ 2n −
(
2d − 1

)
· 2n−d = 2n−d.

If n = d, f has the form f = x1 · . . . ·xd and thus | ker(f)| = |Fd
2 \{(1, . . . , 1)}| =

2d − 1 = (2d − 1) · 2n−d. Suppose now that the proposition is true for some
n ≥ d. I.e., | ker(f)| ≤ (2d − 1) · 2n−d for all non-zero f ∈ F2[x1, . . . , xn] of degree
≤ d, and this bound is achieved for at least one f . Let f ∈ F2[x1, . . . , xn+1]
be an arbitrary non-zero Boolean function of degree ≤ d. Then, f can be
written as follows

f(x1, . . . , xn+1) = f ′(x1, . . . , xn)⊕ xn+1 · f ′′(x1, . . . , xn)

where f ′, f ′′ ∈ F2[x1, . . . , xn], deg(f ′) ≤ d, deg(f ′′) ≤ d − 1 and at least one of
them is non-zero. We distinguish three cases:

f ′ 6= 0 and f ′′ = 0 : Then f ∈ F2[x1, . . . , xn] and

| ker(f)| ≤ (2d − 1)2n−d ≤ (2d − 1)2n+1−d

by assumption.

f ′ = 0 and f ′′ 6= 0 : Then ker(f) = {(x, 0)} .∪ {(x, 1)|x ∈ ker(f ′′)}. Because of
deg(f ′′) ≤ d− 1, it is

| ker(f)| ≤ 2n + (2d−1 − 1) · 2n−(d−1) = (2d − 1)2n−d.

f ′ 6= 0 and f ′′ 6= 0 : Then ker(f) can be expressed by

ker(f) = {(x, 0)|x ∈ ker(f ′)} .∪ {(x, 1)|x ∈ ker(f ′ ⊕ f ′′)}
7This Theorem has been proved independently in different papers, e.g. in [Arm04b].

93

4 On the equations in algebraic attacks

If f ′ ⊕ f ′′ ≡ 0 then deg f ′ = deg f ′′ ≤ d− 1 and

| ker(f)| = | ker(f ′)|+ | ker(f ′ ⊕ f ′′)|
≤ (2d−1 − 1) · 2n−(d−1) + 2n = (2d − 1) · 2n+1−d.

If f ′ ⊕ f ′′ 6≡ 0 then

| ker(f)| = | ker(f ′)|+ | ker(f ′ ⊕ f ′′)|
≤ (2d − 1) · 2n−d + (2d − 1) · 2n−d = (2d − 1) · 2n+1−d.

If we chose f ′ such that | ker(f ′)| = (2d − 1) · 2n−d and f ′′ = 0 then the bound
(2d − 1) · 2n+1−d is achieved by f .

Theorem 4.22 can be used to exclude the existence of annihilators of
degree ≤ d:

Corollary 4.23. Let f ∈ F2[x1, . . . , xn]. If | supp(f)| > (2d−1)2n−d then lad(f) > d.

Proof. Let g ∈ ann(f). This implies that supp(f) ⊆ ker(g) (see proof of 4.14)
and therefore | supp(f)| ≤ | ker(g)|. Hence, the assumption deg(g) ≤ d would
lead to the following contradiction:

(2d − 1)2n−d < | supp(f)| ≤ | ker(g)|
Th.4.22
≤ (2d − 1)2n−d.

Example 4.24. In [ArmK03], Z-functions with Z ∈ F4
2 for the E0 keystream

generator were described. We’ve checked that |XZ| = | supp(δXZ
)| = 53, 248 for

all Z ∈ F4
2. Because of | supp(δXZ

)| = 53, 248 > 49, 152 = (22 − 1)24·4−2, it holds

that lad(XZ) ≥ 3.

So, an attacker’s task is not only to find Z-functions, but also to try that
their degrees are as low as possible, preferably equal to lad(XZ). From our
point of view, this will require in most cases considering the sets XZ to find
Z-functions of degree lad(XZ), although sometimes more direct methods
may exist to construct Z-function. In the next sections, we will consider
the questions how to find Z-functions with the minimum degree and how
to design the (ι, m)-combiner to avoid them.

94

4.2 Finding low degree equations

4.2 Finding low degree equations

After developing the theoretical background of Z-functions, we turn our
attention to the not less important question of how to actually find them.
Although it is possible in some cases to derive Z-functions directly from
the specifications of the (ι, m)-combiner,8 in the general case an algorithm
is needed that efficiently computes a basis of annihilators with the min-
imum degree. In this section, we present several algorithms to do these
computations.

4.2.1 Using Gröbner bases

Once again, Gröbner bases can be helpful (see also [ArsF03]). One possibil-
ity is to set up an ideal containing the expressions f(Qt, Xt)− zt, Ψ(Qt, Xt)−
Qt+1, and the corresponding field equations. Then, compute the reduced
Gröbner basis for a graded term order. With results from the intersection
theory (see [CoxLS96]), one can derive a Gröbner basis which is indepen-
dent of the memory entries Qt. In other words, one uses the properties of
Gröbner bases to find non-trivial equations in the inputs and keystream
elements, which are independent of the memory. Of course, this is only
possible if Z-functions exist in this case.

Another approach is implied by Corollary 4.16, which says that any Z-
function is a multiple of 1 − δXZ

. Thus, they all lie in the principal ideal
generated by 1 − δXZ

. Let I be the ideal generated by 1 − δXZ
and the field

equations. Then, by Remark 3.18, computing a reduced Gröbner basis of I
immediately reveals a basis of all annihilators with minimum degree.

4.2.2 A straightforward algorithm

As explained in the previous section, any Z-function is an annihilator of
the set XZ and vice versa. Therefore, the task is to find annihilators for
a given set of preferably low degree. One approach is to solve a system of
linear equations. For this purpose, we generalize this problem as follows:

Given a set S ⊆ Fn and a set of linearly independent functions F ⊂ F[x1, . . . , xn],
does a non-zero linear combination f :=

∑

f̂∈F cf̂ · f̂ of functions in F and
cf̂ ∈ F exist such that f(X) = 0 for all X ∈ S?

Observe that if F is the set of all monomials in F[x1, . . . , xn] of degree ≤ d,
then this describes the case where one is interested in the existence of

8More on this at the end of this section.

95

4 On the equations in algebraic attacks

annihilators of degree ≤ d for a given set S.

Definition 4.25. Let n ≥ 1, S ⊆ Fn, and F ⊂ F[x1, . . . , xn] be a set of linearly

independent functions. We define the matrix MF(S) of size |S|×|F| as follows.

The columns are indexed by f̂ ∈ F and the rows by X ∈ S. The entry in

column f̂ and row X is set to f̂(X). A schematic figure of MF (S) is displayed

in (4.2.17).

...

X ∈ S
...

. . . f̂ ∈ F . . .






...

. . . f̂(X) . . .
...







(4.2.17)

If F is exactly the set of all monomials of degree d or less, we abbreviate

MF (S) to Md(S).

Example 4.26. Let F = F2 and S = {(000), (011), (100), (110)} ⊂ F3
2 and F :=

{1, x1, x2, x3, x1x2, x1x3, x2x3} be the set of all monomials in x1, x2, and x3 of

degree ≤ 2. Then, MF (S) = M2(S) has the form

1 x1 x2 x3 x1x2 x1x3 x2x3

(000)
(011)
(100)
(110)









1
1
1
1

0
0
1
1

0
1
0
1

0
1
0
0

0
0
0
1

0
0
0
0

0
1
0
0







(4.2.18)

Theorem 4.27. Let n ≥ 1, S ⊆ Fn, and F ⊂ F[x1, . . . , xn] be a set of linearly

independent functions. A non-zero function f :=
∑

f̂∈F cf̂ · f̂ with f(X) = 0
for all X ∈ S exists if and only if MF (S) has not full column rank. By

full column rank, we mean that the rank of the matrix equals the number of

columns.

Proof. We fix arbitrary orderings on S and F . Let C := (cf̂)f̂∈F be an arbitrary

vector in F|F| and f(X) :=
∑

f̂∈F cf̂ f̂ . Set V := MF(S) · C. V is a vector over
F of size |S|, indicated by the elements in S. By the definition of MF(S), the
entry at position X ∈ S is equal to

∑

f̂∈F cf̂ · f̂(X) = f(X). Thus, f(X) = 0

for all X ∈ S if and only if V = ~0. But this is only possible if the kernel of
MF (S) is non-trivial or rather the matrix has not full column rank.

Example 4.28. Consider again Example 4.26. The matrix M2(S), displayed

in (4.2.18), has 7 columns but only a rank of 4. Therefore, the vector space

of vectors C such that M2(S) · C = ~0 has the dimension 3. A possible basis is

96

4.2 Finding low degree equations

C1 = (0, 0, 1, 0, 1, 0, 1), C2 = (0, 0, 0, 1, 0, 0, 1), and C3 = (0, 0, 0, 0, 0, 1, 0). This can

be translated into three different annihilators for S of degree ≤ 2:

C1 : 0 · 1 + 0 · x1 + 1 · x2 + 0 · x3 + 1 · x1x2 + 0 · x1x3 + 1 · x2x3 = x2 + x1x2 + x2x3

C2 : 0 · 1 + 0 · x1 + 0 · x2 + 1 · x3 + 0 · x1x2 + 0 · x1x3 + 1 · x2x3 = x3 + x2x3

C3 : 0 · 1 + 0 · x1 + 0 · x2 + 0 · x3 + 0 · x1x2 + 1 · x1x3 + 0 · x2x3 = x1x3

Definition 4.29. Let n ≥ 1, S ⊆ Fn and F ⊂ F[x1, . . . , xn]. If MF (S) has full

rank, we say that S is F -immune. If F consists of all monomials with degree

d or less, then we simply say that S is d-immune.9

Furthermore, we name the set of functions f :=
∑

f̂∈F cf̂ f̂ with f |S ≡ 0 the

F − kernel resp. d-kernel of S. Obviously, S is F -immune (resp. d-immune) if

and only if its F -kernel (resp. d-kernel) consists of only the all-zero function.

The following is easy to show with basic linear algebra (see also Example
4.28):

Corollary 4.30. Let n ≥ 1, S ⊆ Fn and F ⊂ F[x1, . . . , xn]. If |S| < |F|, then S is

not F -immune.

Proof. In the case of |S| < |F|, the number of columns in MF (S) is bigger
than the number of rows. Thus, the columns cannot be linearly indepen-
dent, proving the existence of a non-trivial kernel.

Theorem 4.27 implies Algorithm 4.2 which computes the F-kernel of a
given set S. This approach has been described in [ArmK03, MeiPC04].

9This coincides with the definition of d-immune given in Definition 4.20.

97

4 On the equations in algebraic attacks

Algorithm 4.2.
Basis of F -kernel of S

Input: n ≥ 1, S ⊆ Fn and F ⊂ F[x1, . . . , xn]
Output: A basis of the F -kernel

1: Choose an arbitrary ordering of the elements in S and F , respec-

tively.

2: Create an all-zero matrix M := MF (S) of size |S| × |F| where the

rows and columns are indicated by the elements in S and F , re-

spectively.

3: for X ∈ S do
4: for f̂ ∈ F do
5: Set MX,f̂ := f̂(X)
6: end for
7: end for
8: Compute a basis B for the kernel of MF(S), that is vectors C =

(cf̂)f̂∈F such that MF(S) · C = ~0.

9: return {∑f̂∈F cf̂ f̂ | (cf̂)f̂∈F ∈ B}

The next example illustrates Algorithm 4.2.

Example 4.31. Consider the following subset of F4
2:

S := { (1000), (0100), (0010), (0001), (1100), (1010),
(0101), (1110), (1101), (1011), (0111)}.

We are interested in if S has any annihilators of degree 2. The matrix M2(S)
has the following form:

1 x1 x2 x3 x4 x1x2 x1x3 x1x4 x2x3 x2x4 x3x4

1000
0100
0010
0001
1100
1010
0101
1110
1101
1011
0111





















1
1
1
1
1
1
1
1
1
1
1

1
0
0
0
1
1
0
1
1
1
0

0
1
0
0
1
0
1
1
1
0
1

0
0
1
0
0
1
0
1
0
1
1

0
0
0
1
0
0
1
0
1
1
1

0
0
0
0
1
0
0
1
1
0
0

0
0
0
0
0
1
0
1
0
1
0

0
0
0
0
0
0
0
0
1
1
0

0
0
0
0
0
0
0
1
0
0
1

0
0
0
0
0
0
1
0
1
0
1

0
0
0
0
0
0
0
0
0
1
1





















(4.2.19)

98

4.2 Finding low degree equations

M2(S) has the size 11 × 11 but the rank is only 10. Thus, the kernel has

dimension 1 and is generated by the vector (1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1,)T. This

implies this quadratic annihilator for S:

1·1 + 1·x1 + 1·x2 + 1·x3 + 0·x4 + 0·x1x2 + 0·x1x3 + 1·x1x4 + 1·x2x3 + 1·x2x4 + 1·x3x4

= 1 + x1 + x2 + x3 + x1x4 + x2x3 + x2x4 + x3x4

In [MeiPC04], the authors described an improvement of Algorithm 4.2
for the case F = F2. The idea is to consider the values in S with increasing
weight to exclude certain monomials in the ANF of any potential annihilator
as soon as possible. They estimated a speed up factor of 8 compared to
Algorithm 4.2.

Next, we take a look on an alternative to Algorithm 4.2. The runtime be-
haviour of this algorithm is the same as for Algorithm 4.2. But as opposed
to Algorithm 4.2, where the F-kernel is computed all at once, the approach
here is slightly different. Starting with the whole set F , this set is reduced,
if necessary, for each element X ∈ XZ step by step. For certain systems, it
might be more efficient to store a list of functions Fi instead of the matrix
MF(S). At least, this was our observation while doing experiments with the
computer algebra system MAPLE. Another reason why we present this algo-
rithm is that it can be adapted for permutation invariant (ι, m)-combiners,
providing an enormous speed-up in some cases.

Algorithm 4.3.
Basis of F -kernel of S

Input: n ≥ 1, S ⊆ Fn and F ⊂ F[x1, . . . , xn] a set of linearly indepen-

dent functions

Output: A basis of the F -kernel

1: Let S = {X1, . . . , Xs}
2: Set F0 := F
3: for i = 1, . . . , s do
4: Set Fi := {f ∈ Fi−1|f(Xi) = 0} and F∗

i := Fi−1 \ F0
i

5: Choose f ∗ ∈ F∗
i

6: for g ∈ F∗
i \ {f ∗} do

7: Insert f ∗(X)− f∗(Xi)
g(Xi)

· g(X) into the set Fi

8: end for
9: end for

10: return Fs

A detailed proof of correctness can be found in [Arm04b]. We sketch only
the main arguments. Observe that the function defined in line 7 gives zero

99

4 On the equations in algebraic attacks

on Xi. Hence, after the i-th loop, Fi contains a set of functions that all can-
cel {X1, . . . , Xi}. These functions are linearly independent as they are linear
combinations of the functions in Fi−1 which are linearly independent by as-
sumption. Thus, at the end Fs is a set of linearly independent functions
that are zero on {X1, . . . , Xs} = S. Therefore it is a basis of the F-kernel of
S as claimed.

Also notice that if F∗
i contains only one single element, line 7 is not in-

voked in the i-th loop. For example, let F = F0 be the set of monomials of

degree ≤ d over F2, sorted by the degree, and X1 =
−→
0 . Then any mono-

mial is zero on X1 except the constant 1 and therefore F1 = F0 \ {1}. This
is related to the principle used in [MeiPC04] to improve the algorithm 4.2.
Actually, the ideas from there can likewise applied here to make Algorithm
4.3 faster.

Finally, we want to point out that the methods described in this section
are only practical for small values of k and r. Otherwise, it is normally
infeasible to compute the sets XZ, not to mention computing the kernel of
the resulting matrix.

However, it can sometimes be possible to get Z-functions by direct ma-
nipulation of given equations. As far as we know, the first example for
such an approach has been given in [CouM03] for the simple combiner
Toyocrypt, a submission to the Japanese government Cryptrec call for cryp-
tographic primitives. The number of unknowns is n = 128 and the output
function is the following function of degree 63

f(x0, . . . , x127) = x127 +
∑62

i=0 xixαi
+ x10x23x32x42+

x1x2x9x12x18x20x23x25x26x28x33x38x41x51x53x59

+
∏62

i=0 xi

(4.2.20)

where {α0, . . . , α62} being some permutation of the set {63, . . . , 125}. The de-
gree of f is far too high to make f practical for an algebraic attack. Using
the methods described in this section, this would require computing the
sets X(0) and X(1) and looking for low degree annihilators. But this is in-
feasible because of the large number of inputs. In [CouM03], the authors
made the observation that both f · (x23 − 1) and f · (x42 − 1) have a degree of
3. Thus, the z-functions

F (x0, . . . , x127, z) = (f(X)− z) · (x23 − 1)

F ′(x0, . . . , x127, z) = (f(X)− z) · (x42 − 1)

can be used to mount an algebraic attack. This shows that in some cases,
a direct analysis can lead further than the general approach.

Another example where Z-functions could be found by direct analysis
is the E0 keystream generator (see [ArmK03]). Recall its definition from

100

4.2 Finding low degree equations

Section 2.5.4. Obviously, the value of qt+1 depends only on Kt, qt, pt and
pt−1 and the value of pt+1 on Kt, qt, qt−1, pt and pt−1. The calculations of qt+1

and pt+1 are done via the following equations (see [Arm02, Appendix A] for
details):

qt+1 = σ4(t) + σ3(t)pt + σ2(t)qt + σ1(t)ptqt + qt + pt−1 (4.2.21)

pt+1 = σ2(t) + σ1(t)pt + qt + qt−1 + pt−1 + pt (4.2.22)

with σs(t) := σs(Kt) being the s-th elementary symmetric function10 in the
unknowns Kt. If we define the following additional variables

a(t) = σ4(t) + σ3(t)pt + pt−1

b(t) = σ2(t) + σ1(t)pt + 1,

equations (4.2.21) and (4.2.22) can be rewritten to

qt+1 = a(t) + b(t)qt (4.2.23)

pt+1 = b(t) + 1 + pt−1 + pt + qt + qt−1. (4.2.24)

By multiplying (4.2.23) with b(t) we get another equation

0 = b(t)(a(t) + qt + qt+1). (4.2.25)

Equation (4.2.24) is equivalent to

qt + qt−1 = b(t) + 1 + pt−1 + pt + pt+1. (4.2.26)

Now we insert (4.2.26) into (4.2.25) with index t + 1 instead of t and get

0 = b(t) (a(t) + b(t + 1) + 1 + pt + pt+1 + pt+2) .

Using (2.5.16), we eliminate all memory bits in the equation and get the
following equation which holds for every clock t:

0 = zt−1 + zt + zt+1 + zt+2 +

σ1(t) · (zt−1 + zt+1 + zt+2 + ztzt−1 + ztzt+1 + ztzt+2) +

σ2(t) · (zt−1 + zt + zt+1 + zt+2) + σ4(t) +

σ1(t− 1) + σ1(t− 1)σ1(t)(1 + zt) + σ1(t− 1)σ2(t) +

σ1(t + 1)zt+1 + σ1(t + 1)σ1(t)zt+1(zt + 1) + σ1(t + 1)σ2(t)zt+1 +

σ2(t + 1) + σ2(t + 1)σ1(t)(1 + zt) + σ2(t + 1)σ2(t) +

σ1(t + 2) + σ1(t + 2)σ1(t)(1 + zt) + σ1(t + 2)σ2(t).

We have seen that several ways exist to find (low degree) Z-equations.
In some cases, Gröbner bases methods or direct analysis can be tried, in
particular if the general method is infeasible. However, the general method
has the advantage that one knows for sure that no other Z-functions of a
lower degree exist.

10A definition will be given later in Definition 4.37.

101

4 On the equations in algebraic attacks

4.2.3 An algorithm adapted to permutation invariant

(ι, m)-combiners

So far, we examined only general (ι, m)-combiners. But if the (ι, m)-combiner
is permutation invariant, we showed in [Arm04b] that this property can be
exploited to accelerate the computation. Recall that permutation invariant
means that the output of these functions depends only on the hamming
weight of the inputs and is therefore invariant under permutations of the
inputs. This is equivalent to that both f(Q, X) and Ψ(Q, X) are symmet-
ric for any Q ∈ Fm. Symmetric Boolean functions play an important role
in practice as they can be efficiently implemented in hardware (e.g., see
[Weg87]). Examples for permutation invariant (ι, m)-combiners are E0 and
the summation generator.

The goal of this section is to derive several statements from the context
of permutation invariant (ι, m)-combiners. This will lead finally to Algo-
rithm 4.4 from [Arm04b]. It exploits the special structure to avoid some
unnecessary operations.

Definition 4.32. Let Πn be the group of permutations on {1, . . . , n}. For X =
(x1, . . . , xn) and π ∈ Πn we define

π(X) := (xπ(1), . . . , xπ(n)) and [X] := {π(X) | π ∈ Πn}.

Further on, for f ∈ F[x1, . . . , xn], we define

π(f) = π(f)(x1, . . . , xn) := f(xπ(1), . . . , xπ(n)).

Let Π ⊆ Πn. We say that a set S ⊆ {0, 1}n is Π-invariant if π(X) ∈ S for all

π ∈ Π and all X ∈ S. Consequently, we say that a function f is Π-invariant if

π(f) = f for all π ∈ Π.

Proposition 4.33. Let Π ⊆ Πn and 〈Π〉 denote the subgroup of Πn generated

by the elements of Π. A set S ⊆ Fn is Π-invariant if and only if it is 〈Π〉-
invariant.

Proof. Because of Π ⊆ 〈Π〉, a 〈Π〉-invariant set is always Π-invariant also.
Let S denote a Π-invariant set. We have to show that for all π, π̃ ∈ Π it is

(π ◦ π̃)(S) ⊆ S and π−1(S) ⊆ S. The first proposition is obvious because of
π(S) ⊆ S and π̃(S) ⊆ S by assumption. The reason for the second proposi-
tion is that the set {id(= π0), π1, π2, . . .} ⊆ Πn is finite and therefore π−1 can
be expressed by πm for an appropriate m.

Proposition 4.34. Let Π ⊆ Πn, f ∈ F[x1, . . . , xn] and z′ ∈ F arbitrary. If f−1(z)
is Π-invariant for all z ∈ F \ {z′}, then f−1(z′) is Π-invariant too, In particular,

this shows that f is Π-invariant.

102

4.2 Finding low degree equations

Proof. Assume that f−1(z) is Π-invariant for all z ∈ F, z 6= z′, but not f−1(z′).
Then, X ′ ∈ f−1(z′) and π ∈ Π exist with X := π(X ′) ∈ f−1(z) for z 6= z′. But
this implies π−1(X) ∈ f−1(z′) 6= f−1(z). Hence, f−1(z) is not 〈Π〉-invariant.
By Proposition 4.33, this is equivalent to that f−1(z) is not Π-invariant what
contradicts the assumption.

Definition 4.35. Let n1, . . . , nr ≥ 1 be arbitrary integers and Πi ⊆ Πni
. By

Π1 × . . .×Πr, we denote the set of all permutations π in Πn1+...+nr such that

π(X1, . . . , Xr) = (π1(X1), . . . , πr(Xr))

with πi ∈ Πi and Xi = (xi,1, . . . , xi,ni
).

Proposition 4.36. Consider a (ι, m)-combiner, r ≥ 1 and Π ⊆ Πι such that

for all X ∈ Fι, Q ∈ Fm and π ∈ Π, it holds that f(Q, X) = f(Q, π(X)) and

Ψ(Q, X) = Ψ(Q, π(X)). Then XZ is Πr = Π× . . .× Π invariant for all Z ∈ Fr.

Proof. Let π1, . . . , πr ∈ Π. Because of the assumptions, it holds that

fΨ(Q, X1, . . . , Xr) = fΨ(Q, π(X1), . . . , π(Xr))

for all Q ∈ Fm and X1, . . . , Xr ∈ Fk. The rest follows easily from the definition
of XZ, the claim follows.

The proposition was motivated by combiners with memory as the sum-
mation generator or the E0 keystream generator. For Π := Πι and r smaller
than the shortest LFSR, the assumptions of Proposition 4.36 are fulfilled.
Hence, we know that XZ is Πr

ι -invariant which shows that δ−1
XZ

(1) is Πr
ι -

invariant. As δXZ
(X) ∈ {0, 1} for all X, Proposition 4.34 yields that δXZ

is
Πr

ι -invariant.

In fact, this can be used to compute δXZ
faster which by Corollary 4.16

might support the computation of low-degree Z-functions in some cases.
Therefor, we need to develop some more theory on symmetric functions.

Definition 4.37. Let n ≥ 1. For s ∈ {1, . . . , n} and d ∈ {1, . . . , q− 1}, we define

the elementary symmetric function σd
s (x1, . . . , xn) ∈ Fq[x1, . . . , xn] by

σd
s (x1, . . . , xn) :=

∑

1≤i1<...<is≤n

xd
i1
· . . . · xd

iι . (4.2.27)

For F = F2, the exponent d is necessarily always equal to one, which is why

we omit it and write σs(X) instead.

103

4 On the equations in algebraic attacks

Example 4.38. For n = 4 and q = 2, the four elementary symmetric functions

are

σ1(x1, x2, x3, x4) := x1 + x2 + x3 + x4,

σ2(x1, x2, x3, x4) := x1x2 + x1x3 + x1x4 + x2x3 + x2x4 + x3x4,

σ3(x1, x2, x3, x4) := x1x2x3 + x1x2x4 + x1x3x4 + x2x3x4,

σ4(x1, x2, x3, x4) := x1x2x3x4.

The importance of elementary symmetric functions is showed in the fol-
lowing theorem:

Theorem 4.39. Let f(X) ∈ Fq[X] be a symmetric function in n indetermi-

nates. Then, the algebraic normal form of f can be written as

f(x) =
∑

1≤s≤n
1≤d≤q−1

cs,dσ
d
s (X) + c0. (4.2.28)

Proof. We prove the claim by a simple counting argument. By definition, it
holds that f(X) = f(π(X)) for all X ∈ Fn and π ∈ Πn. This implies that if
|X| = |X ′|, then f(X) = f(X ′). Thus, any symmetric function is uniquely
defined by the expressions f(i) := f(X) for one X ∈ Fn with |X| = i. As
X = (x1, . . . , xn) ∈ Fn

q , it holds that 0 ≤ |xi| ≤ q − 1 for 1 ≤ i ≤ n, implying
|X| = ∑n

i=1 |xi| ∈ {0, . . . , n · (q − 1)}. Summing up, f has a unique expression

by its truth table T (f) = (f(0), . . . , f(n · (q − 1))) ∈ F
1+n·(q−1)
q . This shows that

in total q1+n·(q−1) different symmetric functions exist over Fq.
Now take a look at the elementary symmetric functions. Obviously, they

are symmetric. Therefore, any function of the form
∑

1≤r≤n
1≤d≤q−1

cr,dσ
d
r (X) + c0 (4.2.29)

is symmetric too. As there exist 1+n·(q−1) different choices for (c0, c1,1 . . . , cn,q−1),
there are altogether q1+n·(q−1) different symmetric functions of the form (4.2.29).
Hence, these functions must be exactly the q1+n·(q−1) different symmetric
functions.

With this theorem, it is easy to derive the following corollary:

Corollary 4.40. Any Πr
ι -invariant function f(X1, . . . , Xr) ∈ Fq[X1, . . . , Xr] with

Xi = (xi,1, . . . , xi,ι) has an algebraic normal form of the following form:

f(X1, . . . , Xr) =
∑

σi1
,...,σir

cσi1
,...,σir

σi1(X1) · · ·σir(Xr) (4.2.30)

with σij (Xj) being an elementary symmetric function in Xi or a constant.

104

4.2 Finding low degree equations

In the case that δXZ
is Πr

ι -invariant, one can use expression (4.2.30) to
efficiently compute δXZ

from XZ, which might help as the set of Z-functions
is given by the ideal I = 〈1− δXZ

〉 (see Corollary 4.16).

An alternative improvement to compute the set of low degree Z-functions
in the case of Πr

ι -invariant sets XZ is given in Algorithm 4.4.

Algorithm 4.4.
Computing a basis of Z-functions for permutation invariant (ι, m)-
combiners

Input: The set XZ and d ≥ 1
Output: A basis for all annihilators of X ∈ XZ with degree ≤ d

1: Let F0 ⊆ F[x1, . . . , xn] be the set of all monomials with degree ≤ d
2: Divide XZ into equivalence classes: XZ = {[X1], . . . , [Xs]}
3: for i from 1 to s do
4: Test if f(Xi) = 0 for all f ∈ Fi−1

5: if yes then
6: Set Fi := Fi−1

7: else
8: Compute an Fi−1-kernel of the set [Xi] with Algorithm 4.3, and

assign the identifier Fi to it.

9: end if
10: end for
11: return The set Fs

Similar to Algorithm 4.3, the set F is reduced bit by bit for each element
X ∈ XZ. Step 2 is possible by Proposition 4.36 as XZ is Πr

ι -invariant.
The improvements of Algorithm 4.4 can be found in lines 4-7. The general
algorithm, Algorithm 4.3, requires the evaluations of f(X) for all f ∈ Fi−1

and X ∈ XZ which have not been considered so far. In Algorithm 4.4,
it is possible to skip some superfluous computations. These rely on the
Proposition 4.41 which says that

f(Xi) = 0 ∀f ∈ Fi−1 ⇒ f(X) = 0 ∀X ∈ [Xi], ∀f ∈ Fi−1.

Thus, if f(Xi) = 0 ∀f ∈ Fi−1, then we don’t need to consider f(X) for the
other values X ∈ [Xi]\{Xi}. Assume for example that Fi for i < s is already
a basis of the annihilators of degree ≤ d. Then the algorithm notices that by
only evaluating f(Xj) for f ∈ Fi and i < j ≤ s. This means that the bigger
the sizes of the sets [Xj] for i < j ≤ s, the more operations can be skipped.
Consequently, we observed in our simulations that a good strategy is to

105

4 On the equations in algebraic attacks

consider the sets Xi with increasing sizes. However, if no annihilators of
degree ≤ d exist or if the choice of the representants Xi is inauspicious11,
the running time might be close to the unadapted Algorithm 4.3. Nonethe-
less, our observation was that in most cases, Algorithm 4.4 provided a
significant speed-up.

What remains is to prove the correctness of this algorithm.

Proposition 4.41. Let the identifiers be as in Algorithm 4.4 and i ≥ 0. If

f(Xi) = 0 for all f ∈ Fi−1 then f(X) = 0 for all f ∈ Fi−1 and all X ∈ [Xi].

Proof. The proof relies on the fact that 〈Fi−1〉 is Π-invariant what will be
shown later. Assume that f(Xi) = 0 for all f ∈ Fi−1. Let f ∈ Fi−1 and
π ∈ Π be arbitrary. We have to show that f(π(Xi)) = 0 also. As 〈Fi−1〉 is
Π-invariant f1, . . . , fr and c1, . . . , cr ∈ F exist such that π(f) =

∑r
j=1 cj · fj(X).

This implies

f(π(Xi)) = π(f)(Xi) = c1f1(Xi)
︸ ︷︷ ︸

=0

+ . . . + crfr(Xi)
︸ ︷︷ ︸

=0

= 0.

What remains is to show that Fi−1 is Π-invariant. We do this by induc-
tion. F0, the set of all monomials with degree ≤ d, is certainly Π-invariant.
Assume now that Fj−1 is Π-invariant. After the j-th loop, Fj is either equal
to Fj−1 or is the result from Algorithm 4.3 with input (Fj−1,[Xj]). In the first
case, the proposition is trivial.

In the second case, Fj is a basis for the vector space of all f ∈ 〈Fj−1〉
with f(X) = 0 for all X ∈ [Xj]. Let f ∈ 〈Fj〉 and π ∈ Π be arbitrary. Then
π(f)(X) = f(π(X)) = 0 for all X ∈ [Xj]. Additionally it holds π(f) ∈ 〈Fj−1〉 by
assumption. Therefore, π(f) is a function from 〈Fj−1〉 which is zero on all
X ∈ [Xj]. Hence, π(f) ∈ 〈Fj〉, showing that 〈Fj〉 is Π-invariant.

Remark 4.42. With the theory of this section, one may be tempted to con-

sider only Π-invariant annihilators for an Π-invariant set S. Then, however,

low-degree annihilators may be overlooked.

One example is the Π3-invariant set12 S := {[000], [100], [111]} ⊂ F3
2 with

lad(S) = 2. A possible basis for all degree-2-annihilators is the set {x1 · (x2 +
x3), x3 · (x1 +x2)}. On the other hand, ann(S) contains no non-zero Π3-invariant

functions of degree ≤ 2. This can be shown as follows.

Assume that a Π3-invariant annihilator f := c0 + c1 · σ1 + c2 · σ2 6≡ 0 of degree

11Observe that the choice of the representants Xi has a direct impact on the concrete
elements in Fi.

12Recall the definition from page 85 that [x1 . . . xr] = {(X1, . . . , Xr)| |Xi| = xi}.

106

4.2 Finding low degree equations

≤ 2 exists. Then, the condition f(X) = 0 for all X ∈ S yields

0 = f([000]) = c0

0 = f([100]) = c0 + c1

0 = f([111]) = c0 + c1 + c2

This implies c0 = c1 = c2 = 0 and therefore f ≡ 0. I.e., the Π3-invariant set S
has quadratic annihilators which are all not Π3-invariant.

Until know, it is an open question to find efficient methods to decide
for a Π-invariant set S if any of the Π-invariant annihilators has a degree
equal to lad(S). To know that this is the case would enormously acceler-
ate the search for low-degree Z-functions for permutation invariant (ι, m)-
combiners like E0.

4.2.4 A quadratic time algorithm

The algorithms discussed so far for computing the lowest annihilator de-
gree d of a function f with n variables are all based on computing the
kernel of the matrix Md(supp(f)), giving a running time in O(µ2(n, d)3). In
[ArmCGKMR06], a new algorithm was proposed which reduced the time
effort to an amount in O(µ2(n, d)2), being the first quadratic time algorithm
to compute AI so far.

It allowed to compute AI(f) for Boolean functions f : Fn
2 → F2 for higher

values of n than it has been achieved before. For example, the authors
evaluated the values of AI for the inverse function and some Kasami type
power functions (e.g., see [CanV02]) for 12 ≤ n ≤ 20. However, the authors
clearly point out that it is a difficult (but doable) task to implement the
algorithm in such a way that the effort estimations are fulfilled13.

We sketch here only the algorithm itself for the case F = F2 (Algorithm
4.5) and refer for details to [ArmCGKMR06]. The algorithm is based on
iteratively solving systems of linear equations U · G = B with U being an
upper triangular matrix. One by one it takes the elements in supp(f) to
compute an annihilator g derived from G for the elements already consid-
ered. If g is already an annihilator of supp(f), then the algorithm stops,
otherwise it takes a new element from supp(f) and modifies g accordingly.
The construction of G is done in such a way that g consists after the i-th
round of a linear combinations of the first i-th monomials, ordered by the
degree. Therefore, the first annihilator found for the whole set supp(f) has

13In particular the memory management is not easy.

107

4 On the equations in algebraic attacks

necessarily the lowest possible degree. Worth mentioning is that the algo-
rithm can be easily adapted to derive a basis of all annihilators with the
minimum degree lad(f).

Algorithm 4.5.
Computation of an annihilator of minimum degree

Input: f , S := supp(f) = {X1, . . .}, E≤⌈n/2⌉ = {E1, . . .} being the set of expo-

nents of degree ≤ ⌈n/2⌉ such that |Ei| ≤ |Ej| for i ≤ j.

Output: An annihilator of f of minimum degree.

1: Initialize the following variables: U1 ← (XE1
1), v1 ← f(X1)⊕1, G1 ← (1) ∈

F1
2, P ← (x1), i← 1.

2: while the polynomial associated to G is not an annihilator of f do
3: i← i + 1.

4:

(

Ui P (XEi

1 , . . . ,XEi

i−1)

XE1
i . . . X

Ei−1

i XEi

i

)

row ops.→
(

Ui

0 . . . 0
P (XEi

1 , . . . ,XEi

i)

)

︸ ︷︷ ︸

=:Ui+1

5: Use the same row operations from line 4 to perform the update

(P (v1, . . . , vi−1), vi) 7→ P (v1, . . . , vi).
6: Solve Ui ·Gi = P (v1, . . . , vi) with Gi = (g1, . . . , gi).
7: end while
8: Output g(X) :=

⊕i
j=1 gj ·XEj .

108

4.3 Design principles

4.3 Design principles

After considering the question how to find low degree equations for an al-
gebraic attack on (ι, m)-combiners in the previous section, we come now
to the opposite task, namely how to avoid them. In this section, we will
provide several design principles for simple combiners and combiners with
memory such that a lower bound for lad(r) is guaranteed for all values of r
between 1 and the length of the shortest LFSR.

At first, we will provide several statements on lad, and after that, we
explain some design methods for simple combiners and combiners with
memory.

4.3.1 Properties of the lowest annihilator degree

In this subsection, we collect some basic facts on the lowest annihilator
degree. We consider first the values of lad for related sets:

Theorem 4.43. Let S ⊆ Fn. It holds that

1. For S ′ ⊆ S, it holds that lad(S ′) ≤ lad(S).

2. For a regular matrix M ∈ GLn(F) and a vector V ∈ Fn, we define

S ·M + V := {X ·M + V |X ∈ S}.

It holds that lad(S ·M + V) = lad(S).

Proof. The first claim is obvious, as any annihilator of S gives automatically
zero on any subset of S.

For the second claim, recall that the inverse of an affine bijective mapping
S 7→ S ·M +V is affine too. Therefore, it suffices to show that lad(S ·M +V) ≥
lad(S). Let f(X) = f(x1, . . . , xn) be an annihilator of S · M + V of degree
lad(S ·M+V) and set f̂(X) := f(X ·M+V). Observe that deg(f̂) = deg(f), as the
degree of a function is invariant under linear operations on the variables.
Now, it holds for any X ∈ S that

f̂(X)
def
= f(X ·M + V

︸ ︷︷ ︸

∈S·M+V

) = 0.

Thus, f̂ is an annihilator of S. As f was an arbitrary annihilator of S ·M +V ,
this shows that lad(S) ≤ deg(f̂) = lad(S ·M + V). Hence, the second claim is
proved.

109

4 On the equations in algebraic attacks

Assume now that we are interested in constructing a d-immune set S ∈ Fn

from scratch. The certainly most simple approach is given in Algorithm 4.6.
It is based on Theorem 4.27 which says that a set S is d-immune if and only
if Md(S) has full column rank. The algorithm works as follows. As long as
Md(S) has not full column rank, a new element X 6∈ S is searched such
that rank(Md(S ∪ {X})) > rank(Md(S)). Then, the set S is updated to S ∪ {X}
and so on.

Algorithm 4.6.
Constructing a d-immune set S ⊆ Fn

Input: n, d ≥ 1
Output: A set S ⊆ Fn with lad(S) ≥ d + 1

1: Set S := {X} for a random element X ∈ Fn

2: while Md(S) has not the full column rank do
3: Search random X ∈ Fn \ S such that rank(Md(S)) < rank(Md(S ∪

{X}))
4: Set S := S ∪ {X}
5: end while
6: return Si

Although simple, the algorithm is quite efficient to construct some d-immune
set. Observe that in practice, one would transform Md(S) in row echelon
form, so that testing if the rank of Md(S ∪ {X}) is higher than the rank of
Md(S) is quite easy. Furthermore, due to [ZenYR89], the probability that i
random vectors in FD

q with D := µq(n, d) are linearly independent is equal to

Prob =

D∏

j=D−i+1

(

1− 1

qj

)

. (4.3.31)

Although the rows of Md(S) are not really random, one can expect (and
simulations confirmed this) that at each loop, only few elements X ∈ Fn \ S
need to be tested until one is found that gives a vector that is linearly
independent from the ones chosen before.

Of course, generating random sets S is quite inefficient in practice. Fur-
thermore, it makes it hard to analyze further properties. Thus, one would
prefer to construct d-immune sets more systematically. In the case of
F = F2, Algorithm 4.2 implies a canonical d-immune set.

Proposition 4.44. Let F := F2 and n, d ≥ 1. The set X≤d := {X ∈ Fn||X| ≤ d}
is d-immune, i.e. lad(X≤d) > d.

110

4.3 Design principles

Proof. Let F := {XE| E ∈ {0, 1}n, |E| ≤ d}. We show that the matrix MF(X≤d)
has full rank. To do so, we order both the elements in F and in S with
respect to the grevlex-ordering ≻.

Then, the diagonal elements of MF(X≤d) are mX(X) which is equal to 1.
Above these entries are the values of XE with E ≻ X which are 0. Hence,
MF(X≤d) is a lower triangular matrix with full rank.

Example 4.45. Let F := F2, n := 4 and d := 2. Consider the set

X≤2 := {(0000), (1000), (0100), (0010), (0001), (1100), (1010), (1001), (0110), (0101), (0011)}.

The matrix M2(X≤2) is

1 x1 x2 x3 x4 x1x2 x1x3 x1x4 x2x3 x2x4 x3x4

0000
1000
0100
0010
0001
1100
1010
1001
0110
0101
0011





















1
1
1
1
1
1
1
1
1
1
1

0
1
0
0
0
1
1
1
0
0
0

0
0
1
0
0
1
0
0
1
1
0

0
0
0
1
0
0
1
0
1
0
1

0
0
0
0
1
0
0
1
0
1
1

0
0
0
0
0
1
0
0
1
0
0

0
0
0
0
0
0
1
0
0
0
0

0
0
0
0
0
0
0
1
0
0
0

0
0
0
0
0
0
0
0
1
0
0

0
0
0
0
0
0
0
0
0
1
0

0
0
0
0
0
0
0
0
0
0
1





















As M2(X≤2) has a triangular form, it has full rank. Thus, in this case no

annihilators of degree 2 exist.

4.3.2 Simple combiners

By Theorem 4.3, any Z-function is an annihilator of XZ. From Proposition
4.4, we know that we can limit our considerations to the sets Xz for z ∈ F.
Algorithm 4.7 uses these observations to construct an output function f
with lad(1) > d for a given value d.

111

4 On the equations in algebraic attacks

Algorithm 4.7.
Constructing a function f : Fn

q → Fq with lad(1) > d

Input: n ≥ 1, a finite field Fq, an integer d
Output: A function f : Fn

q → Fq such that lad(1) > d

1: Find q distinct sets Sz, all being d-immune

2: Define f : Fn
q → Fq as follows

f(X) :=

{
z , X ∈ Sz

arbitrary , else
(4.3.32)

3: return f

Because of lad(Xz) ≥ lad(Sz) > d for all z ∈ F, it holds that lad(1) > d as
demanded. Observe that Algorithm 4.7 depicts rather a general approach
than a concrete design proposal. For example, it completely ignores the
problem how to generate q disjoint sets, all being d-immune. One possibility
is to construct the sets SZ in parallel, using the property that lad(S) =
lad(S +V) for any set S and any vector V (see Theorem 4.43). In this context
we want to refer to the algorithm in [ArmK06] based on matroids, which
solves a similar problem and might be of help for the case here.

Once again, the case of F = F2 is easier as only the two sets X(0) and
X(1) need to be considered. Theorem 4.43 and Proposition 4.44 provide
the background for using S(0) := X≤d and looking for a vector V ∈ Fn

2 such
that S(0) and S(1) := S(0) + V are disjoint. This is for example the case for
V := (1, . . . , 1)T . Let X ∈ S(0), then |X| ≤ d by definition. As XORing X with
V means to flip each entry, it holds that |X+V | ≥ n−d > d if 2d < n. The last
condition is equivalent to d ≤ ⌊n/2⌋. In other words, defining f as shown
in (4.3.32) gives a simple combiner with lad(r) > d if d ≤ ⌊n/2⌋. This means
that f is defined as follows:

f(X) :=

{
0 , X ∈ X≤d

1 , X ∈ X≤d + (1, . . . , 1)T =

{
0 , |X| ≤ d
1 , |X| ≥ n− d

. (4.3.33)

For d = ⌊n/2⌋, (4.3.33) describes the so-called majority function:14

Proposition 4.46. The majority function maj with n inputs is defined by

maj(X) :=

{
0 , |X| ≤ ⌈n/2⌉ − 1
1 , |X| ≥ ⌊n/2⌋+ 1

. (4.3.34)

14The name comes from the fact that f(x1, . . . , xn) = 0 if the majority of the entries is
equal to zero, and equal to 1 otherwise.

112

4.3 Design principles

For n odd, this defines a balanced function. In the case of n even, one can

assign arbitrary outputs for the inputs X of weight n/2. The majority function

is an algebraically immune function. This means that lad(maj) = lad(maj+1) =
⌊n/2⌋+ 1.

To use this kind of functions (and similar variants) has been proposed in
several papers, for example in [DalMS05, BraP05, ArmKS05].

Altogether, we have seen that creating an output function f such that
lad(1) is maximum is doable, at least for the case F = F2. But, to be resis-
tant against other attacks, f has to meet other criteria, as high correlation
immunity [Sie84], high nonlinearity (e.g, see [MeiS89]) and others. More
intelligent algorithms to obtain Boolean functions with maximum lad have
been described in [DalGM05, QuFL05], but to the best of our knowledge,
it is still an open task to design output functions f with a good trade-off
between these demands, including high lad.

4.3.3 Combiners with memory

Combiners with memory were originally introduced in [Rue85] to avoid cor-
relation attacks. Although this was not achieved (see according statements
in Section 2.6), they still might be a good way to achieve better trade-offs
between the vulnerability against existing attacks than in the case of simple
combiners. However, almost all papers on strengthening combiners against
algebraic attacks focus only on simple combiners and neglect combiners
with memory. The only exception we are aware of is our paper [ArmKS05]
where a design principle is developed for combiners with memory which
guarantees a lower bound for lad(r) with r between 1 and the length of the
shortest LFSR. In this section we present the main result but refer for more
details to the paper.

The following theorem, a slight extension from a theorem in [ArmKS05],
shows that under certain conditions, each ”local” lower bound for lad(XQ,(zr))

15

is also a ”global” lower bound for lad(X(z1,...,zr)).

Theorem 4.47. Let α : Fι → F be a function such that lad(α−1(z)) = d for all

z ∈ F, and β : Fm → F be arbitrary. Furthermore, we denote by r∗ ≥ 0 the

maximum number such that XQ,Z 6= ∅ for all Q ∈ Fm and Z ∈ Fr∗.16

If the output function f can be expressed as

f(Q, X) := α(X) + β(Q) = z, (4.3.35)

15Recall the definition of XQ,Z on page 88.
16In a properly designed (ι, m)-combiner, r∗ would be the length of the shortest LFSR

involved.

113

4 On the equations in algebraic attacks

then it holds for all r∗ ≥ r ≥ 1, Z = (z1, . . . , zr) ∈ Fr and Q ∈ Fm that

lad(XZ) ≥ lad(XQ,Z) = d.

Proof. Because of XQ,Z ⊆ XZ, the first inequality follows by Theorem 4.43.
It remains to show that lad(XQ,Z) = d for all r∗ ≥ r ≥ 1, Z = (z1, . . . , zr) ∈

Fr and Q ∈ Fm. For r = 1 it holds for all choices z ∈ F and Q ∈ Fm that
XQ,(z) = α−1(β(Q)− z) and therefore lad(XQ,(z)) = d by assumption on α.

Let r ≥ 1, Z = (z1, . . . , zr) ∈ Fr, Q1 ∈ Fm and g(X1) ∈ F[X1] be an anni-
hilator of XQ1,(z1). Then, g can be interpreted as an element in F[X1, . . . , Xr]
which annihilates XQ1,Z, too. This shows that lad(XQ1,Z) ≤ lad(XQ1,(z1)) = d.

We prove now by induction over r that lad(XQ1,Z) ≥ d for all choices of
Q1 and Z. The case r = 1 has be considered already. Now let 1 < r ≤ r∗

be fixed and the claim be true for all r′ < r. Fix Z = (z1, . . . , zr) and Q1

and choose g(X1, . . . , Xr) ∈ ann(XQ1,Z) having the minimal degree lad(XQ,Z).
Choose an arbitrary value (X1, . . . , Xr) ∈ XQ1,Z which is not empty by
assumption. Set Q2 := Ψ(Q1, X1). Then g∗(X2 . . . , Xr) := g(X1, X2, . . . , Xr)
annihilates XQ2,(z2,...,zr). This shows that

lad(XQ1,Z) = deg(g) ≥ deg(g∗) ≥ mindeg(XQ2,(z2,...,zr)) ≥ d,

where the last inequality is true by induction assumption.

The theorem implies the following strategy. Choose an output function α
such that lad(α−1(z)) is the maximum possible value, for example with the
algorithms mentioned in Section 4.3.2. This will guarantee the same lower
bound for the degree of any Z-functions, as long as the inputs X1, . . . , Xr

are independent elements in Fι.
We emphasize that for combiners with memory Theorem 4.47 yields the

only lower bound for algebraic attacks proposed so far. Furtheron, this
approach can be combined with other methods presented in [ArmKS05] to
achieve maximum resistance against certain correlation attacks. One of
our results was that already small changes of E0 increase the resistance
against certain attacks considerably.

In the case of F = F2, we know that the highest value of d is equal to ⌈ι/2⌉
which might not be enough to ensure a reasonable security margin. But,
in our simulations on reduced version of E0 in [ArmKS05], it was observed
that lad(XZ) was actually bigger than d. Besides, one can increase the value
of d by increasing ι. This can be achieved without augmenting the number
of LFSRs. Instead, α could for example use the outputs of each LFSRs from
two successive clocks, giving a function α : F2ι → F and by doing so doubling
the value of d. The drawback of course is that now it takes two clocks for
generating one output bit, halving the speed of the (ι, m)-combiner.

114

4.4 Algebraic attacks with related keys

4.4 Algebraic attacks with related keys

In the preceding sections, we derived criteria for the existence of low degree
equations for an algebraic attack and discussed how they can be avoided
by designers. However, even if the (ι, m)-combiner is designed optimally in
this sense, other ways may exist to express the keystream generator by a
system of low degree equations. One possibility are fast algebraic attacks,
the whole next chapter being dedicated to this subject. Another possibility
is given in the case that the keystream generator is run several times with
different unknown initial states, the keys, of the LFSRs but where some
relations between the keys are known. At the first sight, it may seem to be a
rather unrealistic scenario. But actually, there exist at least two occasions
where this might happen:

Linear key schedule

Keystream generators have to be initialized with a secret key on which the
sender and the receiver agree beforehand. For security reasons and to
avoid synchronization loss, a key schedule is deployed in general. This
means that both communication partners agree secretly on one key K ∈ Fn

q

and on a public algorithm. The algorithm derives after a fixed number of
clocks a new initial state from K and from some public parameters, e.g a
counter or the actual system time. For the sake of efficiency, key schedules
are often chosen to be linear (e.g. in Bluetooth). In [DaeGV93], it was shown
that linear key schedules may weaken simple combiners.

Fault analysis

If the device on which the keystream generator is executed is not tamper-
resistant, an attacker might have the ability to control it in a limited way.
More precisely, the attack model is that the adversary can re-set the device
to the same unknown initial setting as often as he wants and re-start it to
generate the keystream. While the keystream generator is running, he can
induce (possibly unknown) errors. Thereby, he knows the affected register
but can neither control the point in time of the disturbance nor the induced
error itself.

Fault analysis was first introduced in 1996 in [BonDL97] to attack num-
ber theoretic public key cryptosystems such as RSA, and later in [BihS97]
to attack product block ciphers such as DES. These attacks are practi-
cal, and various techniques have been described that induce faults during
cryptographic computations (cf. [SkoA02]). More recently, fault analysis
of stream ciphers has been introduced by Hoch and Shamir in [HocS04].

115

4 On the equations in algebraic attacks

As for other cryptosystems, fault analysis on stream ciphers is a power-
ful cryptanalytic tool which can work even if direct attacks are inefficient.
In [HocS04], general techniques are applied to attack standard construc-
tions of stream ciphers based on LFSR’s, and some specialized techniques
are introduced that work, e.g., against RC4. In [BihGN05], different and
improved fault analysis methods on RC4 are derived.

Algebraic attacks with related keys

Both attack scenarios described in the previous sections can be summa-
rized by the following attack model:

Definition 4.48. The attack model for the related key scenario is as fol-

lows. Once the (ι, m)-combiner is initialized, it generates a keystream of

length T . This time period is called a frame. At the beginning of the i-th

frame, the (ι, m)-combiner is initialized to S
(i)
0 := (Q

(i)
0 , K(i)) ∈ Fm × Fn and pro-

duces the keystream z
(i)
0 , . . . , z

(i)
T−1. Thereby, the keys K(i), called the frame

keys, are related in the following sense. There exists a value K ∈ Fn, called

the master key, a matrix M ∈ GLn(F) and vectors ∆(i) ∈ Fn such that

K(i) = K ·M + ∆(i). (4.4.36)

Particularly, for i, j ∈ {1, . . . , N}, where N specifies the number of frames con-

sidered, one can specify a vector ∆(i,j) such that K(j) = K(i) +∆(i,j). Regarding

the initial states Q
(i)
0 of the memory, it is not necessary to know any relations

between Q(i) and Q(j).

The assumptions are that an adversary knows the specifications of the

(ι, m)-combiner, the matrix M , the vectors ∆(i) and some of the keystream

elements z
(i)
t with 0 ≤ i ≤ N . The attacker’s goal is to find out the value of the

master key K.

We thereby distinguish between a passive attacker, who can only ob-

serve, and an active attacker, who is able to choose the values of M and

∆(i).

Remark 4.49. In a fault attack, it holds that M is the identity matrix, as only

a fault ∆(i) is added to K. But, as opposed to the related key attack scenario

described in Definition 4.48, the fault attack model assumes that an attacker

does not know the values of the induced faults.

In the case that the fault is induced only into the memory register, all the

keys K(i) are equal, i.e. ∆(i) = 0, so that the assumption from the related key

scenario is valid.

In the case that faults are induced into the LFSRs, the values of ∆(i) are

unknown at first. However, in [ArmM05], we described several methods to

116

4.4 Algebraic attacks with related keys

reconstruct the faults ∆(i), if the fault is induced only into one LFSR and if

the attacker is able to observe as many keystream bits as he needs (and T
is not too small). Simulations confirmed the validity of these methods. As the

effort is closely related to the length of the affected LFSR, we assumed that

the fault was induced into the shortest length.

Although there are still many open questions as for the practicability of

these methods or for possible improvements, we know at least that it is pos-

sible in principle to mount fault attacks such that the faults ∆(i) are known.

Therefore, we leave the question of how to determine (efficiently) the values

of the induced faults as a separate topic and concentrate only on algebraic

attacks in the related key scenario.

In the following, we will describe algebraic attacks in the related key sce-
nario. This covers our results from [ArmLP04, ArmM05]. Before we start,
we simplify the notations. W.l.o.g., we can assume that M is equal to the

identity matrix.17 Furthermore, we can suppose that ∆(0) =
−→
0 . This yields

that

K(0) = K

K(i) = K + ∆(i), 1 ≤ i ≤ N.

We refer to frame number 0 as the original frame and omit the exponent

(0) for it. That is, zt = z
(0)
t .

As usual, we denote by K
(i)
t = K(i) · Lt · P the inputs to f at clock t in

frame i and by Kt = K · Lt · P the inputs in the original frame. Due to the
linearity in the LFSRs and in the key schedule, one can derive a simple

relation between Kt and K
(i)
t :

K
(i)
t = K(i) · Lt · P = (K + ∆(i)) · Lt · P = K · Lt · P + ∆(i) · Lt · P

︸ ︷︷ ︸

=:∆
(i)
t

= Kt + ∆
(i)
t .

Our attack is similar to the ”conventional” attack as described in Chapter

3. Thus, whenever an adversary knows that (z
(i)
t , . . . , z

(i)
t+r−1) is equal to some

value Z ∈ Fr, he knows that (Kt + ∆
(i)
t , . . . , Kt+r−1 + ∆

(i)
t+r−1) ∈ XZ. Let

∆
(i)
t...t+r−1 := (∆

(i)
t , . . . , ∆

(i)
t+r−1),

XZ −∆
(i)
t...t+r−1 := {X −∆

(i)
t...t+r−1 ∈ Fι·r | X ∈ XZ}.

17Set K ′ := K ·M and treat K ′ as the master key. Once K ′ is found, the ”original” master
key can be easily reconstructed as M is regular. Actually, the matrix M plays only a
role in the case of active attackers who can influence M .

117

4 On the equations in algebraic attacks

Thus, (z
(i)
t , . . . , z

(i)
t+r−1) = Z implies that

(Kt, . . . , Kt+r−1) ∈ XZ −∆
(i)
t...t+r−1,

allowing an adversary to set up an equation

F (Kt, . . . , Kt+r−1) = 0,

with F being an annihilator of XZ −∆
(i)
t...t+r−1 of degree lad(XZ −∆

(i)
t...t+r−1).

As long as one considers only one frame, this is exactly the algebraic
attack as described in Chapter 3. But if the attacker additionally knows

the values of (z
(j)
t , . . . , z

(j)
t+r−1) = Z ′, i 6= j, this yields

(Kt, . . . , Kt+r−1) ∈
(

XZ −∆
(i)
t...t+r−1

)

∩
(

XZ′ −∆
(j)
t...t+r−1

)

,

which implies
F̃ (Kt, . . . , Kt+r−1) = 0

with F̃ being an annihilator of
(

XZ −∆
(i)
t...t+r−1

)

∩
(

XZ′ −∆
(j)
t...t+r−1

)

having the

lowest annihilator degree.
Recall that the lower the degree of the equations, the better for the attack.

Because of XZ −∆
(i)
t...t+r−1 ⊇

(

XZ −∆
(i)
t...t+r−1

)

∩
(

XZ′ −∆
(j)
t...t+r−1

)

and Theorem

4.43, it holds that deg(F̃) ≤ deg(F). Thus, knowing the outputs from differ-
ent frames for related keys might allow an attacker to set up equations in r
clocks with a degree below lad(r).

Example 4.50. Consider the summation generator from Section 2.5.3 over

F2 with k = 2 inputs and m = 1 memory bits. From Example 4.5 on page 84,

we know that the sets XZ for all Z ∈ F2
2 are

X(0,0) = {(0000), (0011), (0101), (0110), (1001), (1010), (1101), (1110)}
X(0,1) = {(0001), (0010), (0100), (0111), (1000), (1011), (1100), (1111)}
X(1,0) = {(0000), (0011), (0100), (0111), (1000), (1011), (1101), (1110)}
X(1,1) = {(0001), (0010), (0101), (0110), (1001), (1010), (1100), (1111)}

It is easy to calculate with the Algorithms from Section 4.2 that lad(XZ) = 2
for every Z ∈ F2

2. Thus, any equation over two clocks has to be at least

quadratic.

Now, assume that (z
(i)
t , z

(i)
t+1) = (0, 0), ∆

(i)
t...t+1 = (1000), (z

(j)
t , z

(j)
t+1) = (1, 1) and

∆
(j)
t...t+1 = (1101). It holds that18

X(0,0) − (1000) = {(1000), (1011), (1101), (1110), (0001), (0010), (0101), (0110)},
X(1,1) − (1101) = {(1100), (1111), (0100), (1011), (1000), (0111), (0001), (0010)}.

18Recall that in F2, the operations ′−′ and ⊕ are actually the same.

118

4.4 Algebraic attacks with related keys

This implies that

(Kt, Kt+1) ∈
(
X(0,0) − (1000)

)
∩
(
X(1,1) − (1101)

)

= {(1000), (1011), (0001), (0010)}=: S.

Observe that lad(S) = 1, as F (x1, x2, x3, x4) := x2 is a linear annihilator of S.

Thus, one can set up the following linear equation in Kt and Kt+1:

0 = F (Kt, Kt+1) = F (kt,1, kt,2, kt+1,1, kt+1,2) = kt,2.

Summing up, the information from two different frames made it possible to

derive a linear 2-function, even though it holds that lad(2) = 2.

So, we have seen that knowing the outputs (z
(i)
t , . . . , z

(i)
t+r−1) from different

frames i may help to set up equations with a degree lower than then the
value lad(r) which would normally be a lower bound. The following theorem
assures that having the information from enough different frames allows to
decrease the degree at least by one:

Theorem 4.51. Consider a fixed (ι, m)-combiner and r ≥ 1. Assume that

the values lad(XZ) are all equal to the same value d for all Z ∈ Fr. Let

F (X1, . . . , Xr, y1, . . . , yr) : Fι·r+r → F be an r-function of degree d.19 Let

F (X1, . . . , Xr, y1, . . . , yr) =
∑

(E,E′)∈E

c(E,E′) ·mE′(y1, . . . , yr) ·mE(X1, . . . , Xr)

be the algebraic normal form of F . We set Ed := {(E, E ′) ∈ E | |E| = d},
that is the set of exponents in Xi which yields the monomials of degree d.

Furthermore, we denote by ǫ := |Ed| its size.

If the values of (z
(i)
t , . . . , z

(i)
t+r−1) for at least ǫ + 1 different frames are known,

one can set up an equation in Kt, . . . , Kt+r−1 of degree ≤ d− 1.

Proof. W.l.o.g., we assume that the frames, where the keystream parts are
known, are numbered from 0 to ǫ. The idea is to find coefficients γ0, . . . , γǫ

such that

ǫ∑

i=0

γi · F (Kt + ∆
(i)
t , . . . , Kt+r−1 + ∆

(i)
t+r−1, z

(i)
t , . . . , z

(i)
t+r−1)

is a function of degree ≤ d − 1 in the unknowns Kt, . . . , Kt+r−1. As each of
the summands is equal to zero, this yields the claimed equation.

19Recall Theorem 4.17 for constructing r-functions from Z-functions.

119

4 On the equations in algebraic attacks

First, observe that for any ∆1, . . . , ∆r and any exponent E with |E| = d, it
holds that

mE(X1 −∆1, . . . , Xr −∆r)
︸ ︷︷ ︸

deg=d

= mE(X1, . . . , Xr)
︸ ︷︷ ︸

deg=d

+ R(X1, . . . , Xr)
︸ ︷︷ ︸

deg≤d−1

with an appropriate function R. This can be seen by simply outfactoring
the expression mE(X1 −∆1, . . . , Xr −∆r).

We introduce the abbreviations Kt...t+r−1 := (Kt, . . . , Kt+r−1) and z
(i)
t...t+r−1 :=

(z
(i)
t , . . . , z

(i)
t+r−1). Let Ed := {(E1, E

′
1), . . . , (Eǫ, E

′
ǫ)}. Then, the knowledge of the

values of z
(i)
t...t+r−1 and the r-function F yield the following equations

0 = F (K
(0)
t...t+r−1 −∆

(0)
t...t+r−1, z

(0)
t...t+r−1)

= R(0)(K
(0)
t...t+r−1, z

(0)
t...t+r−1)

︸ ︷︷ ︸

deg<d

+
ǫ∑

j=1

c(Ej ,E′
j) ·mE′

j
(z

(0)
t...t+r−1) ·mEj

(K
(0)
t...t+r−1)

︸ ︷︷ ︸

deg=d

...

0 = F (K
(ǫ)
t...t+r−1 −∆

(ǫ)
t...t+r−1, z

(ǫ)
t...t+r−1)

= R(ǫ)(K
(ǫ)
t...t+r−1, z

(ǫ)
t...t+r−1)

︸ ︷︷ ︸

deg<d

+
ǫ∑

j=1

c(Ej ,E′
j) ·mE′

j
(z

(ǫ)
t...t+r−1) ·mEj

(K
(ǫ)
t...t+r−1)

︸ ︷︷ ︸

deg=d

where R(i)(K
(i)
t...t+r−1, z

(i)
t...t+r−1) are functions of degree ≤ d− 1. Let

V (i) :=
(

c(E1,E′
1)
·mE′

1
(z

(i)
t...t+r−1), . . . , c(Eǫ,E′

ǫ) ·mE′
ǫ
(z

(i)
t...t+r−1)

)

∈ Fǫ.

Thus, we have ǫ + 1 vectors V (i), each of dimension ǫ. Hence, they must be
linearly dependent, proving the existence of coefficients γ0, . . . , γǫ such that
∑ǫ

i=0 γi · V (i) =
−→
0 . This implies that

0 =
ǫ∑

i=0

γi · F (K
(ǫ)
t...t+r−1 −∆

(ǫ)
t...t+r−1, z

(ǫ)
t...t+r−1)

=

ǫ∑

i=0

γi · R(i)(K
(i)
t...t+r−1, z

(i)
t...t+r−1)

+
ǫ∑

j=1

mEj
(K

(0)
t...t+r−1) ·

ǫ∑

i=0

γi · c(Ej ,E′
j) ·mE′

j
(z

(i)
t...t+r−1)

︸ ︷︷ ︸

=0

=

ǫ∑

i=0

γi · R(i)(K
(i)
t...t+r−1, z

(i)
t...t+r−1),

120

4.4 Algebraic attacks with related keys

which is a linear combination of functions of degree ≤ d − 1. Hence, the
total degree is ≤ d− 1, giving an equation in Kt...t+r−1 of degree ≤ d− 1.

Of course, this approach doesn’t necessarily lead to an equation with the
minimum degree. To be sure to consider only equations with the lowest
possible degree, one should reduce the sets of possible values for Kt...t+r−1

for each observed part z
(i)
t...t+r−1 of the keystream, derive annihilators for

these sets with the minimum degree20 and use them to set up equations
in Kt...t+r−1. In principle, this corresponds to the algebraic attacks for the
related key scenario we proposed in [ArmLP04, ArmM05]. They are sum-
marized in Algorithm 4.8.

Algorithm 4.8.
An algebraic attack for the related key scenario

Input: An integer r ≥ 1, the values of the known keystream elements

z
(i)
t with 0 ≤ t ≤ T − 1 and 0 ≤ i ≤ N

Output: Equations in Kt...t+r−1 with the minimum possible degree

1: Initialize the sets Kt := Fι·r

2: for i = 0, . . . , N do
3: for t = 0, . . . , T − r do

4: if the values of z
(i)
t...t+r−1 are known then

5: Set Kt := Kt ∩
(

X
z
(i)
t...t+r−1

−∆
(i)
t...t+r−1

)

6: end if
7: end for
8: end for
9: for t = 0, . . . , T − r do

10: if Kt (Fι·r then
11: Derive all annihilators F of Kt of degree lad(Kt) and set up

F (Kt...t+r−1) = 0
12: end if
13: end for
14: return the equations from line 11

Apart from Theorem 4.51, we are not aware of other statements on how
much the degree can drop if the outputs from different frames are con-

sidered. As this depends on the sets XZ, the actual values of z
(i)
t...t+r−1 and

∆
(i)
t...t+r−1, we assume that giving a general statement is rather difficult.

20This can be done with the algorithms from Section 4.2.

121

4 On the equations in algebraic attacks

Anyway, our simulations in [ArmLP04, ArmM05] indicate that the attack
described by Algorithm 4.8 can be extremely successful in some cases.
For example, in [ArmM05], computer simulations showed that a passive
attacker can break the E0 keystream generator by solving a system of linear
equations if about 2500 keystream bits are available from 13 frames.

Observe that it is not always necessary to compute the sets XZ to apply
the attacks. In [ArmM05], we developed a related key attack with a pas-
sive attacker against the stream cipher SNOW 2.0 [EkdJ02], whose output
function has a 64-bit memory, making the computation of the sets XZ in-
feasible. Nonetheless, we could describe an algebraic attack in the related
key scenario that describes the secret key by a system of linear equations.

Our estimations are that two frames are enough if the values of ∆
(i)
t were

all equal to zero21 and about 212 output words are known.
Not surprisingly, an active attacker is by far more powerful than a pas-

sive one. He is able to attack (ι, m)-combiners where it is impractical to
compute the sets XZ as long as an r-function is given, e.g. see the attack
on Toyocrypt described in [ArmLP04].

Concluding we can say that algebraic attacks in the related key scenario
can be extremely dangerous and should be considered by the design of a
new (ι, m)-combiner and its field of application.

21That is, we considered a fault attack were the fault was only induced to the memory
register, leaving the LFSR-register unchanged.

122

5 Fast algebraic attacks

123

5 Fast algebraic attacks

5.1 Principles

In this chapter, we explain ”fast algebraic attacks”, introduced in [Cou03].
After discussing the basic principles, we will describe several improve-
ments. Although some of the concepts are valid for arbitrary finite fields,
several ideas have been developed specifically for the case of F2. Thus, we
will consider only the finite field F2 in this chapter.

So far, the fact that we are dealing with keystream generators based on
LFSRs was only exploited to generate a system of equations with a bounded
degree:

Fzt1 ,...,zt1+r−1
(Kt1 , . . . , Kt1+r−1) = 0

...
FztN

,...,ztN +r−1
(Kt1 , . . . , KtN+r−1) = 0

(5.1.1)

with appropriate Z-functions FZ. But apart from that, the particular struc-
ture of the system of equations (5.1.1) has played no role. In [Cou03], it
was shown that in certain cases, the properties of the equations allow for
reducing the overall degree of the system of equations in an efficient pre-
computation step. As the time effort of linearization is exponential in the
degree of the equations, this results an enormous speed-up of the whole
attack.

However, the applicability of fast algebraic attacks is connected to two
conditions. First, the system of equations is generated by one r-function
F (X1, . . . , Xr, y1, . . . , yr). That is, the system of equations (5.1.1) has the form:

F (K · Lt1 · P, . . . , K · Lt1+r−1 · P, zt1, . . . , zt1+r−1) = 0
...

F (K · LtN · P, . . . , K · LtN+r−1 · P, ztN
, . . . , ztN +r−1) = 0

(5.1.2)

L denotes as usual the linear update function and K the LFSRs’ initial
states as defined in Section 2.5. This is not really a constraint as an r-
function can be easily constructed from Z-functions (see Remark 3.9 and
Theorem 4.17). Given F = F (X1, . . . , Xr, y1, . . . , yr), the second condition is
that it can be rewritten to

F (X1, . . . , Xr, y1, . . . , yr)
︸ ︷︷ ︸

deg=d

= G(X1, . . . , Xr)
︸ ︷︷ ︸

deg=d

+ H(X1, . . . , Xr, y1, . . . , yr)
︸ ︷︷ ︸

deg=d′<d

(5.1.3)

where deg(G) = d and deg(H) = d′ < d. That is the terms in the variables Xi,
the key variables, of the highest degree are independent of the variables yi,
the keystream variables. Examples for which these conditions hold are the
three ciphers E0, Toyocrypt and LILI-128 [SimDGM00].

124

5.1 Principles

To keep the following notations short, we introduce the following identi-
fiers:

Ft(X, y1, . . . , yr) := F (X · Lt · P, . . . , X · Lt+r−1 · P, y1, . . . , yr)

Gt(X) := G(X · Lt · P, . . . , X · Lt+r−1 · P)

Ht(X, y1, . . . , yr) := H(X · Lt · P, . . . , X · Lt+r−1 · P, y1, . . . , yr)

for X = (x1, . . . , xn). Hence, (5.1.2) can be rewritten to

Ft1(K, zt1, . . . , zt1+r−1)
...

FtN (K, ztN
, . . . , ztN +r−1)

︸ ︷︷ ︸

deg=d

=
...
=

Gt1(K)
...

GtN (K)
︸ ︷︷ ︸

deg=d

+
...
+

Ht1(K, zt1, . . . , zt1+r−1)
...

HtN (K, ztN
, . . . , ztN +r−1)

︸ ︷︷ ︸

deg=d′<d

= 0
...

= 0

The idea is now to eliminate the parts Gt(K) in the system of equations to
get a new function of degree d′ < d.

Proposition 5.1. The sequence (Gt(X))t≥0 is a linear recurring sequence.

That is, there exist an integer T ≥ 1 and coefficients γ0, . . . , γT ∈ F2 such that

T∑

i=0

γi ·Gt+i(X) ≡ 0 ∀t ≥ 0. (5.1.4)

We denote for the linear recurring sequence (Gt(X))t≥0 the corresponding min-

imal polynomial by min(Gt(X)).

Proof. First, we prove the existence of such coefficients for the case t =
0. Gi(X) are Boolean functions of degree ≤ deg(G) = d in n unknowns.
Thus, the number of different monomials that can occur is upper bounded
by µ2(n, d) =

(
n
0

)
+ . . . +

(
n
d

)
. Therefore, the functions G0(X), G1(X),. . . ,

Gµ2(n,d)(X) are linearly dependent, which implies the existence of coefficients
of γ0, . . . , γT ∈ F2 with

T∑

i=0

γi ·Gi(X) ≡ 0 (5.1.5)

and T ≤ µ2(n, d). Let t ≥ 0 and define X ′ := X · Lt. As the identifiers X in
(5.1.5) are unspecified, it just as well holds that

0 ≡
T∑

i=0

γi ·Gi(X
′) =

T∑

i=0

γi ·Gi(X · Lt) =
T∑

i=0

γi ·Gt+i(X).

Since t was arbitrary, the proof is complete.

125

5 Fast algebraic attacks

Remark 5.2. To keep the notations short, we will sometimes abbreviate

Gt(X) by Gt and min(Gt(X)) by min(G).

Now, if an attacker knows the values of the keystream bits zt, . . . , zt+T+r−1

and a characteristic polynomial
∑T

i=0 γix
i of the linear recurring sequence

(Gt(X))t≥0, he can compute a linear combination of the corresponding equa-
tions of degree d to get the following equation of degree d′:

0 =

T∑

i=0

γi · Ft+i(K, zt+i, . . . , zt+i+r−1)

=
T∑

i=0

γi ·Gt+i(K)

︸ ︷︷ ︸

≡0

+
T∑

i=0

γi ·Ht+i(K, zt+i, . . . , zt+i+r−1)

=: F ∗(K · Lt, zt, . . . , zt+T+r−2). (5.1.6)

As we made no assumptions on t, the equation is valid for any t ≥ 0. Hence,
F ∗ given by (5.1.6) describes a (T + r − 1)-function. Its run length is higher
than that of F , but the degree d′ is lower. Thus, an algebraic attack using
linearization profits significantly from this approach.

For example, it was estimated in [Cou03] that the time effort to attack
E0 with fast algebraic attacks is about 254 operations which is several times
lower than the 272 operations estimated in the original algebraic attack in
[ArmK03]. However, the drawback is that the run length has raised from
r = 4 to T + r − 2 ≈ 8, 882, 188. This imposes two problems. First, the effort
to substitute the known keystream values into F ∗ is much higher than into
F . If done naively, this can even be more complex than the attack itself.
However, this problem has been solved in [HawR04] (explained later in this
section). The other problem is that an algebraic attack with a system of
equations built on F ∗ is less practical as more successive keystream bits
need to be known to set up one equation. Therefore, we assume that an at-
tacker is only interested in determining the minimal polynomial min(Gt(X))
as it reduces the value of T to the minimum. Actually, we will see in Section
5.4 that it is possible with our methods from [ArmA05] to go even below this
bound without any additional effort.

Example 5.3. We consider once again the toy (2, 0)-combiner from Section

2.5.1 and use the canonical 1-function f(X)−y to generate a system of equa-

tions. More precisely, we define Ft(X, y) := f(X · Lt · P) − y with L and P
defined as in Section 2.5.1. Thus, the system of quadratic equations has the

126

5.1 Principles

form

0 = F0(K, z0) = a0b0 + a0 + b0 − z0

0 = F1(K, z1) = a1b1 + a1 + b1 − z1

0 = F2(K, z2) = a0b2 + a0 + a1b2 + a1 + b2 − z2

0 = F3(K, z3) = a0b0 + a0b2 + a0 + b0 + b2 − z3

0 = F4(K, z4) = a1b0 + a1b1 + a1b2 + a1 + b0 + b1 + b2 − z4

0 = F5(K, z5) = a0b0 + a0b1 + a0 + a1b0 + a1b1 + a1 + b0 + b1 − z5

0 = F6(K, z6) = a0b1 + a0b2 + a0 + b1 + b2 − z6

0 = F7(K, z7) = a1b0 + a1 + b0 − z7

0 = F8(K, z8) = a0b1 + a0 + a1b1 + a1 + b1 − z8

0 = F9(K, z9) = a0b2 + a0 + b2 − z9

0 = F10(K, z10) = a1b0 + a1b2 + a1 + b0 + b2 − z10

0 = F11(K, z11) = a0b0 + a0b1 + a0b2 + a0 + a1b0 + a1b1 + a1b2 + a1 + b0 + b1 + b2 − z11

...

with K = (a0, a1, b0, b1, b2). We divide f into two parts

f(x1, x2, y) = x1 · x2
︸ ︷︷ ︸

=:g(x1,x2)

+ x1 + x2 − y
︸ ︷︷ ︸

=:h(x1,x2,y)

.

Now, F can obviously be split as required for an algebraic attack:

Ft(X, y) = g(X · Lt · P)
︸ ︷︷ ︸

=:Gt(X)

+ h(X · Lt · P, y)
︸ ︷︷ ︸

=:Ht(X,y)

.

We are interested in finding a linear combination in the following expressions

that is equal to zero:

G0(X) = x1x3

G1(X) = x2x4

G2(X) = x1x5+ x2x5

G3(X) = x1x3+ x1x5

G4(X) = x2x3+ x2x4+ x2x5

G5(X) = x1x3+ x1x4+ x2x3+ x2x4

G6(X) = x1x4+ x1x5

G7(X) = x2x3

G8(X) = x1x4+ x2x4

G9(X) = x1x5

G10(X) = x2x3+ x2x5

G11(X) = x1x3+ x1x4+ x1x5+ x2x3+ x2x4+ x2x5

127

5 Fast algebraic attacks

One can easily check that the sum of the following expressions is equal to

zero:
G0(X) = x1x3

G2(X) = x1x5+ x2x5

G4(X) = x2x3+ x2x4+ x2x5

G5(X) = x1x3+ x1x4+ x2x3+ x2x4

G6(X) = x1x4+ x1x5

By Proposition 5.1, this remains true for the equations for one clock later:

G1(X) = x2x4

G3(X) = x1x3+ x1x5

G5(X) = x1x3+ x1x4+ x2x3+ x2x4

G6(X) = x1x4+ x1x5

G7(X) = x2x3

Also, one clock later, the sum is zero:

G2(X) = x1x5+ x2x5

G4(X) = x2x3+ x2x4+ x2x5

G6(X) = x1x4+ x1x5

G7(X) = x2x3

G8(X) = x1x4+ x2x4

Altogether, it holds that

Gt(X) + Gt+2(X) + Gt+4(X) + Gt+5(X) + Gt+6(X) ≡ 0 (5.1.7)

for all t ≥ 0. Hence, the polynomial 1 + x2 + x4 + x5 + x6 is a characteristic

polynomial of the sequence (Gt(X))t≥0. We use this to generate a new system

of equations where each equation is linear instead of quadratic:

0 = F0(K, z0) + F2(K, z2) + F4(K, z4) + F5(K, z5) + F6(K, z6)

= a1 + b0 + b1 + b2 − z0 − z2 − z4 − z5 − z6

0 = F1(K, z1) + F3(K, z3) + F5(K, z5) + F6(K, z6) + F7(K, z7)

= a0 + a1 + b0 + b1− z1 − z3 − z5 − z6 − z7

0 = F2(K, z2) + F4(K, z4) + F6(K, z6) + F7(K, z7) + F8(K, z8)

= a0 + b1 + b2 − z2 − z4 − z6 − z7 − z8

0 = F3(K, z3) + F5(K, z5) + F7(K, z7) + F8(K, z8) + F9(K, z9)

= a1 + b0 − z3 − z5 − z7 − z8 − z9

0 = F4(K, z4) + F6(K, z6) + F8(K, z8) + F9(K, z9) + F10(K, z10)

= a0 + a1 + b1 − z4 − z6 − z8 − z9 − z10

0 = F5(K, z5) + F7(K, z7) + F9(K, z9) + F10(K, z10) + F11(K, z11)

= a0 + b2 − z5 − z7 − z9 − z10 − z11

128

5.1 Principles

Thus, by using the relation in (5.1.7), one can transform the system of quadratic

equations into a system of linear equations. Observe that it is not required

that the keystream bits are known. One can apply this simplification step

once and for all and use it afterwards for attacks on concrete instances.

Algorithm 5.1.
Fast algebraic attack on a (ι, m)-combiner with lineariza-

tion

Input: A (ι, m)-combiner, initialized to a secret value S0 = (Q0, K) and

the knowledge of some keystream elements generated by this set-

ting

Output: The secret key K

1: (Only once) Fix r ≥ 1 and find an r-function F (X, y1, . . . , yr), where

F (K · Lt · P, zt, . . . , zt+r−1) = 0 for all t, such that F can be split as

F (X, yt, . . . , yt+r−1) = G(X) + H(X, yt, . . . , yt+r−1)

with d = deg(F) = deg(G) > deg(H) = d′.

2: (Only once) Compute min(Gt(X)) =
∑T

i=0 γix
i.

3: Initialize an empty system of equations.

4: For each sequence of known keystream elements

(zt, . . . , zt+T+r−1) = Z, add the following equations of degree d′ to

the system of equations:

F ∗
t :=

T∑

i=0

γi ·Ht+i(K, zt+i, . . . , zt+i+r−1) = 0.

5: If number of linearly independent equations is one less than the

number of monomials in the system of equations, linearize the sys-

tem of equations and solve it with Gaussian elimination.

6: Recover K from the solution.

7: return K

This illustrates the basic principle of fast algebraic attacks. The main dif-
ference to algebraic attacks is that before one starts to compute the solu-
tion, the degree of the equations is reduced by building a linear combina-
tion of many equations. As discussed in Section 3.4, the time and space
effort of several steps in an algebraic attack are exponential in the degree
d. Thus, if the degree reduction is achievable with sufficiently little effort,
fast algebraic attacks are superior to algebraic attacks. Before we turn

129

5 Fast algebraic attacks

our attention to these questions, we sum up the ideas presented so far in
Algorithm 5.1.

Remark 5.4. In the original description of fast algebraic attacks in [Cou03],

it is proposed to set up the system of equations with reduced degree once in

advance and to substitute the variables zt with the actual observed values

zt for each attack. However, as memory is mostly the bottle neck here, one

should avoid storing equations which are not needed for the attack. Thus,

precomputing the equations F ∗(K ·Lt, zt, . . . , zt+T+r−1) = 0 makes only sense if

the attackers has always access to the same keystream elements, which is

rather improbable.

So far, we have seen that if one knows a linear combination that cancels
the degree-d parts of F , this can be used to generate new equations of a
lower degree d′. What remains is the question how to find min(Gt(X)).

Of course, it is vital for the whole approach that the minimal polynomial
min(Gt(X)) can be found efficiently. For this task, the Berlekamp-Massey
algorithm mentioned in Theorem 2.59 from Section 2.4 is certainly the first
choice. However, this would require to sum up many functions Gt(X) with
µ2(n, d) different monomials in the worst case. To avoid this, a modified
approach was proposed in [Cou03]. Instead of considering a sequence of
polynomials (G0(X), G1(X), . . .), it is transformed into a sequence of bits.
The corresponding algorithm is stated in Algorithm 5.2.

Algorithm 5.2.
Computation of min(Gt(X)) for a fast algebraic attack

Input: Boolean function G : Fn → F, a regular matrix L of size n× n
Output: The minimal polynomial min(Gt(X)), that is coefficients

γ0, . . . , γT such that
∑T

i=0 Gt+i(X) ≡ 0 for all t ≥ 0

1: Initialize the LFSRs with a random X ∈ Fn. Hereby, one has to

pay attention that none of the LFSRs is set to zero.

2: Compute the F2-sequence G0(X), G1(X),
3: Apply the Berlekamp-Massey algorithm to find min(Gt(X)), that is

coefficients such that

T∑

i=0

γiGt+i(X) = 0 ∀t (5.1.8)

and T being minimum.

4: return (γ0, . . . , γT)

130

5.1 Principles

Example 5.5. We use the toy (2, 0)-combiner from Section 2.5.1 to illustrate

Algorithm 5.2. Let the two LFSRs be initialized with (1, 0) and (1, 0, 0), respec-

tively. That is, X := (1, 0, 1, 0, 0). Then, the sequence G0(X), G1(X), . . . , G19(X)
is equal to

(1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0).

This is a linear recurring sequence. With the help of the Berlekamp-Massey

algorithm, one can compute its characteristic polynomial p(x) = 1+x2+x4+x5+
x6. Thus, the output of the algorithm would be (γ0, . . . , γ6) = (1, 0, 1, 0, 1, 1, 1),
which corresponds to the coefficients used in Example 5.3.

Coming to the end of this section, we give an estimation of the effort of fast
algebraic attacks. We set Dn := µ2(n, d), Dι·r := µ2(ι · r, d) and D′

n := µ2(n, d′).
Observe that most steps are similar to our description of algebraic attacks
in Algorithm 3.4. Instead of looking for Z-functions, one is now interested
in r-functions which can be split as displayed in (5.1.3). As far as we know,
no algorithm especially adapted to this problem has been proposed yet. The
best thing one can do is to look for r-functions in general and, once they are
found, check if they meet condition (5.1.3). For simplicity, we assume that
this is successful and estimate the same effort as in conventional algebraic
attacks.

Observe that the splitting of the r-function, the computation of coeffi-
cients γi and the reduction of the degree applies to one r-function. In other
words, if an attacker has several r-functions F (i) which can all be split as
given in (5.1.3) at his disposal, and if he wants to use all of them for an al-

gebraic attack, then he needs to compute min(G
(i)
t (X)) for each of them sep-

arately. Likewise, the computation of the functions (F (i))∗ has to be done
for each r-function F (i). Altogether, he can reduce the number of known
keystream bits by a constant factor, but increases the efforts for the steps
by the same factor. For simplicity, we assume in our effort estimations that
only one r-function is involved.

Once a suitable r-function is found, the next step is to find min(Gt(X)).
Using Algorithm 5.2 requires to generate 2T keystream bits and O(T 2) op-
erations.1

The next step is to generate a system of equations with the functions F ∗.
As deg(F ∗) = d′, linearization in the final step requires about D′

n equations
to solve the system of equations. Recall that

F ∗(K · Lt, zt, . . . , zt+T+r−1) =
T∑

i=0

γi ·Ht(K, zt+i, . . . , zt+i+r−1) .

1In the next sections, we will encounter better methods that apply to special cases.

131

5 Fast algebraic attacks

What is the effort to set up this system of equations? First of all, we
take a look at generating one equation F ∗(. . .) = 0. Two different ap-
proaches are imaginable. One could either first insert the keystream bits
into the T different functions H, which would yield Ht(K, zt, . . . , zt+r−1),. . . ,
Ht+T (K, zt+T , . . . , zt+T+r−1), and then compute the linear sum. Or, one
could do it the other way around: first compute the function

T∑

i=0

γiHt+i(K, zt+i, . . . , zt+i+r−1)

and then substitute the values zt, . . . , zt+T+r−1. However, the second way
requires to initially deal with additional T +r variables zt, . . . , zt+T+r−1. Thus,
from our perspective the first method is preferable.

Now, the effort to compute F ∗ =
∑T

i=0 γiHt+i(K, zt+i, . . . , zt+i+r−1) requires
the addition of at most T functions Ht+i(. . .), where each has at most D′

n

monomials. Thus, the effort to compute one equation with F ∗ is in O(T ·D′
n).

As we require about D′
n linearly independent equations for applying lin-

earization afterwards, the overall effort is in O(D′2
n · T). As explained before,

T is upper bounded by Dn, giving a total effort in O(D′2
n · Dn). Because of

Dn =
∑d

i=0

(
n
i

)
∈ O(nd), the effort can be equivalently described by O(n2d′+d).

The effort of the substitution step has been completely ignored in the
first papers on fast algebraic attacks. Thus, the authors overlooked that in
some cases the effort of the substitution step dominates the whole attack.
This has been observed in [HawR04], where also a solution was presented.
However, this solution relies on the condition that an attacker knows large
parts of successive keystream bits, preferably T + r bits. We abbreviate
F ∗(K · Lt, zt, . . . , zt+T+r−1) by F ∗

t . The solution relies on the following two
observations:

1. Each F ∗
t is computed by building the sum with the same coefficients

γi.

2. In the computations of successive functions F ∗
t the same expressions

Ht+i(K, zt+i, . . . , zt+i+r−1) are involved.

The solution they developed was to first transform the sequence (Ht(K))
into a new sequence with the fast Fourier transform [CooT65] and then
apply suitable operations (depending on γi) on this new sequence to finally
get the sequence (F ∗

t). In the best case, when an attacker knows the val-
ues of T + r successive keystream bits, the time effort to compute the D′

n

equations F ∗
t = 0 is reduced from O(D′2

n ·Dn) to O(D′
n ·Dn · log2(Dn)). But we

want to point out that the advantage is directly proportional to the length
of the known keystream subsequence. In the worst case, when an attacker

132

5.1 Principles

Step Time Space Keystream

Finding r-functions O(2m+ι·r ·D2
ι·r) O(2m+(ι−1)·r ·Dι·r) -

Computing min(Gt(X)) O(D2
n) O(Dn) -

Setting up linearized

system of eqs with F ∗ O(D′
n ·Dn · log2(Dn)) O(D′2

n) ≥ D′
n + r succ.

Solving the system O(D′ω
n) O(D′2

n) -

Table 5.1.1: Effort estimations for a fast algebraic attack on a (ι, m)-
combiner with keysize n, based on r-functions and lineariza-
tion

knows only T distinct parts (zt, . . . , zt+r−1) of the keystream bits, one has
to fall back on simple substitution. But in all other cases, the methods
from [HawR04] represent a tremendous improvement compared to simple
substitution.

Once the system of equations of degree d′ with D′
n−1 linearly independent

equations is build, the solution is computed within O(D′ω
n) operations. As

D′
n ∈ O(nd′), the effort of the final step is reduced from O(nd·ω) to O(nd′·ω).

The efforts for the whole attack are summed up in Table 5.1.1.
Fast algebraic attacks have outmatched some algebraic attacks, which

had previously been the fastest attacks [Cou03]. Table 5.1.2 gives an
overview of the estimations from [Cou03, HawR04].

In the following sections, we describe several improvements of fast alge-
braic attacks. First, we discuss the correctness of Algorithm 5.2 and how
it can be improved by using the knowledge of G and L [Arm04a]. Then, we
present a recent modification of Algorithm 5.2 which minimizes the value
of T [ArmA05].

133

5 Fast algebraic attacks

Cipher Toyocrypt

Attack Alg. att. Fast alg. att.

[MihH02] [CouM03] [Cou03]

Time const · 270 const · 255 const · 226

Memory const · 248 const · 237 const · 214

Keystream const · 248 const · 218 const · 218

Cipher LILI-128

Attack Alg. att. Fast alg. att.

[Saa02] [CouM03] [Cou03]

Time const · 262 const · 263 const · 237

Memory const · 251 const · 243 const · 224

Keystream const · 246 const · 257 const · 260

Cipher E0

Attack Alg. att. Fast alg. att.

[FluL01] [ArmK03] [Cou03]

Time const · 273 const · 268 const · 255

Memory ≈ 10638 const · 248 const · 237

Keystream const · 243 const · 223 const · 224

Table 5.1.2: Comparison of (fast) algebraic attacks and the previously
fastest attacks

134

5.2 On the precomputation step

5.2 On the precomputation step

As explained in Section 5.1, fast algebraic attacks are based on building
new equations with a lower degree. This is achieved by computing linear
combinations of the equations from the system of equations. For this,
one needs a linear combination that cancels all these parts which have
the degree d. This linear combination is derived by Algorithm 5.2 in a
precomputation step.

However, Algorithm 5.2 is only correct if

T∑

i=0

γi ·G(X · Li) = 0 ∈ F ⇒
T∑

i=0

γi ·G(X · Li) ≡ 0 ∈ F2[X]

for the chosen value X. In other words, min(Gt(X)) is equal to (or at least a
multiple of) min(Gt(X)). This has not been proved in [Cou03]. The only cor-
rectness argument that was indicated there was based on the assumption
that the sequences produced by the LFSRs have pairwise co-prime periods.
But this is not true in general. A counter-example is the keystream gen-
erator E0 used in the Bluetooth standard for wireless communication. Two
of the employed LFSRs are of lengths 33 and 39 (see also Section 2.5.4)
with primitive minimal polynomials. Thus, by Theorem 2.58, both produce
maximum sequences with periods 233 − 1 and 239 − 1, respectively, which
share the common factor 7. This raises the question if Algorithms 5.2 gives
the correct result under weaker conditions.

Anyhow, one can show that Algorithm 5.2 would not work correctly in
general without any preconditions. An example for which it fails is the
following:

Example 5.6. Consider the case of two LFSRs A and B with the primitive

minimal polynomials ma(x) = 1 + x + x2 and mb(x) = 1 + x + x4. Notice that

the polynomials are co-prime but the corresponding periods 22 − 1 = 3 and

24 − 1 = 15 are not. As usual, we denote with (at) the sequence produced

by LFSR A and similarly (bt) for B. Thus, the initial states are (a0, a1) and

(b0, b1, b2, b3), respectively. Let

Gt(a0, a1, b0, b1, b2, b3) := at + bt + btbt+1 + btbt+1bt+2.

We define X := (1, 1, 1, 1, 1, 1) and X′ := (1, 1, 1, 1, 1, 0). It holds that

min(Gt(X)) = 1 + x5 + x10 and

min(Gt(X
′)) = 1 + x + x3 + x4 + x5 + x7 + x8

135

5 Fast algebraic attacks

Thus, the output of Algorithm 5.2 is not unique but depends on the chosen

values in F6
2. As on the other hand min(Gt(X)) is unique, at least one of the

two has to be wrong.2

This raises the question which preconditions are sufficient for the cor-
rectness of Algorithm 5.2 and whether they are fulfilled for the case of E0.

Furthermore, in Algorithm 5.2, the knowledge of G and the matrix L is
only used to generate a linear recurring sequence on which the Berlekamp-
Massey algorithm is applied, but not for the computation of min(Gt(X)).

The aims of this section are twofold and represent our results from [Arm04a].
After collecting some facts on LFSRs, we derive a new (weaker) sufficient
criterion for the correctness of the precomputation step. As this weaker
precondition is met in the case of E0, this proves the applicability of Algo-
rithm 5.2 for a fast algebraic attacks on E0.

Afterwards, we will discuss how the information on G and L can be used
to adapt the Berlekamp-Massey algorithm to improve the efficiency of the
precomputation step.

5.2.1 A new sufficient criterion for the correctness

In this section, we derive a sufficient condition for the correctness of Algo-
rithm 5.2. This new condition is weaker than the recommendation given in
[Cou03] and is satisfied in the case of E0. Recall that the task of Algorithm
5.2 is to find min(Gt(X)) =

∑T
i=0 γix

i, i.e., coefficients γ0, . . . , γT ∈ F2 such
that

T∑

i=0

γi ·Gt+i(X) ≡ 0 ∀t ≥ 0 (5.2.9)

with T being minimum. But, what the algorithm provides is min(Gt(X)) =
∑T ′

i=0 γ′
ix

i for a chosen value X ∈ Fn
2 :

T ′
∑

i=0

γ′
i ·Gt+i(X) = 0 ∀t ≥ 0 . (5.2.10)

As Equation 5.2.9 remains true if one substitutes X by concrete values,
min(Gt(X)) is obviously a characteristic polynomial for (Gt(X)). Thus, the
minimal polynomial min(Gt(X)) of the sequence (Gt(X)) is a multiple of the
minimal polynomial min((Gt(X))) of the sequence (Gt(X)) but not necessar-
ily equal to it. In this context, recall Example 5.6 where , depending on the

2Of course, the other result could be a characteristic polynomial of the sequence (Gt(X))
which could likewise be used for a fast algebraic attack. But it is not min(Gt(X)).

136

5.2 On the precomputation step

chosen start value X, two different minimal polynomials

1 + x5 + x10 = (1 + x + x2) · (1 + x + x4) · (1 + x3 + x4) and

1 + x + x3 + x4 + x5 + x7 + x8 = (1 + x + x4) · (1 + x3 + x4)

have been the results, with the first being obviously a multiple of the sec-
ond.

Indeed, one possible approach could be to compute the minimal poly-
nomials min(Gt(X)) for different choices of X and then to take the least
common multiple. However, without any further thoughts one would still
not be sure whether one has found min(Gt(X)) or only a divisor of it. But,
if we knew that the minimal polynomials min(Gt(X)) are the same for any

choice of X, then it would follow that min(Gt(X)) = min(Gt(X)), as the fol-
lowing proposition shows.

Proposition 5.7. Let G(X) be a Boolean function over F2 and L be a regular

n × n matrix. If the minimal polynomials min(Gt(X)) are all the same for all

X ∈ Fn
2 , then min(Gt(X)) = min(Gt(X)) for all X.

Proof. Let min(Gt(X)) =
∑T ′

i=0 γ′
ix

i be the common minimal polynomial for

all X. This means that
∑T ′

i=0 γ′
iGt+i(X) = 0 for all X ∈ Fn

2 and in par-

ticular
∑T ′

i=0 γ′
iGt+i(X) ≡ 0. Hence, min(Gt(X)) =

∑T ′

i=0 γ′
ix

i is a multiple of

min(Gt(X)) =
∑T

i=0 γix
i. On the other hand, we have already discussed that

min(Gt(X)) is also a multiple of min(Gt(X)), which shows the equality.

Motivated by this observation, we will next address the question how one
can be sure that the minimal polynomials min(Gt(X)) are the same for all
X.

For this, we need some more facts on linear recurring sequences and
LFSRs. In the following, S = (si)i≥0 will denote a linear recurring sequence
and min(S) its minimal polynomial. The next theorems are on the interplay
between the roots of min(S) and the elements in S.

Theorem 5.8. [LidN86, Theorem 2.14] Let f(x) ∈ F2[x] be an irreducible poly-

nomial of degree d, then f has a root α in F2d . Furthermore, all the roots of f
are given by the distinct elements α, α2, α22

, . . . , α2d−1
.

Theorem 5.9. Let S = (st) be a sequence over F2 with characteristic polyno-

mial f(x) =
∏d

i=1(x − αi) where the roots lie in F∗
2d . If the roots α1, . . . , αd are

all distinct, i.e., each root has multiplicity one, then the elements si can be

expressed in the following way:

si =
d∑

l=1

cαl
· αi

l (5.2.11)

137

5 Fast algebraic attacks

where ca1 , . . . , cad
∈ F2d are uniquely determined by the initial values of the

sequence S.

Proof. (See also [LidN86], Theorem 6.21) As the roots are all distinct and
non-zero, the matrix

M :=








1 . . . 1
α1 . . . αd
...

...

αd−1
1 . . . αd−1

d








is a Vandermonde-matrix over F2d and therefore of full rank. Thus, for any
VS := (s0, . . . , sd−1) ∈ Fd

2d, there exists a unique vector VC := (cα1 , . . . , cαd
) ∈ Fd

2d

such that M · VC = VS. This shows that the first d elements s0, . . . , sd−1 of S
can be generated as showed in (5.2.11).

Now, let (5.2.11) be true for some elements s0, . . . , st+d−1 with t ≥ 0 and let
f(x) = γ0 + γ1 · x + . . . + γd−1 · xd−1 + xd. First of all, as αi is a root of f , it holds
that

0 = f(αi) = γ0 + γ1 · αi + . . . + γd−1 · αd−1
i + αd

i

⇔
αd = γ0 + γ1 · αi + . . . + γd−1 · αd−1

i

for any 1 ≤ i ≤ d. Second, as f(x) is a characteristic polynomial of S, this
leads to

st+d =

d−1∑

i=0

γi · st+i =

d−1∑

i=0

γi

(
d∑

l=1

cαl
· αt+i

l

)

=

d∑

l=1

cαl
· αt

l ·
(

d−1∑

i=0

γiα
i
l

)

︸ ︷︷ ︸

=αd
l

=

d∑

l=1

cαl
· αt+d

l .

As the sequence (Gt(X)) is in fact a combination of products and sums of
several linear recurring sequences, and as each of them can be expressed
by the roots of the corresponding polynomials, we will next consider the
question how to embed these operations into extension fields of F2.

Theorem 5.10. [LidN86, Theorem 2.6] Let Fq be a subfield of the finite field

F2n. Then, it holds that q = 2m where m is a positive divisor of n.

Corollary 5.11. Let n, m ≥ 0 be two integers. Then, F2lcm(n,m) is the smallest

extension field of F2n and F2m.

138

5.2 On the precomputation step

Proof. Similar to the proof of Theorem 2.38, one can either construct F2lcm(n,m)

by F2n [α, . . . , αd−1] with α a root of an irreducible polynomial p(x) of degree
d = lcm(n, m)/n or by F2m [β, . . . , βe] with β being a root of an irreducible
polynomial q(x) of degree e = lcm(n, m)/m. Thereby, it is known that such
polynomials p(x) and q(x) always exist (e.g., see [LidN86]). Thus, both fields
F2n and F2m have at least one common extension field.

Assume that E is another common extension field such that E ⊆ F2lcm(n,m).
As E is finite and has the same characteristic, namely 2, it must hold that
E = F2r . Furthermore, it follows by Theorem 5.10 that n and m both divide
r. Thus, r is a multiple of lcm(n, m) which shows that F2lcm(n,m) is the smallest
common extension field.

Definition 5.12. Let n, m ≥ 0 be integers, α ∈ F2n and β ∈ F2m. Then, by α+β
and α · β, we denote the corresponding sum resp. product in the extension

field F2lcm(n,m) .

For polynomials p1(x), . . . , pr(x) ∈ F2[x], we define their splitting field F to

be the smallest extension field of F2 such that each root of every pi(x) is an

element of F.

Coming back to our original question, we can restate the situation as
follows: We are given a Boolean function G(x1, . . . , xn) and r different LFSRs
of lengths ℓ1, . . . , ℓr. Computing a sequence (Gt(X)) for a chosen value X ∈
Fn

2 is equivalent to initializing the r LFSRs with some initial states S
(j)
0 :=

(s
(j)
0 , . . . , s

(j)
ℓj−1) ∈ F

ℓj

2 with 1 ≤ j ≤ r and computing the sequence

(G(s
(1)
i , . . . , s

(1)
i+ℓ1−1

︸ ︷︷ ︸

=S
(1)
i

, . . . , s
(r)
i , . . . , s

(r)
i+ℓr−1

︸ ︷︷ ︸

=S
(r)
i

))i≥0. (5.2.12)

By Theorem 5.9, each of the r sequences can be expressed by

s
(j)
i =

ℓj∑

l=1

caj,l
· αi

j,l . (5.2.13)

where mj(x) =
∑ℓj

l=1(x−αj,l) is the minimal polynomial of the jth LFSR. Now,
inserting (5.2.13) into (5.2.12) yields

Gi(X) = G(

ℓ1∑

l=1

ca1,l
· αi

1,l, . . . ,
ℓr∑

l=1

car,l
· αi+ℓr−1

r,l) =
∑

π∈Π⊆F
2lcm(ℓ1,...,ℓr)

cπ · πi (5.2.14)

with π being the occurring products αj1,i1 · · ·αjk,ik in F2lcm(ℓ1,...,ℓr).

139

5 Fast algebraic attacks

Example 5.13. Recall Example 5.3 where two LFSRs A and B with their se-

quences (at) respectively (bt) are involved. In demand were to find min(Gt(K))
with K = (a0, a1, b0, b1, b2) and Gt(K) = (at · bt).

Let ma(x) = (x − α1) · (x − α2) and mb(x) = (x − β1) · (x − β2) · (x − β3) be the

two minimal polynomials, then at = cα1α
t
1 + cα2α

t
2 and bt = cβ1β

t
1 + cβ2β

t
2 + cβ3β

t
3.

It follows that the sequence is expressible by

Gt(K) = at · bt =
∑

1≤i≤2

∑

1≤j≤3

cαi
· cβj

αt
i · βt

i .

Thus, in this case, Π would be

Π = {α1β1, α1β2, α1β3, α2β1, α2β2, α2β3} ⊂ F26 = F2lcm(2,3) .

Before we proceed, we pause for a moment and recapitulate. Given a
Boolean function G and a regular matrix L, we are interested in finding
min(Gt(X)). For this purpose, it was proposed in [Cou03] to fix a value
X ∈ Fn

2 and to compute min(Gt(X)). However, as we have seen in Example
5.6, it may hold that min(Gt(X)) 6= min((Gt(X

′))) for X 6= X ′. Thus, our goal
is to derive sufficient conditions such that the minimal polynomial is the
same for all choices of X.

Let X 6= X ′ ∈ Fn
2 and consider the sequences

(Gt(X)) =

(
∑

π∈Π

cπ · πt

)

and (Gt(X
′)) =

(
∑

π∈Π

c′

π · πt

)

. (5.2.15)

where some of the coefficients cπ and c′

π
may be zero. Can we decide from

these expressions if min((Gt(X))) = min((Gt(X
′))) or not? The answer is yes

and given by the following theorems:

Theorem 5.14. Let S ⊆ F2d . Then, there exists a unique non-trivial polyno-

mial m(x) ∈ F2[x] with the lowest degree such that m(α) = 0 for all α ∈ S. We

denote this polynomial by min(S).

Proof. Let I ⊆ F2[x] be the set of all polynomials which are zero on S. It is
easy to see that I is an ideal. Furthermore, by the field equation, it holds
that αqd−1−1 = 0 for all α ∈ F2d. That is, α is a root of the polynomial xqd−1−1,
proving that I 6= 〈0〉. Finally, Theorem 2.29 yields that I is a principal ideal,
generated by one unique polynomial, namely min(S).

Theorem 5.15. Let S = (st) be a sequence with st =
∑

π∈Π cππt, Π ⊆ F2d and

non-zero coefficients cπ. Then it holds that

min(Π) = min(S). (5.2.16)

140

5.2 On the precomputation step

In particular, each root of min(S) has multiplicity one.3

Proof. We show that f(x) ∈ F2[x] is a characteristic polynomial of S if and
only if f(π) = 0 for all π ∈ Π. Thus, m(x) is the characteristic polynomial
with the lowest degree, which is the definition of min(S). Let f(x) =

∑T
i=0 γix

i

and Π = {π1, . . . , πl}. Then for each t, we have

T∑

i=0

γist+i =

T∑

i=0

γi

(
l∑

j=1

cπj
πt+i

j

)

=

l∑

j=1

(

cπj

T∑

i=0

γiπ
i
j

)

πt
j =

l∑

j=1

(
cπj

f(πj)
)
πt

j

(5.2.17)

For 1 ≤ j ≤ l and 0 ≤ t ≤ l − 1, let M := (πt
j) be a Vandermonde-matrix

of size l × l. As the elements πj are pairwise distinct, M is regular. Thus,
(5.2.17) is equal to zero for each t if and only if (c1f(π1), . . . , clf(πn)) ∈ Fl

2 is
an element of the kernel of M , i.e., cπj

f(πj) = 0. As the coefficients cπj
were

assumed to be non-zero, this is equivalent to f(πj) = 0 for all i.

The important point about the previous theorems is that, given a se-
quence (

∑

π cπ · πt), the minimal polynomial is uniquely defined by the set
{π : cπ 6= 0}. More precisely, it holds that

min((
∑

π

cπ · πt)) = min({π : cπ 6= 0}) . (5.2.18)

Hereby, the actual values of cπ are completely unimportant. Coming back
to the expressions in (5.2.15), this means that if we can guarantee that
for each π ∈ Π it holds that cπ 6= 0 if and only if c′π 6= 0, then the sets
{π : cπ 6= 0} and {π : c′π 6= 0} are equal, implying the equality of the minimal
polynomials. Thus, the whole proof strategy behind the sufficient condition
for the correctness of Algorithm 5.2 can be summarized as follows:

∀X 6= X ′ : {π : cπ 6= 0} = {π : c′π 6= 0}
⇒ ∀X 6= X ′ : min({π : cπ 6= 0}) = min({π : c′π 6= 0})

Theo. 5.15⇒ ∀X 6= X ′ : min(Gt(X)) = min(Gt(X
′))

Prop. 5.7⇒ ∀X : min(Gt(X)) = min(Gt(X))

⇒ Output of Algorithm 5.2 is correct.

So, how can we know that the sets {π : cπ 6= 0} are all equal? To answer
this question, we first try to get a feeling why these sets can be different by
considering again Example 5.6.

3Although we doubt that this Theorem is really new, we neither knew it before we devel-
oped it for [Arm04a] nor could we find it somewhere in open literature.

141

5 Fast algebraic attacks

Example 5.16. First, we recall Example 5.6. Involved are two LFSRs A and

B with the primitive minimal polynomials ma(x) = 1 + x + x2 and mb(x) =

1 + x + x4 and initial states A0 ∈ F2
2 \ {
−→
0 } and B0 ∈ F4

2 \ {
−→
0 }, respectively. G

was defined by

Gt(a0, a1, b0, b1, b2, b3) := at + bt + btbt+1 + btbt+1bt+2.

Our goal is to explore further why min(Gt(A0, B0)) 6= min(Gt(A
′
0, B

′
0)) can hap-

pen for (A0, B0) 6= (A′
0, B

′
0). Let α0, α1 ∈ F22 be the roots of ma(x) and β0, β1, β2, β3 ∈

F24 those of mb(x). By Theorem 5.9, at resp. bt can be expressed by

at =
∑

i

cαi
αt

i and bt =
∑

j

cβj
βt

j .

As the minimal polynomials are assumed to be primitive, the states At resp.

Bt reach all possible values in F2
2 \ {
−→
0 } and F4

2 \ {
−→
0 }. In particular, there exist

integers δa, δb such that Aδa = A′
0 and Bδb

= B′
0. Consequently, the shifted

sequences (a′
t) = (at+δa) and (b′t) = (bt+δb

) can be expressed by

at+δa =
∑

i

cαi
αt+δa

i =
∑

i

cαi
αδa

i αt
i

bt+δb
=

∑

i

cβi
βt+δb

i =
∑

i

cβi
βδb

i βt
i .

This yields the following expressions for the sequences (Gt(A0, B0)) and (Gt(A
′
0, B

′
0)):

Gt(A0, B0) = at + bt + btbt+1 + btbt+1bt+2

=
∑

i

cαi
αt

i +
∑

i

ct
βi

βi +
∑

i,j

cβi
cβj

βt
iβ

t+1
j +

∑

i,j,k

cβi
cβj

cβk
βt

iβ
t+1
j βt+2

k

=
∑

π∈Π

cππ
t,

Gt(A
′
0, B

′
0) = at+δa + bt+δb

+ bt+δb
bt+1+δb

+ bt+δb
bt+1+δb

bt+2+δb

=
∑

i

cαi
αδa

i αt
i +
∑

i

cβi
βδb

i βt
i +
∑

i,j

cβi
cβj

βδb

i βδb

j βt
iβ

t+1
j

+
∑

i,j,k

cβi
cβj

cβk
βδb

i βδb

j βδb

k βt
iβ

t+1
j βt+2

k

=
∑

π∈Π

c′ππ
t

where

Π = {α0, α1}
︸ ︷︷ ︸

=:ΠA

∪{βi|1 ≤ i ≤ 4} ∪ {βiβj|1 ≤ i < j ≤ 4} ∪ {βiβjβk|1 ≤ i < j < k ≤ 4}
︸ ︷︷ ︸

=:ΠB

.

142

5.2 On the precomputation step

As the minimal polynomials are primitive, 0 is not an element in Π. Therefore

ΠB consists of
(
4
1

)
+
(
4
2

)
+
(
4
3

)
= 14 elements in F24\{0}. Because of |F24\{0}| = 15,

ΠB covers almost the whole set. As ΠA contains two distinct elements from

F22 \{0} ⊂ F24 \{0}, there exists at least one element in ΠA which is an element

in ΠB too.

Let π ∈ ΠA ∩ ΠB. Then there exist two functions CA and CB such that

cπ = CA(cα0 , cα1) + CB(cβ0 , cβ1, cβ2, cβ3) and

c′π = CA(cα0α
δa

0 , cα1α
δa

1) + CB(cβ0β
δb

0 , cβ1β
δb

1 , cβ2β
δb

2 , cβ3β
δb

3).

Hence, depending on CA, CB, δa, and δb it might be that one of the two coeffi-

cients cπ and c′π is zero whereas the other one is not.

We have seen that if one of the products π can be expressed in more than
one way, it might happen that cπ is zero for some initial states but non-zero
for others. This can be avoided if we premise some kind of ”unique factor-
ization” for the elements in Π. This is specified in the following definition:

Definition 5.17. Let R(1), . . . , R(r) ⊆ F2d be pairwise disjunct, 1 ≤ i1, . . . , in ≤ r
and R := R(i1) × . . . × R(in). As usual, we define for V = (v1, . . . , vn) ∈ R and

E = (e1, . . . , en) ∈ {0, 1}n the expression V E := ve1
1 · . . . · ven

n .

We introduce now an equivalence relation ≡R on the expressions V E:

V E ≡R W E′ ⇐⇒ ∀l ∈ {1, . . . , r} :
∏

j:ij=l

v
ej

j =
∏

j:ij=l

w
e′j
j . (5.2.19)

One can see easily that V E ≡R W E′
implies that

V E =

r∏

l=1




∏

j:ij=l

v
ej

j




V E≡RW E′

=

r∏

l=1




∏

j:ij=l

w
ej

j



 = W E ,

but the notion is stronger than pure equality. It is additionally required
that the parts of the products belonging to R(i) are equal as well.

Example 5.18. Set R(1) := {α, αβ}, R(2) := {β} with β 6= 1 and R := R(1)×R(2).

Let V := (v1, v2) := (α, β) and W := (w1, w2) := (αβ, β) from R, E := (1, 1) and

E ′ := (1, 0). Then, it holds that

V E = α1 · β1 = αβ = (αβ)1β0 = W E.

Thus, V E and W E′
are equal. But, because of ve1

1 = α1 6= (αβ)1 = w
e′1
1 , we have

V E 6≡R W E′
.

143

5 Fast algebraic attacks

Example 5.19. Consider again Examples 5.6 and 5.16. Let R(1) := {α0, α1} ⊆
F22 ⊆ F24 and R(1) := {β0, β1, β2, β3} ⊆ F24. We define R := R(1)×R(2)×R(2)×R(2).

As we have seen in Example 5.16, there exist π ∈ ΠA ∩ ΠB with π = αi = β
e′2
r ·

β
e′3
s ·βe′4

t with (e′2, e
′
3, e

′
4) ∈ {0, 1}3. Translating into the formalism from Definition

5.17, this shows the existence of V = (αi, v2, v3, v4), W = (w1, βr, βs, βt) ∈ R,

and E = (1, 0, 0, 0), E ′ = (0, e′2, e
′
3, e

′
4) ∈ {0, 1}4 such that V E = π = W E′

. For

V E ≡R W E′
being true, it must hold

α1
i = w0

1 and v0
2 · v0

3 · v0
4 = βe′2

r · βe′3
s · β

e′4
t . (5.2.20)

But this is certainly not true. Recall that ma(x) was assumed to be primitive,

hence αi 6= 1. Because of w0
1 = 1, the first part of (5.2.20) is not fulfilled.

Therefore, V E 6≡R W E′
.

In the preceding example, we have seen that in the case where it might

happen that cπ is non-zero only for some of all possible initial states, ex-
pressions V E and W E′

could be constructed such that π = V E = W E′
but

V E 6≡R W E′
. The following theorem shows that this was no coincidence.

More precisely, V E = W E′ ⇐⇒ V E ≡R W E′
is a sufficient condition to

ensure cπ 6= 0 ⇐⇒ c′π 6= 0.

Theorem 5.20. Let S(1) = (s
(1)
t), . . . ,S(r) = (s

(r)
t) be sequences with pair-

wise co-prime minimal polynomials which have only non-zero roots. Let

R(i) denote the set of roots of min(S(i)), G : Fn
2 → F2 a Boolean function,

i1, . . . , in ∈ {1, . . . , r}, R := R(i1) × . . .× R(in) and di1, . . . , din ∈ N.

Furtheron, for arbitrary δ := (δ1, . . . , δr) ∈ Nr the sequences Z := (zt) and

Z(δ) := (z
(δ)
t) are defined by

zt := G(s
(i1)
t+di1

, . . . , s
(in)
t+din

), z
(δ)
t := G(s

(i1)
t+di1

+δi1
, . . . , s

(in)
t+din+δin

)

Let G(X) =
∑

E∈E⊆{0,1}n XE be the algebraic normal form of G. If for all

V, W ∈ R and E, E ′ ∈ E it holds that

V E = W E′ ⇒ V E ≡R W E′

,

then min(Z) = min(Z(δ)) for every choice of δ.

Proof. By Theorem 5.15, all roots in R(i) have multiplicity one. Therefore,

by Theorem 5.9, each sequence S(i) can be expressed by s
(i)
t =

∑

α∈R(i) cααt

with unique coefficients cα. For each i, it holds that

s
(i)
t+di

=
∑

α∈R(i)

cααt+di =
∑

α∈R(i)

(
cααdi

)
αt

144

5.2 On the precomputation step

and therefore

zt = G(
∑

α∈R(i1)

(cααdi1)αt, . . . ,
∑

α∈R(in)

(cααdin)αt) and

z
(δ)
t = G(

∑

α∈R(i1)

(cααdi1)αt+δi1 , . . . ,
∑

α∈R(in)

(cααdin)αt+δin)

We set Π := {(α1, . . . , αn)E|(α1, . . . , αn) ∈ R, E ∈ E}. The sequences Z and
Z(δ) can be expressed by

zt =
∑

π∈Π

cππt, z
(δ)
t =

∑

π∈Π

c(δ)
π πt

with unique coefficients cπ and c
(δ)
π . We show that cπ is non-zero if and

only if c
(δ)
π is non-zero. Then the equality of min(Z) and min(Z(δ)) follows by

Theorem 5.15.

We express the coefficients cπ and c
(δ)
π in dependence of the coefficients cα

and show next that both differ only by a non-zero factor which depends on
π and δ.

For V E = (α1, . . . , αn)E = π ∈ Π, we define by πδ the product

(
∏

αi∈R(1)

αei

i)δ1 · . . . · (
∏

αi∈R(r)

αei

i)δr .

πδ is well defined. Assume that V E = (α1, . . . , αn)E = π = (β1, . . . , βn)E′
=

W E′
. By assumption, it holds that V E ≡R W E′

, which implies the following
equations:

V E ≡R W E′ ⇒ ∀l ∈ {1, . . . , r} :
∏

αi∈R(l)

αei

i =
∏

βi∈R(l)

β
e′i
i

⇒ ∀l ∈ {1, . . . , r} : (
∏

αi∈R(l)

αei

i)δl = (
∏

βi∈R(l)

β
e′i
i)δl

⇒ (
∏

αi∈R(1)

αei

i)δ1 · . . . · (
∏

αi∈R(r)

αei

i)δr = (
∏

βi∈R(1)

β
e′i
i)δ1 · . . . · (

∏

βi∈R(r)

β
e′i
i)δr .

This shows that the definition of πδ is independent of the ”factorization” of
π.

As the final step we show that c
(δ)
π = cπ · πδ. As the roots of the minimal

polynomials are all non-zero by assumption, it holds that πδ 6= 0 and in

particular πδ 6= 0. Therefore, cπ 6= 0 if and only if c
(δ)
π 6= 0. This concludes the

proof.

145

5 Fast algebraic attacks

To prove the claim given above, we define analogously to V E for V =
(α1, . . . , αn) ∈ R the expression cE

V := ce1
α1
· · · cen

αn
. It holds that

zt =
∑

π∈Π






∑

E∈E

∑

V =(α1,...,αn)∈R

V E=π

cE
V






︸ ︷︷ ︸

=cπ

· (
∏

αi∈R(1)

αei

i)t · . . . · (
∏

αi∈R(r)

αei

i)t

︸ ︷︷ ︸

=(V E)t=πt

Together with the observation on πδ made above, it holds that

z
(δ)
t =

∑

π∈Π






∑

E∈E

∑

V =(α1,...,αn)∈R

V E=π

cE
V






︸ ︷︷ ︸

=cπ

·(
∏

αi∈R(1)

αei

i)t+δ1 · . . . · (
∏

αi∈R(r)

αei

i)t+δr

=
∑

π∈Π

cπ · (
∏

αi∈R(1)

αei

i)δ1 · . . . · (
∏

αi∈R(r)

αei

i)δr

︸ ︷︷ ︸

=πδ

· (
∏

αi∈R(1)

αei

i)t · . . . · (
∏

αi∈R(r)

αei

i)t

︸ ︷︷ ︸

=πt

=
∑

π∈Π

cπ · πδ · πt =
∑

π∈Π

c(δ)
π πt.

This shows that c
(δ)
π = cπ · πδ which concludes the proof.

Thus, Algorithm 5.2 computes the right output, if the conditions of Theo-
rem 5.37 are met by the corresponding Boolean function G and the involved
LFSRs. In the case of E0, we could verify that this is true, which shows that
Algorithm 5.2 is applicable although the periods of the LFSRs are not co-
prime.

Finally, we show that Theorem 5.20 applies to a large class of LFSR-based
ciphers automatically, proving the correctness of Algorithm 5.2 in these
cases. Let m1(x), . . . , mr(x) ∈ F2[x] be the primitive minimal polynomials of
the used LFSRs such that the roots R(i) are all pairwise distinct and non-
zero. For the following classes of ciphers, the assumptions of Theorem 5.20
are always satisfied:

1. The cipher is a filter generator. This is a (ι, 0)-combiner using only one
LFSR, i.e. r = 1.

2. The degrees of the minimal polynomials are pairwise co-prime.

Let R(1)
.∪ . . .

.∪ R(r) = {α1, . . . , αn} be the set of all roots of the minimal
polynomials and Π := {V E =

∏n
i=1 αei

i |E ∈ {0, 1}n}. That is, Π consists of
all possible products of roots. We show now that in both cases, V E = W E′

146

5.2 On the precomputation step

implies V E ≡R W E′
as well. As Π includes all possible products, this proves

that the conditions of Theorem 5.20 are satisfied for any Boolean function
G.

Let from now on V E = (α1, . . . , αn)(e1,...,en) and W E′
= (β1, . . . , βn)(e′1,...,e′n) be

elements from Π with V E = W E′
. In the first case, only one LFSR is involved,

that is r = 1. Thus, the ”factorization” of π is always unique:

αe1
1 · . . . · αen

n = β
e′1
1 · . . . · βe′n

n
r=1⇔ ∀l ∈ {1, . . . , r} :

∏

αi∈R(l)

αei

i =
∏

βj∈R(l)

β
e′j
j .

This concludes the first case.
For the second case, we remember the fact that F2n ⊆ F2m iff n divides m

(Theorem 5.10). In particular, F2n ∩ F2m = F2c with c := gcd(n, m). We denote
by di the degree of the minimal polynomial mi(x). As F2di is a field, it holds
for α ∈ R(i) ⊆ F2di that both α−1 and all multiple products are elements in
F2di . Let l be arbitrary with 1 ≤ l ≤ r and set d̂l := d1 · . . . · dl−1 · dl+1 · . . . · dr.

Then αe1
1 · . . . · αen

n = β
e′1
1 · . . . · βe′n

n implies

∏

αi∈R(l)

αei

i

∏

βj∈R(l)

(β
e′j
j)−1

︸ ︷︷ ︸

∈F
2dl

=
∏

αi 6∈R(l)

αei

i

∏

βj 6∈R(l)

(β
e′j
j)−1

︸ ︷︷ ︸

∈F
2d̂l

=: ρl .

Therefore, ρl ∈ F2dl ∩ F
2d̂l

. By assumption the values di are pairwise co-

prime. Hence, it is gcd(dl, d̂l) = 1 and ρl ∈ F21 = F2. As the roots are all
non-zero, ρl equals to 1 for each choice of l. Thus, it holds for all l that

∏

αi∈R(l)

αei

i

∏

βj∈R(l)

(β
e′j
j)−1 = 1 ⇐⇒

∏

αi∈R(l)

αei

i =
∏

βj∈R(l)

β
e′j
j .

This concludes the second case.

5.2.2 An improved precomputation algorithm

In this section, we show how the search for min(Gt(X)) can be improved.
One advancement has been proposed in [HawR04]. The authors showed for
the case of one LFSR with primitive minimal polynomial, that with the help
of the Fast Fourier Transform one can efficiently construct a polynomial

min(d) :=
∑T ′

i=0 γ′
ix

i such that

T ′
∑

i=0

γ′
iGt+i(X) ≡ 0

147

5 Fast algebraic attacks

for all t ≥ 0 and all Boolean functions G with deg(G) ≤ d. The advantage is
that the time effort was estimated to be in

O(µ2(n, d) · (n log2(n) + log2(µ2(n, d))3)). (5.2.21)

As discussed on page 132 it holds that T ≤ µ2(n, d). If we use the estima-
tion T ≈ µ2(n, d), then this method is certainly faster than the O(T + T 2)
operations from Algorithm 5.2.4 However, one has to pay the price that
T ′ = deg(min(d)) might be higher than T = deg(min(G)). For example, the
authors estimated that for the parameters of E0, i.e., n = 128 and d = 4,
that T ′ = deg(min(d)) = 11, 017, 633 whereas in [Arm04a] it was estimated
that T = deg(min(G)) = 8, 822, 188 (see also the arguments later in the sec-
tion, especially on pages 154f). In some cases, one might want to live with
this drawback and prefer the faster algorithm from [HawR04]. But in other
cases, it is certainly preferable to get min(G).

Therefore, we restate our results from [Arm04a] which show how Algo-
rithm 5.2 can be improved. Observe that the knowledge of G and L is
only exploited to compute the sequence (Gt(X))i≥0 but not to support the
Berlekamp-Massey algorithm. The idea is to compute min(G) =

∑T
i=0 γi · xi

and/or the parameter T more or less directly from the known minimal poly-
nomials and G. For this purpose, we cite some statements about minimal
polynomials.

Definition 5.21. Consider two co-prime polynomials f(x) =
∏n

i=1(x−αi) and

g(x) =
∏m

j=1(x− βj) with no multiple roots. Then we define

f(x)⊗ g(x) :=
∏

i,j

(x− αiβj), f(x)⊗ f(x) :=
∏

1≤i<j≤n

(x− αiαj) · f(x) .

Theorem 5.22. Let S(1) = (s
(1)
t), . . . ,S(r) = (s

(r)
t) be sequences with pairwise

co-prime min(S(i)). Then

min(S(1) + . . . + S(r)) = min(S(1)) · . . . ·min(S(r))

min(S(i) · S(j)) = min(S(i))⊗min(S(j)), ∀i 6= j

where S(1) + . . . + S(r) := (s
(1)
t + . . . + s

(r)
t)t≥0 and S(i) · S(j) := (s

(i)
t · s(j)

t)t≥0.

Proof. A proof can be found in [LidN86, Th. 6.57 + 6.67]. But with the
statements developed so far, it is possible to show it directly.

4The authors claimed that the method can be extended for the case of several LFSRs, but
gave neither details nor an estimation for the effort. However, as they used the same
formula (5.2.21) to guess the effort for E0, LILI-128 and Toyocrypt (see [HawR04, Table
2]), we assume that (5.2.21) is valid for the general case.

148

5.2 On the precomputation step

Let R(i) denote as usual the roots of the minimal polynomial of the se-
quence S(i). Then, by Theorem 5.9, the elements of the sequences can be

expressed by s
(i)
t =

∑

α∈R(i) cααt with at least one non-zero coefficient cα per
sequence. It follows that

s
(1)
t + . . . + s

(r)
t =

∑

α∈R(1)
.
∪...

.
∪R(r)

cααt and

s
(i)
t · s(j)

t =
∑

α∈R(i)

β∈R(j)

cαcβ(αβ)t .

The rest follows by Theorem 5.15.

Example 5.23. We refer again to the toy cipher, especially Examples 5.3

and 5.5. Here, two LFSRs are involved with minimal polynomials ma(x) =
x2 + x + 1 = (x − α1) · (x − α2) and mb(x) = x3 + x2 + 1 = (x − β1) · (x − β2) ·
(x− β3). We denote the corresponding sequences by (at) = (cα1α

t
1 + cα2α

t
2) and

(bt) = (cβ1β
t
1 + cβ2β

t
2 + cβ3β

t
3). Thus, the product of these two sequences can be

expressed by

at · bt =
2∑

i=1

3∑

j=1

cαi
cβj

(αi · βj)
t .

With Theorem 5.15, it follows that

min((at · bt)) = ma(x)⊗mb(x) = 1 + x2 + x4 + x5 + x6 ,

which is exactly the minimal polynomial derived in Examples 5.3 and 5.5.

However, instead of applying Algorithm 5.2, we computed min((at ·bt)) directly

from ma(x) and mb(x).

Theorem 5.24. ([Key76, Th. 1]) Let S = (st) be a sequence and l := deg(min(S)).
If d is an integer with 1 ≤ d < l, then the sequence (st · st+d) has the minimal

polynomial min(S)⊗min(S) of degree
l(l+1)

2
.

Before we proceed further, we take a closer look at the complexities of the
operators ′′·′′ and ′′⊗′′.

Theorem 5.25. ([Sch77]) Let two polynomials f(x), g(x) ∈ F2[x] of degrees

≤ m be given. Then, the product f(x) · g(x) can be computed with an effort of

O(m log m log log m) operations over F2.

Theorem 5.26. (Bostan, Flajolet, Salvy, Schost [BosFSS06], Theorem 1) Let

f(x) resp. g(x) be two co-prime polynomials of degree n resp. m with no

149

5 Fast algebraic attacks

multiple roots. Then the polynomial f(x) ⊗ g(x) can be computed directly

within

O(nm log2(nm/2) log log(nm/2) + nm log(nm) log log(nm)
︸ ︷︷ ︸

=:T (nm)

)

operations in F2 without requiring the knowledge of the roots of f(x) or g(x).

This implies a divide-and-conquer approach for computing min(Gt(X)).
The trick is to split G into two or more functions G(1), . . . , G(l) such that

the corresponding minimal polynomials min(G
(i)
t (X)) are pairwise co-prime.

This is for example trivially fulfilled if the functions Gi depend on the out-
puts of different LFSRs. By Theorem 5.22 it holds that

min(Gt(X)) = min(G
(1)
t (X)) · . . . ·min(G

(l)
t (X)).

In some cases, such a partition can be hard to find or may not even

exist. If the minimal polynomials min(G
(i)
t (X)) are not pairwise co-prime, the

product p(x) := min(G
(1)
t (X)) · . . . ·min(G

(l)
t (X)) is a characteristic polynomial

of the sequence (Gt(X)). , i.e., the coefficients of p(x) also fulfill equation
(5.1.4). Therefore, the coefficients of p(x) can likewise be used for a fast
algebraic attack, although it may consume more known keystream bits
than really necessary.

We compare the effort of this approach to that of Algorithm 5.2. For sim-

plicity we assume l = 2, i.e. Gt(X) = G
(1)
t (X) ·G(2)

t (X) such that min(Gt(X)) =

min(G
(1)
t (X)) · min(G

(2)
t (X)). Let T1 := deg(min(G(1))) ≤ deg(min(G(2))) =: T2.

Then deg(min(G)) = T1 + T2.
Algorithm 5.2 contains mainly two steps. The first is to compute the

sequence G0(X), . . . , G2(T1+T2)−1(X) for a chosen value X ∈ Fn
2 . In general,

the exact value of T is unknown but an upper bound is the maximum
number of different monomials occurring. However, it is not necessary to
know (or estimate) T in advance, as one needs to compute Gt(X) only if it
is required by the Berlekamp-Massey algorithm. As the effort to evaluate
Gt(X) is at least linear in the size of X, i.e. n, we can give O(2(T1 + T2) ·
n) as a lower bound for the first step. The second step, the Berlekamp-
Massey algorithm, needs a number of operations in O((T1+T2)

2). Altogether,
Algorithm 5.2 needs about

O(T 2
1 + T 2

2 + 2(T1 + T2)n + 2T1T2))

basic operations. However, keep in mind that this is only a lower bound.
Instead of using Algorithm 5.2, we can do the following: First compute

min(G
(1)
t (X)) and min(G

(2)
t (X)). In general, this can be done with Algorithm

5.2 or in some cases by using the ⊗-product (we will see details later). If we

150

5.2 On the precomputation step

use Algorithm 5.2, the complexity of these operations are O(T 2
1 +2T1 ·n) resp.

O(T 2
2 + 2T2 · n). Notice that both operations can be performed in parallel.

Having computed min(G
(1)
t (X)) and min(G

(2)
t (X)), the second and final step

consists of computing the product min(G
(1)
t (X)) · min(G

(2)
t (X)) = min(Gt(X)).

By Theorem 5.25, this has an effort of O(T2 log T2 log log T2) which implies an
overall effort of

O(T 2
1 + T 2

2 + 2(T1 + T2)n + T2 log T2 log log T2) .

In general, it is log T2 log log T2 ≪ 2T1. Thus, our new approach is faster than
Algorithm 5.2. The advantage increases if G can be divided into more than
two parts.

In some cases, the precomputation step can be improved even a bit fur-
ther. Assume that at least one of the G(i) mentioned above can be written as
a product G(i) = G(i,1) ·G(i,2) such that min(G

(i,1)
t (X)) and min(G

(i,2)
t (X)) are co-

prime. This is for example almost always the case when G(i) is a monomial.

Then, by Theorem 5.22 it holds that min(G(i)) = min(G
(i,1)
t (X))⊗min(G

(i,2)
t (X)),

which implies a similar strategy. Let again be

T1 := deg(min(G
(i,1)
t (X))) ≤ deg(min(G

(i,2)
t (X))) =: T2.

Using Algorithm 5.2 would need about

O(T 2
1 T 2

2 + 2T1T2n)

operations. Instead, we can we compute min(G
(i,1)
t (X)) and min(G

(i,2)
t (X))

with Algorithm 5.2 in a first step. This takes O(T 2
1 + T 2

2 + 2(T1 + T2)n) oper-

ations. If min(G
(i,1)
t (X)) and/or min(G

(i,2)
t (X)) are already known, then this

step can be omitted. This is for example the case if G(i) is the product of
the output of two or several distinct LFSRs (see the E0 example later in this
section). In the second step, we use the algorithm described in [BosFSS06]

to compute min(G
(i,1)
t (X)) ⊗ min(G

(i,2)
t (X)). The effort is O(T (T1T2)), which is

in O(T1T2 log2(T1T2) log log(T1T2)). Altogether, this approach needs

O(T1T2 log2(T1T2) log log(T1T2) + T 2
1 + T 2

2 + 2(T1 + T2)n)

operations. This shows the improvement. If we perform the operations of
the first step in parallel, the time needed to get the result can be decreased
further. In the following, we summarize our approaches by proposing the
following new algorithm:

151

5 Fast algebraic attacks

Algorithm 5.3.
Computation of min(Gt(X))

Input: A Boolean function G : Fn
2 → F2 for which the inputs are taken

from r LFSRs with minimal polynomials m(i)(x)
Output: The polynomial min(Gt(X))

1: Split G into a sum G = G(1) + . . . + G(l) such that the corresponding

minimal polynomials min(G
(i)
t (X)) are pairwise co-prime.

2: if G(i) = G(i,1) · . . . · G(i,s) with co-prime min(G
(i,j)
t (X)) (e.g., G(i) is a

monomial) then
3: Compute min(G

(i)
t (X)) = min(G

(i,1)
t (X)) ⊗ . . . ⊗ min(G

(i,s)
t (X)) with

the ⊗-algorithm described in [BosFSS06]

4: end if

5: Compute min(Gt(X)) = min(G
(1)
t (X)) · . . . · min(G

(l)
t (X)) using the

product-algorithm in [Sch77].

6: return the polynomial min(Gt(X))

Application to the E0 keystream generator

We demonstrate now the efficiency of Algorithm 5.3 on the E0 keystream
generator. Recall that it employs four different LFSRs with pairwise co-
prime primitive minimal polynomials m1, m2, m3, m4 of degrees d1 = 25, d2 =
31, d3 = 33, and d4 = 39.

In [ArmK03], an r-function F of degree 4 with r = 4 was derived. Further-
more, in [Cou03] it was shown that F can be divided into

F (X1, . . . , X4, y1, . . . , y4) = G(X1, . . . , X4) + H(X1, . . . , X4, y1, . . . , y4)

with deg(G) = 4 > 3 = deg(H). Thus, condition (5.1.3) from page 124 is
satisfied and fast algebraic attacks are possible in principle. G has the
form

Gt(X) =
∑

1≤i<j≤4
1≤k<l≤4

s
(i)
t s

(j)
t s

(k)
t+1s

(l)
t+1 + s

(1)
t s

(2)
t s

(3)
t s

(4)
t

where S(i) = (s
(i)
t) is the sequence produced by LFSR i. Let Ri be the set of

roots of mi and

Π := {αiαjαkαl| αs ∈ Rs, 1 ≤ i < j ≤ 4, 1 ≤ k < l ≤ 4} ∪ {α1α2α3α4 | αi ∈ Ri} .

We have checked with the computer algebra system Maple that the weaker
assumptions from Theorem 5.20 are fulfilled here, making Algorithm 5.2
applicable.

152

5.2 On the precomputation step

Furtheron, it can be shown that G can be written as G = G(1) + . . . + G(11)

such that the minimal polynomials min(G
(i)
t (X)) are pairwise co-prime. Let

from now on i, j, k, l denote integers from the set {1, 2, 3, 4}. We define the
following three sets of indices

I2 := {(i, j) | i < j}
I3 := {(i, j, k) | i < j < k}
I4 := {(i, j; k, l) | i < j, k < l, {i, j} ∪ {k, l} = {1, 2, 3, 4}}

Then, Gt(X) can be rewritten to

Gt(X) =
∑

(i,j)∈I2

s
(i)
t s

(i)
t+1s

(j)
t s

(j)
t+1

︸ ︷︷ ︸

=:G
(i,j)
t (X)

(5.2.22)

+
∑

(i,j,k)∈I3

(

fij · s(k)
t s

(k)
t+1 + fik · s(j)

t s
(j)
t+1 + fjk · s(i)

t s
(i)
t+1

)

︸ ︷︷ ︸

=:G
(i,j,k)
t (X)

(5.2.23)

+
∑

(i,j;k,l)∈I4

s
(i)
t s

(j)
t+1s

(k)
t s

(l)
t+1 + s

(1)
t s

(2)
t s

(3)
t s

(4)
t

︸ ︷︷ ︸

G̃t(X)

(5.2.24)

where fij = s
(i)
t s

(j)
t+1 + s

(j)
t s

(i)
t+1. We define the sets

R2
i := {α · α′ | α, α′ ∈ Ri}

R(i,j) := {αiαj | (i, j) ∈ I2, αs ∈ Rs ∪ R2
s}

R(i,j,k) := {αiαjαk | (i, j, k) ∈ I3, αs ∈ Rs ∪R2
s}

R̃ := {αiαjαkαl | (i, j; k, l) ∈ I4, αs ∈ Rs} .

One can show, e.g. with Maple, that the sets defined above are all pairwise

disjoint. Furthermore, it is easy to see that the roots of min(G
(i,j)
t (X)) are

a subset of R(i,j), and so on. Thus, the minimal polynomials are pairwise
co-prime, and we can write by Theorem 5.22 min(Gt(X)) as the product of
11 different minimal polynomials:

min(Gt(X)) =
∏

(i,j)∈I2
min(G

(i,j)
t (X)) ·∏(i,j,k)∈I3

min(G
(i,j,k)
t (X)) ·min(G̃t(X))

=
∏11

i=1 min(G
(i)
t (X))

(5.2.25)
Actually, even more can be said. Using Theorem 5.22 and the fact that the
polynomials mi are pairwise co-prime, we have

min(G
(i,j)
t (X)) = (mi ⊗mi)⊗ (mj ⊗mj)

of degree di(di +1)/2 ·Tj(Tj +1)/2. Before we can estimate min(G
(i,j,k)
t (X)) and

min(G̃t(X)), we need the following theorem:

153

5 Fast algebraic attacks

Theorem 5.27. ([LidN86, Th. 6.55]) Given sequences S(1), . . . ,S(r), the mini-

mal polynomial min(S(1) + . . . + S(r)) divides lcm(min(S(1)), . . . , min(S(r))).

First, we consider the minimal polynomial of

G
(i,j,k)
t (X) = (s

(i)
t s

(j)
t+1 + s

(j)
t s

(i)
t+1) · s(k)

t s
(k)
t+1 + (s

(i)
t s

(k)
t+1 + s

(k)
t s

(i)
t+1) · s(j)

t s
(j)
t+1 +

(s
(j)
t s

(k)
t+1 + s

(k)
t s

(j)
t+1) · s(i)

t s
(i)
t+1

It holds that

min((s
(i)
t s

(j)
t+1)) = min((s

(j)
t s

(i)
t+1))

Th. 5.22
= mi ⊗mj and

min(s
(k)
t s

(k)
t+1)

Th. 5.24
= mk ⊗mk.

By Theorem 5.27, the minimal polynomial min(G
(i,j,k)
t (X)) divides the least

common multiple of the polynomials (mi⊗mi)⊗(mj⊗mk), (mj⊗mj)⊗(mi⊗mk),
and (mk⊗mk)⊗(mi⊗mj). Notice that all three polynomials share the common

factor mi ⊗mj ⊗mk.
5 Thus, the degree of min(G

(i,j,k)
t (X)) is upper bounded

by

didjdk +
di(di − 1)

2
djdk +

dj(dj − 1)

2
didk +

dk(dk − 1)

2
didj

= didjdk
di + dj + dk − 1

2
.

The minimal polynomial min(G̃t(X)) can be found exactly. We observe
that

min(s
(i)
t s

(j)
t+1s

(k)
t s

(l)
t+1) = min(s

(1)
t s

(2)
t s

(3)
t s

(4)
t) = m1 ⊗m2 ⊗m3 ⊗m4 =: m .

Thus, min(G̃t(X)) divides m. As m1, . . . , m4 are irreducible, this holds for
m, too. Therefore, min(G̃t(X)) is equal to 1 or equal to m. But the first
case would imply that the expression in (5.2.24) is the all-zero sequence
which is obviously wrong. Ergo, min(G̃t(X)) is equal to m of degree d1d2d3d4.
Summing up, for the degree T of min(Gt(X)) it holds that

T ≤
∑

(i,j)∈I2

di(di + 1)dj(dj + 1)

4
+
∑

(i,j,k)∈I3

didjdk
di + dj + dk − 1

2
+d1d2d3d4 . (5.2.26)

In the specification of E0, the degrees d1, d2, d3, d4 are defined as 25, 31,
33, 39 respectively. Thus, the degree of min(Gt(X)) is ≤ 8, 822, 188 ≈ 223.07.
The computation of min(Gt(X)) using Algorithm 5.2 would need about 246.15

basic operations.

5The reason is that f divides f ⊗ f and that (f · g)⊗ h = (f ⊗ h) · (g ⊗ h).

154

5.2 On the precomputation step

Minimal polynomials Alg. 5.2 Alg. 5.3 Ratio

1 + x + x3, 1 + x + x4,

1 + x2 + x5, 1 + x4 + x7 10h 41m 43s 12m 3s 53.32

1 + x2 + x3, 1 + x3 + x4,

1 + x3 + x5, 1 + x6 + x7 11h 2m 49s 12m 7s 54.75

” 10h 50m 0s 11m 59s 54.30

” 10h 52m 59s 11m 55s 54.86

” 10h 53m 31s 11m 58s 54.65

1 + x + x3, 1 + x2 + x4,

1 + x3 + x5, 1 + x2 + x6 + x8 + x11 3d 6h 30m 16s 1h 43m 25s 45.55

1 + x2 + x3, 1 + x2 + x5,

1 + x + x7, 1 + x + x2 + x6 + x11 18d 18h 26m 13h 50m 7s 32.56

Table 5.2.3: Comparison between the time efforts of Algorithms 5.2 and 5.3
applied to reduced versions of E0

Equation (5.2.25) implies the usage of Algorithm 5.3. In the first step

we apply Algorithm 5.2 to compute the minimal polynomials min(G
(i)
t (X)),

i = 1, . . . , 11. This takes an overall number of basic operations of ≈ 243.37.
Exploiting parallelism, we have only to wait the time needed to perform
≈ 241.91 basic operations.6

The second step is the computation of the product of these minimal poly-
nomials. Here, this takes altogether about ≈ 228.25 basic operations. Per-
formed in sequential, Algorithm 5.3 needs about 243.37 basic operations,
which is almost 8 times faster than Algorithm 5.2. If we exploit the paral-
lelism mentioned above, the number of basic operations we have to wait for
is about 241.91 which is more than 16 times faster than in Algorithm 5.2.

An ad-hoc implementation in Maple (without using parallelism and the
algorithm of [BosFSS06]), applied to reduced versions of E0 with shorter
LFSRs, confirmed the improved efficiency of our new algorithm. The re-
sults can be found in table 5.2.3. In the first column, the used minimal
polynomials are given. The next two columns show the time consumptions
of Algorithm 5.2 and 5.3, respectively, and the ratio in the last column. In
all cases, our new Algorithm 5.3 is significantly faster than Algorithm 5.2,
even without using parallelism. The speed-up factor is much higher than
predicted theoretically and depends on the chosen minimal polynomials
and the initial states.

In all cases, the degree of min(Gt(X)) was equal to the upper bound esti-
mated in (5.2.26). Hence, we expect that the upper bound is tight for the

6Of course, the total number of operations remains the same.

155

5 Fast algebraic attacks

real E0 keystream generator, too. Therefore, we make the assumption that
deg(min(Gt(X))) = 8, 822, 188.

Summary

As we have seen, different methods exist to compute min(Gt(X)). In the
general case, one can use Algorithm 5.2 as proposed originally in [Cou03].
As discussed in Section 5.2.1, it works correctly in most cases, even if
the lengths of the LFSRs are not co-prime. The time effort is mostly the
effort of the Berlekamp-Massey algorithm, which is in O(D2). Actually,
there exists an improved version of the Berlekamp-Massey algorithm which
has a faster asymptotic runtime behaviour, namely in O(D · log2(D)) (see
[Bla83, BreGY80, Dor87]). But whether it is really faster for the cases that
we are interested in has not been examined so far.

The method proposed in [HawR04] is extremely fast as the time effort was
estimated to lie in O(D · (n log2(n)+ log2(D)3)). However, the drawback is that

it does not compute min(Gt(X)) but min(d) =
∑T ′

i=0 γ′
ix

i with
∑

i γ
′
iG

′
t+i(K) ≡ 0

for all t and for all G′ of degree≤ d. Obviously, the coefficients γ′
i can be used

for a fast algebraic attack as well, but this strategy might demand knowing
more successive keystream bits than actually necessary for computing the
coefficients γi.

In certain cases, if more than one LFSR is employed in the (ι, m)-combiner,
it is possible to exploit the information on G and the LFSRs to derive
min(Gt(X)) more directly. This is the idea behind Algorithm 5.3. Simu-
lations on E0 with reduced key sizes confirmed the reduced time effort.

156

5.3 Divide-and-conquer fast algebraic attacks

5.3 Divide-and-conquer fast algebraic attacks

As explained in Section 5.1, fast algebraic attacks (FAAs) are based on
processing the system of equations in a precomputation step in order to
decrease the degree of the equations. In this section, we show that a similar
approach may be used to reduce the number of unknowns. Before we give
a general description, we motivate the attack by an example.

Example 5.28. The example uses five LFSRs of lengths n1, . . . , n5 filtered by

a memory function. Let s
(i)
t denote the output of the ith LFSR at clock t and

n := n1 + . . . + n5 the key size. The output zt for t ≥ 0 is computed as follows:

zt := s
(1)
t + s

(1)
t−1 · (σ2

t−1 + σ2
t) + σ3

t + σ2
t−1 + Qt · σ3

t−1

Qt+1 := zt

where Q0 is some initial memory of the function and σd
t is the d-th elemen-

tary symmetric polynomial in the outputs s
(2)
t , s

(3)
t , s

(4)
t , s

(5)
t . By inserting zt−1

into Qt one gets an algebraic relation that is independent of the memory:

zt := s
(1)
t + s

(1)
t−1 · (σ2

t−1 + σ2
t) + σ3

t + σ2
t−1 + zt−1 · σ3

t−1 (5.3.27)

Equation (5.3.27) is of degree 3 in the key bits, which yields an algebraic

attack with an effort in O
((

n
3

)ω)
. We have tested with the methods described

in Section 4.2 that no quadratic relations exist over two clocks. Because of the

term zt−1 ·σ3
t−1, it is not possible to split (5.3.27) as shown in (5.1.3). Therefore,

a FAA as described in [Cou03] respectively Section 5.1 is not applicable in

this case.

Furtheron, we checked that what we would call a “local divide-and-conquer”

attack is possible (e.g., see [Gol04]): equations exist which are independent

of s
(i)
t and s

(i)
t−1 for one i ∈ {2, 3, 4, 5}, but there is no equation independent

of variables s
(1)
t and s

(1)
t−1. But as the lowest degree of these equations is 4,

this approach would increase the complexity instead of reduce it. Altogether,

it seems that the naive algebraic attack is the best algebraic attack in this

case.

Actually, one can do better. In a ”conventional” fast algebraic attack, one

would split F into two parts to cancel out the components of high degree.

Here, the motivation is slightly different. Instead of reducing the degree, the

number of unknowns is reduced. Similar to (5.1.3), we rewrite (5.3.27) to

0 = x
(1)
t + x

(1)
t−1 · (σ2

t−1 + σ2
t)

︸ ︷︷ ︸

=:Gt(X)

+ zt + σ3
t + σ2

t−1 + zt−1 · σ3
t−1

︸ ︷︷ ︸

=:Ht(X)

.

157

5 Fast algebraic attacks

Attack degree #unknowns time memory

algebraic attack 3 128 ≈ 255 ≈ 237

fast algebraic attack / / / /

local divide-and-conquer 4 128-33=95 ≈ 265 ≈ 243

our attack 3 128-33=95 ≈ 252 ≈ 235

Table 5.3.4: Different algebraic attacks against the given example

The splitting is chosen such that H is independent of the outputs of LFSR 1.

Thus, cancelling the G part leads to a new equation which depends only on

the outputs from LFSRs 2-5.

Let min(Gt(X)) =
∑T

i=0 γix
i = 0. Then,

0 =

T∑

i=0

γiFt+i(K, zt+i, . . . , zt+i+r−1) =

T∑

i=0

γiHt+i(K, zt+i, . . . , zt+i+r−1)

is a (T + r − 1)-equation of degree 3 which is independent of LFSR 1. This

reduces the number of monomials from O
((

n
3

))
to O

((
n−n1

3

))
and the effort

to solve the corresponding linearized system of equations from O
((

n
3

)ω)
to

O
((

n−n1

3

)ω)
. If the feedback polynomials are pairwise co-prime, then the run

length is T = n1 + n1.
∑

2≤i<j≤5 ninj. For (n1, . . . , n5) = (33, 27, 26, 25, 17) and

ω = 3, the time and space efforts for different algebraic attacks are displayed

in Table 5.3.4.

We give now a more general description of this approach. Required is a
r-function F which can be split as shown here:

0 = Ft(X, y1, . . . , yr) = Gt(X) + Ht(X̂j, y1, . . . , yr). (5.3.28)

X̂j denotes X where the part belonging to the jth LFSR is left out. More

precisely, it is X̂j := (X1, . . . , Xj−1, Xj+1, . . . , Xm). The next step is to compute
min(Gt(X)), e.g., with the methods discussed in Section 5.2. Observe that
∑T

i=0 γiHt(K̂j , zt+i, . . . , zt+i+r−1) = 0 is a valid equation and independent of
Kj. Repeating this step for several t gives a system of equations which is
independent of Kj:

0 = F0(K, z0, . . . , zr−1)
0 = F1(K, z1, . . . , zr)

. . .
︸ ︷︷ ︸

n unknowns

7→
0 =

∑

i γiHi(K̂j , . . .)

0 =
∑

i γiH1+i(K̂j, . . .)
. . .

︸ ︷︷ ︸

n−nj unknowns

(5.3.29)

158

5.3 Divide-and-conquer fast algebraic attacks

This reduces the number of computation steps from (roughly)
(

n
d

)ω
to
(

n−nj

d

)ω

and the amount of space from
(

n
d

)2
to
(

n−nj

d

)2
. Afterwards, the values of Kj

can be easily reconstructed or even guessed.

159

5 Fast algebraic attacks

5.4 Adapted precomputation steps with minimized

run length

5.4.1 Motivation

So far, all variants of fast algebraic attacks discussed in the preceding sec-
tions are based on the same principle. The first step is to find an r-function
F (X, y1, . . . , yr) which can be rewritten to

F (X, y1, . . . , yr) = G(X) + H(X, y1, . . . , yr) ,

where H has some desired attribute A, but G has not. Hereby, A could
mean that the degree is less than d = deg(F) (this corresponds to the orig-
inal fast algebraic attack as described in Section 5.1) or that the output
is independent of the inputs of some LFSRs (as used for the divide-and-
conquer attack from Section 5.3). In other words, F is divided into H which
has attribute A, and G which has not.

Then, the second step consists of computing min(Gt(X)) =
∑T

i=0 γix
i. Thus,

∑T
i=0 γi · Ft+i(K, zt, . . . , zt+r−1) gives a (T + r − 1)-function which has attribute

A.

However, one has to pay the price that the run length may increase enor-
mously, for example from 4 to T ≈ 8, 822, 188 in the case of E0. Thus, in
terms of practicability, it is desirable to reduce T as much as possible. This
means for example that one should use the coefficients from min(Gt(X))
instead of those from a characteristic polynomial of the sequence (Gt(X)).
But even then, further reductions may be possible as the following example
shows:

Example 5.29. Consider the following 2-function

Ft(X) = s
(2)
t s

(2)
t+1s

(1)
t

︸ ︷︷ ︸

=:Gt(X)

+ s
(1)
t s

(2)
t zt

︸ ︷︷ ︸

=:Ht(X)

(5.4.30)

where s
(i)
t are produced by LFSRs with minimal polynomials m1(x) = x2 +x+1

and m2(x) = 1+x+x3. That is, the desired attribute A here is to be quadratic.

160

5.4 Adapted precomputation steps with minimized run length

The first elements of the sequence (Gt(X)) = (Gt(x1, x2, x3, x4, x5)) are:

G0(X) = x1x3x4

G1(X) = x2x4x5

G2(X) = x1x5 + x2x5+ x1x3x5 + x2x3x5

G3(X) = x1x3 + x1x5+ x1x3x4 + x1x4x5

G4(X) = x2x3 + x2x4+ x2x3x5 + x2x4x5

G5(X) = x1x4 + x2x4+ x1x3x4 + x1x3x5 + x1x4x5+
x2x3x4 + x2x3x5 + x2x4x5

G6(X) = x1x3x4 + x1x3x5

G7(X) = x2x3x4

G8(X) = x1x4x5 + x2x4x5

G9(X) = x1x5+ x1x3x5

G10(X) = x2x3 + x2x5+ x2x3x4 + x2x4x5

G11(X) = x1x3 + x2x3 + x2x4 + x1x4+ x1x3x5 + x1x4x5 + x2x3x5 + x2x4x5

G12(X) = x1x4+ x1x3x4 + x1x3x5 + x1x4x5

Now, with the methods described so far, one can compute

min(Gt(X)) = 1 + x + x3 + x4 + x6 + x8 + x9 + x11 + x12.

Thus, it holds that

Gt(X) + Gt+1(X) + Gt+3(X) + Gt+4(X) + Gt+6(X) +

Gt+8(X) + Gt+9(X) + Gt+11(X) + Gt+12(X) ≡ 0 ∀t .

For example, the sum of the following functions is equal to zero:

G0(X) = x1x3x4

G1(X) = x2x4x5

G3(X) = x1x3 + x1x5+ x1x3x4 + x1x4x5

G4(X) = x2x3 + x2x4+ x2x3x5 + x2x4x5

G6(X) = x1x3x4 + x1x3x5

G8(X) = x1x4x5 + x2x4x5

G9(X) = x1x5+ x1x3x5

G11(X) = x1x3 + x2x3 + x2x4 + x1x4+ x1x3x5 + x1x4x5 + x2x3x5 + x2x4x5

G12(X) = x1x4+ x1x3x4 + x1x3x5 + x1x4x5

This implies that

deg(Ht +Ht+1 +Ht+3 +Ht+4 +Ht+6 +Ht+8 +Ht+9 +Ht+11 +Ht+12)) = 2 , (5.4.31)

where the run length is 13. But now, we take a look at the sum of the

161

5 Fast algebraic attacks

following functions:

G0(X) = x1x3x4

G1(X) = x2x4x5

G2(X) = x1x5 + x2x5+ x1x3x5 + x2x3x5

G4(X) = x2x3 + x2x4+ x2x3x5 + x2x4x5

G6(X) = x1x3x4 + x1x3x5

As all cubic expressions cancel out, the result

G0(X) + G1(X) + G2(X) + G4(X) + G6(X) = x1x5 + x2x5 + x2x3 + x2x4

is a quadratic equation. In particular, this implies that

Ht(X) + Ht+1(X) + Ht+2(X) + Ht+4(X) + Ht+6(X) (5.4.32)

is a quadratic equation as well, but with a run length of 7 instead of 13 as

in (5.4.31).

Summing up, instead of looking for min(Gt(X)) to cancel the G-part, it
suffices to find coefficients γ′

0, . . . , γ
′
T ′ such that

∑
γ′

iGt+i possess attribute
A. In the context of normal fast algebraic attacks, this has been mentioned
the first time in [HawR04]. The goal of this section is therefore to develop
according methods. First, we make the notions of A more precise.

Definition 5.30. For an integer a =
∑

i=0 ai · 2i, ai ∈ {0, 1}, we define its

binary weight wtbin(a) :=
∑

i ai. For a vector (a(1), . . . , a(m)) of integers, we

extend this definition to wtbin(a(1), . . . , a(n)) =
∑

wtbin(a
(i)).

Example 5.31. The following tabular displays the binary weight for the first

eight non-negative integers.

a 0 1 2 3 4 5 6 7

(a2, a1, a0) (000) (001) (010) (011) (100) (101) (110) (111)

wtbin(a) 0 1 1 2 1 2 2 3

Definition 5.32. Let n1, . . . , nm be some non-negative integers and Xi :=
(xi,0, . . . , xi,ni−1). For ei =

∑ni−1
j=0 ei,j2

j, we define (Xi)
ei :=

∏ni

j=1 x
ei,j

i,j and for

E = (e1, . . . , em) the expression XE :=
∏m

j=1 X
ej

j .

Furthermore, let G(X1, . . . , Xm) =
∑

E=(e1,...,em) cE · XE be a Boolean function

in n := n1 + . . .+nm unknowns with cE ∈ F2. We define the two different types

of degree:

deg(G) := max{wtbin(E) | cE 6= 0}
degXi

(G) := max{wtbin(ei) | c(e1,...,em) 6= 0}

If degXi
(G) = 0, then G is independent of the variables in Xi.

162

5.4 Adapted precomputation steps with minimized run length

Remark 5.33. The relationship between the definitions of XE from Definition

5.32 and Definition 2.23 is as follows. Let Xi := (xi,1, . . . , xi,ni
), i = 1, . . . , n and

ei :=
∏ni−1

j=0 ei,j · 2j. Then,

(X1, . . . , Xn)
(e1,...,en) Def. 5.32

=
n∏

i=1

ni∏

j=1

x
ei,j

i,j
Def. 2.23

= (x1,1, . . . , x1,n1, x2,1, . . . , xn,nn)(e1,1,...,en,nn).

We express now the attributes A for the different kind of fast algebraic
attacks with notions introduced in Definition 5.32 in the following table:

Fast algebraic Explained in Goal: Find γi

attack Section such that

degree-decreasing 5.1 deg(
∑

i γi ·Gt+i(X)) ≤ deg(H)
divide-and-conquer 5.3 degXi

(
∑

i γi ·Gt+i(X)) = 0

So, if we are able to modify the search for the coefficients γi such that the
adapted conditions are fulfilled, one can reduce the run length and make
the whole attack more efficient. At first glance, one may expect that this
requires more complicated and time consuming methods than solely look-
ing for min(Gt(X)). But, somewhat surprisingly, we found out in [ArmA05]
that one can use a combination of the algorithms from Section 5.2, i.e., it
is possible to derive equations for a fast algebraic attacks with minimum
run length with a rather small increase of the effort. Readers who are only
interested in these adapted algorithms may jump directly to the last sub-
section. The other sections are devoted solely to deriving these algorithms
and proving their correctness.

Algorithm 5.4 gives a preview on our approach to find adapted linear
sums of Gt. The correctness of this approach is ensured by the following
fact that will be proved later.

∑

i

γiGt+i(X) has property A ⇐⇒ p(x) =
∑

i

γix
i : p(α) = 0 ∀α ∈ ΩA .

Actually, this is an extension of Theorem 5.15 where we already showed the
connection between

∑

i γiGt+i(X) and the minimal polynomial of a subset
of an extension field F2d. The degree T of p(x) determines the number of
successive equations. If it is possible to compute the minimal polynomial of
ΩA efficiently, then this yields immediately the coefficients for the minimum
run length.

163

5 Fast algebraic attacks

Algorithm 5.4.
Computation of coefficients γi such that

∑

i γiGt+i(X) has a specific

property A (e.g., the degree is ≤ e or is independent of certain in-

puts)

Input: Boolean function G : Fn → F, a property A that has to be met

by the linear sum

Output: Coefficients γ0, . . . , γT−1 such that
∑T−1

i=0 Gt+i(X) fulfills A

1: Use Φ from the Section 5.4.2 to embed G 7→ Φ(G) = G ∈ F[Y1, . . . , Ym]
with F an extension field of F2.

2: Derive a set ΩA (F depending on G and the desired attribute A as

explained in Section 5.4.3.

3: Determine the minimal polynomial min(ΩA) =
∑

i γix
i with the

methods described in Section 5.4.4.

4: return (γ0, . . . , γT−1)

5.4.2 A special representation of Boolean function

In this section, we present an embedding Φ of multivariate Boolean func-
tions into the set of multivariate polynomial over F ⊃ F2. From this repre-
sentation, we will later derive the sets ΩA mentioned before. The first step
to develop Φ is to introduce a special bijection Fn

2 → F2n and extend it to
Fn1

2 × . . .× Fnm

2 → F2n1 × . . .× F2nm . Although we describe the results in their
generality, the reader should keep in mind that our reasoning is motivated
by fast algebraic attacks. In particular, the polynomials p correspond to the
feedback polynomials of the LFSRs and L to their feedback matrices.

Theorem 5.34. Let p(x) =
∑n

i=0 ci · xi ∈ F2[x] be an irreducible polynomial of

degree n and with root α. Furtheron, let L ∈ GLn(F2) be its companion matrix

and X := (x0, . . . , xn−1). There exists a F2-linear bijection ϕL : Fn
2 → F2n with

ϕL(X · Li) = αiϕL(X).

Proof. As L is similar to LT , there exists a unique matrix S ∈ GLn(F2)
with S · LT = L · S. Let s0, . . . , sn−1 denote the n F2-linear functions with
(s0(X), . . . , sn−1(X)) = X · S. We define ϕL(X) :=

∑n−1
i=0 si(X) · αi. As the func-

tions si are linearly independent and 1,α,. . ., αn−1 forms a basis of F2n =
F2[1, α, . . . , αn−1] (see Theorem 2.38), ϕL is clearly a bijection. As ϕL is
the sum of linear functions si, it is linear. What is left to show is that
ϕL(X · Li) = αi · ϕL(X). To do so, we define the vector −→α = (1, α, . . . , αn−1)T .
Then it holds that ϕL(X) = 〈−→α , X · S〉 where 〈., .〉 denotes the usual vector

164

5.4 Adapted precomputation steps with minimized run length

product. As α is a root of p(x), it is αn =
∑n−1

i=0 ciα
i. This implies

α · ϕL(X) =

n−1∑

i=0

si(X) · αi+1 =

n−2∑

i=0

si(X) · αi+1 + sn−1(X) · αn

=

n−2∑

i=0

si(X) · αi+1 + sn−1(X) ·
n−1∑

i=0

ciα
i

= c0sn−1(X) + (s0(X) + c1sn−1(X))α + . . .

+(sn−2(X) + cn−1sn−1(X))αn−1

=
〈−→α ,

(

c0sn−1(X), s0(X) + c1sn−1(X), . . . , sn−2(X) + cn−1sn−1(X)
) 〉

=
〈−→α , (s0(X), . . . , sn−1(X)) · LT

〉
= 〈−→α , (X · S) · LT 〉

= 〈−→α , X · (S · LT)〉 = 〈−→α , X · (L · S)〉 = 〈−→α , (X · L) · S〉 = ϕL(X · L) .

The rest follows by induction.

Corollary 5.35. Let p1(x), . . . , pm(x) ∈ F2[x] be irreducible polynomials of de-

grees n1, . . . , nm and with roots α1, . . . , αm, respectively. Let L1, . . . , Lm be

their companion matrices. Then there exists a linear bijection ϕ := ϕL1,...,Lm :
Fn1

2 × . . .×Fnm

2 → F2n1 × . . .×F2nm such that for all (X1, . . . , Xm) ∈ Fn1
2 × . . .×Fnm

2 ,

we have

ϕ(X1 · Li
1, . . . , Xm · Li

m) := (ϕL1(X1 · Li
1), . . . , ϕLm(Xm · Li

m))

= (αi
1ϕL1(X1), . . . , α

i
mϕLm(Xm)).

The function ϕ allows to give an alternative description of the values
deg(G) and degXj

(G):

Theorem 5.36. Let pj(x) ∈ F2[x], 1 ≤ j ≤ m, be irreducible polynomials of

degrees nj and F2n′ their splitting field. Set Xi = (x
(i)
0 , . . . , x

(i)
ni−1). There exists

a linear injection Φ = Φp1,...,pm:

Φ : F2[X1, . . . , Xm] →֒ F2n′ [y1, . . . , ym]/〈y2n′

i − yi, ∀i〉
G(X1, . . . , Xm) 7→ G(y1, . . . , ym) =

∑

0≤e1,...,em≤2n′−1

ce1,...,em · ye1
1 · . . . · yem

m

such that

deg(G) = max{wtbin((e1, . . . , em)) | ce1,...,em 6= 0} and

degXj
(G) = max{wtbin(ej) | ce1,...,em 6= 0} .

In other words, Φ maps a function G over F2 in n := n1 + . . .+nm variables to

a function G in m variables over the splitting field F2n′ such that the different

notions of degrees of G can be retrieved from the expression of G.

165

5 Fast algebraic attacks

Proof. Let G(X1, . . . , Xm) : Fn1
2 × . . . × Fnm

2 → F2 with Xi = (x
(i)
0 , . . . , x

(i)
ni−1).

We use the F2-linear bijections ϕLi
: Fni

2 → F2ni from Theorem 5.34 to set
x̃i := ϕLi

(Xi). As both ϕLi
and the projection are linear, there exist linear

functions ℓ
(i)
j ∈ F2ni [x] with x

(i)
j = ℓ

(i)
j (x̃i).

Next, we argue why ℓ
(i)
j (x̃i) can be equivalently expressed by ℓ

(i)
0 (αj

i ·x̃i) with
αi being a root of pi(x). Recall that by the definition of the companion matrix

Li, it holds that Xi · Lj
i = (x

(i)
j , . . . , x

(i)
ni−1, ∗, . . . , ∗) with ” ∗ ” being appropriate

linear expressions in Xi. Then, the definition of ℓ
(i)
0 yields

x
(i)
j = ℓ

(i)
0 (ϕLi

(x
(i)
j , . . . , x

(i)
ni−1, ∗, . . . , ∗))

= ℓ
(i)
0 (ϕLi

(X · Lj)) = ℓ
(i)
0 (αj

iϕLi
(X)) = ℓ

(i)
0 (αj

i · x̃i).

Observe that α1, . . . , αm depend only on the feedback polynomials p1, . . . , pm

and are thus independent of the choice of G. We use the preceding obser-
vations to define the following function:

G̃ : F2n1 × . . .× F2nm → F2

(x̃1, . . . , x̃m) 7→ G(ℓ
(1)
0 (x̃1), . . . , ℓ

(1)
0 (αn1−1

1 x̃1), . . . ,

ℓ
(m)
0 (x̃m), . . . , ℓ

(m)
0 (αnm−1

m x̃m)) .

(5.4.33)

As x̃ 7→ (ℓ0(x̃), . . . , ℓ0(αn− 1 · x̃)) is a bijection F2n → Fn
2 , it holds that G̃1 = G̃2

implies G1 = G2. Because of F2ni ⊆ F2n′ for 1 ≤ i ≤ m, one can easily extend
G̃’s domain to (F2n′)m :

G(y1, . . . , ym) := G(ℓ
(1)
0 (y1), . . . , ℓ

(1)
0 (αn1−1

1 y1), . . . , ℓ
(m)
0 (ym), . . . , ℓ

(m)
0 (αnm−1

m ym)) .

Let Φ(G) := G. Observe that

G1 = Φ(G1) ≡ Φ(G2) = G2

⇒ G1|F2n1×...×F2nm ≡ G2|F2n1×...×F2nm

⇔ G̃1 = G̃2

⇒ G1 = G2.

Thus, Φ is an injection.

It is easy to see that Φ is linear, i.e., Φ(G1 + G2) = Φ(G1) + Φ(G2), and that
Φ(G1 ·G2) = Φ(G1) · Φ(G2). Therefore, it suffices to restrict on the case m = 1
and G a monomial. We set m := 1, n := n1, α := α1, y := y1 and G(X) =
G(x0, . . . , xn−1) :=

∏

i∈I xi for I := {i1, . . . , id} ⊆ {0, . . . , n− 1}. Thus, deg(G) = d.
As the function ℓ0 is F2-linear, there exist elements c0, . . . , cn−1 ∈ F2n such
that ℓ0(y) =

∑n−1
j=0 cjy

2j

(see [LidN86]). Therefore, the following equation is

166

5.4 Adapted precomputation steps with minimized run length

valid

Φ(G(X)) = G(y1, . . . , ym)
def
= G(ℓ0(y), . . . , ℓ0(α

n−1y)) =
∏

i∈I

ℓ0(α
iy)

=
∏

i∈I

(
n−1∑

j=0

cjα
2j ·iy2j

)) = (
n−1∑

j1=0

cj1α
2j1 ·i1y2j1)) · . . . · (

n−1∑

jd=0

cjd
α2jd ·idy2jd))

=
n−1∑

j1,...,jd=0

α
Pd

k=1 ik2jk ·
d∏

r=1

cjr · y
Pd

s=1 2js

=
∑

0≤e≤2n−1

wtbin(e)≤d

cey
e.

This shows that

max{wtbin(e) |ce 6= 0} ≤ deg(G) .

Now we consider Φ(G) = G =
∑

e cey
e. As Φ is an injection, there exists

by the definition of Φ a unique function G̃(x̃) =
∑

e cex̃
e with x̃ = ϕL(X) (see

(5.4.33)). We use this relation for a bijection between the sets {F2n → F2n}
and {Fn

2 → F2n} and to reconstruct from G =
∑

e cey
e a description of G. From

Theorem 5.34, we know that ϕL is linear and thus coefficients µ0, . . . , µn−1 ∈
F2n exist with x̃ = ϕL(X) = ϕL(x0, . . . , xn−1) =

∑n−1
i=0 µi · xi. As all fields have

characteristic 2 and xi ∈ F2, it holds that x̃2j

= ϕ2j

L (x0, . . . , xn−1) =
∑n−1

i=0 µ2j

i · xi

for all j. This implies for all e = 2e1 + . . . + 2ed that

x̃e =

d∏

k=1

x̃2ek =

d∏

k=1

(

n−1∑

i=0

µ2ek

i · xi)

︸ ︷︷ ︸

linear in (x0,...,xn−1)

=: Pe(X) ∈ F2n[x0, . . . , xn−1]

with deg Pe ≤ d = wtbin(e). Hence, we can rewrite G̃ =
∑

e cex̃
e to P (X) :=

∑

e cePe(X).

As P (x0, . . . , xn−1) = G(x0, . . . , xn−1) ∈ F2 for all (x0, . . . , xn−1) ∈ Fn
2 , P =

G must hold. It follows that

deg G = deg P ≤ max{wtbin(e) | ce 6= 0}.

Altogether, we have showed that for Φ(G) =
∑

e cey
e it holds that

deg(G) = max{wtbin(e)|ce 6= 0} .

The claim on degXi
(G) can be showed in a similar way.

167

5 Fast algebraic attacks

5.4.3 Connecting attributes A to certain sets ΩA

Next, we will show that finding coefficients γ0, . . . , γT such that
∑

γjGt+j(K)
has a certain property A is equivalent to finding min(ΩA) =

∑
γjx

i ∈ F2[x] for
corresponding sets ΩA.

Table 5.4.5 gives an overview of the polynomials considered in this sec-
tion. These polynomials

∑

i γix
i are grouped in pairs, corresponding to the

property of
∑

i γiGi(X). For example, the coefficients of the polynomials
min(G) and min(d) cause the sum to be equal to zero, as required for fast al-
gebraic attacks as introduced in [Cou03]. Here, the coefficients from min(G)
accomplish this effect for a specific G, whereas the coefficients from min(d)
work for any Boolean function of degree ≤ d.

As we have seen in Example 5.29 and as mentioned in [HawR04], it is not
always necessary for a fast algebraic attack to demand that

∑

i γiGi(X) ≡ 0.
In principle, it suffices that the degree is less than or equal to d′ = deg(H).
This corresponds to eliminating all monomials of degree between d′ and d.
For this purpose, we introduce the polynomials min(d′,d](G) resp. m(d′,d],d.
Again, the coefficients from the first polynomial are derived for a specific
G, whereas the coefficients from the second work for any G of degree ≤
d. Because of deg(min(d′,d](G)) ≤ deg(min(G)) and deg(m(e,d],d) ≤ deg(min(d)),
this can reduce the run length. As both approaches finally give a system
of equations, each with a degree ≤ d′, the effort of solving the system of
equations with linearization is asymptotically the same.7

The last two polynomials, minXi
(G) and minXi

(d), belong to the cases of the
divide-and-conquer attacks described in Section 5.3. The coefficients from
the first one cause the cancellation of all monomials which have variables
from Xi in the case that G is concretely specified. For an unknown G of
degree ≤ d, the coefficients from the second one guarantee this effect.

Now, we come to defining these polynomials more precisely:

Theorem 5.37. Let Φ(G) = G =
∑

E cEY E with Y E := ye1
1 · . . . · yem and

E = (e1, . . . , em). It holds that

Φ(G((X1, . . . , Xm) · Li) = G(αi
1y1, . . . , α

i
mym) =

∑

E

cEαi·EY E (5.4.34)

with αi·E = αi·e1
1 · · ·αi·em

m . We define

ΩG := {αE|cE 6= 0}, Ω(d′,d],G := {αE|cE 6= 0, d′ < wtbin(E) ≤ d} .

7In particular cases, more different monomials may occur in the second approach. This
could result in a slightly higher complexity.

168

5.4 Adapted precomputation steps with minimized run length

Polynomial Boolean function Property A of
∑T

j=0 γjx
j G

∑T
j=0 γjGt+j(K)

min(G) fixed equal to zero

min(d) any with deg(G) ≤ d equal to zero

min(d′,d](G) fixed with deg(G) ≤ d degree ≤ d′

min(d′,d](d) any with deg(G) ≤ d degree ≤ d′

minXi
(G) fixed independent of Xi

minXi
(d) any with deg(G) ≤ d independent of Xi

Table 5.4.5: The different minimal polynomials discussed in this section.

Let p(x) =
∑T

j=0 γjx
j ∈ F2[x] be a Boolean function. Then, we have the follow-

ing equivalences:

∑
γjGt+j(X) ≡ 0 ⇐⇒ p(α) = 0 ∀α ∈ ΩG

deg(
∑

γjGt+j(X)) ≤ e ⇐⇒ p(α) = 0 ∀α ∈ Ω(d′,d],G
(5.4.35)

In particular, for the unique minimal polynomials min(G) := min(ΩG) resp.

min(d′,d](G) := min(Ω(d′,d],G), the values T ′ = deg(min(G)) resp. T = deg(min(d′,d](G))
are the minimum run length. Further on, this means T ≤ T ′.

Proof. Let p(x) =
∑T

i=0 γix
i be an arbitrary polynomial. As Φ is linear, we

have for all t ≥ 0:

Φ(
T∑

i=0

γiGt+i(X1, . . . , Xm)) =
T∑

i=0

γiΦLi
(Gt+i(X1, . . . , Xm))

=
T∑

i=0

γi

(
∑

E

cEα(t+i)·EY E

)

=
∑

E

αt·E
︸︷︷︸

6=0

cE (
T∑

i=0

γi(α
E)i

︸ ︷︷ ︸

=p(αE)

Y E =
∑

E

αi·EcEp(αE)Y E

Let Ĝ :=
∑T

i=0 γiGt+i. We have seen that Φ(Ĝ) ≡ 0 if and only if p(x) is zero

on the set ΩG. As Φ is injective, this is equivalent to Ĝ ≡ 0. Furthermore, it
follows with Theorem 5.36 that

deg(

T∑

i=0

γiGt+i(X1, . . . , Xm)) = deg(Ĝ) = max{wtbin(E) | cEp(αE) 6= 0} .

This shows (5.4.35). The claim that T ′ ≤ T follows from the fact that
Ω(d′,d],G ⊆ ΩG.

169

5 Fast algebraic attacks

As we have discussed before, instead of the coefficients from min(G), one
can use those from min(d′,d](G) for a fast algebraic attack in which the degree
of the equations is decreased from d to d′. Observe that in both cases, the
degree of the new equations is the same, namely d′, but the run length may
be reduced as deg(min(d′,d](G)) = T ′ ≤ T = deg(min(G)).

In some cases, it may be difficult to calculate the sets ΩG resp. Ω(d′,d],G,
or G might be an unknown function of degree d. The following corollary
specifies “general” polynomials

∑
γ′

jx
j and

∑
γjx

j such that (5.4.35) holds
for any Boolean function G of degree ≤ d.8 The proof is similar to the one
of Theorem 5.37.

Corollary 5.38. Let p1(x), . . . , pm(x) ∈ F2[x] be irreducible polynomials of de-

grees n1, . . . , nm, L = diag(L1, . . . , Lm) the block matrix of the companion ma-

trices Li of pi and α = (α1, . . . , αm), where αi is a root of pi. Further on, let

Ωd := {αE|0 < wtbin(E) ≤ d} resp. Ω(d′,d],d := {αE|d′ < wtbin(E) ≤ d}. Let

p(x) :=
∑T

j=0 γjx
j. Then, the following equivalences are true for any Boolean

function G of degree ≤ d :

∑

j γjGt+j(X) = 0 ⇐⇒ p(α) = 0 ∀α ∈ Ωd

deg(
∑

j γjGt+j(X)) ≤ d′ ⇐⇒ p(α) = 0 ∀α ∈ Ω(d′,d],d

Therefore, the minimal polynomials min(d) and min(d′,d](G) of the sets Ωd and

Ω(d′,d],G specify the minimum run length and the coefficients γi.

So far, we proved that optimal coefficients γi for reducing the degree can
be derived by computing the minimal polynomials of certain sets. The fol-
lowing theorem shows that the same is possible for the divide-and-conquer
attack described in Section 5.3. Also here is the proof similar to the proof
of Theorem 5.37.

Theorem 5.39. Let p1(x), . . . , pm(x) ∈ F2[x] be irreducible polynomials of de-

grees n1, . . . , nm, L ∈ GLn(F2) the block matrix of the companion matrices of

all pi and α = (α1, . . . , αm) , where αi is a root of pi. Let G ∈ F2[X1, . . . , Xm] and

Φ(G) =: G =
∑

e cEY E. We set ΩXi,G := {αE = αe1
1 · . . . · αem

m |cE 6= 0, ei 6= 0}. Then

for p(x) :=
∑T

j=0 γjx
j, we have the equivalence:

degXi

(
T∑

j=0

γjGt+j(X)

)

= 0 ⇐⇒ p(α) = 0 ∀α ∈ ΩXi,G .

The left side means that
∑T

j=0 γjGt+j(X) is independent of Xi.

8Of course, it does no longer guarantee the minimality of T ′ and T .

170

5.4 Adapted precomputation steps with minimized run length

Furtheron, let ΩXi,d := {αe|wtbin(e) ≤ d, ei 6= 0}. Then for any Boolean func-

tion G ∈ F2[X1, . . . , Xm] of degree ≤ d, we have the equivalence:

degXi

(
T∑

j=0

cjGt+j(X)

)

= 0 ⇐⇒ p(α′) = 0 ∀α′ ∈ ΩXi,d.

Again do the minimal polynomials minXi
(G) resp. min(d′,d](G) of the sets ΩXi,G

resp. ΩXi,d specify the minimum run length and the coefficients γi.

5.4.4 Efficient precomputation steps with the minimum run

length

In the previous section, we showed that finding the appropriate linear com-
bination for the precomputation steps in different kind of fast algebraic
attacks is equivalent to computing the minimal polynomial of certain sets.
Crucial for the applicability of our approaches is that this can be done ef-
ficiently, which will be demonstrated in this section. First, we show how
to express the polynomials from Table 5.4.5 by other polynomials. The
following fact is obvious resp. well known:

Lemma 5.40. Let Ω, Ω′ ⊆ F2n. Then min(Ω ∩ Ω′) = gcd(min(Ω), min(Ω′)). If

min(Ω) and min(Ω′) are co-prime, then min(Ω ∪ Ω′) = min(Ω) ·min(Ω′).

Theorem 5.41. Let f(x) ∈ F2[x] be an irreducible polynomial of degree n and

α, α′ ∈ F2n be two roots. Then α = (α′)2k

for an appropriate k ∈ {0, . . . , n− 1}.
Proof. We show that for a root α, α2 is a root as well. Then, the rest follows
by induction and a counting argument.

As F2n has the characteristic 2, the so-called ”Freshman’s rule” is appli-
cable here: g(β)2 = g(β2) for all g(x) ∈ F2[x] and β ∈ F2n. This means for f
and its root α that 0 = f(α) = f(α)2 = f(α2). Therefore, α2 is a root of f .

Theorem 5.42. Let the involved polynomials p1, . . . , pm be pairwise co-prime

with degrees n1, . . . , nm. In addition, we assume that for αE =
∏m

i=1 αei

i ,αE′
=

∏m
i=1 α

e′i
i ∈ ΩG it holds that9

αE = αE′ ⇐⇒ ei = e′i ∀i . (5.4.36)

Then, the minimal polynomials can be computed by

min(d′,d](G) = min(G)
gcd(min(d′),min(G))

minXi
(G) = gcd(min(G), minXi

(d)) .
(5.4.37)

9We want to point out that this is exactly the weaker condition for the correctness of
Algorithm 5.2 derived in Theorem 5.20.

171

5 Fast algebraic attacks

Proof. First, we observe that Ω(d′,d],G ∪ (Ωd′ ∩ ΩG) = ΩG. Further on, we claim
that min(d′,d](G) and min(Ωd′ ∩ ΩG) are co-prime. Then it follows with Lemma
5.40 that

min(d′,d](G) · gcd(min(d′), min(G)) = min(d′,d](G) · gcd(min(Ωd′), min(ΩG))

= min(Ω(d′,d],G) ·min(Ωd′ ∩ ΩG)

= min(Ω(d′,d],G ∪ (Ωd′ ∩ ΩG))

= min(ΩG) = min(G) ,

which yields the first claim.
What is left is to show that min(d′,d](G) and min((Ωd′ ∩ ΩG) are co-prime.

Assume that this is not the case. Then there exists an irreducible polyno-
mial f 6≡ 1 which divides min(d′,d](G) and min((Ωd′ ∩ ΩG). As min(d′,d](G) and
min((Ωd′ ∩ ΩG) are minimal, there exists αE ∈ Ω(d′,d],G and αE′ ∈ Ωd′ ∩ ΩG with
f(αE) = f(αE′

) = 0 and wtbin(E ′) ≤ d′ < wtbin(E). This shows that αE 6= αE′
.

Due to Theorem 5.41 and the irreducibility of f , there exists an integer

k ≥ 1 such that
(
αE
)2k

= αE′
. Let E = (e1, . . . , em) and E ′ = (e′1, . . . , e

′
m). We

have
(
αE
)2k

= α2k·e1
1 · · ·α2k·em

m = α
e′1
1 · · ·αe′m

m .

By assumption, it must hold that 2k · ei = e′i for i = 1, . . . , m, which yields the
contradiction

d′ < wtbin(E) =
∑

wtbin(ei) =
∑

wtbin(2
kei) =

∑

wtbin(e′i) = wtbin(E ′) ≤ d′ .

Thus, such a function f cannot exist, which shows that the two minimal
polynomials are co-prime.

The second claim is true because of ΩXi,G = ΩG∩ΩXi,d and Lemma 5.40.

Now we argue why the expressions on the right side of (5.4.37) can be

computed efficiently. Let D′
n :=

∑d′

i=0

(
n
i

)
and Dn :=

∑d
i=0

(
n
i

)
. min(d′) can be

constructed by the method explained in [HawR04, Section 6] with an effort
in O(D′

n[n(log2 n)2 + (log2 D′
n)3]). min(G) can be computed with the meth-

ods described so far. In any case, the effort is at most the effort for the
Berlekamp-Massey algorithm, which is at most O(D2

n). The effort for gcd-
computation and division of two polynomials of degree ≤ Dn over F2 are
in O(M(Dn)log(Dn)) and O(M(Dn)) respectively [AhoHU74]. Hereby, M(Dn)
denotes the effort of computing the product of two polynomials of degree Dn

which is in O(Dn log Dn log log Dn) [Sch77]. Because of D′
n ≤ Dn, The overall

effort of computing min(d′,d](G) is in

O(D′
n[n(log2 n)2 + (log2 D′

n)3]
︸ ︷︷ ︸

Comp. min(d′)

+ D2
n

︸︷︷︸

Comp. min(Gt(X))

+ (Dn log Dn log log Dn)(1 + log Dn))
︸ ︷︷ ︸

Comp. gcd and div.

.

172

5.4 Adapted precomputation steps with minimized run length

In the case of the divide-and-conquer attack, the computation of the min-
imal polynomial minXi

(G) is even easier. First, the algorithm from [HawR04,
Section 6] can be easily adapted to compute minXi

(d) (just choose appro-
priate Ψ). Similarly to above, we can argue that the effort for computing
minXi

(G) is in

O(Dn[n(log2 n)2 + (log2 Dn)3]
︸ ︷︷ ︸

Comp. minXi
(d)

+ D2
n

︸︷︷︸

Comp. min(Gt(X))

+ Dn log2 Dn log log Dn
︸ ︷︷ ︸

Comp. gcd

) .

Summing up, it is possible to compute efficiently the minimal polynomi-
als described in the previous section. As the coefficients of these monomi-
als are exactly the coefficients of the linear combinations used in the pre-
computation steps, both attacks are feasible with a minimum run length.
Compared to the methods where the run length is not minimized, the effort
is only slightly more. The asymptotic effort is even the same.

To get a feeling on the amount of benefit when minimizing the run length,
we consider the degree-decreasing fast algebraic attack from [Cou03]. Re-
call that E0 uses four LFSRs A, B, C and D of lengths na = 25, nb = 31,
na = 33, and na = 39, We denote their outputs at clock t by at, bt, ct and
dt and use the 4-function F = G + H derived in [ArmK03, Cou03] (or see
pages 100ff). The corresponding G is G = σ4

t +σ2
t ·σ2

t+1, where σ4
t = atbtctdt and

σ2
t = atbt+atct+atdt+btct+btdt+ctdt (see end of Section 5.2.2, pages 152ff). By

Theorem 5.42, it is deg(min(d′,d](G)) = deg(min(G)) − deg(gcd(min(d′), min(G))).
It was estimated in [Arm04a] that deg(min(G)) = 8, 822, 188 (also end of Sec-
tion 5.2.2). Furtheron, an upper bound for deg(gcd(min(d′), min(G))) is the
number of monomials of degree ≤ 3 which can occur in the system of equa-
tions given by G. We calculated this number to be ≈ 326, 080. This re-
duces the number of successive bits required for one equation of degree 3
to ≈ 8, 496, 108. The effort to calculate min(d′,d](G)) is ≈ 247 which is negligible
compared to the attack effort of ≈ 254 [Cou03].

A general estimation for the advantage is the following. Let min(G) =
∑T

i=0 γix
i and min(d′,d](G) =

∑T ′

j=0 γ′
jx

j. That is, the γi are chosen such that
all monomials in the sum

∑

i γiGi(X) are eliminated, whereas in the sum
∑

j γ′
jGj(X), only these monomials are canceled with a degree in (d′, d]. A

general upper bound for the number of monomials with degree ≤ d is
(

n
0

)
+

. . .+
(

n
d

)
, whereas at most

(
n

d′+1

)
+ . . .+

(
n
d

)
different monomials with a degree

between d′ and d exist. Thus, a rough estimation for T and T ′ is given by

T ≤
(

n

0

)

+ . . . +

(
n

d

)

, T ′ ≤
(

n

d′ + 1

)

+ . . . +

(
n

d

)

.

Therefore, in the extreme case it is possible to reduce the run length by a
value of

(
n
0

)
+ . . . +

(
n
d′

)
.

173

5 Fast algebraic attacks

n 8 9 10 11 12

min(G) T 161,2 255 384,8 561 793

#{γj 6= 0} 84,3 132,6 195,2 278,4 413,6

min(d′,d](G) T ′ 71 126 210 330 495

#{γ′
j 6= 0} 31 61,3 102,1 159,1 243

n 13 14 15 16

min(G) T 1092 1469,2 1940 2516

#{γj 6= 0} 543 741,7 963,4 1253,5

min(d′,d](G) T ′ 715 1001 1365 1820

#{γ′
j 6= 0} 351,7 502,3 677,6 917

Table 5.4.6: Simulation results for fast algebraic attacks based on the co-
efficients from min(G) and min(d′,d](G)

Inspired by the example of E0 where d′ = 3 and d = 4, we have imple-
mented some simulations to compare the average values of T with T ′ and
the average number of non-zero coefficients γ′

j and γj. Observe that the
last values reflect how many equations have to be summed up. The ex-
amples are based on one LFSR and a fixed random G which is the sum of
monomials of degree 4. The results can be found in Table 5.4.6.

174

5.5 Immunity of simple combiners against fast algebraic attacks

5.5 Immunity of simple combiners against fast

algebraic attacks

In this final section of the chapter on fast algebraic attacks, we restate our
results from [ArmCGKMR06] on the immunity of simple combiners against
fast algebraic attacks. More precisely, we consider the following task: Given
a simple combiner with output function f , does a 1-function F (X, z) exist
such that

F (X, z) = G(X)
︸ ︷︷ ︸

deg=d

+ H(X, z)
︸ ︷︷ ︸

deg=d′

with d > d′. By Corollary 4.19, any 1-function F (X, z) for a simple combiner
has the form z ·(f ·(h0+h1)+h1)+h0 ·f with h0, h1 arbitrary Boolean functions.
We will consider only the special case10 h := h0 = h1, which leads to

F (X, z) = h(X) · (f(X) + z) = h(X) · f(X)
︸ ︷︷ ︸

=:G(X)

+ h(X) · z
︸ ︷︷ ︸

=:H(X,z)

.

Observe that the expression G(X) and H(X, z) are chosen such that they fit
the notations defined in Section 5.1. The question will be, given a specific
function f(X), do functions G(X) and h(x) exist of degree d and d′, respec-
tively. First, we provide some basic facts on different representations of
Boolean functions.

5.5.1 Boolean Functions

We have already seen in Section 2.3 that any Boolean function f : Fn
2 → F2

can be represented by its algebraic normal form
∑

E∈{0,1}n fEXE. From

now on, we will identify each E = (e1, . . . , en) ∈ {0, 1}n with the integer
E =

∑n−1
i=0 en−i2

i. Then, we can derive from the algebraic normal form the
coefficients vector

C(f) := (f0, . . . , f2n−1). (5.5.38)

An alternative way of characterizing f is its truth table T (f), which is
defined by

T (f) := (f(0), . . . , f(2n − 1)) . (5.5.39)

10Fast algebraic attacks based on the general form as given in Corollary 4.19 has not
been examined yet and remains open for further research. However, we expect due to
first simulations and internal discussions [KueM06] that the general form allows better
attacks only in rare situations.

175

5 Fast algebraic attacks

Example 5.43. Consider the Boolean function

f(x1, x2) := x1 + x1x2 = f(0,0) · 1 + f(0,1) · x2 + f(1,0) · x1 + f(1,1) · x1x2

= f0 · 1 + f1 · x2 + f2 · x1 + f3 · x1x2 .

The coefficients vector of f is C(f) = (0, 0, 1, 1). In addition, one can easily

compute that f(0, 0) = f(0, 1) = f(1, 1) = 0 and f(1, 0) = 1, so the truth table is

given by T (f) = (0, 0, 1, 0).

Observe that T (f + g) = T (f) + T (g) and T (f · g) = T (f) · T (g) (defined
componentwise). For the coefficients vector, C(f + g) = C(f) + C(g) also
holds, but C(f · g) 6= C(f) · C(g). Next, we show how to transform C(f) into
T (f) and vice versa. We will use for binomial coefficients

(
a
b

)
the extended

definition
(

a
b

)
= 0 for b > a (and a, b > 0) or b < 0 (and a ≥ 0). Binomial

coefficients modulo 2 can be implemented very efficiently, using the fact
that

(
a
b

)
mod 2 = 1 if and only if (∼ a) ∧ b = 0 (for a, b > 0). Recall Lucas’

Theorem which says that
(

a
b

)
mod 2 =

∏(ai

bi

)
where ai and bi are the binary

expression of a and b, respectively.

Definition 5.44. Let X := (x1, . . . , xn) ∈ Fn. The support of X is defined

to be the set supp(X) := {i|xi = 1} (recall Definition 4.9). Observe that |X| =
| supp(X)|. Furthermore, each X is characterized by its support and vice

versa. For an integer x =
∑n

i=0 xi · 2i with xi ∈ {0, 1}, we define its support by

supp(x) := {i|xi = 1}.
We have the following equivalence:
(

a

b

)

mod 2 = 1 ⇐⇒ ∀i : bi = 1⇒ a1 = 1 ⇐⇒ supp(b) ⊆ supp(a) . (5.5.40)

Definition 5.45. For N ≥ 1, we define recursively the Hadamard matrix
of size N × N . For N = 1, we set H1 := (1). For N = 2n+1, we define H2n+1 =
(

H2n 0
H2n H2n

)

. For intermediate values 2n < N < 2n+1, we define HN to be the

submatrix of H2n+1 which consists of the first N rows and columns.

Example 5.46. The matrices HN for 1 ≤ N ≤ 4 read

H1 = (1), H2 =

(
1 0
1 1

)

, H3 =





1 0 0
1 1 0
1 0 1



 , H4 =







1 0 0 0
1 1 0 0
1 0 1 0
1 1 1 1







.

Lemma 5.47. HN is a lower triangular, self-inverse matrix. Furthermore, it

holds that HN (i, j) =
(

i
j

)
mod 2 for all (i, j) with 0 ≤ i, j ≤ N−1, where HN(i, j)

is the entry of HN at position (i, j).

176

5.5 Immunity of simple combiners against fast algebraic attacks

Proof. That HN is a lower triangular matrix follows directly from the defini-
tion. We show that it is self-inverse by induction over N . For N = 1, it is
obvious that H1 ·H1 = I1, where In denotes the unitary matrix of size n× n.
Next, we assume that the claim is true for N = 2n ≥ 1. Then

H2n+1 ·H2n+1 =

(
H2n 0
H2n H2n

)

·
(

H2n 0
H2n H2n

)

=

(
H2n ·H2n 0

H2n ·H2n + H2n ·H2n H2n ·H2n

)

=

(
I2n 0
0 I2n

)

= I2n+1

Finally, let 2n < N < 2n+1. Then, it is

(
IN 0
0 I2n+1−N

)

= I2n+1 = H2n+1 ·H2n+1

=

(
HN 0
∗ ∗

)

·
(

HN 0
∗ ∗

)

=

(
HN ·HN 0
∗ ∗

)

.

This shows that HN ·HN = IN .
For the claim HN(i, j) =

(
i
j

)
mod 2, we assume w.l.o.g. that N = 2n and

conduct the proof again by induction. For N = 1 and N = 2 the statement
can be easily checked. Now consider H2N . By definition, H2N has the form

H2N =

(
HN 0
HN HN

)

. We define the matrix H̃ =

(
H̃0 H̃1

H̃2 H̃3

)

of size 2N × 2N

by H̃(i, j) :=
(

i
j

)
mod 2 and show that H2N = H̃ ”corner by corner”.

First of all, it is H̃0 = HN by assumption. Further on, it is H̃1 = 0 as
(

i
j

)
= 0

for j > i. Finally, we use the facts that
(

i+2n

j

)
mod 2 =

(
i
j

)
mod 2 and

(
i+2n

j+2n

)

mod 2 =
(

i
j

)
mod 2, which is a consequence of Luca’s Theorem. This shows

that H̃2 = H̃0 = HN and H̃3 = H̃0 = HN , respectively.

Now, we are ready to connect the expressions C(f) and T (f).

Theorem 5.48. Let f ∈ F[x1, . . . , xn] be an arbitrary Boolean function. Then,

C(f) = H2n · T (f) and T (f) = H2n · C(f) . (5.5.41)

Proof. Set N := 2n. Due to Lemma 5.47, HN is self-inverse and therefore
both equations are equal. Hence, it suffices to show that C(f) = HN · T (f).
We prove the claim by induction on n. Let n = 1. Then f(x) = f(0) + x ·
(f(0) + f(1)) and therefore C(f) = (f(0), f(0) + f(1)). This is obviously equal
to H2 · T (f).

177

5 Fast algebraic attacks

Example 5.49. Consider the function f(x1, x2) = x1+x1x2 from Example 5.43.

We determined that C(f) = (0, 0, 1, 1) and T (f) = (0, 0, 1, 0). One can easily

check that

H4 · C(f) =







1 0 0 0
1 1 0 0
1 0 1 0
1 1 1 1






·







0
0
1
1







=







0
0
1
0







= T (f)

and vice versa.

Now assume that the assumption is true for n ≥ 1. Let f ∈ F[x1, . . . , xn+1]
be an arbitrary Boolean function. We set

f0(x2, . . . , xn+1) := f(0, x2, . . . , xn+1) and f1(x2, . . . , xn+1) := f(1, x2, . . . , xn+1).

It is f = f0 + x1 · (f0 + f1) . This implies that

C(f) =

(
C(f0)

C(f0) + C(f1)

)
assump.

=

(
HN · T (f0)

HN · T (f0) + HN · T (f1)

)

=

(
HN 0
HN HN

)

·
(

T (f0)
T (f1)

)

= H2n+1 · T (f) .

5.5.2 How to set up Equations for Arbitrary Functions

Setting up Equations

As said at the beginning of the section, we consider three Boolean functions
f(X), G(X) and h(X) with G(X) = f(X) ·h(X). Notwithstanding the previous
notations, we will express the coefficients of their algebraic normal forms
by Greek letters:

f(X) =
∑

α∈F
n
2

fαXα, h(X) =
∑

β∈F
n
2

hβX
β, G(X) =

∑

γ∈F
n
2

GγX
γ.

If not otherwise stated, it will be α = (α1, . . . , αn), β = (β1, . . . , βn) and γ =
(γ1, . . . , γn). We introduce a semi-ordering on these coefficients:

β ⊆ γ ⇐⇒ supp(β) ⊆ supp(γ).

We will also use the notation α ∨ β := (α1 ∨ β1, . . . , αn ∨ βn). With the next
proposition, we are able to express a single coefficient Gγ in f and h only.

178

5.5 Immunity of simple combiners against fast algebraic attacks

Proposition 5.50. Let f(X) =
∑

α fαXα and h(X) =
∑

β hβX
β. Set G(X) :=

∑

γ GγX
γ := f(X) · h(X). Then, it is for each γ

Gγ =
∑

(α,β):α∨β=γ

fα · hβ . (5.5.42)

Proof. We first show that the following statement holds for the product of
two monomials. Because of the field equation x2 = x, it holds for α, β ∈ Fn:

Xα ·Xβ =

n∏

i=1

xαi+βi

i

field eq.
=

n∏

i=1

x
max{αi,βi}
i = Xα∨β.

With this preparation, we can conclude:

G(X) =
∑

γ

GγX
γ def

= f(X) · h(X) =
(∑

fα ·Xα
)

·
(∑

hβ ·Xβ
)

=
∑

(α,β)

fα · hβ ·Xα∨β =
∑

γ




∑

(α,β):α∨β=γ

fα · hβ



Xγ.

As the algebraic normal form of G is unique, the equation immediately
implies the claim.

Based on this proposition and on the Hadamard transformation intro-
duced in Section 5.5.1, we find another representation of Gγ in the next
Theorem. As a notational convention, if V and C(f) (resp. V and T (f)) are
Boolean vectors of identical size, a product of type V ·C(f) (resp. V ·C(f)) will
denote a scalar product

∑n
k=0[V]k · [C(f)]k where [V]k denotes the kth entry of

V .

Theorem 5.51. Let f(X) =
∑

α fαXα and h(X) =
∑

β hβXβ. Set G(X) :=
∑

γ GγX
γ := f(X) · h(X). Let Aγ,β denote an element in F2, and B̄i,j a vector of

size 2n over F2. Then, it is for each γ

Gγ =
∑

β⊆γ

Aγ,β · hβ with (5.5.43)

Ai,j := B̄i,j · T (f) = B̄i,i−j · C(f) and (5.5.44)

[
B̄i,j

]

k
:=

(
i

k

)

·
(

k

j

)

mod 2 . (5.5.45)

179

5 Fast algebraic attacks

Proof. Starting from (5.5.42), we can set up the following equation for Gγ:

Gγ =
∑

(α,β):α∨β=γ

fα · hβ =
∑

β⊆γ

(
∑

α⊆γ:α∨β=γ

fα

)

︸ ︷︷ ︸

=:Aγ,β

·hβ.

Next, we prove that [B̄γ,γ−β]α = 1 if and only if α ⊆ γ and α∨β = γ. Then, this
shows that Aγ,β = B̄γ,γ−β · C(f). First, one can rewrite the conditions α ⊆ γ
and α ∨ β = γ for β ⊆ γ to

supp(γ) \ supp(β) ⊆ supp(α) ⊆ supp(γ). (5.5.46)

Observe that β ⊆ γ implies that supp(γ) \ supp(β) = supp(γ − β) as no carries
occur in the subtraction.

Due to (5.5.40), (5.5.46) is true if and only if
(

γ
α

)
mod 2 = 1 and

(
α

γ−β

)

mod 2 = 1. This is equivalent to 1 =
(

γ
α

)(
α

γ−β

)
mod 2 = [B̄γ,γ−β]α.

Finally, we show that Aγ,β = B̄γ,β · T (f). It holds that

C(G) = C(f · h) = H2n · T (f · h) = H2n · (T (f) ∗ T (h)) = H2n · (T (f) ∗ (H2n · C(h))),

where ∗ denotes the componentwise product of vectors. Notice that for a
matrix M and vectors V and W , it holds that V ∗ (M ·W) = (V ∗M) ·W , where
V ∗M means that the i-th row of M is multiplied with the i-th entry of V .
As H2n(i, j) =

(
i
j

)
mod 2, it is C(G) = A(f) ·C(h) with A(f) := H2n · (T (f) ∗H2n).

It follows that

Aγ,β = [A(f)]γ,β = [H2n · (T (f) ∗H2n)]γ,β =
∑

α

[H2n]γ,α · [T (f) ∗H2n]α,β

=
∑

α

(
γ

α

)(
α

β

)

f(α) mod 2 = B̄γ,β · T (f) .

With this theorem, the coefficients Ai,j can be computed either with the
coefficients vector of f or with the truth table of f . Notice that the vector
B̄i,j is independent of f . We give an example how to set up an equation.

Example 5.52. Let us set up an equation for γ = (1, 0, 1) ∈ F3
2. Consequently,

(5.5.43) results to11

G(101) = A(101),(000) · h(000) + A(101),(001) · h(001) + A(101),(100) · h(100) + A(101),(101) · h(101) .

11For the sake of brevity, we abbreviate (1, 0, 1) to (101), etc.

180

5.5 Immunity of simple combiners against fast algebraic attacks

If we use the Equations (5.5.44) and (5.5.45), we find

A(101),(000) = f(101) = f(000) + f(100) + f(001) + f(101)

A(101),(100) = f(001) + f(101) = f(100) + f(101)

A(101),(001) = f(100) + f(101) = f(001) + f(101)

A(101),(101) = f(000) + f(100) + f(001) + f(101) = f(101) .

Determining the Existence of Solutions

We consider now the question whether a function h(x) of degree ≤ d′ exists
such that G(X) = f(x) · h(X) is of degree ≤ d or not. Theorem 5.51 provides
all information necessary to rewrite the product G(X) = f(x) · h(X) by a
system of linear equations in the coefficients Gγ and hβ. Because of our
assumptions that deg(G) ≤ d and deg(h) ≤ d′, it holds that Gγ = 0 for |γ| > d
and similarly hβ = 0 for |β| > d′. Thus, equation (5.5.43) yields homogeneous
equations in hβ for |γ| > d′.

Let D′ := µ2(n, d′) =
∑d′

i=0

(
n
i

)
and D := µ2(n, d) =

∑d
i=0

(
n
i

)
denote the num-

ber of monomials of degree≤ d′ and ≤ d, respectively. Because of deg(h) ≤ d′,
the number of non-zero coefficients in the algebraic normal form of h is
bounded by D′. Therefore, considering about D′ equations in hβ as de-
scribed above should give an answer whether appropriate h and G exist and
what they look like. This is formalized in Algorithm 5.5. Here, each column
represents one coefficient hβ and each row one equation 0 =

∑

β⊆γ Aγ,β ·hβ for
a γ with d < |γ| ≤ d′+deg(f). Observe that f ·h has no terms of degree greater
than deg(f ·h). Therefore, considering γ with |γ| > d′+deg(f) ≥ deg(f ·h) would
not yield any constraints on hβ.

181

5 Fast algebraic attacks

Algorithm 5.5.
Finding a 1-function for a fast algebraic attack on a simple com-

biner

Input: A Boolean function f of dimension n, degrees deg h = d′ and

deg G = d.

Output: Determine if G and h exist such that f · h = G.

1: Initialize a D′ ×D′ matrix M , and let each entry be zero.

2: Choose an arbitrary ordering on {β : |β| ≤ d′} and index the

columns of M accordingly.

3: for i from 1 to D′ do
4: Choose a random γ with weight d < |γ| ≤ d′ + deg(f).
5: Determine the set B = {β : β ⊆ γ, |β| ≤ d′}.
6: for all β in B do
7: Let the entry of M in row i and column β be Aγ,β.

8: end for
9: end for

10: Solve the linear system of equations, and output no G and h of
corresponding degree if there is only a trivial solution.

If the rows in Algorithm 5.5 are not linearly independent, this does not im-
ply the existence of functions G and h of appropriate degree. Other choices
of γ may have produced additional linear independent rows in M , which
would show that M has no non-trivial nullvectors. However, one can ar-
gue theoretically that, given a set S of linear independent vectors which is
not a basis, if one chooses a random vector V , it is more likely that V is
linear independent to S (see also (4.3.31) on page 110 and the correspond-
ing explanations). Similarly, one can expect that if one repeats the loop of
Algorithm 5.5 at little more than D′ times, one gets with high probability a
linear system of equations of full rank if no such functions G and h exist. If
non-trivial solutions exist, one can easily check afterwards if deg(f · h) = d
to exclude ”wrong solutions”.

Example 5.53. Recall the majority function maj from Proposition 4.46. For

n = 5 inputs, it has the algebraic normal form

f(x1, . . . , x5) = f(X) = σ3(X) + σ4(X) (5.5.47)

where σs(X) denotes the jth elementary symmetric function (4.37). This shows

that fα = 1 if and only if |α| = 3 or |α| = 4. For a fast algebraic attacks using

182

5.5 Immunity of simple combiners against fast algebraic attacks

f(X)− z as the 1-function, one would split it as follows:

0 = f(X)− z = σ4(X)
︸ ︷︷ ︸

=:G(X)

+ σ3(X) + z
︸ ︷︷ ︸

=:H(X,z)

with d = 4 and d′ = 3. The question is if better solutions exist.

As AI(maj) = ⌊n/2⌋+1 = 3 (or equivalently lad(1) = 3), we set d = 3. Assume

that we are intersted in finding out if d′ = 1 is possible. Then, D′ =
(
5
0

)
+
(
5
1

)
= 6.

We choose the ordering (00000), (00001), (00010), (00100), (01000), (10000)

for the β with |β| ≤ d′ = 1 and consider

γ ∈ G := {(11110), (11101), (11011), (10111), (01111), (11111)}.
To set up the matrix M , we have to compute the values Aγ,β for γ ∈ G and

|β| ≤ 1. Let us start with γ = (11110). It holds that

A(11110),(00000) = f(11110) = 1 , A(11110),(00001) = 0,
A(11110),(00010) = f(11100) + f(11110) = 0 , A(11110),(00100) = f(11010) + f(11110) = 0,
A(11110),(01000) = f(10110) + f(11110) = 0 , A(11110),(10000) = f(01110) + f(11110) = 0.

This yields that the first row of M is equal to (1 0 0 0 0 0). In a simi-

lar way, one can show that the same holds for the rows corresponding

to γ = (11101), (11011), (10111), (01111). For the final row, corresponding to

γ = (11111), one has

A(11111),(00000) = 0, A(11111),(00001) = f(11110) = 1, A(11111),(00010) = f(11101) = 1,
A(11111),(00100) = f(11011) = 1, A(11111),(01000) = f(10111) = 1, A(11111),(10000) = f(01111) = 1.

Thus, the matrix M has the form










1 0 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0
0 1 1 1 1 1











A possible basis of the kernel space is

{(0, 1, 1, 0, 0, 0), (0, 1, 0, 1, 0, 0), (0, 1, 0, 0, 1, 0), (0, 1, 0, 0, 0, 1)}.
which corresponds to the following choices (or linear combination of them) for

h: x1 + x2, x1 + x3, x1 + x4, x1 + x5. The validity of the solutions can be easily

checked via multiplication, e. g.

0 = (maj(X)− z) · (x1 + x2) = (x1 + x2) · (x3x4 + x3x5 + x4x5)
︸ ︷︷ ︸

=G(X)

+ (x1 + x2) · z
︸ ︷︷ ︸

=H(X,Z)

.

Because of deg(G) = d = 3 and deg(H) = d′ = 1, this solution is better for a

fast algebraic attack than the naive approach displayed in (5.5.47).

183

5 Fast algebraic attacks

5.5.3 How to set up Equations for Symmetric Functions

In this section, we consider symmetric Boolean functions. We give a general
analysis of the resulting system of equations and present a generic and a
specific algorithm in order to determine the existence of G (and h) of low
degree.

Setting up Equations

Recall the definition of symmetric functions and the underlying theory de-
scribed in Section 4.2.3. Let f(x) be symmetric, that is f(X) = f(x1, . . . , xn)
is invariant under exchanging the variables xi. Therefore, it is f(X) =
f(X ′) if |X| = |X ′| and we can identify f(X) with its (abbreviated) truth
tableT σ(f) := (f(0), f(1), . . . , f(n)) ∈ Fn+1, where f(i) := f(X) for a X with
|X| = i.

By Theorem 4.39, we can likewise identify each symmetric function with
its abbreviated coefficient vector Cσ(f) = (f0, . . . , fn). Again, we can express
the relationship between Cσ(f) and T σ(f) by the Hadamard matrix:

Theorem 5.54. Let f(x) = f(x1, . . . , fn) be a symmetric function. Then

Cσ(f) = Hn+1 · T σ(f) and T σ(f) = Hn+1 · Cσ(f) . (5.5.48)

Proof. Due to Lemma 5.47, Hn+1 is self-inverse. Hence, we only show that
T σ(f) = Hn+1 · Cσ(f).

For this purpose, we define a matrix Sn+1 of size (n + 1)× (n + 1) such that
S(i, j) := σj(i) for 0 ≤ i, j ≤ n, where σj(i) is the jth elementary symmetric
polynomial evaluated on an input with weight i. This means that the rows
are labeled by the different input weights i and the columns by the different
elementary symmetric polynomials σj.

Next, we define the vector T := Sn+1 · Cσ(f). The i-th entry of T is
∑n

j=0 fj ·
σj(i) = f(i). This shows that T = Sn+1 · Cσ(f) = T σ(f). Further on, one can
easily check that S(i, j) = σj(i) =

(
i
j

)
mod 2. Together with Lemma 5.47, it

follows that Sn+1 = Hn+1, which concludes the proof.

Example 5.55. We consider again the majority function maj with n = 5 in-

puts. Using the abbreviated representation based on the input’s weight, it

holds that f(0) = f(1) = f(2) = 0 and f(3) = f(4) = f(5) = 1. The correspond-

ing truth table is T σ(f) = (0, 0, 0, 1, 1, 1). Thus, we can compute the coefficients

184

5.5 Immunity of simple combiners against fast algebraic attacks

vector by










1 0 0 0 0 0
1 1 0 0 0 0
1 0 1 0 0 0
1 1 1 1 0 0
1 0 0 0 1 0
1 1 0 0 1 1











·











0
0
0
1
1
1











=











0
0
0
1
1
0











.

Thus, the majority function with three inputs has the algebraic normal form

f(X) = 0 · σ0(X) + 0 · σ1(X) + 1 · σ2(X) + 1 · σ3(X) + 1 · σ4(X) + 0 · σ5(X)

= σ3(X) + σ4(X)

as claimed in Example 5.53.

With the help of Proposition 5.50, one can derive a much simpler descrip-
tion of the coefficients Gγ in the case of symmetric functions. Remember
that β ⊆ γ is an abbreviation for supp(β) ⊆ supp(γ).

Theorem 5.56. Let f(X) =
∑n

i=0 fiσi(X) a symmetric function and h(X) =
∑

β hβX
β. Set G(X) :=

∑

γ GγX
γ := f(x) · h(x). Let Aσ

|γ|,|β| denote an element in

F2 and B̄σ
i,j a vector of size n + 1 over F2. Then, it is for each γ

Gγ =
∑

β⊆γ

Aσ
|γ|,|β| · hβ =

|γ|
∑

b=0

Aσ
|γ|,b

∑

β⊆γ:|β|=b

hβ (5.5.49)

Aσ
i,j := B̄σ

i,j · T σ(f) = B̄σ
i,i−j · Cσ(f) (5.5.50)

[
B̄σ

i,j

]

k
:=

(
i− j

i− k

)

mod 2 . (5.5.51)

With this theorem, the coefficients Aσ
|γ|,|β| can be computed very cheaply,

either with the simplified coefficients vector of f , or with the value vector of
f . Notice that the vector B̄σ

i,j is again independent of f . Before we prove the
theorem, we give an example how to set up an equation.

Example 5.57. Let us set up an equation for γ = (101)2. It is |γ| = 2, and

(5.5.49) results in

G(101) = Aσ
2,0 · (h(000))

+ Aσ
2,1 · (h(100) + h(001))

+ Aσ
2,2 · (h(101)) .

185

5 Fast algebraic attacks

If we use (5.5.50) and (5.5.51) in order to determine the coefficients Aσ
i,j,

we find

Aσ
2,0 = f2 = f(0) + f(2)

Aσ
2,1 = f1 + f2 = f(1) + f(2)

Aσ
2,2 = f0 + f2 = f(2) .

The rest of this subsection is exclusively dedicated to the task of proving
Theorem 5.56. First, we need some additional statements based on the
definition of the support.

Proposition 5.58. Let α, β, γ ∈ Fn such that α∨β = γ. Then supp(α)∪supp(β) =
supp(γ). In particular, it is α ⊆ γ and β ⊆ γ.

Proof. By assumption, it is γi = αi ∨ βi for i = 1, . . . , n. Let i ∈ supp(γ).
Then 1 = γi = αi ∨ βi shows that either αi = 1 or βi = 1. This shows that
supp(γ) ⊆ supp(α) ∪ supp(β). Next we show that supp(α) ⊆ supp(γ). Assume
that this is not true. Then there exists j ∈ supp(α)\supp(γ). This means that
αj = 1 and γj = 0. But this would imply the contradiction 1 = αj∨βj = γj = 0.
Hence, we have supp(α) ⊆ supp(γ). The rest follows from the symmetry of
α ∨ β.

Proposition 5.59. Let γ, β ∈ Fn with β ⊆ γ. For each i ∈ {0, . . . , |β|} exist
(
|β|
i

)

different α ∈ Fn such that

1. α ∨ β = γ

2. |α| = |γ| − |β|+ i

Proof. First, we derive some conditions on αi to achieve αi ∨ βi = γi. For this
purpose, we distinguish between three cases:

i ∈ supp(β) : This means that βi = γi = 1. Hence, αi can be either 0 or 1.
There are no restrictions on αi.

i 6∈ supp(β), i ∈ supp(γ) : This means that βi = 0 but γi = 1. Hence, αi := 1.

i 6∈ supp(β), i 6∈ supp(γ) : We have βi = γi = 0. This implies αi := 0.

We see that it is always possible to construct α such that α∨β = γ. The first
and second case show that each α with α ∨ β = γ can be characterized by

supp(α) = (supp(γ) \ supp(β))
.∪ S (5.5.52)

with S ⊆ supp(β) (including S = ∅). Furthermore, it is |α| = |γ| − |β| + |S|.
Now let i ∈ {0, . . . , |β|}. As we have seen, each α with α ∨ β = γ and |α| =
|γ| − |β| + i corresponds to exactly one set S ⊆ supp(β) with |S| = i. There
exist

(
| supp(β)|

i

)
=
(
|β|
i

)
such sets S, which implies the claim.

186

5.5 Immunity of simple combiners against fast algebraic attacks

Now we are ready to simplify Theorem 5.51 for symmetric functions. Let
f(X) =

∑

α fαXα =
∑n

i=0 fiσi(X) be a symmetric function and h(X) =
∑

β hβXβ.
Set G(X) :=

∑

γ GγX
γ := f(X) · h(X). Due to Proposition 5.50, each coeffi-

cient of G can be expressed in the following way.

Gγ =
∑

(α,β):α∨β=γ

fα · hβ =

|γ|
∑

b=0

∑

β⊆γ:|β|=b

hβ ·
[

∑

α⊆γ:α∨β=γ

fα

]

=

|γ|
∑

b=0

∑

β⊆γ:|β|=b

hβ ·






b∑

i=0

∑

α ⊆ γ : α ∨ β = γ,

|α| = |γ| − b + i

fα






f symm.
=

|γ|
∑

b=0

∑

β⊆γ:|β|=b

hβ ·






b∑

i=0

∑

α ⊆ γ : α ∨ β = γ,

|α| = |γ| − b + i

f|γ|−b+i






Prop. 5.59
=

|γ|
∑

b=0

∑

β⊆γ:|β|=b

hβ ·
[

b∑

i=0

(
b

i

)

f|γ|−b+i

]

=

|γ|
∑

b=0




∑

β⊆γ:|β|=b

hβ



 ·
[

b∑

i=0

(
b

i

)

f|γ|−b+i

]

︸ ︷︷ ︸

=:Aσ
|γ|,b

=
∑

β⊆γ

hβA
σ
|γ|,|β| .

The last equation is true as the part in brackets depends only on b =
|β| and not on the value of β itself. Next, we intend to simplify the term
∑b

i=0

(
b
i

)
f|γ|−b+i in the above equation. Define j := |γ|−b+i, hence i = j+b−|γ|

and

Aσ
|γ|,|β| =

b∑

i=0

(
b

i

)

fi+|γ|−b =

j+b−|γ|=b
∑

j+b−|γ|=0

(
b

j + b− |γ|

)

fj

=

|γ|
∑

j=|γ|−b

(
b

|γ| − j

)

fj =
n∑

j=0

(
b

|γ| − j

)

fj = B̄σ
|γ|,|γ|−|β| · Cσ(f) .

The last equality holds because of b ≤ |γ| and our extended definition of bi-
nomial coefficients. Finally, we intend to find a similar expression for T σ(f)
instead of Cσ(f). Remember that Cσ(f) = Hn+1 · T σ(f) with the Hadamard-
matrix H. The next proposition is on the product B̄σ

|γ|,|γ|−|β| ·Hn+1.

187

5 Fast algebraic attacks

Proposition 5.60. Let γ ∈ {0, 1}n, b ∈ {0, . . . , |γ|} and i ∈ {0, . . . , n}. It holds

that 



|γ|
∑

k=0

(
b

|γ| − k

)

·
(

k

i

)

=

(|γ| − b

i− b

)


 mod 2 . (5.5.53)

Proof. We prove the statement by induction on |γ| and b ≤ |γ|. Let γ := 0.
Hence, b = 0 and (5.5.53) can be rewritten to

|γ|
∑

k=0

(
b

|γ| − k

)

·
(

k

i

)

=

(
0

0

)

︸︷︷︸

=1

·
(

0

i

)

=

(|γ|
i

)

=

(|γ| − b

i− b

)

.

Next, let |γ| and i be arbitrary and assume that the statement is true for all
|γ′| < |γ| and b′ ≤ |γ′|. We show now that (5.5.53) is true for all 0 ≤ b ≤ |γ| by
induction on b. First, we consider the case b = 0. It holds that

|γ|
∑

k=0

(
b

|γ| − k

)

·
(

k

i

)

=

|γ|−1
∑

k=0

(
0

|γ| − k

)

︸ ︷︷ ︸

0

·
(

k

i

)

+

(
0

0

)

︸︷︷︸

=1

·
(|γ|

i

)

=

(|γ| − b

i− b

)

.

Now, assume that the claim is true for |γ| and 0 ≤ b < |γ|. For the sake of
readability, we will omit the string ”mod 2” from now on and will use the
notation ≡2 instead. A famous theorem on binomial coefficients says that
(

r+1
s

)
=
(

r
s

)
+
(

r
s−1

)
or
(

r+1
s

)
−
(

r
s

)
=
(

r
s−1

)
. Because of −x ≡2 x, in our case we

get
(

r+1
s

)
≡2

(
r
s

)
−
(

r
s−1

)
. The following equations are all modulo 2. However,

this is only important for the first equation. The other equations are true
also in the ring of integers.

|γ|
∑

k=0

(
b + 1

|γ| − k

)

·
(

k

i

)

≡2

|γ|
∑

k=0

[(
b

|γ| − k

)

−
(

b

|γ| − k − 1

)]

·
(

k

i

)

=

|γ|
∑

k=0

(
b

|γ| − k

)

·
(

k

i

)

−
|γ|
∑

k=0

(
b

|γ| − k − 1

)(
k

i

)

=

(|γ| − b

i− b

)

−
|γ|−1
∑

k=0

(
b

(|γ| − 1)− k

)(
k

i

)

=

(|γ| − b

i− b

)

−
(|γ| − 1− b

i− b

)

=

(|γ| − 1− b

i− b− 1

)

=

(|γ| − (b + 1)

i− (b + 1)

)

.

This concludes the proof.

188

5.5 Immunity of simple combiners against fast algebraic attacks

Together with
(
|γ|−b
i−b

)
=
(

|γ|−b
(|γ|−b)−(i−b)

)
=
(
|γ|−b
|γ|−i

)
, this shows that

Aσ
|γ|,|β| = B̄σ

|γ|,|γ|−|β| · Cσ(f) = B̄σ
|γ|,|γ|−|β| ·Hn+1 · T σ(f) = B̄σ

|γ|,|β| · T σ(f).

This finishes the proof of Theorem 5.56.

Determining the Existence of Solutions

If we consider again the situation described in Section 5.5.2, we may use
Algorithm 5.5 analogously for symmetric functions, where Aγ, β in step 7
now becomes Aσ

|γ|,|β| as defined for symmetric functions. In addition, as this
coefficient only depends on the weight j of β, it may be computed outside
the loop (preliminary to step 6 of Algorithm 5.5). The discussion of this
slightly modified algorithm is similar to Section 5.5.2. However, compu-
tation of Aσ

|γ|,|β| requires only n + 1 evaluations of the function f and has
to be computed only once for all elements in B, hence it is much cheaper
compared to the corresponding step in Algorithm 5.5 and can be neglected
here. Consequently, the time effort to set up equations is only in O(D′2).

Example 5.61. Let maj again be the majority function with n = 5 inputs. Like

in Example 5.53, we choose the ordering (00000), (00001), (00010), (00100),

(01000), (10000) for the β with |β| ≤ d′ = 1 and consider

γ ∈ G := {(11110), (11101), (11011), (10111), (01111), (11111)}.

(5.5.49) yields the following equations12

0 = G(11110) = Aσ
4,0 · h(00000) + Aσ

4,1 · (h(00010) + h(00100) + h(01000) + h(10000))

0 = G(11101) = Aσ
4,0 · h(00000) + Aσ

4,1 · (h(00001) + h(00100) + h(01000) + h(10000))

0 = G(11011) = Aσ
4,0 · h(00000) + Aσ

4,1 · (h(00001) + h(00010) + h(01000) + h(10000))

0 = G(10111) = Aσ
4,0 · h(00000) + Aσ

4,1 · (h(00001) + h(00010) + h(00100) + h(10000))

0 = G(01111) = Aσ
4,0 · h(00000) + Aσ

4,1 · (h(00001) + h(00010) + h(00100) + h(01000))

0 = G(11111) = Aσ
5,0 · h(00000) + Aσ

5,1 · (h(00001) + h(00010) + h(00100) + h(01000) + h(10000))

Because of T σ(f) = (0, 0, 0, 1, 1, 1) and Equations (5.5.49) and (5.5.51), it holds

12Recall that we assume hβ = 0 for |β| > 1.

189

5 Fast algebraic attacks

that Aσ
i,j =

(
i−j
i−3

)
+
(

i−j
i−4

)
+
(

i−j
i−5

)
mod 2. This yields

Aσ
4,0 =

(
4

1

)

+

(
4

0

)

+

(
4

(−1)

)

mod 2 = 1,

Aσ
4,1 =

(
3

1

)

+

(
3

0

)

+

(
3

(−1)

)

mod 2 = 0,

Aσ
5,0 =

(
5

2

)

+

(
5

1

)

+

(
5

0

)

mod 2 = 0, and

Aσ
5,1 =

(
4

2

)

+

(
4

1

)

+

(
4

0

)

mod 2 = 1.

This results into exactly the same matrix M as in Example 5.53, yielding of

course the same solutions. However, the generation of M is much simple

now.

Next, we will derive a method with a very low effort to determine the ex-
istence of h(X) and G(X) of low degree for a symmetric function f(X), but
at the expense of the method’s only using sufficient conditions (i.e., some
solutions may be lost). More precisely, we constrict ourselves to homoge-
neous functions h(X) of degree d′ (i.e., h(X) contains monomials of degree
d′ only), and (5.5.49) becomes

Gγ = Aσ
|γ|,d′

∑

β⊆γ:|β|=d′

hβ .

Remember that Gγ = 0 for |γ| > d, hence the homogeneous function h(X)
is determined by the system of equations 0 = Aσ

|γ|,d′

∑

β⊆γ:|β|=d′ hβ for all γ

with |γ| = d + 1, d + 2, . . . , n. In this system of equations, the coefficient
Aσ

|γ|,d′ ∈ F2 is reused for a number of
(

n
|γ|

)
equations. If Aσ

|γ|,d′ = 0, then all

of these equations are linearly dependent (i.e., of type 0 = 0). On the other
hand, if Aσ

|γ|,d′ = 1, then there is a number of
(

n
|γ|

)
additional equations that

are possibly linearly independent. Consequently, if the sum of all possibly
linearly independent equations for |γ| = d + 1, d + 2, . . . , n is smaller than
the number of variables

(
n
d′

)
, then non-trivial homogeneous functions h(X)

exist. This sufficient criterion is formalized by

n∑

i=d+1

Aσ
i,d′ ·

(
n

i

)

<

(
n

d′

)

. (5.5.54)

Notice that the remaining equations may still be linearly dependent; how-
ever, as the system is very overdefined, we expect the loss of solutions to
be marginal. Consequently, given some d′, the goal is to find the minimum

190

5.5 Immunity of simple combiners against fast algebraic attacks

value of d such that (5.5.54) holds. This can be done incrementally, start-
ing from d = n, and for all d′ = 0, 1, . . . , ⌈n/2⌉. We formalized the idea in
Algorithm alg:alg3 which has an effort in O(n3). In other words, the algo-
rithm uses the counting argument explained above to derive values d and d′

such that the existence of functions G and h of degree d and d′, respectively,
with f · h = G is guaranteed. Observe that Algorithm 5.6 neither computes
such functions nor gives any statements on the existence of functions with
degrees not covered by the counting argument. The algorithm turned out
to be very powerful (but not necessarily optimal) in practice, see Section
5.5.5.

Algorithm 5.6.
Fast algebraic attacks on a symmetric Boolean function (specific ver-

sion)

Input: A symmetric Boolean function f of dimension n.

Output: Determine degrees of specific homogeneous functions G and

h such that f · h = G is possible.

1: for d′ from 0 to ⌈n/2⌉ do
2: Let d = n, number of equations = 0, number of variables =

(
n
d′

)

3: while Number of equations is smaller than number of variables

and d + 1 > 0 do
4: Compute b← Aσ

d,d′.

5: Add b ·
(

n
d

)
to the number of equations.

6: d← d− 1.

7: end while
8: Output (d′, d).
9: end for

Given a symmetric Boolean function f defined for different dimensions n,
we would also like to give some general statements concerning the degrees
of functions G and h for any n. In the next section, we will apply the
technique based on Algorithm 5.6.

5.5.4 Fast Algebraic Attacks on the Majority Function

In Proposition 4.46, we have seen that using the majority function with n
inputs as an output function guarantees that any 1-function has a degree
of ≥ ⌊n/2⌋ + 1, which is the best one can achieve. In the following, we will
examine how good it is in the context of fast algebraic attacks.

191

5 Fast algebraic attacks

Theorem 5.62. Consider the majority function maj with any n ≥ 2 input

variables. Then there exist Boolean functions G and h such that f · h = G,

where deg G = ⌊n/2⌋+ 1 and d′ = deg h = d− 2j, and where j ≥ 0 is maximum

so that deg h > 0. If n is even, the vector space of solutions h has a dimension

≥
(

n
d′

)
−
(

n
d′−2

)
, and in the case of n odd a dimension ≥

(
n
d′

)
−
(

n
d′−1

)
.

Begin of proof of Theorem 5.62
First, we show that the coefficients Aσ

|γ|,d′ from Theorem 5.56 have a sim-
ple form in the case of the majority function.

Proposition 5.63. Let maj be the majority function in n inputs and d =
⌊n/2⌋+ 1. Then

Aσ
i,j =

{
0 , i < d

(
i−j−1
d−j−1

)
mod 2 , else

.

Proof. For the sake of readability, we omit the expression ”mod 2” in the
equations. Recall that maj(k) = 0 for k < d. Hence, due to Theorem 5.56 it
is

Aσ
i,j

Th. 5.56
=

n∑

k=0

(
i− j

k − j

)

·maj(k) =
n∑

k=d

(
i− j

k − j

)

=
i∑

k=d

(
i− j

k − j

)

.

The last equation is true because of
(

a
b

)
= 0 for a < b. This shows that

Aσ
i,j = 0 for i < d. Now, let i ≥ d ≥ 1. Then, Aσ

i,j can be simplified to

Aσ
i,j =

i∑

k=d

(
i− j

k − j

)

=

i∑

k=d

(
i− j − 1

k − j

)

+

i∑

k=d

(
i− j − 1

k − j − 1

)

=

i−1∑

k=d

(
(i− 1)− j

k − j

)

+

i∑

k=d

(
(i− 1)− j

(k − 1)− j

)

= Aσ
i−1,j +

i−1∑

k=d−1

(
(i− 1)− j

k − j

)

= 2 · Aσ
i−1,j +

(
i− j − 1

d− j − 1

)

=

(
i− j − 1

d− j − 1

)

.

Example 5.64. With Proposition 5.63 at hand, one can easily verify the val-

ues of Aσ
|γ|,b in Example 5.61:

Aσ
4,0 =

(
4−0−1
3−0−1

)
mod 2 = 1, Aσ

4,1 =
(
4−1−1
3−1−1

)
mod 2 = 0

Aσ
5,0 =

(
5−0−1
3−0−1

)
mod 2 = 0, Aσ

5,1 =
(
5−1−1
3−1−1

)
mod 2 = 1.

Consider now maj(X) · h(X) = G(X), where maj is the majority function,
deg h = d′ and deg G = d. The proof of the claim consists of two main steps.
First, we set up a system of equations in the coefficients of h only, then we

192

5.5 Immunity of simple combiners against fast algebraic attacks

show that nontrivial solutions exist for appropriate values of d′ and d. For
this purpose, we apply the simplified form of Aσ

|γ|,|β|.

Additionally, we assume that h is homogeneous. This means that hβ = 0
for all β with |β| 6= d′. Together with Theorem 5.56 and deg G = d, we get the
following sufficient conditions on h:

0 = Aσ
|γ|,d′ ·

∑

β⊆γ:|β|=d′

gβ ∀γ : |γ| > d . (5.5.55)

Observe that each γ with |γ| > d gives one linear equation in the coefficients
hβ of h. Our strategy is as follows. We set d′ to a value which guarantees
that the number of coefficients Aσ

|γ|,d′ which might be equal to 1 is less than
the number of coefficients hβ. In other words,

#{γ : |γ| > d, Aσ
|γ|,d′ = 1} < #{hβ : |β| = d′} =

(
n

d′

)

. (5.5.56)

If Equation (5.5.56) is true, then (5.5.55) yields an underdefined system
of linear equations which must have consequently a solution h. For this
purpose, we set d′ := d− 2j where j is chosen maximum such that d′ ≥ 1.

It is d− d′ − 1 = 2j − 1 =
∑j−1

i=0 2i. Recall that for a =
∑

ai · 2i, it holds that

(
a

d− d′ − 1

)

mod 2 =

j−1
∏

i=0

(
ai

1

)

·
n∏

i=j

(
ai

0

)

mod 2 =

j−1
∏

i=0

(
ai

1

)

mod 2.

This shows that
(

a
d−d′−1

)
mod 2 = 1 if and only if ai = 1 for i = 0, . . . , j − 1, or

equivalently,

a =

(
j−1
∑

i=0

2i

)

+

(
n∑

i=j

ai · 2i

)

=
(
2j − 1

)
+

(
n∑

i=j

ai · 2i

)

=
(
2j − 1

)
+2j·

(
n∑

i=j

(ai · 2i−j

)

.

Hence, Aσ
d+i,d′ =

(
d−d′−1+i
d−d′−1

)
mod 2 =

(
(2j−1)+i

2j−1

)
mod 2 = 1 if and only if i is a

multiple of 2j = d−d′. In other words, if d = ⌊n/2⌋+1 and if d′ = ⌊n/2⌋+1−2j ,
only equations (5.5.55) with |γ| = d + k · (d− d′) and k ≥ 1 impose conditions
on the coefficients hβ, whereas the others are necessarily equal to zero. For
k = 1, we have Aσ

2d−d′,d′ = 1.

We will prove now that d + k · (d − d′) > n for k = 2. The consequence is
that only the coefficients Aσ

|γ|,d′ for |γ| = d + (d − d′) = 2d − d′ are equal to 1.
By the definition of j, it holds that

⌊n/2⌋+ 1− 2j+1 ≤ 0⇔ 2j+1 ≥ ⌊n/2⌋+ 1⇔ 2(d− d′) ≥ d .

193

5 Fast algebraic attacks

As d = ⌊n/2⌋ + 1, this shows for k ≥ 2 that d + k · (d − d′) ≥ d + 2 · (d − d′) ≥
d + d = 2 · (⌊n/2⌋+ 1) > n.

Altogether, the number of non-trivial equations in (5.5.55) is
(

n
2d−d′

)
, which

is equal to
(

n
d′−2

)
for n even and

(
n

d′−1

)
for n odd. In both cases, this value

is less than
(

n
d′

)
, the number of coefficients hβ. Consequently, the system

of equations (5.5.55) is underdefined and non-trivial solutions for h exist.
Further on, we can see that the dimension of the solution space is at least
(

n
d′

)
−
(

n
d′−2

)
for n even and at least

(
n
d′

)
−
(

n
d′−1

)
for n odd.

End of proof of Theorem 5.62

Example 5.65. Recall Example 5.53 where we have chosen the parameters

d = ⌊n/2⌋ + 1 = 3 and d′ = d − 21 = 1. As stated by Theorem 5.62, solutions

exist and the dimension of the solution space is 4 ≥
(

n
d′

)
−
(

n
d′−1

)
=
(
5
1

)
−
(
5
0

)
= 4.

Table 5.5.4 display more examples. Theorem 5.62 was verified for 5 ≤ n ≤
16, see Section 5.5.5. For n odd, Theorem 5.62 predicts the existence of a
function G(X) with degree d = AI(maj), but for n even, it is d = AI(maj) + 1,
which may increase the complexity of fast algebraic attacks significantly.
However, experiments indicate that Theorem 5.62 is optimal (for both d and
d′), see Section 5.5.5. Notice that some trivial solutions exist due to the low
degree of maj (e.g. for n = 7, deg maj = 4 and one could choose deg g = 1). For
values n = 2, 3, 4, 6 only, Theorem 5.62 is not meaningful. A very interesting
subcase is n = 2j+1 and n = 2j + 1 for j ≥ 2, for which Boolean functions h
with deg h = 1 exist.

n 5 6 7 8 9 10 11 12 13 14 15 16
deg h 1 2 2 1 1 2 2 3 3 4 4 1
deg G 3 4 4 5 5 6 6 7 7 8 8 9

Table 5.5.7: Degrees of the functions G and h (from f · h = G) for dimension
n, according to Theorem 5.62.

Theorem 5.62 can be applied to Boolean functions other than the ma-
jority function. Considering Theorem 4.43, binary affine transformations
in the input variables and complementation are invariant transformations
with respect to (fast) algebraic attacks. In [BraP05], groups of symmetric
Boolean functions with maximum annihilator immunity are presented; a
single group consists of a representative function, and other functions in
the group are derived by such invariant transformations of the representa-
tive function. The representative function of group 1 is the majority func-
tion, consequently Theorem 5.62 is valid for all functions in their group 1.

194

5.5 Immunity of simple combiners against fast algebraic attacks

One of the functions in group 1 was proposed in a recent paper, discussing
design principles of stream ciphers [BraL05, BraLMPV05].

5.5.5 Experimental Results

Given a Boolean function f with n input variables, one may apply Algorithm
5.5 or Algorithm 5.6 in order to find degrees of g and h. In this section, we
present the results for some examples of symmetric and non-symmetric
Boolean functions f with maximum annihilator immunity.

Symmetric Functions with Maximum Annihilator Immunity

Let us first summarize the experimental results for the majority function
with n = 5, 6, . . . , 16. Indeed, Algorithm 5.6 finds the solutions d and d′ ac-
cording to Theorem 5.62. Furthermore, application of Algorithm 5.5 (mod-
ified for symmetric functions) brings out that Theorem 5.62 is optimal for
these functions. Algorithm 5.5 may be also used to find explicit functions
h(X) which have been used to perform a formal expansion of f(X) · h(X)
and verify the degrees. For any value of n, we found the following special
homogeneous function h(X), with degree d′ according to Theorem 5.62,

h(X) =

d′∏

i=1

(x2i−1 + x2i) . (5.5.57)

This fits to Example 5.53 where we found the solution x1+x2 for the majority
function in n = 5 inputs and parameters d = 3 and d′ = 1.

In [BraP05], a large pool of symmetric Boolean functions defined for n
even with maximum annihilator immunity is presented 13. One of these
functions is the majority function, whereas the other functions are non-
linear transformations of the majority function. For example, one function
consists of the value vector of the majority function, with the last entry set
to zero. Let us summarize the experimental results for all of these func-
tions with n = 6, 8, 10, 12, 14, 16. Application of Algorithm 5.6 brings out that
g and h with degrees according to Theorem 5.62 exist for all functions f
(remember that Theorem 5.62 was proven for the majority function only).
For some functions f , Algorithm 5.6 finds better solutions than predicted
by Theorem 5.62 (e.g. for T = [0, 0, 0, 1, 1, 0, 1]), which means that Theorem
5.62 is not optimal for all classes of functions. All solutions found by Al-
gorithm 5.6 can be constructed according to (5.5.57) (a formal expansion

13Notice that for n odd, it is verified in [DalMS05] for up to n = 11 that the majority function
is the only symmetric Boolean functions with maximum annihilator immunity.

195

5 Fast algebraic attacks

of f(X) · h(X) is performed to verify the degrees). Furthermore, Algorithm
5.5 finds a few solutions which are better than predicted by Algorithm 5.6
(e.g. for T = [0, 0, 0, 1, 1, 1, 0]), which means that Algorithm 5.6 is not optimal
for all functions.

Non-Symmetric Functions with Maximum Annihilator Immunity

In [DalGM05], a class of non-symmetric Boolean function with maximum
annihilator immunity is presented. We summarize our experimental results
for their examples with n = 5, 6, 7, 8, 9, 10. We applied Algorithm 5.5, the
results are listed in Table 5.5.8 (where dim denotes the dimension of the
solution space for h(X)); the degrees can be summarized by d = AI(f) =
⌈n/2⌉ and d′ = 1. Explicit functions h(X) with corresponding degree are also
obtained by Algorithm 5.5. Again, we performed an explicit multiplication
of h with the functions f in order to verify the results.

Table 5.5.8: Degrees of the functions g and h for DGM-functions f with n
input variables.

n deg f deg G deg h h(X) dim
5 4 3 1 1 + x4 4
6 4 3 1 1 + x6 4
7 5 4 1 1 + x4 + x5 1
8 5 4 1 1 + x5 + x6 1
9 8 5 1 x4 + x5 + x6 + x7 1
10 8 6 1 x5 + x6 + x7 + x8 1

196

6 Conclusion

197

6 Conclusion

In modern cryptography, the development and analysis of stream ci-
phers is one of the major topics. For example, the ECRYPT Stream Cipher
Project1 is fully dedicated to the search for new stream ciphers that might
become suitable for widespread adoption. Stream ciphers are often based
on keystream generators that are used to transform a small initial value,
the key, into a long sequence of seemingly random outputs, the keystream.
Many keystream generator designs are in turn based on linear feedback
shift registers (LFSRs), which are efficiently implementable in hardware
and produce output streams with excellent statistical properties.

To understand the security of cryptographic algorithms is the task of
cryptanalysis, which is the activity of searching for security weaknesses.
The underlying goal of cryptanalysis is not destructive, but constructive:
Only by improving the understanding of potential problems, it is possible
to propose new design criteria for cryptographic systems.

The thesis’ focus lies on algebraic attacks, which are the newest crypt-
analytic method for LFSR-based keystream generators. We treated both
the attack, together with the according theory and several extensions, and
resulting construction principles.

Chapter 1 gave a short introduction both into this topic and the thesis.
In Chapter 2, we provided the general framework and the mathematical

background of the thesis and introduced important notions and concepts.
This included sections on LFSRs, LFSR-based keystream generators, and
a short survey of existing attacks.

Chapter 3 explained algebraic attacks on LFSR-based keystream gener-
ators. We described the two major steps, generating a system of equations
and computing the solution, in detail and gave a rough effort analysis.

Chapter 4 was dedicated completely to equations for algebraic attacks.
This included a complete framework on the existence of low-degree equa-
tions, algorithms to find them, and design principles to avoid them. At the
end, we described our algebraic attacks based on generating low-degree
equations by exploiting linear keyschedules or using fault attacks.

In Chapter 5, we explored fast algebraic attacks. After explaining the
basic idea, we described our improvements on the precomputation step
(reducing the time and data effort). We concluded with our results on the
immunity of simple combiners against fast algebraic attacks.

Although algebraic attacks pose no practical threats at the moment, the
enormous development on this subject indicates that the potential of these
attacks is yet not fully understood. We expect that several improvements
simply wait to be discovered and invite any researcher to join us on our
quest.

1http://www.ecrypt.eu.org/stream/index.html

198

Bibliography

[AhoHU74] A. Aho, J. Hopcroft, and J. Ullman. The Design and Analysis

of Computer Algorithms. Addison-Wesley Series in Computer Sci-
ence and Information Processing. Addison-Wesley, 1974. AHO a
74:1 1.Ex. 172

[Arm02] F. Armknecht. A linearization attack on the Bluetooth keystream
generator. Cryptology ePrint Archive, Report 2002/191, 2002.
http://eprint.iacr.org/. 51, 101

[Arm04a] F. Armknecht. Improving fast algebraic attacks. In Roy and
Meier [DBLP:conf/fse/2004], pages 65–82. 5, 7, 55, 92, 133,
136, 141, 148, 173

[Arm04b] F. Armknecht. On the existence of low-degree equations for al-
gebraic attacks. Cryptology ePrint Archive, Report 2004/185,
2004. http://eprint.iacr.org/. 7, 80, 93, 99, 102

[Arm05a] F. Armknecht. Algebraic attacks and annihilators. In C. Wolf,
S. Lucks, and P. Yau, editors, WEWORC, volume P-74 of LNI,
pages 13–21, 2005. 5, 7, 80, 81

[ArmA05] F. Armknecht and G. Ars. Introducing a new variant of fast alge-
braic attacks and minimizing their successive data complexity.
In E. Dawson and S. Vaudenay, editors, Mycrypt, volume 3715 of
Lecture Notes in Computer Science, pages 16–32. Springer, 2005.
7, 126, 133, 163

[ArmBI06] F. Armknecht, J. Brandeis, and E. Ilinykh. Experimental re-
sults on algebraic attacks on stream ciphers. In Proceedings of

SICHERHEIT 2006, Lecture Notes in Informatics, 2006. 70

[ArmCGKMR06] F. Armknecht, C. Carlet, P. Gaborit, S. Künzli, W. Meier,
and O. Ruatta. Efficient computation of algebraic immunity for
algebraic and fast algebraic attacks. will appear in the Proceed-
ings of Eurocrypt 2006, 2006. 7, 80, 107, 175

201

BIBLIOGRAPHY

[ArmK03] F. Armknecht and M. Krause. Algebraic attacks on combiners
with memory. In Boneh [DBLP:conf/crypto/2003], pages 162–
175. 5, 6, 43, 52, 55, 69, 70, 73, 75, 77, 80, 81, 83, 86, 92, 94,
97, 100, 126, 134, 152, 173

[ArmK06] F. Armknecht and M. Krause. Constructing single- and multi-
output Boolean functions with maximal algebraic immunity. Ac-
cepted to ICALP’06, 2006. 112

[ArmKS05] F. Armknecht, M. Krause, and D. Stegemann. Design
principles for combiners with memory. In Maitra et al.
[DBLP:conf/indocrypt/2005], pages 104–117. 7, 113, 114

[ArmLP04] F. Armknecht, J. Lano, and B. Preneel. Extending the resyn-
chronization attack. In Selected Areas in Cryptography, pages
19–38, 2004. 7, 117, 121, 122

[ArmM05] F. Armknecht and W. Meier. Fault attacks on combiners with
memory. In Preneel and Tavares [DBLP:conf/sacrypt/2005],
pages 36–50. 7, 116, 117, 121, 122

[Ars04] G. Ars. Private discussion. 72

[Ars05] G. Ars. Applications des base de Gröbner à la cryptographie. PhD
thesis, Université de Rennes I, 2005. 63

[ArsF03] G. Ars and J.-C. Faugère. An algebraic cryptanalysis of nonlinear
filter generators using Gröbner bases. INRIA Report 4739, 2003.
http://www.inria.fr/rrrt/rr-4739.html. 65, 95

[ArsFIKS04] G. Ars, J.-C. Faugère, H. Imai, M. Kawazoe, and M. Sugita.
Comparison between XL and Gröbner basis algorithms. In Lee
[DBLP:conf/asiacrypt/2004], pages 338–353. 70

[BarFS03] M. Bardet, J.-C. Faugère, and B. Salvy. Complexity of Gröbner
basis computation for semi-regular overdetermined sequences
over GF(2) with solutions in GF(2). Research Report 5049, Inria,
December 2003. 19 pages. 64

[BecW93] T. Becker and V. Weispfenning. Gröbner bases - a computational

approach to commutative algebra. 71

[BekP82] H. Beker and F. Piper. Cipher systems - The protection of commu-

nications. 41

202

BIBLIOGRAPHY

[BihGN05] E. Biham, L. Granboulan, and P. Nguyen. Impossible fault anal-
ysis of RC4 and differential fault analysis of RC4. In Gilbert and
Handschuh [DBLP:conf/fse/2005], pages 359–367. 116

[BihS97] E. Biham and A. Shamir. Differential fault analysis of secret key
cryptosystems. In B. Kaliski Jr., editor, CRYPTO, volume 1294
of Lecture Notes in Computer Science, pages 513–525. Springer,
1997. 115

[BirS00] A. Biriyukov and A. Shamir. Cryptanalytic time/memory/data
tradeoffs for stream ciphers. In T. Okamoto, editor, ASIACRYPT,
volume 1976 of Lecture Notes in Computer Science, pages 1–13.
Springer, 2000. 41

[Bla83] R. E. Blahut. Theory and Practice of Error Control Codes. 156

[Blu99] Bluetooth specification v1.1, 1999. http://www.bluetooth.
com/. 12, 39

[BonDL97] D. Boneh, R. DeMillo, and R. Lipton. On the importance of
checking cryptographic protocols for faults (extended abstract).
In EUROCRYPT, pages 37–51, 1997. 115

[BosFSS06] A. Bostan, P. Flajolet, B. Salvy, and É. Schost. Fast compu-
tation of special resultants. Journal of Symbolic Computation,
41(1):1–29, jan 2006. 149, 151, 152, 155

[BraL05] A. Braeken and J. Lano. On the (im)possibility of practical and
secure nonlinear filters and combiners. In Preneel and Tavares
[DBLP:conf/sacrypt/2005], pages 159–174. 195

[BraLMPV05] A.Braeken, J. Lano, N. Mentens, B. Preneel, and I. Ver-
bauwhede. SFINKS: A synchronous stream cipher for restricted
hardware environments. eSTREAM, ECRYPT Stream Cipher
Project, Report 2005/026, 2005. http://www.ecrypt.eu.org/
stream. 195

[BraP05] A. Braeken and B. Preneel. On the algebraic immu-
nity of symmetric Boolean functions. In Maitra et al.
[DBLP:conf/indocrypt/2005], pages 35–48. 80, 113, 194, 195

[BreGY80] R. Brent, F. Gustavson, and D. Yun. Fast solution of Toeplitz
system of equations and computation of Padè approximants. J.

Algorithms, 1:259–295, 1980. 156

203

BIBLIOGRAPHY

[BriGW98] M. Briceno, I. Goldberg, and D. Wagner. A pedagogical imple-
mentation of A5/1, 1998. http://jya.com/a51-pi.htm. 12, 35

[Buc65] B. Buchberger. Ein Algorithmus zum Auffinden der Basise-
lemente des Restklassenringes nach einem nulldimensionalen
Polynomideal. Dissertation an dem Math. Inst. der Universität
von Innsbruck, 1965. 59

[CanT00] A. Canteaut and M. Trabbia. Improved fast correlation attacks
using parity-check equations of weight 4 and 5. In Preneel
[DBLP:conf/eurocrypt/2000], pages 573–588. 43

[CanV02] A. Canteaut and M. Videau. Degree of composition of highly
nonlinear functions and applications to higher order differential
cryptanalysis. In Knudsen [DBLP:conf/eurocrypt/2002], pages
518–533. 107

[Car04] C. Carlet. Improving the algebraic immunity of resilient and
nonlinear functions and constructing bent functions. Cryptol-
ogy ePrint Archive, Report 2004/276, 2004. http://eprint.
iacr.org/. 80

[Car05] C. Carlet. A lower bound on the higher order nonlinearity of
algebraic immune functions. Cryptology ePrint Archive, Report
2005/469, 2005. http://eprint.iacr.org/. 80

[CheJS00] V. Chepyzhov, T. Johansson, and B. Smeets. A simple algo-
rithm for fast correlation attacks on stream ciphers. In Schneier
[DBLP:conf/fse/2000], pages 181–195. 43

[CheS91] V. Chepyzhov and B. Smeets. On a fast correlation attack on
certain stream ciphers. In EUROCRYPT, pages 176–185, 1991.
43

[ChoJM02] P. Chose, A. Joux, and M. Mitton. Fast correla-
tion attacks: An algorithmic point of view. In Knudsen
[DBLP:conf/eurocrypt/2002], pages 209–221. 43

[ChoP04] J. Cho and J. Pieprzyk. Algebraic attacks on SOBER-
t32 and SOBER-t16 without stuttering. In Roy and Meier
[DBLP:conf/fse/2004], pages 49–64. 73, 75

[CidL05] C. Cid and G. Leurent. An analysis of the XSL algorithm. In
B. Roy, editor, ASIACRYPT, volume 3788 of Lecture Notes in Com-

puter Science, pages 333–352. Springer, 2005. 70

204

BIBLIOGRAPHY

[CooT65] J. W. Cooley and J. W. Tukey. An algorithm for the machine cal-
culation of complex Fourier series. Mathematics of Computation,
19(90):297–301, 1965. 132

[CopKM93] D. Coppersmith, H. Krawczyk, and Y. Mansour. The shrinking
generator. In CRYPTO ’93: Proceedings of the 13th annual inter-

national cryptology conference on Advances in cryptology, pages
22–39, New York, NY, USA, 1994. Springer-Verlag New York, Inc.
35

[Cou02] N. Courtois. Higher order correlation attacks, XL algorithm and
cryptanalysis of Toyocrypt. In P. Lee and C. Lim, editors, ICISC,
volume 2587 of Lecture Notes in Computer Science, pages 182–
199. Springer, 2002. 5, 70

[Cou03] N. Courtois. Fast algebraic attacks on stream ciphers with linear
feedback. In Boneh [DBLP:conf/crypto/2003], pages 176–194.
5, 55, 75, 77, 92, 124, 126, 130, 133, 134, 135, 136, 140, 152,
156, 157, 168, 173

[CouKPS00] N. Courtois, A. Klimov, J. Patarin, and A. Shamir. Efficient al-
gorithms for solving overdefined systems of multivariate polyno-
mial equations. In Preneel [DBLP:conf/eurocrypt/2000], pages
392–407. 69

[CouM03] N. Courtois and W. Meier. Algebraic attacks on stream ciphers
with linear feedback. In E. Biham, editor, EUROCRYPT, vol-
ume 2656 of Lecture Notes in Computer Science, pages 345–359.
Springer, 2003. 5, 43, 50, 75, 77, 80, 100, 134

[CouP02] N. Courtois and J. Pieprzyk. Cryptanalysis of block ciphers
with overdefined systems of equations. In Y. Zheng, editor,
ASIACRYPT, volume 2501 of Lecture Notes in Computer Science,
pages 267–287. Springer, 2002. 70

[CoxLS96] D. Cox, J. Little, and D. O’Shea. Ideals, Varieties and Algo-

rithms. An Introduction to Computational Algebraic Geometry and

Commutative Algebra. Springer Verlag, 1996. 59, 62, 95

[DBLP:conf/asiacrypt/2004] P. Lee, editor. Advances in Cryptology - ASI-

ACRYPT 2004, 10th International Conference on the Theory and

Application of Cryptology and Information Security, Jeju Island,

Korea, December 5-9, 2004, Proceedings, volume 3329 of Lecture

Notes in Computer Science. Springer, 2004. 202, 210

205

BIBLIOGRAPHY

[DBLP:conf/crypto/1999] M. Wiener, editor. Advances in Cryptology

- CRYPTO ’99, 19th Annual International Cryptology Confer-

ence, Santa Barbara, California, USA, August 15-19, 1999, Pro-

ceedings, volume 1666 of Lecture Notes in Computer Science.
Springer, 1999. 209

[DBLP:conf/crypto/2003] D. Boneh, editor. Advances in Cryptology -

CRYPTO 2003, 23rd Annual International Cryptology Confer-

ence, Santa Barbara, California, USA, August 17-21, 2003, Pro-

ceedings, volume 2729 of Lecture Notes in Computer Science.
Springer, 2003. 202, 205, 208

[DBLP:conf/eurocrypt/1993] R. Rueppel, editor. Advances in Cryptology -

EUROCRYPT ’93, 1993, Proceedings, volume 658 of Lecture Notes

in Computer Science. Springer, 1993. 207, 208

[DBLP:conf/eurocrypt/2000] B. Preneel, editor. Advances in Cryptology -

EUROCRYPT 2000, International Conference on the Theory and

Application of Cryptographic Techniques, Bruges, Belgium, May

14-18, 2000, Proceeding, volume 1807 of Lecture Notes in Com-

puter Science. Springer, 2000. 204, 205

[DBLP:conf/eurocrypt/2002] L. Knudsen, editor. Advances in Cryptol-

ogy - EUROCRYPT 2002, International Conference on the Theory

and Applications of Cryptographic Techniques, Amsterdam, The

Netherlands, April 28 - May 2, 2002, Proceedings, volume 2332
of Lecture Notes in Computer Science. Springer, 2002. 204, 209

[DBLP:conf/fse/2000] B. Schneier, editor. Fast Software Encryption, 7th

International Workshop, FSE 2000, New York, NY, USA, April 10-

12, 2000, Proceedings, volume 1978 of Lecture Notes in Computer

Science. Springer, 2001. 204, 211

[DBLP:conf/fse/2004] B. Roy and W. Meier, editors. Fast Software Encryp-

tion, 11th International Workshop, FSE 2004, Delhi, India, Febru-

ary 5-7, 2004, Revised Papers, volume 3017 of Lecture Notes in

Computer Science. Springer, 2004. 201, 204, 210

[DBLP:conf/fse/2005] H. Gilbert and H. Handschuh, editors. Fast Soft-

ware Encryption: 12th International Workshop, FSE 2005, Paris,

France, February 21-23, 2005, Revised Selected Papers, volume
3557 of Lecture Notes in Computer Science. Springer, 2005. 203,
207

206

BIBLIOGRAPHY

[DBLP:conf/indocrypt/2005] S. Maitra, C. Madhavan, and R. Venkatesan,
editors. Progress in Cryptology - INDOCRYPT 2005, 6th Interna-

tional Conference on Cryptology in India, Bangalore, India, De-

cember 10-12, 2005, Proceedings, volume 3797 of Lecture Notes

in Computer Science. Springer, 2005. 202, 203

[DBLP:conf/sacrypt/2001] S. Vaudenay and A. Youssef, editors. Selected

Areas in Cryptography, 8th Annual International Workshop, SAC

2001 Toronto, Ontario, Canada, August 16-17, 2001, Revised

Papers, volume 2259 of Lecture Notes in Computer Science.
Springer, 2001. 208

[DBLP:conf/sacrypt/2005] B. Preneel and S. Tavares, editors. Selected Ar-

eas in Cryptography, 12th International Workshop, SAC 2005,

Kingston, ON, Canada, August 11-12, 2005, Revised Selected

Papers, volume 3897 of Lecture Notes in Computer Science.
Springer, 2006. 202, 203

[DaeGV93] R. Govaerts J. Daemen and J. Vandewalle. Resynchroniza-
tion weaknesses in synchronous stream siphers. In Rueppel
[DBLP:conf/eurocrypt/1993], pages 159–167. 115

[DalGM04] D. Dalai, K. Gupta, and S. Maitra. Results on algebraic im-
munity for cryptographically significant Boolean functions. In
A. Canteaut and K. Viswanathan, editors, INDOCRYPT, vol-
ume 3348 of Lecture Notes in Computer Science, pages 92–106.
Springer, 2004. 80

[DalGM05] D. Dalai, K. Gupta, and S. Maitra. Cryptographically sig-
nificant Boolean functions: Construction and analysis in
terms of algebraic immunity. In Gilbert and Handschuh
[DBLP:conf/fse/2005], pages 98–111. 80, 113, 196

[DalMS05] D. Dalai, S. Maitra, and S. Sarkar. Basic theory in construc-
tion of Boolean functions with maximum possible annihilator
immunity. Cryptology ePrint Archive, Report 2005/229, 2005.
http://eprint.iacr.org/. 80, 81, 113, 195

[Dor87] J. Dornstetter. On the equivalence between Berlekamp’s and
Euclid’s algorithms. IEEE Transactions of Information Theory,
IT-33(3):428–431, 1987. 156

[EkdJ02] P. Ekdahl and T. Johansson. A new version of the stream cipher
SNOW. In K. Nyberg and H. Heys, editors, Selected Areas in

207

BIBLIOGRAPHY

Cryptography, volume 2595 of Lecture Notes in Computer Science,
pages 47–61. Springer, 2002. 122

[Fau02] J. Faugère. A new efficient algorithm for computing Gröbner
bases without reduction to zero F5. In International Sympo-

sium on Symbolic and Algebraic Computation Symposium - ISSAC

2002, Villeneuve d’Ascq, France, 2002. 60

[Fau99] J. Faugère. A new efficient algorithm for computing Gröbner
bases (F4). Journal of Pure and Applied Algebra, 139(1-3):61–88,
1999. 60

[FauJ03] J. Faugère and A. Joux. Algebraic cryptanalysis of hidden field
equation (HFE) cryptosystems using Gröbner bases. In Boneh
[DBLP:conf/crypto/2003], pages 44–60. 64

[Fil00] E. Filiol. Decimation attack of stream ciphers. In B. Roy and
E. Okamoto, editors, INDOCRYPT, volume 1977 of Lecture Notes

in Computer Science, pages 31–42. Springer, 2000. 43

[FluL01] S. Fluhrer and S. Lucks. Analysis of the E0 encryption system. In
Vaudenay and Youssef [DBLP:conf/sacrypt/2001], pages 38–48.
77, 134

[FluMS01] S. Fluhrer, I. Mantin, and A. Shamir. Weaknesses in the
key scheduling algorithm of RC4. In Vaudenay and Youssef
[DBLP:conf/sacrypt/2001], pages 1–24. 12

[Gal63] R. Gallager. Low-density paritiy check codes. 43

[Gef73] P. Geffe. How to protect data with ciphers that are really hard to
break. Electronics, 46(1):99–101, Jan 1973. 38

[Gol04] J. Golić. Vectorial Boolean functions and induced algebraic
equations. Cryptology ePrint Archive, Report 2004/225, 2004.
http://eprint.iacr.org/. 80, 157

[Gol82] S. Golomb. Shift register sequences. Aegean Park Press, 1982.
35, 41

[Gol93] J. Golić. Correlation via linear sequential circuit ap-
proximation of combiners with memory. In Rueppel
[DBLP:conf/eurocrypt/1993], pages 113–123. 43

[Gol96] J. Golić. Correlation properties of of a general binary combiner
with memory. Journal of Cryptology, 9(2):111–126, 1996. 43

208

BIBLIOGRAPHY

[HasPS93] J. Håstad, S. Phillips, and S. Safra. A well-characterized ap-
proximation problem. Inf. Process. Lett., 47(6):301–305, 1993.
59

[HawR04] P. Hawkes and G. Rose. Rewriting variables: The complexity of
fast algebraic attacks on stream ciphers. In M. Franklin, edi-
tor, CRYPTO, volume 3152 of Lecture Notes in Computer Science,
pages 390–406. Springer, 2004. 126, 132, 133, 147, 148, 156,
162, 168, 172, 173

[HocS04] J. Hoch and A. Shamir. Fault analysis of stream ciphers. In
M. Joye and J. Quisquater, editors, CHES, volume 3156 of Lec-

ture Notes in Computer Science, pages 240–253. Springer, 2004.
115, 116

[JohJ02] T. Johansson and F. Jönsson. Theoretical analysis of a correla-
tion attack based on convolutional codes. IEEE Transactions on

Information Theory, 48(8):2173–2181, 2002. 43

[JohJ99] T. Johansson and F. Jönsson. Improved fast correlation at-
tacks on stream ciphers via convolutional codes. In EUROCRYPT,
pages 347–362, 1999. 43

[JohJ99b] T. Johansson and F. Jönsson. Fast correlation attacks based
on turbo code techniques. In Wiener [DBLP:conf/crypto/1999],
pages 181–197. 43

[Ker83] A. Kerckhoffs. La cryptographie militaire. Journal des Sciences

Militaires, pages 161–191, 1883. 11

[Key76] E. Key. An analysis of the structure and complexity of nonlinear
binary sequence generators. IEEE Transactions in Information

Theory, 22(6):732–736, Nov 1976. 149

[KipS99] A. Kipnis and A. Shamir. Cryptanalysis of the HFE
public key cryptosystem by relinearization. In Wiener
[DBLP:conf/crypto/1999], pages 19–30. 69

[Knu81] D. Knuth. The art of computer programming, volume 2: Seminu-
merical algorithms. Addison-Wesley, second edition, 1981. 41

[Kra02] M. Krause. BDD-based cryptanalysis of keystream generators.
In Knudsen [DBLP:conf/eurocrypt/2002], pages 222–237. 42,
43, 46, 77

209

BIBLIOGRAPHY

[KraS06] M. Krause and D. Stegemann. Reducing the space complexity of
BDD-based attacks on keystream generators. In V. Rijmen and
M. Robshaw, editors, FSE, Lecture Notes in Computer Science.
Springer, 2006. 42, 72

[KueM06] S. Künzli W. Meier. Private communication, 2006. 175

[LeeKHHM04] D. Lee, J. Kim, J. Hong, J. Han, and D. Moon. Alge-
braic attacks on summation generators. In Roy and Meier
[DBLP:conf/fse/2004], pages 34–48. 73, 75

[LidN86] R. Lidl and H. Niederreiter. Introduction to finite fields and their

applications. Cambridge University Press, New York, NY, USA,
1986. 24, 29, 137, 138, 139, 148, 154, 166

[Lob05] M. Lobanov. Tight bound between nonlinearity and algebraic
immunity. Cryptology ePrint Archive, Report 2005/441, 2005.
http://eprint.iacr.org/. 80

[LuMV05] Y. Lu, W. Meier, and S. Vaudenay. The conditional correlation
attack: A practical attack on Bluetooth encryption. In V. Shoup,
editor, CRYPTO, volume 3621 of Lecture Notes in Computer Sci-

ence, pages 97–117. Springer, 2005. 76

[LuV04] Y. Lu 0002 and S. Vaudenay. Cryptanalysis of
Bluetooth keystream generator two-level E0. In Lee
[DBLP:conf/asiacrypt/2004], pages 483–499. 76

[Mas69] J. Massey. Shift register synthesis and BCH decoding. Journal

of Complexity, 15:122–127, 1969. 34

[Mau90] U. Maurer. A universal statistical test for random bit generators.
In A. Menezes and S. Vanstone, editors, CRYPTO, volume 537
of Lecture Notes in Computer Science, pages 409–420. Springer,
1990. 41

[MeiPC04] W. Meier, E. Pasalic, and C. Carlet. Algebraic attacks and
decomposition of Boolean functions. In C. Cachin and J. Ca-
menisch, editors, EUROCRYPT, volume 3027 of Lecture Notes in

Computer Science, pages 474–491. Springer, 2004. 5, 50, 80, 81,
97, 99, 100

[MeiS88] W. Meier and O. Staffelbach. Fast correlation attacks on certain
stream ciphers. In C. Günther, editor, EUROCRYPT, volume 330
of Lecture Notes in Computer Science, pages 301–314. Springer,
1988. 43

210

BIBLIOGRAPHY

[MeiS89] W. Meier and O. Staffelbach. Nonlinearity criteria for crypto-
graphic functions. In EUROCRYPT, pages 549–562, 1989. 43,
113

[MeiS92] W. Meier and O. Staffelbach. Correlation properties of combiners
with memory in stream ciphers. Journal of Cryptology, 5(1):67–
86, 1992. 43

[MeiS94] W. Meier and O. Staffelbach. The self-shrinking generator. In
A. De Santis, editor, EUROCRYPT, volume 950 of Lecture Notes

in Computer Science, pages 205–214. Springer, 1994. 35

[MihFI00] M. Mihaljevic, M. Fossorier, and H. Imai. A low-complexity and
high-performance algorithm for the fast correlation attack. In
Schneier [DBLP:conf/fse/2000], pages 196–212. 43

[MihFI01] M. Mihaljevic, M. Fossorier, and H. Imai. Fast correlation attack
algorithm with list decoding and an application. In M. Matsui,
editor, FSE, volume 2355 of Lecture Notes in Computer Science,
pages 196–210. Springer, 2001. 43

[MihG90] M. Mihaljevic and J. Golic. A fast iterative algorithm for a shift
register initial state reconstruction given the nosiy output se-
quence. In J. Seberry and J. Pieprzyk, editors, AUSCRYPT, vol-
ume 453 of Lecture Notes in Computer Science, pages 165–175.
Springer, 1990. 43

[MihH02] M. Mihaljević and H. Imai. Cryptanalysis of Toyocrypt-HS1
stream cipher. IEICE Transactions on Fundamentals, E85-A:66–
73, 2002. 134

[Pen96] W. T. Penzhorn. Correlation attacks on stream ciphers: Com-
puting low-weight parity checks based on error-correcting codes.
In D. Gollmann, editor, Fast Software Encryption, volume 1039
of Lecture Notes in Computer Science, pages 159–172. Springer,
1996. 43

[QuFL05] L. Qu, G. Feng, and C. Li. On the Boolean functions with max-
imum possible algebraic immunity : Construction and a lower
bound of the count. Cryptology ePrint Archive, Report 2005/449,
2005. http://eprint.iacr.org/. 80, 113

[Rue85] R. Rueppel. Correlation immunity and the summation generator.
In H. Williams, editor, Crypto, volume 218 of Lecture Notes in

Computer Science, pages 260–272. Springer, 1985. 38, 43, 113

211

BIBLIOGRAPHY

[Rue89] R. Rueppel. Security models and notions for stream ciphers. In
H. Beker and F.Piper, editors, Proceedings of 2nd IMA Conference

on Cryptography and Coding, pages 213–230. Oxford University
Press, 1989. 11

[Rue92] R. Rueppel. Stream ciphers. In G. Simmons, editor, Contempo-

rary cryptology - The science of information integrity, pages 65–
134. IEEE Press, 1992. 11

[Saa02] M. Saarinen. A time-memory tradeoff attack against LILI-128. In
J. Daemen and V. Rijmen, editors, FSE, volume 2365 of Lecture

Notes in Computer Science, pages 231–236. Springer, 2002. 134

[Sch02] F. Schleer. Einsatz von OBDDs zur Kryptanalyse von Fluss-
chiffren. Master’s thesis, Universität Mannheim, 2002. 42

[Sch77] A. Schönhage. Schnelle Multiplikation von Polynomen über
Körpern der Charakteristik 2. Acta Informatica, 7:395–398,
1977. 149, 152, 172

[Sha48] C. Shannon. A mathematical theory of communication. Bell

Systems Techn. Journal, 27:623–656, 1948. 10

[Sha49] C. Shannon. Communication theory of secrecy systems. Bell

Systems Techn. Journal, 28:656–719, 1949. 10, 13, 59

[Sie84] T. Siegenthaler. Correlation-immunity of nonlinear combining
functions for cryptographic applications. IEEE Transactions of

Information Theory, IT-30(5):776–780, 1984. 43, 113

[Sie85] T. Siegenthaler. Decrypting a class of stream ciphers using
ciphertext only. IEEE Transactions of Information Theory, C-
34(1):81–85, 1985. 43

[SimDGM00] L. Simpson, E. Dawson, J. Golic, and W. Millan. LILI
keystream generator. In D. Stinson and S. Tavares, editors, Se-

lected Areas in Cryptography, volume 2012 of Lecture Notes in

Computer Science, pages 248–261. Springer, 2000. 124

[SkoA02] Sergei P. Skorobogatov and Ross J. Anderson. Optical fault in-
duction attacks. In B. Kaliski Jr., Ç. Koç, and C. Paar, editors,
CHES, volume 2523 of Lecture Notes in Computer Science, pages
2–12. Springer, 2002. 115

212

BIBLIOGRAPHY

[Ste04] D. Stegemann. FBDD-basierte Kryptanalyse des A5/1-
Schlüsselstromgenerators. Master’s thesis, Universität
Mannheim, 2004. 42

[Sti02] D. Stinson. Cryptography - Theory and Practice. 10, 13, 14

[Str69] V. Strassen. Gaussian elimination is not optimal. Numerische

Mathematik, 13:354–356, 1969. 66, 69

[Ver26] G. Vernam. Cipher printing telegraph system for secret wire and
radio telegraphic communications. Journal of American Institute

of Electrical Engineers, 45:109–115, 1926. 13

[Weg87] I. Wegener. The complexity of Boolean functions. J. Wiley & Sons,
Inc., New York, NY, USA, 1987. 42, 102

[Wol86] S. Wolfram. Random sequence generation by cellular automata.
Advances in Applied Mathematics, 7:123–169, 1986. 37

[XiaM88] G. Xiao and J. Massey. A spectral characterization of correlation-
immune combining functions. IEEE Transactions of Information

Theory, 34(3):569–571, 1988. 43

[Zen04] E. Zenner. On cryptographic properties of LFSR-based pseudoran-

dom generators. PhD thesis, Universität Mannheim, 2004. 11,
41, 42

[Zen06] E. Zenner. Private communication, 2006. 72

[ZenH88] K. Zeng and M. Huang. On the linear syndrome method in cryp-
toanalysis. In S. Goldwasser, editor, CRYPTO, volume 403 of Lec-

ture Notes in Computer Science, pages 469–478. Springer, 1988.
43

[ZenWL00] E. Zenner, R. Weis, and S. Lucks. Sicherheit des GSM-
Verschlüsselungsstandards A5. Datenschutz und Datensicher-

heit, 24(7), 2000. 12

[ZenYR89] K. Zeng, C. Yang, and T. Rao. On the linear consistency test
(LCT) in cryptanalysis with applications. In G. Brassard, editor,
CRYPTO, volume 435 of Lecture Notes in Computer Science, pages
164–174. Springer, 1989. 41, 43, 110

[Ziv91a] M. Zivkovic. On two probabilistic decoding algorithms for bi-
nary linear codes. IEEE Transactions on Information Theory,
37(6):1707–, 1991. 43

213

Index

(ι, m)-combiner, 36
Aγ,β, 179
C(f), 175
Cσ(f), 184
Ft, 125
Gt, 125
HN , 176
Ht, 125
Kt, 36
MF(S), 96
Md(S), 96
R/I, 19
T (f), 175
T σ(f), 184
XE, 20
XZ,Q, 88
XZ, 82
XZ −∆

(i)
t...t+r−1, 118

XQ,Z, 88
[x1 . . . xr], 85

∆
(i)
t...t+r−1, 118
F-immune, 97
Πn, 102
Ψ next memory state function, 36
ann(S), 82
ann(f), 82
δS, 89
Zr

t , 54
ι input size, 36
ker(f), 88
ℓc(S), 33
lad, 92
lad(f), 92
lad(r), 92

maj, 112
O(f), 12
m memory size, 36
min(G), 126
min(Gt(X)), 125
min(S), 140
min(S), 33
min(d), 147
µq(n, d) number of monomials, 27
⊕, 13
F[x1, . . . , xn], 20
≺ term ordering, 60
supp(X), 176
supp(f), 88
supp(x), 176
d-kernel, 97
f output function, 36
mE(X), 20
wt, 26
wtbin, 162
〈G〉, 18

active attacker, 116
algebraic, 22
algebraic immunity, 80
algebraic normal form, 26
annihilator, 82
annihilator immunity, 81
attack, 11

brute force, 15
successful, 15

attacker, 11

basic operation, 12
Berlekamp-Massey algorithm, 34

215

INDEX

binary weight, 162

characteristic, 19
characteristic function, 89
characteristic polynomial, 31
cipher, 10
ciphertext, 10
clock, 13
coefficients vector, 175
combiner

permutation invariant, 39
simple, 36
with memory, 36

companion matrix, 32
component functions, 26
cryptosystem, 10

d-immune, 92
degree, 21

encryption, 10
extended output function, 37

feedback matrix, 29
field, 19

extension, 22
finite, 24

field equations, 24
frame, 116
frame key, 116
full column rank, 96
function

Z-function, 53
r-function, 51
algebraically immune, 80
balanced, 26
elementary symmetric, 103
symmetric, 28

Gröbner basis, 61
reduced, 62

grevlex, 61
group, 17

abelian, 17

Hadamard matrix, 176
head term, 60

ideal, 18
basis, 19
generated by G, 18
principal, 18

ideal membership problem, 60
initial state, 13
input, 36
internal stream, 37

Kerckhoffs’ principle, 11
kernel, 88
key schedule, 115
keystream, 13
keystream alphabet, 13
keystream generator, 12

linear feedback shift registers, 29
length, 29
linear complexity, 33
sequence, 29

linear recurring sequence, 31
linearization, 65
lowest annihilator degree, 91

majority function, 112
master key, 116
maximum sequence, 31
memory, 36
minimal polynomial

of a sequence, 33
of a set, 140
of an element, 22

monomial, 20

next memory state function, 36

one-time pad, 13
original frame, 117
output function, 13, 36

216

INDEX

passive attacker, 116
period, 30

least, 30
periodic, 30
plaintext, 10
polynomial

characteristic, 31
irreducible, 21
monic, 21
primitive, 24

public channel, 10

receiver, 10
related key scenario, 116
ring, 17

quotient, 19
run length, 55

secret channel, 10
sender, 10
splitting field, 139
stream cipher, 14
support

of a function, 88
of a vector, 176
of an integer, 176

term, 20
term ordering, 60

graded, 60
truth table, 175

weight, 26
binary, 162

217

