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Abstract

A new image processing method is introduced. This method (called stochastic

image reconstruction) is based on a well known phenomenon from quantum

theory. Accordingly every physical system with a non-degenerated ground

state will reach this ground state for times growing to infinity. Moreover this

behaviour is independent of the initial state of the system at the beginning.

Using the stochastic image reconstruction new methods for edge enhancement,

inhomogeneous image smoothing and for noise reduction are exemplarily given.

Kurzdarstellung

Es wird eine neue Bildverarbeitungsmethode vorgestellt. Diese Methode (als

stochastische Bildrekonstruktion bezeichnet) basiert auf einem bekannten Phä-

nomen aus der Quantentheorie. Danach erreicht jedes physikalische System

dessen Grundzustand nicht-entartet ist diesen Grundzustand im Grenzwert

für unbeschränkt wachsende Zeiten. Außerdem ist dieses Grenzwertverhalten

unabhängig von dem Startzustand, in dem sich das System zu Begin befin-

det. Exemplarisch werden neue Verfahren zur Hervorhebung von Kanten, in-

homogenen Bildglättung und Rauschreduktion jeweils unter Verwendung der

stochastischen Bildrekonstruktion vorgestellt.
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Das sinnlich wahrnehmbare Sein

ist des Wechselns fähig.

Aristoteles, Metaphysik XII

This thesis describes the mathematical basis for a new procedure applicable

to different image processing problems and gives examples of applications to

the problem of edge enhancement, image smoothing and de-noising. The main

idea of our new method is based on the fact that the operator exp(−tH) where

H is the Hamilton operator H := − 1
2
∆ + V maps every function f0 :

� 2 → �

in the domain of H (under certain circumstances) for t→∞ up to a constant

factor to the ground state of H. If we define V := ∆f∞
2f∞

for some function

f∞ :
� 2 → �

>0 then f∞ is the ground state of H. Thus for every t ≥ 0 we get

a function ft := exp(−tH)f0 (corresponding to a transformed image at time t)

which is equal to some given function f0 at time t = 0 and converges point-

wisely to a multiple of f∞ for t approaching infinity. Moreover the function ft

obeys the diffusion equation

df

dt
=

1

2
∆f − V f.

So we obtain a transformation algorithm depending on f0 and f∞ (as well as

on the step size ∆t) which allows us to observe the state of transformation by

the function ft. At the end of this work we show that we can derive different

algorithms from our transformation algorithm which are applicable to the pro-

blems of image processing mentioned above. These algorithms correspond to

special choices of the parameters f0, f∞. Indeed we can imagine an application

of our method to other problems (e.g. super resolution, image restoration, face

recognition) but a discussion is left open.

In Chapter 1 we consider functions f0, f∞ ∈ L2(
�

d, λd ) in order to present

the main idea of our transformation algorithm. We choose f∞ > 0 such that

V (x) grows unboundedly whenever ‖x‖ goes to infinity. Then we can use a

result from [61] for the Hamilton operator H to show that H is semi-bounded

1



2 Introduction

and has a pure point spectrum consisting of its eigenvalues. The corresponding

eigenfunctions constitute an orthonormal basis of L2(
�

d, λd ). Moreover the

eigenspace corresponding to the smallest eigenvalue 0 has dimension one (which

means the ground state is non-degenerated). After that we define and discuss

the representation f(t) = exp(−tH)f0. Using this representation we prove the

convergence of f(t) to f∞ (up to a constant). Then in Section 1.4 we introduce

the Cauchy problem

du

dt
=

1

2
∆u− V u with u(0) = f0

and show that f(t) is the unique solution. Using the Feynman-Kac formula in

Section 1.6 this leads to the representation

f(t)(x) = �
[

exp

(

−
∫ t

0

V (Bx
s ) ds

)

f0(B
x
t )

]

for t ≥ 0, (1)

where (Bx
t |t ≥ 0) is a Brownian motion starting in x ∈ � d. Possibly the

exponential term in Equation 1 takes large values and therefore may cause

difficulties during computer experiments. For this reason we eliminate this

term using the unitary map f 7→ f · (f∞)−1 from L2(
�

d, λd ) to the space

L2(
�

d, f 2
∞λ

d ). In Section 1.8 we use the commutative diagram

L2(
� d, λd ) L2(

� d, f 2
∞λ

d )

L2(
� d, λd ) L2(

� d, f 2
∞λ

d )

?

H

�
·f∞

?

L

-
·(f∞)−1

and find that the operator L = − 1
2
∆− (∇ ln f∞)∇ and formulate the Cauchy

problem
dũ

dt
= −Lũ with ũ(0) = f0 · (f∞)−1. (2)

Finally in Section 1.9 using the Cauchy problem 2 we obtain the representation

exp(−tL)
f0

f∞
(x) = �

[

f0

f∞
(Xx

t )

]

for x ∈ � d, t ≥ 0, (3)
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of Equation 1 now in L2(
�

d, f 2
∞λ

d ). Here (Xx
t |t ≥ 0) is a d-dimensional Itô

diffusion with diffusion coefficient σ = −Id and drift b = −∇ lnf∞.

For the computation of the function f(t) we would have to compute its

representation as in Equation 3 for every x in
� d. Actually it is sufficient

to know the value of f(t) for every x in its support D because outside the

function is 0. Obviously in the case of applications in image processing D is

always bounded. Thus we could approximate the right side of Equation 3 by a

Monte-Carlo simulation. But in the following we do not want to extend given

images to functions on
� 2 which are congruent 0 outside their bounded support

D because we would like to consider strictly positive functions f∞. Instead we

use a spline interpolation to get functions defined only on the subset D of
� 2

(a rectangle). Additionally we arrange the interpolation of the discrete image

data such that the resulting function fulfils a Dirichlet or Neumann boundary

condition (both with constant 0). Therefore in the following we consider two

times continously differentiable functions f0, f∞ : D → �
with Dirichlet or

Neumann null boundary condition and additionally assume f∞ to be strictly

positive as before.

Because of the fact that the boundary ∂D is possibly non-smooth we have

to prove several statements which are well known in the case of smooth boun-

daries and extend some definitions. For example we have to replace the usual

definition of the Neumann boundary condition because at those points of the

boundary of D where ∂D is non-smooth the normal is not unique. Hence we

say that the function f∞ fulfils the strong Neumann boundary condition with

constant 0 if the derivative of f∞ restricted to the boundary of D (excluding

the corner points) vanishes in the direction of the normal to the boundary as

in the usual definition of the Neumann null boundary condition. Additionally

at the corner points the derivative of f∞ has to vanish for all directions ν ∈ Nx

where we define Nx as a set of normals for the point x ∈ ∂D. That way in

Chapter 2 we are able to consider functions f0, f∞ defined on a bounded, open

and convex set D ⊂ � d with Dirichlet or Neumann null boundary conditions.

This means in our theoretical discussion we consider a more general case than

needed in the view of applications in image processing.

As before we take f∞ to be strictly positive and demand f0, f∞ to be two
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times continuously differentiable. Then we prove that the operator H defined

on functions in C2(D) with Dirichlet or Neumann boundary condition has a

purely discrete point spectrum and is non-negative. Moreover we prove that the

eigenspace corresponding to the smallest eigenvalue 0 is 1-dimensional (which

means that the ground state is non-degenerated). Using some existing results

for solutions of differential equations of second order this will lead to the point-

wise convergence of exp(−tH)f0 to f∞. First we show these attributes of H

for regions D with sufficiently smooth boundary. Then in Section 2.3.2 we give

a proof for the case of a possibly non-smooth boundary. After this we give a

detailed construction of an Itô diffusion reflected at ∂D for the case of a smooth

boundary. In the non-smooth case this construction is replaced by solutions of

Skorokhod problems (see Appendix B and [66]) to avoid the construction of a

reflection at a non-smooth boundary. This enables us to give representations of

f(t) in terms of the reflected Itô diffusion (Xx
t |t ≥ 0) equivalent to Equation 1

and Equation 3. For this purpose we use a Cauchy problem and the Feynman-

Kac formula as before. Once more we treat the case of smooth and non-smooth

boundaries separately. First we resume existing results for regions D with

smooth boundaries. Then in Section 2.6 we prove a version of the Itô formula

for solutions (Xt, ϕt) of Skorokhod problems. This result is known in the more

general context of locally square integrable, continuous martingales (cp. [42]).

We give a new, easy proof for our special situation. With this formula we

are able to determine the infinitesimal generator of (Xt, ϕt). Then we state a

Cauchy problem as in Equation 2 (now for functions in C2(D)) and once more

use our version of the Itô formula to get a solution of the Cauchy problem.

Up to now we know that the function f(t) = �
[

f0
f∞

(X .
t)
]

f∞ converges in

L2(D , λd ) to f∞ for t growing to infinity. This is a similar result as in Chapter 1

where we treated functions in L2(
�

d, λd ). At this point we have this result for

f0, f∞ in L2(D , λd) with Dirichlet or Neumann boundary condition. Then we

show that the convergence of f(t) to f∞ is actually point-wise. Nevertheless

if we are concerned with applications in image processing it is impossible to

compute f(t) for all x ∈ D ⊂ � 2 where D is a rectangle (it is an uncountable

set of points). Therefore in Chapter 3 we discuss everything that belongs to

the discrete aspects of computer experiments. We start with the approximation
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of Itô diffusions in convex regions. We give the Euler approximation scheme

(cp. [72, 73]) and extend it according to the existing approximation schemes for

Itô diffusions on
� d as in [39] to get approximation schemes for Itô diffusions

with reflection of higher approximation order1. Then in Section 3.2 we present

the algorithm for the approximative computation of �
[

f0
f∞

(Xx
t )
]

f∞(x) for one

x ∈ D. After this we describe some possibilities to get functions in C2(D) from

digital images (defined on a finite set of points) and give approximations to

the derivative of a spline interpolated function. Finally at the end of Chapter 3

we discuss the resulting approximation (simulation) error.

Chapter 4 is devoted to some computer experiments concerning the pre-

sentation of our transformation algorithm according to the behaviour of ft in

discrete time. We start with an illustration of the basic functionality of the

transformation algorithm using some examples. During these experiments we

clearly observe an edge enhancing effect in the transformed image. Then we

formulate a version of our transformation algorithm which reduces the com-

putation times by a factor of five compared with the original transformation

algorithm. It is worth noting that the fast version of the transformation algo-

rithm produces results with very small visual differences to the results from

the original version. After that we show how to make use of the transforma-

tion algorithm in order to improve an image of a fingerprint. Then we give

some examples for image smoothing, make a connection to image smoothing

by convolution with a Gaussian, and illustrate the difference to our method.

We finish with some examples which concern the problem of de-noising. Over-

all the experiments show that our method is applicable to the problems of

image processing we considered here. Moreover the results of the experiments

confirm our expectation given by the theoretical considerations.

1The extensions of the approximation schemes will not be needed for the formulation of
the transformation algorithm. They are an add-on of this work.





Chapter 1

Theoretical Approach

In this chapter we develop the basic theory for the reproduction of functions f∞

in the space of square integrable functions with respect to Lebesgue measure.

The class of reproduceable functions will be investigated as well as the class

of reproducing Hamiltonians. The main interest of this work is to obtain

representations of the evolution in time ft. So we consider the exponential

of operators and formulate a Cauchy problem related to this. After that we

will see that solutions of the Cauchy problem can be represented in terms of

stochastic processes and their expectation. Finally we give a second approach

to the reproduction of functions by considering the space of square integrable

functions with respect to a weighted Lebesgue measure. Again we formulate

this approach in terms of a Cauchy problem. We give a solution for this

problem which enables us to represent the time evolution we are interested

in. As before we will use the expectation value of a stochastic process for this

representation.

1.1 Operators in L2(
� d, λd)

As usual we denote by
�

the set of real numbers. In the whole text we make

use of the notation
�

≥0 and
�
>0 for the set of positive respectively strictly

positive real numbers. For every natural number d ∈ � we write
� d for

the d-dimensional Euclidian space with the norm |x| :=
√

x2
1 + · · ·+ x2

d. We

further denote the d-dimensional Lebesgue measure by λd and frequently omit

7



8 Chapter 1. Theoretical Approach

the superscript d. Then L2(
�

d, λd ) denotes the set of all real, square integrable

functions with respect to λd. It is equipped with the usual inner product

(f, g) :=

∫

fg dλ

and the norm ‖f‖ :=
√

(f, f). With the equivalence relation ∼ defined by

f ∼ g :⇔ ‖f − g‖ = 0 we obtain the quotient space L2(
�

d, λd ) with the

same inner product and norm as in L2(
�

d, λd ). As usual we simply call the

elements of the real Hilbert space L2(
�

d, λd ) functions. A sequence (fn|n ∈ � )

of elements in L2(
�

d, λd ) is called convergent to f ∈ L2(
�

d, λd ), iff

lim
n→∞

‖fn − f‖ = 0,

and we write

L2- lim
n→∞

fn = f or fn
L2

−→ f.

For families (ft|t ∈ I) of elements in L2(
�

d, λd ) with an uncountable set I this

convergence generalises in the usual way. Further information about general

Hilbert spaces can be found e.g. in [62, 78]. This also holds for the following

two definitions. We give these definitions in an general context in order to

apply them to different situations later.

Definition 1.1.1. We call the elements v0, v1, . . . of a Hilbert space H an

orthonormal basis (ONB) of H, iff

a) (vi, vj) = 0 for all i, j ∈ � 0 with i 6= j,

b) ‖vi‖ = 1 for all i ∈ � 0 and

c) for all h ∈ H there exist unique α0, α1, . . . in
�

, such that

h = L2- lim
n→∞

n
∑

k=0

αkvk (1.1)

=
∑

k∈ � 0

αkvk. (1.2)

Remark. It is well known that h ∈ H, iff the sum over α2
k = (h, vk)

2 for all

k ∈ � 0 is finite. So the limit in 1.1 does not depend on the summation order
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which justifies 1.2. Moreover the first two conditions in Definition 1.1.1 are

often abbreviated as (vi, vj) = δi,j. Here δi,j is equal to 1 for i = j and defined

as 0 in all other cases.

Definition 1.1.2. Let the operator H : DH → H be densely defined on some

Hilbert space H. We call H an operator with purely discrete spectrum, iff there

exist eigenvalues λ0 ≤ λ1 ≤ λ2 . . . in
�

and eigenvectors v0, v1, v2, . . . in DH
such that

Hvk = λkvk, for all k ∈ � 0, (1.3)

and (vk|k ∈ � 0) is an ONB of H. If we denote by Id the identity map f 7→ f

we call the dimension of ker(H − λk Id) the multiplicity of the eigenvalue λk.

There ker(H) is the null space of H, that is the set {f |Hf = 0}. The operator

H is symmetric, iff for all f, g ∈ DH we have (Hf, g) = (f,Hg).

To be more explicite we consider H = L2(
�

d, λd ). For every symmetric

operator H Equation 1.3 leads to the spectral representation

Hf =
∑

k∈ � 0

λk(f, vk)vk. (1.4)

This representation shows, that the natural (maximal) domain of an symmetric

operator as above is defined by

DH :=
{

f ∈ L2(
� d, λd )

∣

∣f =
∑

k∈ � 0

αkvk,
∑

k∈ � 0

α2
kλ

2
k <∞

}

. (1.5)

If H is explicitely given it might be necessary to restrict its domain to a dense

subset in order to guaranty existence of derivatives and then to enlarge it by

taking limits. So if we want to define

H : DH → L2(
�

d, λd )

f 7→ −1
2
∆f + V f

(1.6)

for some V :
� d → �

, where ∆ is the d-dimensional Laplace-Operator, then it

is convenient to take f as a two times differentiable function. Actually C2(
� d)

the set of all two times continuously differentiable functions can be restricted

to a dense subset in L2(
�

d, λd ). That means every function in L2(
�

d, λd ) can



10 Chapter 1. Theoretical Approach

be expressed as limit of functions in C2(
� d) ∩ L2(

�
d, λd ). So the domain DH

of H can be taken as in Equation 1.5 for appropriate V .

Indeed we are interested in symmetric operators with purely discrete spec-

trum of the form 1.6 where the potential V is given by ∆f∞
2f∞

, so we define

Hf := (−∆

2
+ V )f = −∆f

2
+

∆f∞
2f∞

· f (1.7)

for all f ∈ DH . If we choose f∞ as strictly positive function in L2(
�

d, λd ) then

V might not be in L2(
�

d, λd ). Moreover the derivative has to be interpreted

in the sense of distributions (see Appendix A) or as L2-limit like we will do in

this chapter. Nevertheless we are interested in such potentials so we give the

following definition.

Definition. A function f is called locally square integrable, iff for every com-

pact set K ⊂ � d the integral of f2 over K is finite. The real vector space of

all locally square integrable functions is denoted by L2
loc(

�
d, λd ).

Now we apply Theorem XIII.47 from [61] to our situation. For simplicity

we assume f∞ to be chosen such that V is non-negative (in Chapter 2 we give

a different argument without this additional assumption). In Theorem XIII.47

from [61] it is not mentioned that the spectrum of H is purely discrete, but it

is used and explained in the proof of the theorem. So we resume as follows.

Theorem 1.1.3. If V ∈ L2
loc(

�
d, λd ) is positive and V (x) grows unboundedly

whenever |x| goes to infinity then H as defined in Equation 1.7 with domain

DH has non-negative, purely discrete spectrum. The smallest eigenvalue has

multiplicity one.

Finally we want to know what the smallest eigenvalue and its corresponding

eigenfunction is.

Lemma 1.1.4. The function f∞ ∈ L2(
�

d, λd ) is an eigenvector of the operator

H as defined in Equation 1.7 with domain DH to the eigenvalue 0.

Proof. We have

Hf∞ = −∆f∞
2

+
∆f∞
2f∞

· f∞ = −∆f∞
2

+
∆f∞

2
. �



1.2. Semigroups of operators 11

From Theorem 1.1.3 it follows, that f∞ is the only solution of Hf = 0 with

f ∈ L2(
�

d, λd ). Also the theorem implies that there is no eigenvalue below 0.

1.2 Semigroups of operators

As mentioned at the beginning we are mainly interested in functions ft con-

verging for t →∞ to a given function f∞. Later we will see that exp(−tH)f

with H defined in Equations 1.6, 1.7 are such functions. So our aim in this

section is to define exp(−tH) for the special class of operators H we consider

in this work and give some of its properties.

A definition for the exponential of operators in a general sense can be

found in the book of Kato [38], but we consider special operators which make

an easier approach possible. Therefore for the class of operators discussed in

Section 1.1 we take

Ttf := exp(−tH)f :=
∑

k∈ � 0

exp(−tλk)αkvk (1.8)

for every f in its domain

DTt := {f ∈ L2(
� d, λd ) |f =

∑

k∈ � 0

αkvk with
∑

k∈ � 0

α2
k exp(−tλk)2 <∞} (1.9)

and notice that exp(−tλk) ≤ 1 for every λk ≥ 0 and every t ≥ 0. So we

are able to conclude DH ⊂ DTt = L2(
�

d, λd ) and define exp(−tH)f for all

f ∈ L2(
�

d, λd ) as in 1.8.

Definition. We call (Tt|t ≥ 0) a strongly continuous semigroup, iff the oper-

ator Tt acting on L2(
�

d, λd ) satisfies (Ts ◦ Tt) = Ts+t for all 0 ≤ s, t ≤ ∞ and

Tt → T0 for t decreasing to 0. Here the operator Tt converges to the operator

T0, iff for every f ∈ DT the norm ‖Ttf − T0f‖ vanishes for t↘ 0.

Remark. The semigroup is continuous for every t ∈ �
≥0 because for every

function f ∈ L2(
�

d, λd ) we have f̃ = Ttf as an element of L2(
�

d, λd ) and so

‖Tt+hf − Ttf‖ = ‖Thf̃ − T0f̃‖ vanishes for h ≥ 0 converging to 0.
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Before we show that Tt from Equation 1.8 defines a strongly continuous

semigroup we give a useful lemma. It will allow us to interchange limits.

Lemma 1.2.1. Let (vk|k ∈ � 0) denote an ONB of L2(
�

d, λd ). For every

k ∈ � 0 we consider αk(t), βk ∈
�

such that for every t ∈ �
≥0 the function

αk is continuous and we have αk(t)
2 ≤ βk. The sum of all βk for k ∈ � 0 is

assumed to be finite. Then for t ∈ �
≥0 the function f(t) :=

∑

k∈ � 0
αk(t)vk is

an element of L2(
�

d, λd ). Furthermore f is continuous with respect to t.

Proof. For every t ≥ 0 we have

∞
∑

k=0

αk(t)
2 ≤

∞
∑

k=0

βk <∞

because of αk(t)
2 ≤ βk. Hence f(t) is in L2(

�
d, λd ) and

∑m
k=0 ‖αk(t)vk‖2

converges. Now we prove the continuity property. For this we note that the

partial sums
∑n

k=0 βk form a Cauchy sequence. But then for every ε > 0 there

exists n0 ∈ � 0 such that for all n1, n2 ≥ n0 with n2 ≥ n1 we have

‖
n2
∑

k=0

αk(t)vk −
n1
∑

k=0

αk(t)vk‖2 = ‖
n2
∑

k=n1

αk(t)vk‖2 ≤
n2
∑

k=n1

βk < ε̃ < ε

independent of t ≥ 0. If we take n2 →∞ and use the continuity of the norm

it follows

‖ft −
n
∑

k=0

αk(t)vk‖2 < ε

for all n ≥ n0. This shows that
∑n

k=0 αk(t)vk converges uniformly in t to the

function ft as n goes to infinity. Finally we get

L2- lim
t→t0

ft =

∞
∑

k=0

lim
t→t0

αk(t)vk = f(t0).

�

Theorem 1.2.2. Denote by Tt = exp(−tH) the operator defined in 1.8. Then

(Tt|t ≥ 0) is a strongly continuous semigroup on DT with T0 = Id.

Proof. First we prove the semigroup property. Let 0 ≤ s, t ≤ ∞ and f ∈ DT
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with f =
∑

k∈ � 0
αkvk then we have

(Ts ◦ Tt)f = exp(−sH)
∑

k∈ � 0

exp(−tλk)αkvk. (1.10)

Using the definition of exp(−sH) we rewrite the right side of 1.10 as

∑

k∈ � 0

exp(−sλk) exp(−tλk)αkvk.

Hence we find (Ts ◦ Tt)f = exp(−(s + t)H)f = Ts+tf . From Equation 1.8 it

follows for t = 0

T0f = exp(0 ·H)f

=
∑

k∈ � 0

exp(0)αkvk = f

which means that T0 = Id.

Now we show that the semigroup is strongly continuous. To do this we

have to prove

lim
t→0
t>0

‖Ttf − f‖ = 0. (1.11)

One more time we use Equation 1.8 and the fact that f is in L2(
�

d, λd ) to

write

‖Ttf − f‖2 = ‖ exp(−tH)f − f‖2

=
∑

k∈ � 0

(

(exp(−tλk)− 1)αk
)2

(1.12)

≤
∑

k∈ � 0

α2
k <∞.

So the series 1.12 is absolutely convergent. Moreover (exp(−tλk)− 1)2 ≤ 1 so

we can apply Lemma 1.2.1. Using this and the continuity of the norm we see

that Equation 1.11 is equivalent to

∑

k∈ � 0

(

(lim
t→0
t>0

exp(−tλk) − 1)αk
)2

= 0. �
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Definition 1.2.3. The (infinitesimal) generator H of a semigroup (Ut|t ≥ 0)

is defined by

Hf := L2- lim
t↘0

Utf − f
t

(1.13)

for every f in DH . The domain DH is the set of all f ∈ L2(
�

d, λd ) for which

the limit 1.13 exists.

Here we used Ut to denote the semigroup, because the generator of Tt

defined in Equation 1.8 is −H as we will see later.

Remark. Let DH denote the domain of the generator H defined above. If Ut

is acting on L2(
�

d, λd ) then we know from [16] Lemma 1.1 that DH is a dense

subset of L2(
�

d, λd ).

1.3 Reproducing property in L2(
� d, λd)

In this section we will give the theorem which plays the central role in the de-

velopment of applications later on. Again we consider the semigroup (Tt|t ≥ 0)

from the section above. But here we are interested in the limit

L2- lim
t→∞

Ttf = L2- lim
t→∞

exp(−tH)f.

Theorem 1.3.1. Let (Tt|t ≥ 0) denote the semigroup defined in Equation 1.8.

Then for f ∈ L2(
�

d, λd ) the function Ttf converges for t→∞ to (v0, f)v0.

Proof. Let f be in DH then using Equation 1.8 we have

‖Ttf − α0v0‖2 = ‖
∑

k∈ � 0

exp(−tλk)αkvk − α0v0‖2

=
∑

k∈ �

(

exp(−tλk)αk
)2

(1.14)

because (vi, vj) = δi,j and exp(−tλ0)
2α2

0 = α2
0 which is simply a consequence of

Lemma 1.1.4. The limit t→∞ of 1.14 gives 0 by dominated convergence. �

This shows that up to the constant (v0, f) =
∫

v0f dλ the limit of Ttf

is independent of the function f . That means the limit operator T∞ projects
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every f ∈ DT onto the ground state f∞ (the eigenfunction corresponding to the

smallest eigenvalue 0). We call this the reproducing property of the semigroup

(Tt|t ≥ 0). As mentioned before this is the property which will be used for

applications later on.

1.4 The corresponding Cauchy problem

In order to state a Cauchy problem related to the semigroup (Tt|t ≥ 0) con-

sidered in Sections 1.2, 1.3 we define the derivative of f :
�

≥0 → L2(
�

d, λd )

by
df

dt
(t) = L2- lim

h→0

f(t+ h)− f(t)

h
,

where the limit is taken such that t+ h ≥ 0.

Definition 1.4.1. Let H denote the operator defined in Equation 1.4 and

us an element of L2(
�

d, λd ). The problem of finding a continuous function

u : [s, T ]→ L2(
�

d, λd ) which satisfies

du

dt
= −Hu (1.15a)

for every t ∈ (s, T ] and fulfils the initial condition

u(s) = us (1.15b)

is called a Cauchy problem. Then the function u is called a solution of the

Cauchy problem.

Now we show that we can get solutions of the Cauchy problem from the

semigroup (Tt|t ≥ 0) defined in Section 1.2.

Theorem 1.4.2. Given f ∈ L2(
� d, λd ) the function u(t) := exp(−tH)f is a

solution for 1.15a with initial condition u(0) = f .

Proof. For every f ∈ DH and t0 > 0 we use Equation 1.8 to derive

d exp(−tH)f

dt

∣

∣

∣

∣

t=t0

= L2- lim
t→t0

∑

k∈ � 0
exp(−tλk)αkvk −

∑

k∈ � 0
exp(−t0λk)αkvk

t− t0
.
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But the absolute value of (exp(−(t− t0)λk)− 1)(t− t0)−1 is dominated by λk

for |t− t0| sufficiently small. So if we take

γk(t) :=
exp(−tλk)− exp(−t0λk)

t− t0
αk

it follows γ2 ≤ λ2
kα

2
k where the sum

∑

k∈ � 0
λ2
kα

2
k is finite as we know from

the definition of the domain (see Equation 1.5). Moreover γk(t) converges

to −λkαk for t to 0. As a consequence of Lemma 1.2.1 it is permitted to

interchange the derivative and the sum. This leads to

d exp(−t0H)f

dt
= −

∑

k∈ � 0

λk exp(−t0λk)αkvk. (1.16)

Finally exp(−tλk)αk = (u, vk) is the k-th coefficient of the spectral represen-

tation of exp(−tH)f . So the right side of 1.16 is equal to −H exp(−t0H)f .

From Theorem 1.2.2 we know that the semigroup (Tt|t ≥ 0) defined by

Tt = exp(−tH) is strongly continuous. This implies u(0) = f for every function

f ∈ DH . �

1.5 Itô Diffusion and its generator

This section is devoted to the introduction of a (time homogeneous) Itô diffu-

sion as the solution of a stochastic differential equation (SDE) and the defini-

tion of the generator of an Itô diffusion. For this we give some basic definitions

and resume available existing and uniqueness results for SDEs. Finally we state

the relation between the generator of the Itô diffusion and the coefficients of

the defining SDE. In the next chapter this relation will be used to find solutions

of the Cauchy Problem 1.15a, 1.15b. But first of all we give some statements

about Itô diffusions in general.

If we want to describe the motion of a small particle in a moving liquid,

subject to random bombardments and b(t, x) ∈ � 3 is the velocity of the liquid

at point x at time t, then the solution of the stochastic differential equation of

the form

dXt = b(t,Xt)dt+ σ(t,Xt)dBt (1.17)
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is a frequently used mathematical model for the position Xt of the particle at

time t. There Bt is an m-dimensional Brownian motion and σ(t, x) ∈ � 3×m.

Also solutions of Equation 1.17 are popular in mathematical finance to model

the behaviour of asset prices. Many more applications have been considered

in the past. However in this work we are not interested in modelling issues

concerning Xt, but we will use Xt to give a representation for the semigroup

(Tt|t > 0).

Remark. We leave it as an open question to give a substantiated interpretation

of the (transformation) reconstruction mechanism presented in this work in

terms of particle transport. That means if ft is the solution of the Cauchy

problem we do not go into a detailed discussion concerning the change of

ft(x) for fixed x ∈ � d and growing t. Nevertheless such a discussion seems

interesting because it may lead to further applications.

Now we turn to the formal definition of an Itô diffusion. We restrict ourself

to the time homogeneous case. That is b and σ are constant in time. As

usual we denote the underlying probability space by (Ω,A, P ). Moreover we

consider B(
� d) the Borel σ-algebra defined on

� d. A function X : Ω → � d

is called random variable, iff for every B ∈ B(
� d) we have X−1(B) ∈ A. In

this case we call X an A-B(
� d)-measurable function. We say a statement A

depending on ω is almost surely (a.s.) true, iff there exists a set N ∈ A with

P (N) = 0 such that for all ω ∈ N c the statement A(ω) is true. Here N c is the

complement of N in Ω.

Definition. Let
�

≥0 denote the time parameter set. We call a family of

random variables (Xt|t ∈
�

≥0) with values in
� d a stochastic process, iff all

random variables Xt are defined on the same probability space (Ω,A, P ). The

function X.(ω) :
�

≥0 →
� d defined by t 7→ Xt(ω) is the path of Xt for the

realization ω. A family (Ft|t ∈
�

) of σ-algebras defined on Ω is a filtration

in Ω, iff s ≤ t implies Fs ⊂ Ft. Then the quadruple (Ω,A, P, (Ft|t ≥ 0)) is

called filtered probability space. The stochastic process (Xt|t ≥ 0) is adapted

to the filtration (Ft|t ≥ 0), iff for every t ≥ 0 the random variable Xt is

Ft-B(
� d)-measurable.

As suggested before we are interested in stochastic processes satisfying a
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stochastic differential equation

dXt = b(Xt)dt+ σ(Xt)dBt (1.18)

where Xt ∈
� d, b(x) ∈ � d, σ(x) ∈ � d×m. Here the m-dimensional Brownian

motion (Bt|t ≥ 0) generates a natural filtration (FB
t = σ(Bs|s ≤ t)|t ≥ 0). To

be more precise we give the following definition with Equation 1.18 rewritten

in integral form.

Definition. Let us denote by Bt a m-dimensional Brownian motion defined

for t ∈ [0, T ] generating the filtration (FB
t |t ≥ 0). We consider a stochastic

process

Xx : [0, T ]×Ω → � d

(t, ω) 7→ Xx(t, ω) := Xx
t (ω)

defined on the filtered probability space (Ω,A, P,FB
t ) such that Xx

t is a.s.

satisfying the stochastic integral equation

Xx
t (ω) = x+

∫ t

0

b(Xx
s (ω)) ds+

∫ t

0

σ(Xx
s (ω)) dBs(ω) for all t ∈ [0, T ]. (1.19)

Then we call Xt a (time-homogeneous) Itô diffusion with initial condition

x ∈ � d, iff almost every path X.(ω) is a continuous function and (Xt|t ≥ 0)

is adapted to (FB
t |t ≥ 0). We call b the drift coefficient and σ the diffusion

coefficient.

There exists a lot of literature [10, 18, 26, 27, 29, 51, 55, 79, 81] about

probability theory, stochastic processes and stochastic integration providing

much information about these subjects. For instance the definition of the

integral
∫

dBt has to be taken from one of these references. Now we give

Theorem 5.2.1 from [55] which is an existence and uniqueness result for the

solution of Equation 1.18.

Theorem 1.5.1. Let b :
� d → � d, σ :

� d → � d×m be measurable functions.

Further for some constant C ∈ �
b, σ satisfy the Lipschitz continuity condition

|b(x)− b(y)|+ |σ(x)− σ(y)| ≤ C|x− y| for all x, y ∈ � d
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where |σ|2 :=
∑ |σij|2. Then Equation 1.19 has a unique solution in C0([0, T ])

for every T > 0. Here uniqueness means path-wise unique (i.e. in the strong

sense). That is if a second stochastic process (Yt|t ≥ 0) satisfying Equa-

tion 1.19 is given then almost surely we have Xt(ω) = Yt(ω) for every t ∈ [0, T ].

As mentioned a proof of this can be found in [55] also in [26, 27, 51, 84]

so we skip it here. To investigate solutions of the Cauchy problem defined in

Equations 1.15a, 1.15b we introduce the generator of an Itô diffusion similar

to Definition 1.2.3 as follows.

Definition 1.5.2. For every (time-homogeneous) Itô diffusion (Xx
t |t ∈

�
≥0)

in
� d we define the (infinitesimal) generator A of the process Xx

t by

Af(x) := lim
t↘0

� [f(Xx
t )]− f(x)

t
for all x ∈ � d,

where D̃A(x) := {f ∈ L2(
�

d, λd ) |Af(x) exists} and D̃A :=
⋂

x∈ � d D̃A(x) is

called the domain of the generator. (We denote by � [X] the expectation of X

respective P .)

Remark. This definition is also valid for a more general class of stochastic

processes (see [27]).

Now we are prepared to give relations between A and the coefficients b, σ

in the stochastic differential Equation 1.18 defining Xt. Therefore we use

the following theorem which can be found in [55] and is a consequence of

Itô’s formula. For this we denote by C2(
� d) the set of all twice continuous

differentiable functions and define

C2
0(

� d) := {f ∈ C2(
� d)|f has compact support}

which is naturally embedded in L2(
�

d, λd ) by f 7→ [f ]. Here [f ] is the set of all

functions g ∈ L2(
�

d, λd ) equivalent to f (i.e. the class of f). Using the same

embedding we define DA := {[f ]|f ∈ D̃A}.

Theorem 1.5.3. Let (Xt|t ∈
�

≥0) be a (time-homogeneous) Itô diffusion and
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f ∈ C2
0(

� d), then we have f ∈ DA and Af is a.e. given by

Af(x) =
d
∑

i=1

bi(x)
∂f

∂xi
+

1

2

d
∑

i,j=1

(σσᵀ)i,j(x)
∂2f

∂xi∂xj
(1.20)

where σᵀ denotes the transpose of σ.

Remark. The operator A acts on L2(
�

d, λd ) because the embedding of C2
0(

� d)

is a dense subset.

1.6 Solutions with the Feynman-Kac-Formula

In this section we give a solution of the Cauchy problem 1.15a with initial

condition 1.15b which was found by Feynman and Kac. A simple proof of

Theorem 1.6.1 can be found in [55].

Theorem 1.6.1. Let (Xx
t |t ∈

�
≥0) be an Itô diffusion with generator A.

Further we take f ∈ C2
0(

� d) and assume V ∈ C(
� d) is bounded from below.

a) Define

u(t, x) := �
[

exp(−
∫ t

0

V (Xx
s ) ds)f(Xx

t )
]

, (1.21)

then u(t, .) ∈ L2(
�

d, λd ) for all t ≥ 0, and its class ut := [u(t, .)] in

L2(
�

d, λd ) satisfies

dut
dt

= Aut − V ut, for all t > 0, x ∈ � d (1.22a)

and

u(0, x) = f(x), for all x ∈ � d. (1.22b)

b) The solution is unique in the sense that, if ũ(t, x) ∈ C1,2(
� × � d) is

bounded on K × � d for each compact K ⊂ �
and ũ solves 1.22a, 1.22b,

then we have u = ũ and 1.21 holds.

Remark 1.6.2. In Equation 1.22a the derivative dut

dt
is in the L2(

�
d, λd )-sense,

and we use the “generator-definition 1.5.2” for A. Equation 1.22a is also correct
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in the sense of ordinary partial derivatives (see [19]). For our approach (i.e.

using spectral theory) it is more appropriate to use the L2(
�

d, λd )-definition.

Now we consider the generator A := 1
2
∆ of an Itô diffusion (Xx

t |t ∈
�

≥0)

with drift equal to 0 and diffusion equal to the d-dimensional unit matrix Id.

(In this case the Itô diffusion is simply a Brownian motion.) As in Equation 1.7

we take V := ∆f∞
2f∞

and H = −A + V . Then Ttf = exp(−tH)f as defined in

Theorem 1.2.2 is a solution of the Cauchy problem 1.15a with initial condi-

tion 1.15b. Hence we know Ttf(x) = u(t, x) which enables us to compute the

solution explicitly as given in Equation 1.21.

One possibility to do this is to perform a Monte Carlo simulation for the

Expression 1.21. But then we have to compute exp(x) where x can take large

values. Even if V is bounded from below, exp(x) may become smaller than the

precision of the computer system which will be used for the simulation. Hence

we have to apply a special mechanism (e.g. algebraic computing theory as

described in [47] and implemented in the GMP library) to handle very large (resp.

small) numbers during the computer experiments. But we do not simulate

Expression 1.21 because of the inconvenience which possibly occurs. Instead

we are going to avoid the term exp(x) by transforming the problem to another

space as mentioned at the beginning.

1.7 Operators mapped to L2(
� d, f 2

∞λ
d)

In this section we consider the space L2(
�

d, f 2
∞λ

d ) which is the set of functions

f :
� d → �

with ‖f‖f2
∞
<∞ where

‖f‖2f2
∞

:= (f, f)f2
∞

:=

∫

f2f2
∞ dλ. (1.23)

We recall, that we have taken f∞ :
� d → �

>0 as a strictly positive function

and from now on we suppose

∫

f2
∞ dλ = 1.
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In order to formulate equivalent statements to the statements given (in the

chapters before) for the operator H acting on L2(
�

d, λd ) and the semigroup

(Tt|t ≥ 0) we need an identification between L2(
�

d, λd ) and L2(
�

d, f 2
∞λ

d ).

Therefore we give the following connection.

Definition 1.7.1. For every strictly positive function f∞ :
� d → �

>0 we

define
Uf∞ : L2(

�
d, λd ) → L2(

�
d, f 2

∞λ
d )

ψ 7→ ψ
f∞
.

So with the next proposition we state that this gives the desired identifi-

cation between the two spaces.

Proposition 1.7.2. Uf∞ as in the definition above is a unitary map between

the spaces L2(
�

d, λd ) and L2(
�

d, f 2
∞λ

d ).

Proof. For every function ψ ∈ L2(
�

d, f 2
∞λ

d ) we have Uf∞(ψ · f∞) = ψ and

ψ · f∞ ∈ L2(
�

d, λd ) because of

‖ψ · f∞‖2 =

∫

ψ2f2
∞ dλ

= ‖ψ‖2f2
∞
<∞.

So Uf∞ is a surjective map and we go ahead to prove injectivity which is easy

to see. For arbitrary functions ψ1, ψ2 ∈ L2(
�

d, λd ) we have

ψ1 6= ψ2 ⇔ Uf∞(ψ1) 6= Uf∞(ψ2)

if f∞ > 0, which is one of our assumptions. Moreover for a1, a2 ∈
�

we have

Uf∞(a1ψ1 + a2ψ2) = a1Uf∞(ψ1) + a2Uf∞(ψ2)

and

(ψ1, ψ2) = (Uf∞(ψ1), Uf∞(ψ2))f∞

which makes the proof complete. �

Remark. In the space L2(
�

d, f 2
∞λ

d ) we consider convergence as induced by the

norm coming from the inner product in L2(
�

d, λd ). To be precise we use

(f, g)f2
∞

= (U−1
f∞
f, U−1

f∞
g) to get the norm in L2(

�
d, f 2

∞λ
d ) as defined in 1.23.
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Obviously we have the inverse map

U−1
f∞

: L2(
�

d, f 2
∞λ

d ) → L2(
�

d, λd )

ψ 7→ ψ · f∞

which makes the identification between L2(
�

d, λd ) and L2(
�

d, f 2
∞λ

d ) complete.

Remark. If (vk|k ∈ � ) is an ONB of L2(
�

d, λd ), then ( vk

f∞
|k ∈ � ) is an ONB

of its counterpart L2(
�

d, f 2
∞λ

d ).

1.8 Review of some statements using the

map to L2(
� d, f 2

∞λ
d)

Here we use the isomorphism from Definition 1.7.1 to define operators L acting

on the space L2(
�

d, f 2
∞λ

d ) starting from operators H acting on L2(
�

d, λd ) as

shown below.

L2(
� d, λd ) L2(

� d, f 2
∞λ

d )

L2(
� d, λd ) L2(

� d, f 2
∞λ

d )

?

H

�

U−1
f∞

?

L

-
Uf∞

Then we define a semigroup according to Section 1.2 using the operator L.

This leads to solutions of a Cauchy problem which is formulated at the end of

the section (similar to Definition 1.4).

Once again we consider the operator H acting on L2(
�

d, λd ) as defined in

Section 1.1 Equation 1.7. Then naturally we have the operator L := Uf∞HU
−1
f∞

acting on L2(
�

d, f 2
∞λ

d ) (as shown in the diagram above). As before we denote

by (λk|k ∈ � 0) the eigenvalues of H and by (vk|k ∈ � 0) the corresponding

normalised eigenvectors. If ψ is an element of DL = Uf∞(DH) represented as

ψ =
∑

k∈ � 0

(Uf∞(vk), ψ)f2
∞
Uf∞(vk)
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we easily calculate the spectral representation

Lψ =
∑

k∈ � 0

λk(Uf∞(vk), ψ)f2
∞
Uf∞(vk)

analogous to Equation 1.4. This is because for every k ∈ � 0 we have

LUf∞(vk) = Uf∞Hvk

= λk(vk, vk)Uf∞vk

= λk(Uf∞(vk), Uf∞(vk))f2
∞
Uf∞(vk).

So we are able to define exp(−tL)ψ for all t ∈ �
≥0 and all ψ ∈ DL analogous

to Equation 1.8 as an element of DL. On the other hand we defined a strongly

continuous semigroup Tt acting on L2(
�

d, λd ). In the same natural way this

leads to a semigroup T̂t acting on L2(
�

d, f 2
∞λ

d ).

Theorem 1.8.1. If T̂t := Uf∞ exp(−tH)U−1
f∞

for t ≥ 0, then (T̂t|t ≥ 0) is a

strongly continuous semigroup with domain DT̂ = L2(
�

d, f 2
∞λ

d ).

Proof. The proof uses the semigroup property for Tt := e−tH and the fact that

every inner product is a continuous function. We calculate

T̂t ◦ T̂s = Uf∞e
−tHU−1

f∞
◦ Uf∞e−sHU−1

f∞

= Uf∞e
−tH ◦ e−sHU−1

f∞

= Uf∞e
−(t+s)HU−1

f∞

= T̂t+s

which shows the semigroup property for T̂ . In order to prove strong continuity

of the semigroup we have to show that for every ψ ∈ L2(
�

d, f 2
∞λ

d ) we have

(Uf∞e
−tHU−1

f∞
)ψ

L2f 2
∞−−−→(Uf∞e

−t0HU−1
f∞

)ψ

whenever t→ t0 in
�

≥0. Now let f be an element in L2(
�

d, λd ) then

(Uf∞e
−tHU−1

f∞
)f2

∞
f = Uf∞e

−tHf
L2f 2

∞−−−→Uf∞e
−toHf

= (Uf∞e
−t0HUf∞)f2

∞
f. �
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Certainly one may ask for the connection between the two naturally arising

objects which can be guessed easily. We formulate it as follows.

Theorem 1.8.2. Let (Tt|t ≥ 0) denote the semigroup defined in Section 1.2

and (T̂t|t ≥ 0) the semigroup defined in Theorem 1.8.1. If H is the generator

of Tt and L is the generator of T̂t it follows L = Uf∞ ◦H ◦ U−1
f∞

.

Proof. Let ψ ∈ DL and f := U−1
f∞
ψ then we know

e−tL − 1

t
ψ =

Uf∞e
−tHU−1

f∞
ψ − Uf∞U−1

f∞
ψ

t
= Uf∞

(

e−tHf − f
t

)

.

So if we take the L2-limit t↘ 0 and use the continuity of Uf∞ we find

−Lψ = Uf∞(−H)f

= [Uf∞ ◦ (−H) ◦ U−1
f∞

]ψ. �

Now we turn to the investigation of DL. Independent from its formal

definition we give the connection to DH .

Theorem 1.8.3. In the notation used above the equation DL = Uf∞(DH) holds

true.

Proof. According to Definition 1.2.3 we have

DL =

{

ψ ∈ L2(
� d, f 2

∞λ
d )

∣

∣

∣

∣

T̂tψ − ψ
t

converges for t↘ 0

}

where the limit has to be taken in L2(
�

d, f 2
∞λ

d ). The convergence condition

is equivalent to the fact, that there is an f ∈ L2(
�

d, λd ) namely f := ψU−1
f∞

such that the limit of (T̂tUf∞f −Uf∞f)t−1 exists in L2(
�

d, f 2
∞λ

d ) for t↘ 0. On

account of Proposition 1.7.2 we know that this means also

U−1
f∞

(

T̂tUf∞f − Uf∞f
t

)

=
Ttf − f

t

converges in L2(
�

d, λd ) for t ↘ 0. Then the function f is an element of DH .

This shows the equivalence of f ∈ DH and f
f∞
∈ DL. �
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Remark 1.8.4. Just as in Theorem 1.3.1 for all ψ ∈ DL we know that the

function T̂tψ converges to (1, ψ)f∞1 for t→∞. So up to the constant (1, ψ)f∞

the semigroup T̂t projects ψ ∈ DL to 1 ∈ L2(
�

d, f 2
∞λ

d ). Here we once again just

point to the similarity of the arguments given in the proof of Theorem 1.3.1

which let us expect this statement. Nevertheless we will prove this in the next

chapter in detail.

Proposition 1.8.5. If we set H := − 1
2
∆ + ∆f∞

2f∞
then L = −1

2
∆− (∇ ln f∞)∇

in the above notation.

Proof. First we transform the Laplacian:

Uf∞∆U−1
f∞
ψ = Uf∞∆f∞ψ

= Uf∞∇
(

(∇f∞)ψ + f∞∇ψ
)

= Uf∞
(

(∆f∞)ψ + (∇f∞)(∇ψ) + (∇f∞)(∇ψ) + f∞∆ψ
)

=
∆f∞
f∞

ψ + 2
∇f∞
f∞
∇ψ + ∆ψ

=
∆f∞
f∞

ψ + 2(∇ ln f∞)∇ψ + ∆ψ

The transformed Hamiltonian H will be called L calculated as follows:

Lψ = Uf∞HU
−1
f∞
ψ

= Uf∞(−1

2
∆ +

1

2

∆f∞
f∞

)U−1
f∞
ψ

= Uf∞(−1

2
∆)U−1

f∞
ψ + Uf∞(

1

2

∆f∞
f∞

)U−1
f∞
ψ

= −1

2

∆f∞
f∞

ψ − (∇ ln f∞)∇ψ − 1

2
∆ψ +

1

2

∆f∞
f∞

ψ

= −1

2
∆ψ − (∇ ln f∞)∇ψ �

According to Definition 1.4.1 we formulate the Cauchy problem in the

space L2(
�

d, f 2
∞λ

d ) as follows. Given a function ûs in L2(
�

d, f 2
∞λ

d ), we search

a continuous function û : [s, T ]→ L2(
�

d, f 2
∞λ

d ) satisfying

dû

dt
= −Lû for all t ∈ (s, T ] (1.24a)
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and satisfying the initial condition

û(s) = ûs. (1.24b)

Proposition 1.8.6. Given ψ ∈ DL the function û(t) := exp(−tL)ψ is a solu-

tion of 1.24a with initial condition û(0) = ψ.

We omit the proof, because it is the same as the proof given in Section 1.4

equipped with the necessary transformation terms Uf∞.

1.9 Solutions with the Kolmogorov backward

equation

Now we give a solution of the Cauchy problem 1.24a with initial condition 1.24b

in terms of a stochastic process (Xt|t ∈
�

≥0) and its expectation. For this we

use Kolmogorov’s backward equation which can be found in [55]. Similarly to

Section 1.6 we consider an Itô diffusion (Xt|t ∈
� d), but here we choose another

generator denoted by Â. From Theorem 1.5.3 we know that the generator of

an Itô diffusion is of the form

Âψ(x) =
∑

i

b̂i(x)
∂ψ

∂xi
+

1

2

∑

i,j

(σ̂σ̂T )i,j(x)
∂2ψ

∂xi∂xj

where b̂ :
� d → � d is the drift coefficient of the process and σ̂ :

� d → � d×d

is the diffusion coefficient, compare to formula 1.20. But then we are able to

identify the operator L = − 1
2
∆ − (∇ lnf∞)∇ (see Prop. 1.8.5) directly as a

generator of an Itô diffusion with drift coefficient b̂ = −∇ lnf∞ and diffusion

coefficient σ̂ = −Id.

Theorem 1.9.1. Let ψ ∈ C2
0(

� d) and define û(t, x) := � [ψ(Xx
t )] then the

function û(t, .) is an element of DÂ. Further we have

dû

dt
= −Âû for all t > 0, x ∈ � d

and û(0, x) = ψ(x), x ∈ � d. The solution is unique in the sense of Theo. 1.6.1.





Chapter 2

Reformulation for Bounded

Regions

In this chapter we will review the arguments from the chapter above. Instead

of functions defined on
� d we consider functions f : D → �

where D ⊂ � d is

open, bounded and convex. We do this because we want to give applications

in image processing later on. In image processing we have to deal with such

functions f as we will see in Chapter 3. In this view the natural candidates for

D are a rectangle as subset of
� 2 with a boundary ∂D which is just piecewise

smooth or an approximation of this with a sufficiently smooth boundary. In

the following we’ll keep both possibilities in mind and generalise them to the

cases of bounded, convex subsets of
� d with smooth and non-smooth bound-

ary. Actually we restrict the non-smooth case to boundaries which are smooth

except for a finite set of points. Before we introduce boundary conditions we

start with some remarks about the extension of f to a function defined on
� 2. Later on we will not use this approach. We give the remarks just to be

complete at this point. As mentioned then in Section 2.2 we introduce bound-

ary conditions. After that we define operators as in Section 1.1 now acting on

functions f : D → �
which fulfil those boundary conditions. In Section 2.3 we

show that the resulting operators have discrete point spectrum whose lowest

eigenvalue λ0 = 0 has multiplicity one. This guarantees the projection prop-

erty (see Theorem 1.3.1) which will be important for the application in image

processing. Then in Section 2.4 we make some necessary remarks concerning

29
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Itô diffusion processes defined on D, and we construct Itô diffusions on D with

sufficiently smooth boundary. In the non-smooth case we replace this con-

struction by solutions of the Skorokhod problem (see Appendix B). Then we

give a reformulation of the Cauchy problem introduced in Section 1.4. Now

the solutions to this reformulated problem can be given using the Itô diffusion

on D. Finally the applications in image processing will make use of the projec-

tion property of the operators. It leads to a mechanism for transforming one

image into another by means of grey value transport: The solution of the re-

formulated Cauchy problem is a time dependent function which represents one

given image at time t = 0 (which will be called start image) and reproduces

another image at time t = ∞ (we call it the stop image). In order to prove

this at the end of this chapter we formulate a theorem, which tells us that the

solution of the reformulated Cauchy problem converges for t→ ∞ point-wise

(up to a constant) to the function associated to the stop image. Moreover this

behaviour is independent of the start image.

2.1 Restrictions coming from potentials

As mentioned above here we consider the possibility to extend a given function

f : D → �
to a function f̃ defined on

� d. For this we do not distinguish the

cases of smooth or non-smooth region D, because we simply assume f and

its derivatives to be continuously extendable to D the closure of D in the

euclidian metric. Now if we take H := − 1
2
∆ + V with V := ∆f̃

2f̃
as usual we

know from Theorem 1.1.3 that f̃ has to fulfil some additional condition in

order to guarantee V (x) → ∞ for |x| → ∞. We recall that this leads to H

with discrete point spectrum and a lowest eigenvalue with multiplicity one as

stated in [61] Theorem XIII.46 for V ∈ L2
loc(

�
d, λd ).

Definition 2.1.1. Let (M,µ) be a finite measure space. Then a function

f ∈ L2(M,µ) is called positive iff f ≥ 0 a.e. and is not the zero function. It is

called strictly positive iff f > 0 a.e..

Definition 2.1.2. A bounded operator A on L2(M,µ) is called positivity

preserving iff Af is positive whenever f ∈ L2(M,µ) is positive. The operator
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A is called positivity improving if Af is strictly positive whenever f is positive.

Finally, we call the operator A ergodic iff it is positivity preserving and for

any two functions f, g ∈ L2(M,µ) that are both positive there is some n ∈ �
such that we have (f,Ang) 6= 0.

Now we are prepared to formulate Theorem XIII.44 from [61].

Theorem 2.1.3. Let H be a self-adjoint operator that is bounded from below

on L2(M,µ) and σ(H) its spectrum. Suppose e−tH is positivity preserving

for all T > 0 and that E = inf σ(H) is an eigenvalue. Then the following

assertions are equivalent:

a) The eigenvalue E has multiplicity one and the corresponding eigenfunc-

tion is strictly positive.

b) (H − λ)−1 is ergodic for some λ < E.

c) e−tH is ergodic for some t > 0.

d) (H − λ)−1 is positivity improving for all λ < E.

e) e−tH is positivity improving for all t > 0.

Starting with an explicitely given f̃ we could proceed to investigate one

of the conditions above. Further information concerning operators of type

−1
2
∆ + V could be found e.g. in [61, 38] whereas for the theory of semigroups

we refer to [16]. We do not go into detail here. We just remark that for

|x| → ∞ the potential V grows unboundedly if ∆f̃ converges slower to 0 than

f̃ as in the following example.

Example. In this example we restrict ourself to the 1-dimensional case. We

consider an extension of f denoted by f̂ with f̂(x) = exp(x2n) for |x| sufficiently

large. By elementary analysis it follows V (x) = (2n − 1)nx2n−2 + 2n2x4n−2,

which is an element of L2
loc(

�
, λ), and V (x)→∞ for |x| → ∞ as wanted.

Later on we want to verify our theoretical results through computer ex-

periments and use them for some applications in image processing. Therefore

it is not convenient to handle processes on unbounded domains as
� d. Even

though it is possible to overcome the difficulties arising from the use of
� d we



32 Chapter 2. Reformulation for Bounded Regions

take another approach. In the following we consider bounded subsets of
� d

and introduce boundary conditions as mentioned before.

2.2 Boundary conditions

In Section 1.9 we described solutions u :
�

≥0 → L2(
�

d, λd ) of the Cauchy

problem 1.24a in terms of stochastic processes defined on
� d and their expec-

tation. Later on we are interested in solutions u with values in the space C2(D)

and again we give a representation of u(x, t) in terms of stochastic processes

(Xt|t ∈
�

≥0) and their expectation. Now Xt is a random variable with values

in D = D ∪ ∂D where D is an open, bounded, convex subset of
� d. In order

to describe the behaviour of Xt at the boundary of D we introduce boundary

conditions. In the following we assume f ∈ C2(D) to be uniquely extendable

to D with one of the following boundary conditions:

• Dirichlet for c ∈ � ∀x ∈ ∂D, y ∈ D : lim
y→x

f(y) = c

• Neumann for c ∈ � ∀x ∈ ∂D, y ∈ D : lim
y→x

∂f(y)
∂ν(x)

= c

There the boundary of D is denoted by ∂D and ν is a vector field defined on

∂D orthogonal to the boundary. So ∂f(y)
∂ν(x)

is the derivative of f in direction ν(x)

evaluated at y. If the boundary is sufficiently smooth, then for every x ∈ ∂D
the vector ν(x) is uniquely determined (Fig. 2.1). If D is only assumed to

D
PSfrag replacements

ν

tx1

x2 x3

Figure 2.1. The area D ⊂ � 2 is an open, convex set with non-smooth
boundary ∂D which defines a vector field ν : ∂D → � 2 on almost all
points. If t(x) is the direction of the tangent of the boundary at the
point x ∈ ∂D then we have ν(x) ⊥ t(x). The points x1, x2, x3 will be
treated separately.
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be convex in general the normal ν(x) for x ∈ ∂D is not uniquely determined.

Then we define

Nx :=
⋃

r>0

{

ν ∈ � d
∣

∣ |ν| = 1, B(x− rν, r) ∩D = ∅
}

(2.1)

where B(x, r) := {y ∈ � d| |x−y| < r} and take the strong Neumann condition:

• Neumann for c ∈ � ∀x ∈ ∂D, ν(x) ∈ Nx, y ∈ D : lim
y→x

∂f(y)
∂ν(x)

= c

The name is justified, because the usual Neumann condition is automatically

included and our condition is stronger.

Remark. For every boundary point x ∈ ∂D we are able to describe the set Nx

by the union of all (inward) unit normal vectors ν of all hyperplanes H that

contain x and do not intersect with D.

PSfrag replacements

Nx

x

ν

ν1

ν2

D

Figure 2.2. All vectors ν between ν1 and ν2 with length 1 belong to the
normal set Nx at the point x ∈ ∂D. The vectors ν1, ν2 are included.

Example. For D = {(x, y) ∈ � 2|0 < x < x0, 0 < y < y0} we naturally define

ν(x, y) =























(1, 0)

(0,−1)

(−1, 0)

(0, 1)

if

x = 0 ∧ y 6= 0 ∧ y 6= y0

y = y0 ∧ x 6= 0 ∧ x 6= x0

x = x0 ∧ y 6= 0 ∧ y 6= y0

y = 0 ∧ x 6= 0 ∧ x 6= x0

as the only element in the corresponding normal set. If (x, y) is one of the

corner points e.g. (x, y) = (x0, y0) we have

N(x0,y0) =

{

(x0, y0)− (x, y)

|(x0, y0)− (x, y)|

∣

∣

∣

∣

x ≥ x0, y ≥ y0, (x, y) 6= (x0, y0)

}
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as shown in Figure 2.2. The definition of the sets N(0,0), N(x0,0) and N(0,y0) is

analogous.

Other boundary conditions exist but they are out of the scope of this work.

2.3 Reproducing operators in L2(D , λd)

We proceed with the reformulation of the statements given in L2(
�

d, λd ) now

for the space L2(D , λd). This is the space of all square integrable functions

f : D → � d. As we know C2(D) can be imbedded into L2(D , λd ). (Here the

bar indicates that f can be extended to D such that f and its derivatives of

order one and two are continuous.)

Remark.

• If f ∈ C2(D) then the extension f̃ of f to D at every boundary point

x is defined by the limit of f(xn) where (xn|n ∈ � ) converges in D to

x. The same holds true for the derivatives of f̃ . In general continuous

extensions do not always exist even for functions which are continuous

on D, but they are unique.

• The set of all k-times continuously differentiable functions on D is de-

noted by Ck(D). So the symbol Ck(D) is typically used for the closure

of the topological space Ck(D) with sup-norm. To avoid confusion we

choose Ck(D) to denote the set of all k-times continuously differentiable

functions. As before the bar indicates that the functions in Ck(D) and

their derivatives are continously extendable to D. Depending on D we

have Ck(D) 6= Ck(D) and Ck(D) 6= Ck(D).

In the following we consider functions with Neumann boundary condition

because we will use it in the implementation (see Chapter 3). Additionally we

give remarks to the Dirichlet case because it is very similar. Unfortunately in

both cases we can not apply Theorem 1.1.3. This told us that the operator

H := −1
2
∆ + V with V := ∆f∞

2f∞
has a purely discrete point spectrum and its

smallest eigenvalue is non-negative and has multiplicity one. So in the next

two sections we will give a different argument leading to the same result.
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2.3.1 Regions with smooth boundary

This section is mostly a resume of the results taken from [78] with some slight

modifications. For this we consider a bounded area D ⊂ � d with smooth

boundary ∂D ∈ C1 and denote the normal to the boundary at the boundary

point x ∈ ∂D by ν(x) = (ν1(x), . . . , νd(x)).

Definition 2.3.1. For m ∈ � 0 we say that the boundary ∂D belongs to the

class Cm, iff the following statements hold:

• It exists a finite set of balls {Bi|i = 1, . . . , k} such that for 1 ≤ i ≤ k we

have Bi ∩ ∂D 6= ∅ and
k
⋃

i=1

Bi ⊃ ∂D.

• It exists an injective function f i(x) = (f i1(x), . . . , f id(x)) with f ij ∈ Cm(Bi)
for j = 1, . . . , d such that

f i(∂D ∩ Bi) ⊂ {f i(x) = (y1, . . . , yd) ∈
� d|yd = 0}.

• The image of D ∩ Bi, which is denoted by Ei := f i(D ∩ Bi), is a simply

connected subset (see [68]) of {y ∈ � d|yd > 0}.

• There exist bounds d1, d2 ∈
�
>0 such that

0 < d1 < det















∂f i
−1
1

∂x1
. . .

∂f i
−1
d

∂x1
...

...

∂f i
−1
1

∂xd
. . .

∂f i
−1
d

∂xd















< d2 <∞

for the determinant of the Jacobi matrix of f i
−1

: Si → D ∩ Bi (i.e. the

inverse function of f i for i = 1, . . . , k).

Recall that ∂D ∈ C1 implies that we have a unique normal at the boundary.
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But then we are able to define the operator AN by

ANf := −
d
∑

i=1

∂2f

2∂x2
i

+ V f (2.2)

where V ∈ C2(D) with the domain

DAN
:=

{

f ∈ C2(D)

∣

∣

∣

∣

∂f

∂ν

∣

∣

∣

∣

∂D

= 0

}

. (2.3)

For the main result concerning the operator AN we make use of the Friedrichs’

extension AF of an operator A as defined in Appendix A.

Theorem 2.3.2. If V ≥ 0 the operator AN with domain DAN
is symmetric

on L2(D , λd) and for all f ∈ L2(D , λd) we have (ANf, f) ≥ const. (i.e. AN

is semi-bounded). Moreover its Friedrichs’ extension (AN)F is an operator

with pure point spectrum. The smallest eigenvalue is non-negative and has

multiplicity one. The set of normalised eigenvectors is an ONB of L2(D , λd).

The statement is a consequence of Theorem 29.2 and Remark 29.11 from [78].

There the functions are taken from C∞(D) ⊂ C2(D) but the proof holds true

without modification for the set C2(D) too.

Remark. The operator AN is also an operator with a pure point spectrum,

because the spectrum of AN is a subset of the spectrum of its extension (AN )F .

In fact we are interested in operators of the form 2.2 where c is not neces-

sarily positive but bounded. As D is bounded D is compact and so

Vmin := min
x∈D

V (x)

exists in
�

. But then we are able to apply Theorem 2.3.2 to the operator

AN − Vmin because V − Vmin ≥ 0. From this it follows that the operator AN

with bounded V has a pure point spectrum, because we know from operator

theory (see [38, 61]) that the spectrum of the operator AN is a translation of

the spectrum of AN − Vmin.

Now if we define the operator AD as in Equation 2.2 with an arbitrary
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V ∈ C2(D) and with domain

DAD
:=

{

f ∈ C2(D)

∣

∣

∣

∣

f |∂D = 0

}

we get an equivalent to Theorem 2.3.2.

Theorem 2.3.3. The operator AD with domain DAD
is symmetric on the

space L2(D , λd) and there exists one b ∈ �
such that (ADf, f) ≥ b for all f in

L2(D , λd ). Moreover its Friedrichs’ extension (AD)F is an operator with pure

point spectrum. The smallest eigenvalue is strictly positive and has multiplicity

one. The set of normalised eigenvalues is an ONB of L2(D , λd ).

For a proof of this theorem we refer again to [78], Theorem 29.1, and Re-

mark 29.6 also with generalisation to the space DAD
.

2.3.2 Bounded, convex regions

Let D denote an open, bounded, convex subset of
� d. Because the boundary

∂D is possibly non-smooth we can not apply Theorem 2.3.2 in this situation.

Nevertheless we will use the parts of the proof which do not make use of

the smoothness of ∂D and replace those which use it. Therefore we need

the statement of the well known Gauss theorem. It allows one to replace the

volume integral of the divergence of a vector field by a surface integral and is

proven under different smoothness conditions to the boundary [21, 40, 41]. For

example if D ⊂ � 2 (we have the application in image processing in mind) it

is actually sufficient that ∂D is a rectifiable Jordan curve. A proof of this and

the theory of orientation of Jordan curves given by Apostol can be found in [9].

For the treatment of a more general case we refer to [86]. There the Gauss

theorem is proven for sets D̃ ⊂ � d of finite perimeter (see [86] Theorem 5.8.2).

Actually every open, bounded, convex set is of finite perimeter because it is

a Lipschitz domain. Moreover there is a proof of the Gauss theorem given by

Hadwiger (see [30]) for bounded, convex subsets of
� d. Hence we can use the

Gauss theorem in our situation. But we want to keep the notation simple so

we do not state the Gauss theorem in one of those general forms as mentioned

above. Instead we restrict ourself to the case of regions D ⊂ � d where the
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normal to the boundary is not defined for at most a countable set of points.

Because in this case one could easily give a formal definition of a measure

σ defined on ∂D as in the well known case of a smooth boundary. For the

definition of σ and a proof of (the following version of) the Gauss theorem we

refer to [49].

Gauss Theorem 2.3.1. Let D denote an open, bounded, convex subset of
� d. Further the outer normal ν of the boundary ∂D is assumed to be σ al-

most everywhere defined. Then for every continuous differentiable vector field

F : D → � d where F = (F1, . . . , Fd) with Fi ∈ C1(D) for i = 1, . . . , d the

equality
∫

D

∇(F ) dλ =

∫

∂D

F · ν dσ

holds true.

We note that the following method of proof carries over to arbitrary open,

bounded, convex domains because Theorem 2.3.1 is valid in this case too.

As in Section 2.3.1 we are interested in the operator

AN := −
d
∑

i=1

∂2

2∂x2
i

+ V

(equal to the operator defined in Equation 2.2) with domain

DAN
:=

{

f ∈ C2(D)

∣

∣

∣

∣

∀x ∈ ∂D, ν ∈ Nx :
∂f

∂ν

∣

∣

∣

∣

∂D

= 0

}

.

In difference to the domain given in Equation 2.3 here we take the strong

Neumann boundary condition because the boundary ∂D may be non-smooth.

Theorem 2.3.4. The operatorAN is symmetric and semi-bounded in the space

L2(D , λd ). So the Friedrichs’ extension (AN)F of the operator AN exists.

Proof. First we show the symmetry. For every f, g ∈ DAN
we have

(ANf, g)L2 = −
∫

D

{ d
∑

i=1

∂

2∂xi

(

∂f

∂xi

)

· g
}

dλ +

∫

D

V fg dλ. (2.4)
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So we can apply Theorem 2.3.1 to the right side of Equation 2.4. As an

auxilliary calculation we have

−
∫

D

d
∑

i=1

∂

2∂xi

(

∂f

∂xi

)

· g dλ =

∫

D

d
∑

i=1

∂f

2∂xi
· ∂g
∂xi

dλ −
∫

∂D

d
∑

i=1

∂f

2∂xi
· νi · g dσ

and on the other hand

−
∫

D

{ d
∑

i=1

∂

2∂xi

(

∂g

∂xi

)

· f
}

dλ

=

∫

D

{ d
∑

i=1

∂g

2∂xi
· ∂f
∂xi

}

dλ −
∫

∂D

d
∑

i=1

∂g

2∂xi
· νi · f dσ.

(2.5)

Because of f ∈ DAN
it follows

∫

∂D

d
∑

i=1

∂f

2∂xi
· νi · g dσ =

∫

∂D

∂f

2∂ν
· g dσ = 0

and the same is true for the last term in Equation 2.5 as g ∈ DAN
. Hence we

have

(ANf, g) = −
∫

D

{ d
∑

i=1

∂

2∂xi

(

∂g

∂xi

)

·f
}

dλ+

∫

D

V gf dλ = (ANg, f) = (f,ANg).

Moreover from the arguments above we see that

(ANf, f) =

∫

D

{

∑

i=1

1

2

(

∂f

∂xi

)2}

dλ +

∫

D

V f2 dλ

and so we deduce that the operator is semi-bounded by using

(ANf, f) ≥ Vmin · ‖f‖2 +
1

2
‖∇ f‖2.

Now we have verified the conditions which guarantee the existence of the

Friedrichs’ extension. At least we can extend this argument because the do-

main of the operator is dense in L2(D , λd). That means the operator is semi-

bounded in L2(D , λd ). �
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One more time we consider the operator AD defined as

ADf := −
d
∑

i=1

∂2f

2∂x2
i

+ V f

for every f in the domain DAD
:= {f ∈ C2(D)|f |∂D = 0} and get a similar

statement as in Theorem 2.3.4.

Theorem 2.3.5. The operator AD is symmetric and semi-bounded on the

space L2(D , λd ). So the Friedrichs’ extension (AD)F of the operator AD exists.

Proof. We can use the same argument as in the proof of Theorem 2.3.4, because

DAD
is dense in L2(D , λd ). The only thing we have to note is

∫

∂D

∂f

2∂ν
· g dσ = 0

in this case too, because the derivative is bounded and g
∣

∣

∂D
= 0. �

In order to investigate the spectrum of the operator AN (respectively AD)

for our purpose it will be adequate to have a closer look at the spectrum of its

Friedrichs’ extension. To prepare this we give the following lemmas where we

refer to Appendix A for precise definitions of the involved objects.

Lemma 2.3.6. The norms ‖.‖W 1
2

and ‖.‖AN
are equivalent.

Proof. It is sufficient to show the existence of constants c1, c2 ∈
�

such that

we have c1‖f‖2W 1
2
≥ 2‖f‖2AN

≥ c2‖f‖2W 1
2

for all f ∈ DAN
. Because of

‖f‖2W 1
2

=

∫

D

d
∑

i=1

∂f

∂xi

2

+ f2 dλ

2‖f‖2AN
=

∫

D

d
∑

i=1

∂f

∂xi

2

+ (2V + 2)f2 dλ

we can choose

c1 := max{max
x∈D

2V (x) + 2, 1} and c2 := min{min
x∈D

2V (x) + 2, 1}. �
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Lemma 2.3.7. The energetic space HAN
of the operator AN is a subset of the

Sobolev space W 1
2 (D).

Proof. The set HAN
is the closure of DAN

⊂ C2(D) in the norm ‖.‖AN
which is

equivalent to the norm ‖.‖W 1
2
. Then HAN

is likewise the closure of DAN
in the

norm ‖.‖W 1
2
. But W 1

2 is the closure of the whole space C2(D) in that norm.

So the lemma follows. �

Theorem 2.3.8. The Friedrichs’ extension of the operator AN (resp. AD) is

an operator with pure point spectrum.

Proof. By the theory of distributions (see [78, 76, 1]) we know that the imbed-

ding of W 1
2 (D) in L2(D , λd) is compact. Moreover from the lemma above

we have HAN
⊂ W 1

2 (D) with equivalent norms, so the imbedding of HAN

in L2(D , λd) is compact. This is the assumption of the Criterium of Rellich

(see [78]) so the theorem follows for AN . The proof of the statement for the

operator AD can be given with the same argument. A shorter version is given

in [78]. �

Remark. This shows that the operators AN and AD are also operators with

pure point spectra, because their spectra are subsets of the spectra of their

extensions.

In order to achieve the situation described in Chapter 1 now for the op-

erator AN where V is bounded it remains to prove that the smallest eigen-

value vanishes and has multiplicity one. To do this, we modify a proof of the

Allegretto-Piepenbrink Theorem [3, 4, 5, 53, 58, 59], which can be found in

the book of Cycon, Froese, Kirsch and Simon [14] and is given under weak

regularity condition to the potential V . Roughly speaking the theorem states

that eigenvalues below the spectrum have positive eigenfunctions. But the

potential is defined on
� d so the theorem is not usable in the case of operators

with boundary condition. We do not repeat the original proof here. Neverthe-

less we make use of the argument given there adapted to the special form of

potentials we are interested in.

Theorem 2.3.9. Let f∞ denote an element of C2(D) which can be extended

to a strictly positive function defined on D such that V := ∆f∞
2f∞

∈ C0(D).
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Moreover let the operator

ANf := −
d
∑

i=1

∂2f

2∂x2
i

+ V f

be defined on

DAN
:=

{

f ∈ C2(D)

∣

∣

∣

∣

∀x ∈ ∂D, ν ∈ Nx :
∂f

∂ν

∣

∣

∣

∣

∂D

= 0

}

.

If f ∈ DAN
is a positive solution (extendable to a strictly positive function

on D) of (AN − c)f = 0 for some constant c then this constant is below the

spectrum of AN denoted by σ(AN) (i.e. inf σ(AN) ≥ c).

We prove the theorem in several steps and start with the following prelim-

inarly lemma.

Lemma 2.3.10. Let the operator AN with domain DAN
be defined as in The-

orem 2.3.9. Further let f ∈ DAN
be a positive solution (extendable to a strictly

positive function on D) of (AN − c)f = 0. If

∫

∂D

ϕf∇(f−1ϕ) · ν dσ = 0 (2.6)

for every ϕ ∈ DAN
, then

(ϕ, (AN − c)ϕ) =
1

2
‖f∇(f−1ϕ)‖2.

As above, in the following the gradient of a function f will be denoted by ∇(f)

with brackets to be clear which argument we take.

Proof. First we note that

−2(AN − c) = ∆− ∆f∞
f∞

+ 2c with − ∆f∞
f∞

+ 2c ∈ C0(D).

We assumed f to be a strictly positive solution of (AN − c)f = 0 so we write

−2(AN − c) = ∆− f−1∆f . Using the product rule for every ϕ ∈ DAN
we find

∆(ff−1ϕ) = ∇(f∇(f−1ϕ)) + f−1ϕ∆f +∇(f−1ϕ)∇(f).



2.3. Reproducing operators in L2(D , λd) 43

Hence we established

−2(AN − c)ϕ = f−1[f∇(f∇(f−1ϕ)) +∇(f)f∇(f−1ϕ)]

and it follows

−2(AN − c)ϕ = f−1∇(f2∇(f−1ϕ)). (2.7)

As we know from Theorem 2.3.1 we have

∫

∂D

ϕf∇(f−1ϕ) · ν dσ =

∫

D

∇(ϕf∇(f−1ϕ)) dλ. (2.8)

By application of the product rule to the right side of Equation 2.8 we find

∫

D

∇(f−1ϕ)f2∇(f−1ϕ) dλ = −
∫

D

ϕf−1∇(f2∇(f−1ϕ)) dλ

because of Assumption 2.6. With this and Equation 2.7 we have

∫

D

ϕ2(AN + c)ϕdλ =

∫

D

∇(f−1ϕ)f2∇(f−1ϕ) dλ = ‖f∇(f−1ϕ)‖2. �

Obviously condition 2.6 holds true if

νf∇(ϕ)

f2

∣

∣

∣

∣

∂D

= 0 and
νϕ∇(f)

f2

∣

∣

∣

∣

∂D

= 0, (2.9)

because ϕ, f ∈ C2(D) are extendable to D. But the extensions are bounded

on ∂D so ϕ · f is. Finally the conditions 2.9 are true if f, ϕ ∈ DAN
and the

extension of f is strictly positive for every boundary point as we assumed.

One of the consequences of the lemma above is that λ0 = 0 is the lowest

eigenvalue of AN . This is true because we know that the strictly positive

eigenfunction v0 = f∞ is a solution of (AN − c)ϕ = 0 with c = 0. So from

Theorem 2.3.9 follows, that c is below the spectrum. Now we show that the

dimension of the eigenspace corresponding to the eigenvalue 0 is one (that is

λ0 has multiplicity one).

Theorem 2.3.11. Let the operator AN with domain DAN
be defined as in

Theorem 2.3.9 with f∞ ∈ DAN
. Further let ϕ denote an element of DAN

such

that ANϕ = 0. Then up to a constant ϕ is equal to f∞.
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Proof. From Lemma 2.3.10 we have

(ϕ,ANϕ) = 0⇒ ‖f∞∇(f−1
∞ ϕ)‖2 = 0 ‖.‖ is a norm

⇒ f∞∇(f−1
∞ ϕ) = 0 f∞ is strictly positive

⇒ ∇(f−1
∞ ϕ) = 0 [78] Remark 28.6

⇒ f−1
∞ ϕ = const. �

Remark. It is easy to see that the same statements are true if we replace the

domain DAN
by DAD

:= {f ∈ C2(D)|f |∂D = 0} and take f∞ ∈ C2(D) with

the same additional condition that the extension of f∞ is strictly positive for

every boundary point.

As mentioned before we are mainly interested in the operator with Neu-

mann boundary condition and treat the Dirichlet case just by the way because

of its similarity. Because of this we summarise only the results for the first

one.

Theorem 2.3.12. Let D ⊂ Rd denote an open, bounded, convex set and ν(x)

the normal to the boundary ∂D of D at x ∈ ∂D \ S where S is a finite set

of boundary points. Further let f∞ ∈ DAN
denote a strictly positive extend-

able function such that (2f∞)−1∆f∞ ∈ C2(D). Then the operator AN with

domain DAN
defined in Theorem 2.3.9 is symmetric in L2(D , λd ) and positive

definite. The Friedrichs’ extension (AN)F is an operator with purely discrete

point spectrum where the smallest eigenvalue vanishes and has multiplicity one.

The corresponding eigenfunction is f∞.

2.4 Itô Diffusion on bounded regions

As described in Section 1.6 and Section 1.9 under certain circumstances the

solution of a given Cauchy problem on
� d can be expressed in terms of func-

tions of an Itô diffusion on
� d. In Sections 2.5, 2.6 we will give an equivalent

expression for Cauchy problems on bounded, convex sets D ⊂ � d. There-

fore we need a formulation of Itô diffusions on D, depending on the type of

boundary condition we take. First we consider Itô diffusions that stop moving
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after they have reached any point of the boundary ∂D of D, which will lead

to solutions of Cauchy problems with boundary condition of Dirichlet type.

After that we give a short overview about Itô diffusions that are reflected at

the boundary of D which will lead to solutions corresponding to boundary

conditions of Neumann type.

2.4.1 Exit time

Let X = (Xx
t |t ∈

�
≥0) denote an Itô diffusion as defined in Section 1.5 on

the filtered probability space (Ω,A, P, (Ft|t ≥ 0)). Then for every ω ∈ Ω and

every x ∈ � d we have Xx
t (ω) ∈ � d. If we choose the start value Xx

0 of X in

D the question arises what happens when the process leaves the domain D.

Because of the continuity of each path of the process this question is equivalent

to the question of what happens when the process enters the boundary of D,

denoted by ∂D as usual.

Definition 2.4.1. For every bounded, open set D ⊂ � d and every x ∈ D the

random variable

τ xD := inf{t|Xx
t ∈ ∂D}

is defined on the same filtered probability space (Ω,A, P, (Ft|t ≥ 0)) as we

defined (Xx
t |t ∈

�
≥0). Furthermore let τ xD =∞ iff Xx

t ∈ D for all t ∈ �
≥0 and

naturally τ xD = 0 iff Xx
0 is an element of ∂D. Then τ xD is called the exit time

of the random function Xx
t from the domain D.

Now let us denote the set of all continuous functions f : [0,∞) → � d by

C([0,∞),
� d). On this space we consider the σ-algebra E generated by the

cylinder sets ZB
t where we set

ZB
t := {f ∈ C([0,∞),

� d)|(ft1, . . . , ftd) ∈ B}

for t = (t1, . . . , td) and B ∈ B(
� d). Finally on this σ-algebra we define the

probability measure P x
X (E) := P (Xx

. ∈ E) for E ∈ E and x ∈ D.

Definition 2.4.2. Once again we consider a bounded, open set D ⊂ � d. Then
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the set of limit points of the trajectories Xx
t (ω) is denoted by

γxD(ω) := {y ∈ D|y = lim
t→τx

D
0≤t≤τx

D

Xx
t (ω)}, x ∈ D.

We say that condition A holds iff P x
X (γxD 6= ∅, γxD ⊂ ∂D) = 1 for every x ∈ D.

For verifying condition A we will use the following Lemma, which is proven

in a wider sense in [24] Lemma III.3.1. Therefore we recall the representation

of the generator

Af(x) =
∑

i

bi(x)
∂f

∂xi
+

1

2

∑

i,j

ai,j(x)
∂2f

∂xi∂xj
, f ∈ DA,

of an Itô diffusion with drift coefficient b = (b1, . . . , bd) ∈
� d and diffusion

coefficient σ = (σi,j) ∈
� d×d, which was given in Theorem 1.5.3 and where we

have taken ai,j = (σσᵀ)i,j.

Lemma 2.4.3. Assume there exists at least one i ∈ {1, . . . , d} and a positive

constant a ∈ �
≥0 and R1, R2 ∈

�
such that

D ⊂ {x = (x1, . . . , xd) ∈
� d|R1 ≤ xi ≤ R2}

and, either ai,i ≥ a > 0 for all x ∈ D, or bi(x) preserves its sign in D (i.e.

for all x ∈ D we have bi(x) ≥ 0 or bi(x) ≤ 0) and |bi(x)| ≥ a > 0 for

x ∈ D. Then condition A holds and the set γxD consists of one point P x
X a.s.

for x ∈ D. Further P x
X (τ xD > t) converges to 0 for t → ∞, the convergence

is uniform in x ∈ D so it is possible to estimate P x
X (τ xD > t) only depending

on t ∈ [0,∞) and independently of x. For some positive constant c ∈ �
≥0 it

follows � Px
X

[τ xD] ≤ c <∞.

Remark. In consequence of the last lemma it can be shown, that the process

leaves the area D uniformly exponentially fast. That means

lim
t→∞

1

t
ln γ(t) < 0, where γ(t) := sup

x∈D
PX (τ xD > t).

Remark. Lemma 2.4.3 holds also true, if there exists T, δ > 0 such that

PX (τD < T ) > δ for all x ∈ D.
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2.4.2 Reflection

In this section we give a brief construction of an Itô diffusion on a bounded,

convex set D ⊂ � d which will be reflected at the smooth boundary ∂D of D.

That means for a.e. ω ∈ Ω and all t ≥ 0 and x ∈ D we have Xx
t (ω) ∈ D.

Remark. The terminus reflected can be split into different types of behaviour

of the process reaching the boundary. At least we have instantaneous re-

flection [71], oblique reflection [20], sticky reflection and non-sticky reflec-

tion [81, 54], but we do not go into detail here. Our topic is the instantaneous

reflection.

Now after a general definition of what we understand by a reflected diffusion

we start with the construction of an Itô diffusion on state space
� d

≥0 (i.e. the

set {x = (x1, . . . , xd) ∈
� d|x1 ≥ 0}) with reflection at the hyper plane x1 = 0.

Definition 2.4.4. Let D ⊂ � d denote a bounded, convex region with bound-

ary ∂D ∈ C2 and ν(x) = (ν1(x), . . . , νd(x)) for all x ∈ ∂D the inward normal

vector to the boundary. (It is supposed that every coordinate of ν is a two

times differentiable function on ∂D then.) Further γ(x) = (γ1(x), . . . , γd(x)) is

a vector field on ∂D of vectors directed into D where the derivatives up to or-

der three of the functions γi, i = 1, . . . , d are continuous and the angle between

γ(x) and the tangential plane at x ∈ ∂D is strictly positive, (γ(x), n(x)) > 0.

We consider the following stochastic differential equation

dXx
t = σ(Xx

t )dBt + b(Xx
t )dt+ 1∂D(Xx

t )γ(Xx
t )dξxt ,

Xx
0 = x, ξx0 = 0,

(2.10)

where 1∂D(x) is the characteristic function of the set ∂D. By (Bt|t ≥ 0) we

denoted a Brownian motion adapted to the increasing family of σ-fields Ft
and σ(x), b(x) are Lipschitz continuous and bounded. The pair Xx

t , ξ
x
t of

a.s. continuous processes adapted to Ft and satisfying the Equation 2.10 is

designated as a solution of 2.10 iff Xx
t ∈ D for every t ≥ 0 and (ξxt |t ≥ 0) is a

non-decreasing process, which can increase only if t ∈ {s ∈ �
+|Xx

s ∈ ∂D} =: S

(i.e. if for all ε > 0, sufficiently small, it is |ξxt+ε − ξxt | > 0 then we have t ∈ S)

and a.s. S has Lebesgue measure 0. Then we call (Xx
t , t ≥ 0) an Itô diffusion
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in D with (instantaneous) reflection on the boundary and (ξxt |t ≥ 0) the local

time on the boundary.

Remark. With slight modifications this is nothing else than the description of

Skorokhod’s Problem (see Appendix B) and its solution.

Now we follow the argument of [7] in order to construct a process Xx
t on

� d
≥0. Other constructions can be found in [71, 81]. For this we consider the

function Γ : C([0,∞),
� d)→ C([0,∞),

� d) which is defined for every element

ζ = (ζ1, . . . , ζd) in C([0,∞),
� d) by Γ(ζ) = η with coordinates

ηi(t) :=











ζ1(t)− min
0≤s≤t

{min(ζ1(s), 0)} for i=1

ζi(t) for i = 2, . . . , d.

Further by σ(x), b(x) we denote some bounded, Lipschitz continuous coeffi-

cients defined on
� d

≥0. Then the coefficients σ(Γ(x)), b(Γ(x)) are defined for

x ∈ � d. Moreover it follows for i, j = 1, . . . , d, t ≥ 0, some constant K < ∞
and all ζ, ζ̃ ∈ C([0,∞),

� d) that

sup
0≤s≤0

|σi,j(Γ(ζ)(s))− σi,j(Γ(ζ̃)(s))| ≤ K · sup
0≤s≤0

|ζ(s)− ζ̃(s)|

sup
0≤s≤0

|bi(Γ(ζ)(s))− bi(Γ(ζ̃)(s))| ≤ K · sup
0≤s≤0

|ζ(s)− ζ̃(s)|.
(2.11)

Then it can be shown similarly to the proof of Theorem 1.5.1, that the stochas-

tic integral equation

Y x
t = x+

∫ t

0

σ(Γ(Y x
s )) dBt +

∫ t

0

b(Γ(Y x
s )) ds (2.12)

has a unique solution (Y x
t |t ≥ 0) which is a.s. continuous in the variables (t, x)

and for every t ≥ 0 measurable with respect to the filtration Ft. The process

Y x
t takes values in

� d.

Theorem 2.4.5. Assume Equation 2.12 for (Y x
t |t ≥ 0) and Equation 2.11 for

its coefficients σ(x), b(x). Further let the matrix σσᵀ(x) be non-degenerate for

all x ∈ � d
≥0 and define ξ : C([0,∞),

� d) → C([0,∞)
�

) by ξ(ζ) = Γ1(ζ) − ζ1.
Then the pair (Xx

t := Γ(Y x
t ), ξxt := ξ(Y x

t )) is a solution of Equation 2.10 with
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D :=
� d

≥0 and γ(x) := (1, 0, . . . , 0) for x ∈ ∂D defining the vector field on ∂D.

Remark. Let DA denote the set of all two times continuously differentiable

function f defined on
� d

≥0 with

∂f

∂x1
(x)

∣

∣

∣

∣

∣

x1=0

= 0.

One can show, that the infinitesimal generator of the reflected diffusion process

Xx
t + ξxt in

� d
≥0 is given by

Af(x) =
∑

i

bi(x)
∂f

∂xi
+

1

2

∑

i,j

ai,j(x)
∂2f

∂xi∂xj
, f ∈ DA.

A proof of this statement and Theorem 2.4.5 is given in [24] so we do not

repeat it here. According to Anderson and Orey [7] we proceed to construct a

reflected process in an arbitrary bounded set D ⊂ � d which has a boundary

that satisfies the conditions mentioned in Definition 2.4.4 as follows.

D

PSfrag replacements

Xx
0 = x

U1

U2

U3

x1

x2

x3

Figure 2.3. The area D ⊂ � 2 is an open, convex set with smooth
boundary ∂D and an approximation of the area D as shown in Fig-
ure 2.1. The process Xx

t is hitting ∂D at the points x1, x2, x3 inside
the neighbourhoods U1, U2, U3.

For every point x ∈ ∂D there exists a neighbourhood U(x) and a local

transformation of the coordinate system, such that the vectors γ(y) have the

form (1, 0, . . . , 0) for every y ∈ ∂D∩U(x) and the boundary ∂D is represented

by {z = (z1, . . . , zd) ∈
� d|z1 = 0}. Because D = D ∩ ∂D is compact and the

boundary ∂D is smooth in the sense of Definition 2.4.4 there exists n ∈ � and

x1, . . . , xn ∈ ∂D such that we can find neighbourhoods Ui of xi, i = 1, . . . , n
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covering the whole boundary. But then from Theorem 2.4.5 we are able to

construct solutions of Equation 2.10 with initial condition Xx
0 = x ∈ Ui up

to time τ xUi
, the first exit time from Ui where we set U0 = D and for this

special case denote the entry of (Xx
t |t ≥ 0) into one of the neighbourhoods Ui

by τU0. Now (Xx
t |0 ≤ t ≤ τUi) is a process with reflection for 1 ≤ i ≤ n and

without reflection for i = 0. Finally we repeat this construction for the new

starting point Xx
τUi

and proceed until τUi = T . Due to smoothness of the vector

fields n(x), γ(x) and the existence of a bound for the coefficients σ(x), b(x) this

procedure will take just a finite number of steps with probability one. (For

details see [7].) In Figure 2.3 we have shown the result of this strategy for an

example sample path and three hitting points.

Remark. By the construction described above we obtain a pair of processes

following Definition 2.4.4. Thus it is a Itô diffusion reflected at ∂D. The

functions Xx
. : [0,∞)×Ω→ D and ξxt : [0,∞)×Ω→ �

are progressively mea-

surable and continuous with probability one. Moreover the process (ξxt |t ≥ 0)

is non-decreasing and increases only for t in the set {s ≥ 0|Xx
s ∈ ∂D}, which

is a null-set with probability one if

∑

1≤i,j≤d
(σσT)i,jγi(x)γj(x) > 0.

2.5 Feynman-Kac Formula for domains with

smooth boundary

This section corresponds to Section 1.6 where we gave a solution of the Cauchy

problem 1.15a, 1.15b defined in Section 1.4 for functions on
� d. As before we

now assume D ⊂ � d to be open, bounded and convex and reformulate for

this the statements given in the case of
� d. In the next two sections we

additionally assume the boundary ∂D of D to be smooth as formulated in

Definition 2.4.4. We briefly discuss existing results taken from [24]. The case

of non-smooth boundaries not included there will be discussed thereafter. As

before we treat the Dirichlet and the Neumann case, but we do this just for

smooth boundaries. Processes used to solve Dirichlet problems on non-smooth



2.5. Feynman-Kac Formula for domains with smooth boundary 51

areas just stop if they reach the boundary so there is no difference between the

behaviour of the process at smooth boundaries and at non-smooth boundaries.

2.5.1 Dirichlet boundary condition

Let (Xx
t |t ≥ 0) denote an Itô diffusion on D with Lipschitz continuous coeffi-

cients σ(x), b(x) and generator

ADf(x) =
d
∑

i=1

bi(x)
∂f

∂xi
+

1

2

d
∑

i,j=1

ai,j(x)
∂2f

∂xi∂xj
, f ∈ DAD

, x ∈ D.

We assume ai,j := (σσT)i,j to be a non-negative definite matrix. Further

c : D → �
, g : [0,∞) ×D → �

and f : D → �
are supposed to be bounded

and continuous functions in the domains of their definition and g(0, x) = f(x)

for x ∈ ∂D. Then we consider the mixed Cauchy problem

∂u(t, x)

∂t
= −ADu(t, x) + c(x)u(t, x), t > 0, x ∈ D, (2.13a)

with the initial condition

u(0, x) = f(x) (2.13b)

and Dirichlet boundary condition

u(t, x)
∣

∣

x∈∂D = g(t, x). (2.13c)

Definition 2.5.1. Let (Dn|n ∈ � ) denote an increasing sequence of subsets of

D with smooth boundaries (according to Def. 2.4.4) such that
⋃∞
n=1Dn = D.

Further suppose, that for every n ∈ � it is � [τ xDn
] < ∞. If un(x) for

x ∈ Dn is a solution of the mixed Cauchy problem 2.13a, 2.13b, 2.13c and

u(t, x) := limn→∞ un(t, x) exists for all (t, x), then u is called a generalised

solution in the Wiener sense.

As usual we are interested in conditions which guaranty the existence and

uniqueness of the solution. For this we define for all x ∈ � d the distance to

the boundary of D by dist(x, ∂D) := infy∈∂D |x−y|. Further we denote the set

{ω|τ xD(ω) = t} by A(t) and of course the complementary event {ω|τ xD(ω) 6= t}
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by A(t)c as the complement in Ω.

Theorem 2.5.2. If u(t, x) is a bounded, continuous solution of the mixed

Cauchy problem 2.13a, 2.13b, 2.13c on [0, T ]× (D ∪ ∂D) where D fulfils con-

dition A (see Definition 2.4.2) and the first-order derivative of u(x, t) with

respect to t and second-order derivatives with respect to x are bounded and

continuous in the domain

{t|s < t < T} × {x ∈ D|dist(x, ∂D) > s}

for any s ∈ (0, T ) and T > 0. Then the representation

u(t, x) = �
[

f(Xx
t )1A(t) exp

(
∫ t

0

c(Xx
s ) ds

)]

+ �
[

f(Xx
τx
D

)1A(t)c exp

(
∫ τx

D

0

c(Xx
s ) ds

)] (2.14)

is valid.

A proof of this theorem (in a more general case) can be found in [24] Chap-

ter II Theorem 2.3. There it is supposed that � [τ xD] is finite for all x ∈ D. We

ensure this by condition A.

Remark. It can be shown, that u(t, x) given in equation (2.14) is a unique

solution (see [24] Theorem III.5.2 ) if D has a regular boundary and fulfils

the condition A. The regularity of the boundary guarantees, that u(t, x) is a

generalised solution in the Wiener sense (see [24] Chapter III Section 3.5).

2.5.2 Neumann boundary condition

Here we will use Itô diffusions with reflection1 in order to give solutions to

Cauchy problems with Neumann boundary conditions. So we take D ⊂ � d

open, bounded, convex with a sufficiently smooth boundary ∂D and denote

by γ(x) a vector field on ∂D with components γi(x). Further we denote by

(Xx
t |t ≥ 0) an Itô diffusion on D with reflection at ∂D in direction γ whose

1See Definition 2.4.4. The conditions on the boundary and the vector field γ are specified
there too.
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generator on D is given by

ANf(x) =
d
∑

i=1

bi(x)
∂f

∂xi
+

1

2

d
∑

i,j=1

ai,j(x)
∂2f

∂xi∂xj
, f ∈ DAN

and which is an non-degenerate operator such that for all x ∈ ∂D we have
∑d

i,j=1 ai,j(x)γi(x)γj(x) > a > 0. We consider the mixed Cauchy problem

∂u(t, x)

∂t
= ANu(t, x) + c(x)u(t, x), t > 0, x ∈ D, (2.15a)

with the initial condition

u(0, x) = f(x) (2.15b)

and Neumann boundary condition

(∇u(t, x), γ(x))
∣

∣

x∈∂D = h(x), (2.15c)

with continuous, bounded functions c : D → � d, f : D → � d, h : ∂D → �
.

Then we have the following existence result (see [24] Theorem III.5.1).

Theorem 2.5.3. If u : [0, T ] × D ∪ ∂D → � d is a solution of the mixed

Cauchy problem with Neumann boundary condition 2.15a, 2.15b, 2.15c and

the derivatives ∂u
∂t

(t, x), ∂u
∂xi

(t, x), ∂2u
∂xi∂xj

(t, x) for i, j = 1, . . . , d are continuous

and bounded on the domain of definition, then the representation

u(t, x) = �
[

f(Xx
t ) exp

(∫ t

0

c(Xx
s ) ds

)]

+ �
[∫ t

0

h(Xx
s ) exp

(∫ s

0

c(Xx
r ) dr

)

dξxs

] (2.16)

is valid.

We remind, that the process (ξxt |t ≥ 0) was defined in 2.4.4 as the local

time on the boundary.

Remark. The solution u(t, x) given in the theorem above may be understood

as a generalised solution in the Wiener sense (see [24] Remark III.5.1).
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2.6 Solutions on bounded convex domains

In Section 2.4.2 we saw how to construct Itô diffusions on regions with smooth

boundary and additionally got constructions on regions which could be approx-

imated through series of those. Now we do not discuss these approximations.

Instead we choose the approach introduced by [71] (see Appendix B) to ques-

tions of reflected processes. We do this because it is also valid in the case

of arbitrary (unbounded) convex domains as it was shown in [77]. So we are

interested in statements corresponding to those in Section 2.5.2.

In the following let Xt = (X1
t , . . . ,X

d
t ) denote an Itô diffusion on Rd as

before with

dXt = b(Xt)dt+ σ(Xt)dBt.

Further we consider a continuous process (ϕt|t ≥ 0) with ϕt = (ϕ1
t , . . . , ϕ

d
t ) of

bounded variation (that means for every ω ∈ Ω the function ϕ.(ω) : [0, T )→ � d

is continuous and of bounded variation). Then we define X̂t = Xt + ϕt and

assume for all t ≥ 0 that X̂t = (X̂1
t , . . . , X̂

d
t ) ∈ D, where D ⊂ � d is open,

bounded and convex. We will provide an Itô formula for the process X̂t simi-

lar to the formulas given in [42, 27]. In fact the authors of [42, 27] formulated

their statements for locally square integrable martingales and used integration

by the variation of those martingales. So the proofs in [42, 27] are written in

this context. Here we are in a special case of this so we reformulate the proofs

and simplify them if possible due to absence of generality. Then we will use

this Itô formula to derive a Feynman-Kac formula and finally investigate the

generator of X̂t on D.

Definition. Let α,α0, α1, . . . , αn−1 denote n random variables defined on the

probability space (Ω,A, P ) with filtration (Ft|t ≥ 0), where α is F0-measurable

and αi is Fti-measurable for i = 0, 1, . . . , n−1 and a subdivision of the intervall

[0, T ]. Then we call

α(ω)1{0}(t) +
n−1
∑

i=0

αi(ω)1(ti,ti+1](t), t ∈ [0, T ]

a simple function.
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Theorem 2.6.1. Let f be an element of C2(D) and X̂t be defined as above

then we have

f(X̂t)− f(X̂0) =
d
∑

i=1

∫ t

0

∂f

∂xi
(X̂s) dX

i
s

+

d
∑

i=1

∫ t

0

∂f

∂xi
(X̂s) dϕ

i
s

+
1

2

d
∑

i,j=1

∫ t

0

∂2f

∂xi∂xj
(X̂s) (σ(X̂s)σ(X̂s)

ᵀ)i,j ds

for every t ≥ 0.

Proof. The proof will be given in two steps. According to the argument given

in [48] part I, first we assume that the diffusion coefficient σ(t, ω) := σ(Xt(ω))

and the drift coefficient b(t, ω) := b(Xt(ω)) of the Itô diffusion are simple func-

tions. In the second step we approximate the given coefficients by a sequence

of simple functions.

For all 0 = t0 ≤ t1 ≤ · · · ≤ tN = t we have

f(X̂t)− f(X̂0) =

N
∑

n=1

f(X̂n)− f(X̂n−1)

and for 1 ≤ i, j ≤ d we have

∫ t

0

∂f

∂xi
(X̂s) dX

i
s =

N
∑

n=1

∫ tn

tn−1

∂f

∂xi
(X̂s) dX

i
s,

∫ t

0

∂2f

∂xi∂xj
(X̂s) (σσᵀ)i,j ds =

N
∑

n=1

∫ tn

tn−1

∂2f

∂xi∂xj
(X̂s) (σσᵀ)i,j ds,

∫ t

0

∂f

∂xi
(X̂s) dϕ

i
s =

N
∑

n=1

∫ tn

tn−1

∂f

∂xi
(X̂s) dϕ

i
s.

So in the first step of the proof it is sufficient that we restrict ourself to constant

diffusion σ̂ and constant drift b̂. Now we choose 0 ≤ s ≤ t ≤ T . Then for

every k ∈ � we consider a set of times {tk0, . . . , tkNk
} with tk0 = 0 and tkNk

= t

such that for every 1 ≤ n ≤ Nk we have |tkn − tkn−1| ≤ 1
2k . Using this sequence
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for k ∈ � we write

f(X̂t)− f(X̂s) =

Nk
∑

n=1

(

f(X̂tkn
)− f(X̂tkn−1

)
)

.

Then as consequence of Taylor’s formula (see [23]) for every 1 ≤ n ≤ Nk there

exists ξkn−1 ∈ [min(X̂tkn−1
, X̂tkn

),max(X̂tkn−1
, X̂tkn

)] such that

f(X̂t)− f(X̂s) =

Nk
∑

n=1

( d
∑

i=1

∂f

∂xi
(X̂tkn−1

)(X̂ i
tkn
− X̂ i

tkn−1
)

)

+

Nk
∑

n=1

(

1

2

d
∑

i,j=1

∂2f

∂xi∂xj
(ξkn−1)(X̂ i

tkn
− X̂ i

tkn−1
)(X̂j

tkn
− X̂j

tkn−1
)

)

.

(2.17)

Moreover we note

∂f

∂xi
(X̂tkn−1

)(X̂ i
tkn
− X̂ i

tkn−1
) =

∂f

∂xi
(X̂tkn−1

)
(

(X i
tkn
−X i

tkn−1
) + (ϕitkn − ϕ

i
tkn−1

)
)

because of X̂t = Xt + ϕt. But then from the definition of stochastic integrals

(see [18, 55]) we can derive the stochastic convergence

Nk
∑

n=1

( d
∑

i=1

∂f

∂xi
(X̂tkn−1

)(X i
tkn
−X i

tkn−1
)

)

k→∞−−−→
d
∑

i=1

∫ t

s

∂f

∂xi
(X̂s) dX

i
s

and by definition of Stieltjes integrals (see [29, 79]) we have

Nk
∑

n=1

( d
∑

i=1

∂f

∂xi
(X̂tkn−1

)(ϕitkn − ϕ
i
tkn−1

)

)

k→∞−−−→
d
∑

i=1

∫ t

s

∂f

∂xi
(X̂s) dϕ

i
s.

With the second term in Equation 2.17 we proceed in the same manner and

get

Nk
∑

n=1

( d
∑

i,j=1

∂2f

∂xi∂xj
(ξkn−1)(X̂

i
tkn
− X̂ i

tkn−1
)(X̂j

tkn
− X̂j

tkn−1
)

)

= T1 + T2 + T3
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where

T1 =

Nk
∑

n=1

( d
∑

i,j=1

∂2f

∂xi∂xj
(ξkn−1)(X i

tkn
−X i

tkn−1
)(Xj

tkn
−Xj

tkn−1
)

)

,

T2 = 2

Nk
∑

n=1

( d
∑

i,j=1

∂2f

∂xi∂xj
(ξkn−1)(X

i
tkn
−X i

tkn−1
)(ϕj

tkn
− ϕj

tkn−1
)

)

,

T3 =

Nk
∑

n=1

( d
∑

i,j=1

∂2f

∂xi∂xj
(ξkn−1)(ϕitkn − ϕ

i
tkn−1

)(ϕj
tkn
− ϕj

tkn−1
)

)

.

For k →∞ the term T2 converges to 0 almost sure because

|T2| ≤ 2
d
∑

i,j=1

(

max
0≤n≤Nk

|X i
tkn
−X i

tkn−1
|max
x∈D
| ∂

2f

∂xi∂xj
(x)|

Nk
∑

n=1

|ϕj
tkn
− ϕj

tkn−1
|
)

and
∑Nk

n=1 |ϕjtkn − ϕ
j

tkn−1
| is smaller than the variation of ϕt which is finite. The

maximum over the increments |X i
tkn
− X i

tkn−1
| converges a.s. to 0 because the

sample paths of Xt are a.s. continuous in t. The same is true for the process

ϕt and so the same argument holds for T3 because max1≤n≤Nk
|ϕj

tkn
− ϕj

tkn−1
|

converges to 0 for k →∞ too.

Once more we expand the remaining term. If we denote the i-th coordinate of

the drift vector by b̂i and i, j-th entry of the diffusion matrix by σ̂i,j we note

(X i
tkn
−X i

tkn−1
) = b̂i(t

k
n − tkn−1) +

m
∑

l=1

σ̂i,l(B
l
tkn
−Bl

tkn−1
).

Hence for 1 ≤ i, j ≤ d and 1 ≤ n ≤ Nk we get

∂2f

∂xi∂xj
(ξkn−1)(X

i
tkn
−X i

tkn−1
)(Xj

tkn
−Xj

tkn−1
)

=
∂2f

∂xi∂xj
(ξkn−1)

m
∑

l1=1

σ̂i,l1(B
l1
tkn
−Bl1

tkn−1
)

m
∑

l2=1

σ̂j,l2(B
l2
tkn
−Bl2

tkn−1
)

+ 2
∂2f

∂xi∂xj
(ξkn−1)

m
∑

l=1

σ̂i,l(B
l
tkn
−Bl

tkn−1
)b̂i(t

k
n − tkn−1)

+
∂2f

∂xi∂xj
(ξkn−1)b̂ib̂j(t

k
n − tkn−1)

2.
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Moreover for 1 ≤ l ≤ m we have

∣

∣

∣

∣

∂2f

∂xi∂xj
(ξkn−1)σ̂i,l(B

l
tkn
−Bl

tkn−1
)

∣

∣

∣

∣

≤ max
x∈D

∣

∣

∣

∣

∂2f

∂xi∂xj
(x)σ̂i,l

∣

∣

∣

∣

max
1≤n≤Nk

∣

∣

∣

∣

Bl
tkn
−Bl

tkn−1

∣

∣

∣

∣

where the second maximum converges a.s. to 0 for k → ∞. Furthermore the

inequality

∣

∣

∣

∣

∂2f

∂xi∂xj
(ξkn−1)b̂i(t

k
n − tkn−1)

∣

∣

∣

∣

≤ max
x∈D

∣

∣

∣

∣

∂2f

∂xi∂xj
(x)b̂i

∣

∣

∣

∣

1

2k

shows that again in the limit k →∞ there is just one term

∂2f

∂xi∂xj
(ξkn−1)

m
∑

l1,l2=1

σ̂i,l1(B
l1
tkn
−Bl1

tkn−1
)σ̂j,l2(B

l2
tkn
−Bl2

tkn−1
)

not vanishing. From [29] Example 4.26 we know that we have

Nk
∑

n=1

∂2f

∂xi∂xj
(X̂k

n−1)
m
∑

l=1

σ̂i,lσ̂j,l(B
l
tkn
−Bl

tkn−1
)2 k→∞−−−→

∫ t

s

∂2f

∂xi∂xj
(X̂s)(σ̂σ̂

ᵀ)i,j ds,

and

Nk
∑

n=1

∂2f

∂xi∂xj
(ξkn−1)

m
∑

l1,l2=1

l1 6=l2

σ̂i,l1(B
l1
tkn
−Bl1

tkn−1
)σ̂j,l2(B

l2
tkn
−Bl2

tkn−1
)
k→∞−−−→ 0

almost surely. So the theorem is proven for step functions b̂(x), σ̂(x) if we can

show that

Nk
∑

n=1

m
∑

l=1

∣

∣

∣

∣

σ̂i,lσ̂j,l
∂2f

∂xi∂xj
(X̂k

n−1)− σ̂i,lσ̂j,l
∂2f

∂xi∂xj
(ξkn−1)

∣

∣

∣

∣

(Bl
tkn
−Bl

tkn−1
)2

converges almost everywhere to 0. For this (and the remaining part of the

proof) we apply the argument given in [18] to our case. We choose N ∈ A
with P (N) = 0 such that

∑Nk

n=1(Bl
tkn

(ω)−Bl
tkn−1

(ω))2 converges to t− s for all

ω ∈ NC and remark that

∣

∣

∣

∣

σ̂i,lσ̂j,l(X̂
k
n−1)

∂2f

∂xi∂xj
(X̂k

n−1) − σ̂i,lσ̂j,l(ξkn−1)
∂2f

∂xi∂xj
(ξkn−1)

∣

∣

∣

∣
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converges a.s., uniformly in k to 0.

Now we will finish the proof by approximation of continuous b(x) and σ(x)

through sequences of step functions (bn(x)|n ∈ � ) and (σn(x)|n ∈ � ). We

define

Xt,n := X0 +

∫ t

0

bn(Xs,n) ds +

∫ t

0

σn(Xs,n) dBs

as a.s., uniformly convergent approximation of Xt (using the uniqueness of

the limit of Xt,n for n → ∞ as strong solution [48] I 4.4) and denote the

components of Xt,n by X i
t,n. Moreover from [77] lemma 2.2 (or [8] lemma 3)

we know that the corresponding sequence (ϕt,n|t ≥ 0) converges uniformly a.s.

to ϕt (for the case of non-smooth boundary see appendix of [73]). Here ϕt,n

is a stochastic process of bounded variation such that for all t ≥ 0 we have

X̂t,n := Xt,n + ϕt,n ∈ D. It follows from step one

f(X̂t,n)− f(X̂0,n) =

d
∑

i=1

∫ t

0

∂f

∂xi
(X̂s,n)bin(X̂s,n) ds +

d
∑

i=1

m
∑

j=1

∫ t

0

∂f

∂xi
(X̂s,n)σn(X̂s,n)i,j dB

j
s

+
1

2

d
∑

i,j=1

∫ t

0

∂2f

∂xi∂xj
(X̂s,n) (σ(X̂s,n)σ(X̂s,n)ᵀ)i,j ds+

d
∑

i=1

∫ t

0

∂f

∂xi
(X̂s,n) dϕis,n

and we know f(X̂t,n) − f(X̂0,n) converges (uniformly) a.s. to f(X̂t) − f(X̂0).

Furthermore following the argument of [18] given in the proof of theorem 5.9

we know that

∫ t

0

∂f

∂xi
(X̂s,n)bin(X̂s,n) ds

a.s.−−→
∫ t

0

∂f

∂xi
(X̂s)b

i
n(X̂s) ds

and

∫ t

0

∂2f

∂xi∂xj
(X̂s,n) (σσᵀ(X̂s,n))i,j ds

a.s.−−→
∫ t

0

∂2f

∂xi∂xj
(X̂s) (σσᵀ(X̂s))i,j ds

for every 1 ≤ i, j ≤ d. So finishing the proof we remark the convergence

∫ t

0

∂f

∂xi
(X̂s,n) dϕis,n

a.s.−−→
∫ t

0

∂f

∂xi
(X̂s) dϕ

i
s
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which holds true because of the inequality

∣

∣

∣

∣

∫ t

0

∂f

∂xi
(X̂s,n) dϕis,n −

∫ t

0

∂f

∂xi
(X̂s) dϕ

i
s

∣

∣

∣

∣

≤
∣

∣

∣

∣

∫ t

0

∂f

∂xi
(X̂s) dϕ

i
s,n −

∫ t

0

∂f

∂xi
(X̂s) dϕ

i
s

∣

∣

∣

∣

+

∣

∣

∣

∣

∫ t

0

∂f

∂xi
(X̂s,n) dϕis,n −

∫ t

0

∂f

∂xi
(X̂s) dϕ

i
s,n

∣

∣

∣

∣

and the fact that both terms at the right side converge a.s. to 0. �

This formula enables us to give the following statement about the generator

(cp. Definition 1.5.2) of the reflected process X̂t. As mentioned before here we

use the formalism for reflected processes introduced by Skorokhod (see [71]).

Theorem 2.6.2. Let (Xt|t ≥ 0) denote an Itô diffusion on
� d satisfying

dXt = b(Xt)dt+ σ(Xt)dBt, t > 0,

where σ, b obey the Lipschitz condition (see Theorem 1.5.1). Further suppose

(ϕt|t ≥ 0) is a process of bounded variation growing only if Xt ∈ ∂D with

ϕ0 = 0 such that (Xt, ϕt) is a solution of the Skorokhod problem associated

to (Xt,D). If X̂x
t := Xt + ϕt then the (infinitesimal) generator of the process

(X̂t|t ≥ 0) is an extension of the operator

ANf :=
d
∑

i=1

bi
∂f

∂xi
+

1

2

d
∑

i,j=1

(σσᵀ)i,j
∂2f

∂xi∂xj

with domain

DAN
:=

{

f ∈ C2(D)

∣

∣

∣

∣

∀x ∈ ∂D : ∀n ∈ Nx :
∂f

∂n
(x) = 0

}

where Nx is the set of all normal vectors at the point x ∈ ∂D (see Section 2.2).

Proof. First we note that

�
[
∫ t

0

∂f

∂xi
(X̂s)σn(X̂s)i,j dB

j
s

]

= 0



2.6. Solutions on bounded convex domains 61

but then from Theorem 2.6.1 we know that for every f ∈ DAN
we have

� [f(X̂x
t )− f(x)]

t
=

1

t
�
[∫ t

0

ANf(X̂s) ds +
d
∑

i=1

∫ t

0

∂f

∂xi
(X̂s) dϕ

i
s

]

.

From Appendix B we know that ϕt grows only for t ∈ {s ≥ 0|X̂s ∈ ∂D} and

the direction of the growths is an element of NX̂t
(see Equation B.4). This

shows that the second term is equal to 0. So we deduce

lim
t↘0

� [f(X̂x
t )− f(x)]

t
= ANf(x)

because of the continuity of the derivatives of f and we get the statement of

the theorem. �

In order to give a representation of solutions of the Cauchy problem as

defined in Section 2.5.2 we reformulate Theorem 2.6.1 for functions which are

additionally continously differentiable in t for t ∈ [0,∞).

Proposition 2.6.3. Let f : [0,∞) × D → �
be continuously differentiable

with respect to t and f(t, .) ∈ C2(D). For X̂t defined as above the equation

f(t, X̂t)− f(0, X̂0) =

∫ t

0

∂f

∂t
(s, X̂s) ds

+
d
∑

i=1

∫ t

0

∂f

∂xi
(s, X̂s) dX

i
s

+
1

2

d
∑

i,j=1

∫ t

0

∂2f

∂xi∂xj
(s, X̂s) (σ(X̂s)σ(X̂s)

ᵀ)i,j ds

+
d
∑

i=1

∫ t

0

∂f

∂xi
(s, X̂s) dϕ

i
s

(2.18)

holds for every t ≥ 0.

Proof. Consider an d + 1-dimensional process Yt := (X̂t, t) and use Theo-

rem 2.6.1. �

Now it is easy to see that we have a very similar situation as in the case

of an area D with smooth boundary. Of course we do not define a vector field
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at ∂D. Nevertheless we would like to compare the following theorem with

Theorem 2.5.3 if we suggest a zero vector field γ ≡ 0. But then differentiation

in the direction of γ does not make sense. This makes clear why we are in a

different situation. However the resulting statement is very similar again.

As before we consider an Itô diffusion (Xt|t ≥ 0) on
� d as continuous

solution of the stochastic differential equation

dXt = b(Xt)dt+ σ(Xt)dBt

X0 = x ∈ � d

where σ, b ∈ C2(D) fulfil the Lipschitz condition. Further let D ⊂ � d be

a bounded convex open set and (ϕt|t ≥ 0) a process of bounded variation

such that X̂x
t := Xt + ϕt solves the Skorokhod problem corresponding to

(Xt,D). Then for every boundary point x ∈ ∂D the set of normal vectors (see

Section 2.2) is denoted by Nx and for every u ∈ DA where

DA := {f ∈ C2(D)|∀x ∈ ∂D : ∀ν ∈ Nx :
∂f

∂ν
(x) = 0}

we define the operator

Au :=

d
∑

i=1

bi
∂u

∂xi
− 1

2

d
∑

i,j=1

(σσᵀ)i,j
∂2u

∂xi∂xj
.

Theorem 2.6.4. Let u : [0,∞) × D → �
be continuous differentiable with

respect to the first variable and u(t, .) ∈ C2(D). If u is a solution of the

Cauchy problem

∂u

∂t
(t, x) = −Au(t, x) t > 0, x ∈ D

u(0, x) = f0(x) x ∈ D, f0 ∈ C2(D)

with Neumann boundary condition then u(t, x) = �
[

f0(X̂
x
t )
]

for all x ∈ D.
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Proof. We apply formula 2.18 to the function f(s, x) := u(t− s, x) and obtain

u(0, X̂x
t )− u(t, x) =

∫ t

0

[∂u

∂t
+Af

]

(t− s, X̂x
s ) ds

+
d
∑

i=1

∫ t

0

∂u

∂xi
(t− s, X̂x

s ) dBi
s

+
d
∑

i=1

∫ t

0

∂u

∂xi
(t− s, X̂x

s ) dϕis

(2.19)

which implies that � [u(0, X̂x
t ) − u(t, x)] = 0 because the expectation of the

second term of Equation 2.19 is equal to 0 and the first term vanishes because

u is solution of the Cauchy problem and so

∂u

∂t
(t− s, x) = −Au(t− s, x).

Finally the paths of X̂x
t are continuous and X̂x

0 ∈ D. So there exists an ε > 0

(depending on ω) such that for all t ∈ [0, ε] we have X̂x
t ∈ D. But this implies

∫ t

0

∂u

∂xi
(t− s, X̂x

s ) dϕis = 0

because ϕt grows only for such t ≥ 0 with X̂x
t ∈ ∂D. �

2.7 Reproducing property in L2(D , λd)

In Theorem 1.3.1 we have shown that for every f ∈ L2(
�

d, λd ) the function

Ttf := exp(−tH)f with H := − 1
2
∆ + ∆f∞

2f∞
converges for t→ ∞ to (f, f∞)f∞

in the L2-norm. As a consequence of Theorem 2.3.12 we have the same result

in the space L2(D , λd ). For this let f∞ denote an element of C2(D) which can

be extended to a strictly positive function defined on D such that V := ∆f∞
2f∞

is in C0(D). As in Theorem 2.3.9 we consider the operator

ANf := −
d
∑

i=1

∂2f

2∂x2
i

+ V f (2.20a)
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defined for f in

DAN
:=

{

f ∈ C2(D)

∣

∣

∣

∣

∀x ∈ ∂D, ν ∈ Nx :
∂f

∂ν

∣

∣

∣

∣

∂D

= 0

}

(2.20b)

whereNx is the set of normal vectors at x ∈ ∂D (see Eqn. 2.1). The Friedrichs’

extension (AN)F of AN is an operator with purely discrete point spectrum and

its domain HAN
(the energetic space of AN , cp. Definition A.4) is a dense

subset of the Sobolev space W 1
2 which in turn is dense in L2(D , λd ). Moreover

the eigenfunctions (vk|k ∈ � 0) of (AN )F form an orthogonal basis of the Hilbert

space (HAN
, (., .)AN

). We denote the eigenvalues of (AN)F by (λk|k ∈ � 0) and

assume (AN)F vk = λkvk. So for every f =
∑

k∈ � 0
αkvk in HAN

we have the

representation

Ttf = exp(−tAN)f

=
∑

k∈ � 0

exp(−tλk)αkvk (2.21)

equivalent to Equation 1.8. From this we are enabled to follow the argument

given in Section 1.3. Hence Ttf converges for t → ∞ to α0f∞ in the norm

‖.‖AN
. But this norm is equivalent to the norm ‖.‖W 1

2
as we have shown in

Lemma 2.3.6. So for all f ∈ HAN
the convergence of Ttf to α0f∞ in the norm

of L2(D , λd) is implied by the inequality ‖.‖L2(D ,λd) ≤ ‖.‖W 1
2
. If we take into

account that HAN
is dense in L2(D , λd) and that the norms are continuous we

have the following theorem.

Theorem 2.7.1. For every f ∈ L2(D , λd) the function Ttf = exp(−tAN)f

converges in W 1
2 and in L2(D , λd) for t to infinity to (f, f∞)L2(D ,λd)f∞.

Now every vk is a solution of a second order differential equation

ANf = −1

2
∆f +

∆f∞
2f∞

f = λkf for f ∈ W 1
2 . (2.22)

Furthermore for every vector field ν : ∂D → � d with ν(x) ∈ Nx for every

x ∈ ∂D this solution has to fulfil the additional condition

∫

∂D

dvk
dν

f dσ = 0, for all f ∈ W 1
2
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because it is an element of HAN
which is the closure of DAN

in the norm

‖.‖AN
. (For a detailed deduction of generalised boundary conditions for func-

tions in W n
m we refer to [44].) In our case V ∈ C0(D) where D is bounded

and either convex or possesses a sufficiently smooth boundary. So it can be

shown that solutions of 2.22 are already in W 2
2 (see [44] Lemma 8.1 for the

estimate ‖f‖2
W 2

2 (D)
≤ c

(

‖(AN)Ff‖2L2(D ,λd) + ‖f‖2
L2(D ,λd)

)

and [43] Remark 6.2

for the adaption to the boundary condition). But then it is an immediate

consequence of Sobolev’s inequality (cp. [2] Theorem 3.9) and the Sobolev

imbedding theorem (cp. [1] Theorem 5.4) that for every f ∈ W 2
2 there exists a

unique f̃ ∈ C0(D) with ‖f − f̃‖L2(D ,λd) = 0.

Theorem 2.7.2. For every f ∈ DAN
the function

Ttf := exp(−tAN)f :=
∞
∑

k=0

exp(−tλk)(f, vk)L2(D ,λd)vk

converges point-wise for t to infinity to the two times continuous differentiable

function (f, f∞)L2(D ,λd)f∞.

Proof. Since AN is an operator with a purely discrete point spectrum, it exists

an orthonormal system (vk|k ∈ � 0) consiting of eigenfunctions of AN such

that for every f ∈ DAN
⊂ C2(D) we have

∫

D

|f −
∞
∑

k=0

(f, vk)L2(D ,λd)vk| dλd = 0.

But then it follows

‖
∞
∑

k=0

(f, vk)L2(D ,λd)vk‖L2(D ,λd) <∞

and because of f ∈ C2(D) and the natural imbedding C2(D) ↪→W 2
2 (D) it is

‖Dα
∞
∑

k=0

(f, vk)L2(D ,λd)vk‖L2(D ,λd) <∞ for 1 ≤ |α| ≤ 2,

where Dα is the distributional derivative to the multiindex α (as given in Defi-

nition A.8). Consequently, (
∑n

k=0(f, vk)L2(D ,λd)vk|n ∈ � ) is a Cauchy sequence
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in W 2
2 (D) converging to [f ] (the class of f in L2(D , λd )). Let (λk|k ∈ � ) denote

the eigenvalues of AN , then it is 0 = λ0 < λ1 < . . . and we get

‖
m
∑

k=n

exp(−tλk)(f, vk)L2(D ,λd)vk‖W 2
2 (D) ≤ exp(−tλn)‖

m
∑

k=n

(f, vk)L2(D ,λd)vk‖W 2
2 (D)

for all n ≤ m. So (
∑n

k=0 exp(−tλk)(f, vk)L2(D ,λd)vk|n ∈ � ) is a Cauchy se-

quence in W 2
2 (D) too. As we know W 2

2 (D) is complete with respect to its

norm, so the limit of the Cauchy sequence

(

n
∑

k=0

exp(−tλk)(f, vk)L2(D ,λd)vk|n ∈ � )

is an element of W 2
2 (D). Furthermore ‖f∞ − v0‖W 2

2 (D) = 0 so it follows for

every t ≥ 0

‖
∞
∑

k=0

exp(−tλk)(f, vk)L2(D ,λd)vk − (f, f∞)L2(D ,λd)f∞‖W 2
2 (D)

≤ ‖
∞
∑

k=1

exp(−tλk)(f, vk)L2(D ,λd)vk‖W 2
2 (D)

≤ exp(−tλ1)‖f − (f, f∞)L2(D ,λd)f∞‖W 2
2 (D) <∞.

Using Sobolev’s imbedding theorem taken from [1] we conclude

sup
x∈D
|Ttf(x)− (f∞, f)L2(D ,λd)f∞(x)| → 0

for t→∞. �

Remark 2.7.3. For every n ∈ � 0 we have the inclusion W 2+n
2 (D) ⊂ W 2

2 (D)

and the Hilbert space W 2+n
2 (D) can be imbedded in Cn(D). So we could easily

repeat the argument above to improve the smoothness of Ttf by choosing f in

Cn(D). Easier we simply take the limit of

Ttf(x0 + hx)− Ttf(x0)

h
=
Tt(f(x0 + hx)− f(x0))

h
(2.23)

for h → 0 to find Ttf ∈ Cn(D) whenever f ∈ Cn(D). The validity of Equa-



2.7. Reproducing property in L2(D , λd) 67

tion 2.23 is simply a consequence of the definition of exp(−tAN)f as linear

combination of basis elements.

Following the argumentation given in Section 1.7 the function

Uf∞ : L2(D , λd ) → L2(D , f 2
∞λ

d )

f 7→ f
f∞

is a unitary map with inverse U−1
f∞

= U1/f∞. As in Section 1.8 using Uf∞

this leads to the operator LN = Uf∞HU
−1
f∞

= −1
2
∆ − ∇f∞

f∞ ∇ with domain

DLN
= DAN

. Furthermore for every t ≥ 0 we define Stf := exp(−tLN)f for

f ∈ DLN
⊂ C2(D). Then Stf is a solution of the Cauchy problem

∂u

∂t
(t, x) = −LNu(t, x) t > 0, x ∈ D

u(0, x) = f(x) x ∈ D, f ∈ C2(D)

with Neumann boundary condition. So using Theorem 2.7.2 together with Re-

mark 2.7.3 and taking into account that St is the image of Tt under the unitary

map Uf∞ it follows Stf(.) ∈ C2(D). Finally Stf is continuous differentiable in

t so Theorem 2.6.4 implies Stf(x) = �
[

f(X̂x
t )
]

for all x ∈ D where X̂x
t is a

reflected Itô diffusion on D with diffusion coefficient Id and drift −∇f∞
f∞ . We

resume as follows.

Theorem 2.7.4. Given the operatorAN with domain DAN
(Eqns. 2.20a,2.20b)

for every f ∈ C2(D) the function Stf := exp(−tAN)f is continuous dif-

ferentiable with respect to t ≥ 0. Further let (X̂|t ≥ 0) denote a reflected

Itô diffusion on D with diffusion coefficient Id and drift −∇f∞
f∞ then it is

Stf(x) = �
[

f(X̂x
t )
]

for every x ∈ D, t ≥ 0 and Stf(.) ∈ C2(D).





Chapter 3

Implementation

The last step leading to a mechanism applicable to image processing is a col-

lection of statements concerning problems which arise from computer experi-

ments and their discrete nature. We start with the discrete approximation of

Itô diffusions in convex regions. Then we discuss the time and space discrete

simulation algorithm for transforming a start image into a stop image. Af-

terwards we investigate several possibilities to get sufficiently smooth images

from discrete image points and of course determine their derivatives. Both are

needed for the implementation of the transformation algorithm. Finally we

give a short discussion concerning the resulting approximation error.

3.1 Approximation of Itô diffusion in convex

regions

In this section we will describe Euler’s approximation of solutions of Sko-

rokhod’s problem, which can be found e.g. in [8, 72, 73]. Later we need this

in order to compute such solutions. Then we will improve the rate of con-

vergence of the approximation by simple application of a stochastic Taylor

expansion (as described in Appendix C), similar to the argument leading to

schemes of higher approximation order corresponding to Itô diffusions in un-

bounded regions (see [39]). Frequently, these approximations are formulated

for non-equidistant discretisations in time and space sometimes even with ran-

dom time discretisation. This seems to be possible in our case too, but we

69
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renounce this in order to keep the notation simple and restrict ourselves to the

case of equidistant approximations in time.

As before, we considerD as an open, bounded, convex subset of
� d. Further

let b :
� d → �

and σ :
� d → � m×d denote the drift, respectively the diffusion

coefficient of the Itô diffusion (Xt|t ≥ 0) in
� d. We remind that the process

Xt is defined as solution of the stochastic differential equation

dXt = b(Xt)dt+ σ(Xt)dBt,

X0 = x ∈ D.
(3.1)

In order to get a unique solution of Equation 3.1 in the strong sense we suppose

b and σ to be Lipschitz continuous (see Eqn. 2.11) as before. Then we can apply

a result from [77] to the Skorokhod problem corresponding to (Xt,D) as defined

in Appendix B. This result guarantees the uniqueness of the solution (Xt, ϕt) of

the Skorokhod problem (Xt,D) in the strong sense1. Now it is possible to define

different sequences of stochastic processes (X̂x
t,n := Xx

t,n +ϕnt |t ≥ 0) (piecewise

constant in time) converging a.s. to the unique solution X̂t := Xt + ϕt. Here

we just mention the penalisation scheme discussed in [13, 72, 73] and use the

projection scheme (e.g. see [57, 72, 73]). Therefore we consider for every n ∈ �
the sequence (k/n|k ∈ � 0) and define the function

pn(t) := max{k
n
|k ∈ � 0,

k

n
≤ t}, for t ≥ 0.

Then we obtain a discretisation of the Brownian motion Bt by Bpn
t := Bk/n for

t ∈ [k/n, (k + 1)/n). In the following we denote by Xt−(ω) the limit of Xs(ω)

for s↗ t.

Definition 3.1.1. In the notation above a discrete projection scheme as a

solution of the stochastic differential equation

X
n

t = X
n

0 +

∫ t

0

σ(X
n

s−) dBpn
s +

∫ t

0

b(X
n

s−) dpn(s) + ϕnt (3.2)

is defined, where X
n

0 = X̂x
0 and (ϕnt |t ≥ 0) is a process of bounded variation

with ϕn0 = 0 growing only if X
n

t ∈ ∂D.

1The process (X̂t := Xt + ϕt|t ≥ 0) only takes values in D.
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To be precise, if NXn
s

is the set of normals to the boundary at the point

X
n

s ∈ ∂D and ns ∈ NXn
s
, then we have

ϕnt =

∫ t

0

ns dbϕns e, bϕns e =

∫ t

0

1{Xn
s∈∂D} dbϕns e, t ≥ 0,

where we used the notation bϕnt e for the variation of ϕnt on [0, t] as given in

Definition B.2.

In the following theorem we present a recursive procedure for a discrete

projection scheme which can be computed easily. Therefore we denote by

Π(x) for every x ∈ � d the unique y ∈ ∂D with |x− y| ≤ |x− z| for all z ∈ D.

Obviously we have Π(x) = x for every x ∈ D and for every x ∈ � d \ D the

point Π(x) is nothing else than the unique projection of x to the boundary ∂D

of D.

Theorem 3.1.2. The process Y
n

t := Y
n

k/n for t ∈ [k/n, (k + 1)/n) with

Y
n

(k+1)/n := Π
(

Y
n

k/n + σ(Y
n

k/n)(B(k+1)/n −Bk/n) + b(Y
n

k/n) 1
n

)

,

Y
n

0 := X̂x
0

(3.3)

solves Equation 3.2 for all t ≥ 0.

Proof. Because of Y
n

0 := X̂x
0 it is sufficient to prove

Y
n

(k+1)/n = Y
n

k/n + σ(Y
n

k/n)(B(k+1)/n −Bk/n) + b(Y
n

k/n)
1

n
+ ϕn(k+1)/n.

Then the statement of the theorem follows by induction. But the equation

above is obviously true if we define ϕn(k+1)/n := Π(Zn
(k+1)/n)− Zn

(k+1)/n with

Zn
(k+1)/n := Y

n

k/n + σ(Y
n

k/n)(B(k+1)/n −Bk/n) + b(Y
n

k/n)
1

n
(3.4)

and ϕn0 = 0. Moreover from the definition of ϕnk/n it follows that its incre-

ments are elements of NY n
(k+1)/n

and the process grows only if Y
n

(k+1)/n is at the

boundary of D. �

Remark. In the proof above we have shown that for t ∈ [k/n, (k + 1)/n) the

function ϕnt := ϕnk/n possesses the properties claimed in Definition 3.1.1. Hence
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we call the process defined by Equation 3.3 a projection scheme.

Now we give Theorem 3.1 from [73]. This shows that the projection scheme

defined above converges to the process we are interested in.

Theorem 3.1.3. Assume the solution of Skorokhod’s problem associated with

(Xt,D) to be path-wise unique and let Y
n

t be defined as in Theorem 3.1.2. Then

for every p ∈ � and q ∈ �
≥0 the term

�
[

sup
t≤q
|Y n

t −Xt|2p
]

converges for n→∞ to 0.

As mentioned at the beginning of the section we use the projection scheme

as a starting point for the development of another approximation scheme.

Precisely, we extend the approximation scheme defined in Theorem 3.1.2 to

an approximation scheme of higher order. Therefore we use a multidimen-

sional stochastic Taylor expansion as described in Appendix C. This Taylor

expansion provides the equation dX i
t = O1 +O2 with

O1 =

(

bi(X0) +

∫ t

0

L0bi(Xs) ds

)

dt+
m
∑

k=1

∫ t

0

Lkbi(Xs)dB
k
s dt

+
m
∑

j=1

(

σi,j(X0) +

∫ t

0

L0σi,j(Xs) ds

)

dBj
t

and

O2 =
m
∑

j,k=1

∫ t

0

Lkσi,j(X0) dB
k
r dB

j
t +

m
∑

j,k=1

∫ t

0

∫ s

0

L0Lkσi,j(Xr) drdB
k
s dB

j
t

+
m
∑

j,k,l=1

∫ t

0

∫ s

0

LlLkσi,j(Xr)dB
l
rdB

k
s dB

j
t

for every 0 ≤ i ≤ d where

L0 :=
d
∑

i=1

bi
∂

∂xi
+

d
∑

i1 ,i2=1

m
∑

j=1

σi1,jσi2,j
∂2

∂xi1∂xi2
and Lk :=

d
∑

i=1

σi,k
∂

∂xi
.
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Now we define ∆t := 1/n and ∆Bj
t0 := Bj

t0+∆t − Bj
t0 for j = 1, . . . ,m. As we

know ∆Bj
t0 ∼ N (0,∆t). That means ∆Bj

t0 is a normally distributed random

variable with zero mean and variance Var(∆Bj
t0) = (∆t). In the following

we assume n ∈ � to be chosen sufficiently large. Obviously we have the

approximation

t0+∆t
∫

t0

σi,j(Xt) dB
j
t ≈ σi,j(Xt0)

t0+∆t
∫

t0

dBj
t = σi,j(Xt0)∆B

j
t0.

This is consistent with the Itô calculus because we evaluate the integrand at

the lower end point of the interval [t0, t0 + ∆t]. An application of the Itô

formula gives
t0+∆t
∫

t0

t
∫

t0

dBj
sdB

j
t =

1

2
((∆Bj

t0)
2 −∆t)

and
t0+∆t
∫

t0

t
∫

t0

s
∫

t0

dBj
rdB

j
sdB

j
t =

1

3!
((∆Bj

t0)
3 −∆Bj

t0∆t).

Finally from the deterministic approximation calculus we know

t0+∆t
∫

t0

dt = ∆t and

t0+∆t
∫

t0

t
∫

t0

L0bi(Xs) dsdt ≈
1

2
L0bi(Xt0)(∆t)

2.

Then it follows the approximation

X i
t0+∆t −X i

t0
≈ S1 + S2 +R

for the increments of the Itô diffusion, where

S1 = bi(Xt0)∆t+ L0bi(Xt0)(∆t)
2 +

m
∑

k=1

Lkbi(Xs)

t0+∆t
∫

t0

t
∫

t0

dBk
s dt

+

m
∑

j=1

σi,j(Xt0)∆B
j
t0 +

m
∑

j=1

L0σi,j(Xt0)

t0+∆t
∫

t0

t
∫

t0

dsdBj
t ,
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S2 =
m
∑

j=1

Ljσi,j(Xt0)
1

2
((∆Bj

t0)
2 −∆t)

+
m
∑

j=1

LjLjσi,j(Xt0)
1

6
((∆Bj

t0
)3 −∆t∆Bj

t0
)

+
m
∑

j,k=1

L0Lkσi,j(Xt0)

t0+∆t
∫

t0

t
∫

t0

s
∫

t0

drdBk
s dB

j
t

and

R =
m
∑

j,k=1
j 6=k

Lkσi,j(Xt0)

t0+∆t
∫

t0

t
∫

t0

dBk
s dB

j
t

+

m
∑

j,k,l=1
¬(j=k=l)

LlLkσi,j(Xt0)

t0+∆t
∫

t0

t
∫

t0

s
∫

t0

dBl
rdB

k
s dB

j
t .

The approximation above and the argument in the proof of Theorem 3.1.2 en-

ables us to derive an approximation scheme equivalent to the multidimensional

order 1.5 strong Taylor scheme (cp. [39] 10.5). This involves multiple Itô in-

tegrals with respect to different components of the Brownian motion, which

is not very convenient for implementations in computer experiments. For this

reason we avoid these terms and just deduce the following theorem.

Theorem 3.1.4. Let Y
n,i

t denote the i-th component of Y
n

t and define the

process Y
n

t := Y
n

k/n for t ∈ [k/n, (k + 1)/n) by the recursive equation

Y
n,i

(k+1)/n :=Π

(

Y
n

k/n + bi(Y
n

k/n)∆t+ L0bi(Y
n

k/n)(∆t)
2

+
m
∑

j=1

σi,j(Y
n

k/n)∆B
j
k/n +

m
∑

j=1

Ljσi,j(Y
n

k/n)
1

2
((∆Bj

k/n)
2 −∆t)

+
m
∑

j=1

LjLjσi,j(Y
n

k/n)
1

6
((∆Bj

k/n)
3 −∆t∆Bj

k/n)

)

with Y
n

0 := X̂x
0 , then Y

n

t solves Equation 3.2 for all t ≥ 0.

For completeness and in view of the applications in Chapter 4 we mention
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that the equivalent of the multidimensional Milstein scheme would be defined

by

Y
n,i

(k+1)/n :=Π

(

Y
n

k/n + bi(Y
n

k/n)∆t+
m
∑

j=1

σi,j(Y
n

k/n)∆Bj
k/n

+
m
∑

j,k=1

Lkσi,j(Y
n

k/n)
1

2
((∆Bj

k/n)
2 −∆t)

)

.

(3.5)

Remark. If we assume d = m and suppose that σ is the d-dimensional unit

matrix, as it will be the case in our applications, then Equation 3.5 reduces to

Y
n,i

(k+1)/n := Π

(

Y
n

k/n + bi(Y
n

k/n)∆t+ ∆Bi
k/n

)

,

which is nothing else than the known Euler projection scheme. Hence our main

result of this section (i.e. the extension of the existing projection schemes in

Theorem 3.1.4) is an add-on to the main work.

3.2 Monte Carlo integration

In this section we denote byD an open, bounded, convex subset of
� d as before.

In Theorem 2.6.4 we saw that u(t, x) = E[ f0
f∞

(Xx
t )] gives a representation of

the solution of the Cauchy problem

du

dt
= −Au with u(0) =

f0

f∞
,

we are interested in (see Chapter 2). There f0, f∞ : D → �
>0 are elements

of C2(D) and (Xt|t
�

≤0) denotes a d-dimensional Itô diffusion with reflection

defined as solution of the differential equation

dXt = b(Xt)dt+ σ(Xt)dBt + ϕt

starting at X0 = x ∈ D with generator −A. As before (ϕt|t ≥ 0) is a pro-

cess of bounded variation starting at ϕ0 = 0 and growing only if Xt ∈ ∂D.

Algorithm 3.2.1 follows a simple Monte Carlo approach to approximate the
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expectation of the random variable f0
f∞

(Xx
t,∆t) for fixed t ∈ �

>0 and x in D.

Here Xx
t,∆t is an approximation of Xx

t with step size ∆t equidistant in time as

presented in Section 3.1. For convenience we always assume t = s∆t for some

s in � 0. As we can see, Algorithm 3.2.1 uses Algorithm 3.2.2 for the com-

Algorithm 3.2.1 Computation of uk(t = s∆t, x), t > 0, x ∈ D

Require: number of simulations = k
f0

f∞
(1X

x
t,∆t), . . . ,

f0

f∞
(kX

x
t,∆t)

/* using Algorithm 3.2.2 */
1: u← 0
2: for l = 1 to k do

3: u← u+
f0(lX

x
t,∆t)

f∞(lXx
t,∆t)

4: end for
5: uk(t, x)← u

k

Ensure: uk(t, x)

putation of k paths lX
x
t,∆t of Xx

t,∆t according to the multidimensional Milstein

projection scheme. In this notation the index l indicates that we use indepen-

dent random increments l∆Bi = (l∆B
1
i , . . . , l∆B

m
i ) every time we compute a

path of Xx
t,∆t. We use the notation Π(x) for the projection of x ∈ � d to the

boundary ∂D of the region D as described in the section above.

Remark. In order to avoid stochastic integrals of the form
∫ t2
t1

∫ s1
t1
dBi

s2
dBj

s1
we

assume commutative noise. Precisely, we consider a diffusion coefficient with

d
∑

k=1

σk,i(x)
∂σj,l
∂xk

=

d
∑

k=1

σk,l(x)
∂σj,i
∂xk

.

This is at least true for additive, linear and diagonal noise (see [39]). So it does

not seem to be a hard restriction to applications and their models. Moreover, in

the applications we consider in Chapter 4, (σi,j)1≤i,j≤d = −Id holds. Therefore

the lines 3 to 8 of Algorithm 3.2.2 reduce to

X1 = X1 + b1(X)∆t+ ∆B1
i

X2 = X2 + b2(X)∆t+ ∆B2
i .
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Algorithm 3.2.2 Computation of Xx
s∆t,∆t, s ∈ � , ∆t > 0, x ∈ D

Require: number of steps = s, step size = ∆t, x, ∆Bi

1: X ← x
2: for i = 0 to s do /* compute s steps of the process */
3: for k = 1 to d do
4: T1 ← bk(X)∆t

5: T2 ←
m
∑

j=1

σk,j(X)∆Bj
i

6: T3 ←
m
∑

j1,j2=1

d
∑

j3=1

σj3,j1(X)
∂σk,j2
∂xj3

(X)∆Bj1
i ∆Bj2

i

7: Xk ← Xk + T1 + T2 + T3

8: end for
9: X ← Π(X) /* Π(X) = X if X ∈ D */
10: end for
11: Xx

t,∆t ← X

Ensure: Xx
t,∆t, s∆t = t

We note that the function uk(t = s∆t, x) resulting from Algorithm 3.2.1 is

indeed an approximation of � [ f0
f∞

(Xx
t )] for x ∈ D, because

1

n

n
∑

l=1

f0

f∞
(lX

x
t,∆t)

n→∞−−−→
a.s.

�
[

f0

f∞

(

Xx
t,∆t

)

]

and

�
[

f0

f∞

(

Xx
t,∆t

)

]

∆t→0−−−→ �
[

f0

f∞

(

Xx
t

)

]

.

3.3 Continuous images

In computer vision, one of the common ways to produce images is by using

sensors which consist of Charged Coupled Devices CCDs or Active Pixel Sensors

APSs (often called CMOS sensors), arranged in two-dimensional arrays. This

is also the predominant arrangement found in digital cameras and other light

sensing instruments. The response of a single sensor is proportional to the

integral of the light energy projected onto the surface of the sensor (up to a
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threshold). Nevertheless, in computer vision, usually the continuous values

produced by the sensing pixels or its discrete datel representation have been

taken as spatially sampled representation of the continuous scene. But there

exist other approaches too. We just refer to the common literature [28, 35, 37].

For further information about the signal processing chain inside the detector

see [36, 60]. All these arrangements have in common that they produce discrete

quantisations

If : {1, . . . , n} × {1, . . . ,m} → {0, . . . , graymax},

which we call images or image functions. There, If(i, j) is the quantisation of

the continuous signal of the sensor at position (i, j) and graymax is its maximum

value. The maximum of the sensor response exists because the well capacities

of the used sensing devices are bounded [35, 36]. Obviously every image can

be assumed to be strictly positive by a translation of the function values to

{1, . . . , graymax + 1}.

CCD array

PSfrag replacements

(xi−1, yj−1) (xi, yj−1)

(xi, yj)(xi−1, yj)

(x0, y0) (xn, y0)

(xn, ym)(x0, ym)

i, j

i

j Sensor

CCD array

Figure 3.1. Correspondence between the position off the CCD sensors
and the resulting image points.

Now we introduce the point sets {x0, . . . , xn} and {y0, . . . , ym} in order to

denote the corner points of a single CCD sensor at position (i, j) by the tu-

ples (xi−1, yj−1), (xi, yj−1), (xi, yj) and (xi−1, yj). In this notation we started at

the lower left corner and progressed counterclockwise direction (Figure 3.1).

Obviously the centre (xci , y
c
j) of the sensor at position (i, j) is located at

(xi−1+xi

2
,
yj−1+yj

2
) because each sensor well is taken as a square. In the fol-

lowing we will take D as the open rectangle (0, xn)× (0, ym).
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3.3.1 Smoothing piecewise constant functions

As we have seen in the last section, because of the sensor layout, one natural

interpretation of a given image function If is as a piecewise constant function Îf.

Furthermore the arrangement of the sensors tells us that we can not expect a

natural definition of Îf(x, y) where either x ∈ {x0, . . . , xn} or y ∈ {y0, . . . , ym}.
This is because the sensing device has gaps. In fact we do not want to leave

these values undefined, so we simply associate the lower and left border of the

sensor (i, j) to the image value If(i, j). Additionally the right border of the

whole sensing device is associated to the last column of sensors (i=n) whereas

the upper border of the sensing device is associated to the upper row of sensors

(j=m).

Definition 3.3.1. We call a function Îf : [0, n] × [0,m] → {1, . . . , Ifmax +1}
a piecewise constant version of the given discrete image If, iff the function Îf

satisfies

Îf(x, y) = If(i, j) for (x, y) ∈ [xi−1, xi)× [yj−1, yj) (3.7a)

Îf(x, ym) = If(i,m) for x ∈ [xi−1, xi) (3.7b)

Îf(xn, y) = If(n, j) for y ∈ [yj−1, yj) (3.7c)

Îf(xn, ym) = If(n,m) (3.7d)

for every 1 ≤ i ≤ n and 1 ≤ j ≤ m. The set of all piecewise constant versions

of If is called Îf(D).

Before we produce a piecewise constant version Îf of the given image function

If, we enlarge If to adjust either Dirichlet or Neumann boundary conditions.

For this purpose we put a frame of additional pixels (sensor areas) around

the given image. The new image function If is now defined on a bigger set

of points as schematically shown in Figure 3.2. Now we can simply achieve

Dirichlet boundary conditions by the redefinition of Îf at the boundary as

zero. This method has the advantage that we do not lose information at the

boundary of the image. Furthermore for the Neumann boundary condition we
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PSfrag replacements

If(0,m− 1)

If(i,m− 1)

If(n− 1,m− 1)

If(0, j)

If(i, j)

If(n− 1, j)

If(0, 0) If(i, 0) If(n − 1, 0)

Original Image

Figure 3.2. This presents a natural way to enlarge images in order
to achieve Neumann boundary conditions. In the Dirichlet case the
function values on the outer squares are set to zero.

define
If(−1, j) := If(0, j)

If(n+ 1, j) := If(n, j)

If(i,−1) := If(i, 0)

If(i,m+ 1) := If(i,m)

for

j = 0, 1, . . . ,m

i = −1, 0, 1, . . . , n+ 1

(cp. Fig. 3.2). Then for the computer experiments we use the resulting area

just for the computation of the derivative of the piecewise constant function

Îf. But we take the small originally given area as domain of Îf (i.e. where Îf

is defined). For simplicity we use the same symbol If (respectively Îf) and the

point set {1, . . . , n} × {1, . . . ,m} (resp. [0, xn]× [0, ym]) as its domain in the

Dirichlet case and the Neumann case as before.

Remark 3.3.2. We assume xi = i for i = 0, . . . , n and yj = j for j = 0, . . . ,m.

In order to get a piecewise constant version of an image function If it is natural

to assign the function value If(i, j) to the square [i− 1, i) × [j − 1, j). To be

precise we denote by bxc the largest integer below or equal to x ∈ �
. Then

the function Îf defined by

Îf(x, y) :=























If(bxc+ 1, byc+ 1) for (x, y) ∈ [0, n)× [0,m)

If(bxc+ 1,m) for x ∈ [0, n), y = m

If(n, byc+ 1) for x = n, y ∈ [0,m)

If(n,m) for (x, y) = (n,m)

(3.8)
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is an element of Îf(D).

Now we define smooth functions with an interpolating property to establish

a connection between image processing and the theory presented in Chapter 2.

Definition 3.3.3. For k ∈ � we call the function Ĩf defined on [0, n]× [0,m]

with values in
�

a k-continuous version of the given discrete image function

If, iff Ĩf ∈ Ck(D) and for all 1 ≤ i ≤ n, 1 ≤ j ≤ m we have Ĩf(i, j) = If(i, j).

The set of all k-continuous versions of If is denoted by Ĩf
k
(D).

In order to produce a smooth version of the given image If, we introduce

the convolution of two functions as in [83].

Definition 3.3.4. For u, v ∈ L2(
�

d, λd ) we define the convolution by

(u ∗ v)(x) :=

∫

� d

u(x− y)v(y) dy for all x ∈ � d

as element of L1(
� d, λd). Then u ∗ v is also defined for u, v ∈ L2(D , λd ) by the

inclusion L2(D , λd ) → L2(
�

d, λd ). Therefore we simply assign zero function

values to u and v outside D.

Now it is easy to see that the convolution of Îf and the square function W0

defined by

W0(x, y) =

{

1 −1
2
≤ x, y < 1

2

0 otherwise
(3.9)

leads to a continuous function. The most interesting case is shown in Figure 3.3

as 1-dimensional simplification. As we can see it is

| Îf ∗W0(x+ h) − Îf ∗W0(x)| ≤ h2(max
y∈D

Îf(y)− 1)2 for all h ∈ �
.

In the cases not shown in Figure 3.3 it is | Îf ∗W0(x + h) − Îf ∗W0(x)| = 0 for

h sufficiently small. Up to here we got a continuous function Ĩf ∈ If0(D) from

the given image function If. Finally we get k-times continuously differentiable

functions again by convolution of If now with k-times continuously differen-

tiable functions. This is the statement of the following lemma (see [12]).
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Figure 3.3. From this images we can derive the difference of the con-
volution of two 1-dimensional piecewise constant functions u, v at x
and x+ h. The left images shows the function v(x+ h − .) for h < 0
whereas in the right image v(x+ h− .) is shown for h > 0.

Lemma 3.3.5. For k ∈ � ∪ {∞} we consider Ck
0 (

� d) as the set of k-times

continuous differentiable functions on
� d with compact support. Then for every

u ∈ Ck
0 (

� d) and v ∈ C0
0 (

� d) it is (u ∗ v) ∈ Ck
0 (

� d).

Later we want to reconstruct If so we can not convolve Ĩf with every k-times

continuous function (we may lose information). But we know from Fourier

analysis (e.g. see [45]) that every real scene, which is interpreted as a 2π-

periodic, differentiable function f , can be expressed as sum of frequencies.

This is called the Fourier series. It is given by

f(x) =
1

2
a0 +

∞
∑

n=1

(

an cos(nx) + bn sin(nx)
)

with coefficients

an :=
1

π

∫ ∞

−∞
f(x) cos(nx) dx, n = 0, 1, . . .

bn :=
1

π

∫ ∞

−∞
f(x) sin(nx) dx, n = 1, 2, . . . .

If f is band limited (i.e. ∃k ∈ � : ∀n ≥ k : an= bn= 0) and sampled at points

with distance half of its highest frequency then it can be reconstructed exactly

from the information given by the sample points. For this reason we have to

convolve If with an ideal low-pass-filter (see [69]). The most famous low-pass-

filter for perfect reconstruction is the sinc function as shown in Figure 3.4.
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Figure 3.4. The graph of the sinc function (here defined on
� 2) is

shown for values (x, y) ∈ [−20, 20]× [−20, 20].

In two dimensions it is defined by sinc(0, 0) = 1 and

sinc(x, y) :=
sin(x) sin(y)

xy
for all (x, y) ∈ � 2 \ {(0, 0)}.

Because of its unbounded support this reconstruction filter can not be im-

plemented. Hence it is natural to use filters similar to the sinc function but

with bounded support. Also we want to preserve the orthogonal separability

W (x, y) = W (x)W (y). The following is a collection of suitable filters:

a) One commonly used reconstruction filter is a truncation of the sinc func-

tion.

b) The function W0 as defined in Equation 3.9 is called square function. The

convolution with W0 leads to the simplest form of the so called waveform

interpolations.

c) The triangle function W1 := W0∗W0 has pyramid shape. It can be shown

(e.g. see [60]) that the interpolation with pyramid functions is equivalent

to the bilinear spline interpolation (e.g. see Figure 3.5).

d) The bell function W2 is a convolution of W0 and W1.

e) We could easily enlarge this list by defining Wi+1 := W0 ∗Wi for i ≥ 2.

The last example we mention in this context is the well known cubic
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B-spline W3 := W0 ∗W2 shown in Figure 3.6 (see [67] for more details).

f) We finish with the Gaussian function

φσ(x, y) :=
1

2πσ2
exp(−x

2 + y2

2σ2
), (3.10)

which is also used in a truncated version.

Figure 3.5. The Figure shows an example for a linear interpolation
along separable orthogonal coordinates called bilinear interpolation.
As we can see, the bilinear interpolation does not provide planar sur-
faces in general.
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Figure 3.6. One- and two-dimensional cubic B-spline with equidis-
tant node points z0 = −1, z1 = −0.5, z2 = 0, z3 = 0.5, z4 = 1 in the
one-dimensional case. The two-dimensional spline is just the tensor
product of the one-dimensional with two orthogonal directions. The
area between curve and x-axis respective xy-plane is normalised.

The functionsWi are strictly positive for (x, y) in the square (−2−1−i, 2−1+i)×
(−2−1−i, 2−1+i) and equal to 0 outside, which is convenient for computations.
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On the other hand this means that for sufficiently large i ∈ � , depending on

the distance between the sample points, the translated support of Wi contains

more than one (x, y) ∈ � 2 with If(x, y) 6= 0. In other words, the convolution

of Wi and If depends not only on If(i, j) for one single sensor value (i, j). By a

closer look at the reconstruction mechanism presented in this work obviously

this means that the reconstructed value at a given sample point is affected by

its neighbour. In our case the distance between the sample points is one and

so this holds for all i ≥ 1 and is not true for i = 0. But we can easily avoid

this effect by rescaling the functions Wi. Without loss of generality we suppose

from now on

{xc1, . . . , xcn} × {yc1, . . . , ycm} = {(i, j)|i, j ∈ {1, . . . , n}}.

The function was sampled at a square part of the 2-dimensional � -grid. We

set i = 3 and scale W3 as follows. For every element (x, y) ∈ � 2 and every

ε > 0 (sufficiently small) we define w3(x, y) := SW3(sx, sy), where

s >

(

49n2 Ifmax

n2 Ifmax−ε

) 1
2

and S−1 :=

∫

�

∫

�
W3(sx, sy) dxdy.

Lemma 3.3.6. In the notation used above it is
∫

�
∫

� w3(x, y) dxdy = 1 and

supp(w3) =
{

(x, y) ∈ � 2
∣

∣‖(x, y)‖max < 7(2s)−1
}

.

Both properties are obvious by the definition of w3 and the scale factors s, S.

Lemma 3.3.7. For all 1 ≤ i, j ≤ n it is (Îf ∗w3)(i, j) = If(i, j).

Proof. The statement follows from the fact that we scaled W3 in order to

decrease its support (see Figure 3.7). �

Lemma 3.3.8. Let Îf be a piecewise constant version of an image. In the

notation of this section, the difference

d =

∫

D

|(Îf ∗w3)(x, y)− Îf(x, y)| dxdy

is smaller than ε.
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Figure 3.7. The function w3 is centred on [xi−1, xi) × [yj−1, yj). As
we can see, there is no interaction with sample points of neighbour
squares.

Proof. First we note that

d =
n−1
∑

i,j=1

∫

Ii,j

|(Îf ∗w3)(x, y)− Îf(x, y)| dxdy,

where Ii,j := [i, i + 1) × [j, j + 1). Hence it is sufficient to prove that each

addend is smaller than n−2ε. For this purpose we define

Ĩi,j := (i+
7

2s
, i+ 1− 7

2s
)× (j +

7

2s
, j + 1 − 7

2s
)

as subset of
� 2 (shown in Figure 3.7). Because of

∫

Ĩi,j

|(Îf ∗w3)(x, y)− Îf(x, y)| dxdy = 0

we get an estimate for the difference n−2d by integration over Ai,j := Ii,j \ Ĩi,j
(see Figure 3.8). The area of Ai,j is less or equal 1 − 49

s2
and the maximum

value the integrand can take is equal or less than Ifmax. It follows

d ≤ n2

∫

Ai,j

|(Îf ∗w3)(x, y)− Îf(x, y)| dxdy ≤
(

1− 49

s2

)

Ifmax < ε. �

Remark. If we interpret smooth versions produced by convolution of If and w3,

defined as above, as an digital image by integration over the pixel areas and

quantisation of the integral values by rounding them to integer, we receive the

image function If.
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Figure 3.8. Here w3 is centred on the borderline between two squares.
The maximum of the integral can be reached if four pixels are involved
as shown in the second case.

3.3.2 Spline interpolation

Another popular method providing smooth versions Ĩf of a given image If is

the spline interpolation. In Chapter 4 we will use this method so we give a

short resume. For detailed informations see [17].

Definition 3.3.9. For n ∈ � we consider the points x0 < · · · < xn in
�

and

take K := {xi|i = 0, . . . , n}. Further we denote by

Πm :=

{

f :
� → �

∣

∣

∣

∣

∃αi ∈
�
, i = 1, . . . ,m : f(x) =

m
∑

i=1

αix
i−1

}

the set of polynomials of order m and define for n > 1, m ≥ 1 the set

Sm,n(K) := {f ∈ Cm−1([x0, xn])
∣

∣∃pi ∈ Πm+1 :f |(xi−1,xi) =pi|(xi−1,xi), 1 ≤ i ≤ n},

which is called spline space of degree m with n− 1 inner nodes.

In order to make explicite computations it is necessary to have a convenient

basis of Sm,n. Therefore we give the next definition which (in a similar version)

was introduced in [67] and is widely used today.

Definition 3.3.10. Let f denote a function defined at least at the n + 1

distinct points {x0, . . . , xn} and k an element of {1, . . . , n}. Then for every

0 ≤ i ≤ n− k we define the k-th divided difference of the the function f at the
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points xi, . . . , xi+k recursively by

∆[xi, . . . , xi+k; f ] :=
∆[xi, . . . , xi+k−1; f ]−∆[xi+1, . . . , xi+k; f ]

xi − xi+k

with

∆[xi; f ] := f(xi).

Furthermore for every x ∈ �
we define the truncated power function in xi by

(x− xi)+ := max{0, (x− xi)}. Finally the i-th (normalised) B-spline of order

k is defined by

Bk,i(x) := (−1)m+1∆[xi, . . . xi+k; (x− .)k+], for x ∈ �
. (3.11)

As we know for every element s ∈ Sm,n(K) there exist b−m, . . . , bn−1 in
�

such that s(x) =
∑n−1

i=−m biBm,i(x) as shown in [17, 67]. For this representation

one has to introduce the additional points x−m, . . . , x−1, xn+1, . . . , xn+m and

define the values of the function f at those points in an appropriate way (if

they are not given). Note that neither the additional sample points have to be

inside [x0, xn] nor have they to be distinct. Again, for a detailed discussion how

these additional sample points have to be chosen in order to reach a specific

spline interpolation we refer to [17]. Here we just remark that the number of

necessary nodes to reach an interpolation as element of C2([x0, xn]) is still n+1.

To see this we remind that an element s of Sm,n(K) consists of n polynomial

pieces of order m+ 1. Hence s has n(m+ 1) degrees of freedom. On the other

hand the function s has to be m − 1 times continuously differentiable so the

polynomial pieces have to fulfil

dkpi
dxk

(xi) =
dkpi+1

dxk
(xi) for 0 ≤ k ≤ m− 1, 1 ≤ i ≤ n− 1.

These are m(n− 1) equations leading to m+ n degrees of freedom left for the

determination of s. Now we simply choose x−1 := x0, xn+1 := xn and claim

∂f

∂x
(x0) =

∂f

∂x
(xn) = 0

leading to the cubic spline interpolation for f on [x0, . . . , xn] with Neumann
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boundary condition. To adjust the Dirichlet boundary condition we can choose

x−1 := 2x0 − x1 and xn+1 = 2xn − xn−1. Then we define the function values

f(x−1) = f(xn+1) = 0. We note that we end with two additional conditions

naturally arising in both cases. This leads to m + n − 2 degrees of freedom

for s ∈ Sm,n with appropriate boundary conditions. Finally we set m = 3

therewith s ∈ Sm,n is an element of C2([x0, xn]). So with the information given

by the n+1 function values f(xi) we can provide s ∈ C2([x0, xn]) with Dirichlet

or Neumann boundary conditions.

Remark. The additional nodes and the assignment of the function values de-

scribed above is equivalent to the image enlargement procedure (p. 80) we

apply to the image functions in order to reach either Dirichlet or Neumann

boundary conditions.

Figure 3.9. Given the test pattern If shown in the left image we built a
2-times continuously differentiable function Ĩf. The right image shows
Ĩf sampled equidistant with 400 sample points per pixel.

Now we give some properties of spline interpolations in general, taken

from [17].

Theorem 3.3.11. Let s ∈ C2(D) denote the cubic spline interpolation of f

on K as introduced above. Then for every g ∈ C2(D) with g(xi) = f(xi) for

i = 0, . . . , n it is
∫ xn

x0

(

∂2f

∂x2

)2

dx ≤
∫ xn

x0

(

∂2g

∂x2

)2

dx.
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So using cubic splines we are able to produce interpolations which minimise

the L2-norm of its second derivative. Moreover we denote by Π2(K) the set of

all functions p defined on [x0, xn] where p
∣

∣

[xi−1,xi]
is linear. Further we define

the difference of some function h to the set Π2(K) by

dist(h,Π2(K)) := inf
p∈Π2(K)

max
x∈[xo,xn]

|h(x)− p(x)|.

Then we can give the following inequality

max
x∈[x0,xn]

|f(x)− s(x)| ≤ max
i=1,...,n

|xi − xi−1|2 dist(
∂2f

∂x2
,Π2(K))

for the distance between f and s. We do not go into a detailed discussion of

all known properties of s now. Instead we turn to the construction of two-

dimensional interpolations from the one-dimensional ones.

For example, if we consider the points {(i, j)|1 ≤ i, j ≤ n} as the sample

points of an image function If, then for (x0, y0) ∈ [0, n]2 we get an interpo-

lated function value Ĩf(x0, y0) as follows. First we produce n one dimensional

interpolations f1, . . . , fn using the function values

{If(1, 1), . . . , If(1, n)}, {If(2, 1), . . . , If(2, n)} . . . , {If(n, 1), . . . , If(n, n)}.

Then we get n new function values f1(y0), . . . , fn(y0) sampled at x = 1, . . . , n.

Finally we get the desired function value Ĩf(x0, y0) by an interpolation of

f1(y0), . . . , fn(y0) and evaluation of the resulting spline at the point x = x0.

An example for a spline interpolated function is shown in Figure 3.9.

Remark. We remind that the boundary conditions have to be adjusted before

the interpolation. This has to be done in order to get the right amount of

conditions. Dirichlet and Neumann boundary conditions are suitable for this.

Moreover the spline interpolated function Ĩf may take negative function values

even though Îf is strictly positive. So after the interpolation we have to trans-

late the function values by −min Ĩf +1 to obtain a strictly positive function.

(The minimum exists because Ĩf is continuously extendable to a compactum.)

Remark. The statements given for image functions defined on {1, . . . , n}2 gen-

eralise straight forward to image functions defined on {1, . . . , n}× {1, . . . ,m}.
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3.4 Approximation of the derivative

As we have seen in the previous section, for every image function If we can

construct a spline s ∈ C2(D) with appropriate boundary condition. In Chap-

ter 4 we make use of the derivatives of s, so the question arises how to compute

them. Certainly it is easy to compute derivatives of all elements of the spline

space Sm,n if we know derivatives of the basis elements. But for this it is not

very convenient to use the definition of B-splines as given in Equation 3.11.

So in the notation used in the section before we give the following theorem.

Theorem 3.4.1. Let K denote the set of points x0, . . . , xn. Then for n ≥ 2

and m ≥ 1 the functions in sm,n := {1, x, . . . , xm, (x− x1)
m
+ , . . . , (x− xn−1)

m
+}

constitute a basis of Sm,n(K).

We omit the proof of the statement above. Indeed it is very simple and can

be done by direct calculation. We just remark that the statement above implies

that for every s ∈ Sm,n(K) exist uniquely determined values α0, . . . , αm+1 and

β1, . . . , βn−1 such that

s(x) =
m+1
∑

i=0

αix
i +

n−1
∑

j=1

βj(x− xj)m+ .

From this equation we can easily compute the derivative of s. Unfortunately,

after all, in the worst case this means evaluation of m + n terms to get the

derivative at one position. So we look for a possibility to approximate the

derivative of s with less computation effort. Therefore we make use of the

discrete image function If from which we built the spline. If we define the

discrete derivative in the usual way we get an approximation of the derivative

of s as shown in Figure 3.10.

Definition 3.4.2. For every image function If : {1, n}×{1, n} → �
we define

for all sample points (i, j) with 2 ≤ i ≤ n−1, 1 ≤ j ≤ n the discrete derivative

with respect to the first variable by

∂ If

∂x
(i, j) :=

If(i+ 1, j) − If(i− 1, j)

2
.
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Figure 3.10. The image values given at 12 distinct sample points were
interpolated using a cubic spline. The dashed arrows show the direction
of the discrete derivative. The derivative of the cubic spline is indicated
as a black line with now arrowhead, so we can compare it to the discrete
derivative.

For 1 ≤ i ≤ n, 2 ≤ j ≤ n − 1 we define the derivative with respect to the

second variable by

∂ If

∂y
(i, j) :=

If(i, j + 1) − If(i, j − 1)

2
.

At the left border we set

∂ If

∂x
(1, j) := If(2, j)− If(1, j) for j = 1, . . . , n

whereas we define the derivative at the right border as

∂ If

∂x
(n, j) := If(n, j)− If(n− 1, j) for j = 1, . . . , n.

Finally, for i = 1, . . . , n on the lower border we take

∂ If

∂y
(i, 1) := If(i, 2)− If(i, 1)

whereas on the upper border we set

∂ If

∂y
(i, n) := If(i, n)− If(i, n− 1).

In order to get better approximations to the derivatives of s we do the same

as we would do in order to get splines closer to the piecewise constant version
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of If, denoted by Îf (see Definition 3.3.1). We simply divide the sensor square

into n2 squared pieces of equal size and introduce new sample points as shown

in Figure 3.11. The function values at the sample points arising from sensor

square (i, j) are set to If(i, j). Then we apply the discrete derivative to the

new image function sampled in the x- and y-direction at

{1, 11, . . . , 1n, 2, 21, . . . , 2n, 3, . . . . . . , n− 1, (n− 1)1, . . . , (n− 1)n, n}.

In Figure 3.12 we have shown the result of this method which pays more

respect to the structure of the image. Using more than three sub-pixels does
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Figure 3.11. The pixel i, j is divided into four respectively nine sub-
pixels. For each sub-pixel we get a new sample point associated to the
midpoint of the sub-pixel. We denoted some examples of them. The
function value associated to this is of course equal to If(i, j).

Figure 3.12. According to the division of one pixel into four respec-
tively nine sub-pixels as shown in Figure 3.11 here we have an example
for the resulting derivatives in one direction.

not improve the precision of the discrete derivative. It leads to a derivative

which is zero on the main part of the original pixel, whereas the derivative at

the border of each pixel remains constant.
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3.5 Error considerations

Of course one part of every theoretical treatment of an algorithmic application

should be the consideration of the error which is implied by the approximation

of continuously defined objects or limits. We are interested in the solution

u(t, x) of a Cauchy problem as defined in Theorem 2.6.4. Actually we are

interested in the limit of u(t, x) for t → ∞ but in the previous sections we

discussed approximations of u(T, x) for some fix T ≥ 0. So in the following

section we look at the distance between u(T, x) and u(∞, x) which is one source

of impreciseness. Another one arises from the fact that we represent u as the

expectation of f0
f∞

(Xt). Here (Xt|t ≥ 0) denotes an Itô diffusion on the bounded

convex region D ⊂ � d and f0
f∞
∈ C2(D). In Section 3.5.2 we briefly resume

some well known results about the approximation of the expectation and the

resulting error. Finally the process Xt will be approximated as described in

Section 3.1, which leads to the discrepancy we discuss in Section 3.5.3. After all

it will be clear that we are theoretically able to adjust the approximation such

that the resulting error is below a given threshold with a desired probability.

3.5.1 Distance from the limit

In this section we are interested in εT (x) := limt→∞ |u(T, x) − u(t, x)| where

u(t, x) is the solution of the Cauchy problem

∂u

∂t
(t, x) = −Au(t, x) for t ≥ 0, x ∈ D, (3.12)

with initial condition

u(0, .) =
f0

f∞
∈ C2(D).

The operator A is defined by

Au :=
d
∑

i=1

bi
∂u

∂xi
− 1

2

d
∑

i,j=1

(σσᵀ)i,j
∂2u

∂xi∂xj

for every u in the domain DA := {f ∈ C2(D)|∀x ∈ ∂D : ∀ν ∈ Nx : ∂f
∂ν

(x) = 0}.
As usual we assume the coefficients b and σ to be chosen such that the solution
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u is unique. Theorem 2.3.12 tells us that A has a purely discrete point spectrum

and the smallest eigenvalue is 0. We denote the eigenvalues ofA by (λk|k ∈ � 0)

with λk ∈
�

≥0 and the corresponding eigenfunctions by (vk|k ∈ � 0), which

is an ortho normal basis of C2(D) as we know from the argument leading to

Theorem 2.7.2. Thus for every f0
f∞
∈ C2(D) we can find a sequence (αk|k ∈ � 0)

of values in
�

such that

exp(−tA)
f0

f∞
=
∑

k∈ � 0

exp(−tλk)αkvk.

Moreover the function exp(−tA)f0f
−1
∞ solves the Cauchy problem 3.12 and by

uniqueness of the solution u follows

εT = lim
t→∞

∣

∣

∑

k∈ � 0

(

exp(−Tλk)− exp(−tλk)
)

αkvk(x)
∣

∣.

Finally we note that limt→∞ exp(−tλk)αkvk(x) = α0v0(x) (as we know from

Theorem 2.7.2), which leads to εT (x) ≤ ∑k∈ �
∣

∣ exp(−Tλk)αkvk(x)
∣

∣ for every

x ∈ D as an error estimate for the distance to the limit.

3.5.2 Error from Monte Carlo integration

Today Monte Carlo integration is a frequently used approximation tool and

many theoretical results exist (e.g. [22, 32]). We use a very simple approach

derived from the strong law of large numbers (see [10]). This states that

for every sequence (Zk|k ∈ � ) of independent, identically distributed (i.i.d.),

integrable, real random variables, the term

1

n

n
∑

k=1

Zk

converges for n→∞ a.s. to � [Z1]. In our case the random variable Zk is given

by the k-th simulation of an approximation of f(XT ), denoted by f(Xk
T ), and

its expectation is � [f(XT )] = u(T, x). So if we define the random variable

εM :=
1

n

n
∑

k=1

f(Xk
T )− u(T, x)



96 Chapter 3. Implementation

it follows with Chebyshev’s inequality for every ε > 0 the estimate

pε := P (
∣

∣

1

n

n
∑

k=1

f0(X
k
T )− u(T, x)

∣

∣ > ε) ≤ σ

ε2

where σ := �
[(

1
n

∑n
k=1 f0(X

k
T )
)2] − u(T, x)2 is the variance of εM . Another

possibility to estimate the probability pε is given by the well known central

limit theorem, which is proven under different assumptions on the sequence

of random variables. In the case of square integrable, i.i.d. random variables

with strictly positive variance once more we refer to [10] for a proof of this

theorem. If we apply the central limit theorem to our situation we can see,

that εM converges in distribution to a N (0, σ)-distributed random variable.

Thus we are able to approximate pε by

1− 1√
2πσ2

∫ ε

−ε
exp(
−x2

2σ2
) dx =

2√
2πσ2

∫ −ε

−∞
exp(
−x2

2σ2
) dx

where the equality follows from the symmetry of exp(x2/2σ2). Finally in our

case we can apply a theorem of Hoeffding (see [22]), because we just deal with

bounded random variables. From this follows the estimate pε < 2 exp(−2nε2).

3.5.3 Convergence rate of the projection scheme

The last approximation error we discuss in this chapter is the difference be-

tween the Itô diffusion process Xt at time t = T > 0 and its approximation

XT,n, denoted by

εS := |XT,n −XT |.

Actually we introduced several different approximation schemes for Itô diffu-

sions in a bounded region in Section 3.1. Hence we should give error estimates

for each of them but we do not go into detail here. Instead we use a statement

from [73] which tells us that one of these XT,n converges path-wise to XT and

is formulated as follows.

Theorem 3.5.1. Let Xt,n denote the projection scheme approximation of the

Itô diffusion Xt as defined in Theorem 3.1.2 . If the coefficient functions b and
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σ of Xt are Lipschitz continuous and the region D is convex then

n1/4−ε sup
t≤q
|Xt,n −Xt|

converges for every q ∈ �
≥0 a.s. to 0.

On the other hand we are just interested in � [f(Xt)], where f is continuous.

Thus it is sufficient to use Theorem 3.2 from the same author. It states that

for every m ∈ � , q ∈ �
≥0 there exists a constant c > 0 such that

�
[

sup
t≤q
|Xt,n −Xt|2m

]

≤ c

(

lnn

n

)m/2

.

From this we derive the error bound εS ≤ c
√
n−1 lnn.





Chapter 4

Applications

In this chapter we describe the transformation algorithm for the transformation

of a start image If0 into a stop image If∞, derived from the theory introduced

in the chapters before. Afterwards we illustrate the basic functionality of our

image transformation method and introduce a fast transformation algorithm.

Then we apply the fast transformation algorithm to the problems of edge en-

hancement, image smoothing and de-noising. We start with a resume of our

results, given from an image processing viewpoint. Therefore now and in the

following we consider smooth versions of image functions Ĩf : D → �
>0 which

are two times continuous differentiable on D := (0, xn) × (0, ym) ⊂ � 2. Fur-

ther the function Ĩf is assumed to fulfil the strong Neumann boundary condition

with constant 0 as defined in Section 2.2. Moreover Ĩf, its first derivative and

second derivative are extendable to D as continuous functions. In Section 3.3

we saw how to obtain such functions from the information If, given on the

discrete points

Ddisc := {(xi, yj)|1 ≤ i ≤ n, 1 ≤ j ≤ m} ⊂ D,

provided by usual sensors such as CCDs or APSs.

For two given images Ĩf0, Ĩf∞ we define the operator L := − 1
2
∆ − ∇ Ĩf∞

2 Ĩf∞
∇

and state the Cauchy problem

du

dt
= −Lu (4.1)

99
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with initial condition u(0) = Ĩf0
Ĩf∞
∈ C2(D), as described in Section 2.6 (p. 62).

Now we denote by X
(x,y)
t an Itô diffusion on D starting at (x, y) ∈ D with

diffusion coefficient σ = −I2 and drift coefficient

b(x, y) = − 1

Ĩf∞(x, y)

(

∂ Ĩf∞
∂x
∂ Ĩf∞
∂y

)

(x, y) for (x, y) ∈ D.

Then we know from Section 2.7 that for all t ∈ �
≥0 the function

u(t, x, y) : = exp(−tL)
Ĩf0

Ĩf∞
(x, y)

= �
[

Ĩf0

Ĩf∞

(

X
(x,y)
t

)

]
(4.2)

is a solution of the Cauchy Problem 4.1. Moreover we are able to approximate

this solution by uk(t = s∆t, x, y) as we have seen in Section 3.2. Here k ∈ �
is the number of Monte Carlo simulations we perform to approximate the

expectation in Equation 4.2. The notation t = s∆t indicates that the reflected

Itô diffusion X
(x,y)
t starting in (x, y) ∈ D is approximated with equidistant

step size ∆t ∈ �
>0 and s ∈ � number of steps. Now we define

If∆t,kt (x, y) = uk(t = s∆t, x, y) If∞(x, y) for (x, y) ∈ Ddisc (4.3)

as the state of transformation at time t. From Theorem 1.3.1 and the argument

given in Section 3.2 we know that

lim
t→∞

If∆t,kt (x, y) ≈ If∞(x, y) for (x, y) ∈ Ddisc

up to the multiplicative strictly positive constant

c := (Ĩf0, Ĩf∞)L2(D ,λd).

Actually the image of Ddisc under If∆t,kt may not only contain integers. This

means If∆t,kt is not an image function. In order to obtain an image function

we project the discrete image values of If∆t,k
t to � 0 by rounding them (uk is

non-negative). By int(x) we denote this rounded value of x ∈ �
. Then we
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define the transformed image by

Ift(x, y) := min{256,max{1, int

(

If∆t,kt (x, y)

c

)

}}. (4.4)

As we know from Section 3.5, the approximation parameters s, ∆t and k can be

chosen such that the approximation error falls short of every given error bound

with a designated probability p. So if we choose s, (∆t)−1 and k sufficiently

large it follows

lim
t→∞

Ift(x, y) = If∞(x, y) for every (x, y) ∈ Ddisc

with probability p. Hence we obtain a mechanism to transform one given image

Ĩf0 into another given image Ĩf∞ and represent the state of transformation

at times t = ∆t, 2∆t, . . . , s∆t by the image Ift. Algorithm 4.0.1 gives the

Algorithm 4.0.1 Computation of Ift(xi, yi), t > 0, (xi, yi) ∈ Ddisc

Require: reconstruction time t = s∆t, c = (Ĩf0, Ĩf∞)
{uk(t, x1, y1)|1 ≤ i ≤ n, 1 ≤ j ≤ m}

/* using Algorithm 3.2.1 */

uk(t = s∆t, x, y) =
1

k

k
∑

l=1

Ĩf0

Ĩf∞

(

lX
(x,y)
t,∆t

)

1: If0 ← If0
256

Ifmax
0

, If∞ ← If∞
256

Ifmax
∞

/* 1st optional modification */

2: for i = 1 to n, j = 1 to m do
3: Ift(xi, yj)← int(u(t, xi, yj) · If∞(xi, yj)c

−1)
4: end for

5: Ift ← Ift
Ifmax
∞

Ifmax
t

/* 1st optional modification */

6: Ift ← Ift
Ifavr
∞

Ifavr
t

/* 2th optional modification */

Ensure: {Ift(xi, yj)|1 ≤ i ≤ n, 1 ≤ j ≤ m}

corresponding strategy to compute the function Ift at the whole set Ddisc and is

called transformation algorithm. For its implementation we use the algorithms

introduced in Section 3.2. Once more we remark that in our case the lines 3
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to 8 of Algorithm 3.2.2 reduce to

X1 = X1 + b1(X)∆t+ ∆B1
i

X2 = X2 + b2(X)∆t+ ∆B2
i .

4.1 Time dependent scale factor

Again we consider the function

u(t, x, y) := �
[

Ĩf0

Ĩf∞

(

X
(x,y)
t

)

]

for (x, y) ∈ (0, xn)× (0, ym), t ≥ 0.

As we know from Section 2.7, the limit of u(t, x, y) If∞(x, y)c−1 for t → ∞ is

equal to If∞ where c = (Ĩf0, Ĩf∞)L2(D ,λd) is strictly positive because both func-

tions are strictly positive. Unfortunately it is not easy to compute c because

Ĩf0 and Ĩf∞ are spline interpolations. For this reason we introduce two different

approaches avoiding the computation of (Ĩf0, Ĩf∞)L2(D ,λd). Both approaches have

in common that the constant c is substituted by a function c : [0,∞)→ � \{0}
with c(0) = 1 (for some functions Ĩf0) and limt→∞ c(t) = c. For the first ap-

proach we choose

c(t) :=
Ifmax
t

Ifmax
∞

> 0, t ≥ 0, (4.5)

where Ifmax is the maximum of If(x, y) for (x, y) ∈ Ddisc. Then it is

lim
t→∞

c(t) =
max(x,y)∈Ddisc

limt→∞ Ift(x, y)

Ifmax
∞

=
max(x,y)∈Ddisc

c · If∞(x, y)

Ifmax
∞

= c

and

lim
t≥0
t→0

c(t) =
Ifmax

0

Ifmax
∞

= 1

if both functions reach the same maximum. This is not necessarily true but

can be adjusted by rescaling (Alg. 4.0.1 Step 1). We obtain contrast spreaded

images with Ifmax
0 = Ifmax

∞ = 256. Now we modify Algorithm 4.0.1 by a

final application of the factor c(t)−1 to the transformed image function Ift

(Alg. 4.0.1 Step 5) and call it transformation algorithm with maximum scale.

Remark. If we replace the scale factor (Ĩf0, Ĩf∞)L2(D ,λd) by c(t) as defined in
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Equation 4.5 then it is not necessary to take the minimum in the definition of

the transformed image (see Equation 4.4) because Ifmax
∞ ≤ 256. Moreover in

Algorithm 4.0.1 we do not apply the int-function in Step 3. Instead we simply

apply the definition of the transformed image in Step 5.

One disadvantage of this approach is that in special cases c(t) and so If t

depends only on a single pixel where the maximum is taken. Considering the

uncertainty coming from the Monte Carlo integration, this has the potential

to cause an additional approximation error. We do not go into detail here.

Instead we turn to the second approach and define

ĉ(t) :=
Ifavr
t

Ifavr
∞

> 0 for t ≥ 0,

where Ifavr is the average of If(x, y) taken over all (x, y) ∈ Ddisc. Similar to the

first approach it is

lim
t→∞

ĉ(t) =
n−1

∑

(x,y)∈Ddisc
c · If∞(x, y)

Ifavr
∞

= c

and

lim
t≥0
t→0

ĉ(t) =
Ifavr

0

Ifavr
∞

= 1

if both functions have the same average value. As before this is not necessarily

true but can be adjusted by rescaling. Here we leave the images If0, If∞ un-

changed and apply ĉ(t) in Algorithm 4.0.1 in Step 6. The resulting procedure

is called transformation algorithm with average scale.

Remark. In Algorithm 4.0.1 we do not apply the int-function in Step 3. Instead

we use the definition of the transformed image (see Equation 4.4) in Step 6.

Unlike c(t) the function ĉ(t) depends always on all values of If t. The dis-

advantage of this approach is that in special cases the values of the rescaled

image function exceed 256. So we loose information by cutting off these values

when we take the minimum of 256 and Ift ĉ(t)
−1. On the other hand, we have

more contrast because [1, 256ĉ(t)] is spread to [1, 256].
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4.2 Image reconstruction

(a) start image (b) stop image

Figure 4.1. This is the first pair of images for transformation by appli-
cation of the algorithm introduced in this work. The size of both has
to be the same. In this case it is 256 × 256 Pixel.

The first thing which should be of interest (in our view) is whether we are

able to reconstruct the given image If∞. For example we consider the generic

image shown in Figure 4.1(a) as the given image If0 which we call the start

image and the one shown in Figure 4.1(b) as the given image If∞ we want

to reconstruct. Then, according to Algorithm 4.0.1, for every (x, y) ∈ Ddisc

we apply a Monte Carlo method to approximate � [ Ĩf0
Ĩf∞

(X
(x,y)
t,∆t )] by means of

the average over 50 independent realisations of X
(x,y)
t,∆t . For this we use Algo-

rithm 3.2.2 to give the independent approximations of X
(x,y)
t,∆t we need. For

Experiment 1/1 we choose ∆t = 1 (the step size of the approximating pro-

cess) and use the transformation algorithm without modifications to produce

six images Ift1 , . . . , Ift6 shown in Figure 4.2. The image sequence gives a first

impression of the behaviour of Ift for increasing t. For simplicity we assumed

c = 1, which is a good approximation as we will see later.

Now and in the following the average absolute value of the difference be-

tween Ift(x, y) and If∞(x, y) is denoted by

εa :=
1

|Ddisc|
∑

(x,y)∈Ddisc

| Ift(x, y)− If∞(x, y)|



4.2. Image reconstruction 105

(a) t1 = 1 (b) t2 = 10

(c) t3 = 20 (d) t4 = 50

(e) t5 = 100 (f) t6 = 400

Figure 4.2. Reconstruction sequence for a simple generic image pair.
We used the transformation Algorithm 4.0.1 without modifications and
assumed (If0, If∞) = 1 to produce these images (Experiment 1/1). All
images are of size 256 × 256 Pixel as the start and stop image.
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Figure 4.3. These two figures show the behaviour of the average error
and the maximum error between Ift and If∞ in time (Experiment 1/1).
In the lower diagram we have logarithmic scaling on the y-axis.
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Figure 4.4. The inverted gray-values of the left image are equal to
the absolute value of the difference between If400 and If∞ (see Ex-
periment 1/1). The right image is rescaled such that the maximum
gray-value of the left image becomes black.

where |Ddisc| is the number of elements in Ddisc. (We call εa the L1-distance

of Ift and If∞.) The value εa is obviously decreasing in time. In Figure 4.3 we

show the development of the average error and the maximum error in time.

At time t6 = 400 we have εa ≈ 1.6 with a variance of 27.6 and a maximum

difference of 70. So taking the low Monte Carlo iteration size and the big step

size of the approximated Itô diffusion into account the result may considered

as satisfying. Moreover this will be confirmed by looking at Figure 4.4. There

the left image is a representation of the visible difference between If400 and If∞.

The right image in Figure 4.4 shows the error rescaled to [0, 255].

The reconstruction quality is even more surprising because we simply as-

sumed c = 1. As we know from Section 4.1, the functions c(t), c̃(t) converge

for t → ∞ to c = (Ĩf0, Ĩf∞)L2(D ,λd). So in Experiments 1/2-3 we use the

transformation algorithms with maximum scale and average scale to repeat

the experiment. Once again we produce six images If t1, . . . , Ift6. The images

resulting from the use of average scale are shown in Figure 4.5. If we com-

pare these images with the images shown in Figure 4.2 we can see that the

application of the average scale value causes a stronger edge enhancing effect.

The images resulting from the use of maximum scale do not show interesting

differences to the images in Figure 4.2. This means the average scale value

causes also a stronger edge enhancing effect than the use of the maximum
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(a) t1 = 1 (b) t2 = 10

(c) t3 = 20 (d) t4 = 50

(e) t5 = 100 (f) t6 = 400

Figure 4.5. Reconstruction sequence for a simple generic image pair.
We used the transformation algorithm with average scale to produce
these images (Experiment 1/3).
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scale value. Moreover the image sequence resulting from the use of average

scale looks brighter than the sequence resulting from maximum scale. Hence

there must be a difference in the behaviour of the scale values c(t), ĉ(t). There-

fore we observed all scale values during the corresponding experiments. Both

functions are shown in Figure 4.6 (p. 109). Of course c(t) ≥ ĉ(t) holds for

all t ≥ 0. The observed scale values explain the different brightnesses of the

resulting image sequences.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200  250  300  350  400

maximum scale
average scale

Figure 4.6. The diagram shows the behaviour of the scale values c(t)
(the upper graph) and ĉ(t) in time (x-axis). They where observed
during the application of the transformation algorithms with maxi-
mum and average scale to the image pair shown in Figure 4.1 (Exper-
iments 1/2-3). For the plot we used one out of four values.

As we know from Section 3.5, the value of the absolute difference between

If∞ and its approximation Ift, denoted by εa, depends on the transformation

time t, the step size ∆t of the approximated Itô diffusion with reflection and the

number of simulations k, used during the Monte Carlo approximation. Now we

want to get an impression of the behaviour of εa depending on the approxima-

tion parameters ∆t and k. For this purpose we use the image pair If0, If∞ shown
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in Figure 4.1 as before and compute Ift for t = 1000 with the transformation

Algorithm 4.0.1. We perform nine Experiments 2/1-3, 3/1-3, 4/1-3 using

the approximation parameters ∆t and k as shown in Table 4.7.

No 2/1 No 2/2 No 2/3
k = 10 k = 10 k = 10

∆t = 1 ∆t = 0.1 ∆t = 0.01

No 3/1 No 3/2 No 3/3
k = 100 k = 100 k = 100

∆t = 1 ∆t = 0.1 ∆t = 0.01

No 4/1 No 4/2 No 4/3
k = 1000 k = 1000 k = 1000

∆t = 1 ∆t = 0.1 ∆t = 0.01

Table 4.7. Parameter setup for Experiments 2/1-3, 3/1-3, 4/1-3.

Obviously Experiment 4/3 takes the highest computation effort, so we will

have a short look at the number of computations and the number of outcomes

l∆B
j
i of the independent random increments ∆Bj

i ∼ N (0,∆t) needed. We

remind that s = t(∆t)−1 ∈ � is assumed. If nm ∈ � is the number of pixels

we are interested in and k ∈ � is the number of Monte Carlo simulations we

perform, then the computation time depends linearly on mnks. The same

holds for the number of outcomes of the random increments ∆Bj
i . We need

two outcomes l∆B
j
i each time we compute one step of the approximated Itô

diffusion Xx
t,∆t. Hence we need 2mnks outcomes overall. For Experiment 4/3

we set ∆t = 10−2 and t = 103. According to Algorithm 3.2.2 we have to

compute 105 steps of each path of Xx
t,∆t. Therefore we need 2 · 105 outcomes

l∆B
j
i for the computation of one path of the approximated Itô diffusion. The

images If0 and If∞ consist of 2562 pixels and we want to perform k = 103

Monte Carlo simulation runs. Thus approximatively we end with 6.6 · 1012

computations and 1013 outcomes of ∆Bj
i needed for Experiment 4/3. We note

that this experiment carried out on an Intel Celeron D 336, 2.8 GHz takes

about 461 hours. To avoid this long computation time we perform two classes

of experiments. In each class we focus on the image values corresponding to the

pixels indicated black in Figure 4.8(a) respectively Figure 4.8(b). We denote

these pixel sets by M1 and M2. Each of them contains 900 Pixels. Hence the
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(a) Selected pixels pattern M1 (b) Selected pixels pattern M2

Figure 4.8. We perform nine Experiments 2/1-3,3/1-3,4/1-3 and each
of them twice. The images show the two sets of pixels M1,M2 on
which we focus our attention during these nine experiments. First we
approximate Ift for the pixels in M1. Then we repeat the experiments
for the pixels in M2.

computation time reduces to approximatively 6 hours and 20 minutes in the

case of Experiment 4/3 for each of the pixel sets. (Note that this is only true

if there is enough RAM.) The computation time and number of outcomes of

the random increments needed for the other experiments follows analogously.

In Figures 4.9, 4.10, 4.11 the value of εa is shown at a time for both pixel sets

M1,M2. There εa is computed using just the pixels in the corresponding set.

As we have expected, the variance of εa is decreasing for a growing number k

of Monte Carlo simulations. During the following experiments we will see that

for our purpose it is sufficient to choose k = 100 . If we decrease the step sizes

∆t we do not observe changes of the variance of εa. Instead we see different

shapes of the error graphs. Roughly speaking, we have a bigger difference in

the reconstruction behaviour of pixels in M1 and M2 for small ∆t. So for

simple image reconstruction experiments, reaching large transformation times,

we can choose big step sizes. In contrast to this, smaller step sizes become

more important if we are interested in image smoothing or edge enhancement.

The difference in the reconstruction behaviour of pixels in M1 and M2 gives

a first hint that different values of ∆t can be used to obtain different qualities

of edge enhancing or smoothing effects.
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Figure 4.9. Error behaviour in Experiments 2/1-3 (t ≤ 500).
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Figure 4.9. Error behaviour in Experiments 2/1-3 (500 ≤ t ≤ 1000).
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Figure 4.10. Error behaviour in Experiments 3/1-3 (t ≤ 500).
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Figure 4.10. Error behaviour in Experiments 3/1-3 (500 ≤ t ≤ 1000).
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Figure 4.11. Error behaviour in Experiments 4/1-3 (t ≤ 500).
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Figure 4.11. Error behaviour in Experiments 4/1-3 (500 ≤ t ≤ 1000).
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(a) (b)

(c)

Figure 4.12. In order to show that the reconstruction works indepen-
dent of the initial condition we choose these three start images. Each
of them has to be of size 256 × 256 pixel.

Up to here we used the same start image in each experiment. Now we turn

to the question whether we can reconstruct If∞ starting from some different

image function. For this we perform Experiments 5/1-3 where we apply the

transformation algorithm with maximum scale to each of the images shown

in Figure 4.12. For every experiment we choose the step size ∆t = 0.1 and

compute s = 1000 steps to reach the transformation time t = 100. We use a

Monte Carlo approximation with k = 100 simulation runs. In Figures 4.13-4.15

the resulting image sequences are shown. As before we show the transformed

image after one step. Additionally we have chosen the transformation times
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t2, . . . , t6 to be comparable to the images (a)-(e) in Figures 4.2, 4.5. We can

see that the transformed images in Experiments 5/1-3 are influenced by the

different start images. For instance, the reconstruction shown in Figure 4.13

looks asymmetric. The right parts of the image Ift underlie a faster reconstruc-

tion than the image values on the left side of the image (as expected). Next

it is natural to ask for the behaviour of image values If t(i, j) for (i, j) with

If0(i, j) = If∞(i, j). So for Experiment 5/2 we have taken an appropriate start

image. In Figure 4.14 we can see that, during the transformation, the equal

parts of If0 and If∞ remain nearly constant (up to the scale value). Moreover

we see that the black repainted stripes in the upper left diagonal half of the

image are nearly reconstructed whereas the reconstruction of the missing lower

right part of the X is still at the beginning. Finally, in Experiment 5/3, we

have chosen If0 as shown in Figure 4.12(c). This start image contains a (some-

how) colour inverted version of the X, whereas the background is black, too.

We perform this experiment in order to get a first impression of the behaviour

of different gray-values during the transformation. A closer look at the data

computed during the transformation shows an interesting detail. The values of

If∆t,kt (defined in Eqn. 4.3) exceed 500 (mainly at the edges of the X). We remind

that we obtain Ift by rounding and cutting the values of If∆t,kt (see Eqn. 4.4).

But we could also rescale the interval [0,max(i,j)∈D(int(If∆t,kt (i, j)))] to [0, 256]

instead taking the maximum of 256 and int(If∆t,kt ). In this case the result of

Experiment 5/3 would show a very strong edge enhancing effect because nearly

all values of Ift would have been rescaled to values smaller than 60. So nearly

all pixels of Ift would appear very dark whereas those pixels where the values

of If∆t,kt exceed 500 (mainly at edges of the X) appear very bright.

As before we are interested in the behaviour of the L1-distance between Ift

and If∞, denoted by εa, for increasing transformation time. So in Figure 4.16

we present the L1-distances εa corresponding to the three Experiments 5/1-3.
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(a) t1 = 0.1 (b) t2 = 1

(c) t3 = 10 (d) t4 = 20

(e) t5 = 50 (f) t6 = 100

Figure 4.13. Image sequence according to Experiment 5/1. The start
image is shown in Figure 4.12(a) and the stop image in Figure 4.1(b).
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(a) t1 = 0.1 (b) t2 = 1

(c) t3 = 10 (d) t4 = 20

(e) t5 = 50 (f) t6 = 100

Figure 4.14. Image sequence according to Experiment 5/2. The start
image is shown in Figure 4.12(b) and the stop image in Figure 4.1(b).
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(a) t1 = 0.1 (b) t2 = 1

(c) t3 = 10 (d) t4 = 20

(e) t5 = 50 (f) t6 = 100

Figure 4.15. Image sequence according to Experiment 5/3. The start
image is shown in Figure 4.12(c) and the stop image in Figure 4.1(b).
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Figure 4.16. The diagram shows the behaviour of three L1-distances εa
between Ift and If∞ in time (x-axis). The three functions Ift result from
Experiments 5/1-3. There we used the images shown in Figure 4.12
as start images and used the transformation algorithm with maximum
scale in order to reconstruct the stop image shown in Figure 4.1(b).
The upper line corresponds to Experiment 5/1, the middle to Experi-
ment 5/3 and the lower to Experiment 5/2.
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Actually we do not want to see transformed images If t only for generic

start and stop images If0, If∞. So for the last Experiments 6/1-3 in this

section we use the three images shown in Figure 4.17 as stop images If∞. We

compute s = 1000 steps with step size ∆t = 10 to reach the transformation

time t = 10000 and perform k = 100 simulation runs for the Monte Carlo

approximation. The start image If0 is congruent 256 and has the same size as

the corresponding stop image. The image sequences shown in Figures 4.18-4.21

result from the application of the transformation algorithm with average scale.

Here we use the average scale value because we want to show more details in

the transformed images. On the other hand we have to accept that some areas

of Ift look unnaturally bright. The L1-distances between the images in the

sequences Ift and the image If∞ are shown in Figure 4.22.
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Figure 4.17. Here we see two snakes, the interior of a personal computer
and the Rhenania building Mannheim/Germany. The sizes of these
images are 300 × 200, 350 × 232 and 492 × 492 Pixel.
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Figure 4.18. The transformed images according to Experiments 6/1-3
at transformation time t1 = 10. The stop images are shown in Fig-
ure 4.17 and If0 ≡ 256.
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Figure 4.19. The transformed images according to Experiments 6/1-3
at transformation time t2 = 50. The stop images are shown in Fig-
ure 4.17 and If0 ≡ 256.
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Figure 4.20. The transformed images according to Experiments 6/1-3
at transformation time t3 = 1000. The stop images are shown in
Figure 4.17 and If0 ≡ 256.
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Figure 4.21. The transformed images according to Experiments 6/1-3
at transformation time t4 = 10000. The stop images are shown in
Figure 4.17 and If0 ≡ 256.
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Figure 4.22. The diagram shows the behaviour of three L1-distances
between Ift and If∞ in time (x-axis). The three function Ift result from
Experiments 6/1-3. There If0 ≡ 256 and we used the transformation
algorithm with average scale in order to reconstruct the stop images
shown in Figure 4.17. The upper line corresponds to Experiment 6/1.
At time t = 10000 the error corresponding to Experiment 6/2 is less
than the error corresponding to Experiment 6/3.
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4.3 Reconstruction without spline interpola-

tion

In this section we use the notation as before. Once again we consider the

function

u(t, x, y) = �
[

Ĩf0

Ĩf∞

(

X
(x,y)
t

)

]

for (x, y) ∈ (0, xn)× (0, ym), t ≥ 0.

As we know, the diffusion coefficient σ of the reflected Itô diffusion Xx
t is equal

to the negative 2-dimensional identity matrix −I2. Hence the steps 3 to 8 of

Algorithm 3.2.2 reduce to Xx
t+∆t = Xx

t + b(Xx
t )∆t+ ∆Bi with

b(x, y) = − 1

Ĩf∞(x, y)

(

∂ Ĩf∞
∂x
∂ Ĩf∞
∂y

)

(x, y) for (x, y) ∈ D,

as mentioned before. We remind that Ĩf∞ is a two times continuously dif-

ferentiable spline function interpolating the discrete image values of the stop

image If∞. So we apply the approximation of the derivatives ∂ Ĩf∞
∂x

, ∂ Ĩf∞
∂y

dis-

cussed in Section 3.4. We simply use the discrete derivative of the image

If∞ to approximate the derivative of the interpolating spline function Ĩf∞ at

the corresponding pixel. To be precise, considering the pixel (i, j), we ap-

proximate ∂ Ĩf∞
∂x

for every (x, y) ∈ [i − 1/2, i + 1/2) × [j − 1/2, j + 1/2) by

1/2(If∞(i + 1, j) − If∞(i − 1, j)) and analogously for the derivative in the y-

direction. Note that there is no need for a different definition of the derivative

for pixels lying on the boundary because of our image enlargement mechanism

(see page 80), but we have to extend the definition of the derivative for (x, y)

being in the closed square if either i = m or j = n (that is if (x, y) is at

the upper or right border of D). Using this approximation we save the time

needed for the computation of the derivative of the spline function. We em-

phasise this because the values of ∂ Ĩf∞
∂x

, ∂ Ĩf∞
∂y

have to be computed each time

we evaluate Xx
t+∆t = Xx

t + b(Xx
t )∆t + ∆Bi. If we denote by s = t(∆t)−1

(assumed to be in � ) the number of steps we compute for the approximation

of the reflected Itô diffusion Xx
t,∆t, we save mnks times the computation of the

derivatives ∂ Ĩf∞
∂x

, ∂ Ĩf∞
∂y

– which is a lot (e.g. about 6.6 · 1012 computation steps
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for Experiment 4/3). By further inspection of the transformation algorithm

we see that the spline function Ĩf∞ now is just needed for the computation of

Ĩf0 Ĩf
−1

∞ , according to Step 3 in Algorithm 3.2.1. There Ĩf0 is also a two times

continuously differentiable spline function interpolating the discrete image val-

ues of the start image If0. So if we approximate Ĩf0 Ĩf
−1

∞ without using splines we

avoid spline interpolation at all. For this purpose we follow the same strategy

as in the case of the derivative. We simply approximate Ĩf0(x, y) Ĩf∞(x, y)−1 by

If0(i, j) If∞(i, j)−1 for every (x, y) ∈ [i− 1/2, i + 1/2) × [j − 1/2, j + 1/2) and

extend this definition if (x, y) is at the upper or right border of D as before.

The resulting algorithm using the approximations of the derivatives and the

function values described as above is called fast transformation algorithm.
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with splines
fast

Figure 4.23. The diagram shows the behaviour of two L1-distances
in time. The error values εa are taken from the first experiment of
this chapter (Experiment 1/1) where we used spline interpolation and
from the application of the fast version of the transformation algo-
rithm 4.0.1, using approximated function values (Experiment 7). For
the plot we used one out of four values. The error resulting from the
fast transformation is always less than the error resulting from the
original transformation algorithm.
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In order to show the difference between the transformation algorithm using

spline interpolated functions Ĩf0, Ĩf∞ and the usage of the fast transformation

algorithm in Experiment 7 we repeat the first experiment of this chapter

(Experiment 1/1). As before we apply the transformation Algorithm 4.0.1

(now in the fast version) to the image pair If0, If∞, as shown in Figure 4.1. We

do not show the resulting image sequence because there are no interesting dif-

ferences to the image sequence shown in Figure 4.2. The computation time has

been reduced from 1 hour 38 minutes (Experiment 1/1 with spline interpolated

functions) to 19 minutes (Experiment 7 with fast transformation). This means

the fast algorithm is about 5 times faster than the original algorithm and the

difference in their results is very small. The resulting error εfa between If∞ and

Ift is shown in Figure 4.23. Additionally the error εa from Experiment 1/1 is

shown to compare both functions. As we can see, the error εfa is smaller and

decreases faster than εa. A theoretical investigation of this behaviour seems

interesting but here we leave this question open. Instead we go ahead to apply

the transformation algorithm (in the fast version) to an existing problem in

image processing.

The last example in this section uses the edge enhancing effect of the trans-

formation algorithm. For this purpose in Experiment 8 we choose If0 ≡ 157

and If∞ as the upper image in Figure 4.24. There we can see a fingerprint in a

very bad quality. Some areas are nearly black and the ridges are not properly

separated, whereas in other areas the ridges are missing at all. Usually finger-

print images are used to determine the minutiae – features as ridge endings,

ridge bifurcation, ridge islands and so on. Therefore a good separation of the

ridges is desired. In order to obtain such an image providing good ridge sep-

aration we apply the transformation algorithm with average scale performing

k = 50 Monte Carlo simulation with step size ∆t = 0.1 to the upper image in

Figure 4.24. Note that we have chosen If0 ≡ 157, which is the average value

of If∞. The lower image in Figure 4.24 is the transformed image at transfor-

mation time t = 10. In order to highlight some interesting effects we have

magnified three areas shown in Figure 4.25. The experiment took an overall

time of 19 minutes.



134 Chapter 4. Applications

Figure 4.24. The upper image shows a fingerprint in bad quality. A
magnification of the three highlighted areas is shown in Figure 4.25.
The lower image is an early (t=10) reconstruction of the image above.
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(a) t=0 (b) t=10

(c) t=0 (d) t=10

(e) t=0 (f) t=10

Figure 4.25. The figure shows three magnified parts of the images
shown in Figure 4.24.
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4.4 Image smoothing

After we have validated the principle function of the transformation algorithm,

we turn to the application to a well known problem of image processing. We

are interested in a basic problem called image smoothing (e.g. see [65]). There,

by definition, the smoothness of an image depends on the absolute values of

the gradients. So smoothing images means to decrease the absolute value of

the gradients (and preserve the sign). De facto there exist image functions f

and g where neither f is smoother than g nor g is smoother than f . However,

we are not going to prove statements about the smoothness of If t. Instead we

perform some transformation experiments to illustrate image smoothing with

Algorithm 4.0.1. For this purpose in Experiment 9 we repeat Experiment 1/1

from Section 4.2 and transpose the role of If0, If∞ shown in Figure 4.1. Actually

we invert the constant image (i.e. in this experiment we use If∞ ≡ 256) as we are

instructed in Step 1 of Algorithm 4.0.1. Recall that we do this because we want

to apply the transformation algorithm with maximum scale and for If∞ ≡ 1

it would follow Ift ≤ 1. We choose ∆t = 0.1 and perform k = 100 Monte

Carlo simulations to produced the image sequence shown in Figure 4.26. (The

computation performed on a Intel Celeron D 366, 2.8 GHz takes 14 minutes

33 seconds to reach the transformation time t = 20.)

Remark. From If∞ ≡ c follows Ĩf∞ ≡ c. But then the discrete derivative of

If∞ used in the fast version of the transformation algorithm vanishes and the

gradient of the corresponding spline interpolation ∇ Ĩf∞ is also zero. Hence

the approximated Itô diffusion used in all versions of the transformation algo-

rithm is actually the approximation of a Brownian motion. If we denote the

2-dimensional Gaussian of variance σ2 by φσ (as in Eqn. 3.10) it is well known

(cp. e.g. [33, 56]) that for every f ∈ C0(
� 2) a solution of

∂u

∂t
= ∆u, ut=0 = f (4.6)

is given by the convolution φ√
2t∗f for all t > 0. Actually, in the case If∞ ≡ c we

solve a Cauchy problem similar to 4.6 so we have a relation of If t at time σ2

2
and

smoothing by convolution with a Gaussian of variance σ2. The main difference

of the Cauchy problem we solve and 4.6 is that we deal with functions defined
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(a) t1 = 0.1 (b) t2 = 0.5

(c) t3 = 1 (d) t4 = 5

(e) t5 = 10 (f) t6 = 20

Figure 4.26. The sequence shows the results from images smoothing ac-
cording to Experiment 9. The start image If0 is shown in Figure 4.1(b)
and the stop image is If∞ ≡ 256. The step size is ∆t = 0.1 and the
number of Monte Carlo simulations is k = 100.
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only on a subset D of
� 2 which fulfil a Neumann boundary condition. But we

can extend Ĩf0 c
−1 easily to a two times continuously differentiable (periodic)

function f defined on
� 2. For this purpose we first mirror Ĩf0 c

−1 at the x-

axis and then at the y-axis to obtain a two times continuously differentiable

function defined on (−xn, xn) × (−yn, yn). This extended function (and its

derivatives) fulfil a periodic boundary condition. So from a straight forward

extension we obtain f as a two times continuously differentiable function on
� 2. Furthermore, if (Bx

t |t ≥ 0) is a Brownian motion on
� 2 starting in x ∈ D

it is easy to show that in the case Ĩf∞ = c we have

�
[

If0
If∞

(Xx
t )

]

= � [f(Bx
t )].

From this argument we get a rigorous connection to image smoothing by con-

volution with a Gaussian in the case If∞ = const.

Now we corrupt the start image from Experiment 9 with 70 % noise using

the gimp software package. The result (as shown in Figure 4.27(a)) is used

as start image If0 in Experiment 10/1. Further we choose the stop image

If∞ ≡ 256 and the step size ∆t = 0.1. Then we use the transformation

algorithm with maximum scale performing k = 100 Monte Carlo simulations

to produce the image sequences shown in Figure 4.28. As we can see, we have

to accept the smoothing of edges if we want to suppress the noise. This is

because the transformation algorithm reconstructs the stop image for t → ∞
and If∞ contains no edges which could remain. However, we can choose If∞ as

a brighter version of the start image. Two versions are shown in Figure 4.27.

In Experiments 10/2-3 we set the transformation parameters ∆t = 0.1 and

k = 100 as in Experiment 10/1 and apply the transformation algorithm with

maximum scale to the start image If0 shown in Figure 4.27(a) to reconstruct If∞

shown in Figure 4.27(b) (Experiment 10/2). For Experiment 10/3 we choose

If∞ as shown in Figure 4.27(c). The resulting images Ift at transformation times

t = 0.1, 0.5, 1, 5, 10, 20 from both experiments are shown in Figures 4.29, 4.30.

So we can compare them to the images from Experiment 10/1. We can see

that If∞ chosen as shown in Figure 4.27(c) preserves more of the edges than

If∞ chosen as shown in Figure 4.27(b). So the question arises what happens if
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(a) Start image No 10/1-3

(b) Stop image No 10/2 (c) Stop image No 10/3

Figure 4.27. The upper image shows the image from Figure 4.1(b)
where 70% of all pixels have been corrupted with uniform noise. It is
the start image in Experiments 10/1-3. The lower images are simply
brighter versions of the start image (i.e. rescaled to [226, 256] respec-
tively [126, 256]).
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we set If∞ = If0. But in this case we have Ift = If0 for all t ≥ 0. In other words,

Ift is constant in time and this is not an interesting case because we have no

image processing effects during the transformation.

Now one may ask for the behaviour of Ift if If0
∣

∣

D̃
= If∞

∣

∣

D̃
where D̃ is a

subset of Ddisc. For this in Experiment 11 we choose the start image If0

as shown in Figure 4.31(a). In order to smooth the upper half of the image

and leave the lower half unchanged we choose the stop image If∞ shown in

Figure 4.31(f). Further we choose ∆t = 1 and k = 100. Then we use the

transformation algorithm with maximum scale to produce the images shown

in Figures 4.31(b)-4.31(e). As we can see, the part of If t where If0 = If∞ remains

constant during the transformation. This means that in this experiment the

transformation algorithm changes only those pixels for which If0 and If∞ differ.

Roughly speaking, this is an automatic pixel selection.
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(a) t1 = 0.1 (b) t2 = 0.5

(c) t3 = 1 (d) t4 = 5

(e) t5 = 10 (f) t6 = 20

Figure 4.28. Image sequence corresponding to experiment No 10/1.
The stop image is If∞ ≡ 256.
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(a) t1 = 0.1 (b) t2 = 0.5

(c) t3 = 1 (d) t4 = 5

(e) t5 = 10 (f) t6 = 20

Figure 4.29. Image sequence corresponding to experiments No 10/2.
The stop image is shown in Figure 4.27(b).
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(a) t1 = 0.1 (b) t2 = 0.5

(c) t3 = 1 (d) t4 = 5

(e) t5 = 10 (f) t6 = 20

Figure 4.30. Image sequence corresponding to experiments No 10/3.
The stop image is shown in Figure 4.27(c).
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(a) start image (b) t1 = 1

(c) t2 = 10 (d) t3 = 30

(e) t4 = 100 (f) stop image

Figure 4.31. Partial image smoothing using the transformation algo-
rithm with maximum scale (∆t = 1, k = 100).



4.4. Image smoothing 145

As in Section 4.2, we are interested in the behaviour of Ift for images showing

natural objects. Therefore, in Experiments 12/1-3, we consider the images

shown in Figure 4.17 as start images If0. In each experiment the stop image is

If∞ ≡ 256 and its size is equal to the size of the corresponding start image. We

use the transformation algorithm with maximum scale to produce the image

sequences shown in Figures 4.32-4.35. The transformation algorithm was set

up with step size ∆t = 1 and k = 100 Monte Carlo simulations. As we expect,

the images are equably smoothed during the transformation.

Now we want to preserve some details of the images during the transfor-

mation. For this reason, in Experiments 13/1-3, we take the start images

as in Experiments 12/1-3 but we choose different stop images (in order to

take advantage of our method compared with smoothing by convolution with

a Gaussian). The stop images for this experiments (shown in Figure 4.36) were

generated using the despecle algorithm from the gimp software package. The

internal parameters of the despecle algorithm were set up to recursive pro-

cessing with mask size 3 and black/white threshold 30/225. Figures 4.37-4.40

show the image sequences we obtained by application of the transformation

algorithm with average scale. The transformation parameters were set up to

∆t = 0.1 and k = 100. As we can see, the resulting images are smooth but

they contain more details than the images resulting from Experiments 12/1-3

(as intended).
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Figure 4.32. The transformed images according to Experiments 12/1-3
at time t1 = 1. The Start images are shown in Figure 4.17, whereas
the stop image is congruent 256.
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Figure 4.33. The transformed images according to Experiments 12/1-3
at time t2 = 10. The Start images are shown in Figure 4.17, whereas
the stop image is congruent 256.
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Figure 4.34. The transformed images according to Experiments 12/1-3
at time t3 = 50. The Start images are shown in Figure 4.17, whereas
the stop image is congruent 256.
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Figure 4.35. The transformed images according to Experiments 12/1-3
at time t4 = 100. The Start images are shown in Figure 4.17, whereas
the stop image is congruent 256.
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Figure 4.36. The stop images for Experiments 13/1-3. They were
generated from the images shown in Figure 4.17 using a despecle algo-
rithm.
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Figure 4.37. The transformed images according to Experiments 13/1-3
at time t1 = 0.1. The start images are shown in Figure 4.17, whereas
the stop images are shown in Figure 4.36.
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Figure 4.38. The transformed images according to Experiments 13/1-3
at time t2 = 1. The start images are shown in Figure 4.17, whereas
the stop images are shown in Figure 4.36.
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Figure 4.39. The transformed images according to Experiments 13/1-3
at time t3 = 5. The start images are shown in Figure 4.17, whereas
the stop images are shown in Figure 4.36.
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Figure 4.40. The transformed images according to Experiments 13/1-3
at time t4 = 10. The start images are shown in Figure 4.17, whereas
the stop images are shown in Figure 4.36.
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Now we make a connection to existing results. So in Experiment 14/1

we consider the test image shown in Figure 4.41(a) of size 128×128. It consists

of a triangle and a rectangle and has frequently been used in literature (cp.

e.g. [6, 82]). In order to give an impression of the de-noising effect of the

transformation algorithm we corrupted 70% of all pixels of the test image

using the gimp software package. The result, as shown in Figure 4.41(b), is

used as the start image If0. Now we apply the fast transformation algorithm

with average scale to If0 using step size ∆t = 10 and perform k = 100 Monte

Carlo simulations to reconstruct If∞ ≡ 256. The transformed image at times

t = 10, 100, 500, 1000 is shown in Figure 4.42. As mentioned before, in the

case If∞ = const we do not expect better results than this provided by a

convolution with a Gaussian. Instead, we only make use of the potential

of our new method if we choose a stop image which is not constant. So in

Experiment 14/2 we proceed similar to Experiments 13/1-3 and generate a

stop image shown in Figure 4.43(f), using the despecle algorithm of the gimp

software package. We set the internal parameters of the despecle algorithm to

non-recursive processing with mask size 4 and black/white threshold 0/255.

Then we apply the fast transformation algorithm with average scale to the

image shown in Figure 4.41(b). We have chosen ∆t = 0.1 and k = 100 to

generate the images shown in Figure 4.42(b)-(e). As we can see the noise in

the stop image is reduced by the despecle algorithm. For this we have to accept

an unnaturally strait rectangle. If we look at the transformed images we can

see that the noise is reduced as in the stop image (or even better) and the

rectangle looks more like the rectangle shown in the start image.

4.5 Remark on colour images

In difference to gray-value images a colour image usually consists of three times

more information than the same image seen in gray-values. This is true because

for every gray-value we have a corresponding triple of values at the colour

image side. Hence, we can decompose each colour image f into three one-

channel images fR, fG and fB and interpret each of them as gray-value image.

(Here we have chosen the indices R,G,B because we assume that the colour
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(a) test image (b) start image

Figure 4.41. The test image has been corrupted with 70% uniform
noise to obtain the start image.

(a) t1 = 0.1 (b) t2 = 2.5

(c) t3 = 5 (d) t4 = 10

Figure 4.42. Reconstruction sequence illustrating the de-noising effect.
The stop image is congruent 256. The transformation parameters are
∆t = 0.01 and k = 100 (Experiment 14).
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(a) t1 = 0.5 (b) t2 = 1

(c) t3 = 2 (d) t4 = 3

(e) t5 = 4 (f) stop image Experiment 14/2

Figure 4.43. In Figures (a)-(e) the transformed images resulting from
Experiment 14/2 are shown. The stop image shown in Figure (f) re-
sults from an application of a despecle algorithm to the image shown
in Figure 4.41(b).
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images are given in the RGB colour space. For more information about that

e.g. see [28].) After this we are able to apply any of the algorithms described

in this work to these three images. Finally we recompose the three results

in the obvious way to one colour image. Thus we can apply the algorithms

introduced here to colour images without problems. Of course the same holds

true for multi-channel images such as medical images.



Experiments

images using scale
No.

start stop size
MC ∆t

splines value

1/1 ≡ 256 Fig. 4.1(b) 256×256 50 1 yes 1

1/2 ≡ 256 Fig. 4.1(b) 256×256 50 1 yes max

1/3 ≡ 256 Fig. 4.1(b) 256×256 50 1 yes avr

2/1 ≡ 256 Fig. 4.1(b) 256×256 10 1 yes 1

2/2 ≡ 256 Fig. 4.1(b) 256×256 10 0.1 yes 1

2/3 ≡ 256 Fig. 4.1(b) 256×256 10 0.01 yes 1

3/1 ≡ 256 Fig. 4.1(b) 256×256 100 1 yes 1

3/2 ≡ 256 Fig. 4.1(b) 256×256 100 0.1 yes 1

3/3 ≡ 256 Fig. 4.1(b) 256×256 100 0.01 yes 1

4/1 ≡ 256 Fig. 4.1(b) 256×256 1000 1 yes 1

4/2 ≡ 256 Fig. 4.1(b) 256×256 1000 0.1 yes 1

4/3 ≡ 256 Fig. 4.1(b) 256×256 1000 0.01 yes 1

5/1 Fig. 4.12(a) Fig. 4.1(b) 256×256 100 0.1 yes max

5/2 Fig. 4.12(b) Fig. 4.1(b) 256×256 100 0.1 yes max

5/3 Fig. 4.12(c) Fig. 4.1(b) 256×256 100 0.1 yes max

6/1 ≡ 256 Fig. 4.17(a) 300×200 100 10 yes avr

6/2 ≡ 256 Fig. 4.17(b) 350×232 100 10 yes avr

6/3 ≡ 256 Fig. 4.17(c) 400×400 100 10 yes avr

7 ≡ 256 Fig. 4.1(b) 256×256 50 1 no 1

8 ≡ 256 Fig. 4.24 564×511 50 0.1 no avr

9 Fig. 4.1(b) ≡ 256 256×256 100 0.1 no max

10/1 Fig. 4.27(a) ≡ 256 256×256 100 0.1 no max

10/2 Fig. 4.27(a) Fig. 4.27(b) 256×256 100 0.1 no max

10/3 Fig. 4.27(a) Fig. 4.27(c) 256×256 100 0.1 no max

11 Fig. 4.31(a) Fig. 4.31(f) 256×256 100 1 no max

12/1 Fig. 4.17(a) ≡ 256 300×200 100 1 no max

12/2 Fig. 4.17(b) ≡ 256 350×232 100 1 no max

12/3 Fig. 4.17(c) ≡ 256 400×400 100 1 no max

13/1 Fig. 4.17(a) Fig. 4.36(a) 300×200 100 0.1 no avr

13/2 Fig. 4.17(b) Fig. 4.36(b) 350×232 100 0.1 no avr

13/3 Fig. 4.17(c) Fig. 4.36(c) 400×400 100 0.1 no avr

14/1 Fig. 4.41(a) ≡ 157 256×256 100 0.01 no avr

14/2 Fig. 4.41(a) Fig. 4.43(f) 256×256 100 0.1 no avr





Chapter 5

Results and Perspectives

In Chapter 1 we have introduced the basic idea of the Image Reconstruction as

Groundstate of Hamiltonian Operators H in the Hilbert space L2(
�

d, λd ). We

considered this space because there the results we needed were already proven.

So we could focus on introducing the basic idea of the reconstruction. For

this we defined H := −1
2
∆ + ∆f∞

2f∞
with domain DH = C2(

� d). The function

f∞ ∈ C2(
� d) was chosen strictly positive. Then we deduced the reconstruction

property

ft := exp(−tH)f0 → cf∞ for f0 ∈ DH , (5.1)

where c := (f0, f∞)L2( � d,λd), under the condition

∆f∞
2f∞

(x)→∞ for |x| → ∞.

Finally we used a unitary map between L2(
�

d, λd ) and L2(
�

d, f 2
∞λ

d ) to reach

the representation

ft := �
[

f0

f∞
(Xt)

]

f∞ for f0 ∈ DH , (5.2)

where we defined (Xt|t ≥ 0) as Itô diffusion on
� d.

Then in Chapter 2 we repeated the argument of Chapter 1 but now we

considered the space L2(D , λd ) for D ⊂ � d open, bounded and convex. In order

to present the basic reconstruction idea in the space L2(D , λd ) we had to prove

several statements. But first of all we introduced strong Neumann boundary
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conditions for D with possibly non-smooth boundary. Then we found that in

L2(D , λd ) the spectrum of the operator H, now defined for f ∈ C2(D) with

either strong Neumann 0 or Dirichlet 0 boundary conditions, is purely discrete.

Moreover we found that the smallest eigenvalue possesses the eigenfunction f∞

and has multiplicity one. These facts played the central role in the introduction

of the basic idea of the reconstruction in Chapter 1 because from these two

statements we derived the reconstruction property given in Equation 5.1. Then

we represented the function ft as in Equation 5.2. But in this case (Xt|t ≥ 0)

has been defined as the solution of a Skorokhod problem. In order to prove

Equation 5.2 we derived a version of the Feynman-Kac formula for solutions of

Skorokhod problems. In the more general context of locally square integrable

martingales this result is already known. Because of the absence of generality

we were able to give a new, easy proof. Finally we showed that ft converges in

L2(D , λd ) to cf∞ for t to ∞ and that this convergence is actually point-wise.

We considered the space L2(D , λd) to prepare applications in image pro-

cessing. There, D ⊂ � 2 is a rectangle and the functions f are extensions

of image functions (e.g. data provided by digital cameras). In Chapter 3 we

gave a short resume of two existing mechanisms providing strictly positive

f ∈ C2(D) with either strong Neumann 0 or Dirichlet 0 boundary conditions

starting from discrete data. Then we discussed approximations of function

values of f ∈ C2(D) and of its gradient. Moreover in Chapter 3 we formulated

an algorithm which can be used to approximate ft(x) for x ∈ D. Therefore

we used an existing discrete approximation for the solution Xt of a Skorokhod

problem. In fact, we extended an existing approximation scheme to a scheme

of higher order. Actually, the extension has no relevance for the special ex-

periments we performed. So the extension is described for the mathematical

(scientific) interest and can be seen as an add on to the main work.

Finally, in Chapter 4, we formulated an algorithm for image transforma-

tion providing a sequence of images If0, . . . , Ift. There If0 is interpreted as image

data corresponding to the extension f0. Moreover we know that the param-

eters of the transformation algorithm can be chosen such that Ift converges

for t → ∞ to c If∞, the rescaled image data corresponding to the rescaled

image cf∞. So we obtained a mechanism for image transformation from If0 to
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c If∞ providing the state of transformation as image function If t correspond-

ing to the extension ft (as defined in Equation 5.1). In order to illustrate

the behaviour of Ift we have chosen different image pairs If0, If∞ to perform

some computer experiments. Then we discussed two possibilities to choose c

different from (f0, f∞)L2(D ,λd) as time dependant scale values c(t), c̃(t) and we

have formulated two versions of the transformation algorithm using these time

dependent scale values. In contrast to the original transformation algorithm

these two versions provide rescaled images c(t)−1 Ift and c̃(t)−1 Ift converging

to If∞. Moreover, the image at time t = 0 is equal to Ift. Then we formu-

lated a fast version of the transformation algorithm. The version is called fast

because the extension of the discrete image functions If0, If∞ to differentiable

functions is avoided. Instead the fast transformation uses some approxima-

tions discussed before. So the computation time needed for experiments using

the fast transformation algorithm is five times less than the computation time

for experiments using the original version of the transformation algorithm. Of

course we illustrated the behaviours of the image functions If t resulting from

experiments with all the different versions of the transformation algorithm.

Finally we gave some examples for an application of the transformation al-

gorithm to some well known problems of image processing by the choice of

appropriate image pairs If0, If∞. So we noticed an edge enhancing effect of

the transformation algorithm in the reconstruction experiments. There we

set If0 = const and If∞ was chosen as a given image. We applied this new

method to an image showing a fingerprint in bad quality. The resulting image

shows enhanced and more separated ridges. Hence the automatic detection of

interesting features (minutiae) in the resulting image is favoured.

As often the case, somehow, image smoothing is the reverse of edge en-

hancement. So we have illustrated that the transformation algorithm can be

used to smooth images. For this we have interchanged the roles of the images

If0, If∞. Precisely, for simple image smoothing we set If∞ = const and take If0

as a given image. For this setup of the transformation algorithm (the special

case If∞ = const) we made a theoretical connection to smoothing by convo-

lution with a Gaussian and performed the corresponding experiments. After

that we made some experiments where we generated If∞ from the given im-
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age If0. In these experiments If∞ is not constant. Hence the resulting images

Ift are different to images produced by convolution with a suitable Gaussian.

That means we found a generalisation of smoothing images by convolution

with a Gaussian. Of course we illustrated the advantages of our generalisa-

tion (advanced smoothing) by some experiments. We have shown how the

transformation algorithm can be used to smooth parts of an image whereas

other parts of the image are conserved. Further we illustrated smoothing with

conservation of image details on some level. Finally we have performed two

experiments establishing a connection to some existing results concerning im-

age smoothing. Precisely, we made transformation experiments illustrating the

de-noising effect of our method.

In all we provided a new image processing method founded on our theo-

retical results and illustrated some possible applications. This method is more

than an ad-hoc strategy to transform images into a more pleasant look as

we have seen from the connection to image smoothing by convolution with a

Gaussian. Besides, this work can bee seen as starting point for further the-

oretical investigations as well as further computer experiments. For this we

give a collection of some interesting questions and ideas.

• In the original version of the transformation algorithm we start with

two discrete image functions If0, If∞. Then we interpolate these image

functions to obtain differentiable functions f0, f∞ defined on a rectan-

gle. After an application of the transformation algorithm we end with

a discrete image function Ift. So one may ask for a possibility to avoid

the use of f0, f∞. We have chosen approximations for f0, f∞ which are

constant on a small square around the discrete function value and used

derivatives which correspond to discrete derivatives. These approxima-

tions are not theoretically founded but the results of the experiments are

unexpectedly good. We note that Ift converges faster to If∞ if we use the

fast transformation than if we use the transformation with f0, f∞ (and

we have shorter computation time – these are two different things). So

it seems worth to make a theoretical investigation of discrete operators.

Then the counterpart of the Itô diffusion may be a Markoff chain. So we

would end in a completely discrete theory.
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• We obtained the representation 5.2 of the function ft as solution of a

Cauchy problem. Then for the approximative computation of ft we have

chosen a Monte Carlo approach. For this we must accept the dissat-

isfying computation times. So if we find an analytic expression for ft

we can avoid the computation of 5.2. Hence we can avoid the Monte

Carlo simulation and save computation time. An interesting approach

for this purpose is the representation of 5.2 as integral over a function of

transition probabilities.

• In order to investigate the convergence speed of If t to If∞ it would be

interesting to know the spectrum of the operator H := − 1
2
∆ + ∆f∞

2f∞
.

Precisely it would be interesting to know the second lowest eigenvalue of

H. Then we have

|α0v0(x)− exp(−tH)f0(x)| ≤ |
∑

k∈ �

exp(−tλk)αkvk(x)|

≤ exp(−tλ1)|
∑

k∈ �

αkvk|

= exp(−tλ1)|(f0, f∞)f∞(x)− f0(x)|

for all x ∈ D. Here we used the notation of Section 3.5.1.

• For further characterisation of the behaviour of If t(x) for x ∈ D̃ ⊂ Ddisc

one can apply the statements given in Chapter 2 to the operator H̃ act-

ing on the space L2(D̃, λd). Therefore D̃ has to be convex. So if D̃ is not

convex we have to decompose D̃ into disjoint convex subsets D̃1, . . . , D̃n.

Then we can perform transformation experiments using each of the sub-

sets D̃i. Afterwards we recompose the transformed image on D̃ from the

transformed image parts on D̃i. Using this method we actually compute

the transformed image just for the x ∈ D̃ and save the computation time

needed to get the values of the transformed image If t(x) for x ∈ Ddisc\D̃.

Additionally from an experimental point of view it would be interesting

to perform experiments using an explicitely non-convex subset D̃.

• Our experiments can not be used to give a statistical verification of our
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theoretical results. Instead the experiments just illustrate the behaviour

of the transformed image Ift for a few different image pairs If0, If∞. Nev-

ertheless, a statistical verification seems interesting. Moreover one could

investigate:

– other scale values than c(t), c̃(t)

– the dependency of the transformed image Ift on the transformation

parameters ∆t, k for more than one image pair If0, If∞ and nine

different setups of transformation parameters

– the difference between the fast transformation and the transfor-

mation using splines applied to the problems of image smoothing,

de-noising and edge enhancement

– the edge enhancing effect in detail

– more than two different possibilities (colour scale and despecle al-

gorithm) to generate stop images from a given start image.

Especially an investigation of the last point seems very interesting be-

cause the stop image has a big influence on the behaviour of If t. Moreover

we have seen that if If∞ = const we are in the case of smoothing with a

Gaussian. So it is obvious that the big advantage of our new method is

the possibility to choose different images If∞ 6= const.

• It seems interesting to investigate the applicability of the image transfor-

mation to other problems of image processing such as super resolution

or image segmentation as well as face recognition.



Notation

In Chapter 1

� , � 0 {1, 2, 3, . . . }, � ∪ {0}
�
,

�
≥0,

�
>0 real Numbers, [0,∞), (0,∞)

(
� d, |x|) d-dimensional Euclidian vector space
∂
∂x

partial derivative corresponding to the variable x

C2(
� d), C2(D) two times continuous differentiable functions with

values in
�

defined on
� d or some open subset D

� d � d ∪ {±∞}
supp(f) support of f : D → �

is {x ∈ D|f(x) 6= 0}
ker(f) null space of f is {x ∈ D|f(x) = 0}
C2

0(
� d), C2

0(D) f in C2(
� d) respectively C2(D) with compact support

∆, ∆(.) Laplace operator

Id d-dimensional unit matrix

(Ω,A, P ) probability space

B(
� d) Borel σ-algebra of

� d

λ, λd Lebesgue measure on
�
,

� d or on subsets

� [X], V ar(X) expectation, variance of the random variable X

L2(
�

d, λd ) Hilbert space of classes of square integrable functions

(f, g), ‖f‖ inner product and Norm for f, g ∈ L2(
�

d, λd )

H, DH Hamilton operator on L2(
�

d, λd ), domain of H

ran(DH) range of H is {Hf |f ∈ DH}
vn, λn Eigenvector of H and corresponding Eigenvalue

σ(H) spectrum of H, here the set of all λn

(Tt|t ≥ 0) strongly continuous semigroup on DH
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b, σ drift, diffusion coefficients

(Xt|t ≥ 0), Xx
t Itô diffusion on

� d or subsets, starting in x

Ft filtration generated by Xt – is σ(Xs|s ≤ t)

L2(
�

d, f 2
∞λ

d ) Hilbert space, integrability w.r.t. f 2
∞λ

(f, g)f∞, ‖f‖f∞ inner product and Norm for f, g ∈ L2(
�

d, f 2
∞λ

d )

L, DL operator on L2(
�

d, f 2
∞λ

d ), domain of L

(T̂t|t ≥ 0) strongly continuous semigroup on DL

In Chapter 2

D, ∂D closure, boundary of D ⊂ � d using Euclidian metric

L2
loc(

�
d, λd ) measurable functions, locally square integrable

Nx normal vectors at the boundary point x

B(x, r) open ball with centre x and radius r

C2(D) f ∈ C2(D) continuously extendable to D; first and

second order derivatives are continuous too

Cm boundary class with m degrees of smoothness

AN , DAN
operator on L2(D , λd ) with Neumann 0 boundary

condition and its domain

AD, DAD
operator on L2(D , λd ) with Dirichlet 0 boundary

condition and its domain

AF , DAF
Friedrichs’ extension of the operator A, domain

HA, ‖f‖A energetic space of the operator A, energetic norm

W 1
2 , ‖f‖W 1

2
Sobolev space, Sobolev norm

τ xD exit time of X = (Xt|t ≥ 0) from the region D

C([0,∞),
� d) continuous functions on [0,∞) with values in

� d

E, PX σ-algebra on C([0,∞),
� d), probability measure on E

γD(ω) limit points of the trajectories Xx
t (ω)

1D characteristic function of the set D
� d

≥0 all elements of
� d with first coordinate nonnegative

Ac complement of A = Ω \A for A ∈ Ω

(X̂t|t ≥ 0) Itô diffusion on D
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In Chapter 3

pn(t) time-step function is max{ k
n
|k ∈ � 0,

k
n
≤ t}

Bpn
t discretisation of the Brownian motion Bt

f(t−) limit of f(s) for s increasing to t

(X
n

t , ϕ
n
t ) projection scheme approximation to (Xt, ϕt)

X ∼ N (µ, σ) X is a normal distributed random variable

with expectation µ and standard deviation σ

bxc floor function (largest integer z ∈ �
with z ≤ x)

If discrete image function

Îf, Ĩf piecewise constant version, smooth version of If

W0 square function is one on a square of size one

Ck(D) up to order k continuously differentiable functions

Ck
0 (D) f ∈ Ck(D) with compact support

Ck(D) f ∈ Ck(D) continuously extendable to D;

derivatives up to order k continuous extendable too

Πm polynomials of order m

Sm,n spline space of degree m with n− 1 inner nodes

Abbreviations

a.e. almost every

a.s. almost surely

CCD Charged Coupled Device

cp. compare

iff if and only if

inf infimum

ONB ortho normal basis

resp. respectively

sup supremum

w.r.t. with respect to





Appendix A

Friedrichs’ Extension of

Semi-Bounded Operators

Given a semi-bounded symmetric operator A we will define an extension of A

which is self-adjoint. There may exist more than one possibility to do this and

of course there may exist different extensions for the same operator A which

are all self-adjoint. We will just use the way introduced by K. O. Friedrichs

([25]) called the Friedrichs’ extension similar to the presentation given in [78].

In addition we use this appendix to repeat some common definitions.

Definition A.1. An operator A defined on a Hilbert space (H, (., .)) with

domain DA is called semi-bounded (below) iff there is a constant c ∈ �
such

that ∀x ∈ DA we have (Ax, x) ≥ c · ||x||2. We call the operator A symmetric

iff ∀x, y ∈ DA : (Ax, y) = (x,Ay).

It is clear that iff A is semi-bounded below then −A is semi-bounded above

and so it is sufficient just to talk about one kind of semi-boundedness. Hence

we suppress the supplement ’below’ in the following.

Definition A.2. An operator B with domain DB is called extension of the

operator A iff DA ⊂ DB and ∀x ∈ DA we have Ax = Bx.

In the following we assume the domain DA of the operator A is dense in

the Hilbert space H where A acts on. Moreover we consider the operator A as

linear.
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Definition A.3. The adjoint operator A∗ is defined by

A∗y := y∗ for all y ∈ DA∗

with domain

DA∗ := {y ∈ H|∃y∗ ∈ H : ∀x ∈ DA : (Ax, y) = (x, y∗)}.

The operator A is called self-adjoint iff A = A∗.

Obviously the Domain DAF
of the extension AF we are looking for must

be a subset of DA∗ . On the other hand it must be a superset of DA. So we

first construct this superset as closure of DA in the following norm.

Definition A.4. For every semi-bounded operator A with (Ax, x) ≥ c · ||x||
and every e ∈ �

with e+ c > 0 we define an inner product by

(x, y)e := (Ax, y) + e · (x, y) ∀x, y ∈ DA

and consequently we have

||x||e :=
√

(x, y)e

as the energetic norm on DA. The closure of DA in this norm is denoted by

He := {x ∈ H|∃ Cauchy sequence in (DA, ||.||e) converging to x}

and is called the energetic space of A.

Remark. Actually one can prove He = Hẽ and equivalence of the norms ||.||e
and ||.||ẽ if ẽ ∈ �

with ẽ + c > 0 (see [78] theorem IV.17.10). Cause we do

not distinguish between equivalent norms the definition above is justified and

we use HA, (x, y)A and ||x||A as notation. Moreover (HA, (., .)A) is a Hilbert

space (see [78]).

Now we give the main statement of this appendix.
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Theorem A.5. In the notation above the operator

AFx := A∗x ∀x ∈ DAF

DAF
:= DA∗ ∩HA

is a self-adjoint extension of A called Friedrichs’ extension. Further it is

(AFx, x) ≥ c · ||x|| with the same constant c as for the operator A.

A proof is given in [78] Theorem IV.17.11 so we do not repeat it here.

Finally we give some common definitions leading to the Sobolev space W p
m

introduced in the articles [74, 75]. We start with a preliminarily definition.

Definition A.6. For d ∈ � we consider the non-negative integers α1, . . . , αd.

Then we call the d-tuple α = (α1, . . . , αd) a multi-index and define for every

x = (x1, . . . , xd) the term xα := xα1
1 ·. . .·xαd

d . Further we take |α| = α1+· · ·+αd.

Definition A.7. Let D denote an open subset of
� d. We say a series of

functions (fn|n ∈ � ) converges in C∞(D) to f and write fi
D−→ f iff:

a) It exists a compact set K ⊂ D such that for all i ∈ � the support of fi

is a subset of K.

b) For every multi-index α the series Dαfi converges uniformly to Dαf .

Here we used the notation

Dαf :=
∂ |α|f

∂xα1
1 . . . ∂xαi

d

for |α| ≥ 1

as the usual partial derivatives and D0f = f . Now we are ready to define the

space of distributions as follows.

Definition A.8. A (real valued) distribution ϕ is a continuous, linear map

from C∞(D) to
�

. So for every r1, r2 ∈
�

and f1, f2 ∈ C∞(D) we have

ϕ(r1f1 + r2f2) = ϕ(r1f1) + ϕ(r2f2) and for every series (fi|i ∈ � ) of functions

in C∞(D) with fi
D−→ f for some f ∈ C∞(D) the series ϕ(fi) converges in

�

to ϕ(f). The space of all distributions is denoted by D′(D). A derivative is

defined by Dαϕ(f) := (−1)|α|ϕ(Dαf) for all f ∈ C∞(D).
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In fact now we have to verify the properties of a derivative (linearity and

continuity) and possibly remark that the definition above is equal to the usual

derivative if ϕ ∈ C∞(D). For all this we refer one more time to the existing

literature as mentioned before and proceed to give the last definition.

Definition A.9. For every m ∈ � 0, 0 ≤ p ≤ ∞ and f ∈ C∞(D) we define

||f ||W p
m

:=

(

∑

0≤|α|≤m
(||Dαf ||p)p

)
1
p

as a norm on Lp(D,λ) where ||f ||p := (
∫

|f |pdλ)
1
p is the usual Lp norm. Then

W p
m(D) := {f ∈ Lp(D,λ)|∀0 ≤ |α| ≤ m : Dαf ∈ Lp(D,λ)}

equipped with the norm ||f ||W p
m

is called Sobolev space.



Appendix B

Skorokhod’s Problem

In 1961 Anatolii Vladimirovich Skorokhod published about diffusion processes

at the positive half-line with reflection at 0 (see [71]). Afterwards many other

authors entered this subject [51, 50, 54, 81]. Here we will give a short intro-

duction to the formulation of the problem in order to get use of the notation.

Following we link this notation to the one used by Tanaka [77], Watanabe [81]

and many others. In 1978 Tanaka gave a more general result concerning arbi-

trary bounded convex subsets of
� d which will be useful for us. Similar results

proven different were given by Lions and Sznitman [46] and Saisho [66].

Let (Xt|t ∈
�

+) denote an Itô diffusion on the half-line according to the

stochastic differential equation

dXt = σ(t,Xt)dBt + b(t,Xt)dt (B.1)

X0 > 0

where (Bt|t ∈
�

+) is an 1-dimensional Brownian motion. As we can see,

Equation B.1 determines the behaviour of the process only for strictly posi-

tive values so the question arises what happens if Xt = 0. Skorokhod added

a boundary term to Equation B.1 which, now written in integral notation,

changes to

Xt = X0 +

∫ t

0

σ(s,Xs) dBs +

∫ t

0

b(s,Xs) ds+

∫ t

0

c(s)10(Xs) ds (B.2)
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where c is strictly positive. If c is finite, the process will take some time to

leave the boundary and we observe delayed reflection. In order to construct

instantaneous reflection Skorokhod has chosen a different representation that

avoids infinite values.

Definition B.1. Let (Xt|t ∈
�

+) be an Itô diffusion. A strictly positive

function ϕ :
�

+ →
�

is called reflection function for Xt iff ϕ is a.s. continuous

and monotone increasing. Moreover ϕ has to be constant iff Xt 6= 0 (i.e. there

is ε > 0 such that ϕ(t+ ε)− ϕ(max{t− ε, 0}) = 0).

Now by use of this definition we give the original formulation of Skorokhod’s

problem.

Skorokhod’s Problem. Let σ :
�

+×
�

+ →
�

and b :
�

+×
�

+ →
�

denote

continuous functions satisfying a Lipschitz condition in the second variable.

So we can find a constant K such that ∀t ∈ �
+ : ∀x, y ∈ �

+ we have

|σ(t, x)− σ(t, y)| ≤ K · |x− y| and |b(t, x)− b(t, y)| ≤ K · |x− y|.

Then finding a solution (Xt, ϕ(t)|t ∈ �
+) of the stochastic differential equation

Xt = X0 +

∫ t

0

σ(s,Xs) dBs +

∫ t

0

b(s,Xs) ds + ϕ(t) (B.3)

where ϕ is a reflection function of the positive stochastic process Xt with

ϕ(0) = 0 is called Skorokhod’s Problem.

Contrary to our expectation the problem above is not ambiguous. There

exists just one function ϕ at all we can solve Equation B.3 for. We do not

go into detail here because, as mentioned before, this was introductory to the

topic. We switch now to the case of higher dimension and arbitrary bounded

convex region following the argument first given in [77]. There the counterpart

of the reflection function is an associated function introduced in an determin-

istic setting.

Definition B.2. By Cr(
�

+,D) we denote the space of all D-valued right

continuous functions on
�

+ with left limits. Then the function ϕ ∈ Cr(
�

+,
� d)
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with coefficients ϕi is called associated with X ∈ Cr(
�

+,D) iff the following

four statements hold true:

a) ∀ i = 1, . . . , d : ∀ t ∈ �
>0 : ∃M > 0 :

bϕie(t) = sup
∑

k=1

|ϕi(tk)− ϕi(tk−1)| < M

where we take the supremum over all 0 = t0 < t1 < · · · < tn = t which

are partitions of [0, t]. (bϕie(t) is called variation of ϕi on [0, t].)

b) ϕ(0) = 0.

c) The set {t ∈ �
+|X(t) ∈ D} has bϕe-measure 0.

d) If we express ϕ as

ϕ(t) =

∫ t

0

η(s) dbϕe(s)

with a (bϕe-a.s. uniquely determined) unit vector valued function η(t).

Then for bϕe-almost all t ∈ �
+ the vector η(t) is a normal at X(t).

The last condition is guaranteed if:

d’) For every function f ∈ C(
�

+,D) we have
∫

D
(f(t)−X(t)) · ϕ(dt) ≥ 0.

No we will explain an easy example (given in [77]) to clarify the definition.

Example. In this example we consider ∂D as smooth and denote the unique

inward normal at x ∈ ∂D by η(x). If we define

ϕ(t) :=

∫ t

0

1∂D(X(s))η(X(s)) dp(s) (B.4)

for some non-decreasing function p ∈ D(
�

+,
�

+) with p(0) = 0 and bounded

variation then ϕ is an associated function of X.

We note that the variation bϕe(.) of the function ϕ determines a measure

on {[0, t)|t > 0} and so by the Extension Theorem of Caratheodory determines

a measure on the Borel σ-algebra B([0,∞)) 1. Now we verify conditions a)-d)

of Definition B.2.
1Further information can be found in [11, 31, 34, 64, 80, 85, 86]. Many texts in probability

theory include information about the formulation of the Lebesgue-Stieltjes integrals with
respect to right-continuous functions. We refer to [52, 63, 70].
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ad a) The components of the composition η ◦X are continuous functions.

Hence 1∂D(X(s))η(X(s)) is Borel measurable whensoever we have

{t ∈ �
+|X(t) ∈ ∂D} ∈ B([0,∞)). But this is true because X is

in Cr(
�

+,D) which implies measurability. So we found out that ϕ is

of bounded variation as integral over an integrable function. (Actu-

ally it is absolutely continuous and a.e. differentiable as a function of

the upper bound [63].)

ad b) ϕ(0) = 0

ad c) We have X ∈ Cr(
�

+,D) so for every t0 ∈ {t ∈
�

+|X(t) ∈ D} exists

ε > 0 such that [t0, t0 + ε) ⊂ {t ∈ �
+|X(t) ∈ D}. But for every

[t0, t1) ⊂ {t ∈
�

+|X(t) ∈ D} we have

bϕe((t0, t1)) = |ϕ(t1)− ϕ(t0)|

=

∫ t1

t0

0 · η(X(s)) dp(s)

= 0.

It follows bϕe({t ∈ �
+|X(t) ∈ D}) = 0.

ad d) For t0 ∈
�

+ with X(t0) ∈ ∂D the derivative of ϕ is a.s. given by

η(X(t0))bpe(t0) which is the inward normal at X(t0).

Now we change to a stochastic viewpoint where the role of the right-continuous

functions is played by the sample-paths of suitable stochastic processes and

repeat the results given in [77, 81]. As usual by (Ω,F , P ) we denote a proba-

bility space and by (Ft|t ≥ 0) an increasing family of sub-σ-algebras of F with

Ft =
⋂

ε>0Ft+ε. It is assumed that F and each Ft contains all P -negligible

sets. Moreover Bt = (B1
t , . . . , B

k
t ) is an Ft-adapted k-dimensional Brownian

motion with B0 = 0.

Skorokhod’s Problem. Let σ :
�

+ × D →
� d × � k and b :

�
+ ×D →

� d

denote Borel measurable functions of (t, x). We assume that they are Lips-

chitz continuous and fulfil a linear growth condition. The Skorokhod Problem
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corresponding to the stochastic differential equation

dXt = σ(t,Xt)dBt + b(t,Xt)dt+ dϕt

with X0 = x ∈ D is to find a pair of Ft-adapted processes (Xt, ϕt) where

almost all paths of ϕt are associated to those of the D-valued process Xt.

Theorem B.3 ([77] Theorem 4.1). If D is a bounded and convex region

and x ∈ D the solution of Skorokhod’s Problem is path-wise unique.

Remark B.4 ([81] Remark 3). If the boundary of D is smooth such that “the

construction can be localised and therefore reduced to the case of the half-

space” the infinitesimal generator of the process Xt is an extension of

Af :=
d
∑

i,j=1

ai,j
∂2f

∂xi∂xj
+

d
∑

i=1

bi
∂f

∂xi

with domain

DA :=

{

f ∈ C2
0(

� d
+)

∣

∣

∣

∣

∂f

∂η

∣

∣

∣

∣

∂D

= 0

}

where 2aij =
∑d

k=1 σ
ikσkj and η is the inward normal at x ∈ ∂D.





Appendix C

Multidimensional Stochastic

Taylor Expansion

According to the deterministic Taylor expansion we will construct a stochas-

tic counterpart following the argumentation of [15] (the one dimensional case

is also treated in [55, 39]). During the construction we will have different

possibilities how to proceed, so there exist many different stochastic Taylor

expansions. In fact that means the term Stochastic Taylor expansion is not

well defined if we understand it as a function rather it is a class of functions.

Nevertheless we will not go into detail, just talk about one function out of this

class.

So as usual by (Ω,A, P ) we denote a probability space and consider the

m-dimensional Brownian motion Bt := (B1
t , . . . , B

m
t ) ∈ � m for t ∈ �

≥0 which

is adapted to the filtration F := (Ft = (F1, . . . ,Fm)|t ≥ 0). There the i-th

component F it := σ(Bi
s|s ≤ t) is the sigma algebra generated by the history of

the i-th component of Bs up to time t. In order to assign some properties to

the coefficients of the involved SDE we define as follows.

Definition C.1. For every d,m ∈ � and T ∈ �
>0 by Wd×m

H (T ) we denote

the set of functions f : [0,∞)× Ω→ �
with

a) f is B × F measurable, where B := σ([0,∞)),

b) there exists an increasing family H of σ-algebras Ht; t ≥ 0 such that Bt

is a martingale with respect to Ht and ft is Ht adapted,

181
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c)

P

(
∫ T

0

f(s, ω)2 ds <∞
)

= 1.

Now we put

Wd×m
H := ∪T≥0Wd×m

H (T ).

Definition C.2. Let v(t, ω) = (vi,j(t, ω)) ∈ Wd×m
H be such that for every

i ∈ {1, . . . , d} and j ∈ {1, . . . ,m} we have

P

(∫ T

0

vi,j(s, ω)2 ds <∞ for all t ≥ 0

)

= 1.

Further let ui(t, ω) denote Ht-adapted functions with

P

(∫ T

0

|ui,j(s, ω)| ds <∞ for all t ≥ 0

)

= 1 for i = 1, . . . , d.

Then a process Xt = (X1
t , . . . ,X

d
t ) satisfying the stochastic differential equa-

tion















dX1
t (ω) = b1(Xt(ω))dt +

∑m
j=1 σ1,j(Xt(ω))dBj

t (ω)
...

...
...

dXd
t (ω) = bd(Xt(ω))dt +

∑m
j=1 σd,j(Xt(ω))dBj

t (ω)

(C.1)

with X0 = x is called d-dimensional Itô diffusion. If we define the matrix

σ(t, ω) := (σ(Xt(ω))i,j)1≤i≤m
1≤j≤d

and the vectors

b(t, ω) :=









b1(Xt(ω))
...

bn(Xt(ω))









, dBt :=









dB1
t

...

dBn
t









then we rewrite Equation C.1 in matrix notation as

dXt(ω) = b(t, ω)dt+ σ(t, ω)dBt(ω). (C.2)
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Now we are prepared to state the well known multi dimensional Itô formula.

For simplicity we restrict our self to scalar valued functions. As a matter of

fact it holds also true for vector valued functions which can be seen easily by

application of the following theorem to each component.

Theorem C.3. Let g(t, x) : [0,∞) × � n → �
denote a continuous differen-

tiable function with respect to the variable t. Additionally we assume g to be

two times continuous differentiable with respect to x. Further let (Xt|t ≥ 0)

denote an d-dimensional Itô diffusion satisfying Equation C.2, then the process

Yt(ω) := g(t,Xt(ω)) is an 1-dimensional Itô process satisfying

dYt =
∂g

∂t
(t,Xt)dt+

1

2

d
∑

i1,i2=1

m
∑

j=1

σi1,jσi2,j(t,Xt)
∂2g

∂xi1∂xi2
(t,Xt)dt

d
∑

i=1

bi(t,Xt)
∂g

∂xi
(t,Xt)dt+

d
∑

i=1

m
∑

j=1

σi,j(t,Xt)
∂g

∂xi
dBj

t

(C.3)

for every t ≥ 0.

A proof can be found at different places i.e. [39, 27, 48] and of course the

statement is formulated for a more general class of processes long ago (cp. [42]).

Furthermore the argumentation to prove the statement of Theorem C.3 is

similar to that one we used to prove Theorem 2.6.1 so we skip it here. Instead

let us define

L0 :=
∂

∂t
+

d
∑

i=1

bi
∂

∂xi
+

d
∑

i1,i2=1

m
∑

j=1

σi1,jσi2,j
∂2

∂xi1∂xi2

and L := (L1, . . . , Lm) with

Lj :=
d
∑

i=1

σi,j
∂

∂xi

which allows us to rewrite Equation C.3 as

g(t,Xt(ω)) = g(0, x0(ω)) +

∫ t

0

L0g(s,Xs(ω))ds +

∫ t

0

Lg(s,Xs(ω))dBs

So we return to the question of an equivalent to the Taylor expansion in our
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stochastic context an apply the Itô formula to the functions bi and σi,j. This

shows

dX i
t (ω) =

(

bi(0, x0(ω)) +

∫ t

0

L0bi(s,Xs(ω))ds

)

dt

+

( m
∑

k=1

∫ t

0

Lkbi(s,Xs(ω))dBk
s

)

dt

+
m
∑

j=1

(

σi,j(0, x0(ω)) +

∫ t

0

L0σi,j(s,Xs(ω))ds

)

dBj
t

+
m
∑

j=1

( m
∑

k=1

∫ t

0

Lkσi,j(s,Xs(ω))dBk
s

)

dBj
t

for i = 1, . . . , d. As mentioned at the beginning of this section we will have

different options to proceed. We decide to apply formula C.3 to the terms

Lkσi,j and obtain

dX i
t(ω) =

(

bi(0, x0(ω)) +

∫ t

0

L0bi(s,Xs(ω))ds

)

dt

+

( m
∑

k=1

∫ t

0

Lkbi(s,Xs(ω))dBk
s

)

dt (C.4)

+

m
∑

j=1

(

σi,j(0, x0(ω)) +

∫ t

0

L0σi,j(s,Xs(ω))ds

)

dBj
t

+

m
∑

j=1

( m
∑

k=1

∫ t

0



























Lkσi,j(0, x0(ω))

+

∫ s

0

L0Lkσi,j(r,Xr(ω))dr

+
m
∑

l=1

∫ s

0

LlLkσi,j(r,Xr(ω))dBl
r



























dBk
s

)

dBj
t

once more for i = 1, . . . , n. This procedure can be continued up to any desired

approximation order. It is obvious that the result depends on the choice of the

term we apply the Itô formula to.
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Zusammenfassung

Diese Arbeit beschreibt die mathematischen Grundlagen für ein neues Verfah-

ren, welches zur Lösung von verschiedenen Problemen der Bildverarbeitung

verwendet werden kann und gibt Beispiele zur Anwendung auf das Problem

der Hervorhebung von Kanten, der Bildglättung und der Rauschreduktion. Die

Grundidee des in dieser Arbeit entwickelten Verfahrens basiert auf der Tatsa-

che, dass der zu einem Hamilton-Operator H := − 1
2
∆ + V gebildete Operator

exp(−tH) jede Funktion f0 :
� 2 → �

aus dem Definitionsbereich von H (unter

gewissen Bedingungen) für t gegen Unendlich bis auf eine Konstante auf den

Grundzustand von H abbildet. Für eine vorgegebene Funktion f∞ :
� 2 → �

>0

setzen wir V := ∆f∞
2f∞

und haben damit H so arrangiert, dass sein Grundzu-

stand die vorgegebene Funktion f∞ ist. Es resultiert also für jedes t ≥ 0 eine

Funktion f(t) := exp(−tH)f0 (entsprechend einem transformierten Bild zur

Zeit t), die zur Zeit t = 0 mit einer vorgegebenen Funktion f0 übereinstimmt

und für t gegen Unendlich punktweise gegen ein Vielfaches der Funktion f∞

konvergiert. Darüber hinaus genügt die Funktion f(t) der Diffusionsgleichung

df

dt
=

1

2
∆f − V f.

Somit erhalten wir einen Transformationsalgorithmus der von f0 und f∞ (so-

wie von der später verwendeten Diskretisierungsgröße ∆t) abhängt und uns er-

laubt, den Fortgang der Transformation anhand der Funktion ft zu beobachten.

Zum Abschluss der Arbeit zeigen wir dann, dass wir aus diesem Transforma-

tionsalgorithmus durch die Wahl verschiedener Parameter f0, f∞ Algorithmen

gewinnen, die sich zur Anwendung auf die oben genannten Probleme der Bild-

verarbeitung eignen. Die Anwendung unseres Verfahrens auf weitere Probleme

der Bildverarbeitung (z.B. Bildvergrößerung, Bildrestauration, Gesichtserken-

nung) ist ebenfalls denkbar, wird hier aber nicht diskutiert.
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Um die prinzipielle Idee des Transformationsalgorithmus im Rahmen der

L2-Theorie genauer zu erläutern betrachten wir zu Beginn der Arbeit (in Ka-

pitel 1) Funktionen f0, f∞ ∈ L2(
�

d, λd ). Wir wählen f∞ > 0 so, dass für

|x| → ∞ das Potential V (x) unbeschränkt wächst. In diesem Fall können

wir ein Ergebnis aus [61] auf den Operator H anwenden. Wir erhalten dar-

aus, dass der Hamilton-Operator H halbbeschränkt ist und ein rein diskretes

Spektrum von Eigenwerten hat. Die zugehörigen Eigenfunktionen bilden eine

Orthonormalbasis des Raumes L2(
�

d, λd ) und der Eigenraum zum Eigenwert 0

ist eindimensional (d.h. der Grundzustand ist eindeutig). Dann definieren und

diskutieren wir die Darstellung f(t) = exp(−tH)f0, mit deren Hilfe wir auch

die Konvergenz von f(t) gegen f∞ (bis auf eine Konstante) nachweisen. An-

schließend stellen wir die Funktion f(t) mit Hilfe einer Brownschen Bewegung

(Bx
t |t ≥ 0), die in x ∈ � d startet, als

f(t)(x) = �
[

exp

(

−
∫ t

0

V (Bx
s ) ds

)

f0(B
x
t )

]

, für t ≥ 0 (Z.1)

dar, weil sich der Erwartungswert approximativ durch eine Monte-Carlo Si-

mulation berechnen lässt und wir diesen Ansatz weiter verfolgen wollen. Die

Identifikation von exp(−tH)f0(x) und Z.1 geschieht dabei über das Cauchy-

Problem
du

dt
=

1

2
∆u− V u

mit der Startbedingung u(0) = f0. Da der Exponentialterm in Gleichung Z.1

bei einer Monte-Carlo Approximation große Werte annehmen kann, die bei

Computersimulationen zu Problemen führen können, wollen wir diesen Term

vermeiden. Dazu benutzen wir die unitäre Abbildung f 7→ f · (f∞)−1 zwischen

L2(
�

d, λd ) und L2(
�

d, f 2
∞λ

d ). Gemäß dem kommutativen Diagramm

L2(
� d, λd ) L2(

� d, f 2
∞λ

d )

L2(
� d, λd ) L2(

� d, f 2
∞λ

d )

?

H

�
·f∞

?

L

-
·(f∞)−1
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führt dies zu dem Operator L = − 1
2
∆− (∇ ln f∞)∇ und dem Cauchy-Problem

dũ

dt
= −Lũ

mit der Startbedingung

ũ(0) =
f0

f∞
.

Mit dessen Hilfe erhalten wir wie zuvor die gewünschte Identifikation

exp(−tL)
f0

f∞
(x) = �

[

f0

f∞
(Xx

t )

]

, für x ∈ � d, t ≥ 0. (Z.2)

Hier ist (Xx
t |t ≥ 0) eine d-dimensionale Itô-Diffusion mit Diffusionskoeffizient

σ = −Id und Drift b = −∇ lnf∞.

Nun müssten wir für jedes x ∈ � d die rechte Seite von Z.2 berechnen um die

Funktion f(t) zu erhalten. Tatsächlich würde es sogar genügen die rechte Seite

von Z.2 für alle x im Träger D der Funktion f(t) zu berechnen, denn außerhalb

des Trägers ist die Funktion kongruent 0 und die Funktionswerte sind somit be-

kannt. Hat f(t) einen beschränkten Träger D, was im Fall einer Anwendung auf

Probleme der Bildverarbeitung immer gewährleistet ist, so könnten wir den Er-

wartungswert in Gleichung Z.2 durch eine Monte-Carlo Simulation approxima-

tiv berechnen. Wir wollen die vorgegebenen Bilddaten allerdings nicht zu Funk-

tionen auf
� d fortsetzen, die außerhalb eines beschränkten Gebietes kongruent

0 sind, denn wir wollen Funktionen f∞ betrachten, die strikt positiv sind. Also

erzeugen wir aus den diskreten Bilddaten mittels Splineinterpolation Funk-

tionen, die nicht auf
� d, sondern einer Teilmenge D des

� 2 (einem Rechteck)

definiert sind. Außerdem arrangieren wir die Splineinterpolation so, dass die re-

sultierenden (glatten) Funktionen Dirichlet- oder Neumann-Randbedingungen

(in beiden Fällen mit den Konstanten 0) erfüllen. So betrachten wir also im

folgenden solche Funktionen f0, f∞ : D → �
mit Dirichlet- oder Neumann-

Null-Randbedingung, die zusätzlich noch zweimal stetig differenzierbar sind

und nehmen f∞ als strikt positiv an.

Die Tatsache, dass es sich beiD um ein Rechteck, also um ein nur stückweise

glatt berandetes Gebiet handelt, macht hier die Reformulierung von Aussagen

notwendig, die für den Fall von glatt berandeten Gebieten bereits bekannt sind.
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Beispielsweise haben wir den Begriff der Neumann-Randbedingung zu erset-

zen, da in den Punkten des Randes von D in denen ∂D nicht glatt ist, keine

eindeutige Normale existiert. So erfüllt die Funktion f∞ die starke Neumann-

Null-Randbedingung, falls die Ableitung auf dem Rand (außerhalb der Eck-

punkte) in Richtung der Normalen Null ist, was der üblichen Neumann-Null-

Randbedingung entspricht. Wir fordern dann aber zusätzlich, dass die Randa-

bleitung in den Eckpunkten in allen Richtungen ν ∈ Nx verschwindet, wobei

wir Nx als eine Menge von Normalen im Randpunkt x definieren. Im nächsten

Schritt verallgemeinern wir dann D zu einer konvexen, beschränkten Teilmenge

des
� d. Wir stellen unsere theoretischen Betrachtungen also in einen allgemei-

neren Rahmen, als es für die später diskutierten Anwendungen erforderlich

wäre.

Wie zuvor wählen wir f∞ strikt positiv und beweisen, dass der Operator

H = −1
2
∆ + ∆f∞

2f∞
, definiert auf C2(D), mit Dirichlet- oder Neumann-Null-

Randbedingungen auch ein Operator mit rein diskretem Spektrum ist. Wir

zeigen weiter, dass 0 der kleinste Eigenwert von H ist und dass der zugehörige

Eigenraum Dimension eins hat. Zusammen mit bereits vorhandenen Ergebnis-

sen über Lösungen von Differentialgleichungen zweiter Ordnung führt dies zur

punktweisen Konvergenz der Funktion f(t) = exp(−tH)f0 gegen f∞. Wir be-

trachten dabei den Fall eines glatt berandeten Gebietes und den allgemeineren

Fall des konvexen Gebietes weitestgehend getrennt. In beiden Fällen benutzen

wir wie zuvor ein Cauchy-Problem, um f(t) wie in Gleichung Z.1 als Erwar-

tungswert darzustellen. Wieder behandeln wir zuerst den Fall eines glatten

Randes und geben Lösungen des Cauchy-Problems in der Form Z.1 an, wo-

bei wir die Brownsche Bewegung im Fall einer Neumann-Null-Randbedingung

durch eine (am Rand von D) reflektierte Brownsche Bewegung ersetzen. Für

den Dirichlet-Fall benutzen wir eine Brownsche Bewegung, die am Rand von

D gestoppt wird. Gleiches gilt für die transformierte Darstellung wie in Glei-

chung Z.2, die wir ebenfalls durch ein Cauchy-Problem identifizieren. Dort sind

entsprechend eine reflektierte bzw. eine gestoppte Itô-Diffusion zu verwenden.

Aus [66] wissen wir, dass die reflektierten Itô-Diffusionen Lösungen von

Skorokhod-Problemen sind. Wir benutzen diese Tatsache, um die explizite

Konstruktion einer reflektierten Itô-Diffusion an einem nicht notwendig glat-
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ten Rand zu vermeiden. Dafür beweisen wir eine Version der Itô-Formel für

Lösungen von Skorokhod-Problemen, mit deren Hilfe wir dann die Identifika-

tion für die reflektierte Itô-Diffusion (wie in Gleichung Z.2) herleiten. Um nun

Terme des Typs f(t)(x) = � [(f0f
−1
∞ )(Xx

t )] für eine reflektierte Itô-Diffusion

mittels Computer näherungsweise berechnen zu können, geben wir die Appro-

ximationen für Xx
t aus [72, 73] an. Wir erweitern diese, um Entsprechungen für

bereits existierende Approximationsschemata an Itô-Diffusionen in
� d zu fin-

den1. In Abschnitt 3.2 geben wir dann einen Algorithmus zur Approximation

von � [(f0f
−1
∞ )(Xx

t )] an und diskutieren sowohl stückweise konstante Approxi-

mationen der Funktionen f0, f∞ und des Driftkoeffizienten b = −∇ ln f∞ als

auch auftretende Approximationsfehler.

Der letztlich resultierende Algorithmus zur Bildtransformation entspre-

chend dem zeitdiskreten Verhalten von f(t) wird zum Abschluss der Arbeit

(in Kapitel 4) anhand einiger Computerexperimente vorgeführt und diskutiert.

Dabei illustrieren wir zuerst die prinzipielle Funktionsweise des Transformati-

onsalgorithmus anhand verschiedener Beispiele. Schon in diesen Experimenten

zeigt sich deutlich, dass in den transformierten Bildern Kanten hervorgehoben

sind. Wir beschreiben dann eine Version des Transformationsalgorithmus, des-

sen Laufzeit um den Faktor 5 geringer ist und dessen Ergebnisse visuell kaum

von den Ergebnissen des ursprünglichen Transformationsalgorithmus zu un-

terscheiden sind. Diese Version des Transformationsalgorithmus benutzen wir

anschließend um anhand eines Fingerabdruckes zu zeigen, wie sich die kanten-

hervorhebende Wirkung unserer Methode vorteilhaft einsetzen lässt. Anschlies-

send führen wir den abgeleiteten Algorithmus zur Bildglättung exemplarisch

vor. Wir zeigen den Zusammenhang zur Bildglättung durch Faltung mit Gauss-

Funktionen und illustrieren auch die Unterschiede gegenüber unserer Methode

Den Abschluss der Experimente bildet eine exemplarische Anwendung unse-

rer Methode auf das Problem der Rauschreduktion. Insgesamt entsprechen die

Ergebnisse der Experimente unseren auf Grund der theoretischen Erkennt-

nisse entstandenen Erwartungen und zeigen die Anwendbarkeit der von uns

entwickelten Methode auf die betrachteten Probleme der Bildverarbeitung.

1Die Erweiterungen der Approximationsschemata stellen eine Ergänzung der eigentlichen
Arbeit dar. Sie werden nicht zur Formulierung des Transformationsalgorithmus benötigt.
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