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ABSTRACT

In 1965 Lofti A. Zadeh proposed fuzzy sets as a generalization of crisp (or classic) sets to address
the incapability of crisp sets to model uncertainty and vagueness inherent in the real world. Initially,
fuzzy sets did not receive a very warm welcome as many academics stood skeptical towards a theory of
“imprecise” mathematics. In the middle to late 1980’s the success of fuzzy controllers brought fuzzy
sets into the limelight, and many applications using fuzzy sets started appearing.

In the early 1970’s the first machine learning algorithms started appearing. The AQ (forAq) family of
algorithms pioneered by Ryszard S. Michalski is a good example of the family of set covering algo-
rithms. This class of learning algorithm induces concept descriptions by a greedy construction of rules
that describe (or cover) positive training examples but notnegative training examples. The learning
process is iterative, and in each iteration one rule is induced and the positive examples covered by the
rule removed from the set of positive training examples. Because positive instances are separated from
negative instances, the term separate-and-conquer has been used to contrast the learning strategy against
decision tree induction that use a divide-and-conquer learning strategy.

This dissertation proposes fuzzy set covering as a powerfulrule induction strategy. We survey existing
fuzzy learning algorithms, and conclude that very few fuzzylearning algorithms follow a greedy rule
construction strategy and no publications to date made the link between fuzzy sets and set covering
explicit. We first develop the theoretical aspects of fuzzy set covering, and then apply these in proposing
the first fuzzy learning algorithm that apply set covering and make explicit use of a partial order for fuzzy
classification rule induction. We also investigate severalstrategies to improve upon the basic algorithm,
such as better search heuristics and different rule evaluation metrics. We then continue by proposing
a general unifying framework for fuzzy set covering algorithms. We demonstrate the benefits of the
framework and propose several further fuzzy set covering algorithms that fit within the framework.

We compare fuzzy and crisp rule induction, and provide arguments in favour of fuzzy set covering as a
rule induction strategy. We also show that our learning algorithms outperform other fuzzy rule learners
on real world data. We further explore the idea of simultaneous concept learning in the fuzzy case, and
continue to propose the first fuzzy decision list induction algorithm. Finally, we propose a first strategy
for encoding the rule sets generated by our fuzzy set covering algorithms inside an equivalent neural
network.





ABSTRACT

Im Jahre 1965 wurden unsharfe Mengen (auch Fuzzy-Menge) vonLofti A. Zadeh als Generalisierung zu
scharfen (oder klassischen) Mengen eingeführt um die Fähigkeiten von scharfen Mengen zu erweitern
in Richtung der Modellierung von Unsicherheit und Ungenauigkeit der Welt. Zu Anfangs waren Fuzzy-
Mengen nicht besonders populär, da Akademiker einer Theorie von “unpräziser” Mathematik skeptisch
gegenüberstanden. Mitte der 80er Jahre rückten Fuzzy-Controller in die allgemeine Aufmerksamkeit,
gefolgt von vielen Anwendungen der Fuzzy-Mengen.

In den frühen 70er Jahren enstanden die ersten Maschinelles Lernen Algorithmen. Die AQ (vonAq)
Familie von Algorithmen von Ryszard S. Michalski stellt einBeispiel der Familie von Set-Covering
Algorithmen dar. Diese Klasse von Lernalgorithmen induziert Konzeptbeschreibungen her mit Hilfe
einer gierigen Regelkonstruktion, welche nur positive Training-Beispiele beschreibt. Der iterativ Lern-
proze leitet in jeder Iteration eine Regel her und löscht inFolge dessen die positiven Beispiele, welche
mit der Regel erfasst wurden aus der Menge von positiven Traning-Beispielen. Der Term Separate-
and-Conquer wurde gewählt um den Kontrast der Lernstrategie entgegen Entscheidungsbaum Induktion
hevorzuheben, bei welcher eine Divide-and-Conquer Lernstrategie Anwendung findet. Hierbei bezieht
sich Separate-and-Conquer auf die Tatsache, dass positivevon negativen Instanzen separiert werden.

Diese Dissertation stellt Fuzzy-Set-Covering vor als eineleistungsfähige Regel-Herleitungs Regelin-
duktions Strategie. Wir verschaffen eineÜbersicht über Fuzzy-Lernalgorithmen. Infolge dessen finden
wir, dass nur wenige Fuzzy-Lernalgorithmen einer gierigenRegelkonstruktion verfolgen. Weiterhin
verschaffen soweit keine Publikationen explizit den Link zwischen Fuzzy-Mengen und Set-Covering.
Zuerst entwickeln wir theoretische Aspekte von Fuzzy-Set-Covering. Diese werden im folgenden an-
gewendet auf den ersten Fuzzy Lernen Algorithmus, welcher Gebrauch macht von Set-Covering sowie
explizit die partielle Ordnung für Fuzzy Klassifikation Regelinduktion berücksichtigt. Weiterhin recher-
chieren wir verschiedene Strategien um den zu Grunde liegenden Algorithmus zu verbessern, wie bessere
Such-Heuristik und verschiedene Bewertungsfunktion um die Regeln zu evaluieren. Weiterhin schlagen
wir ein allgemeines Rahmenwerk vor für die Fuzzy-Set-Covering Algorithmen. Wir zeigen die Vorteile
für dieses Rahmenwerk auf zusammen mit weiteren Fuzzy-Set-Covering Algorithmen, welche auch in
dieses Rahmenwerk eingepasst werden knnen.

Ein Vergleich zwischen Fuzzy und sharfen Regelinduktion wird hergestellt sowie Argumente für un-
scharfe entgegen scharfe Set Covering als Regelinduktions-Strategie vorgestellt. Wir zeigen auch die
besseren Leistungen unseres Lernalgorithmus auf im Vergleich zu anderen Fuzzy-Regellerner sowie zu
realen Daten. Weiterhin erforschen wir die Idee eines gleichzeitigen Konzept-Erlernens im Fall Fuzzy.
Wir stellen den ersten Fuzzy Entscheidungsliste Induktions-Algorithmus weiterhin vor. Abschlieend er-
stellen wir eine erste Strategie um die Regelmengen, die vonunserem Fuzzy-Set-Covering Algorithmus
generiert werden mit einem äquivalenten neuronalen Netzwerk zu kodieren.
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CHAPTER 1

Introduction

In the modern world we are collecting huge amounts of data. Infact, mankind is collecting much more

data than can be processed by humans. Several areas in computer science try to address this issue. In

the data base field efforts are underway to process large databases in better ways, whereas computer

vision, for example, focuses on the visualization and automatic processing of potentially vast amounts

of image data. Machine learning methods pose one solution toautomatic data analysis and processing.

Machine learning is a field within computer science primarily concerned with the design of computer

algorithms that improve their performance with experience[Mitchell, 1997]. Experience can be in the

form of training examples, as in the case of artificial neuralnetworks, for example, or may even be self-

generated as in the case of reinforcement learning. Classification rules represent an important method

of knowledge representation. Humans typically prefer reasoning by logical rules to decisions obtained

from black box systems, since rule-based reasoning is comprehensible and can be validated, thereby

improving confidence in the system [Duch et al., 2000; Andrews et al., 1995].

Many different methods have been proposed in the machine learning literature to induce classification

rules for a concept from a set of positive and negative instances [Clark and Niblett, 1989; Michalski

et al., 1986a; Theron and Cloete, 1996; Cendrowska, 1987; Quinlan, 1986]. This type of learning has

commonly been called rule induction or concept learning. The induction methods induce different types

of descriptions, for example decision trees [Quinlan, 1986] or propositional rules [Theron and Cloete,

1996]. The induction of fuzzy rules was proposed as an improvement over crisp rule induction.

Set covering is a successful rule induction methodology used in the crisp case. However, to date almost

no algorithms employedset coveringfor the induction offuzzyrules. In particular, we found no fuzzy set

covering alogrithm using the properties of a partial order.In this dissertation we establishe set covering

as a fuzzy classification rule induction methodology and show that set covering using a partial order can

be used to create powerful fuzzy rule induction alogrithms.We propose several novel fuzzy set covering

algorithms, and show that they are capable of inducing highly comprehensible rule sets with similar or

better classification accuracy compared to previous fuzzy classifiers. We motivate the importance of this

contribution in the next section.
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1.1 Motivation

There are many reasons for wishing to extend crisp propositional classification rules to the fuzzy case.

Fuzzy classification rules are more expressive and allow semantically more natural conditions to be de-

scribed. They are also more comprehensible, because they allow symbolic knowledge to be formulated

in a natural way using linguistic terms. The linguistic terms incorporated by fuzzy rules are defined by

fuzzy sets. Members of a universe of discourse belong to a fuzzy set to certain membership degrees,

which may be defined by an associated membership function. Thus fuzzy sets are commonly used to

address the limitations associated with (over-) exact representations by providing support for vagueness,

ambiguity and uncertainty in human understanding. A fuzzy set also addresses the problem of discretiza-

tion of continuous (real valued) data. Most machine learning algorithms need to discretize continuous

variables into a set of nominal attribute values defining ranges on the continuous domain which together

cover a range, or all of the continuous domain. For example consider an integer variable age (in years)

with domain[0, 120], for which we wish to induce a condition that distinguishes “young” from “old” cit-

izens. In the crisp case a condition must select a definitive cut-off point, e.g. age≤ 25. We can now ask

the question, what about a person26 years of age, and how do we decide where to draw the line? Dis-

cretization does not cater to the gradual progression in thereal world understanding of age from young

to old, a characteristic which can be represented by a suitably chosen linguistic variable and linguistic

terms for “young” and “old.” The fuzzy set representation also increases the representational power of

the description language. This extension also includes thecrisp case (i.e. when there is no ambiguity

in the source data) as a special case. Furthermore, the classification of an instance by a fuzzy rule is

associated with a degree of certainty or confidence. There isno such degree of certainty for crisp rules,

and an estimation of the confidence in the classification can at best be obtained from the performance

of the rule on a labeled training set. Finally, contrary to the crisp case, in the fuzzy case the decision

boundary of a rule need not be axis-parallel, and may even be non-linear. Because of the interpolation

effect of fuzzy inference between overlapping, non-rectangular fuzzy sets, the classification boundary

can be smooth, non-axis parallel.

For the reasons above, much work has already been devoted to the study of fuzzy rule learning systems

[Guillaume, 2001]. The construction of a fuzzy system can bedivided into two stages, parameter iden-

tification and structure identification [Pomares et al., 2002], also called knowledge base (or data base)

and rule base induction, respectively [Casillas et al., 2000]. The knowledge base refers to the knowledge

contained in the membership functions, whereas rule base identification concerns the issue of inducing

good rules. The two stages may happen simultaneously [Peña-Reyes and Sipper, 2001; Kasabov et al.,

1997] or sequentially [Hong and Chen, 2000]. However, much more attention is being paid to the pa-

rameter adjustment phase, as structure identification is a very complex task for which it is very difficult

to obtain reliable procedures [Pomares et al., 2002]. Thereis also a definite difference between a tuning

method and a learning method. Tuning methods optimise parameters in a predefined rule set, whereas

learning methods perform a more elaborate search of the space of possible rule bases and/or knowledge

bases, and do not depend on a predefined rule set [Cordón et al., 2004]. One successful structure identi-

fication approach is decision trees. The induction of fuzzy decision trees, as a generalization of “crisp”
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decision trees, have been addressed in a number of papers [Cios and Sztandera, 1992; Yuan and Shaw,

1995; Guetova et al., 2002].

There are several aspects which make separate-and-conquerrule learners attractive [Fürnkranz, 1999].

Decision trees are often hard to understand, and Quinlan [1993a] noted that even pruned decision trees

may be too cumbersome and complex to provide insight into thedomain. Rivest [1987] also showed

that decision lists with at mostk conditions per rule are strictly more expressive than decision trees of

depthk. Decision trees encode all the information contained in a whole rule set. Thus, to humans they

are less comprehensible than rule sets as the whole tree mustbe considered at once, while only a single

rule from a rule set need to be considered at a time. Another aspect is that there are certain concepts that

cannot be represented by a concise tree [Cendrowska, 1987]—the restriction of decision trees to non-

overlapping rules imposes a strong constraint on learnablerules [Fürnkranz, 1999]. This results in the

replicated subtree problem—due to the fragmentation of theexample space imposed by the restriction

to non-overlapping rules, it often happens that the same subtree has to be learned at various places in a

decision tree [Pagallo and Hassler, 1990]. Consider, for example, the following two rules,

a1 ∧ b3 → δ1

c5 ∧ d1 → δ1

If these two rules cover all instances belonging to classδ1, then a single decision tree cannot represent

the concept in this precise form. The root node of the tree must split on a single attribute, and there is

no attribute common to both rules. Thus, if an extra attribute can be used to form a smaller decision tree

that covers the training set, this tree will be preferred over others due to decision tree learners’ bias of

preferring shorter trees. This may not be significant overhead for a computer, however this unnecessary

attribute may be costly to obtain, e.g. if the knowledge of a patient’s temperature and blood pressure is

enough to make a decision, then requiring an additional blood test is a serious consideration. If no such

extra attribute exists, then the rule set obtained by first representing the concept as a decision tree and

then extracting rules will be much more complex. If each attribute in the rule set above had five different

values, the equivalent decision tree contains 73 leaf nodesand 90 edges. Thus the extracted rule set must

be radically simplified to obtain the original concept (see Appendix F for a simplified example).

Set covering is a very successful methodology in the crisp case that applies the separate-and-conquer

strategy to crisp inductive learning [Fürnkranz, 1999]. Set covering algorithms construct concept de-

scriptions by the induction of a conjunctive expression which covers (or matches) a subset of the positive

examples, removing the covered positive examples, and thenrepeating this process until all the positive

examples are covered. Examples of set covering concept learners are the AQR1 family of algorithms first

introduced by Michalski, CN22, PRISM, and the Basic EXclusion Algorithm (BEXA) by Theron and

Cloete [Michalski et al., 1986b; Michalski, 1969; Clark andNiblett, 1989; Cendrowska, 1987; Theron

and Cloete, 1996].

The success of crisp set covering algorithms make set covering an attractive proposition for concept

learning. Many other methods have been proposed for the induction of fuzzy rules, including fuzzy

1AQ stands forAq algorithm.
2The C and N are the first letters of the algorithm’s authors, P.Clark and T. Niblett
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neural networks, fuzzy clustering algorithms, and fuzzy decision trees. However, there are very few

fuzzy rule induction algorithms that apply greedy incremental rule construction. We found only two

methods that use a separate-and-conquer strategy by removing covered instances from the training set,

and the relation to the set covering methodology is not made explicit. This dissertation establishes set

covering as an important fuzzy rule induction methodology,relates fuzzy to crisp set covering, and

proposes fuzzy set covering using a partial order as a powerful new fuzzy rule induction strategy. Fuzzy

sets are an intermediary between the symbolic and sub-symbolic knowledge representations—we can

reason with fuzzy sets symbolically as linguistic terms, and we can also relate instances to fuzzy sets by a

numerical value (membership degree). Thus, the introduction of fuzzy set covering for classification rule

induction is an important contribution to machine learningsince it narrows the gap between the symbolic

and sub-symbolic knowledge representations, thereby bringing together the fuzzy and symbolic machine

learning communities. Since the proof of the pudding is in the eating, we provide several experiments

with fuzzy set covering algorithms to demonstrate that theyperform extremely well with respect to rule

set comprehensibility and classification accuracy, also compared to other state of the art algorithms. This

dissertation also introduces the first ever use of simultaneous concept learning for fuzzy rules, thereby

allowing the induction of fuzzy decision lists. We show thatunder the right conditions, decision lists can

provide extremely compact but still accurate concept descriptions. In the next section we summarize the

complete problem statement, and then we provide our objectives for achieving this goal.

1.2 Problem Statement

Rule induction is a very important subclass of machine learning methods since it provides insight into

the model learned from data. Humans often reason using a set of rules, and thus a rule based classifier is

intuitive and often more readily accepted than black box classifiers. A limitation of classic rule learners

is their inability to deal with uncertainty and ambiguity. Rules based on fuzzy sets can address this issue.

However, there are very few rule learners using fuzzy sets that apply an incremental rule induction strat-

egy such as set covering (a very successful crisp rule induction strategy). In a study of several different

fuzzy inference systems obtained from data, Guillaume [2001] concluded that the blind improvement

of performance (e.g. by generating meaningless domain partitions purely for performance reasons) may

degrade the interpretability of the induced fuzzy rules, and thereby invalidate the explicit assumption

that fuzzy rules are by nature easy to interpret. Guillaume gives three conditions for interpretable rules,

(a) fuzzy sets should be interpreted as linguistic labels, (b) the rule sets should be as small as possible,

and (c) the rules should be incomplete rules. This means thatfor a high level of interpretability, the

rules should be as general as possible, allowing each rule tocover a high number of instances, therefore

resulting in a small rule set. In this dissertation we investigate fuzzy rule induction strategies capable

of inducing accurate and, very importantly, comprehensible concept descriptions in the form of fuzzy

classification rules. We are specifically not concerned withalgorithms for function approximation or

fuzzy control.
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1.3 Objectives

We approach the probem stated above by persuing several objectives during the course of this disserta-
tion,

• review and characterise other fuzzy concept learners and study examples of successful crisp rule
learners,

• adapt the crisp learning strategy for the fuzzy case, and create a fuzzy learner using this strategy,

• summarize the characteristics of other fuzzy rule learnersand compare with that of the new learner,

• investigate pruning and stop growth measures in the fuzzy case,

• develop a fuzzification method for continuous data,

• examine the influence of different rule evaluation mechanisms,

• analyse the learner’s training parameters,

• investigate different description languages,

• measure the performance of the learner and compare to other fuzzy learners,

• investigate the induction of ordered rule sets (decision lists),

• investigate the possibility to develop a framework within which the learner and its various exten-
sions can be understood and characterised.

1.4 Accomplishments

During the course of this dissertation we will demonstrate that all the objectives set out in the previ-
ous section are met. We will show that our proposed fuzzy rulelearning methodology adheres to all
three conditions for high interpretability as stated in theproblem statement. We will also show that the
proposed algorithms are at the same time capable of inducinghighly accurate fuzzy rule sets. We list
several contributions made by the dissertation.

1. We prove the feasibility of fuzzy set covering [Cloete andvan Zyl, 2004b] as a new methodology
for the induction of fuzzy classification rules [Cloete and van Zyl, 2004c].

2. We introduce FUZZYBEXA [Cloete and van Zyl, 2006], the fuzzy generalization and improvement
of BEXA, and provide various efficiency measures and stop growth criteria applicable in the fuzzy
case.

3. We introduce various rule evaluation functions [van Zyl and Cloete, 2004c], and show that the
heuristics they employ play an important role in the induction process and the overall performance
of the algorithm [Cloete and van Zyl, 2004a].

4. We provide preliminary results for a method for encoding the extracted fuzzy rules in an artificial
neural network, and show that there is a one to one mapping from rule set to network [van Zyl and
Cloete, 2004e].

5. We also provide a method for the induction of ordered fuzzyrule sets [van Zyl and Cloete, 2004f].
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6. We propose FCF (Fuzzy Covering Framework), a new unifyingframework based on fuzzy set
covering for the induction of classification rules, where crisp set covering is included as a special
case of fuzzy set covering [van Zyl and Cloete, 2006].

7. We provide four different specialization models for thisframework: specialization by exclusion
[Cloete and van Zyl, 2006], FUZZYSEEDSEARCH [van Zyl and Cloete, 2006], FUZZCONRI [van
Zyl and Cloete, 2004d,a], and Fuzzy PRISM [van Zyl and Cloete, 2004b].

8. We present theoretical arguments for fuzzy set covering as opposed to crisp concept learning, and
provide experiments comparing FCF to state of the art concept learners.

9. We provide a comparison between fuzzy set covering and other fuzzy learners on a set of bench-
mark data sets to demonstrate FCF’s superior performance [Cloete and van Zyl, 2006].

10. Finally, we provide results on two real world applications, the detection of SPAM and the predic-
tion of mortality in septic shock patients. FCF was able to outperform previously used methods
convincingly, both with respect to classification performance and especially with respect to rule
set comprehensibility.

1.5 Dissertation Outline

Since the goal of the dissertation is to develop a new fuzzy rule induction methodology, in Chapter 2 we

provide a survey of fuzzy concept learners in general. We show that there are indeed very few algorithms

that apply a greedy incremental rule construction strategy, and that none apply the set covering rule

induction strategy using a partial order for the induction of fuzzy classification rules. In Chapter 3

we study the details of the succesful crisp rule learner BEXA. In the following chapter we develop

fuzzy set covering for classification rule induction, and introduce FUZZYBEXA as an instantiation of

such algorithms. FUZZYBEXA makes explicit use of partial ordering and lattice theory byarranging

the concepts in its description language in a lattice, and drawing conclusions for induction strategies,

efficiency, and pre-pruning.

FUZZYBEXA can be adjusted to the specific problem by a set of learning parameters, for example, the

beam width. We provide an empirical evaluation of the influence of these parameters on the algorithm

in Chapter 5. The following chapter discusses the importance of the rule evaluation function, introduces

several new evaluation functions, and provides an empirical comparison. To establish FUZZYBEXA ’s

uniqueness, Chapter 7 provides a comparison between FUZZYBEXA and other fuzzy concept learners at

the hand of FUZZYBEXA ’s various characteristics. In the following chapter we propose FUZZCONRI,

a fuzzy set covering algorithm that induces conjunctive fuzzy rules. Chapter 9 introduces FCF (Fuzzy

Covering Framework), a general fuzzy set covering framework that allows the use of arbitrary specializa-

tion models employing different description languages. Wealso propose several different specialization

models for the framework. In Chapter 11 we provide argumentsfor fuzzy set covering as opposed to

crisp concept learning, and we present empirical proof thatFCF outperforms comparable fuzzy learners

on real world data. We present concluding remarks and directions for further research in Chapter 12.
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CHAPTER 2

Fuzzy Concept Learners

2.1 Introduction

A typical empirical learning algorithm receives a set of examples, where each example is described by

a vector of attributes, and each attribute consists of attribute values. In the case of a neural network,

for example, all attributes have attribute values from the domain of real numbers. The task of a concept

learner is to build a mapping from attribute values to concepts (or classes). ID31, for example, builds a

decision tree to classify examples based on their attributevalues, where attributes are tested at the node,

and different branches represents different attribute values [Quinlan, 1986]. A concept learner is said

to induce a concept description from a set of positive and negative instances (examples) of the concept.

Covering algorithms are a class of concept learning algorithms that produce concept descriptions by

iteratively generating concept descriptions, and at each step removing the positive instances covered (or

classified) while retaining all negative instances, until all positive instances are covered. AQ15 and CN2,

for example, induce a set of IF-THEN propositional rules, where the antecedent is built by a boolean

expression of the attribute values, and the THEN part represents a concept [Michalski et al., 1986b;

Clark and Niblett, 1989]. The expressiveness of the learneris determined by its description language.

Learners with a more expressive description language can represent more complex concepts, and are

therefore more powerful. The description language of BEXA [Theron and Cloete, 1996], for example,

can be represented using Michalski’s Variable Valued LogicSystem 1 (VL1) [Michalski, 1972], and may

contain internal disjunction.

Based on their method of learning, fuzzy concept learners can be divided into roughly seven major

classes: (1) those employing greedy incremental rule construction, (2) those following a divide-and-

conquer strategy, such as fuzzy decision trees, (3) those that use similarity search, (4) those that employ

stochastic search, (5) those that derive a fuzzy partition,(6) those that build hierarchical systems, and

(7) those based on gradient descent. There are also a few exceptions that cannot be put into any of these

major classes, for example fuzzy Bayesian learning.

To date, no algorithms have been proposed that use the set covering approach to fuzzy rule induction

in the way presented in this dissertation. This chapter provides a survey of existing fuzzy classification

methodologies, and we review several algorithms of each as examples. The reviewed algorithms are rep-

1ID3 is an acronym for Iterative Dichotomiser 3.
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resentative of their groups, and other similar algorithms follow the same strategy with only incremental

differences. Since concept learners induce rules with different description languages, we first discuss

different possible description languages in Section 2.2. We then continue to discuss greedy incremental

rule learners, divide-and-conquer search, similarity search, stochastic search, fuzzy partitioning meth-

ods, hierarchical fuzzy systems, and gradient descent search, respectively in Sections 2.3 to 2.9. The

discussion is thus ordered from most related to more distantwork. Within each section, the survey of

literature on the respective rule induction method is presented in chronological order (except where not

appropriate), and more emphasis is placed on work introducing new concepts. Some significant methods

that do not fall into any of the major categories are discussed in Section 2.10. Section 2.11 concludes

the chapter.

2.2 Description Languages

Propositional rules are of the form

IF antecedent THEN consequent (2.1)

In Mamdani-type fuzzy controllers the antecedent takes theform

η1 is µ1 AND . . . AND ηn−1 is µn−1 (2.2)

whereη1, . . . , ηn−1 are input variables. The consequent takes the form

ηn is µn (2.3)

whereηn is the output variable. The antecedent of Takagi-Sugeno fuzzy rules have the same form as

that of Mamdani rules, but the consequent is a linear function of the input variables [Takagi and Sugeno,

1985],

IF x isAi THEN yi = aT
i x + bi, i = 1, 2, . . . ,M (2.4)

wherei is the rule index,x ∈ R
n the antecedent, andyi ∈ R the consequent. The antecedent fuzzy set

of the ith rule isAi,

Ai(x) : R
n → [0, 1] (2.5)

and is typically defined as an AND-operation by means of the product operator [Setnes, 2000]. A

completerule contains linguistic terms from all input domains, whereasincompleterules do not.

A possibility rule involving fuzzy setsA andB is a special kind of fuzzy rule corresponding to the

statement “the moreX isA, the more possibilityB is a range forY ,” whereX andY are two variables

[Dubois et al., 2002]. The possibility rule guarantees a certain lower boundπ(x, y) that (x, y) is an

admissible instantiation of(X,Y ),

π(x, y) ≥ min{A(x), B(y)} (2.6)
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TypicallyX andY are input and output variables, respectively, and we are interested in the values ofY

givenX. Assumingπ(y|x) = π(x, y), Eq (2.6) is a lower bound to a conditional possibility distribution,

i.e. given the valueX = x the possibility thatY = y is lower bounded byπ(x, y).

FUZZYBEXA, to be introduced in Chapter 4, will express its rule antecedents in FuzzyAL, a fuzzy

attributional logic that contains disjunction, conjunction, and internal disjunction. The rule consequent

may either be a single variable, or a conjunction of output variables (see Section 4.3.1 for a detailed

treatment of FuzzyAL). Most rule learners uses either Mamdani or Takagi-Sugeno type rules, and with

the exception of fuzzy decision trees, few induce incomplete rules.

2.3 Greedy Incremental Rule Construction

Inductive rule learners induce IF-THEN classification rules from data by identifying features that em-

pirically distinguish positive from negative training examples [Mitchell, 1997]. The class of fuzzy rule

learners most related to our work induce rules by a greedy incremental rule construction process. These

rule learners construct rules by expanding one or more rulesincrementally at each step. The search

process employs a greedy search by choosing the expansion leading to the (local) best improvement.

There exist very few such rule learning algorithms (we have found only four to date) compared to the

large number of fuzzy decision tree learners, fuzzy neural networks, and fuzzy genetic algorithms. In

this section we review all the algorithms following this approach in relative detail. In Chapter 9 we

will propose several specialization models for fuzzy rule induction, and we will provide a comparative

discussion of the relevant algorithms surveyed in this section.

Wanget alproposed a learning strategy for incomplete rules using fuzzy information gain [Wang et al.,

1999]. Inductive learning is generalized to learn a conceptdescriptionR̃,

∀̃ẽ ∈α P̃ ⇒ ẽ⊂̃αR̃ and ∀̃ẽ ∈α Ñ ⇒ ẽ ˜6⊂αR̃ (2.7)

whereR̃ is a fuzzy concept description,∀̃ is a linguistic quantifier such as “almost all” or “most,”ẽ is a

soft instance,̃P andÑ are sets of soft positive and negative instances respectively, and⊂̃α and ˜6⊂α are

fuzzy relationship descriptors that denoteα-coveredandα-not covered, respectively. A soft (or fuzzy)

instance is an instance that has class membership to linguistic terms in the range[0, 1]. Mamdani-type

rules of the form of Eq (2.1) are learned, and an instance is said to beα-coveredby a descriptionR̃ if

the rule strength is above a predefined thresholdα, i.e. non-zero after applying anα-cut. This inductive

strategy is borrowed from the crisp inductive algorithm PRISM [Cendrowska, 1987]. The algorithm

receives a training setT , and learn descriptions for conceptsck ∈ C, k = 1, . . . ,K, whereC is a set

of concepts. The rule learning begins by consideringck ∈ C, and initialises the concept descriptioñR

to null. It then measures the fuzzy information gain for eachlinguistic term for the current class and

chooses the terml that results in the highest gain. It then adds the term to the description,R̃ = R̃ ∧ l.

The rule is then evaluated according to the fuzzy Bayes measure [Yuan and Shaw, 1995],

B(Ck|R̃) =

∑

e∈T µCk
(e)τµR̃(e)

∑

e∈T µCk
(e)

(2.8)
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Table 2.1: The Fuzzy Beam Search algorithm.

PROCEDURE FuzzyBeamSearch(maxdepth, w)
1 depth = 0
2 ruleset = a single rule with no conditions
3 REPEAT
4 FOR EACHri ∈ ruleset
5 FOR EACH attributeaj not used inri
6 FOR EACH attribute valuevk

7 let rijk = ri with [aj = vjk] added to the condition
8 specializations = specializations∪ {rijk}
9 Compute a rule quality measure forrijk

10 END FOR
11 END FOR
12 END FOR
13 ruleset = bestw rules among current rules
14 depth = depth+ 1
15 UNTIL no rule created in this iteration outperforms rules

of previous iterations ORdepth = maxdepth
16 RETURNruleset

END PROCEDURE

whereτ is a t-norm such as minimum. If the rule strength is above a user-defined levelβ then the rule

is added to the rule set, all theα-coveredinstances removed from the training set, and the procedure

repeated. When all the instances areα-covered, the procedure is repeated for the next class.

Fertig et al developed a fuzzy beam search induction algorithm [Fertig et al., 1999]. The algorithm

is given in Table 2.1. It receives two parameters,maxdepth is the maximal search depth, andw is

the number of simultaneous paths explored, or beam width. A top-down induction is performed by

adding conditions[aj = vk] to existing rule antecedents, whereaj is an attribute that was not present

in the rule antecedent before, andvk is an attribute value fromaj. Thus, the description language

allows the conjunction of different attribute-value pairs, and an attribute may only occur once, thus

similar to the description language of CN2 [Clark and Niblett, 1989]. The procedure creates all possible

specializations of the current rules, and evaluates them according to the evaluation functionE,

E =
|A ∧ C| − 1

2

|A|
(2.9)

whereA is the rule antecedent,C is the class attribute, and| · | is the summation of membership degrees

over all examples with membership higher than a predefined value α. Once all the specializations are

created, the bestw rules are picked from both the specializations and previousrules. The search termi-

nates when exactly the previous rule set is selected again after specialization, or whenmaxdepth terms

were added to the rule antecedent. The fuzzy sets may either have trapezoidal membership functions or

assume crisp 0 or 1 membership degrees. The choice of the class predicted by rules are not specified

in Table 2.1. The authors suggest to run the algorithmk times for ak-class problem, and let rules have

each class as consequent in turn. In a two class problem, onlythe minority class is predicted, since such

rules are more interesting. The majority class is then set asthe default class.
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In reference [Wang et al., 2003] Wanget alpropose a fuzzy learning strategy based on the AQR inductive

learner by Michalski [Michalski, 1969; Michalski et al., 1986a] called fuzzy AQR (FAQR). Wanget al

state that their method focuses on learning fuzzy rules fromsoft training examples, and do not consider

the acquisition of membership functions, which could be obtained by any of a number of methods.

FAQR induces rules in disjunctive normal form,C1∨C2∨. . .∨Cx where eachCi is a purely conjunctive

expression. The fuzzy measurement functionµ defines the degree to which a set of soft positive instances

P are included by the concept descriptionR,

µinclude(R) =

∑

e∈βP (µP (e) τ µR(e))
∑

e∈βP µP (e)
(2.10)

whereτ is a t-norm, ande ∈β P means that instancee β-belongsto P , i.e. µP (e) ≥ β. The fuzzy

measurement functionµexclude(R) defines the degree to whichR excludes soft negative instances,

µexclude(R) =

∑

e∈βN (µN (e) τ (1 − µR(e)))
∑

e∈βN µN (e)
(2.11)

A concept descriptionR is evaluated by

µ∀̃+ 6∀̃−(R) = µinclude(R) ρ µexclude(R) (2.12)

whereρ is a union or an addition operator, and the subscript∀̃+ ˜6 ∀
−

represents soft include positives and

soft exclude negatives. If the minimum and maximum functions are used for the intersection and union

operators, the costs forµinclude andµexclude are proportional to the numbers of positive and negative

instances. The fuzzy measurement function for a complexC is defined similarly to that forR by simply

replacingR with C in the equations above.

The FAQR learning strategy consist of two phases: generation and testing. The algorithm is shown

in Table 2.2. In step 5 of the procedureGenComplexa description is specialized as follows. LetS

be the set of all single term expressions (single attribute-value pairs) thatα-cover the SEED but not

the negative instancee, then the newCset is the set{Cj ∧ Sk|Cj ∈ oldCset andSk ∈ S}. Finally,

remove all the complexes inCset that are subsumed by other complexes, i.e. ifCi subsumesCj and

µ∀+ 6∀−(Ci) ≥ µ∀+ 6∀−(Cj), removeCj fromCset.

FS-FOIL is a fuzzy extension of FOIL (for First Order Inductive Learner) [Quinlan, 1990; Quinlan and

Cameron-Jones, 1993], and thus uses first-order logic to induce a set of fuzzy predicates describing

a goal predicate [Drobics et al., 2003]. The final induced predicateĀ is the disjunction of the set of

predicatesS,

t(Ā(x)) =
∨

A∈S

t(A(x)) = SL(x, y)t(A(x)) (2.13)

whereSL is the Łukasiwich t-conorm. The objective of the algorithm is to find a set of predicates with

high significance and accuracy, where significance is definedas the common support of a predicateA

and the goal predicatēC,

supp(A, C̄) =
|(A ∧C)(X)|

|X|
=

1

K

K
∑

i=1

TL(t(A(xi)), t(C̄(xi))) (2.14)
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Table 2.2: The Fuzzy AQR algorithm.

PROCEDURE Fuzzy AQR(P,N )
1 LetR be an empty set
2 While the rule set R does notα-coverall positive instances inPβ, do the following steps.

Otherwise, returnR.
3 Select the positive instance SEED that is notα-coveredbyR, and has the

highestµP (e) among the positive instances.
4 Call the procedure GenComplex to generateCset, a set of complexes thatα-cover

SEED and no negative instances inN
5 Select the complexCbest that has the highestµ∀+ 6∀− value inCset.
6 AddCbest as an extra rule to the rule setR (i.e.R = R ∨ Cbest), and go to step 2.

END PROCEDURE

PROCEDURE GenComplex (SEED)
1 LetCset be a set of single-selector complexes thatα-coverSEED
2 While at least one complex inCset α-coversa negative instances inN , do the

following steps. Otherwise, returnCset.
3 SelectCj fromCset such thatµexclude(Cj) has the smallest value
4 Select a negative instancee with the highest valueµN (e) among thoseα-coveredbyCj .
5 Specialize all complexes inCset to notα-coverthe instancee.
6 Remove the worst complexes fromCset until |Cset| ≤ θ, whereθ is a

user-defined parameter.
END PROCEDURE

andTL is the Łukasiwich t-norm. Accuracy is defined as the confidence of predicateA with respect to

C̄, where conf(A, C̄) = supp(A,C̄)
supp(A) , supp(A) = 1

K

∑K
i=1 t(A(xi)), and thus

conf(A, C̄) =
|(A ∧ C̄)(X)|

|A(X)|
=

∑K
i=1 t((A ∧ C̄)(xi))
∑K

i=1 t(A(xi))
(2.15)

The FS-FOIL algorithm is shown in Table 2.3. It starts with the predicate⊤ that always gives truth value

1. In each iteration an intermediate set of predicatesP is expanded by forming conjunctions between

members ofP ′ and members from the setE, the set of atomic predicates that may be used for expansion.

The bestk predicates according to the information gainG are kept, where

G(A) = |(A ∧ C̄)(X)|

(

log2
|(A ∧ C̄)(X)|

|A(X)|
− log2

|C̄(X)|

|X|

)

(2.16)

Pruning proceeds by removing all predicatesA ∈ P for which supp(A, C̄) < suppmin, and all predicates

in B ∈ E for which supp(A ∧ B, C̄) < suppmin. If a predicateA has at least a minimum significance

and accuracy, it is added toS. The open nodes fromO covered byA are then removed by replacingO

with the intersection of the fuzzy setO and the fuzzy set of elements inX that have not been described

by the predicateA. The induction process terminates when|O|/K falls below a certain threshold, or

when no new significant and accurate predicates can be found by expansion anymore. Although FS-

FOIL is said to use first-order logic, only a single variable is allowed, and thus no variable binding is

necessary. FS-FOIL does not perform substitution orθ−subsumption, and thus cannot learn relations
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Table 2.3: The FS-FOIL algorithm.

PROCEDURE FS-FOIL(̄C,X ,A)
1 S = ∅, P = {⊤},E = A, open nodesO = C̄(A)
2 REPEAT
3 P ′ = bestk predicates ofP according toG
4 P = expansion ofP ′ usingE
5 PruneP andE
6 IF predicatep ∈ P is accurate and significant THEN
7 addp to S
8 remove nodes covered byA from open nodesO
9 P = {⊤},E = A
10 END IF
11 UNTIL stopping condition

END PROCEDURE

between attributes or recursive functions like FOIL [Quinlan, 1990; Quinlan and Cameron-Jones, 1993;

Mitchell, 1997].

2.4 Divide-and-Conquer Strategies

The divide-and-conquer strategy is primarily implementedby decision tree learning, as exemplified by

ID3 [Quinlan, 1986] and C4.5 [Quinlan, 1993a]. Decision trees, like most other symbolic machine

learning methods, cannot handle continuous values in a natural way, and can at most suggest threshold

values (boundaries) for decision making. The first fuzzy decision tree induction method was proposed

by Chang and Pavlidis [Chang and Pavlidis, 1977]. Their method builds a binary fuzzy decision tree

using a branch-bound-backtrack algorithm. Recently, fuzzy decision trees received much attention from

several authors. F-ID3, for example, is a fuzzy counterpartof the ID3 algorithm, where a fuzzy version

of the entropy function based on the cardinality of fuzzy sets is used instead of the classical entropy

function [Cios and Sztandera, 1992].

Instead of using fuzzy entropy, Yuan and Shaw assume that membership functions are known a-priori,

and induction proceeds based on the classification ambiguity. At each node in the tree the attribute that

reduces the classification ambiguity most is chosen for expansion [Yuan and Shaw, 1995]. Zeidler and

Schlosser suggested to compute membership functions for continuous domains [Zeidler and Schlosser,

1995]. First the domain is partitioned, and then trapezoidal membership functions are placed on each

partition, where the corner points of two adjacent trapezoids are chosen to be the first instance values

left and right of the partition division. In reference [Zheru and Hong, 1996] an algorithm is proposed to

fuzzify the rules deduced from a decision tree induced by theID3 algorithm. Crisp ranges are fuzzified

by placing trapezoidal membership functions over the range, and choosing the end points to extend

a user defined amount over the range. The attributes are then replaced by linguistic variables, and a

two-layer perceptron is used as a defuzzification method.

Janikow suggests that fuzzy decision trees are usually usedwhen the objective of learning is high com-
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prehensibility, rather than “best” fuzzy partitioning of the description space [Janikow, 1996; Janikow

and Fajfer, 1999]. His fuzzy decision tree is induced using the ID3 method, but the information utility

of individual attributes is evaluated using fuzzy sets. During classification, the inference routine must

determine to what degree the example satisfies each of the leaves, and several inference methods have

been suggested [Janikow, 1998]. In reference [Janikow, 1996] exemplar learning is used in the infer-

ence method. Exemplars are special examples selected from the training data, and used as a proximity

measure, i.e. the decision procedure returns the class assigned to the ”closest” exemplar. This relates

the fuzzy decision tree induction method by Janikow to the class of similarity search methods discussed

in Section 2.5.

Marsala used the star entropy to induce fuzzy decision treesapplied to data mining [Marsala, 1998],

where the star entropy is an extension of the Shannon entropy[Bouchon-Meunier et al., 1996]:

H∗
S(C|Aj) = −

mj
∑

l=1

P ∗(Vjl)

K
∑

k=1

P ∗(Ck|Vjl) log(P ∗(Ck|Vjl)) (2.17)

whereVjl is the set of instances from the training set that has thelth attribute value for attributeAj , Ck

is the set of instances from the training set belonging to concept ck, andP ∗ is the Zadeh probability

measure of fuzzy events [Zadeh, 1968]. Ifν = {x1, . . . , xn} is a fuzzy set and with each elementxi the

classical probability of occurrenceP (xi) is associated,ν is called a fuzzy event. The probability of the

fuzzy event is then defined by,

P ∗(ν) =

n
∑

i=1

µ(xi)P (xi) (2.18)

Membership functions are obtained beforehand by using a method based on the utilization of mathemat-

ical morphology theory [Marsala and Bouchon-Meunier, 1996]. In reference [Marsala, 2000] Marsala

showed that classification by fuzzy decision trees is equivalent to generalized modus ponens. General-

ized modus ponens is an extension of the classical modus ponens capable of handling fuzzy data,

Rule: P ⇒ C
Observation: P ′

Deduction: C ′

Observing a valueP ′ close to the antecedentP of a rule allows the construction of a consequentC ′

close toC. It was shown that given a measure of satisfiability, e.g. fuzzy subsethood, and a process

of inference by means of a fuzzy decision tree, a continuity in the value of the decision is obtained

relative to the values of the description. This continuity of fuzzy decision trees results in stability when

classifying evolving observations.

In reference [Boyen and Wehenkel, 1999] a fuzzy decision tree was used with application to the security

assessment of a power system. The induction method is restricted to binary trees, and consists of three

steps. In the first step the tree is grown, and in the second it is post-pruned using cross-validation. In

the third step a non-linear optimisation method is used to refit the parameters (the transition regions of

tests, and the labels attached to leaf nodes). The derived fuzzy tree represents the functionµc(o) which

associates any objecto of known attribute values to the output classc by a certain membership. The
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valueµc(o) is the average of the labels attached to the leaves, weightedby the degree of membership of

the object to the corresponding fuzzy subsets.

In reference [Tsang et al., 2000] Tsanget al states that fuzzy decision trees have the advantage that

they produce comprehensible knowledge, but that they are often criticized for poor learning accuracy. A

hybrid neural network is proposed to refine a fuzzy decision tree. The fuzzy decision tree is augmented

with several parameters, resulting in a weighted fuzzy decision tree. A weighted fuzzy decision tree

contains three sets of parameters in each leaf node, the degree of truth of the classification corresponding

to the leaf node (usually called the certainty factor), the degree of importance of each segment on the

path from root to leaf node (called local weights), and the degree of importance of the leaf node’s

contribution to the consequent or classification (called the global weight). A weighted fuzzy decision

tree is equivalent to a set of fuzzy production rules with local and global weights, as introduced by Yeung

and Tsang [Yeung and Tsang, 1997]. An artificial neural network trained by an adapted backpropagation

algorithm was used to adapt the tree weights. The weighted fuzzy decision tree significantly improved

its accuracy compared to a normal fuzzy decision tree, whilemaintaining high comprehensibility.

In reference [Dong and Kothari, 2001] the fuzzy ID3 algorithm as proposed in [Cios and Sztandera,

1992] was extended to include a multi-step look-ahead method based on the smoothness of the class

label surface. The smoothness is measured by calculating the cooccurance matrix. The algorithm jointly

optimises the node splitting criterion, i.e. the information gain or gain ratio, and the classifiability of

instances along each branch of the node. The look-ahead termL(k) requires finding instances within

a distancer from a given instance. These values, however, can be computed once beforehand. In

reference [Mitra et al., 2002] different types of decision trees are evaluated using a quantative measure

called the T-Measure. This measure incorporates both the compactness and performance of the decision

tree. Various methods were also proposed for incorporatinga fuzzy ID3 algorithm into a neural network

[Singal et al., 2001; Mitra et al., 2002].

Guetovaet al proposed a method for the incremental training of fuzzy decision trees [Guetova et al.,

2002]. In reference [Abonyi et al., 2003] a binary decision-tree-based initialisation of fuzzy classifiers

was proposed and used to select the relevant features and obtain an effective initial partitioning of the

input domains for a fuzzy system. The decision tree initialized fuzzy classifier is reduced in an iterative

scheme by means of similarity-driven rule-reduction. A genetic algorithm is used to remove redundancy

while maintaining high accuracy. Olaru and Whenkel proposed soft decision trees which combine tree

growing and pruning to determine the structure of the tree, and applied refitting and backfitting to im-

prove its generalization performance [Alaru and Wehenkel,2003]. In reference [Chiang and jen Hsu,

2002] fuzzy classification trees are proposed. Fuzzy classification trees integrate fuzzy classifiers with

decision trees. In references [Safavian and Landgrebe, 1991; Murthy, 1998] an overview of decision

trees in general is given.
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2.5 Similarity Search

We group all fuzzy concept learners that employ some kind of distance or closeness measure under the

term ”similarity search.” These include clustering methods, instance-based methods, and some SVM

(Support Vector Machine) methods. We discuss each of these sub-groups separately.

There exist many different clustering techniques, and alsomany different fuzzy clustering techniques,

of which the fuzzy c-means algorithm is probably the best known [Bezdek, 1981; Bezdek and Pal,

1992]. Fuzzy clustering has been employed for supervised rule learning in many different forms. Fuzzy

clustering algorithms for pattern recognition suggested in the literature include Self-Organizing Maps,

Fuzzy Learning Vector Quantization [Karayiannis and Bezdek, 1997], Fuzzy Adaptive Resonance The-

ory [Carpenter et al., 1991], Growing Neural Gas [Heinke andHamker, 1998], and Fully Self-Organizing

Simplified Adaptive Resonance Theory [Baraldi and Alpaydin, 2002; Baraldi and Blonda, 1999].

The aim of fuzzy clustering algorithms is to find a good prototype for each fuzzy cluster and suitable

membership degrees for the data to each cluster. The simplest example is fuzzy c-means, first introduced

in reference [Dunn, 1974]. Fuzzy c-means searches for spherical clusters of approximately the same size

and uses Euclidean distance as a similarity measure. In [Leski, 2001] anε-insensitive fuzzy clustering

method based on Vapnik’sε-insensitive loss function is introduced. This algorithm is robust with respect

to noise and outliers, and the fuzzy c-means clustering algorithm is obtained as special case.

In reference [Klawonn and Keller, 1997] a typical method forextracting Mamdani-type rules is de-

scribed. The output space, which may be scalar or multidimensional, is partitioned using a clustering

technique. Each data point is then assigned to a class based on the partitioning. Using the data from

each class, prototype features are extracted for each class. The prototype features are then projected

on the different dimensions of the input space. Using the projection, membership functions are ex-

tracted. These are then used to form the antecedent for an IF-THEN rule, where the consequent is the

output space projection of the feature vector. Unsupervised clustering can also be employed to derive

IF-THEN rules by projecting each cluster to the corresponding coordinate spaces. The projection to the

ith domain is obtained by taking the ith coordinate of each data point in the cluster and assigning toit the

membership degree of the original data point to the cluster.In this way a piece-wise linear membership

function on the ith domain is defined [Klawonn and Keller, 1997], and a Mamdani-type fuzzy controller

[Sugeno and Yasukawa, 1993] is obtained. If triangular membership functions are used, each feature can

be seen as a point in the instance space, where increasing distance from the feature implies increasing

vagueness and is “less typical.”

Takagi-Sugeno (TS) type rules can also be inferred directlyfrom data [Setnes, 2000]. The model identi-

fication process consists of two steps. In the first step the fuzzy antecedents of the rules are determined.

In the second step the antecedents are kept fixed, and a least-squares estimation from data is applied

to determine the consequent parameters of the rules (aT
i and bi in Eq (2.2)). The Gustafson-Kessel

clustering method [Gustafson and Kessel, 1979] is often used in the identification of TS type rules, and

employs an adaptive distance norm to detect clusters of different geometric shapes in the data set [Setnes

et al., 1998]. It defines the linear functions in Eq (2.2) on the basis of the eigenvalues and eigenvectors

16



of the matrixCi of clusteri, whereCi is a symmetric positive definite matrix obtained from the co-

variance of the clusters. In reference [Setnes, 2000] it is proposed to use the orthogonal least squares

(OLS) method and to remove redundant or less important clusters during the clustering process, thereby

extracting fuzzy rules that capture the data set features ina compact and transparent way. The clustering

methods by Gustafson and Kessel [Gustafson and Kessel, 1979] and Gath and Geva [Gath and Geva,

1989] search for hyper-ellipsoidal clusters of varying size. The Gustafson Kessel method was modified

by Klawonn and Kruse to obtain clusters whose axes are parallel to the coordinate axes [Klawonn and

Kruse, 1995]. This technique is more flexible than fuzzy c-means and results in a smaller loss of in-

formation as compared to the standard methods in [Gustafsonand Kessel, 1979; Gath and Geva, 1989].

It is also more computationally efficient since matrix inversion is avoided. In reference [Roubos et al.,

2000] an initial rule base is derived using a modified Gustafson Kessel method, and then refined using a

genetic algorithm. Hong and Lee’s fuzzy expert system also employs a clustering method to extract rules

from training data [Hong and Lee, 1996]. Berthold et al. [2002] proposed an interactive method based

on neighborgrams to generate a set of clusters from data. Thealgorithm first computes neighborgrams

for all patterns for a given class, and then computes the optimum depth, i.e. the depth for which a certain

minimum purity is guaranteed. The algorithm then iteratively adds new clusters to the set of clusters by

selecting the cluster with the highest coverage, where the coverage of a cluster with a given depthr is

determined by how many positive patterns fall within its radius. All patterns that belong to the cluster

are then removed from the training data, and the process iterated until the sum of all covered patterns

exceeds a specified threshold. The authors state that the algorithm can be fuzzified by using fuzzy mem-

bership functions to model a degree of membership of a particular pattern to a cluster. In some domains

it may also be preferable to fuzzify the class membership andto adapt the purity measurement to the

fuzzy case.

Model-based approaches make assumptions about the structure of the system under consideration, and

instance-based methods such as nearest neighbour classification rely on some kind of “closeness” or

“representativeness” assumption [Dubois et al., 2002]. Dubois et al formulate a similarity based rea-

soning (SBR) hypothesis stating “similar problems have similar solutions.” They use possibility rules in

order to formalize the SBR hypothesis, “the more similar twosituations are, the more possibly the cor-

responding outcomes are similar,” and build a fuzzy case-based reasoning system [Dubois et al., 1998].

The approach is based on similarity guided extrapolation ofobserved cases, where already encountered

cases are taken as evidence for the existence of similar cases. This evidence is expressed in terms of

degrees of possibility assigned to the hypothetical cases.

In reference [Yin, 2004] a fuzzy inference system based on characteristic points (CPs) is proposed.

Characteristic points are points in the input-output spacechosen such that all outputs in the data set can

be well approximated by the interpolation of some chosen outputs of the CPs, and are closely related to

fuzzy rules. The main difficulty lies in finding suitable CPs for a given system. The method starts by

mapping each data point to a fuzzy rule. The number of rules are then minimized using three separate

procedures, gradient projection, a Gauss-Jordan based elimination method, and back-propagation fine

tuning.
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Fuzzy relational rules are learned in reference [Gaweda andZurada, 2003]. First, the fuzzy c-means

algorithm is used to cluster the output space into classes. For each class, an arbitraryα-cut is applied to

the corresponding subset of instances, and then initial parameters for membership functions are extracted

by calculating the class centre and spread in each dimension. Thereafter the Levenberg-Marquardt

method [Levenberg, 1944; Marquardt, 1963; Moré, 1978] is used to optimise the membership functions,

and the membership function parameters are then translatedinto the corresponding linguistic terms.

This rule extraction method serves to initialise a relational fuzzy reasoning system that can be applied

to function approximation.

Recently, support vector machines (SVMs) have been used forfuzzy modeling. SVMs use a hypothesis

space of linear functions in a high dimensional feature space. They are trained with the statistical learn-

ing strategy introduced by Vapnik and co-workers in the early 1990’s [Cristianini and Shawe-Taylor,

2000]. Recently, a fuzzy SVM for solving two-class classification problems was introduced [Tsang

et al., 2003]. Fuzzy membership degrees are assigned to eachtraining instance according to its mem-

bership degree to different classes. The fuzzy SVM generalizes the traditional SVM to a fuzzy one,

and when all degrees of membership are equal for all trainingsamples it degenerates to the traditional

non-fuzzy SVM. The SVM by Chiang and Hoa uses a modified fuzzy basis function as it kernel func-

tion [Chiang and Hao, 2004]. The extracted support vectors are then used to build the fuzzy IF-THEN

rules. In [Chen and Wang, 2003] fuzzy rules are extracted from the SVM hyperplanes. Fuzzy sets have

also been used to build Fuzzy SVMs to reduce the effect of outliers on the SVM [Inoue and Abe, 2001;

Abe and Inoue, 2002; Huang and Liu, 2002]. The clustering method of rule extraction was shown to

be effective by its use in various application fields [Li and Elbestawl, 1996; Stutz and Runkler, 2002;

Gedeon et al., 2002].

2.6 Stochastic Search

Simulated annealing [Kirkpatrick et al., 1983] and geneticalgorithms [Goldberg, 1989] are examples

of stochastic search methods. Simulated annealing was usedto derive a fuzzy rule set by optimis-

ing Takagi-Sugeno rules with constant outputs [Guély et al., 1999]. Symmetric triangular membership

functions were used and the midpoint and base length of the triangle adapted by using a simulated an-

nealing technique. The adaptation of the triangle base was performed by perturbing the base width by a

percentage of its initial width. This reduced the effect of membership functions either being very wide or

very thin. The number of membership functions is set by an initial parameter, and the authors note that

using too many or too few membership functions reduce the generalization performance. In some re-

spects this method is similar to the clustering method for rule induction—both induce rules that contain

all input variables in the antecedent and the formation of membership functions is tightly coupled with

the method, i.e. it is not suited for problems where the membership functions are known a-priori. Sim-

ulated annealing was used to optimise an existing expert system that was fuzzified by hand [Garibaldi

and Ifeachor, 1999].

Genetic algorithms (GAs) is a methodology loosely based on biological evolution [Goldberg, 1989], and
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have been widely used to evolve fuzzy rule sets [Cordón et al., 2004; Cordón, Herrera, Hoffmann and

Magdalena, 2001; Herrera and Lozano, 1998; Hoffmann, 2004]. Much work has been done to combine

the use of GAs and fuzzy logic [Alander, 1997]. GAs were used to optimise various aspects of fuzzy

rule base systems, including evolving rule sets, optimising parameters in inference systems, and to obtain

membership functions [Castro et al., 1993; Herrera et al., 1994; Kang et al., 2000; Wang and Bridges,

2000; Surmann, 2000; Cordón, Herrera and Villar, 2001]. Fuzzy logic techniques have also been used to

model different GA components or adapt GA control parameters. The resulting GAs are termed Fuzzy

GAs [Herrera and Lozano, 1998]. In reference [Castro et al.,1993] GAs are used to obtain fuzzy rules

from examples. Rules are assumed to be of the form:

IF X1 isL1 ∧ . . . ∧Xn is Ln THEN Y is T

whereT andLi are linguistic labels. The membership functions were assumed to be triangular and the

GA was used to adapt the size of the conjunction and the location membership functions. Real coded

GAs were used to encode rules of the form

IF X1 isL1 ∧ . . . ∧Xn isLn THEN Y1 is T1 ∧ . . . ∧ Ym is Tm

where in this case trapezoidal membership functions were assumed [Herrera et al., 1994].

In reference [Ishibuchi et al., 1992] the input space is divided intoKM fuzzy subsets, where it is assumed

that each of theM axes is divided intoK partitions. Each subset describes one fuzzy IF-THEN rule, and

the consequent is chosen such that the rule has maximum compatibility with the data set. In [Ishibuchi

et al., 1995] a genetic algorithm is used to optimise the resulting rule set by minimizing the size of the

rule set while still maintaining high classification accuracy. A similar approach, but with a different

candidate rule generation scheme, was followed in reference [Ishibuchi and Yamamoto, 2004]. Here

rule antecedents include a “don’t care” term, and rules are screened by calculating their confidence and

support before the evolution process. Only a certain numberof “best” rules for each class are used to

initialise the genetic algorithm. In reference [Nozaki et al., 1996] rules were given greater certainty

when they classified data patterns correctly and less certainty when they classified them incorrectly.

The certainty adjustment is controlled by the learning constantsη1 and η2 for correct and incorrect

classifications, respectively.

In reference [Luukka et al., 2001] the maximal fuzzy similarity in the generalized Łukasiewicz struc-

ture was used to build a classifier. This method requires a weight optimisation which is implemented

using a genetic algorithm. Fuzzy CoCo (Cooperative Coevolution) employs a cooperative coevolution-

ary approach to fuzzy modeling [Peña-Reyes and Sipper, 2001, 2000]. Two cooperating species are

defined—a database of membership functions and a conjunctive rule base. The two species are then

evolved simultaneously. During fitness evaluation an individual establishes cooperation with one or

more representatives of the other species. The fitness valuedepends on the performance of the fuzzy

system obtained by the combination of the cooperating genes. An incremental version of the algorithm

was also proposed [Peña-Reyes, 2003]. In references [Gómez et al., 2002; Dasgupta and González,

2001] GAs have been used to evolve complete expression treesapplied to network intrusion detection.

The trees can represent arbitrary AND/OR rules.
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In reference [Surmann, 2000] membership function shapes were assumed to be approximately Gaussian

and used to evolve a fuzzy rule based knowledge representation [Surmann, 2000]. Genetic algorithms

were also used to reduce and optimise a Takagi-Sugeno type rule base obtained by a fuzzy c-means

clustering method [Roubos and Setnes, 2000]. Here rule based simplification is used together with

a real coded GA to optimise a Takagi-Sugeno type rule base. Both rule structure and membership

functions were obtained by the method published in reference [Angelov, 2003]. Genes contain both

membership functions, in the form of the centre and spread ofGaussian type functions, as well as rule

sets, where each possible rule is encoded by a positive integer number. In reference [Hoffmann, 2004] a

boosting algorithm was used together with an iterative approach for classification rule learning. In this

approach, one classification rule at a time is evolved, and the boosting mechanism reduces the weight

of the correctly classified training examples, resulting inmore focus on uncovered examples during the

induction of the next rule.

2.7 Partitioning Methods

One of the earlier rule learning methods capable of inducingfuzzy rules directly from data was intro-

duced by Wang and Mendel [Wang and Mendel, 1992]. The rule antecedent is a conjunction of input

variables, and a output variable forms the consequent. The method requires that the input and output

dimensions are partitioned into a set of fuzzy regions, where the partitions need not be of equal length.

Triangular membership functions are then placed on the partitions such that the membership at the centre

of a partition is unity, zero at the centre of the adjacent partition centres, and non-zero in between. Thus,

the state space is effectively divided into a set of fuzzy hyperrectangles, where each hyperrectangle rep-

resents a possible rule. A fuzzy rule for each data point is then created such that the rule has maximum

membership in all regions. This may result in conflicting rules, i.e. rules with the same antecedent but

conflicting consequents. To resolve such conflicts the rule that maximizesDj is chosen, whereDj is the

product of all antecedent membership degrees,

Dj =
∏

i

µi(xi) (2.19)

wherexi is theith dimension of data pointj that generated the rule. The authors also suggest that an

expert can assign a degree of usefulness to each data point, and that this degree can be multiplied with

Dj in the presence of noise. Linguistic rules obtained from experts may then be merged into the rule

base and if conflicts occur the rule with the highest degreeDj is chosen. In the last step, the centroid

defuzzification formula is used to defuzzify the output variabley,

y =

∑K
i=1m

i
Oi ȳ

i

∑K
i=1m

i
Oi

(2.20)

whereȳi is the centre of regionOi andK is the number of fuzzy rules in the rule base. The Cooperative

Rules (COR) approach was suggested as an improvement to the general method [Casillas et al., 2000].

Instead of selecting the consequent with the highest importance degree, this method considers the pos-

sibility of using a rule that did not have the highest degree,but resulted in the best overall performance
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of the rule set. COR performs a combinatorial search among the candidate rules to obtain the set of

consequents with best accuracy. This search may be brute force or using simulated annealing. In refer-

ence [Ma et al., 2000] the authors note that using the Wang Mendel method, at most two rules can be

activated for any data point in a given dimension. Using thisfact they simplify the defuzzification to a

linear expansion of fuzzy rules, and then continue to use linear regression to construct a piecewise linear

fuzzy system. The parameters obtained from the regression step is used to partition the domains, and

triangular membership functions are used. This method reduces the number of fuzzy rules generated.

Hong and Chen improve on their earlier work [Hong and Lee, 1996] by first identifying relevant at-

tributes and building initial membership functions beforederiving decision rules [Hong and Chen, 1999].

Rule derivation is done by using a multidimensional decision table, and conflicts are resolved by choos-

ing the rule with the highest degree. The method also allows for the simplification of the decision

table by merging of adjacent table cells. In reference [Hongand Chen, 2000] the method was further

developed by simplifying the intervals before the decisiontable is formed.

In reference [Ishibuchi and Nakashima, 2001] the authors assume that the antecedent linguistic values

are given by domain experts for each ofn domains. Thus, they assume that a fuzzy partition was made

before rule induction, and that changing the membership functions would deteriorate the comprehensi-

bility of the fuzzy IF-THEN rules. Their system forms fuzzy rules of the form

IF x1 isAj1 AND . . . AND xn isAjn THEN classCj with CFj , j = 1, 2, . . . , N

where the certainty gradeCFj of rule j is computed and is usually a number on the unit interval[0, 1].

Similar to the method in reference [Ishibuchi et al., 1992, 1995], all possible rules are considered, but

here rule conflicts are resolved by selecting the rule with the maximal product of compatibility grade

and confidence factor,

max
j

{µj(x) · CFj : j = 1, 2, . . . , N} (2.21)

whereµj(x) is the compatibility grade of the rule with patternx. The authors then continue to show how

to estimateCFj. The certainty grade assumes its maximal value when all compatible instances belong

to the same class, and if no class is clearly dominant the certainty grade is small.

In reference [Pomares et al., 2002] a two-stage process is used for Takagi-Sugeno type rule induction. In

the first stage parameter identification is performed to obtain good membership functions. The parameter

identification method presented in reference [Pomares et al., 2000] functions by optimising the rule con-

sequent using the Cholesky algorithm, and optimising rule antecedents using a steepest descent method.

In the second stage structure identification is performed toobtain a good system topology. The process

requires (1) the selection of input variables from a set of input candidates that are truly significant for the

problem, and (2) an optimum partitioning of the input space,and therefore the minimum number of rules

necessary for high accuracy. The authors note that this problem is certainly very complex, and that the

only method in the literature to really address point (1) is combinatorial trees. They solve the structure

identification problem by finding those input dimensions that with an increased number of membership

functions reduce the error most rapidly. Extra membership functions are then placed in these domains

such that the accuracy is maximally increased.
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2.8 Hierarchical Fuzzy Systems

Yager proposed a hierarchical-type fuzzy model called a hierarchical prioritised structure (HPS) [Yager,

1998]. The structure allows exceptions to more general rules introduced at a higher level in the hierarchy,

which themselves may be either terminal points or again rules with further exceptions. In an HPS, the

output from theith level is obtained by combining the output from the previous level withFi by using

an aggregation operator, whereFi is the result of applying theith level rule base to input to the system.

Yager first demonstrates how to build an HPS from rules obtained from experts, and then continues to

induce a three layer HPS directly from data. The automatic construction of an HPS starts by initialising

the model with some prior expectation of the system model, which could simply be a default rule such

as output isX for all input. An observation is then presented and the output from the model calculated.

If the output and expected output are close to each other within a thresholdα, the data pair is considered

to add no new information and is disregarded. If the data pairis not sufficiently explained by the bottom

layer, an exception in the form of a point rule is formed and added to the middle layer, where a point

rule is of the form

IF input is x THEN output is y

With each rule a valueM is associated, which is initialized as the strength of the exceptionP . The

strength of the exception is computed as the inverse of the closeness of the calculated and expected

outputy∗ andy respectively,P = 1 − Close(y, y∗). Next, theM values of all the other rules in the

middle layer are updated. Let(x, y) be the data pair from which a new point rule was formed, then rule

i is updated as follows,

M ′
i = Mi + Pe−Distance((x,y)−(xi,yi)) (2.22)

Thus, the current model is modified by adding to the strengthsof all other exceptions a value proportional

to the strength of the current exception, modulated by its distance to the current exceptions. Next it is

checked if the addition of the new rule caused an accumulation of exceptions that can be gathered into

a new exception rule. Let̂M be the strength of the exception with the highestM value occurring at a

point (x̂, ŷ). If M̂ ≥ β, a new rule of the following form is added to the top layer of the hierarchy,

IF input isabout x̂ THEN output isabout ŷ

In the final step, rules in the middle layer that are now accounted for by the formulation of the new rule

in the top layer are removed. The rule strength of each point(x, y) in the middle layer is adapted as

follows,

M ′
i = Mi + Pe−Distance((x,y)−(x̂,ŷ)) (2.23)

and all point rules withM ′ ≤ 1−α are removed. Let̂A andB̂ be the fuzzy subsetsaboutx̂ andaboutŷ,

respectively, then exceptioni in the middle layer is removed ifmin(Â(xi), B̂(xi)) ≥ γ.

Gabriel and Berthold proposed a hierarchical rule system that arranges rules into different levels of preci-

sion [Gabriel and Berthold, 2003]. Rules in each level depend on only a few important features. Lower

levels describe regions in input space with low evidence in the data, whereas higher levels describe

rules with more support from the data. Each layer is built autonomously using the method proposed in
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reference [Berthold, 2003] and described in Section 2.10. Ahierarchy of fuzzy rule sets are built by

first inducing rules on a set of training data, and then extracting all rules with low relevance using an

outlier-thresholdθoutlier. Next instances from the rule set are extracted using the filter parameterθfilter.

The procedure is iterated until all rules are above the outlier-threshold and the outlier model remains

empty. The outlier models and the rule model of the last iteration form the model hierarchy. To make a

classification the outputs of the rule systems at different levels are combined. Each rule model provides

an output for a given input. Two inferencing approaches are possible, the fuzzy membership degrees of

the different levels are summed, or the first rule that fires when traversing the hierarchy in a bottom-up

manner is used. Further approaches to hierarchical fuzzy systems are proposed in [Holve, 1997, 1998;

Shieh et al., 1999; Cordón et al., 2002; Moon G. Joo, 2001; Joo and Lee, 2002; Lee and Kim, 2002; Lee

et al., 2003].

2.9 Gradient Descent

A variety of neural networks that work with fuzzy rules were studied in the literature [Mitra and Hayashi,

2000]. Fuzzy rules obtained by other means can be encoded into artificial neural networks [Nauck and

Kruse, 1993; Kasabov et al., 1997; Frayman et al., 1999]. Typically fuzzy neural networks have an

input layer, a conditional or functional membership layer,a rule layer and an output layer. Fuzzy neural

networks have also been used as an oracle for querying in fuzzy inference systems [Mitra and Pal,

1995]. Fuzzy neural networks can be trained with an adapted form of back propagation, or by using

an evolutionary approach [Kasabov, 2001a]. The methodology of extracting rules from a trained neural

network for crisp rules [Cloete, 2000; Craven and Shavlik, 1994] has also been generalized to the fuzzy

case [Matthews and Jagielska, 1995; Duch et al., 2000; Faifer et al., 1999]. This allows one to encode,

refine, and extract fuzzy knowledge from artificial neural networks.

2.10 Other Methods

There are of course some fuzzy rule induction methods that donot clearly fall in any of the seven classes

defined above. In this section we review a selection of interesting examples. Jain and Abraham com-

pared four methods for the induction of fuzzy classificationrules for a breast cancer data set [Jain and

Abraham, 2003]. The first method generates a single fuzzy rule for each class by computing the mean

and standard deviation in each dimension to build fuzzy membership functions. The second method par-

titions each input domain into twenty triangular membership functions, and then calculates a histogram

using0.5 as a threshold level. The histogram is used to build a rule foreach class. The third method par-

titions the input domains into a grid, and generates a fuzzy rule for each partition. A method similar to

that in reference [Ishibuchi et al., 1992] is used to calculate the consequents. The last method is similar

to the grid method, except that the membership functions arepartitioned only on overlapping areas. For

the Wisconsin Breast Cancer Data [Blake and Merz, 1998] the authors found the simple grid method to

perform best, and the first method second best. They do note, however, that on real-world classification
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problems a single rule per class may not be sufficient.

In reference [Ishibuchi et al., 1997] Ishibuchiet al published a fuzzy Q-Learning algorithm, and used it

in reference [Ishibuchi et al., 2003] to generate training examples for a market game example [Ishibuchi

et al., 1997]. The learning process makes use of the methods in references [Ishibuchi et al., 1992; Nozaki

et al., 1996] (also described above) and learns by iterativeexecution of games.

In [Carmona et al., 2004] a method is proposed to obtain compact rule sets by including exceptions in

rules. The proposed method extends on that in [Castro et al.,1999] which learns rules of the form,

Ri : IF X1 isAi
1 AND . . . AND Xn isAi

n THEN Y isLY i

where eachAi
j is a set of labels, associated disjunctively with thejth input variable, and taken from

the respective fuzzy domainDXj = {LXj,1, . . . , LXj,pj
}, and similarlyLY i is the label of the output

variable taken from its fuzzy domain. Such rules are calledcompound rules. The method proceeds by

initially creating a rule for each instance. The input domains are partitioned and triangular membership

functions are used. The label of the fuzzy set that has maximal membership to the rule is then assigned

to each domain,

Ai
j = max

q
{µq(xj)} (2.24)

For each initial rule, if the rule is subsumed by any rule of the set of definitive rules, the method continues

with the next rule. A ruleRi is subsumedby the ruleRk if for eachAi
j ⊆ Ak

j andLY i = LY k.

If the rule is not subsumed by any other rule, then for each label in each input variable, while the

amplification of the rule is possible, it is amplified. Finally the new rule is stored in the set of definitive

rules. Amplification consists of adding a label to one of the input domains where the label is not yet

present. The amplification of ruleRi is possible if there exists no ruleRk such that eachAi
j ⊆ Ak

j

andLY i 6= LY k. Classification proceeds by converting an instance to a set of labels, where each input

domain is represented by label of maximal membership. If an instance is subsumed by one or more rules

with the same output, the example is classified as an element of the rule consequent class. If an instance

is subsumed by more than one rule with different outputs, arbitration is done by choosing the rule with

maximum degree of convenience,

degree of convenience= min{φi(xi)} (2.25)

where eachφi is a membership function associated with the input variableXi, and computed as a func-

tion of the labels present in the rule for theith domain. In [Carmona et al., 2004] the algorithm is

extended by removing redundant rules during the initial rule formation, and then ordering the remain-

ing rules in descending order according to their certainty degrees. Thus, arbitration during ambiguous

classification is replaced by using the rule with the highestdegree of certainty. LetRj
i be the rule

IF X1 isLX1 and. . . andXn is LXn THEN Y isLYi

where eachLXl is a fuzzy set, then the degree of certaintyω(Rj
i ) is calculated as,

ω(Rj
i ) =

β(Rj
i ) − β̄(Rj

i )
∑q

k=1 β(Rj
k)

(2.26)

24



whereq is the number of labels in the output fuzzy domain, and

β(Rj
i ) =

∑

e∈T

µLX1(x1) × . . .× µLXn(xn) × µLYi
(y) (2.27)

and

β̄(Rj
i ) =

q
∑

k=1,k 6=i

β(Rj
k)

q − 1
(2.28)

wheree is a training instance from the training setT with x in the input space andy in the output space.

The algorithm described thus far may yield rules that allow different consequents to coexist in some

fuzzy regions of the input space. In [Carmona et al., 2004] the authors note that a compound rule is

equivalent to a set of “single” rules, i.e. rules with just one label associated with each input variable. For

example, the compound rule

R1 : IF X1 is {S,L} AND X2 is {M} THEN Y isM

is equivalent to the single rules

R2 : IF X1 is S AND X2 is {M} THEN Y isM

and

R3 : IF X1 isL AND X2 is {M} THEN Y isM

The Fuzzy Rule Induction with Exceptions (FRIwE) algorithmuses this fact to form exceptions to rules

in regions of the input space where two or more different consequents coexist. The method selects the

best single rule in a compound rule, and adds the remaining conflicting single rules as exceptions to

the rule. The new rule set with exceptions can then be furtherreduced by removing parts of the rule

antecedent that are totally excluded due to the subset of rule exceptions. After rule reduction, some rules

may now subsume and should be deleted. Thus another check forsubsumption is performed. Finally,

the rule antecedents and rule exceptions can be merged again. Two rule antecedents can be merged if

they differ in only one domain and the rules have the same consequent. Similarly, two rule exceptions

can be merged if the rule antecedent and consequents are the same, and the exceptions differ in only one

domain. Merging consists of forming the union of the label sets in each domain.

Berthold proposed an algorithm for the formation of mixed fuzzy rules [Berthold, 2003]. IfDi is a

dimension in feature spaceD, mixed fuzzy rules can handle continuous, granulated and nominal do-

mains, i.e.Di ⊂ R, Di = {µj |1 ≤ j ≤ mi} andDi = {valj |1 ≤ j ≤ mi}, respectively. With each

mixed ruleR two vectors are associated,~c supp describes the most general constraint (support region)

and~c core describes the most specific constraint (core region). Constraints can also be true, i.e. they do

not constrain the domain. An optimistic classification, possibly resulting in a heavy portion of overlap,

can thus be made using the support constraint,

R(~x) =

n
∧

i=1

(xi ∈ csupp
i ) (2.29)
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and a pessimistic classification, possibly resulting in a large area of the feature space not being covered,

can be made using the core constraint,

R(~x) =

n
∧

i=1

(xi ∈ c
core
i ) (2.30)

The fuzzy classification solves this problem by computing a degree of match for each rule and input

pattern,

µ(R,~x) =
n

min
i=1

{µi{c
supp
i , ccore

i , xi}} (2.31)

where the minimum was used as the t-norm, and the particular form of µi depends on the type of the

domainDi. With each rule there is also associated a weightw which counts how many patterns are

explained by the rule, and an anchor~λ which stores the original pattern that triggered the formation of

the rule. Rule induction proceeds by performing a number of training epochs. During an epoch each

pattern in the training set is considered. If there exists a rule that covers pattern~x correctly, i.e.~x lies

within the support region of the rule, the core region of the rule is increased to cover~x if it does not cover

it yet, and the rule weightw is also increased. On the other hand if no rule correctly covers~x, a new rule

is created with its support region covering the entire feature space and the core region covering only~x.

The rule weight is set to one, and~λ = ~x. In the next step the support regions of all rules that incorrectly

cover~x are reduced. For such a rule, if~x lies outside the core region, the support region is decreased

just enough not to cover~x, resulting in zero membership for~x while still covering the remainder of its

patterns. This is done by finding the component of~x that does not lie in the rule’s core region and results

in a minimal loss of volume. If~x lies inside the core region it is not possible to remove the conflict

without influencing the covering of previous patterns. The same procedure as above is used to resolve

the conflict. The volume of a rule is calculated as follows,

vol(R) = (vol(~c supp), vol(~c core)) (2.32)

where the volume of a constraint is calculated as

vol(~c) = Πn
i=1vol(ci) (2.33)

and vol(ci) = 1 if ci =true, vol(ci) = ci.max−ci.min
Di.max−Di.min

if Di is numeric, and vol(ci) = |ci|
|Di|

if Di is

granulated or nominal. At the end of each epoch, all rules arereset by setting the core region toλ and

the weight value to zero. The training is complete if after anepoch no more changes are made to the

rule set. Berthold proposes to address the problem of outliers by generating two models, one describing

the overall behaviour and one describing patterns that wereconsidered irrelevant or uninformative. The

normalized rule weight parameter can be taken as a measure ofthe rule’s relevance. Rules with low

relevance are then extracted from the general model and usedas a filter for a second training phase,

thereby generating a new rule base that has less rules with higher significance. Thus only data from the

training set that are not covered by the outlier model are used to construct the general model.

In [Botta and Giordana, 1993; Botta et al., 1993] Bottaet al describes an improved version of ML-

SMART [Bergadano et al., 1988] called SMART+, which makes use of fuzzy sets. SMART+ learns

concept descriptions in First Order Logic using a combined deductive and/or abductive strategy. The
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knowledge learned defines a structured classification theory, which can be described as a discrimination

graph. As output, SMART+ generates a classification theory described in a Horn clause languageL

extended with functions, negation and numerical quantifiers. LetHi andFi be a set of concepts and

instances, respectively, and letHi ⊂ Hj ⊂ H0, then a well formed formula inL has the form,

Hi ∧ ψ(t1, . . . , tn)
w
→ Hj (2.34)

whereψ(t1, . . . , tn) is a logical formula stating a condition over termst1, . . . , tn, andw is a weight

value. Eq (2.34) states that if an instancef , f ∈ Fi, is an instance of a concepth, h ∈ Hi, and

ψ(t1, . . . , tn) is true off , thenh ∈ Hj. The value of the weightw is evaluated as the ratio between the

number of correct instances matched and the number of total instances matched inF0, and represents

an estimation of the probability that the classification byψ is correct. A formulaψ(t1, . . . , tn) contains

predicates from a setP consisting of connectives∧ and¬, and quantifiers “atmost”, “atleast”, and

“exactly”. Each predicatep ∈ P defines a fuzzy set with a triangular membership function, defined

by a set of parameters. The user specifies a range for each parameter in which to search for good

values, as well as the granularity of the search process. SMART+ uses themore-specific-thanconcept

of FOIL [Quinlan, 1990], but employs more specialization operators and more sophisticated strategies.

The basic search strategy is combined with a reduction to subproblems technique, producing a structured

classification theory. A subproblem consists of the pair(H,F ), whereH denotes a set of concepts and

F a set of instances. The initial problem is given by the pair(H0, F0). The learned rules are organized

into asubproblem graphG, where nodes are subproblems and edges, and labeled by logical formulas

ψi. This structure is well suited to be applied to, for example,a diagnostic process based on multi-stage

refinement. Within each subproblemSPi = (Hi, Fi), a specialization treeis built applying a similar

strategy to that of FOIL. Different kinds of search strategies can be applied, including greedy, best-first,

and beam-search. Within a specialization tree, nodes correspond to logical formulas and are specialized

by appending new literals, resulting in specializations with non-negative information gain. The formulas

are then evaluated using an evaluation function that contains both deductive and abductive components,

with the user defining the importance of each,

s(ψ) = aθ(ψ) + bνT (ψ) (2.35)

wherea and b is given by the user,θ(ψ) measures the quality of the hypothesisψ, andνT (ψ) is a

measure that tries to capture how wellψ is “explained” by a given domain theoryT . The functionθ

consists of two weighted components, the first part being theinformation gain obtained with respect

to the immediate predecessor in the tree, and the second partan evaluation of the completeness and

consistency ofψ. The bestN nodes are then chosen as branches in the specialization tree, whereN = 1

for a greedy search. If a formulaψ is found such thatψ → Hj, withHj ⊂ Hi, the instances belonging

to the extension ofψ, denoted byF ′, F ′ ⊆ Fi, are declared as “solved.” The focus of the search is then

moved on to those formulas on the frontier of the specialization tree that still contain instances that are

not yet solved, and the search stops when all instances are solved. At this point all instances belonging

to the same concept setHj are grouped in a new setFj , and a new subproblem(Hj, Fj) is defined.

The logical formulas with the same consequent setHj thus form the disjunctive rule that connects the
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subproblems(Hi, Fi) and(Hj, Fj) on the subproblem graphG. The whole process terminates when

a subproblem contains only one concept in the concept set. The classification of an unknown instance

will proceed along the graphG. Initially it is placed in(H0, F0). Then, depending on which logical

formula connecting(H0, F0) to child nodes the instance satisfies, the instance is assigned to one of the

subproblems. This process is iterated until a leaf subproblem node is reached.

In reference [Störr, 2002] a fuzzy generalization of the Naive Bayesian classification algorithm is intro-

duced and applied to the classification of web layout preferences. Bayesian methods are based on the

knowledge about the prior probabilities of alternative hypotheses and the probability of observing vari-

ous data given the hypotheses. Naive Bayesian classifiers assume that attribute values are conditionally

independent of the classification of the instance [Mitchell, 1997]. The requirements for the application

described in [Störr, 2002] is that the classifier should support fast, incremental learning, learn from few

examples, have a compact representation of the internal model, and allow the use of fuzzy attributes.

The fuzzy case is described by letting the attributes be fuzzy, i.e. an example does not have exactly one

value for each attribute, but has each value to a certain degree. The attribute names a linguistic variable,

and each value corresponds to a linguistic term. Examples are also allowed to belong to each class to

a certain degree. The learner defaults to the crisp case in the extreme with membership degrees either

1 or 0. In reference [Castro and Zurita, 1997] a fuzzy rule learner based on an assumption-based truth

maintenance system (ATMS) [de Kleer, 1986; McAllester, 1990] is proposed. The algorithm induces

fuzzy rules by finding the minimal node in the ATMS.

2.11 Summary

In this chapter we reviewed several fuzzy rule learning algorithms. We showed that the set of all fuzzy

learning algorithms can be divided into seven major classes, excluding the class that contains all al-

gorithms that do not fit in any of the seven other classes. We found only four greedy incremental rule

construction algorithms, making this class the smallest ofall. In the remainder of the dissertation we will

introduce a new group of fuzzy rule learning algorithms. These algorithms will all follow a set covering

approach to learning, and can be seen as a subclass of the class of greedy incremental rule construction

algorithms.
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CHAPTER 3

The BEXA Covering Framework

3.1 Introduction

The BEXA Covering framework was introduced by Theron and Cloete [Theron and Cloete, 1996;

Theron, 1993]. It provides a framework for relating different set covering algorithms. The framework

consists of three layers, a top layer implementing the set coving strategy, a middle layer implementing

search heuristics, and a bottom layer implementing the specific evolutionary behaviour of the algorithm.

Theron and Cloete showed that by adapting the evolutionary behaviour, i.e. by changing the bottom

layer, several set covering algorithms, e.g. CN2 [Clark andNiblett, 1989], the AQR family of algo-

rithms (specifically AQ15 [Michalski et al., 1986a]), PRISM[Cendrowska, 1987], GREEDY3 [Pagallo

and Hassler, 1990] and Gray’s algorithm [Gray, 1990], fit into the framework.

Theron Theron and Cloete [1996] also introduced the idea that the search starts with a most general

description, which is then continuously specialized to form better descriptions. BEXA introduced a new

method of specialization based on excluding attribute values rather than appending them to concept

descriptions, and it was shown that this method performs particularly well [Theron and Cloete, 1996].

BEXA can, for example, find concept descriptions that other methods cannot, and is guaranteed to find

the most general consistent concept descriptions. BEXA uses VL1 (Variable Valued Logic System 1) as

description language to express its concept descriptions [Michalski, 1972]. VL1 is a very rich language,

and allows internal disjunction, for example. The completesearch space for any but the most trivial

problems is therefore very large, and BEXA contains several search restrictions that prevent unnecessary

search in uninteresting regions of the search space.

In the next chapter we will propose fuzzy set covering for inductive rule learning. We will also develop a

fuzzy set covering algorithm, FUZZYBEXA, applying this methodology. FUZZYBEXA, as indicated by

its name, is related to BEXA. It has the same hierarchical structure, and also makes use of the exclusion

principle. However, we will show that FUZZYBEXA is far more than simply a “fuzzy version” of BEXA.

To establish the background for the development of FUZZYBEXA, this chapter provides an overview of

BEXA, and the layout of the remainder of the chapter is as follows.Section 3.2 reviews set covering

concepts and Section 3.3 BEXA ’s description language. The set covering framework is discussed in Sec-

tion 3.4, while BEXA ’s exclusion specialization model is treated in more detailin Section 3.5. Finally,

Section 3.6 concludes the chapter.
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3.2 Set Covering

This section introduces the terminology used for concept learning in the classical case. LetA1, . . . , An

denote attributes (referred to as variables in classification rules) with domainsD1, . . . ,Dn. Attributes

are either nominal and take a finite set of unordered values (e.g. attributeoutlook takes the values

sunny, cloudy, rainy), or real valued taking values from a linearly ordered range(e.g. temperature). The

attributes define the instance spaceI = 〈D1, . . . ,Dn〉.

The goal of concept learning, which is a supervised learningmethod, is to find a description for each

conceptc ∈ concepts, whereconcepts denotes the set of all concepts for which descriptions are desired.

A concept is defined by a subset of instances (examples), and an instance is denoted by〈x, c〉 where

x ∈ I andc ∈ Concepts. A subsetP , P ⊆ T of the training setT , T ⊆ I contains the set of positive

instances, i.e. all instances of the concept (or class) to belearned, while the subsetN , N = T − P ,

holds the negative instances. Since we are using an inductive process to “infer” rules, we assume that

the rules obtained fromT generalize to unseen instances fromI − T .

Set covering algorithms induce classification rules of the form, IFX THEN Y , whereX is called the

antecedent andY the consequent. Thus for a set covering algorithm, rule antecedents are concept de-

scriptions and rule consequents the concept. The set of all possible forms that the antecedent may assume

is called thedescription languageof the learner. The antecedent is often formed by the conjunction of

several expressions, in which case it is also called a conjunction. We say that an instancei matches a

conjunctionc when the conjunction is true for this instance; we also say that c coversi. The connection

from a description to the instances matched by it is made through itsextension. Given a descriptionc,

the set of all instances from the set of instancesS covered byc is called the extension ofc in S, and

is denoted byXS(c). Let c = c1 ∨ c2 ∨ . . . ∨ cn be a concept description given by the disjunction of

several conjunctions. The concept description isconsistentif it covers no negative instances, i.e. if the

following holds true,

XN (c1) ∪XN (c2) ∪ . . . ∪XN (cn) = ∅ (3.1)

The concept description iscompleteif it covers all positive instances, i.e. if the following holds true,

XP (c1) ∪XP (c2) ∪ . . . ∪XP (cn) = P (3.2)

The objective of a set covering algorithm is: given a training setT of instances, iteratively induce rules

that cover the subsetP , P ⊆ T , of positive instances, but not the disjoint subsetN , N = T − P , of

negative instances. Mitchell [1997, p. 275, 280] defines setcovering (sequential covering) algorithms

as follows. A set covering algorithm contains a subroutine for the induction of a single rule that distin-

guishes between the input sets of positive and negative instances by covering a large subset of positive

instances while covering few or no negatives. After the induction of a single rule, the positive instances

covered by the rule are removed from the training set, the negative instances retained, and the process

iterated. The set covering approach followed by algorithmssuch as CN2 differ from divide-and-conquer

type search followed by decision tree learners such as ID3. “The key difference occurs in the most

primitive step in the search. At each step ID3 chooses among alternativeattributesby comparing the
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partitionsof the data they generate. In contrast, CN2 chooses among theset ofattribute-valuepairs, by

comparing thesubsetsof data they cover” [Mitchell, 1997, p. 280]. Thus, we can define a set covering

algorithm as follows.

Definition 3.2.1 A rule induction algorithm employing the set covering approach to concept learning

has the following key characterstics:

1. a single rule is induced at each step, and only the positiveinstances covered by the rule are

removed from the training set, and

2. the induction of a single rule proceeds by iteratively choosing among alternative attribute-value

pairs, and comparing the subsets of data they cover.

Ideally, a concept description should be maximally accurate, maximally general, and minimally com-

plex. Accuracy refers to the performance of the descriptionas measured by its ability to classify in-

stances correctly, whereas the generality refers to the ability to correctly classify instances not in the

training set, i.e. from the setI − T . In the case of a covering algorithm, complexity refers to both the

complexity of the individual rules as well as to the number ofrules in the rule set. In the remainder of

this chapter we present a description of BEXA, which applies set covering in the crisp case. For a review

of other crisp set covering algorithms we refer the reader toAppendix A.

3.3 BEXA ’s Description Language

BEXA ’s description language allows antecedents to be expressedin VL1 [Michalski, 1972], and induces

concept classification rules of the form,

IF antecedent THEN consequent

The antecedent is a disjunction of conjunctions, and following the VL1 convention, each conjunction

can beinternally disjunctive. For example, given the data set in Table 3.1, consider the antecedent of the

classification rule at the bottom the table, where “THEN” is indicated by the symbol→. This expression

is a disjunction of twoconjunctions,

[outlook = sunny ∨ cloudy][temp = 13]

and

[humidity = normal][temp = 28]

Every disjunctive expression can be written as a set of equivalent production rules, e.g.

IF [outlook = sunny ∨ cloudy][temp = 13] THEN weights

IF [humidity = normal][temp = 28] THEN weights

The conjunction[outlook = sunny ∨ cloudy][temp = 13] implicitly assumes[outlook = sunny ∨

cloudy] ∧ [temp = 13], but omits the∧ symbol for brevity. The conjunction[outlook = sunny ∨
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Table 3.1: A crisp learning problem and an example of a VL1 concept description.

@relation sport

@attribute outlook {sunny, cloudy, rainy}
@attribute temp real
@attribute humidity {humid, normal}
@attribute wind real
@attribute activity {volleyball, swimming, weights}

@data
sunny, 30, humid, 26, swimming ;1
sunny, 26, normal, 5, volleyball ;2
cloudy, 28, normal, 12, swimming ;3
cloudy, 23, normal, 14, volleyball ;4
rainy, 28, normal, 20, weights ;5
cloudy, 13, humid, 24, weights ;6
rainy, 10, normal, 10, weights ;7
cloudy, 12, normal, 14, volleyball ;8
sunny, 33, humid, 22, swimming ;9
sunny, 13, normal, 33, weights ;10
sunny, 31, humid, 0, swimming ;11
cloudy, 20, normal, 16, volleyball ;12
sunny, 18, normal, 28, weights ;13
cloudy, 21, normal, 28, weights ;14
rainy, 9, humid, 31, weights ;15
sunny, 15, normal, 7, volleyball ;16

An example of a VL1 concept description:
[outlook = sunny ∨ cloudy][temp = 13] ∨

[humidity = normal][temp = 28] → weights

cloudy][temp = 13] consists of twoconjuncts, of which [outlook = sunny ∨ cloudy] is internally

disjunctive. This internally disjunctive expression is interpreted as follows: the value of an instance for

attributeoutlook is an element of the set{sunny, cloudy}, i.e. outlook ∈ {sunny, cloudy}. When

the sets of nominal values of attributes are disjoint, we canomit the attribute name and write, for ex-

ample,[sunny, cloudy][temp = 13]. BEXA ’s syntax also allows the negation of nominal values, e.g.

[not rainy], or equivalently[¬rainy], for [sunny, cloudy]. The consequent of a rule simply names the

concept, and has the syntaxclass attribute= nominal value. Like most other crisp machine learning

algorithms, BEXA caters for linearly ordered attributes by learning ranges,e.g.21 < temp ≤ 26.

BEXA requires the creation of themost general conjunction(mgc). This conjunction should cover all

instances in the instance space. In VL1, this requirement translates to the conjunction that is formed by

the conjunction of the disjunction of all attribute values for each attribute. For the learning problem in

Table 3.1 themgc is the conjunction of[sunny, cloudy, rainy][humid, normal] with the disjunction

of all temperature ranges and the disjunction of all wind strength ranges that can be formed from the

instances in the training set.

32



Table 3.2: BEXA ’s set cover procedure.

PROCEDURE Cover-P(T , beamwidth, concepts)
1 ruleset = ∅;
2 FOR EACH conceptci ∈ concepts DO
3 P = instances inT belonging to conceptci; N = T − P ;
4 REPEAT
5 bestconj =FindBestConjunction(P,N, beamwidth);
6 IF bestconj 6= NULL THEN
7 Add the rule “IF bestconj THENconcept = ci” to ruleset;
8 P = P −XP (bestconj);
6 END IF
9 UNTIL (P = ∅) OR (bestconj = NULL);
10 END FOR
11 RETURNruleset;

END PROCEDURE

3.4 The Set Cover Framework and BEXA

BEXA is a unifying framework that can be used to relate different crisp set covering algorithms. BEXA

consists of three layers. The top layer implements BEXA ’s set covering behaviour, the middle layer

implements BEXA ’s search heuristics, and the bottom layer implements the specific conjunction spe-

cialization behaviour of the algorithm under consideration. This section describes the three layers of the

framework.

3.4.1 The Set Covering Layer

Table 3.2 shows BEXA ’s set cover procedure. The procedureCover-Preceives a training set of instances

as input, and iteratively learns classification rules for each conceptci. The training set is split into

two disjoint sets, one containing the positives instance,P , and the other the negative instancesN . The

procedureFindBestConjunctionis then called repeatedly to learn a description for a subsetof the positive

instances. If a description is found, a rule with the currentconcept as consequent and the description as

antecedent is formed. The instances covered by the rule are removed from the setP , but the negative set

N remains unchanged. The procedure continues until all positive examples are covered (P is empty) or

a good description could not be found (bestconj= NULL).

The extension of the conjunctionbestconj in the setP ,XP (bestconj), denotes the subset of instances

of P which are covered (matched) by the descriptionbestconj. Note that the setN for learning a

particular concept (or class) remains unchanged and onlyP is split up further, hence the term separate-

and-conquer. In decision tree learning, in contrast, the entire training set is split based on the examples

matched by the conjunction.
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Table 3.3: BEXA ’s FindBestConjunction procedure.

PROCEDURE FindBestConjunction(P,N, beamwidth)
1 bestconj =NULL;
2 specializations = {themgcfor BEXA, or the constanttrue

with XP = P andXN = N};
3 WHILE specializations 6= ∅ DO
4 specializations =GenerateSpecializations(P,N,

specializations, beamwidth);
5 FOR each conjunctionc ∈ specializations DO
6 IF c is significant according to the significance test
7 AND c is better thanbestconj according to the evaluation

function THEN
8 bestconj = c;
9 Remove fromspecializations all the conjunctions that cover

no negative instances or
10 that satisfy the additional stop-growth test;
11 Retain inspecializations only thebeamwidth best conjunctions
12 END WHILE
13 IF the evaluation function value forbestconj is the same or worse

than that of the complete training set THEN
14 RETURN NULL;
15 ELSE
16 RETURNbestconj;

END PROCEDURE

3.4.2 The Search Heuristics Layer

The procedureFindBestConjunctionis shown in Table 3.3. Its purpose is to induce a concept description

that covers as many instances fromP and as little instances fromN as possible. The best description

found during the search process is maintained in the variable bestconj. It starts by creating themgc,

which covers all instances in the instance space, and thus also the setsP andN . The representation of

this conjunction can be either the constantTRUE, or a concept description in the description language of

the relevant algorithm that covers all possible instances.Themgc is added to the setspecializations,

which maintains the set of candidate specializations at each step of the induction process.

The bottom layer routineGenerateSpecializationsis then invoked to obtain the set of specializations

of the concept descriptions inspecializations. Each description in the resultant set is considered in

turn. If a description is significant according to a significance test, and its evaluation according to an

evaluation method is better than that of the previous best conjunction, then it replaces the current best

conjunction. The evaluation method used in BEXA was the Laplace estimate,

L(c) =
|XP (c)| + 1

|XP (c)| + |XN (c)| + #concepts
(3.3)

where#concepts is fixed to two classes, positive and negative. Descriptionscan be tested for signifi-

cance by comparing their distribution to the distribution of the complete training set. This can be done
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by, for example, using the log-likelihood ratio test with respect to the distribution of the concept in the

data set [Kalbfleisch, 1979],

S(c) = 2(fP log
fP

eP
+ fn log

fN

eN
) (3.4)

wherefP andfN are the observed frequency distributions of the positive and negative instances that

matchc, respectively, andeP andeN are the expected frequency distributions of the positive and negative

instances, respectively. The statistic is distributed approximately asχ2 with one degree of freedom

[Clark and Niblett, 1989], and provides a measure of significance—the lower the score, the more likely

that the apparent regularity is due to chance.

In the next step, conjunctions that cover no negative instances are removed, since specializing them fur-

ther conflicts with the objective of finding maximally general concept descriptions. Other pre-pruning

steps can be inserted here. One possibility is to stop specializing conjunctions whose distribution is not

significantly different from their immediate predecessor.This test can again be implemented by using

the log-likelihood ratio test as in Eq (3.4), where nowfP andfN are the observed frequency distribu-

tions of the positive and negative instances that matchc, respectively, andeP andeN are the frequency

distributions of the positive and negative instances that matchc′, the predecessor ofc, respectively.

BEXA performs a beam search by retaining only thebeamwidth best conjunctions available for subse-

quent specialization at each step. Thus, the amount of search is controlled by the parameterbeamwidth.

If the best concept description found byFindBestConjunctionis no better than simply using themgcas

concept description, the resultNULL is returned, indicating that no good concept description could be

found. Otherwise, the best description found during the search is returned.

3.4.3 The Specialization Model Layer

BEXA ’s specialization model is implemented by the procedureGenerateSpecializations. This routine

implements the specific method of evolving concept descriptions, i.e. refining a parent description to

form one or more descendent descriptions. CN2’s specialization model, for example, forms descen-

dants by adding further conjunctions to a parent conjunction. Theron and Cloete showed that many

machine learning algorithms, for example CN2, AQ15, Greedy3, PRISM, and Gray’s Algorithm [Clark

and Niblett, 1989; Michalski et al., 1986a; Pagallo and Hassler, 1990; Cendrowska, 1987; Gray, 1990],

can fit into the framework by implementing the specific rule refinement technique in the specialization

model [Theron and Cloete, 1996]. In addition they proposed aspecialization method, called special-

ization by exclusion (hence the name BEXA: BasicEXclusionAlgorithm) that forms descendants by

removing (excluding) conditions in the description. We discuss this specialization model and its distin-

guishing characteristics in the next section.

3.5 Specialization by Exclusion

AssumeC denotes the set of all VL1 conjunctions for a learning problem, andc1, c2 ∈ C are two

conjunctions in this description language. Then definec1 � c2, c1 is more specific than or equal toc2,
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Table 3.4: BEXA ’s specialization model.

PROCEDURE GenerateSpecializations(P,N, conjunctions,
beamwidth)

1 specializations = ∅
2 FOR each conjunctionc ∈ conjunctions DO
3 // First remove fromc.usable all the values that will lead

to unnecessary specializations
4 FOR each value or intervalai ∈ c.usable DO
5 IFXP (c) ⊆ XP (ai) // Prevents conjunctions for

whichXP = ∅
6 ORXN (c) ∩XN (ai) = ∅ // Ensure more negative

instances will be uncovered
7 OR{XN (bi)|bi ∈ c.excluded ∪ {ai}} is a

redundant partial cover ofN THEN
8 c.usable = c.usable− {ai}
9 // Next generate all useful specializations of the conjunction
10 FOR each valueai ∈ c.usable DO
11 c′ = c specialized by removingai from it;
12 XP (c′) = XP (c) −XP (ai);
13 XN (c′) = XN (c) −XN (ai);
14 c′.usable = c.usable− {ai};
15 c′.excluded = c.excluded ∪ {ai};
16 specializations = specializations ∪ {c′};
17 END FOR
18 END FOR
19 IF beamwidth > 1 THEN
20 Remove fromspecializations all duplicate conjunctions;
21 RETURNspecializations

END PROCEDURE

if and only if XT (c1) ⊆ XT (c2). We considerc1 = c2 wheneverXT (c1) = XT (c2). Conjunctionc1

is more specific thanc2, denoted byc1 ≺ c2, whenc1 � c2 andc1 6= c2. Thus, the setC is partially

ordered under the� relation, and the conjunctions inC and their corresponding extensions form the

lattice〈C,�〉.

BEXA and AQR have the same description language. It is also clear that VL1 is more descriptive than

the description language employed by CN2 [Clark and Niblett, 1989] and PRISM [Cendrowska, 1987],

i.e. the set of legal descriptions in VL1 is a superset of the set of legal descriptions in CN2 or PRISM.

Thus, all of the algorithms that fit in the framework use the same description language, where different

algorithms simply apply different search restrictions or heuristics. The algorithms can thus be related to

each other by their specialization behaviour within the lattice of VL1 concept descriptions.

The procedureGenerateSpecializationsshown in Table 3.4 implements BEXA ’s exclusion specialization

model. Specialization by exclusion performs a general-to-specific search for the best conjunction. The

model consists of two phases. In the first phase a set of stop-growth criteria is tested both to prevent
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search in regions of the hypothesis space that can have no good solutions, and to prevent overspecialisa-

tion. With each conjunction two sets are associated. The setusablecontains all atoms (attribute values)

that may be used to specialize the conjunction further, and the setexcludedcontains all the atoms that

were removed from themgc to form the conjunction. An atom here refers to the smallest description

possible, e.g.[outlook = sunny].

The first test (Line 5) prevents the creation of conjunctionsthat cover no positive instances, thus pre-

venting unnecessary search. The second test (Line 6) prevents the creation of conjunctions that cover

the same number of negative instances as their predecessor.The third test (Line 7) prevents conjunctions

from being over-specialized. LetA be a set of instances andB a set of sets such thatb ∈ B andb ⊆ A.

The setB is called a set cover ofA if
⋃

i bi = A, and a partial set cover ofA if
⋃

i bi ⊂ A. If B is

a set cover ofA, thenB is an irredundant set cover ofA if the deletion of any element inB results in

B forming a partial set cover ofA. Theron and Cloete proved that members of the setCM , the set of

most general consistent conjunctions, all have the property that their associated setexcludedforms an

irredundant partial set cover ofN , the set of negative instances [Theron and Cloete, 1996].

In the second phase ofGenerateSpecializations, each conjunction in the setconjunctions is specialized.

A conjunction is specialized by excluding (removing) an atom from its description, thereby generating

a specialization (“new” conjunction). Only atoms from the set usableare excluded from the conjunc-

tion. After the creation of a new conjunction, its positive and negative extension is computed. These

extensions can be efficiently computed by subtracting the extension of the atom from the extension of

the parent conjunction. The extensions of the atoms need only be computed once prior to the concept

learning. Theron and Cloete used the irredundancy requirement to prove that contrary to other special-

ization models, the specialization by exclusion model is guaranteed to find members ofCM [Theron and

Cloete, 1996].

Table 3.5 contains a small artificial learning problem as illustration. We follow the convention that in-

stances are numbered, and that these numbers are used to indicate which instances belong to a particular

set. Specializing themgc, [A = a ∨ b ∨ c][B = x ∨ y], by removing the attribute valuea (excluding

[A = a]) produces the specialization[A = b ∨ c][B = x ∨ y]. Denote this specialization bys, then its

extension is the setXT (s) = XP (s)∪XN (s) = {3, 4, 6} ∪ {5}, whereXP andXN denote thepositive

extensionandnegative extensionof s respectively.

If the beam width is greater than one, all duplicate conjunctions are removed from the set of specializa-

tions before it is returned. Duplicate specializations occur when the same two atoms are excluded from

the mgc in different order. For example, the conjunction[a, b][x] can be formed either by excludingy

from [a, b][x, y] or by excludingc from [a, b, c][x].

3.6 Summary

In this chapter we reviewed the BEXA set covering framework. The framework consists of three layers,

a set covering layer, a heuristics layer, and a specialization model layer. Many machine learning algo-
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Table 3.5: A small artificial learning problem.

@relation smallproblem
@attribute A {a, b, c}
@attribute B {x, y}
@attribute concept {yes, no}

@data
a, x, yes ;1 b, y, yes ;4
a, y, no ;2 c, x, no ;5
b, x, yes ;3 c, y, yes ;6

rithms fit into this framework, i.e. they make use of the same description language, and are characterized

by their search method within the lattice of VL1 concept descriptions as implemented by their specific

specialization model. Thus, the framework provides a basisfor the comparison of different crisp set cov-

ering algorithms. We also introduced the specialization byexclusion model which starts with the most

general concept description and specializes it by excluding atoms, as opposed to the method of adding

more and more atoms to the constantTRUE employed by most other set covering algorithms. Con-

trary to other specialization models, the specialization by exclusion model is guaranteed (under certain

conditions) to find elements of the set of most general consistent conjunctions.
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CHAPTER 4

Fuzzy Set Covering and FUZZYBEXA

4.1 Introduction

We have shown in the previous chapters that set covering is a very successful and well established con-

cept learning methodology. We have also established that although fuzzy sets as the generalization of

crisp sets are much more powerful, set covering has not been used for the induction of fuzzy classi-

fication rules. In this chapter we proposefuzzy set coveringas a new methodology for fuzzy concept

learning. We identify and address all the problems that arise when applying set covering in the fuzzy

case, and we propose a novel algorithm, FUZZYBEXA, as the first algorithm that uses set covering and

a partial ordering of its description language for the induction of fuzzy classification rules.

There are multiple reasons for generalizing classificationrules based on crisp sets to classification rules

based on fuzzy sets. Fuzzy sets have increased expressive power. They allow the explicit expression

of imprecision, vagueness and ambiguity, whereas crisp sets imply rigid boundaries, and only allow for

the concepts true and false. This is not to say that crisp setsare more precise than fuzzy sets. The

term fuzzy should not be taken to mean that results obtained from fuzzy rules are imprecise, rough

estimations. In fact, it was shown that a fuzzy system can be used to model any real continuous function

on a given domain with arbitrary precision, i.e. fuzzy sets are universal approximators [Kosko, 1994].

FUZZYBEXA makes use of linguistic terms as described by fuzzy sets for its concept descriptions, thus

it unifies the symbolic and sub-symbolic knowledge representations, bringing the fuzzy and symbolic

machine learning community closer together. Fuzzy systemsare able to model highly complex systems

with poorly understood or non-linear behaviour, and fuzzy rule-based systems usually execute faster

than conventional rule-based systems, since fuzzy rule bases usually have fewer rules [Cox, 1998].

A smaller rule base is easier to understand and maintain, leading to fuzzy systems often being more

comprehensible. Of course, when a fuzzy rule base becomes very big, these benefits will not be as

pronounced, or may disappear entirely.

Instances can belong to a fuzzy concept to any degree of membership in the range[0, 1]. FUZZY-

BEXA uses this information during rule induction, and we will show that FUZZYBEXA is capable of

inducing very accurate rule sets. However, we will also showthat FUZZYBEXA fulfills the three re-

quirements for inducing highly comprehensible rule sets [Guillaume, 2001]: FUZZYBEXA ’s rule sets

are very small, its rules are incomplete, and its rules use linguistic terms. The potential search space
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Figure 4.1: An example of a membership function for the fuzzy setspeed.high.

defined by FUZZYBEXA ’s description language grows exponentially in the number of linguistic terms

defined by the problem domain. Thus, we develop several efficiency and prepruning criteria applicable

in the fuzzy case, and we demonstrate that FUZZYBEXA is a practical tool for knowledge discovery,

capable of completing in reasonable time even for very largedomains.

FUZZYBEXA ’s structure is based on the crisp set covering algorithm BEXA, discussed in the previous

chapter. As pointed out in Section 3.3, BEXA deals differently with numerical and nominal attributes.

BEXA ’s method of handling numerical attributes requires the algorithm to create2N new attribute val-

ues, whereN is the number of unique measurements. Fuzzy sets provide a natural way to deal with

numerical attributes for reasoning, providing a frameworkfor a non-rigid interface between classes rep-

resented by symbolic labels and numerical values [Dubois and Prade, 2003]. Consider for example the

attributespeed, as measured for an aircraft. Crisp algorithms learn sharp thresholds for ranges, and

outside of these ranges the condition is100% false. If there is a condition[speed > 850], this condition

will be false for the observation849. A fuzzy set describing high speed may have the membership func-

tion shown in Figure 4.1. An instance with a speed measurement of 849 will still highly belong to the

fuzzy setspeed.high, whereas a measurement of750 will belong only somewhat, and a measurement

of 700 will definitely not belong to the fuzzy set anymore. Fuzzy sets thus provide a more natural way

to deal with numerical attributes, allowing the definition of concepts such as high speed, rather than

employing sharp thresholds. The fuzzy set describing speedcan also be adapted for different situations,

as depicted in Figure 4.2. FUZZYBEXA thus unifies the treatment of linearly ordered and unordered

(nominal) attributes—FUZZYBEXA makes no distinction between different kinds of attributes, as they

can all be described by the general case of a fuzzy set.

The layout of the rest of the chapter is as follows. Section 4.2 presents the theoretical background for

developing the basic fuzzy set covering approach, and Section 4.3 introduces our fuzzy generalization of

BEXA. In Section 4.4 we prove that FUZZYBEXA ’s description language induces a lattice of concept de-

scriptions. The following two sections describe FUZZYBEXA ’s top and bottom layers in detail, and their

functionality is demonstrated on a small data set in Section4.7. Section 4.8 discusses FUZZYBEXA ’s

inductive bias, and Section 4.9 describes the fuzzy inference system used for classifying instances. In

Section 4.10 we investigate more theoretical aspects of thealgorithm such as the size of the hypothesis
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Figure 4.2: An example of two different membership functions for the fuzzy settemp.highin different scenarios.

In figure (a) there is a slow linear increase in membership from 50 degrees until 90 degrees, where after there is a

sharp increase in membership. Such a membership function may be applicable in a scenario where temperatures

above 50 degrees are undesirable but tolerable, and system failure may occur above 95 degrees. In figure (b) the

idea of high temperature is formed slowly. This may be applicable in a scenario where temperatures above 100

degrees are definitely unwanted, and temperatures between 50 and 100 degrees are increasingly undesirable, with

more emphases on higher temperatures.

space and the kind of learning problems that FUZZYBEXA is most suitable for. Section 4.11 concludes

the chapter.

4.2 Basic Fuzzy Set Theory

We repeat some elements of fuzzy set theory to be used during the development of the FUZZYBEXA

algorithm. LetU be a given universal set, or universe of discourse. Traditionally, a setA, A ⊆ U ,

is defined using one of three methods: listing each element inthe set, e.g.A = {a, b, c}, using a

proposition to describe a property that must be satisfied by all the members of the set, e.g.A = {x|x ∈

Z, 0 < x < 10}, or using a function, usually called the characteristic function, that declares which

elements are members of the set,

µA(u) =

{

1, for u ∈ A

0, for u 6∈ A
(4.1)

whereu ∈ U .

Fuzzy sets are a generalization of crisp sets, and are definedusing the functional method, where the

characteristic function is now defined as

µA(u) : U → [0, 1] (4.2)

Note, the universe of discourseU is still a crisp set of elements, andA is a fuzzy subset ofU . The degree

to which an elementu, u ∈ U , belongs to the fuzzy setA is now described in terms of themembership

functionµA(u). This degree of membership expresses the certainty or ambiguity thatu belongs toA,

with µA(u) = 1 meaning absolute certainty thatu ∈ A, andµA(u) = 0 absolute certainty thatu 6∈ A.
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Crisp sets are special cases of fuzzy sets, since for a crisp set,µA(u) : U → {0, 1}, i.e. the membership

function is either1 or 0, and elements can either belong to a set or not with absolute certainty. The fuzzy

set operations corresponding to the crisp set operations union, intersection, and negation are defined by

the membership functions of the respective operations,

µA∪B(u) = max(µA(u), µB(u)), ∀u ∈ U (4.3)

µA∩B(u) = min(µA(u), µB(u)), ∀u ∈ U (4.4)

µĀ(u) = 1 − µA(u), ∀u ∈ U (4.5)

whereA andB are both fuzzy sets. Contrary to Boolean logic, in fuzzy set theory thelaw of the excluded

middleand thelaw of contradictionare broken, and therefore the following may be true:

A ∪ Ā 6= U (4.6)

A ∩ Ā 6= ∅ (4.7)

The fuzzy instance spaceI is described by the product of one or more linguistic variablesAi,

I = 〈A1 ×A2 × . . .×An〉 (4.8)

Each linguistic variable is described by a product of one or more fuzzy setsLj, called linguistic terms,

Ai = 〈L1 × L2 × . . .× Lm〉 (4.9)

Together the linguistic terms form theterm setof the linguistic variable. Each linguistic term is a fuzzy

set, and a linguistic variable is thus a family of fuzzy sets,and a fuzzy set itself. A fuzzy instance1

i, i ∈ I, is thus defined by its membership degrees to the linguistic terms (fuzzy sets) of the various

linguistic variables in the problem space,

i = 〈〈µA1,L1 × . . . × µA1,Lp〉 × . . .× 〈µAm,L1 × . . . × µAm,Lq〉〉 (4.10)

Note that the instance spaceI includes the crisp instance space described in Section 3.2 as a special

case. Contrary to the case for crisp instances, in the case offuzzy instances a fuzzy instance can belong

to the entire term set of a linguistic variable to a certain degree, or even with degree one. Thus, in the

fuzzy case the condition[height = tall] ∧ [height = short] can be true.

Table 4.1 shows a learning problem akin to that of Table 3.1. We call this data format Fuzzy Attribute

Relation File Format, or FARFF. A more detailed descriptionof FARFF is given in Appendix B. The

learning problem defines five linguistic variables:outlook, temp, humidity, wind and activity. Each

linguistic variable declaration is followed by its respective term set declaration. For example,outlook

has the term set{sunny, cloudy, rainy}.

The membership degrees shown in Table 4.1 represent the degrees of truth (or equivalently certainty,

ambiguity or vagueness) to which instances belong to linguistic terms, and should not be confused with

probabilities. The probability of an event describes the certainty or likelihood of the outcome of the

1The term soft instance has also been used [Wang et al., 2003]
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Table 4.1: A fuzzy learning problem analogous to the learning problem in Table 3.1.

@relation sport

@attribute outlook {sunny, cloudy, rainy}
@attribute temp {hot, mild, cold}
@attribute humidity {humid, normal}
@attribute wind {windy, calm}
@attribute activity {volleyball, swimming, weights}

@data
(.9 .1 .0), (1. .0 .0), (.8 .2), (.4 .6), (.0 .8 .2) ;1
(.8 .2 .0), (.6 .4 .0), (.0 1.), (.4 .6), (1. .7 .2) ;2
(.0 .7 .3), (.8 .2 .0), (.1 .9), (.2 .8), (.3 .6 .1) ;3
(.2 .7 .1), (.3 .7 .0), (.2 .8), (.3 .7), (.9 .1 .0) ;4
(.0 .1 .9), (.7 .3 .0), (.5 .5), (.5 .5), (.0 .0 1.) ;5
(.0 .7 .3), (.0 .3 .7), (.7 .3), (.4 .6), (.2 .0 .8) ;6
(.0 .3 .7), (.0 .0 1.), (.0 1.), (.1 .9), (.0 .0 1.) ;7
(.0 1. .0), (.0 .2 .8), (.2 .8), (.0 1.), (.7 .0 .3) ;8
(1. .0 .0), (1. .0 .0), (.6 .4), (.7 .3), (.2 .8 .0) ;9
(.9 .1 .0), (.0 .3 .7), (.0 1.), (.9 .1), (.0 .3 .7) ;10
(.7 .3 .0), (1. .0 .0), (1. .0), (.2 .8), (.4 .7 .0) ;11
(.2 .6 .2), (.0 1. .0), (.3 .7), (.3 .7), (.7 .2 .1) ;12
(.9 .1 .0), (.2 .8 .0), (.1 .9), (1. .0), (.0 .0 1.) ;13
(.0 .9 .1), (.0 .9 .1), (.1 .9), (.7 .3), (.0 .0 1.) ;14
(.0 .0 1.), (.0 .0 1.), (1. .0), (.8 .2), (.0 .0 1.) ;15
(1. .0 .0), (.5 .5 .0), (.0 1.), (.0 1.), (.8 .6 .0) ;16

event, whereas fuzzy membership describes the ambiguity orcertainty to which the event occurs. Both

kinds of uncertainty are measured on the scale[0, 1]. However, a zero probability implies an event cannot

occur, and probability one implies an event is certain to occur. A zero or one membership degree means

a complete lack of ambiguity in the description of an event orelement—a zero membership implies an

element is definitely not part of a fuzzy set, whereas membership one implies an element is definitely

part of a fuzzy set. Furthermore, the sum of membership degrees for a specific term set does not need to

be one. For example, the membership degrees for the variableactivity of instances11 and16 sum to1.1

and1.4, respectively.

Many real world processes have linearly ordered attributes, both continuous and discrete. For linearly

ordered attributes, the fuzzy membership function maps thelinear domain to membership degrees on

the scale[0, 1]. Figure 4.3 shows how temperature values are mapped onto membership degrees for the

term set oftemp, defining the membership functionsµcold, µmild andµhot.

Linguistic variables with an unordered input domain, for exampleoutlook in Table 4.1, have no asso-

ciated mapping from a linear domain to membership degrees. In this case the membership function

just describes the ambiguity that an instance belongs to a certain term. The semantic interpretation of

the term set foroutlookof instance1 of Table 4.1, for example, would be that the day was almost cer-

tainly sunny and cloudless, and that there was definitely no rain. Note, after the membership degrees

for linearly ordered variables have been inferred from their respective membership functions, there is no
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Figure 4.3: The term set and membership functions of the fuzzy attributetempcontaining the termscold, mild,

andhot.

difference between membership degrees for linearly ordered and nominal attributes. For example, given

only Table 4.1, it is not possible to say which variables stemfrom originally linearly ordered attributes.

4.3 FUZZY BEXA

We now introduce FUZZYBEXA, which extends the definitions used in BEXA to the fuzzy realm. BEXA

served as a framework for comparing different crisp set covering algorithms. While FUZZYBEXA can

also serve this purpose for a set of fuzzy set covering algorithms, some fuzzy set covering algorithms are

not accommodated. We discuss this issue in Chapter 9, and introduce the General Fuzzy Set Covering

Framework, FCF (for Fuzzy Covering Framework). However, FCF will borrow extensively from the

concepts introduced for FUZZYBEXA.

There were several premises that held true for BEXA in the crisp case. We will refer to these premises

by their numbers in the subsequent discussion.

1. It is possible to construct descriptions that cover the whole instance space, and thus will match all

possible instances, whether they have been observed (i.e. are in the training set) or not.

2. A conjunct such as[outlook = sunny], will match all instances that has attribute valuesunny

for attributeoutlook.

3. An instance contains exactly one value for each attribute. Missing values in the data can be catered

for, as is typically done, by substituting the most common value for nominal attributes or by the

average for numerical values.

4. If an attribute value is excluded (removed) from an internally disjunctive condition that contains all

possible values for that attribute, then the description will only match those instances that match

the remaining attribute values. This is equivalent to the negation of the excluded values in the

condition, and thus exclusion performs the set difference operation with respect to the extension

44



of the excluded values. This was illustrated in Section 3.5 using the example of Table 3.5, where

the attribute valuea was excluded from the condition[A = a ∨ b ∨ c].

5. This process of exclusion can be continued until only one attribute value remains (see Section 3.5).

Removing all attribute values and thus leaving only the empty set, is semantically equivalent to

stating that the condition will always be false. In practice, of course, such rules are useless.

6. If an attribute value is excluded from an internally disjunctive condition, all the instances covered

(matched) by the attribute value are no longer matched by thecondition, i.e. they are “uncovered.”

7. If a rule antecedent contains an attribute that takes all its possible values, i.e. no value was ex-

cluded, the condition matches all instances and can be removed from a description since it is

irrelevant.

A fuzzy algorithm will have to reevaluate these premises, asnot all of them carry over directly to the

fuzzy case. For example, each fuzzy instance is a member of the fuzzy instance space as defined by

Eq (4.8) and (4.9), and thus the premise stated in point 3 above for the crisp case does not hold in

the fuzzy case—a fuzzy instance can belong toall terms to a non-zero degree. This has important

implications for a fuzzy set covering algorithm.

As discussed in Chapter 2, much work has already been done on the development of algorithms that

can extract fuzzy rules from data. The implementation of a fuzzy rule based system consists of two

stages, parameter and structure identification. Parameteridentification entails the acquisition of various

parameters used during the induction process, for example obtaining membership functions. Much

less work has been devoted to the second stage, structure identification, likely since it is a very complex

process [Pomares et al., 2002]. Structure identification entails the development of optimal rule structures.

Some algorithms perform no or very limited structure identification, inducing huge rule sets consisting of

complete rules, and at most delete irrelevant rules [Wang and Mendel, 1992; Ishibuchi et al., 1995]. One

of the primary reasons for developing fuzzy rule based systems, however, is the high comprehensibility

of fuzzy rules.

After surveying the design of fuzzy learners from an interpretability point of view, Guillaume [2001]

stipulated three main requirements for the high comprehensibility of rule sets,

a. The fuzzy sets must be interpretable as linguistic terms (labels). The linguistic terms must be

meaningful within the problem domain such that they are understandable to domain experts. This

allows the rules to be comparable with one another, leading to knowledge discovery.

b. The set of rules must be as small as possible. Smaller rule sets perform worse on training sets, but

often obtain better generalization performance and are easier to read and thus comprehend.

c. The rules must be incomplete. If a rule premise involves all linguistic variables, there is a loss

of interpretability without an increase in performance when the rule context could be restricted to

the relevant subset of variables only. The systematic presence of all variables in the antecedent

45



can be seen as a drawback of most automatic rule induction systems. This is due to the induction

technique, and an intrinsic characteristic of the problem domain.

Guillaume’s first requirement for rule set comprehensibility is that the rules must make use of linguistic

terms, and that the rule induction method should not blindlyoptimise membership functions purely in

pursuit of better classification accuracy performance. Coxalso notes that the discovery of suitable mem-

bership functions in non-control type problems is often more straightforward than one might think—

often their specification is already fixed by external processes [Cox, 1998, p. 512]. Fuzzy systems are

also not as brittle as crisp rule based system, allow for a certain amount of noise in the membership func-

tions, and can be refined quickly to bring the model prototypeinto alignment with reality [Cox, 1998, p.

22]. To satisfy the first requirement we assume that membership functions were obtained either from the

experts themselves, or during an automatic external parameter identification phase. Thus, the process is

not an intricate part of the induction process. This is also done for fuzzy decision tree induction [Yuan

and Shaw, 1995] and algorithms such FRIwE [Carmona et al., 2004].

The second requirement is that rule sets should be as small aspossible. Therefore, the development of

our fuzzy algorithms will, for now, focus solely on structure identification. The methods described in

the remainder of this work are able to use any membership function specification (regardless of how it

was obtained) to find as small a structure as possible that explains the given data set by inducing rules

for it. FUZZYBEXA performs a general-to-specific search and also prefers moregeneral rules over more

specific rules. Thus, FUZZYBEXA ’s rules are biased to cover as many instances as possible, and as a

direct consequence the rule sets are very small compared to most other induction methodologies. We

demonstrate this empirically in the next chapters.

Fuzzy set covering also satisfies the last requirement—the induction of incomplete rules. In fact, the

whole fuzzy set covering methodology is perfectly positioned to fully satisfy all three requirements.

It will become clear in this and the next chapters that algorithms implementing the fuzzy set covering

methodology are capable of inducing highly comprehensiblerule sets. However, we will also show that

the methodology allows the induction of not only interpretable rule sets, but also very accurate rules.

The rest of this section describes the various aspects of FUZZYBEXA.

4.3.1 FUZZY BEXA ’s Description Language

Instead of using crisp attributes and attribute values, FUZZYBEXA ’s concept descriptions use linguistic

variables and terms. FUZZYBEXA allows the formation of conjunctions ofconjuncts, where a conjunct

is a disjunctive expression of linguistic terms from a single linguistic variable. Thus, BEXA and FUZZY-

BEXA ’s description languages are of similar form, and both allowinternal disjunction (see Section 3.3

for BEXA ’s description language). We call FUZZYBEXA ’s description language FuzzyAL, for fuzzy

attributional logic.

In the case of BEXA, an instance matches a conjunct if the instance has one of theattribute values present

in the conjunct. However, in the fuzzy case instances do not only match or not match a description, and

we have to specify what it means for an instance to match an antecedent, and thus also, a rule with this
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antecedent. We also have to specify how the membership degree of the instance to the antecedent is

computed. The standard fuzzy set operators are defined as follows,

standard fuzzy complement: Ā(i) = 1 −A(i) (4.11)

standard fuzzy intersection: A(i) ∩B(i) = min(A(i), B(i)) (4.12)

standard fuzzy union: A(i) ∪B(i) = max(A(i), B(i)) (4.13)

whereA(i) andB(i) are fuzzy sets [Ruspini et al., pp. B2.7:8-9, 1998].

The truth value of a descriptiond (i.e. the antecedent in a classification rule) for an instance i can be

computed from the membership functions for the fuzzy sets determined by the expression as follows.

LetA andB be any two linguistic terms, andµA(i) andµB(i) the membership degree of instancei to

the respective linguistic terms, then

µA∨B(i) = µA∪B(i) (4.14)

µA∧B(i) = µA∩B(i) (4.15)

µ¬A(i) = µĀ(i) (4.16)

where on the right hand side the subscript ofµ indicates the expression used for evaluation. The conven-

tional precedence rules apply for more than two terms. When the membership degree of an instance to

the antecedent is not zero, the condition is considered to betrue, and the instance matches the antecedent.

Our implementation uses the standard fuzzy operators. However, this can effortlessly be replaced by any

appropriate t-norm, t-conorm and fuzzy complement operation [Klir and Yuan, 1995]. We also add the

additional operator!. The meaning of this operator is related but not equivalent to not. Let V be a

linguistic variable with term set{a, b, c, d, e}. Then the conjunction[!a] is equivalent to[b, c, d, e], thus

the disjunction of all the remaining terms in the term set. Wecan also write[! d, e], which is equivalent

to [a, b, c]. It should be easy to see that the operator describes exclusion. If the terma is excluded from

[a, b, c, d, e], we obtain[!a] (i.e. [b, c, d, e]). Thus, FuzzyAL contains the following language constructs,

1. linguistic terms (labels) defined by the problem domain, grouped by linguistic variables,

2. the grouping symbols[ and],

3. the operators∧, ∨, and!,

4. and the constantsTRUE andFALSE.

We can make the relationship between linguistic variable and an associated term explicit by the notation

variable.term, e.g.temperature.hot. We can write an expression in explicit notation such as[temperature

is hot∨ mild], or in short hand form as[temperature.hot,temperture.mild], or when there is no confusion

between terms simply as[hot,mild].

4.3.2 The Extension of a Conjunction

In the crisp caseXS(c), the extension of the conjunctionc in the set of instancesS, is defined as the set

of instances inS that match the conjunction. We say thatc coversthe setXS(c) in S, and there is no
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Figure 4.4: The term set for the linguistic termtemp, and an instance with obervationtemperature = 28. The

alpha cut atαa = 0.25 is shown by a dashed line.

ambiguity of whether an instance matches a conjunction or not. In the fuzzy case, however, instances

match a conjunction to a degree in the range[0, 1]. Thus, an instance can match a conjunction to a

degree0.001, for example. This may be undesirable, and to prevent such instances from being covered,

anα-cut can be applied to the instance memberships (also calledalpha leveling [Cox, 1998]), i.e. all

instance memberships to linguistic terms that lie below a certain thresholdαa is set to zero. Instances

can therefore either match a given conjunction to a degreeαa or above, or not match the conjunction.

Thus, in the fuzzy case we define the extension of a conjunction c in the set of instancesS, S ⊆ I, as

follows,

XS(c) = {s ∈ S|µc(s) ≥ αa} (4.17)

where we callαa the antecedent threshold. Note, XS(c) is a subset of the universe of discourse,

XS(c) ⊆ U , and is a crisp set of instances. For example, consider the conjunction [cold][humid]

for the learning problem in Table 4.1, and letαa = 0.7. The extension in the training setT will be,

XT ([cold][humid]) = {6, 15}, where we have enumerated the instances by their numbers as before.

For the standard fuzzy operators, we can also see the alpha leveling as anα-cut being applied to the

antecedent membership after the matching process, thus leaving the membership degrees intact, i.e. for

both methods the same instances will be covered by a given conjunctionc and antecedent thresholdαa.

If no α-cut is applied, we defineXS as follows,

XS(c) = {s ∈ S|µc(s) > 0} (4.18)

In reference [Wang et al., 1999] the termα-cover is used for the concept of applying anα-cut to the

antecedent membership. We will simply use the term cover, since we do not necessarily apply anα-cut.

As in reference [Wang et al., 1999], the value ofαa is user-defined, but in our case it is used to prevent

instances from matching rules with small memberships. The alpha leveling should not be confused with

defining a threshold where membership above implies true andbelow false - as should be clear from the

fact that the alpha leveling is not a necessary requirement for the algorithm.

The premise that if a description contains an attribute value, then it will match all instances that has

this attribute value, as stated in point 2 in the list of premises above, does not hold in the fuzzy case.
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Instances that belong to a term (with non-zero membership),but with membership belowαa, will not

necessarilybe covered by a conjunction that contains this term. They maystill be covered, however,

since premises 3 and 6 also do not hold in the fuzzy case—an instance may still belong to another

linguistic term from the same term set that is still present in the conjunction with membership aboveαa,

and therefore may still be covered. Consider for example theconjunct[hot,mild] and instance 3 from

Table 4.1, i.e.µhot(i3) = .8 andµmild(i2) = 0.2. Let αa = 0.25, then although instance 3 belongs

to mild with µmild > 0, the conjunct[mild] does not cover it. However, the instance also belongs to

other fuzzy sets from the same term set, and since its membership µhot ≥ 0.25 the conjunct[hot,mild]

indeed covers the instance. This concept is illustrated in Figure 4.4. Note, instance 16 has membership

0.5 to bothhot andmild. The instance matches both termshot andmild with membership greater than

αa. The exclusion ofhot or mild from [hot,mild, cold] results in the conjunctions[!hot] or [!mild],

respectively. However, bothstill covers the instance, which was not the case for crisp sets andBEXA.

We address this point again in Section 4.6 when we discuss specialization by exclusion in the fuzzy case.

4.3.3 The Most General Conjunction

The mgc (most general conjunction) of BEXA contains all the attribute values from all the attributes,

and its extension covers the whole instance spaceI, as stated in point 1 in the list of premises. Let

L(i,j) denote a term from theith variableAi, and suppose there arem variables. Now consider the

interpretation of themgcwhen its elements no longer denote nominal values in propositional logic, but

linguistic terms from linguistic variables, i.e. applied to the fuzzy case. Then themgcis the following

description,

mgccrisp = [L(1,1), . . . , L(1,p)] . . . [L(m,1), . . . , L(m,q)] (4.19)

where we use the subscriptcrisp to be able to refer back to this first version of the fuzzymgc. The

same notation is used as in Section 3.3, i.e., square brackets delimit internally disjunctive expressions

(conjuncts), each of which form a part of the conjunction.

The fundamental premise of our set covering approach is thatit is possible to construct descriptions that

determine a family of sets, the union of which covers the whole instance space, and thus will match

all possible instances, whether they have been observed (i.e. are in the training set) or not (premise 1).

This premise does not carry over directly to the fuzzy case, since it can happen that an instance does

not belong to any term of a variable to a sufficient degree (dueto the antecedent alpha-cut), and thus

cannot be matched bymgccrisp as defined in Eq (4.19). When applying Eq (4.19) and (4.17) to afuzzy

data set, it may then happen that some instances are not covered, and therefore not used in the search

process, and they cannot be excluded (see premises 4 to 6). These instances will be exactly those that

belong to all terms of a particular term set with membership degrees less thanαa. If we setαa = 0.7

for the data set in Table 4.1 thenmgccrisp will, for example, not cover instance 1, because in this case

µmgccrisp
(instance 1) = 0.6 due to the membership degrees to terms of thewind variable.

We address this issue by adding a new term to each variable’s term set, thealpha complementfor that

variable, and denote it with̄α. The alpha complement has the property that if the membership degrees of
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instancei to all the terms in a particular variable’s term set are less thanαa, µᾱ(i) will have membership

degree of at leastαa, i.e. exactly in the case when an instance does not belong to the disjunction of

the term sets of that variable. We define the degree to which aninstance belongs toA.ᾱ belongs to a

variableA as follows.

Definition 4.3.1 Let i ∈ I be an instance,A be a variable with the term set{L1, . . . , Ln}, andm =

σ(µL1(i), . . . , µLn(i)), whereσ is any s-norm (i.e. a t-conorm), then,

µA.ᾱ(i) ≡

{

1, for m < αa

0, for m ≥ αa

We could also use another function with similar behaviour, e.g. a sigmoid function. However, inverse

step function is used here since it is also easy to implement.FUZZYBEXA ’s mgcis thus defined as:

mgc = [L(1,1), . . . , L(1,p), ᾱ1] . . . [L(m,1), . . . , L(m,q), ᾱm] (4.20)

and the membership of an instancei to themgcis given by

µmgc(i) = min(max(µL(1,1)
(i), . . . , µL(1,p)

(i), µᾱ1(i)),

. . . ,max(µL(m,1)
(i), . . . , µL(m,p)

(i), µᾱm(i)))
(4.21)

assuming the standard fuzzy operations. The extension of the mgc in the instance spaceI, XI(mgc),

now includes the whole instance space, since for any instance for which the membership degrees to all

terms from the same term set are less thanαa, the membership tōα is aboveαa. For example, if we

setαa = 0.7 for the data set in Table 4.1, thenµmgc(instance 1) = 0.8; the alpha complement of the

windvariable has membership degree 1, and the lowest membershipis due to the membership degree of

humidity—therefore instance 1 is now a member ofXI(mgc). Note, without the addition of the alpha

complement, premise 7 also does not carry over to the fuzzy domain. Sincemgccrisp does not cover the

whole instance space, none of its variables can be seen as irrelevant, even though they all contain their

complete term sets, and thus none of the variables could be ignored as in the crisp case.

4.3.4 The Positive and Negative Extension

Set covering algorithms require that for a given concept thetraining set of instancesT , T ⊆ I, can be

split into two sets, a set of positive instancesP , P ⊆ T , that contains the desired concept, and a set of

instancesN , N ⊂ T , that does not contain the desired concept. In the fuzzy case, all instances contain

all concepts (that can be described) to a certain degree, since the concept is now specified as a fuzzy set.

We therefore define a threshold, orα-cut valueαc that defines which instances belong to the concept

and which not.

Definition 4.3.2 An instancei is positive whenµconcept(i) ≥ αc, and negative whenµconcept(i) < αc,

whereconcept denotes the desired concept, andαc is called the concept threshold.

50



Now we can form the set of positive instancesP ,

P = {i ∈ T |µconcept(i) ≥ αc} (4.22)

If, for example, we want to learn the conceptactivity.volleyball, and we setαc = 0.8, then the setP

will contain instances2, 4, and16 in Table 4.1. Similarly we form the set of negative instancesN as

follows,

N = {i ∈ T |µconcept(i) < αc} (4.23)

According to the definitions ofP andN , it is clear that the setsP andN are disjoint. Thus, the setN

can also be obtained by,

N = T − P (4.24)

The set difference operation is performed on crisp sets, andthus we do not need to be concerned with the

implications of Eq (4.6) and (4.7). The positive extension of the conjunctionc, XP (c), is the extension

of the conjunction inP , and dually the negative extension,XN (c) is the extension of the conjunction in

N . Consider for example the conceptactivity.volleyball and the conjunctionc = [sunny][normal].

Let αc = αa = 0.8, thenXT (c) = {2, 10, 13, 16}, P = {2, 4, 16}, XP (c) = {2, 16}, N = T − P ,

andXN (c) = XT (c) −XP (c) = {10, 13}, where we list the instances by their instance numbers in the

table.

Note that we are still working with fuzzy classes. Just as applying an alpha leveling to the antecedent

does not revert fuzzy instances to crisp instances, applying an alpha leveling to the concept also does not

make the consequent crisp. We simply require that class memberships must lie above a certain level. If

one does not want to specify this, one can also defineP as,

P = {i ∈ T |µconcept(i) > 0} (4.25)

and the definition ofN remains as before.

4.3.5 FUZZY BEXA ’s Rule Semantics

FUZZYBEXA induces rules of the form “IFantecedentTHEN consequent, where the antecedent is a

conjunction in FuzzyAL, and the concept is a linguistic termfrom the term set of the class variables.

XT (c), the extension of the conjunctionc in the setT , T ⊆ I, defines the set of instances fromT

for which a rule withc as its antecedent will fire. According to Eq (4.17), a rule will only fire if the

antecedent membership is at leastαa. For example, consider the rule

IF [sunny, cloudy][mild]@0.7 THEN weights@0.8

The number following the antecedent is the value ofαa, the antecedent threshold, and the number

following the consequent is the value ofαc, the concept threshold. Thus, this rule will only fire for

instances with antecedent membership of0.7 or above. The explicit indication ofαa andαc may be

omitted when their values are specified for the whole training set. The semantic interpretation of this

rule is: if the membership of the antecedent is0.7 or above, then the membership of the concept is0.8
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or above. A value of0.7 for αa is relatively high, and may result in little or no overlap between terms

from the same term set for a linear attribute [Cox, 1998, p. 95]. This is often undesirable in fuzzy logic,

and thusαa is usually a smaller value. As already stated before, it is also possible not to apply any alpha

leveling to either the antecedent or the consequent. The semantics associated with a fuzzy rule in this

case will be that if an instance belongs to the rule antecedent with non-zero membership, it also belongs

to the consequent with non-zero membership. One may of course still apply an alpha-leveling to the

antecedent after rule induction. Note however, at this point no statement about the actual membership to

the consequent is made, except that it will be aboveαc if the membership to the antecedent is aboveαa.

Future research can address methods to predict the concept membership for rules that fire.

The aforementioned rule will fire for instances 4, 13, and 14 in Table 4.1. Instances 13 and 14 have

µactivity.weights ≥ 0.8, that is, the positive extension contains instances 13 and 14, and the negative

extension contains instance 4. Thus the classification accuracy of this rule is( |XP |
|XP +XN |)100% = 66%.

4.4 The Lattice of Fuzzy Concept Descriptions

In Section 3.5 we showed that BEXA ’s concept descriptions can be arranged in a lattice using amore

specific thanrelation. If the extension of a descriptionc is a subset of the extension of a descriptionc′,

i.e.XS(c) ⊂ XS(c′), thenc is more specific thanc′. The question arises, what happens to the description

lattice under fuzzy conditions—does the partial ordering still hold? In BEXA the partial order is defined

under set inclusion of description extensions. However, premises 3 and 6 do not hold in the fuzzy case

any more (see Section 4.3.2). By defining the partial order for the fuzzy case in a different manner, we

show that the description language (FuzzyAL) forms a lattice also in the fuzzy case.

The term set of a linguistic variable defines a number of fuzzysets for this variable. The description

language uses these terms as “labels” in its conjunction description. LetC denote the set of all FuzzyAL

conjunctions for a learning problem, andD(c) the set of linguistic terms used in a conjunctionc, c ∈ C.

The setD(c) is called thedescription setof the conjunction, andD(c) ⊆ D(mgc). Each linguistic term

in a description set is assumed to be unique, e.g. the linguistic termhigh of a linguistic variable “cost” is

different from the linguistic termhigh of a linguistic variable “inflation.” We can relabel these linguistic

terms ascost.high andinflation.high to maintain uniqueness of names if necessary. Thus, there isa

one to one mapping between descriptions and description sets. We now define the following relations,

Definition 4.4.1 LetC denote the set of all possible FuzzyAL conjunctions in the description language

for a specific learning problem, andc1, c2 ∈ C, thenc1 � c2, c1 is more specific than or equal toc2, if

and only ifD(c1) ⊆ D(c2). We considerc1 = c2 wheneverD(c1) = D(c2). Conjunctionc1 is more

specific thanc2, denoted byc1 ≺ c2, whenc1 � c2 andc1 6= c2.

Thus, the setC is partially ordered under the� relation.

The set of description setsD is formed from the power set of all linguistic terms, i.e.D = P(L), where

L is the set of all linguistic terms in the problem domain. Thus, D is closed under arbitrary unions and
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intersections, and forms thecomplete lattice 〈D;∪;∩〉 [Davey and Priestly, 2002, p. 36]. For each

conjunctionc there is a unique associated description setD(c). Next we show that the conjunctions in

C form a lattice.

Theorem 4.4.1 For a given problem domain, the set of FuzzyAL conjunctionsC forms the lattice

〈C;∨;∧; 〉, where the meet and join operations are respectively∧ and∨.

Proof of Theorem 4.4.1

For each descriptiond ∈ D there is an associated conjunctionD−1(d) = c formed by

the conjunction of conjuncts, where each conjunct is a disjunction of all linguistic terms

in d that are from the same term set. An empty conjunct is equivalent to FALSE, as is a

conjunction that contains an empty conjunct. Group all conjunctionsc ∈ D−1(d) that are

semantically equivalent toFALSE in one node, calledFALSE. Thus, except forFALSE, all

conjunctionsc ∈ C have a unique corresponding description setD(c). Let x = D−1(d1)

andy = D−1(d2) be conjunctions such thatd1 andd2 contain an empty conjunct, then

x∧y = FALSE andx∨y = FALSE exist inC. Now letx = D−1(d1) andy = D−1(d2) be

conjunctions such thatd1 contains an empty conjunct andd2 does not, thenx∧y = FALSE

andx ∨ y = y exist inC. Sincex∨ y andx ∧ y exist for allx, y ∈ C, 〈C;∨;∧〉 is a lattice

[Davey and Priestly, 2002, p. 34].

The operatorD(c) maps each conjunctionc ∈ C to a unique description set, and the operatorD−1(d)

maps each descriptiond ∈ D that does not contain an empty conjunct to a unique conjunction, and all

descriptions that contain an empty conjunct toFALSE. Thus, since〈D;⊆〉 is a complete lattice,〈C;�〉

is also a complete lattice.

For each elementc ∈ C, it follows that c � mgc, andmgc is called atop. Also, for each element

c ∈ C, it is the case thatFALSE � c, andFALSE is called abottom [Davey and Priestly, 2002, p.

15]. For all elementsc ∈ C, if follows that c = c ∧ mgc, andmgcis called aone, and for all elements

c ∈ C, it is the case thatc = c ∨ FALSE, andFALSE is called azero [Davey and Priestly, 2002, p.

41]. Since〈C;∨;∧〉 has both a one and a zero, it is abounded lattice [Davey and Priestly, 2002, p.

41]. Let x be a description set and̄ be the following operator̄x = (D(mgc) − x). Then, for each

elementx ∈ D, x ∩ x̄ = x ∩ (D(mgc) − x) = ∅ andx ∪ x̄ = x ∪ (D(mgc) − x) = D(mgc). Thus,

〈D;∪;∩; ∅;D(mgc);¯ 〉 is acomplemented lattice. For each elementx ∈ 〈D;∪;∩〉 its complement

x̄ exists, and therefore〈D;∪;∩〉 is a lattice with complements. Due to the mapping fromD to C, the

lattice〈C;�〉 has similar characteristics.

4.5 FUZZY BEXA ’s Top Layers

With all the definitions in place, we can now describe FUZZYBEXA ’s two top layers. FUZZYBEXA ’s

top layer routine,CoverConcepts, implements the fuzzy set covering approach to rule induction, and is
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Table 4.2: FUZZYBEXA ’s fuzzy set covering layer.

PROCEDURE CoverConcepts(T , concepts)
1 ruleset = ∅
2 FOR EACH conceptCi ∈ concepts DO
3 P = {i ∈ T |µconcept(i) ≥ αc}
4 N = T − P
5 REPEAT
6 bestconj = FindBestConjunction(P,N )
7 IF bestconj 6= NULL THEN
8 Add the rule “IFbestconj@αa THEN concept = Ci@αc” to ruleset
9 P = P −XP (bestconj)
10 END IF
11 UNTIL (P = ∅) OR (bestconj = NULL)
12 END FOR
13 RETURNruleset

END PROCEDURE

shown in Table 4.2. It receives a training setT of fuzzy instances and a list of concepts for which to

induce classification rules. For each conceptCi the training set is split into a set of positive instancesP

and a set of negative instancesN . To obtainP , we make use of either Eq (4.22) or Eq (4.25). The setN

is formed by subtractingP from T ,N = T −P . Next, FUZZYBEXA invokes its middle layer routine to

obtain the conjunction that best describes the current concept. It then adds the rule with this conjunction

as antecedent and the current concept as consequent to its rule set. All the positive instances covered

by this rule are then removed from the set of positive instances, while the setN remains unchanged.

FUZZYBEXA iteratively induces more rules until either all the positive instances are covered, or no

“useful” conjunction could be found, indicated by a NULL value for bestconj. It then continues with

the next concept until classification rules for all the concepts are induced. Since|P | is reduced during

each iteration, the algorithm is guaranteed to terminate.

FUZZYBEXA ’s middle layer is calledFindBestConjunction, and is shown in Table 4.3. It implements a

set of search heuristics to guide the search. The routine maintains a set of conjunctions, calledspecial-

izations, that are iteratively specialized by invoking the bottom layer routine. This set is initialized by

the mgc, which is formed as in Eq (4.20).FindBestConjunctionalso keeps track of the best conjunc-

tion found during the search by storing this conjunction in the variablebestconj, which is initialized to

NULL.

The set of specializations obtained from specializing the conjunctions inspecializationsreplacesspe-

cializations. Each specialization is then evaluated according to an evaluation function. FUZZYBEXA can

use any evaluation function that assigns better scores to conjunctions that cover the positive set better

than the negative set, where the exact definition of better isdefined by the evaluation function itself. One

example of such an evaluation function is the Laplace estimate. The evaluation function plays a pivotal

role during rule induction. It is thus very important to use asuitable evaluation function for the problem

to solve. The effect of the evaluation function will be the subject of Chapter 6. If a conjunction is found
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Table 4.3: FUZZYBEXA ’s FindBestConjunction procedure.

PROCEDURE FindBestConjunction(P,N )
1 bestconj =NULL;
2 specializations = {mgc}
3 WHILE specializations 6= ∅ DO
4 specializations =generateSpecializations(P,N, specializations);
5 FOR each conjunctionc ∈ specializations DO
6 IF c is better thanbestconj according to the evaluation THEN
7 bestconj = c;
8 ELSEIFc andbestconj have the same evaluation
9 AND |XP (c)| > |XP (bestconj)| THEN
10 bestconj = c;
11 ELSEIFc andbestconj have the same evaluation
12 AND c is less complex thanbestconj THEN
13 bestconj = c;
14 ENDIF
15 ENDIF
16 ENDFOR
17 Remove fromspecializations all the conjunctions that cover

no negative instances
18 Remove fromspecializations all the conjunctions whose optimistic

evaluation is worse thanbestconj’s evaluation
19 Retain inspecializations only thebeamwidth best conjunctions
20 END WHILE
21 IF the evaluation function value forbestconj is the same or worse

than that of themgcTHEN
22 RETURN NULL;
23 ELSE
24 RETURNbestconj;

END PROCEDURE

with a better evaluation it replaces the current best conjunction. Lines 8 to 18 implement further search

heuristics discussed in the next sections.

After searching the current set of specializations for an improvement on the current best conjunction,

a set of stop-growth criteria is used to prune the search. FUZZYBEXA prunes conjunctions that are

consistent (conjunctions that cover no negative instances) from the search process since these cannot be

improved by further specialization. Then only the remaining beamwidthbest conjunctions are retained

in specializationsfor further specialization. FUZZYBEXA performs a type of best-first search if its

beam width is set to one. Best first search is a hill-climbing strategy that expands the current state and

evaluates its children. The best child is selected and the parent and siblings are ignored. The search

halts when it reaches a state that is better than any of its children [Luger and Stubblefield, 1998, p. 127].

FUZZYBEXA searches top-down, and keeps track of the best conjunction found during the whole search.

Therefore thefirst (and most general) “best conjunction” found will be returned, not the last. By setting

the beam width parameter to a value greater than one, FUZZYBEXA performs a local beam search of
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the hypothesis space. That is, in each layer of the lattice ofconjunctions, up to abeamwidthnumber of

conjunctions may be specialized further. If the best conjunction found during a search performs no better

than themgc, the result “no useful conjunction found” (i.e. NULL) is returned, otherwise,bestconjis

returned. The middle layer also employs other search heuristics to improve efficiency and performance.

These are discussed next.

4.5.1 Choosing Bigger Positive Extensions

Lines 8 to 10 in Table 4.3 are used to compensate for some evaluation functions that may assign the

same evaluation to two conjunctions, but one conjunction covers more positive instances. Consider for

example the Laplace evaluation,

L(c) =
|XP (c)| + 1

|XP (c)| + |XN (c)| + #concepts
(4.26)

Assume|XP (c1)| = |XN (c1)| = 10, and|XP (c2)| = |XN (c2)| = 100. Then evaluations ofc1 and

c2 areL(c1) = 11/22 = 0.5 andL(c2) = 101/202 = 0.5. In this case we preferc2 over c1, asc2 is

more general (i.e. cover more instances) and also has the potential to become better thanc1 by further

specialization. Note, this test is not neccesary ifc1 ≺ c2, sincec2 would have been evaluated first, and

thus kept as best conjunction—L(c1) was notbetter thanL(c2). However, it may be thatc1 andc2 are

found in the same layer of the lattice and thatc2 is evaluated afterc1—in this case we wishc2 to replace

c1, even though they obtained equal evaluations.

4.5.2 Preferring Less Complex Conjunctions

If two conjunctions are equivalent according to the evaluation function, and the size of their positive

extensions are the same, we prefer the least complex conjunction. Complexity can be measured either

in terms of the number of conjuncts in a conjunction, or in terms of the number of linguistic terms in the

description set of the conjunction. We chose to used the firstapproach, since this approach favours rules

with more conditions on one linguistic variable to rules using more linguistic variables. The reasoning

is that if one linguistic variable can be used instead of two,this identifies the variable as significant and

justifies its use in the rule. The cost of measuring one variable is also less than measuring two variables,

assuming equal cost for all variables. The complexity test is implemented by Lines 11 to 13 in Table 4.3.

If a conjunction obtains the same evluation as the best conjunction, we retain the best conjunction only

if it is less complex, otherwise it is replaced.

4.5.3 Optimistic Evaluation

Line 17 cause all conjunctions with empty negative extensions to be removed from the search. Once

the negative extension of a conjunction becomes empty, no further amount of specialization will cause

the conjunction to improve, as it already covers the maximumnumber of positive instances (assuming

a general-to-specific search). However, it may happen that aconjunction can still be improved, i.e. its
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negative extension is not empty, but no amount of specialization will make it better than the current

best conjunction. We test for this condition by evaluating the conjunction optimistically. This means,

we assume that the conjunction can be specialized such that its positive extension remains intact, but

its negative extension becomes empty. If such an optimisticevaluation is still worse than the normal

evaluation of the current best conjunction, we remove the conjunction from the search process. Consider

for example the conjunctionc1 with |XP (c1)| = 10 and |XN (c1)| = 10, thenL(c1) = 0.5. The

optimistic evaluation of this conjunction isLoptimistic(c1) = 10+1
10+2 = 91.166. If the best conjunction had

an evaluation greater than91.166, we remove the conjunction from the search, since no specialization

can receive a better evaluation and thus replace the best conjunction. The test is implemented by Line 18

in Table 4.3.

4.6 FUZZY BEXA ’s Bottom Layer

FUZZYBEXA ’s specialization model, shown in Table 4.4, follows the same specialization by exclusion

principle as BEXA and functions as follows. With each conjunctionc two sets are associated, the sets

c.usable andc.excluded. The setc.usuable contains all the terms that may still be used to specialize

a conjunction. The setc.excluded contains all the terms that were used to specialize the conjunction.

Accordingly, themgcwill have mgc.excluded = ∅ andmgc.usable = D(mgc), the set of all pos-

sible terms. When a conjunctionc is specialized, one term fromc.usable is excluded fromc to form

cnew. Theusableandexcludedsets for each conjunction provides for efficient specialization by pre-

venting blind repetition of specialization effort. Like BEXA, FUZZYBEXA employs several criteria to

improve efficiency and prevent the generation of useless specializations (referred to as stop-growth of a

conjunction) and pre-prune conjunctions. These are discussed next.

4.6.1 Recalculating the Positive and Negative Extensions

In the crisp case BEXA computedXP (cnew) andXN (cnew) efficiently as follows. LetXP (A(i,j)) and

XN (A(i,j)) be the positive and negative extensions of the conjunction containing only the attribute value

A(i,j) wherei andj are the attribute and attribute value indices respectively, then

XP (cnew) = XP (c) −XP (A(i,j)) (4.27)

XN (cnew) = XN (c) −XN (A(i,j)) (4.28)

The extensionsXP (A(i,j)) andXN (A(i,j)) need only be computed once prior to rule induction. How-

ever, this computation is invalid in the fuzzy case; it depends upon premise 6 (see Section 4.3). Let

L(i,j) denote thejth linguistic term from theith linguistic variable. In the fuzzy case, the exclusion of

L(i,j) from an internally disjunctive conjunct does not necessarily uncover all the instances covered by

the term—an instance may still be a member ofXT (cnew), even though this instance is an element of

XT (L(i,j)). This will happen when an instance belongs to more than one term in the remainder of the

same term set with membership greater than or equal toαa, and these terms are still inc.usable. Thus,

unlike in the crisp case, in the fuzzy case it is not true in general thatXT ([!L(i,j)]) ∩XT (L(i,j)) = ∅.
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Table 4.4: FUZZYBEXA ’s specialization model.

PROCEDURE GenerateSpecializations(P,N, conjunctions,
beamwidth)

1 specializations = ∅
2 // First remove fromc.usable all the values that will lead

to unnecessary specializations
3 FOR each termLi ∈ c.usable DO
4 IFXN (c) ∩XN (Li) = ∅ THEN // Ensure more negative

instances will be uncovered
5 c.usable = c.usable− {Li}
6 // Next generate all useful specializations of the conjunction
7 FOR each conjunctionc ∈ conjunctions DO
8 FOR each valueLi ∈ c.usable DO
9 cnew = c specialized by removingLi from it;
10 IF cnew ∈ specializations THEN CONTINUE;
11 XP (cnew) = (XP (c) −XP (Li)) ∪XP (L1) ∪ . . .

∪ XP (Lj) ∪ . . . ∪XP (Ln), Lj 6∈ c.excluded,
Lj is in the same term set asLi, andLj 6= Li

12 IFXP (cnew) = ∅ THEN CONTINUE
13 XN (cnew) = (XN (c) −XN (Li)) ∪XN (L1) ∪ . . .

∪ XN (Lj) ∪ . . . ∪XN (Ln), Lj 6∈ c.excluded,
Lj is in the same term set asLi, andLj 6= Li

14 cnew.usable = c.usable− {Li};
15 cnew.excludedvalues = c.excludedvalues ∪ {Li};
16 specializations = specializations ∪ {cnew};
17 END FOR
18 END FOR
19 RETURNspecializations

END PROCEDURE

We can, of course, simply recalculateXP (cnew) andXN (cnew) by computing the membership of

each instance with the new conjunction and determine if it isαa or above. However,XP (cnew) and

XN (cnew) can be calculated more efficiently in the following way. LetXP (L(i,j)) andXN (L(i,j)) be

the positive and negative extensions of the conjunct containing only the termL(i,j). Let cnew be the

conjunction formed by excluding the termL(i,j) from c, then,

XP (cnew) = (XP (c) −XP (L(i,j))) ∪
⋃

k,k 6=j

XP (Li,k) (4.29)

XN (cnew) = (XN (c) −XN (L(i,j))) ∪
⋃

k,k 6=j

XN (Li,k) (4.30)

whereL(i,k) 6∈ c.excluded. The extensionsXP (L(i,j)) andXN (L(i,j)) are only computed once prior

to rule induction. The above equations require only set difference and union, and can be efficiently

implemented by a set data structure backed by a hash table.

Consider the complexity of calculating the extension of a conjunction without this efficiency measure.

Here we assume an efficient approach where the calculation ishalted as soon as it can be determined
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that an instance either matches a conjunction or not, i.e. wedo not follow the simple approach of

computing the membership of an instance to the conjunction and then testing whether this is belowαa

or not. Assuming the standard fuzzy operations, matching requires testing instance membership degrees

to the terms inD(c) until the expression can be declared true or false. As soon asthe membership of the

instance to aconjunctisαa or above, it is known that the instances matches the conjunct. To decide that

an instance does not match a conjunct all the terms must be tested and their membership degrees must

all be belowαa. The complexity of the matching operation of course grows asthe number of terms per

term set increases, although not in a linear manner. Letp be the probability that the membership of an

instance to a term isαa or above, then the probability that the membership of thenth term isαa or above

and the membership of the firstn− 1 terms are belowαa follows a geometric distribution, given by

Pgeometric= (1 − p)n−1p (4.31)

The mean of the geometric distribution for an infinite seriesof terms isp−1, i.e. on averagep−1 terms

must be examined before it can be decided that an instance matches a given conjunct. For example, if

p = 0.2 then on average5 terms will be tested per conjunct for instances inXT (c). Thus, forq variables,

the number of tests to perform for terms inXT (c) on average is given by,

qp−1 (4.32)

Let r be the probability that an instance membership to any conjunct in c is αa or above. Assuming an

infinite number of conjuncts inc, for instances inT −XT (c) on averager−1 conjuncts must be tested

until one is found that is not matched. Thus, for instances inT −XT (c) the number of tests performed

on average is given by,

kr−1 (4.33)

wherek is the average number of linguistic terms per conjunct inc. Consider the sport data in Table 4.1

with q = 4 variables andαa = 0.5. Of the 160 membership degrees, 67 are0.5 or greater. Thus for the

mgc, p = 67
160 = 0.419, and the average number of term membership tests per instance isqp−1 = 9.55.

We can estimater as,

r̂ =
1

#conjuncts

#conjuncts
∑

i=1

# matched instances for conjuncti

#instances
(4.34)

For the conjunct[!sunny][!hot][!humid][!windy], r = 1
4( 9

16 + 10
16 + 10

16 + 11
16) = 0.625, k = 6

4 , and thus

on averagekr−1 = 2.4 membership tests must performed for instances inT − XT (c). Of course, in

reality the number of linguistic terms per conjunct and the number of conjuncts are far from infinite, and

the calculations in Eq (4.32) and Eq (4.33) are only approximations. However, the efficiency measures of

Eq (4.29) and (4.30) removes the need for matching altogether, and instances inXT (Li) can be removed

XT (cnew), provided they are not in
⋃

XT (Lj), whereLj 6∈ cnew.excluded.
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4.6.2 Empty Positive Extension

BEXA used a subset test to prevent the generation of new conjunctions withXP = ∅. These are shown

in Lines 5 and 8 of Table 3.4,

5 IF XP (c) ⊆ XP (ai)

8 c.usable = c.usable− {ai}

If the positive extension of a conjunction is solely due to a certain attribute value, then excluding this

attribute value is senseless.

This test, however, depends upon premise 6, which does not hold in the fuzzy case, as fuzzy instances

may have more than one term membership from the same term set in c of at leastαa. Therefore, even

though the positive extension of one term may subsume the entire positive extension of the conjunction,

this does not mean that if it is excluded the positive extension will become empty – another term’s mem-

bership may be at leastαa with a non-empty positive extension. However, it is still useless to generate

conjunctions with an empty positive extension, as further specialization cannot find better conjunctions.

Thus, we remove the subset test as in Line 5 of Table 3.4, and add an alternative test in Line 12 of

Table 4.4, after the new positive extension is computed.

12 IF XP (cnew) = ∅ THEN CONTINUE

If XP (cnew) = ∅, we do not addcnew to specializations because it does not cover any positive

instances. Note, premise 5 is still valid in the fuzzy case—excluding all terms from the same term set

means that no term remains to be matched, and is equivalent tothe conditionFALSE that covers no

instances.

4.6.3 Uncover New Negatives

FUZZYBEXA does not specialize conjunctions by excluding terms if the specialization covers as many

negative instances as its parent (Line 4 of Table 4.4). When the negative extension of a term has no mem-

bers in common with the negative extension of a conjunction,specializing the conjunction by excluding

this term will not uncover any new negatives. However, the specialization may now not cover some

members from the positive extension of the conjunction, making it less general. For this reason, and

since we want the most general consistent rule, we do not specialize the conjunctionc by excluding the

termL if the negative extensions ofc andL have no common members, i.e. whenXN (c)∩XN (ai) = ∅.

4.6.4 Irredundant Set Cover

As discussed in Section 3.5, Theron and Cloete [1996] showedthat using the irredundant set cover test

leads to the discovery of members of the setCM , the set of most general consistent conjunctions. We

implemented the irredundancy test as an optional extra stopgrowth measure in the fuzzy case, and we
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Table 4.5: A small fuzzy learning problem.

@relation smallproblem

@attribute A {a, b}

@attribute B {x, y}

@attribute concept {yes, no}

@data

(0.7 0.3), (0.8 0.2), (0.3 0.7) ;1

(0.8 0.2), (0.2 0.8), (0.4 0.6) ;2

(0.7 0.3), (0.1 0.4), (0.7 0.3) ;3

(0.2 0.8), (0.1 0.4), (0.3 0.7) ;4

(0.3 0.7), (0.3 0.7), (0.8 0.2) ;5

(0.5 0.5), (0.3 0.7), (0.6 0.4) ;6

examine its use empirically in the next chapter. Since fuzzyinstances belong to more than one fuzzy

set at the same time, we expect the irredundancy test to have asmaller impact in the fuzzy case, i.e. we

expect that the test will not be satisfied often enough to makea significant difference.

4.6.5 Remove Duplicate Specializations

To prevent unnecessary work in the rest of the algorithm, BEXA removed duplicate specializations from

the set of specializations after the specialization process (See Table 3.4, Lines 19 and 20). Duplicate

specializations are created if two conjunctions differingin only one term are specialized such that the

remaining terms are the same, e.g. by excludinghot from [hot,mild][windy] and excludingcold from

[mild, cold][windy], the specializations of two different conjunctions are thesame, i.e. the conjunction

[mild][windy]. The number of duplicate conjunctions will increase with the beam width and the sizes

of the term sets. Since the calculation of the positive and negative extensions of the specializations is

one of the operations with high computational cost (especially for large training sets), FUZZYBEXA

optimises this test by moving the duplication test to Line 10in Table 4.4. This removes the calculation

of XP (cnew) andXN (cnew) for duplications, which results in a substantial reductionin specialization

cost.

4.7 A Small Practical Example

In this section we consider the data set shown in Table 4.5. Weinduce classification rules forconcept.yes

using the concept thresholdαc = 0.4 and the antecedent thresholdαa = 0.4, and we do not consider

any stop growth tests. Figure 4.5 shows the complete latticeof conjunctions defined by FUZZYBEXA ’s

description language, subject to the usual constraint thatthere remains at least one term per variable,

i.e. we do not consider the antecedentFALSE that covers no instances. Each node contains a conjunc-

tion description, and indicates the sizes of the positive and negative extensions (XP (c) andXN (c)) of

the conjunction in parentheses. In the figure, the alpha complement of a linguistic variable is denoted
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Figure 4.5: The lattice of the learning problem of Table 4.5. The symbolÃ is used to denote the alpha comple-

ment.

by the symbolÃ. Dotted nodes indicate inconsistent conjunctions and solid nodes indicate consistent

conjunctions.

The procedureCoverConceptscomputes the setsP andN according to Eq (4.22) and (4.23). The value

αc = 0.4 defines the setsP = {2, 3, 5, 6} andN = {1, 4}. Thereafter the procedureFindBestCon-

junction constructs themgcand adds it to the setspecializations. Themgc is shown as the top node

of Figure 4.5. By design, the most general conjunction covers the complete training set, and therefore

XP (mgc) = P andXN (mgc) = N . The procedureGenerateSpecializationsis now called. It con-

structs all the specializations of the conjunctions inspecializations, which initially contains only the

mgc. The six nodes shown in the second layer will be generated by FUZZYBEXA during the first iter-

ation, and are all the specializations possible by excluding one term from themgc. Since there are six

terms altogether in themgc, the second layer contains six conjunctions. The positive and negative ex-

tensions of each specialization is then computed accordingto Eq (4.29) and (4.30). The first invocation

of GenerateSpecializationscannot create any duplicate conjunctions.

The set of specializations generated byGenerateSpecializationsis then returned toFindBestConjunc-

tion, and each specialization is then evaluated according to theevaluation function. For this example we

use the Laplace function in Eq (4.26).FindBestConjunctionkeeps track of the best conjunction found

thus far using the variablebestconj. After the evaluation process, only thebeamwidth best specializa-
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tions are retained inspecializations, implementing FUZZYBEXA ’s beam search behaviour. The best

conjunction in the second layer is[a, b, ᾱ][y, ᾱ], i.e. themgcwith x excluded. By excludingx, a negative

instance (instance 1) is uncovered. The membership degree of instance 1 to the termy is 0.2, and0 to

the alpha complement of variableB. The membership to the remaining term sets are all above0.2, and

thus the membership to the whole conjunction is0.2, that is, belowαa, and the instance is uncovered.

The dashed bold edges in Figure 4.5 show the paths that FUZZYBEXA will examine with a beam width

of one, while the solid bold edges indicate the path that FUZZYBEXA actually follows using the Laplace

estimate to rank conjunctions.

There are six nodes in the second layer, one node for each termthat was excluded from the term sets of

themgc. In the next layer, however, there are not30 (5 ∗ 6) nodes, since some conjunctions are created

by excluding the same two terms in different order from themgc. FUZZYBEXA tests for this condition

in Line 10 in Table 4.4. FUZZYBEXA will search in an ordered top-down general-to-specific manner

through the lattice, until it finds a member of the setCM , the set of most general consistent conjunctions.

In the third layer the conjunction[a, ᾱ][y, ᾱ] has an empty negative extension. It is therefore consistent,

and since no conjunction more general is also consistent, itis a member ofCM , and is indicated as a

filled node in the figure. Specializing this conjunction further can lead to[a, ᾱ][y], [a][y, ᾱ], and[a][y],

which all have the same value for the evaluation function, but which are not members ofCM . Nodes

with the same Laplace evaluation as that of the filled node areindicated with bold outlines. However,

they occur lower down the lattice, and are therefore less general than the filled node. FUZZYBEXA

will not specialize further than[a, ᾱ][y, ᾱ] due to the stop growth rule in Line 17 of Table 4.3 (i.e. this

conjunction does not cover any negative examples).

The first rule has a100% classification accuracy, since it covers no negative instances, and uncovered

three positive instances. These instances are removed fromthe training set. SinceP 6= ∅, further

iterations of the REPEAT loop inCoverConceptsare required until all the positive instances are covered,

or no more useful rules can be found. In this particular learning problem and data set, the extensions of

the alpha complements of bothA andB are empty, and thus one could argue that they can be ignored

because they can actually not be used to exclude any instances. This yields less general descriptions, but

with the same classification performance over the observed instances, i.e.

IF [a][y]@0.4 THEN concept.yes@0.4

would also be a valid description—and is exactly one of the less general, but equally good descriptions

discussed above.

One could argue that any conjunction in the lattice belowc, c ∈ CM , with the same extension is as good

asc. However, if we stand by the principle of preferring more general descriptions, then it must be kept

in mind that since membership degrees are real numbers from acontinuous domain, any training setT

is a proper subset of the whole instance spaceI, T ⊂ I, and it is true in general that if conjunctionc1 is

more specific that conjunctionc2, c1 ≺ c2, all instances fromI that matchc1 will also matchc2, but a

subset of instancesB, B ⊂ I, can always be found such that an instanceb, b ∈ B, matchesc2 but does

not matchc1. That is, even thoughc1 andc2 can have the same extension inT , there always exists a set

of unobserved instancesB such thatXB(c1) ⊂ XB(c2).
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4.8 FUZZY BEXA ’s Inductive Bias

We first prove the following theorems and then use them to formFUZZYBEXA ’s inductive bias when we

assume the use of the standard fuzzy operators. The inductive bias will of course change for different

fuzzy operators.

Theorem 4.8.1 Let c be a conjunction, andc′ ≺ c. The membership of an instancei ∈ I to c′ will be

less than or equal to its membership toc, that is,∀i ∈ I : µc′(i) ≤ µc(i).

Proof of Theorem 4.8.1

The membership of an instancei ∈ I to c will be the minimum membership value ofi to

any conjunct inc. According to Def 4.4.1, the description set ofc′ is a proper subset of the

description set ofc, D(c) ⊂ D(c′). Thus,c contains all linguistic terms ofc′, but for at

least one conjunctci in c, there is a linguistic term that is not in the correspoding conjunct

c′i. Let L ∈ D(c) be a linguistic term such thatD(c′) = D(c) − {L}. If µL(i) was not

the maximum of the membership degrees to the linguistic terms remaining in the conjunct

of L’s term set, thenµc(i) = µc′(i). If it was the maximum, then the membership ofi

to the conjunct will decrease since the maximum membership decreases. If the decreased

membership is lower than the smallest membership to any conjunct, the membership to

the conjunction will decrease. Since the membership to morespecific conjunctions can

decrease, but never increase, the theorem is proven.

Corollary 4.8.1 Letc be a conjunction, andc′ � c. The extension ofc′ will be a subset of the extension

of c: XI(c
′) ⊆ XI(c).

Proof of Corollary 4.8.1

Let c′ ≺ c. Only instances inXI(c) need to be considered, since all other instances do

not matchc, they are known to have membership degrees less thanαa. According to The-

orem 4.8.1, the membership of an instancei ∈ I to a conjunction will either decrease or

remain the same as it is specialized. Thus,∀i ∈ I(µc′(i) ≤ µc(i)), and therefore only the

same or fewer instances than inXI(c) will have membership degrees greater or equal toαa,

and according to Eq (4.17) only the same or a subset of instances can be included inXI(c
′).

Starting with themgcdefined in Eq (4.20), FUZZYBEXA performs a greedy, general-to-specific, separate-

and-conquer beam search of the space of allconjunctionsin its description language to induce a concept

description. FUZZYBEXA ’s specialization model specializes a conjunction by removing, i.e. excluding,

one term from one of the term sets in the conjunction. Next we show that FUZZYBEXA also searches

the instance setsin the instance space in a general-to-specific order.
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Let c1 andc2 be elements of the setC of all FuzzyAL conjunctions in the description language of a

learning problem,c1, c2 ∈ C, and assumec1 is a specialization ofc2. Thus,D(c1), the description

set of specializationc1, was formed by removing one or more terms fromD(c2), the description set of

conjunctionc2, i.e.D(c1) ⊂ D(c2). The extension operator maps conjunctions inC to instance sets in

P(S), whereP(S) is the power set of a set of instancesS. Thus,X is the map,

XS : C → P(S) (4.35)

The setP(S) is partially ordered under the set inclusion operation,⊆ [Davey and Priestly, 2002, p. 4].

The conjunctionc1 is more restrictive thanc2 because less terms are present in the internal disjunction

of at least one variable. Thus,c1 cannot cover instances that are not covered byc2, but c1 may not

coversome of the instances covered byc2. According to Corollary 4.8.1, the set of instances covered

by c1 is a subset of those covered byc2, XS(c1) ⊆ XS(c2), whenc1 � c2. The mapXS is said to be

order-preserving or monotone [Davey and Priestly, 2002, p.26].

FUZZYBEXA only replaces the current best conjunction when a competingconjunction has a better

evaluation. The lattice of descriptions is searched in a general-to-specific manner, and thus more specific

conjunctions are generated later during the search, and only replace more general conjunctions if they

have a higher evaluation. Since the extension operator is order-preserving, the instance sets covered by

the conjunctions are also searched in a general-to-specificorder. Furthermore, whenever a conjunction

becomes consistent, it is removed and not specialized further. Thus, we can formulate FUZZYBEXA ’s

inductive biasas follows:

Conjunctions with good evaluations are preferred over conjunctions with bad evaluations,

and conjunctions that cover more instances are preferred over conjunctions that cover fewer

instances.

Less formally we can say that FUZZYBEXA prefers good descriptions higher up in the lattice.

4.9 The Inference System

FUZZYBEXA is only concerned with the induction of a good rule set. For this purpose it makes use of a

training set of instances. FUZZYBEXA is thus not used to classify instances—it is the task of the fuzzy

inference system to use the induced rule set for classification of a set of arbitrary instances (but still from

the problem domain). Although each rule is induced in isolation, FUZZYBEXA returns a set of rules. The

performance of the inference system is dependent on both theperformance of single rules, as well as the

degree to which they cooperate. The method of rule cooperation, or in the case of conflicts, the method

of rule arbitration, is an important task of the inference system. The inference system is a component

largely independent from the specific induction method, in our case FUZZYBEXA. However, since all

results (i.e. both for the training and test sets) are directly influenced by the specific implementation of

the inference system, we discuss its characteristics in more detail. We first pay attention to the difference

between the truth (or membership) of an instance to a rule antecedent and the concept predicted by the

rule. Then we discuss instance classification and the default rule.
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4.9.1 Conjunction Truth And Concept Truth

Rules that from part of a fuzzy control system are often required to predict a numerical value. Thus,

often the final step in an inference system is to convert a generated (or predicted) fuzzy set to a single

(crisp) value [Klir and Yuan, 1995, p. 332]. This process is called defuzzification. The two most

popular methods for defuzzification in such systems are the centre of gravity (or centroid) method and

the maximum of the output membership function method [Cox, 1998, p. 31]. The centroid method

calculates the weighted mean of the fuzzy region,

R =

∑n
i=0 diµA(di)

∑n
i=0 µA(di)

(4.36)

wheredi is thei’th domain value, andµA(di) is the truth membership value of ruleA for that domain

point. Other methods include the average of maximum values,the average of the support set, the far and

near edges of the support set, and the centre of maximum methods [Cox, 1998, p. 314].

FUZZYBEXA ’ rules, however, are not designed to predict numerical values, but a concept. In this case

the membership degree of an instance to the antecedent (conjunction truth) indicates thecertainty or

confidencethat the rule fires. The certainty or degree to which a rule fires does not predict the member-

ship of the instance to the rule consequent (concept truth),but specifies that the instance membership to

the rule consequent lies within a certain range, i.e. the range [αc, 1]. If αc was not set, then the instance

membership to the concept is simply predicted to be greater than zero. For example, letαc = 0.8 and

let there be a rule “IFX = x1 ∨ x2 THEN Y .” If an instancei matches the antecedent to degree0.75,

we can say that we are rather certain that the rule fires—we arecertain to degree0.75 that the instance

belongs to the concept with membership in the range[0.8, 1]. Future research can address the possibility

to predict a membership degree to a class as well.

4.9.2 Instance Classification and the Default Rule

The process of rule induction does not necessarily produce aset of rules that can classify (i.e. match) all

instances in the training set, nor can one guarantee that theinduced rule set will assign a classification

to each instance in the instance space. In fact, only themgccovers all instances in the instance space.

This problem is handled by adding a default rule to the rule set. The default rule matches all instances

that are not matched by any rule of the induced rule set. The antecedent of the default rule is therefore

themgcor the constantTRUE that matches all instances. Although the default rule is always matched,

it is only used for classification when no other rules fired.

The consequent of the default rule depends on whether the learning problem requires single class learn-

ing or multi-class learning. Single class learning is the case where one class must be distinguished from

all other classes, and is dealt with by learning only a set of rules for the instances denoted as positive

by the user (i.e. the setConceptsin Table 4.2 has only one member). The other instances (negative)

are classified asFALSE, or NOT CONCEPT by the default rule. The user can choose to designate the

majority class as the consequent (the class of the negative instances) of the default rule, and only induce

rules for the class with the least number of instances (the minority class). This is not automatically
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done, since the purpose of rule induction may be knowledge discovery, and not only best classification

performance, and it may be the case that the user wants an explanation for the majority class and not

the minority class. The consequent of the default rule for multi-class learning (i.e.|Concepts| > 1 in

Table 4.2) is the majority class, since this rule has the highest probability to be correct.

Another issue to consider when classifying unseen data is that more than one rule may match an instance.

In this situation many different approaches can be taken. Ifall matched rules have the same consequent,

the classification is unambiguous. If the matched rules havedifferent consequents, an arbitration method

can decide what classification to assign to the instance. Onemethod is to assign the most frequent

consequent among the matched rules. Other possibilities are to use the first rule that matched, to assign

the classification of the rule that covered the most positiveinstances, to assign the classification of the

rule with the highest evaluation, to assign the classification of that consequent among the consequents

of the matched rules that occur most frequently in the training set, or simply to use the default rule.

In the fuzzy case a further possibility exists. Fuzzy instances can belong to more than one consequent

with membership aboveαc. Thus, an approach only possible in the fuzzy case is to assign more than

one classification to an instance when it matches multiple rules with different consequents. However,

we did not follow this approach. Although we implemented various different strategies, for the purposes

of this dissertation our inferencing system resolves rule conflicts by selecting the rule with the highest

set coverage.

4.10 Further Theoretical Aspects

4.10.1 Subsequent Versus Previously Found Rules

One interesting question is, can a subsequently found rule be more general than a previously found rule?

That is, can we specialize a ruler2 found subsequently to form a ruler1 found previously? If this is the

case, we could remover1 from the rule set, sincer2 fires for instances that matchesr1, but r2 is less

complex. The answer, however, is typically this does not happen. To subsume a previous rule,r2 must

be higher in the lattice on a chain fromr1 to themgc. However, the extension ofr1 is a subset of the

extension of any conjunction abover1 in the lattice. Since the positive extension ofr1 was removed after

the rule was added to the rule set, the evaluation of all conjunctions more general thanr1 will decrease.

Thus, although it is not impossible for a subsequent rule to subsume a previous rule, it is more likely that

conjunctions that are not in the principal filter ofr1 [Davey and Priestly, 2002, p. 45] will be preferred

during the induction of subsequent rules.

A second question is, can subsequent rules be better than previous rules, as measured by the evaluation

function? During the induction of earlier rules, more instances are available for the estimation of rule

quality by the evaluation function. This estimate should bemore accurate, and good evaluation functions

should lead to better rules during the early stages of the search, with subsequent rules performing in-

creasingly worse. Furthermore, since there are more positive instances earlier in the search, earlier rules

are also more likely to obtain higher evaluations—|P | goes to zero during the induction process while
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|N | remains constant. If a finite beam search is performed it cannot be guaranteed that the best rules are

found first. In general, however, in our experience even witha very small beam width subsequent rules

are always worse with respect to their coverage ofP . Thus, the order of rule induction can in most cases

be used as an arbitration method to resolve rule conflicts during inference.

4.10.2 Size of the Hypothesis Space

In this section we address the question, how does the size of the lattice of conjunctions grow as a function

of the number of linguistic terms. It is to be expected that the induction of a rule within a very large

lattice will take longer. The size of the lattice〈C;�〉 can be calculated as,

|〈C;�〉| = 1 +
∏

i

(2ni+1 − 1) (4.37)

wherei indexes linguistic variables andni is the number of linguistic terms in theith term set. For

the ith linguistic variable2ni disjunctive expressions can be formed. However, the expression with no

linguistic terms is equivalent to false for all conjuncts, and is thus subtracted inside the product and

added once outside. The number of linguistic terms per variable is increased by one to include the

alpha complement. Since the lattice is searched for the induction of each rule, the size of the complete

hypothesis space (i.e. the number of possible rule sets) is,

|hypothesis space| = 2|〈C;�〉| = 21+
∏

i(2
ni+1−1) (4.38)

A small problem may have 5 linguistic variables, each with three linguistic terms, resulting in a lattice

of conjunctions of size1 + (23+1 − 1)5 = 1 + (15)5 = 759376. This space can still be searched

exhaustively. However, since the size of the hypothesis space grows exponentially in the number of

linguistic terms, larger problems cannot be explored exhaustively. Due to FUZZYBEXA ’s efficient search

heuristics, however, only a very small subset of the entire hypothesis space is examined in reality, and

larger problems are still tractable. We will provide empirical experiments substantiating this statement

in Chapter 5.

4.10.3 The Importance of Alpha Leveling

Alpha leveling (applying anα-cut) is an important part of a fuzzy inference system [Cox, 1998]. FUZZY-

BEXA applies alpha leveling at two stages, during training and during inference. Since the need for alpha

leveling in a fuzzy learner may be questioned, and we briefly discuss this aspect first for inference and

then for training.

During rule matching, the inference engine applies alpha leveling. Thus, instances must match rules at

least with a minimum membership degree before they fire. If noalpha leveling is applied during infer-

ence, conjunctions would have to be very specific not to also cover many negative instances (although to
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small degrees). This would influence the classification accuracy and especially the rule set comprehen-

sibility negatively. Alternatively, the rule conflict resolution method could use the rule that was matched

to the largest degree, which can be seen as an implicit form ofalpha leveling.

Alpha leveling is also applied during the search process. Since the evaluation functions are fuzzy, alpha

leveling is again not mandatory. In some cases exactly the same results are obtained with and without

applying anα-cut. Here, applying alpha leveling during inference and not during search gives the same

results, but the search is less efficient—instances that do not match rules during inference are kept in

the training set longer, and are thus included in calculations during search more often. Not applying

alpha leveling during search can influence the search negatively. The cumulative effect of many weakly

covered instances can easily obscure the contribution of fewer, but more strongly covered instances, thus

leading to the induction of worse rules.

Unfortunately, there is no algorithm for choosingαa during search or for inference. In the next chapter

we present experimental results on the influence ofαa for both search and inference. We will show that

althoughαa can influence the performance of the algorithm in some cases,many data sets are not very

sensitive to it.

4.10.4 For What Kind of Learning Problems is FUZZY BEXA Suitable?

FUZZYBEXA ’s description language, FuzzyAL, is very powerful and ableto form a large variety of

concept descriptions—just look at the size of the hypothesis space. Thus, FUZZYBEXA is a general

learning algorithm, applicable in most cases. However, there are some problems that FUZZYBEXA was

not designed to solve, and for which it will not induce natural (comprehensible) rule sets. FUZZYBEXA

(as well as BEXA and most other covering algorithms) cannot count conditions, that is, it cannot de-

scribe a concept such as “any four of the nine conditions mustbe true.” A typical type of description

that solves this problem is M of N rules. FUZZYBEXA ’s behaviour for such problems will be awkward.

It will induce many rules with antecedents made of differentfour-conjunct combinations. The classifi-

cation performance may still be high, but the rule set will beoverly complex, and probably not lead to

knowledge discovery.

FUZZYBEXA also cannot describe (in a natural way) problems that require the description of relations

between different attributes. Thus, FUZZYBEXA cannot describe a concept such as “inflation rate is

larger than growth rate” or “green vote is more than red vote.” Both situations may be addressed by the

addition of extra linguistic variables, making these relations explicit. In the first problem we can add a

new variable that describes the number of true conditions. In the second problem we can add the variable

describing (inflation rate - growth rate) or (red vote - greenvote). However, in most cases this does

not provide a satisfactory solution, since we assume that one purpose of rule induction is knowledge

discovery, and the addition of these new variables would require too much prior knowledge. Future

research can address the extension of the description language to enable fuzzy covering algorithms to

also deal with these types of problem domains.
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4.11 Summary

In this chapter we proposed set covering as a new methodologyfor the induction of fuzzy classification

rules. We first developed the basic theory for fuzzy set covering, and showed that crisp covering algo-

rithms are based on a set of premises which do not all hold truein the fuzzy case. We then proposed a

novel algorithm, FUZZYBEXA, which makes use of the fuzzy set covering approach. FUZZYBEXA uses

the same hierarchical structure as the crisp covering algorithm, BEXA. FUZZYBEXA clearly complies

with the basic criteria for set covering as stated in Def 3.2.1, it induces a single rule at a time by choosing

among several attribute-value pairs, and it removes the positive instances covered after the induction of

a rule. We proposed the description language FuzzyAL for describing FUZZYBEXA ’s rule antecedents,

and proved that the descriptions in FuzzyAL form a lattice. Furthermore, we also proved that the fuzzy

extension operator is an order-preserving mapping from conjunction space to instance space. Thus,

FUZZYBEXA performs a top-down, general-to-specific beam search of thespace of instance sets, using

a fuzzy evaluation measure to guide its search.

FUZZYBEXA employs a host of efficiency measures and prepruning criteria, improving the speed of

rule induction as well as the quality of the induced rule set.Some of the efficiency criteria were adapted

from the crisp case, but several novel measures are only valid in the fuzzy case. To demonstrate FUZZY-

BEXA ’s search behaviour we traced its search through the latticeof conjunctions of a small toy problem.

We also discussed the importance of rule arbitration and theeffect of the default rule in a fuzzy infer-

ence system. Finally we discussed theoretical aspects of the algorithm, such as the likelihood of rule

subsumption, the size of the hypothesis space, and the kind of learning problems that FUZZYBEXA is

suited for. The next chapter provides an empirical evaluation of FUZZYBEXA ’s various parameters.
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CHAPTER 5

Empirical Evaluation

5.1 Introduction

The previous chapter introduced FUZZYBEXA, a novel rule induction algorithm employing our pro-

posed fuzzy set covering methodology. In this chapter we investigate FUZZYBEXA ’s performance on

benchmark data sets from the UCI (University of California,Irvine) machine learning repository [Blake

and Merz, 1998]. FUZZYBEXA has several learning parameters, for example the beam widthand an-

tecedent threshold. A second purpose of this chapter is to determine empirically the effect that each

of these parameters have on the performance of the algorithm. FUZZYBEXA also incorporates various

efficiency and stop-growth criteria, and we investigate theeffect of each of these criteria.

The layout of the chapter is as follows. Section 5.2 discusses the experimental methodology followed

during the experiments. The following section provides an evaluation of FUZZYBEXA on benchmark

data sets. Section 5.4 investigates the influence of the beamwidth, followed by an investigation of

FUZZYBEXA ’s sensitivity to noise in Section 5.5, and an investigationof FUZZYBEXA ’s sensitivity to

the antecedent threshold in Section 5.6. In Section 5.7 we evaluate the effect of various stop-growth

criteria, and we conclude the chapter with a summary of the main results in Section 5.8.

5.2 Experimental Methodology

There are different ways to evaluate the performance of ruleinduction algorithms. The classification

accuracy, rule set complexity, and computational complexity of algorithm can be computed in several

ways. The classification accuracy is a measure of the value orconfidence we place in the class predic-

tions made by the rule set. In the absence of a domain expert, rule set complexity often serves as an

estimation of rule set comprehensibility. An algorithm that can obtain good classification accuracy as

well as rule set comprehensibility in theory, but does not complete in reasonable time is not of practical

use, and as such computational complexity is also an importance measurement.

The classification accuracy is perhaps the most important statistic of a classifier. We measure the clas-

sification accuracy of our classifiers by counting the numberof correct classifications. This calculation

follows the procedure as detailed in Table 5.1. In Table 5.1,the positive coverageis the number of

positive instances in the training set covered by the rule. The different interpretations of the default
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numcorrect = 0
FOR each instancei

Find the set of rulesR that matchesi
Let r, r ∈ R, be the rule with the highest positive coverage
IF R 6= ∅ AND r classifiesi correctly THEN
numcorrect = numcorrect+ 1

END IF
IF R = ∅ AND the default rule classifiesi correctly THEN
numcorrect = numcorrect+ 1

END IF
END FOR

Table 5.1: The procedure for calculating the number of correct classifications on a data set.

Table 5.2: Values for computing ROC ratios.

a number of correct positive classifications

b number of positive instances

c number of correct negative classifications

d number of negative instances

e number of incorrect positive classifications

f number of positive classifications

g number of incorrect negative classifications

h number of negative classifications

rule as used in Table 5.1 were discussed in Section 4.9.2. FUZZYBEXA allows the user to specify the

consequent of the default rule, and in our case we always choose the class with the highest frequency

(majority class). In some experiments we report the Receiver Operator Curve (ROC) measurements,

true positives, false positives, true negatives, and falsenegatives. These ratios are defined as follows,

Definition 5.2.1 Leta to h be as in Table 5.2, then we define the following ratios, True Positives =a/b,

True Negatives =c/d, False Positives =e/f , and False Negatives =g/h.

When we compute the ratios as defined in Def 5.2.1 the default classification rule is not used. If no

rule fires, we count the classification as negative. All experiments are performed using10-fold cross

validation. For a single experiment with a given parameter the input data is kept the same, i.e. we do

not use different random folds for the10-fold cross validation for different values of the investigated

parameter, but perform the folding only once, prior to the experiment. Where appropriate, we report the

mean and standard deviation of each performance measurement.

We measure the complexity of a rule by counting the number of conjuncts in the rule antecedent. If no

linguistic terms from a given linguistic variable were excluded from a conjunction, we do not count the

conjunct associated with the linguistic variable (the conjunct is considered as equivalent toTRUE). The

complexity of the rule set is the sum of the complexities of its rules. Since the default rule contains no

conjuncts in its antecedent (its antecedent is equivalent toTRUE), it does not contribute to the complexity
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Table 5.3: The databases used for experiments.(1)The FuzzSport data was obtained from [Yuan and Shaw,

1995].(2)The Generated data were randomly generated and labeled using ana priori rule set.

Database Short Description # Instances # Linear Att. #Nominal Att. #Classes
Anneal Annealing data 798 6 32 6
Autos Car import data 205 15 11 4
BreastCr Reoccurence of breast cancer 286 4 5 2
Colic Horse colic database 368 7 15 2
Credit-A Credit approval 690 6 9 2
Digit LED digits 500 0 8 2
FuzzSport Sport selection based on weather1 16 5 0 10
Generated Generated fuzzy data2 300 0 4 2
Hepatitis Hepatitis domain 155 6 13 2
Iris Iris plants database 300 4 0 3
Labor Final settlements in labor negotitions 57 8 0 2
Lymph Lymphography domain 148 3 15 4

of a rule set.

We measure the complexity of the search by the total number ofconjunctions examined (generated) to

induce a rule set. As discussed in Chapter 4, the same conjunction may be reached via different paths

through the lattice, which allows duplicate conjunctions to be formed. However, since our algorithm

detects this and does not perform any unnecessary work, we donot count a specialization twice during

the induction of a single rule.

An instance is matched by a rule if its membership to the rule antecedent is aboveαa. For each data set

we use a fixed value forαa throughout the chapter, except where explicitly stated otherwise. During the

investigation of a single parameter, all other parameters are kept constant as to not bias the experiment.

The data sets were obtained from the UCI Machine Learning Repository [Blake and Merz, 1998], and

their characteristics are shown in Table 5.3. Since none of the data sets were originally fuzzy, a fuzzifica-

tion preprocessing step was performed. The fuzzified data sets were stored and used for all experiments.

The fuzzification process is described in Appendix C.

5.3 Evaluation on Bench Mark Data Sets

Table 5.4 shows FUZZYBEXA ’s performance on the different data sets listed in Table 5.3. The bench-

mark results serve as reference point for experimental results with different parameters later in the chap-

ter. Table 5.5 shows the ROC breakdown of the classification performance on each data set. We make

some observations. The percentage false positives is usually much larger than the percentage false nega-

tives. FUZZYBEXA is biased to induce more general rules, and thus in the absence of negative instances,

FUZZYBEXA ’s rule sets rather cover more than fewer instances, resulting in a relatively larger percent-

age false positives.

For some data sets the percentage false positives and negatives are very small (e.g. Anneal, Iris), and

the classification accuracy is mainly the result of the percentage true positives and negatives. However,

as a result of the false positives and negatives, for most data sets the classification accuracy is slightly
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Table 5.4: FUZZYBEXA ’s performance on the benchmark data sets in Table 5.3.

Database Mean StdDev Mean StdDev Mean StdDev
Anneal 99.00 1.23 102.3 4.6 5003.3 260.0
Autos 74.13 9.80 171.0 14.1 15311.8 1280.8
BreastCr 73.02 4.77 135.0 19.5 4428.0 482.3
Colic 85.60 4.30 169.6 17.7 11208.3 882.3
Credit-A 85.80 6.22 279.7 16.5 14198.1 856.5
Digit 72.72 2.75 194.7 20.6 2429.7 132.5
FuzzSport 62.50 58.93 11.0 1.4 121.0 14.8
Generated 95.30 1.83 49.0 4.5 2412.7 200.2
Hepatitis 81.29 8.71 71.7 5.5 2648.2 148.3
Iris 97.14 4.99 7.0 1.6 283.6 34.3
Labor 91.23 13.84 16.3 1.7 516.3 60.0
Lymph 83.78 12.42 89.9 7.1 2973.6 254.4

Accuracy # Conjuncts Search Effort

Table 5.5: ROC measurement breakdown on the benchmark data sets in Table 5.3.

Database Mean StdDev Mean StdDev Mean StdDev Mean StdDev
Anneal 99.11 0.88 99.67 0.26 1.66 1.27 0.18 0.18
Autos 78.57 9.30 83.72 4.62 39.13 8.60 7.62 3.34
BreastCr 87.67 5.35 40.70 7.35 40.35 3.50 23.25 9.09
Colic 89.67 5.51 65.49 6.88 27.79 4.16 13.62 6.14
Credit-A 93.33 3.29 64.35 10.52 27.64 6.53 9.39 4.45
Digit 75.43 2.58 96.47 0.33 29.65 2.49 2.75 0.29
FuzzSport 75.00 41.76 68.75 33.41 45.45 35.06 15.38 20.19
Generated 92.90 2.47 92.50 2.99 7.47 2.66 7.13 2.24
Hepatitis 82.58 9.54 74.19 7.23 23.81 5.63 19.01 9.15
Iris 94.29 5.63 96.79 3.13 6.38 5.67 2.87 2.73
Labor 92.98 9.54 80.70 16.54 17.19 12.64 8.00 10.73
Lymph 84.46 10.41 88.51 7.45 28.98 12.23 5.53 3.82

FNTP TN FP

worse than the percentage true positives. It may seem strange that for some data sets (e.g. Generated,

Labor) the classification accuracy isbetter than both the percentage true positives and the percentage

true negatives. This is a result of the method of measuring the ROC values—the measurement does not

take into account the default rule. Furthermore, one may also expect the relatively high false positive

and negative percentages to impair the classification performance more than it does, e.g. for Hepatitis

the percentage true positives and true negatives are respectively 82.6% and74.2%, and the percentage

false positives and false negatives are respectively23.8% and19.0%—how can the overall classification

accuracy then be81.3%? The answer is again in the measurement process. The ROC values are strictly

measured, with no default rule and no rule arbitration. For each instance and each class, if one or more

rules fire and a single rule predicts the class it is counted asa positive (true if the instance belongs to

the class), and if no rule fires it is counted as a negative (true if the instance does not belong to the

class). However, the inference system makes use of a defaultrule and a rule arbitration method (see

Section 4.9 and Table 5.1). FUZZYBEXA ’s good overall performance compared to the individual ROC

measurements demonstrates the effectiveness of FUZZYBEXA ’s inference system.
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Figure 5.1: The classification accuracy on different data sets as the beam width is increased.

5.4 The Effect of the Beam Width

The beam width is an important factor for selecting the amount of search desired. During each iteration

of the middle layer, thebeamwidth best conjunctions are retained in the set of conjunctions tospecialize

further. For an infinite beam width an exhaustive search is performed. However, parts of the search space

may be pruned (also for an infinite beam width) due to the stop growth criteria. We evaluate the effect

of the beam width for six data sets, and for each value of the beam width a 10-fold cross validation is

performed. We discuss the effect of the beam width on the classification accuracy, rule set complexity,

and search effort next.

5.4.1 Classification Accuracy

Figures 5.1 shows the classification accuracy as the beam width was increased from 1 to 25. Although,

at first, one may expect an increase in beam width to almost always have a beneficial effect, increasing

the beam width often do not benefit the accuracy of the rule set. Quinlan and Cameron-Jones obtained

similar results when increasing the beam width for a crisp inductive learner [Quinlan and Cameron-

Jones, 1995b]. They often found good behaviour for a small beam width, and thereafter only slight

improvements or deteriorating performance. They ascribe this behaviour to the learner encountering

“fluke” descriptions that overfit the training data when big parts of the search space are searched. The

Iris, Auto and Fuzzy Sport data exhibited this kind of behaviour, where the best classification accuracy

was obtained using no beam search. Increasing the beam widthhad a dramatic effect on the Fuzzy

Sport data. This data set has only16 instances, but3 classes. Further increases allowed FUZZYBEXA to

discover so-called flukes, and degraded its accuracy.
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Figure 5.2: The rule set complexity on different data sets as the beam width is increased.

The Hepatitis and Labor data benefited from a small increase in beam width, with the classification

accuracy on the Labor data increasing almost eight percent.Further increases degraded performance

again. Best classification accuracy is obtained at beam widths three and five for the Hepatitis and Labor

data, respectively. Beam widths larger than three degradedperformance below that of no beam search

for the Hepatitis data, while larger beam widths were alwaysbeneficial for the Labor data. The Lymph

data demonstrated a high sensitivity to the beam width. Initially, an increase in the beam width degrades

performance. Even further increases then improve performance again, after which the performance stays

relatively constant.

5.4.2 Rule Set Complexity

Figure 5.2 shows the rule set complexity for different beam widths. The curve for the Auto data set

is shown at half scale. For all of the data sets, with the exception of the Iris data set, an increase in

beam width resulted in a decrease in rule set complexity. Thelarger search increases the probability

that the heuristics implemented in FUZZYBEXA ’s middle layer are activated. Thus, conjunctions with

higher positive coverage and with less conjuncts are preferred. If conjunctions with higher positive

coverage are found, fewer rules need be induced to cover the set of positive training instances, resulting

in decreased complexity. However, as discussed above, the higher positive coverage did not always

benefit the classification accuracy.

For the Iris data set, the rule set complexity strangely increased with increasing beam width, while

the accuracy stayed relatively constant. This behaviour isonly observed for the Iris data—the rule set

complexity decreased with increasing beam width for all other data sets. One explanation for this strange
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Figure 5.3: The number of conjunctions generated during the search process as a function of the beam width for

the Fuzzy Sport, Labor, and Iris data sets.

behaviour may be that FUZZYBEXA may follow different paths through the lattice for different beam

widths, and (only) in the case of the Iris data set did the greedy search (i.e. beam width one) based on

classification accuracy not favour the rule set complexity.

5.4.3 Search Effort

Figures 5.3 shows the search effort for the Labor, Fuzzy Sport and Iris data for beam width up to 700.

Figure 5.4 the search effort for the Hepatitis and Lymph datafor beam width up to 50. As expected, the

size of the explored search space increased with an increasing beam width. However, the search effort

does not increase exponentially, but may rather be modelledby an equation such as,

y = γ(1 − e−λx) (5.1)

This function initially increases almost linearly and thenflattens off, eventually reaching a plateau. As

the number of linguistic terms increase, bothγ andλ increase.

The input domain of the fuzzy sport data set is described by two linguistic variables with two linguistic

terms, and two linguistic variables with three linguistic terms. The size of the FuzzyAL search space

is computed according to Eq (4.37), i.e.1 + (22+1 − 1)2 × (23+1 − 1)2 = 11026 conjunctions in the

lattice. The lattice will be searched for each rule to be extracted, and the size of the complete hypothesis

space is thus211026. However, the size of the space actually examined for the Fuzzy Sport data, for

example, is only a very small fraction of the size of the lattice, and insignificant compared to the size of

the hypothesis space. This is due to FUZZYBEXA ’s various stop growth restrictions.
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Figure 5.4: The number of conjunctions generated during the search process as a function of the beam width for

the Hepatitis and Lymph data sets.

The Iris data exhibited a similar trend to that of the Fuzzy Sport data. The Iris data set also has three

concepts, but has15 linguistic terms compared to10 of the sport data. Its minimal potential search

space is roughly 48 times more than for the Fuzzy Sport data. As is evident from Figure 5.3, the search

effort for Iris is far less than 48 times more than the search effort for Fuzzy Sport, again demonstrating

FUZZYBEXA ’s ability to find good rules with comparatively little search. The Hepatitis data set is the

second most complex data set used in this experiment. The comparatively small number of conjunctions

examined for beam width50 is further proof of the effectiveness of the stop growth restrictions. The

complexity of the Auto data set increased so fast that we do not show it here, and it suffices to say that

the increase in search complexity was linear for the examined beam widths.

5.4.4 Discussion

The best accuracy for the Iris and Fuzzy Sport data sets were obtained without using beam search, and

the associated rule sets were also the least complex. Increasing the beam width resulted in both lower

classification accuracy and higher rule set complexity. There seem to be a general relationship between

accuracy and complexity. In most cases a sharp increase in accuracy resulted in a sharp decrease in

rule set complexity. Decreasing accuracy was typically also correlated either with an increase in rule set

complexity or with a slower decrease than before (smaller gradient).

The Hepatitis and Labor data sets benefited both in terms of rule set complexity and classification accu-

racy for small increases in the beam width, and the Lymph dataobtained best classification accuracy and

also much decreased rule set complexity for a relatively large beam width. This demonstrates that bigger
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beam widths are not always a bad choice and may yield improvements in some cases. However, care

should be taken when using beam search, and it is definitely not true in general that larger beam widths

always increase (or even maintain) classification accuracy. Finally, the search complexity experiments

showed that although the size of the search space grows exponentially in the number of linguistic terms,

the search effort grows at most linearly with the beam width,and in the limit follows a trend more like

Eq (5.1). We can ascribe this largely to FUZZYBEXA ’s effective stop-growth criteria (we will discuss

these in detail in Section 5.7).

5.5 Sensitivity to Noise

An important feature of a concept learner is its generalization performance. Another important aspect

is its ability (or lack thereof) to maintain good generalization performance in the presence of noise.

If a data set contains noise, the learner runs the danger of overfitting on the noise. Some learners,

like the Candidate Elimination Algorithm for example [Mitchell, 1997], may completely fail if noise

is present. To investigate this issue we generated a synthetic data set and labeled it using a predefined

rule set. The data contained five linguistic variables labeledA to E with term set sizes 2, 5, 4, 2, and

3, respectively. The generated data set consisted of 1000 instances with fuzzy membership degrees

to the linguistic terms uniformly distributed in the range[0, 1]. The predefined rule set was randomly

generated, and when those conjuncts that were equivalent totrue (i.e. a disjunction of the entire term set)

were removed, 40 conjuncts remained in the rule set. We then added noise to the membership degrees

from a zero mean Gaussian random variable, and increased thestandard deviation in steps of0.1 from

zero (no noise) to one (extreme noise). For each noise level a10-fold cross validation was performed

and the results graphed.

The accuracy in the presence of increasing noise is shown in the top graph of Figure 5.5. FUZZYBEXA

was able to classify94% of the instances correct with no noise added. With the addition of noise,

FUZZYBEXA exhibited graceful degradation until noise with standard deviation of0.5 was added. At

this point the classification performance became as good as guessing. At this noise level perturbations of

the observed data of size up to0.5 occur with probability0.6. For noise levels above0.5 FUZZYBEXA

started to fit the noise distribution, as is demonstrated by the erratic classification accuracy behaviour.

The rule set complexity measured in number of conjuncts per rule set is shown in the middle graph

of Figure 5.5. The rule set induced under noiseless conditions was much smaller than the predefined

rule set. FUZZYBEXA was designed to induce general rules, covering more instances rather than fewer.

FUZZYBEXA was thus able to find a substantially smaller rule set than thepredefined randomly gener-

ated rule set, while still obtaining high classification accuracy. In accordance with the general decrease

in classification accuracy with increasing noise, the rule set complexity showed a general increasing

trend, which seems almost linear. As the noise level was increased, more rules and also more complex

rules were induced to fit the increasingly unpredictable behaviour, thus increasing the overall rule set

complexity.

The bottom graph in Figure 5.5 shows the increasing search effort associated with increasing noise
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Figure 5.5: FUZZYBEXA ’s rule set accuracy, complexity and search effort for increasing noise levels.

80



levels. The size of the lattice of conjunctions for this problem is (see Eq (4.37)),

|〈C;�〉| = 1 + (23 − 1)(26 − 1)(25 − 1)(23 − 1)(24 − 1) = 1435456 (5.2)

and the size of the hypothesis search space is thus21435456. However, for no noise, only400 conjunc-

tions were examined to induce the rule set, demonstrating FUZZYBEXA ’s high search efficiency. The

number of conjunctions examined to compute the rule sets is correlated with the rule set complexity

because the search space is examined again for each extra rule induced. FUZZYBEXA ’s search effort

initially increased almost linearly and leveled off at standard deviation0.5. The experiment thus shows

that FUZZYBEXA copes well with noise and demonstrates graceful degradation behaviour with increas-

ing noise levels. With additive normal noise with standard deviation0.1 FUZZYBEXA ’s classification

performance decreased with only1%, while its search effort and rule set complexity even improved

slightly.

5.6 Sensitivity toαa

One of FUZZYBEXA ’s user-determined input parameters is the antecedent thresholdαa. It is certainly

not uncommon to apply alpha leveling in fuzzy decision systems and the specific threshold values are

highly system dependent [Cox, 1998]. It is therefore interesting to measure FUZZYBEXA ’s sensitivity to

the antecedent threshold. In this section we consider two questions (a) how sensitive are FUZZYBEXA ’s

induced rule sets to a changes inαa during inference (i.e. after training) and (b) what influence does the

training value ofαa have.

5.6.1 Post-Training Sensitivity toαa

It is of course possible to obtain a set of rules using one value for αa during training, and then use a

different value forαa during inference on unseen instances. To distinguish between the training and

inference values forαa we denote the training value asαaT and the inference value asαaI . The exper-

imental method for this experiment was as follows. We divided each data set into ten distinct train-test

data set pairs as for normal 10-fold cross validation. We then induced ten classifiers using a fixed (spec-

ified) value forαaT . For each classifier and test set we obtained classification results asαaI was varied

from 0.01 to 0.99 in steps of0.01. The test set results were then averaged across the different folds.

Contrary to all other experiments, the membership functions for this experiment had triangular shapes

with adjacent functions crossing atµ = 0.5. Triangular membership functions with this crossing point

were chosen since we are interested in the behaviour for larger and smaller overlap between membership

functions—whenαaI > 0.5 there is no overlap and the most overlap occur atαaI = 0. As an example

of the general form of triangular membership functions, Figure 5.8 shows the membership functions

extracted for the linguistic variable “Pulse” of the Colic data. Only classification accuracy is reported

since the rule set complexity and search effort are of courseconstant for each individual value ofαaT .
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Figure 5.6: Classification accuracies withαaT = 0.25 (top figure) andαaT = 0.5 (bottom figure).
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Figure 5.7: Classification accuracies withαaT = 0.75 (top figure) andαaT = 0.5 (bottom figure).
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Figure 5.8: Triangular membership functions extracted for the linguistic variable Pulse of the Colic data set. The

dashed lines indicateα-cut values0.25, 0.5 and0.75.

The experiment was performed usingαaT = 0.25, αaT = 0.5 andαaT = 0.75, and the results are

shown in Figures 5.6 and 5.7. Our first observation is that thevalue ofαaT influenced the shape of the

resultant curves dramatically for some data sets (e.g. Iris, Credit-A), while having very little influence on

others (e.g. Lymph, Colic). The sensitivity of the rule set’s performance toαaT will be the subject of the

next section. Here we just note that different values forαaT result in different performance curves for

the different values ofαaI . The influence ofαaT on the classification performance for different values

of αaI will be weakened as the number of linguistic variables with fuzzy linguistic terms (used in the

rule set) decrease. Linguistic variables originating fromcrisp nominal attributes have (a) no overlapping

membership, and (b) membership of either 0 or 1. Thus, varyingαaI has no influence on these variables.

ForαaI = 0 the most instances in neighbouring (overlapping) terms arecovered. AsαaI is raised, fewer

and fewer instances also covered by neighbouring terms are covered, and forαaI>0.5 no instances are

covered by more than one term. The number of linguistic variables and their type for the different data

sets are shown in Table 5.3.

The next important observation is that best test set resultsare not necessarily obtained using whenαaT =

αaI , i.e. using the same value for rule induction and inference.For the Iris classifier withαaT = 0.25,

optimal performance is obtained if0.4 . αaI . 0.6. This range is slightly wider for induction with

αaT = 0.5 and much wider for induction withαaT = 0.75. The Credit-A and Hepatitis classifiers,

on the other hand, exhibited almost complete insensitivityto post-induction variation ofαaI for all the

training valuesαaT . Both these data sets had six linguistic variables with fuzzy sets obtained from

numerical data, and thus the potential existed for sensitivity to αaI . In fact, the classification accuracy

of these data setswassensitive to the training valueαaT . The relative insensitivity to post-induction

variation inαa could be due to few fuzzy sets used in the induced rule sets. A further explanation is

that the induced rules made use of fuzzy sets that require very little membership to be valid for use in

the rule—their mere presence (non-zero membership) is already a clear indication that the rule can fire

given that the remainder of the conjuncts are matched.
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The Colic and Lymph data sets showed little post-induction sensitivity toαaI for αaT = 0.25, while

showing higher sensitivity forαaT = 0.75. The BreastCr data had the inverse behaviour. Using different

induction valuesαaT can result in different rule sets that make use of different fuzzy sets. The different

fuzzy sets may be more or less sensitive to variation ofαaI in serving as class predictors, resulting in

different sensitivities toαaI of the rule sets employing these fuzzy sets.

The Auto data set demonstrated widely varying results dependent on the induction value forαaT . A very

high sensitivity is obtained forαaT = 0.5, with even slight post-induction changes inαaI leading to a

large decrease in classification accuracy. The inverse behaviour is demonstrated forαaT = 0.25. The

rule set obtained forαaT = 0.75 demonstrated still different behaviour. SettingαaI < 0.75 resulted in

very bad performance, while the performance was influenced less forαaI > 0.75. This behaviour may

be explained by considering the effect that overlapping membership functions have on the induction

process. ForαaT = 0.25 instances can belong to more than one fuzzy set with non-zeromembership.

For αaT = 0.75 no instance belongs to more than one fuzzy set. The induced rule sets for the Auto

data vary widely depending on the choice ofαaT . For αaT = 0.75 the rule set is specialized to use

fuzzy sets whose domain cover only a certain region, while excluding all others. A decrease inαaI then

increases the domain of such fuzzy sets, allowing them to cover more negatives, and results in a decrease

in performance. ForαaT = 0.25 there is much overlap between fuzzy sets during rule induction. Fuzzy

sets covering negative instances are excluded until these regions of the domain are not covered anymore.

If αaI is raised, no extra negative instances (from neighbouring terms) are covered, while most positive

instances are still covered, resulting in relative insensitivity to αa. The results forαaT = 0.5 is a mixture

of both behaviours, resulting in sensitivity to either an increase or decrease in the post-induction value

of αa. The Labor data also showed some sensitivity to post-induction variation ofαaI , with best results

obtained for training withαaT = 0.75 and inference withαaI < 0.2.

The main conclusion from this experiment is that there is no universal behaviour exhibited by all data

sets. For some data sets best results are obtained forαaI = αaT , while for other data sets either a

bigger or smaller value ofαaI results in better classification performance. Since rule inference is not

very expensive (in contrast to rule induction), some experimentation with different values ofαaI is

recommendable, as at least in some cases improved performance may be obtained. The experiment was

performed with high frequency variation inαaI (steps of0.01). However, for most data sets there is not

a very fast variation in the classification performance, andfor most data sets ten experiments (varying

αaI in steps of0.1) are sufficient to discover the best value or range of values of αaI .

5.6.2 Training Sensitivity toαa

In the previous section we examined the sensitivity of the rule set toαaI . In this section we investigate

the influence of the choice ofαaT on the induction process with respect to classification performance,

rule set complexity, and search effort. As in the rest of thisdissertation except where explicitly stated

otherwise, we setαaI = αaT . Figure 5.9 shows the classification accuracy, rule set complexity, and the

search effort for ten different data sets asαaT is varied from0.05 to 0.95 in steps of0.05.
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Figure 5.9: Rule set accuracy, complexity, and search effort for different values ofαaT .
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The Digit data set has no linguistic variables with fuzzy sets (i.e. obtained from numerical data), and is

thus completely independent of the choice ofαaT . The Fuzzy Sport data set contains only fuzzy data,

and the membership degrees were not obtained from membership functions. This data set accordingly

showed the largest classification accuracy sensitivity toαaT . This sensitivity is also partly due to the

very small size of the data set (16 instances), since the coverage of a single instance has a relatively

large influence on overall performance. Contrasting with the high sensitivity in classification accuracy,

the rule set complexity and search effort sensitivity of theFuzzy Sport data were much less sensitive to

the choice ofαaT .

Except for the Generated data, the remaining data sets did not show large variation in classification accu-

racy asαaT was varied. However, even small increases in classificationperformance can be significant

(and difficult to achieve), and the absolute variation is thus not the only consideration—a good choice

for αaT can benefit the classification performance. Another observation is that for no value ofαaT did

the classification performance complete deteriorate.

The rule set complexity for some data sets increased with an increase inαaT , for some data sets it

remained relatively constant, while for yet others it decreased. An increase in rule set complexity was

often correlated with a decrease in classification accuracy. As the learner finds it harder to find good

rules (rules with high positive coverage and low negative coverage), more rules are induced, increasing

both rule set complexity and search effort. In general theserules are also less accurate—typically, less

complex rule sets perform better. However, this is not necessarily true in general. The Credit-A data set

for example maintained the same classification accuracy level, while showing a linearincreasewith αaT

in rule set complexity. Furthermore, even though the increase in complexity was linear, large parts of

the search effort curve were flat. Increasingly more complexrule sets were induced for increasingαaT ,

requiring generally the same search effort and obtaining the same accuracy over the whole spectrum.

The Generated data set demonstrated interesting behaviourthat can be traced to the method of creating

the data (see Section 5.5). The classification rules used to label the synthetic data usedαa = 0.6. Thus,

the best results are obtained for rule sets induced withαaT = 0.6, with a dramatic increase observed

in both rule set complexity and search effort forαaT > 0.6. The important result here is that there is

no easy procedure for choosing an optimal value forαaT , as there was also not a clear indication of a

generally good value forαaI . A domain expert may well be in the position to choose these values, and

further research on the issue may provide more automated procedures.

From the experiment we can make the following general conclusions. The classification performance of

the induced rule sets are not as sensitive toαaT as one might expect. However, a good choice ofαaT

may in some cases provide a small but significant benefit. Furthermore, FUZZYBEXA does not perform

extremely bad (compared to best classification performance) for any choice ofαaT . FUZZYBEXA was

thus able to use the given information to induce good rule sets even under sub-optimal conditions. Thus,

if αaT happens to be a very bad value for one linguistic term, FUZZYBEXA does not use this term but

rather use other terms to induce as good a rule set as is possible for the given ofαaT . However, this has

an influence on the rule complexity and search effort—good choices forαaT typically reduce rule set

complexity as well as search effort.
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5.6.3 αaT − αaI Sensitivity Surface

Sections 5.6.2 and 5.6.1 investigated FUZZYBEXA ’s sensitivity toαa during induction and post-induction,

respectively. This section shows the result of varying bothαaT for rule induction andαaI for post-

induction inference in the form of a surface plot. We performed the experiment on the Iris, Lymph,

Fuzzy Sport and Generated data sets. As expected, the results are very dependent on the data set, and

we only provide brief remarks for each data set.

Iris

Figure 5.10 shows the relative insensitivity of the classifier toαaT andαaI for large parts of the surface.

However, ifαaT is set higher than0.8, the accuracy drastically decreases for all post-induction values

of αaI .

Lymph

The surface plot for the Lymph data set is similar to that of the Iris data, and shows relative insensitivity

to bothαaI andαaT for large parts of the surface. Induction values ofαaT larger than0.8 again de-

grades performance. Raising the post-induction value ofαaI above0.8 resulted in a strong decrease in

performance of all induction values ofαaT .

Fuzzy Sport

The Fuzzy Sport data set is very sparse; it has only16 instances, but3 classes. As already observed

in the previous sections, the choice forαaT is important for good performance, and the data set is also

very sensitive for post-induction varying ofαaI . The best choice ofαaT for induction lies at0.6, with

graceful degradation asαaI is lowered.

Generated

This data set was obtained by generating random data and thenlabeling it using a given set of rules.

The value ofαa was taken as0.6. The surface plot shows that best performance is obtained for αaT =

αaI = 0.6. VaryingαaI or αaT in any direction decreased performance. FUZZYBEXA demonstrated a

graceful degradation in performance asαaI orαaT was varied above and below0.6, as may be expected

for a truly fuzzy data set with adequate training instances.

5.7 The Effect of Stop Growth Measures

The purpose of the experiment described in this section was to explore the impact of FUZZYBEXA ’s var-

ious prepruning and efficiency criteria. The experiment compares the base performance to performance
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Figure 5.10: Classification accuracy surface for the Iris (top) and Lymph(bottom) data sets.
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Figure 5.11: Classification accuracy surface for the Fuzzy Sport (top) and Generated (bottom) data sets.
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obtained when adding the different search improvements. Weperformed the experiment on seven data

sets using a beam search of width two, thus allowing duplicate conjunctions to be formed (see Sec-

tion 4.6.5). The base result for each data set is obtained by applying no pruning or efficiency tests,

except to stop the search process when either the positive ornegative extension of a conjunction be-

comes empty. To obtain each result we only apply a single extra measure. Finally, we show the result

when all measures are combined.

Table 5.6 shows the result of the experiment. The gray columnshows the results of 10-fold cross

validation for the classification accuracy, rule set complexity, and search effort on the different data sets

if no tests are applied. The columns to the right of the base result show the percentage increase of the

respective test on the base result. This is computed as,

∆test = 100
rtest− rbase

rbase
(5.3)

whererbaseis the base result andrtest is the result for the respective test and data set.

The second column contains the result when using the optimistic evaluation efficiency measure. This

test prunes conjunctions from the search when the conjunction cannot be improved to such a degree that

its evaluation will be higher than that of the current best conjunction (see Section 4.5.3). Thus, we expect

in most cases that there will be no change to the rule set (i.e.both accuracy and complexity). The test

significantly influenced the search effort for four of the data sets, while having a moderate effect on the

remaining three. The search effort for the Fuzzy Sport data set, for example, was reduced by20%, and

for the Lymph data set the reduction was15.7%. It may seem strange at first glance that there are any

changes in the rule set at all. The small changes in the rule sets of two data sets are due to the specific

implementation of FUZZYBEXA. The exclusion of certain parts from the search can change the order in

which specializations are generated within a single execution of the bottom layer, and this order can play

a role in determining the rule set (especially in the absenceof the “improve rule” test discussed below).

If two conjunctions have the same evaluation, the conjunction generated first is chosen, and when this

happens with the best conjunction, the search process is influenced.

The third column shows the effect of the “improve rule” test (see Sections 4.5.1 and 4.5.2). This test

is activated when two antecedents are equivalent based on the evaluation function. In this case, the test

prefers the antecedent that covers more positive instances. If both cover the same number of positive

instances, the antecedent that is least complex is preferred. This test positively influenced the classifica-

tion accuracy of three data sets, while having a slight negative influence on only one data set. The test

resulted in a reduction in rule set complexity of all data sets. The rule set complexity of the Fuzzy Sport,

Hepatitis, and Iris data sets were significantly improved—reductions of13.4%, 10.2%, and12.4%, re-

spectively, were obtained. In most cases the test did not influence the search effort. Slight reductions in

the search effort for the BreastCr and Digit data were obtained.

We implemented BEXA ’s irredundancy test to examine its effect in the fuzzy case (see Section 4.6.4.

Except for Iris data set, the irredundancy test had no influence on any data set. For the Iris data it resulted

in a reduction of61.4% in rule set complexity and reduction of51% in search effort. It seems that the

rule sets induced for the Iris data without any tests was overly complex. The Iris data can be classified
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Table 5.6: Comparison of different prepruning and efficiency criteria. The gray column shows the absolute

performances without any stop-growth criteria, while the other columns shows percentage change relative to the

absolute performance. Increased classification accuracy and decreased rule set complexity and search effort are

desirable.
Without Any 

Tests
Optimistic 
Evaluation Improve Rule Irredundancy

Uncover 
Negatives All Tests

breastcr 69.53 0.0 0.7 0.0 -0.2 0.0
digit 73.31 0.0 -0.2 0.0 0.0 -0.2
fuzzy sport 50.00 0.0 0.0 0.0 0.0 0.0
hepatitis 83.87 0.0 2.3 0.0 0.0 2.3
iris 93.57 0.0 0.0 0.8 0.0 0.8
labor 91.23 0.0 0.0 0.0 0.0 0.0
lymph 79.73 -0.8 0.8 0.0 0.0 0.0

breastcr 260.6 0.0 -8.1 0.0 -0.6 -8.4
digit 232.8 0.0 -2.6 0.0 0.0 -2.6
fuzzy sport 11.9 0.0 -13.4 0.0 0.0 -13.4
hepatitis 68.5 0.4 -10.2 0.0 -0.9 -11.2
iris 23.3 0.0 -12.4 -61.4 -0.9 -63.9
labor 13.0 0.0 -0.8 0.0 0.0 -0.8
lymph 85.9 -0.3 -6.3 0.0 0.5 -6.1

breastcr 125873 -1.6 -3.1 0.0 -89.6 -90.1
digit 18277 -0.1 -1.5 0.0 -73.6 -74.1
fuzzy sport 569 -20.0 0.0 0.0 -68.7 -68.8
hepatitis 65998 -14.3 0.0 0.0 -94.3 -94.2
iris 3159 -2.6 0.0 -51.0 -70.4 -83.1
labor 13365 -15.7 0.0 0.0 -95.3 -95.4
lymph 68168 -7.5 0.0 0.0 -93.5 -93.5

Classification Accuracy

Rule Set Complexity

Search Effort

with a fairly simple rule set compared to the other rule sets.Without the irredundancy test too much

specialization occurred, resulting in worse overall performance. The improve rule test, for example,

reduced the rule set complexity of the Iris data more than forthe other rule sets, except for the sparse

FuzzySport data. For most data sets the irredundancy test did not change the search effort, and we can

deduce that the test is not easily satisfied in the fuzzy case.Thus, in some cases the irredundancy test

does improve performance, but its usefulness is limited compared to the crisp case.

The uncover new negatives test prevents overspecialisation by requiring that specializations cover less

negatives than their ancestors. This test had a very small negative influence on the BreastCr classification

accuracy, and also in general had very little impact on the rule set complexity. However, the test had a

huge impact on the search effort. Reduction in search effortof 90% and more were obtained for four

data sets, while the smallest reduction was obtained for theFuzzy Sport data set (68.7%). While the test

resulted in great improvement in search efficiency, its computational cost is relatively inexpensive.

The last column shows the result when all the tests are applied together. Large improvements in search

efficiency is obtained for all the data sets, while the rule set complexity for most data sets were also

significantly improved. Only the rule set complexity of the Labor and Digit data sets were only slightly

improved. The overall impact on the classification accuracywas not as pronounced, with the best re-
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sult obtained for the Hepatitis and Iris data sets. The classification accuracy of the Digit data was

slightly reduced. In general, the empirical results speak largely in favour of FUZZYBEXA ’s stop growth

criteria—classification accuracy is either maintained or increased, rule set complexity is often signifi-

cantly improved, and the search effort is dramatically reduced.

5.8 Summary

In this chapter we provided an experimental evaluation of FUZZYBEXA. We investigated its different

parameters and stop growth criteria. The experiments showed that the specific characteristics of each

data set have more influence than any given parameter. Some data sets are sensitive to the value of the

antecedent threshold used during induction (we denoted it asαaT ), while others show little sensitivity.

However, it was more often than not the case that a wide range of good induction values ofαaT ex-

ist, and that FUZZYBEXA is thus not overly sensitive toαaT . Similarly, some data sets are sensitive

to post-induction variation ofαa (we denoted it asαaI ), while others demonstrated relative insensi-

tivity. The experiments also showed that FUZZYBEXA ’s search complexity increase at worst linearly

with increasing beam width. However, a small beam width is typically sufficient or even indicated for

good performance. We also showed that FUZZYBEXA is capable of dealing with noise, demonstrating

graceful degradation with increased additive noise. Finally, the results of experiments with FUZZY-

BEXA ’s various stop growth criteria confirmed their usefulness—the use of the criteria resulted in either

increased or maintained classification performance, whilerule set complexity and search effort were

always improved.
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CHAPTER 6

The Influence of the Evaluation Function

6.1 Introduction

Machine learning algorithms typically use an evaluation function to score the performance of hypotheses

on a training set during the learning process, and to select the set of best candidates for further explo-

ration. Thus, the performance and characteristics of the evaluation function as a search heuristic are very

important, because they have a large impact on the performance of the learning algorithm on a particular

data set. The evaluation function is an important determinant of rule quality because it selects the next

best specialization at each step, and thus guides the searchthrough the space of all possible conjunctions.

It is therefore important to investigate its influence and tocompare the behaviour of different evaluation

functions. In this chapter we present three results: (1) theeffect of novel evaluation functions adapted

to the fuzzy set domain, (2) the search paths followed in description lattice, and (3) benchmark results

for each evaluation function on different data sets. The layout of the chapter is as follows. Section 6.2

introduces several fuzzy rule evaluation functions, and Section 6.3 contrasts their behaviour by investi-

gating the subset of the hypothesis space explored for each choice of specialization function. Section 6.4

provides an empirical comparison of the different measures, and Section 6.5 concludes the chapter.

6.2 Evaluation Functions

FUZZYBEXA ’s FindBestConjunctionprocedure was discussed in detail in Chapter 4. FUZZYBEXA

searches for conjunctions by starting with themgcand specializing it by excluding one term at a time in

all possible ways. The new candidate conjunctions (specializations) generated in this way (specialization

by exclusion) are ranked according to anevaluation function, and the bestbeamwidth conjunctions are

selected for further specialization. Thus, a general-to-specific search through a description lattice is

performed. The evaluation function is clearly a very important factor in determining the success of the

algorithm-conjunctions are either pruned or retained in the search based on their score by the evaluation

function. Different evaluation functions are based on different heuristic ideas. Many different functions

for evaluating and assigning a score to crisp rules have beenproposed in the literature [Fürnkranz, 1999].

For some of these, fuzzy variations were designed and used toscore fuzzy rules [Fertig et al., 1999;

Yuan and Shaw, 1995]. We review these and propose three additional fuzzy evaluation functions. In the
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Table 6.1: Notation for evaluation function definitions, wherer is the rule IFA THENB.

|P | |N | p n

# Positive # Negative # Positive # Negative In-

Instances Instances Instances Covered stances Covered

r A B c

Candidate Fuzzy Fuzzy Conjunction

Rule Antecedent Consequent DescribingA

Table 6.2: Summary of evaluation functions.

Name Function Range

Laplace Estimate L(r) = p+1
p+n+#classes

[0, 1)

Fuzzy Laplace F (r) =

∑

i∈XT (c) µA∩B(i)− 1
2

M(T,c) [0, 1)

Fuzzyls-Content LSC(r) =
p+1
P+2
n+1
N+2

∼= p+1
n+1 [0,∞)

Fuzzy Accuracy Function A(r) = M(P, c) −M(N, c) (−∞,∞)

Fuzzy Purity P (r) =
∑

u∈U min(µA(u),µB(u))
∑

u∈U µA(u) [0, 1]

Fuzzy Information Content IC(r) = log M(P,c)
M(T,c) = logM(P, c) − logM(N, c) (−∞, 0]

Fuzzy Entropy E(r) = n
p

(

M(P,c)
M(T,c) log M(P,c)

M(T,c) + M(N,c)
M(T,c) log M(N,c)

M(T,c)

)

(−∞, 0]

following sections we will use the notation shown in Table 6.1. Here,p,n,P , andN are integer numbers,

where an instance is either covered with membershipαa or above, or not covered (membership0).

Recall thatXS(c) denotes the extension of the conjunctionc in the set of instancesS, i.e. all instances

in the setS that matchc with membershipαa or above (see Eq (4.17)). In the fuzzy case we describe the

“number” of instances matched by the rule using the cardinality operator (also called thesigma count)

as follows,

M(S, c) =
∑

i∈XS(c)

µc(i) (6.1)

We will use the sigma count to use the heuristic ideas alreadyemployed by some well-known “crisp”

evaluation functions and derive rule evaluation functionsthat can be used to score fuzzy rules. Table 6.2

provides an overview of the functions.

6.2.1 The Entropy Function

The Entropy function stems from the physics domain of thermodynamics, where it is a measure of the

order in a system. It is also used in Shannon’s information theory as the measure of information in a

random variable. It was originally used by the ID3 decision tree induction algorithm [Quinlan, 1986] to
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choose the decision attribute at each node. In the crisp casethe Entropy function for a ruler is given by,

E(r) =
p

p+ n
log

p

p+ n
+

n

n+ p
log

n

n+ p
(6.2)

wherep andn denote the numbers of positive and negative instances covered by the rule, respectively.

For the induction of fuzzy decision trees many fuzzy versions of the entropy are proposed in the literature

[Dong and Kothari, 2001; Guetova et al., 2002; Marsala, 1998; Boyen and Wehenkel, 1999; Mitra et al.,

2002; Yuan and Shaw, 1995].

The Entropy function assigns higher scores to conjunctionswith high class separation—a valid heuristic

for choosing a linguistic variable for a decision node in a decision tree. However, the Entropy function

alone is not appropriate for use with FUZZYBEXA since it does not take into account whether the major-

ity of instances are positive or not. To assign higher scoresto conjunctions with higher class separability

and also higher positive coverage, we adapt the crisp version of the entropy to the fuzzy domain as

follows,

E(r) =
n

p

(

M(P, c)

M(T, c)
log

M(P, c)

M(T, c)
+
M(N, c)

M(T, c)
log

M(N, c)

M(T, c)

)

(6.3)

This equation gives evaluations in the range(−∞, 0], with higher evaluations to better conjunctions. A

conjunction that covers only positive instances will get a score of0 and a conjunction that covers only

negative instances will get a score of−∞.

6.2.2 The Information Content Function

The Information Content function measures the amount of information contained in the classification

of the covered instances [Fürnkranz, 1999]. Information Content was also introduced in Shannon’s

information theory and is closely related to the Entropy function—the entropy is a weighted average of

the information content of the classes. The Information Content can also be thought of as a measure of

the purity of a partition. It was originally used in the PRISMinductive learner [Cendrowska, 1987], and

is given by

IC(r) = log
p

p+ n
(6.4)

in the crisp case. Eq (6.4) is in fact the negative of the Information Content, so that better evaluations

obtain larger scores.

The fuzzy version of the Information Content is expressed as[Guetova et al., 2002]

IC(r) = log
M(P, c)

M(T, c)
= logM(P, c) − logM(N, c) (6.5)

The range of the Information Content function is the same as that of the Entropy function above,

(−∞, 0], with conjunctions covering only positives obtaining a maximum score of0 and conjunctions

covering only negatives obtaining a score of−∞.

96



6.2.3 The Accuracy Function

In the crisp case the accuracy of a rule is evaluated as [Fürnkranz, 1999]

A(r) =
p+ (N − n)

P +N
∼= p− n (6.6)

We fuzzify the Accuracy function by using the sigma count operator as follows,

A(r) = M(P, c) −M(N, c) (6.7)

This function favours high coverage by using the differencein positive and negative instances covered,

regardless of the absolute magnitude of the positive and negative sets. It scores rules in the range

(−∞,∞), with higher scores given to better evaluations. The approximation made in the crisp case

remains valid in the fuzzy case, since the sigma counts of thepositive and the negative instances are

constant for any given training set.

6.2.4 The Laplace Estimate

The Laplace estimate [Fürnkranz, 1999] is given by,

L(r) =
p+ 1

p+ n+ #classes
(6.8)

In its current form, FUZZYBEXA learns multi-class concepts by learning one class at a time.Thus,

#classes is always2. The Laplace estimate assigns higher scores to conjunctions with higher coverage

of the positive instances. Conjunctions with low coverage are penalized—if the ratio of positive to

negative instances covered is the same, conjunctions with lower absolute coverage will have a lower

score.

6.2.5 Thels-Content Function

The ls-Content evaluation function was used in its general form inthe algorithm HYDRA [Ali and

Pazzani, 1993]. It is given by

LSC(r) =

p+1
P+2
n+1
N+2

∼=
p+ 1

n+ 1
(6.9)

The function divides the Laplace estimate of the conjunction with the Laplace estimate of the training

set. The denominatorsP + 2 andN + 2 stay constant in each iteration of theFindBestConjunction

procedure, and can thus be ignored without altering the behaviour of the algorithm. We fuzzify the

ls-Content function by using the sigma count operator,

LSC(r) ∼=
M(P, c) + 1

M(N, c) + 1
(6.10)

The function scores rules in the range[0,∞), giving higher scores to better rules.
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6.2.6 The Purity Function

The purity of a rule is the percentage of positive instances among the instances covered [Fürnkranz,

1999],

P (r) =
p

p+ n
(6.11)

The function assigns a value of1 to rules that cover no negative instances. However, low coverage is not

penalized. A fuzzy variant of this function was introduced for fuzzy decision tree induction [Yuan and

Shaw, 1995]. The fuzzy rules induced by FUZZYBEXA are propositions of the formA→ B. Although

fuzzy implication can be implemented in different ways, thesubsethood operatorS(A,B) is often used.

Thus, the implicationA→ B holds true with degreeS(A,B) [Yuan and Shaw, 1995],

S(A,B) =
M(A ∩B)

M(A)
=

∑

u∈U min(µA(u), µB(u))
∑

u∈U µA(u)
(6.12)

whereM(A) is the cardinality of the fuzzy setA, andµA(u) is the membership to the fuzzy setA of u,

an element of the universe of discourseU , u ∈ U . For ruler with A the rule antecedent andB the rule

consequent,M(A ∩ B) is the fuzzification of the number of positive instances covered p, andM(A)

is the fuzzification of the number of instances covered by therule n + p, and we can define the Purity

functionP (r) in the fuzzy case simply asP (r) = S(A,B).

6.2.7 The Fuzzy Laplace Estimate

A fuzzy evaluation function related to the Laplace estimatewas used in reference [Fertig et al., 1999],

F (r) =

∑

i∈XT (c) µA∩B(i) − 1
2

M(T, c)
(6.13)

This function favours rules with higher coverage. Considerfor example the two casesM(A) = M(A∩

B) = 100 andM(A) = M(A ∩ B) = 1. In the former case a score of0.995 will be assigned, and in

the latter a score of0.5. The Purity function on the other hand would assign a score of1 in both cases.

6.3 Paths Through the Lattice

Table 6.3 contains a small toy problem with linguistic variablesA andB with linguistic term sets{f, g}

and{x, y}, respectively. The membership values of instances for eachterm are listed in the two columns

in the table. For clarity sake, the membership to the conceptfor this problem is crisp. The data were

obtained by randomly generating membership values, and then assigning only instances for which the

following two rules fire forclass.yes,

[f ][x]@0.5 → yes

[g][y]@0.5 → yes

where we usedαa = 0.5.
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Table 6.3: A fuzzy learning problem.

@relation smallproblem

@attribute A {f, g}

@attribute B {x, y}

@attribute class {pos, neg}

@DATA

(.37 .49), (.84 .99), (0 1) (.39 .46), (.49 .11), (0 1)

(.19 .82), (.41 .31), (0 1) (.12 .82), (.73 .03), (0 1)

(.75 .63), (.86 .70), (1 0) (.61 .45), (.37 .98), (0 1)

(.09 .67), (.88 .97), (1 0) (.30 .25), (.34 .16), (0 1)

(.19 .26), (.83 .07), (0 1) (.36 .73), (.58 .64), (1 0)

(.71 .85), (.69 .75), (1 0) (.48 .17), (.83 .83), (0 1)

(.69 .06), (.70 .85), (1 0) (.13 .30), (.08 .90), (0 1)

(.61 .70), (.77 .26), (1 0) (.46 .26), (.49 .48), (0 1)

(.10 .49), (.77 .32), (0 1) (.64 .54), (.10 .08), (0 1)

(.10 .21), (.23 .45), (0 1) (.19 .53), (.79 .87), (1 0)

The search process, using the seven different evaluation functions, is illustrated in Figure 6.1. The

part of FUZZYBEXA ’s lattice of conjunctions generated for an infinite beam width is shown. Some

conjunctions were pruned from the search by FUZZYBEXA ’s efficiency measures, e.g. no conjunctions

with empty positive extensions are shown. We have also omitted the most specific element for brevity.

Each node in the graph shows the two conjuncts of a conjunction in the first two lines. The third line

and fourth lines contain the scores assigned to a conjunction by the evaluation functions Fuzzy Laplace

F (r), PurityP (r), AccuracyA(r), Information ContentIC(r), ls-ContentLSC(r), EntropyE(r), and

Laplace EstimateL(r), in this order. The last line contains the number of positiveand negative instances

covered by the conjunction. For the purposes of the discussion here we will denote conjuncts by listing

their linguistic terms, e.g.[f, g] is meant to mean[Atextisf ∨ g]. Since all the linguistic terms have

unique names there can be no confusion which linguistic variable is implied.

From the figure we observe that during the first few iterationsof FindBestConjunctionthe different

evaluation functions all have the same behaviour. They all prefer conjunctions that cover many positive

instances and few negative instances. At the bottom layers fewer instances are covered and the different

heuristics of the evaluation functions play a bigger role. The circled nodes and bold edges in Figure 6.1

show the path followed by FUZZYBEXA for the different evaluation functions and beam width one. We

discuss the behaviour by individual evaluation functions next.

6.3.1 The Laplace Estimate

The exclusion ofA.ᾱ in the first iteration gave the highest score, and since thereis no beam search, only

this conjunction is specialized further. Two more specializations are made to obtain the conjunction

[f, g][x]. The Laplace evaluation is shown as the last number in the fourth node line, and[f, g][x]

obtains a score of0.8. It will be specialized further sinceXN (c) 6= ∅. By excludingg from [f, g][x] the

final conjunction[f ][x], which has an empty negative extension, is obtained. Thus, the best rule returned
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[f g Ã]
[x y Ã]

(.3)(.33)(−5.54)(−1.1)
(.54)(−1.2)(.36)

(7) (13)

[g Ã]
[x y Ã]

(.25)(.28)(−6.3)(−1.26)
(.45)(−1.27)(.35)

(6) (12)

[f Ã]
[x y Ã]

(.18)(.22)(−6.81)(−1.5)
(.36)(−1.59)(.29)

(4) (11)

[f g]
[x y Ã]

(.57)(.64)(2.12)(−.45)
(1.56)(−.37)(.62)

(7) (4)

[f g Ã]
[y Ã]

(.3)(.34)(−4.33)(−1.09)
(.56)(−1.1)(.39)

(6) (10)

[f g Ã]
[x Ã]

(.32)(.36)(−4.19)(−1.03)
(.6)(−1.05)(.4)

(7) (11

[f g Ã]
[x y]

(.44)(.49)(−.27)(−.72)
(.96)(−.69)(.5)

(7) (7)

[g]
[x y Ã]

(.58)(.66)(2.02)(−.41)
(1.65)(−.32)(.64)

(6) (3)

[g Ã]
[x y]

(.38)(.44)(−1.13)(−.83)
(.81)(−.69)(.5)

(6) (6)

[g Ã]
[x Ã]

(.25)(.29)(−5.56)(−1.24)
(.46)(−1.19)(.37)

(6) (11)

[g Ã]
[y Ã]

(.24)(.28)(−4.86)(−1.26)
(.46)(−1.17)(.38)

(5) (9)

[f]
[x y Ã]

(.56)(.69)(1.51)(−.37)
(1.67)(−.32)(.62)

(4) (2)

[f Ã]
[x y]

(.29)(.36)(−2.17)(−1.02)
(.63)(−1.01)(.42)

(4) (6)

[f Ã]
[x Ã]

(.21)(.26)(−5.17)(−1.36)
(.42)(−1.39)(.33)

(4) (9)

[f Ã]
[y Ã]

(.16)(.21)(−5.87)(−1.57)
(.35)(−1.69)(.29)

(3) (9)

[f g]
[y Ã]

(.58)(.66)(1.91)(−.42)
(1.62)(−.32)(.64)

(6) (3)

[f g]
[x Ã]

(.6)(.68)(2.42)(−.39)
(1.76)(−.26)(.67)

(7) (3)

[f g]
[x y]

(.7)(.78)(3.39)(−.25)
(2.45)(−.15)(.73)

(7) (2)

[f g Ã]
[y]

(.51)(.57)(1.13)(−.56)
(1.26)(−.45)(.58)

(6) (4)

[f g Ã]
[x]

(.51)(.57)(1.27)(−.56)
(1.25)(−.49)(.57)

(7) (5)

[g]
[x y]

(.74)(.84)(3.19)(−.17)
(2.84)(−.07)(.78)

(6) (1)

[g]
[y Ã]

(.59)(.7)(1.86)(−.35)
(1.79)(−.24)(.67)

(5) (2)

[f]
[x Ã]

(.66)(.81)(2.1)(−.21)
(2.28)(−.13)(.71)

(4) (1)

[f g]
[y]

(.76)(.87)(3.37)(−.14)
(3.09)(−.07)(.78)

(6) (1)

[f]
[y Ã]

(.48)(.63)(.85)(−.47)
(1.38)(−.45)(.57)

(3) (2)

[f g]
[x]

(.77)(.86)(3.88)(−.15)
(3.24)(−.05)(.8)

(7) (1)

[g]
[x Ã]

(.56)(.65)(1.71)(−.44)
(1.55)(−.32)(.64)

(6) (3)

[f]
[x y]

(.67)(.82)(2.15)(−.2)
(2.34)(−.13)(.71)

(4) (1)

[g Ã]
[y]

(.46)(.54)(.5)(−.61)
(1.13)(−.4)(.6)

(5) (3)

[g Ã]
[x]

(.42)(.49)(−.2)(−.72)
(.96)(−.57)(.54)

(6) (5)

[f Ã]
[x]

(.37)(.46)(−.53)(−.79)
(.88)(−.69)(.5)

(4) (4)

[f Ã]
[y]

(.29)(.39)(−1.23)(−.95)
(.72)(−.91)(.44)

(3) (4)

[g]
[y]

(.84)(1.0)(3.22)(.0)
(4.22)(.0)(.86)

(5) (0)

[f]
[x]

(.82)(1.0)(2.74)(.0)
(3.74)(.0)(.83)

(4) (0)

[g]
[x]

(.73)(.84)(3.07)(−.18)
(2.77)(−.07)(.78)

(6) (1)

[f]
[y]

(.59)(.77)(1.49)(−.26)
(1.93)(−.19)(.67)

(3) (1)
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when using the Laplace estimate will be

[f ][x]@0.5 → pos

Solution nodes (i.e. the node of the conjunction returned byFindBestConjunction) are indicated by bold

circles on the figure. It is interesting to note that with a beam width of 2, the conjunction[g][y] would

have been returned, since it has a higher score. This conjunction, however, was excluded from the search

(with beam width 1) by the exclusion of the linguistic termy higher up in the lattice.

6.3.2 The Purity Function

The score of the Purity function is given by the second numberof the third line of each node. The Purity

function dictates the same path as the Laplace function for the first three layers. If only the positive and

negative coverage countsp andn are considered, the conjunction[f, g][y] in the fourth layer chosen by

the Purity function is worse than[f, g][x], chosen by the Laplace estimate—one less positive instance

and the same number of negative instances are covered. Interestingly enough then, in the bottom layer

the solution conjunction covers more positive instances and also zero negative instances, which is better

than that obtained by the Laplace estimate. Thus, the Purityfunction returns the rule,

[g][y]@0.5 → pos

6.3.3 The Fuzzy Laplace Estimate

The score of the Fuzzy Laplace functionF (r) is shown as the first number of the third line of each node.

The exact same path as that of the normal Laplace function is followed. The subtraction of the half in

Eq (6.13) resulted in a score of0.77 and0.76 for the conjunctions[f, g][x] and [f, g][y], respectively.

Just the opposite behaviour was observed for the Purity function where0.86 and0.87 were observed.

Note that the evaluation assigned by the Fuzzy Laplace function may be negative for some conjunctions.

This happens whenM(P, c) < 1
2 . A negative value cannot occur for crisp sets.

6.3.4 The Information Content Function

The Information Content evaluation is shown as the last number in the third line of each node. Like the

other functions, it follows the same path for the top three layers of the lattice. In the fourth layer it prefers

[f, g][y]. The fuzzy behaviour of the evaluation functions become apparent when one observes that the

fuzzy evaluation functions assign different scores to the conjunctions[g][x, y], [f, g][y], and[g][x] (in the

bottom two layers) even though they all cover one negative and six positive instances. A crisp evaluation

function cannot distinguish between these conjunctions—the Laplace function for example assigned the

same score to all of them. The Information Content function assigns a higher score to[f, g][y] than

to [f, g][x], even though both cover one negative instance, but[f, g][x] covers one more positive than

[f, g][y]. Finally, the Information Content function finds[g][y], and since it covers no negative instances,

the Information Content gave it the highest score (zero).
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6.3.5 Thels-Content Function

The ls-Content evaluation function is shown as the first value of the fourth line of each node. In the

fourth layer of the graph thels-Content function prefers[f, g][x], and then in the bottom layer it prefers

[f ][x]. Thus, the same behaviour as for the Laplace estimate is observed. Similarly also, the conjunction

[g][y] would be returned if a beam width of two was used, since it performs better than[f ][x].

6.3.6 The Entropy Function

The Entropy function (shown as the second number in the fourth line of each node) preferred[f, g][x]

in the fourth layer of the lattice, and also found[f ][x]. Note that if there was another conjunction in the

bottom layer that covered one positive and no negative instances, the entropy and Information Content

functions would assign zero scores to both, and could therefore not intelligently choose between its

current choice and this conjunction. Thels-Content function on the other hand would still prefer[f ][x].

6.3.7 The Accuracy Function

The Accuracy functionA(r) (shown in the third position of the third line of each node) prefers the same

conjunctions as the other evaluation functions in the first three layers. In fact, all the methods followed

the same path in the first three layers of the lattice. This is indicative thereof that the different evaluation

functions prefers the same macro features, but specialize differently as the number of instances become

small—as happens lower down in the lattice.

Of the four conjunctions formed by specializing[f, g][x, y], the conjunction[f, g][x] obtains the highest

score of3.88. From this conjunction, eitherf or g can be excluded to form[f ][x] and[g][x] with scores

2.74 and3.07, respectively. Neither of these conjunctions score higherthan [f, g][x], and since they

cannot be specialized further, the best rule found by using the Accuracy function is

[f, g][x]@0.5 → pos

This rule still covers one negative instance, but it also covers all the positive instances, whereas the

rules returned by the other functions do not. This happens because the Accuracy function places equal

importance on the positive and negative instances, whereasthe other functions emphasizes positive

coverage. The Accuracy function kept[f, g][x] since[g][x] covered the same negative instances, but

one less positive instance, and[f ][x] uncovered one negative instance at the cost of uncovering three

positive instances. In this sense one can say that the Accuracy function has some form of stop growth

functionality built in.

Whether this type of stop growth functionality is beneficialdepends on the data. The Accuracy function

could not make a perfect cover of the positive sets. Using theother functions, further iterations of the

algorithm will induce rules that cover the remaining positive instances, possibly without covering any

negative instances. The behaviour of the Accuracy functionwill be beneficial when a data set contains

noise, since the Accuracy function has a built in preferencefor more general but still good conjunctions
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Table 6.4: Accuracy results for different evaluation methods on real world domains.
Anneal Autos BrCancer Colic Credit-A Hepatitis Iris Labor Lymph Average

Mean 99.22 74.13 70.00 84.51 83.91 82.58 97.14 89.47 81.76 84.75
StdDev 1.23 11.60 6.69 6.20 4.71 9.02 4.99 12.94 11.24 7.62
Mean 98.89 70.15 70.58 84.24 85.22 83.87 96.43 89.47 81.76 84.51

StdDev 1.37 8.28 3.88 6.28 5.54 9.62 5.05 12.94 14.40 7.48
Mean 98.89 70.65 69.19 84.51 85.22 83.23 96.43 91.23 81.76 84.57

StdDev 1.37 10.95 5.43 5.20 4.62 10.29 5.05 13.84 12.52 7.70
Mean 94.32 73.63 73.14 85.60 85.65 80.65 95.71 92.98 81.08 84.75

StdDev 3.06 10.70 4.92 4.30 6.28 12.26 6.02 14.44 11.48 8.16
Mean 98.11 67.16 59.77 79.89 82.17 78.06 96.43 91.23 79.73 81.39

StdDev 1.53 11.06 4.18 7.81 6.77 10.73 5.05 13.84 15.21 8.46
Mean 98.11 67.66 59.53 79.89 82.17 78.06 96.43 91.23 79.73 81.42

StdDev 1.53 10.28 3.95 7.81 6.77 10.73 5.05 13.84 15.21 8.35
Mean 98.00 65.17 60.81 81.79 82.90 79.35 96.43 91.23 75.00 81.19

StdDev 1.96 10.34 5.29 7.63 4.52 8.63 5.05 13.84 16.69 8.22

IC(r)

E(r)

LSC(r)

L(r)

F(r)

P(r)

A(r)

over more specific conjunctions that cover far less positives but also a small percentage negatives. The

ls-Content function may be better suited for domains that contain concepts that can only be described by

many small but significant disjuncts [Holte et al., 1989]. A final observation is that it is of course very

possible thatA(r) < 0, as is, for example, the case for the most general conjunction. To summarize, the

Fuzzy Laplace,ls-Content, Laplace and Entropy functions returned[f ][x], the Purity and Information

Content functions returned[g][y], and the Accuracy returned[f, g][x] as the best conjunction. However,

in the top layers of the lattice all functions returned the same best conjunction.

6.4 Empirical evaluation

In this section we compare the different evaluation functions based on three different criteria, rule set

classification accuracy, rule set complexity, and the number of conjunctions examined to obtain the rule

set. We show results obtained on nine data sets obtained fromthe UCI Machine Learning Repository

[Blake and Merz, 1998]. All results are averages on test set results of 10-fold cross validation.

6.4.1 Classification Accuracy

Table 6.4 shows the classification accuracy of the differentevaluation functions. Bold numbers indicate

the best performance for a specific data set among the methods, and italic numbers show the standard

deviation. The last column contains the average performance over all data sets.

From the discussion in Section 6.3 we may expect that the Laplace,ls-Content, and Fuzzy Laplace func-

tions would perform similarly and that the Information Content and Purity functions would be similar.

Although the Entropy function found the same conjunction asmembers of the Laplace group in Sec-

tion 6.3, mathematically speaking it is more closely related to the Information Content group, and we

may expect them to perform similarly. The Accuracy functionseemed to be in a group of its own.

The classification accuracy results shown in Table 6.4 confirm some of our expectations. The “Informa-

tion Content Group” obtained very similar results, and our expectation that the Entropy function actually
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belongs to this group is also validated. The members of the “Laplace Group” also obtained similar re-

sults. The mean of the Accuracy function was closer to the mean of the Laplace group, although its

standard deviation shows that it does not fit in this group as well as the other members. This suspicion is

confirmed by inspecting the individual data set results—while the other members perform very similarly

for all data sets, the Accuracy function had significantly different performance on the Anneal, Autos,

BrCancer, and Hepatitis data sets.

It is also interesting to note that the simple Accuracy function often performed very well. For four of

the nine data sets it had the best performance, and had only notably worse performance on the Anneal

data. This indicates that its preference for general descriptions is often an effective heuristic. For the

Annealing data the Accuracy function obtained94.32% classification accuracy, while all of the other

methods obtained very high classification accuracy—close to 100%. This means that the rules induced

by the other methods to classify the training data also classified the test data very accurately. The Accu-

racy function’s preference for more general conjunctions proved detrimental in this case, as conjunctions

were often not specialized until they became consistent, and still covered some negative instances in the

training set and thus also in the test set.

The Laplace function had the best performance for four data sets, and the Fuzzy Laplace only for one.

The average performance of the Laplace and Accuracy functions were the same, but the Laplace function

had a slightly better standard deviation. The mean performance of thels-Content and Fuzzy Laplace

lies within 0.2% of the mean performance of the Accuracy and Laplace functions, and it is difficult

to say which one is the best on average. No member of the Information Content group obtained the

best classification accuracy for any data set, and their performance is on average3% worse than that

of the Laplace group. However, the Information Content group outperformed the Laplace and Fuzzy

Laplace functions for the Labor data, and the Accuracy function performed considerably worse than

the Information Content group on the Anneal data. This showsthat there is not a one-fit all solution to

concept learning. The best result is obtained by using the evaluation function employing heuristics best

suited for the kind of input data and concept to learn. In general the heuristics employed by the Laplace

group seem to give better classification accuracy results than the Information Content group.

6.4.2 Rule Set Complexity

Complex rules are more difficult to understand and are frequently an indication of overfitting. We

measure rule set complexity as the number ofconjunctsin the rule set. The complexities for the different

evaluation functions are shown in Table 6.5. Bold numbers indicate the smallest number of conjuncts

per rule set for a particular data set. As may be expected fromthe preceding discussions, the Accuracy

evaluation function produced the smallest rule sets on average (115 conjuncts versus 125 of the next

best, the Fuzzy Laplace function). It also led to the shortest rule sets for five of the nine data sets.

It is interesting to note that although the Accuracy and Laplace functions obtained very similar classi-

fication accuracy results, it is clear from their respectiverule set complexities that the rule sets differed

considerably. Furthermore, the Laplace and Fuzzy Laplace functions also had very similar average clas-
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Table 6.5: Complexity of the rule set for different evaluation methodson real world domains.
Anneal Autos BrCancer Colic Credit-A Hepatitis Iris Labor Lymph Average

Mean 102.8 182.7 252.7 213.6 447.4 74.2 7.0 13.8 91.0 153.9
StdDev 5.5 8.4 20.8 15.3 35.9 5.1 1.6 2.0 7.6 11.4
Mean 87.7 138.9 198.2 175.4 369.2 63.1 7.0 14.7 76.5 125.6

StdDev 5.9 8.2 11.6 14.3 13.7 4.0 1.6 1.8 5.3 7.4
Mean 100.3 182.1 257.6 212.9 436.1 74.3 7.0 13.6 89.4 152.6

StdDev 8.3 11.2 17.5 14.5 23.4 7.4 1.6 2.1 8.4 10.5
Mean 123.7 171.6 136.8 169.2 280.6 63.6 6.0 16.3 67.9 115.1

StdDev 10.0 11.6 17.3 17.4 16.0 4.0 0.0 1.7 7.2 9.5
Mean 104.5 262.5 292.3 236.7 512.4 76.2 7.0 16.5 96.2 178.3

StdDev 7.6 17.0 23.8 21.1 22.8 7.0 1.6 3.1 7.3 12.4
Mean 104.5 199.9 291.9 236.7 508.5 76.2 7.0 16.5 96.2 170.8

StdDev 7.6 11.2 23.8 21.1 26.3 7.0 1.6 3.1 7.3 12.1
Mean 103.0 197.6 287.8 233.6 507.2 77.1 7.1 15.9 92.8 169.1

StdDev 8.4 13.5 19.0 29.7 25.2 8.9 1.6 2.5 5.1 12.7

F(r)

P(r)

E(r)

IC(r)

L(r)

LSC(r)

A(r)

Table 6.6: The number of conjunctions searched.
Anneal Autos BrCancer Colic Credit-A Hepatitis Iris Labor Lymph Average

Mean 4993 17432 8039 14045 22174 2732 410 417 3018 8140
StdDev 284 1494 793 820 1560 145 58 53 266 608
Mean 4443 14900 7603 12094 20073 2429 369 433 2719 7229

StdDev 261 1379 603 1126 1045 199 48 59 168 543
Mean 4959 16827 7774 13944 21422 2716 289 413 2946 7921

StdDev 389 1412 566 819 1363 258 48 61 270 576
Mean 6132 15381 4499 11176 14185 2498 196 542 2243 6317

StdDev 384 1056 457 873 788 184 13 64 222 449
Mean 5152 26002 9931 16589 26853 2885 421 490 3286 10179

StdDev 348 1753 880 1421 1143 248 87 88 285 695
Mean 5152 19653 9510 16589 26119 2885 286 490 3286 9330

StdDev 348 1514 817 1421 1216 248 48 88 285 665
Mean 5062 19376 9285 16205 25560 2975 301 477 3205 9161

StdDev 380 1733 716 2014 1461 283 37 73 200 766

A(r)

LSC(r)

IC(r)

F(r)

P(r)

E(r)

L(r)

sification accuracy, but significantly different rule set complexities. The Fuzzy Laplace function resulted

in an average reduction in rule set complexity of18.3% compared to the (crisp) Laplace function. Thus,

the fuzzification of the evaluation method had a beneficial effect on rule set complexity. Finally we note

that the Laplace andls-Content had similar rule set complexities.

The members of the Information Content group again obtainedsimilar performances, with the Entropy

method obtaining the best result. Another observation is that for the Anneal data, the accuracy method

obtained the most complex rule set, and also had the worst accuracy performance. For this data set the

Fuzzy Laplace obtained both the best classification accuracy and rule set complexity, while the remain-

ing evaluation methods all had very similar rule set complexity results. We have shown emprically in

Chapter 5 that rule set complexity is often correlated with rule set accuracy (cf. Section 5.5 and Sec-

tion 5.6.2). This is further emphasized here by the results for the Accuracy function on the BreastCancer,

Colic and Credit-A data sets.

6.4.3 Search Space Explored

The amount of search effort is quantified by counting the number of candidate conjunctions that were

investigated during rule induction. The evaluation function effectively prunes unpromising conjunctions
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from the search, and ranks the conjunctions according to itsperceived classification performance. Ta-

ble 6.6 shows the size of the search space explored to obtain the rules. The bold numbers indicate the

smallest search effort per data set.

Again the Accuracy evaluation function was the most effective, generating on average approximately

6300 conjunctions, versus approximately 7200 for the FuzzyLaplace, 7900 for thels-Content, and over

8100 for Laplace evaluation function. It also caused the least search for five of the nine data sets. The

reason is that the induction of each rule requires a new search of the lattice of rule descriptions, and the

Accuracy function induced far fewer rules. Thus, it also comes as no surprise that the Fuzzy Laplace

required the second least search.

In the Information Content group, Entropy and Information Content had similar results (∼ 9200 con-

junctions), while the Purity function required significantly more search (over10100 conjunctions). Thus,

the Entropy and Information Content functions obtained very similar results for classification accuracy,

rule set complexity, and also search requirement, indicating that they basically employ the same heuris-

tic. When this heuristic is required, the Information Content should be used since it less complex and

therefore faster to compute. If we compare the average results for the Laplace andls-Content functions

we may come to a similar conclusion. However, comparing the classification accuracy results for the

Autos data and the search requirement for the Iris data, for example, we see that the average results may

sometimes hide some information, and that while the two methods are related, they employ different

heuristics.

6.5 Summary

In this chapter we investigated the effect of the evaluationfunction on the induction process. We also

provided an empirical evaluation of the different functions by comparing their performance with respect

to classification accuracy, rule set complexity, and searchrequirements on nine real world data sets. Of

the several evaluation functions discussed in this chapter, four were obtained from the literature, while

we proposed the remaining functions [van Zyl and Cloete, 2004c; Cloete and van Zyl, 2004a].

By using a small example we demonstrated that the different evaluation methods all follow the same

path through the lattice in the first few layers. This means that macro features are equally well distin-

guished by the different methods. Lower down in the lattice conjunctions cover fewer instances, and

the individual characteristics of the different methods had a bigger influence. Of the different methods,

only the Accuracy function often prefers conjunctions higher up in the description lattice. This happens

because higher up in the lattice more instances are covered,andM(XP (c))−M(XN (c)) is more likely

to be big than lower down in the lattice where fewer instancesare covered. The other methods all pre-

fer more consistent conjunctions. This property of the Accuracy function often helps the algorithm to

prevent overfitting, but in a few cases, e.g. for the Anneal data set, this property may also deteriorate

performance.

The different evaluation functions could be divided into roughly three groups, with the Accuracy func-
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tion in its own group. The Information Content group’s overall performance seemed worse than that of

the other groups. Thus, functions from this group should only be used in special circumstances when it

is clear that such a function should perform well. As a rule ofthumb, the Accuracy function seems to be

a good choice for an evaluation function. It had the best overall performance, and resulted in the least

complex rule sets while also requiring the least search effort (on average). The similar classification

performance of members within a group could to some extend beattributed to FUZZYBEXA ’s search

heuristics other than the evaluation function. Without these heuristics, the evaluation function will have

a greater impact, and the results are likely to be more diverse.
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CHAPTER 7

Comparison Between FUZZYBEXA and

Other Fuzzy Rule Learners

7.1 Introduction

In the previous chapters we introduced FUZZYBEXA, an algorithm for the induction of fuzzy classifica-

tion rules. We provided an empirical evaluation of the algorithm with respect to various parameters and

characteristics. We also introduced several fuzzy rule evaluation functions, and showed the importance

of the evaluation function. In Chapter 2 we reviewed severalfuzzy concept learners and categorised

them in seven classes of algorithms. We now ask the question,what are the differences and similarities

of these algorithms to FUZZYBEXA. We make this comparison with respect to the different characteris-

tics of FUZZYBEXA. Since space prohibits us from comparing FUZZYBEXA to all possible algorithms,

we compare FUZZYBEXA with those main classes of fuzzy rule learners that are somewhat related: (a)

inductive learners (b) decision trees (c) similarity search, (d) partitioning methods, and (e) stochastic

search.

We do not pay much attention to gradient descent (neural network) methods, since these do not directly

induce a fuzzy rule set, but a fuzzy rule set must be extractedusing one of a variety of methods. The

number of possible combinations of neural architecture, training methods, and rule extraction algorithms

makes it very difficult to derive general characteristics for gradient descent methods. It suffices to say

that they induce subsymbolic (connectionist) results, andhave very little in common with FUZZYBEXA

or even the other classes of rule induction methods. Note, gradient descent here refers to the direct in-

duction of rules using a gradient descent method, and not theoptimisation of certain parameters using an

artificial neural network within a scheme that employs another method, e.g. the optimisation of defuzzi-

fication parameters via an artificial neural network within afuzzy decision tree induction algorithm.

The layout of the chapter is as follows. In Section 7.2 we discuss the inductive bias of each of the dif-

ferent groups of concept learners. In the following sections we discuss the differences and similarities

between FUZZYBEXA and other concept learners with respect to the description language, parameters

and structure identification, evaluation function, beam search, lattice and partial ordering, rule set order-

ing, and stop growth measures. Section 7.4 concludes the chapter with a discussion.
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7.2 Inductive Principle Comparison

We grouped the different fuzzy rule induction algorithms into classes based on the induction method

employed. The basic search strategy is the first and most important distinguishing characteristic of a

learning algorithm, and in this section we summarize the principles or heuristics on which the induction

process of each class is based.

7.2.1 Fuzzy Inductive Learners

Inductive learners induce rules by identifying features that empirically distinguish positive from negative

training examples [Mitchell, 1997]. We already formulatedFUZZYBEXA ’s inductive bias in Section 4.8,

and we restate it here briefly. FUZZYBEXA performs a separate-and-conquer search of the hypothesis

space. It prefers conjunctions with good evaluations over conjunctions with bad evaluations, where

“good” and “bad” are defined by an evaluation function. FUZZYBEXA ’s description language, FuzzyAL

allows internal disjunction, and forms a lattice of antecedent descriptions, and a top-down, general-to-

specific beam search of this description lattice is performed. Thus, FUZZYBEXA employs both asearch

bias (characterized as greedy, general-to-specific with pre-pruning) and alanguage bias(its description

language).

7.2.2 Divide-and-Conquer Strategies

Fuzzy decision trees are the fuzzy generalization of classical decision trees, and employ linguistic vari-

ables at decision nodes and linguistic terms at branches. Typically a fuzzy form of the information

theoretic measure entropy is used to obtain the fuzzy information gain. The inductive bias of fuzzy deci-

sion tree induction is therefore strongly related to the inductive bias of the classical algorithm. Mitchell

describe this inductive bias as [Mitchell, 1997], “Shortertrees are preferred over longer trees. Trees

that place high information gain attributes close to the root are preferred over those that do not.” If we

exchange attribute with linguistic variable and information gain with fuzzy information gain, we obtain

the inductive bias for the fuzzy ID3 algorithm [Cios and Sztandera, 1992; Dong and Kothari, 2001]. Al-

though this definition was primarily derived for ID3, with minor alteration it is also applicable to many

other fuzzy decision tree induction algorithms.

7.2.3 Similarity Search

Similarity search relies on some kind ofclosenessor representativenessassumption, and the concept

of distanceor similarity plays an important role [Dubois et al., 2002]. After clustering the input or

sometimes the output domains, the cluster centres are typically used to represent a rule, and the different

individual instances are discarded. Since a cluster centreis a single point in the input-output space, these

methods typically only inducepurely conjunctiverules, and the description language is not specified

beforehand, but induced from the clustering process. Thereis no evaluation function employed during
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the search (other than the distance measure), and no general-to-specific ordering. We can thus say that

similarity search methods are biased towards solutions where instances are grouped such that they lie

close to other instances of the same group. From these groupsrules and/or membership functions are

deduced.

7.2.4 Stochastic Search

The inductive principle on which evolutionary fuzzy rule learners are based is a combination of the rule

encoding method as well as in the general inductive bias of genetic algorithms. In some systems the rule

encoding method restricts the description language (language bias) to allow only certain representations,

e.g. the conjunction of all input domains where each input domain is divided into three evolving fuzzy

sets. Other methods place no restriction on the representation language and allow arbitrary rules. The

population evolution over time within a genetic algorithm has been described using Holland’s schema

theorem [Holland, 1975], which roughly interpreted statesthat better schemas (gene sections) tend to

grow in importance over time [Mitchell, 1997]. Genetic algorithms in general may employ a language

bias as well as a learning bias [Whigham, 1995].

7.2.5 Partitioning Methods

Most partitioning methods make very few assumptions overall, and as a result usually produce very

large rule sets. They typically proceed by dividing each input dimension into partitions, resulting in the

division of the input space into fuzzy hyperrectangles, where the centre of the hyperrectangle is most

characteristic of the hyperrectangle. Each hyperrectangle forms the antecedent of apurely conjunctive

rule. The available instances are assigned to their respective hyperrectangles, and the rule consequent

of the respective hyperrectangles are then determined by the output domain of the instances. The main

task of the algorithm is to resolve conflicting rules. The bias of the algorithm is then determined by the

method of resolving the conflicts. A typical example is to prefer the rule that matches the instances to

the highest degree [Hong and Chen, 1999; Wang and Mendel, 1992].

7.3 Characteristic Comparison

FUZZYBEXA is characterized by a variety of features. In this section wecompare FUZZYBEXA to

algorithms with respect to these features. Some features are unique to FUZZYBEXA, while others are

also found in other learners.

7.3.1 Description Language

FUZZYBEXA employs FuzzyAL as its description language. Descriptionsin FuzzyAL are formed by the

conjunction of several conjuncts,C1 ∧ C2 . . . ∧ Cn. Each conjunct uses linguistic terms from the same
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linguistic variable, and may beinternally disjunctive, Ci = c1 ∨ c2 . . . cm. Except for the method by

Castroet al [Castro et al., 1999] (extended by Carmonaet al [Carmona et al., 2004]), all other methods

surveyeddo notallow internal disjunction, and form purely conjunctive rules.

7.3.2 Parameter and Structure Identification

Parameter identification refers to the identification of system parameters like membership functions.

Structure identification refers to the identification of thestructure of the classifier, i.e. the rule struc-

ture. FUZZYBEXA does not perform parameter identification, since many methods already deal with

that. FUZZYBEXA is purely concerned with structure identification, and as such is capable of inducing

incompleterules , i.e. rules that do not use all variables in the antecedent description.

Similarity search techniques typically do not implement any structure identification, and is only con-

cerned with parameter identification. They induce completerules, i.e. rules that contain all linguistic

variables in the antecedent. Most partitioning techniquesare also solely concerned with parameter iden-

tification, inducing complete rules. There are some exceptions, where optimisation methods such as

genetic algorithms are used to identify important and unimportant fuzzy sets in the rule base [Ishibuchi

et al., 1995]. Genetic algorithms have in some cases been used to evolve membership functions only,

assuming purely conjunctive complete rules [Wang and Bridges, 2000], and in other cases to evolve both

the rule set and rule base [Peña-Reyes and Sipper, 2001]. Fuzzy decision trees may be converted into

an equivalent set of fuzzy rules. Similar to FUZZYBEXA, the main task of fuzzy decision trees is to

perform structure identification, and thus they can induce incomplete rules.

7.3.3 Evaluation Function

In Chapter 6 we introduced several fuzzy evaluation functions that can be used to rank fuzzy rules. The

rule (antecedent) evaluation function is an integral part of FUZZYBEXA, and FUZZYBEXA ’s perfor-

mance can in some cases be greatly influenced by the choice of the evaluation function.

In genetic algorithm optimisation of the fuzzy rule base, the objective function may be seen as a kind of

evaluation function. This objective function, however, typically operates on the whole rule set, and does

not have the same function as in FUZZYBEXA. Decision tree induction usually employs an information

theoretic method to decide which linguistic term to use at each decision node. This function also does

not operate on a single rule. Similarity search techniques,partitioning methods, and gradient descent

methods do not use an evaluation function. In fact, only algorithms in the class of fuzzy inductive

learning employ an evaluation function for guiding search in the sense that FUZZYBEXA does.

7.3.4 Beam Search

FUZZYBEXA can perform a beam search of the hypothesis space. One may consider the population size

used in genetic algorithms as a kind of beam width. Other thanreferences [Fertig et al., 1999; Wang
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et al., 2003] we did not find any methods employing a beam search.

7.3.5 Lattice and Partial Order

The descriptions in FUZZYBEXA ’s description language FuzzyAL is partially ordered and forms a lat-

tice. This is exploited by FUZZYBEXA to perform a general-to-specific search, and to employ a variety

of efficiency and pruning methods. We are not aware of any other work on fuzzy rule learning where

this partial order is explicitly exploited.

7.3.6 Rule Ordering: Iterated and Simultaneous Concept Learning

We will introduce FUZZYBEXA II in Chapter 10, but for completeness of the comparison we mention it

here. FUZZYBEXA II allows the induction of ordered rule sets through the use of simultaneous concept

learning [van Zyl and Cloete, 2004f]. Simultaneous conceptlearning does not iterate through the list

of concepts for which descriptions are desired, but assignsthe concept during the induction process.

This kind of induction process has not been used for fuzzy rule induction before. Although most of the

other fuzzy learning techniques induce rules for the different concepts at the same time, these rules are

unordered, and in many cases it would make no difference to the resultant rule set if the rules had been

induced by iterating through the concepts.

7.3.7 Stop Growth and Efficiency Measures

FUZZYBEXA employs many different efficiency measures. These measurestypically exploit the partial

ordering of descriptions. For example, if the positive extension of a description is empty, it is clear that

no further specialization will result in descriptions thathave a non-empty positive extension. Another

example is early stopping based on an optimistic evaluation. Here we assume that the negative extension

of a description can be made empty, and the positive extension be kept unchanged through specializa-

tion. If this optimistic evaluation is still worse than thatof the current best description, we remove the

description (and thus all it’s descendants) from the search. We have not encountered any fuzzy learning

methods that employ this kind of stop growth and efficiency measures—i.e. making use of the partial

ordering. In the literature several (early) stopping criteria were suggested for neural network training

[Hayken, 1999]. However, these techniques cannot be seen asefficiency measures, but rather an attempt

to prevent overfitting.

7.4 Discussion

Table 7.1 provides a comparative overview of representative examples of the different groups of fuzzy

concept learning algorithms discussed in this chapter. Thedifferent comparison criteria only include

those aspects where some other method also had this characteristic, i.e. we do not show “stop growth,”
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Table 7.1: A table of comparison between FUZZYBEXA and a selection of other classification rule learning
techniques.

Structure
Identification

Incomplete
rules

Purely
Conjunctive

Rules
Internal

Disjunction

General
to

Specific
Evaluation
Function

Use
Partial
Order

Beam
Search

FUZZYBEXA X X X X X X X X

Greedy Incremental Rule Construction
Wanget al [1999] X X X � X X � �
Fertiget al [1999] X X X � X X � X

Wanget al [2003] X X X � X X � X

Fuzzy Decision Trees
Yuanet al [1995] X X X � X � � �
Chi et al [1996] X X X � X � � �
Donget al [2001] X X X � X � � *2

Similarity Search
Klawonnet al [1997] � � X � � � � �
Sugenoet al [1993] X X X � � � � �
Setnes [2000] X � X � � � � �
Duboiset al [2002] � � X � � � � �
Yin [2004] � � X � � � � �
Honget al [1996] � � X � � � � �

Partitioning Methods
Wanget al [1992] � � X � � � � �
Pomareset al [2002] X � X � � � � �
Berthold [2003] � X X � � � � �
Nozakiet al [1996] � � X � � � � �
Carmonaet al [2004] X X � X � � � �
Casillaset al [2000] � � X � � � � �

Genetic Algorithms
Reyeset al [2001] X X X � � � � �
Herreraet al [1994] X X X � � � � �
Ishibuchiet al [1995] X � X � � � � �
Ishibuchiet al [2004] X X X � � �1 � �

1 The authors apply a prescreening method that examine short candidate antecedents scored using the
subsethood function. An evaluation function, however, is not used to pick candidates for specialization.

2 The authors employ a look-ahead strategy, which may be interpreted to some extent as a beam search.

for example, since no other method employs it in the manner FUZZYBEXA does. From the table it

is clear that no other method implements all of FUZZYBEXA ’s features. Methods within the same

group tend to have similar characteristics. The methods most closely related to FUZZYBEXA are those

published in references [Fertig et al., 1999] and [Wang et al., 2003]. We discussed both these methods in

detail in Chapter 2. In Chapter 9 we propose a general fuzzy set covering framework, as well as several

specialization models, some which are based in part on thesetwo algorithms.
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CHAPTER 8

Inducing Fuzzy Conjunctive Rules:

FUZZCONRI

8.1 Introduction

Up to now we have introduced one example of a fuzzy set covering algorithm, FUZZYBEXA. We have

also proposed various additions and improvements to the basic covering algorithm, and have also in-

vestigated the influence of different rule evaluation methods. We now present another algorithm imple-

menting the fuzzy set covering approach. This algorithm’s description language is different compared

to that of FUZZYBEXA—it induces conjunctive rules, and thus we call the algorithm FUZZCONRI, for

Fuzzy Conjuctive Rule Inducer. Since FUZZCONRI is a fuzzy set covering algorithm, it implements

most of the ideas presented in Chapter 4. The inspiration forFUZZCONRI comes from the crisp rule

induction CN2 by Clark and Boswell [1991], and FUZZCONRI behaves exactly like CN2 in the special

case when crisp data are used. Thus, FUZZCONRI can be seen as the fuzzy generalization and extension

of CN2.

The layout of the remainder of the chapter is as follows. In Section 8.2 we propose a new descrip-

tion language, FuzzyCAL. Then we present FUZZCONRI, a fuzzy rule induction algorithm employing

FuzzyCAL, in Section 8.3. Section 8.4 demonstrates FUZZCONRI’s rule induction behaviour on a toy

data set, and Section 8.5 concludes the chapter.

8.2 FuzzyCAL

FuzzyCAL (Fuzzy Conjunctive Attributional Logic) is a new description language that has no counter-

part in the crisp case. Valid descriptions in FuzzyCAL may beformed by the conjunction ofany set

of linguistic terms in the problem space. Consider again theFuzzy Sport problem in Table 4.1, exam-

ples of valid expressions are[outlook.cloudy ∧ outlook.rainy] and[outlook.sunny] ∧ [temp.mild ∧

temp.cold]. Thus, FuzzyCAL does not have internal disjunction, but instead allows the conjunction of

arbitrary linguistic terms. To make the descriptions easy to read, we group expressions of linguistic

terms from the same linguistic variable together, and indicate this with square brackets. We also write

a description in FuzzyCAL in short hand, for example the previous two expressions can be written as
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[cloudy, rainy] and[sunny][mild, cold]. Although the shorthand form of these expression look similar

to shorthand expressions in FuzzyAL, their semantic interpretation in FuzzyCAL is different from that

in FuzzyAL. The descriptions in FuzzyCAL form a lattice as follows.

Definition 8.2.1 Let c1 andc2 be two conjunctions inC, thenc1 � c2, c1 is more general than or equal

to c2 if D(c1) ⊆ D(c2), c1 andc2 are considered equal whenD(c1) = D(c2), andc1 ≻ c2, c1 is strictly

more general thanc2 if c1 � c2 andc1 6= c2.

Thus, setC is partially ordered under the� relation and forms the lattice〈C;�〉. The top element of

the lattice contains no elements in its description set, i.e. D(mgc) = ∅, and is defined to be semantically

equivalent toTRUE. Note, the conjunct[ ] is thus also equivalent toTRUE.

The alpha complement was added to each linguistic variable for descriptions in FuzzyAL. The reason for

adding the alpha complement was that without its addition the mgcwould not cover the entire instance

space. However, since themgc in FuzzyCAL is the conjunctionTRUE, the alpha complement is not

required for FuzzyCAL. It may still be added to describe sections of the domain of a linguistic variable

where all membership functions are belowαa, but its addition is not a necessary requirement to form a

valid mgc.

As is clear from Def 4.4.1 and Def 8.2.1, FuzzyAL and FuzzyCALare syntactically related. Except

for the alpha complement, the FuzzyAL and FuzzyCAL would form mirror lattices of each other for

the same learning problem. That is, the description sets in the top layers of the FuzzyAL lattice would

be the same as the description sets of the mirror bottom layers of the FuzzyCAL lattice. However, the

expressions associated with the description sets differ between the description languages. We delay

a more in depth comparison of FuzzyAL and FuzzyCAL to Section9.7, after the introduction of the

general fuzzy set covering framework.

8.3 FUZZ CONRI

FUZZCONRI consists of two layers, an upper layer implementing the set covering approach to fuzzy

rule induction, and a lower layer for inducing a single rule.The algorithm is shown in Table 8.1. The

upper layer has the same functionality as FUZZYBEXA ’s top layer (for a discussion of the top layer refer

to Section 4.5).

As discussed above, the FuzzyCAL rules induced by FUZZCONRI are of the form:

IF [temp is hot ∧mild] ∧ [wind is calm] THEN plan is swimming

wheretemp,wind andplan are linguistic variables, andmild, hot, calm andswimming are linguistic

terms representing fuzzy sets. Here the difference betweenfuzzy and crisp rule induction becomes clear.

The above rule willnot cover any instancesin the crisp case, since no instance can be bothmild and

hot at the same time. This, however, is perfectly possible in thefuzzy case.
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Table 8.1: The FUZZCONRI algorithm.

FuzzConRI
Input: Set of training instancesT ,

Set of concepts to learnConcepts
Output: A rule set describing the concepts
Set the rule set to empty
FOR EACHconcept ∈ Concepts
P = {i ∈ T |µconcept(i) ≥ αc}
N = T − P
WHILE P is not empty, and more rules can be found DO
antecedent=FindBestAntecedent(P,N )
If a suitable antecedent is found, augment the rule
set with ”IFantecedent THEN concept”
Remove the positive instances covered by the added rule

Return the rule set

FindBestAntecedent
Input: Set of positive instances, Set of negative instances
Output: Antecedent that covers the positive instances best
Let STAR contain the antecedentTRUE
LetBESTANT be nil
Let TERMS contain all possible terms
While STAR is not empty
NEWSTAR = {x ∧ y|x ∈ STAR, y ∈ TERMS}
NEWSTAR = NEWSTAR− STAR
For each antecedentA in NEWSTAR

If A is better thanBESTANT according to an evaluation function, then
Replace the current best conjunction with the new one

Remove all antecedents that cover only positive instances
Retain a user defined number of best elements inNEWSTAR
STAR = NEWSTAR

ReturnBESTANT

FUZZCONRI’s bottom layer receives a set of positive and a set of negative instances, and returns the

antecedent that best covers the positive instances while attempting not to cover any negative instances.

It starts by initialising the setSTAR with the (FuzzyCAL)mgc, i.e. the conjunctionTRUE. The best

conjunction found during the search is stored in the variableBESTANT . The setTERMS contains

all linguistic terms of the given problem. A newSTAR is obtained by forming the conjunction of single

linguistic term descriptions inTERMS with each conjunction inSTAR. In the next step,STAR

is subtracted fromNEWSTAR. The conjunction of a description inSTAR with a description in

TERMS that was already present in the original description will ofcourse bring no change, e.g. the

conjunction of[hot][calm] with the description[hot] does not change the conjunction. By subtracting

STAR fromNEWSTAR, conjunctions that were not changed are removed fromNEWSTAR.

After the new conjunctions are formed, they are evaluated according to the evaluation function and com-
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pared to the best conjunction found thus far. If a conjunction obtains a higher score than the current

best conjunction, it replaces the current best conjunction. Finally, the conjunctions that cover only posi-

tive instances are removed from the search since further specialization cannot improve the performance.

STAR is then replaced byNEWSTAR and the process iterated untilSTAR becomes empty.STAR

will be empty when no new descriptions different from those in the originalSTAR can be formed.

FUZZCONRI implements a beam search by retaining more than one conjunction for further specializa-

tion in the newSTAR. Finally, the best conjunction found during the search process is returned. There

is scope for improving this version of FUZZCONRI, but since we will show in the next chapter that

FUZZCONRI fits within a more general framework, we postpone that discussion until then.

8.4 Small Example

Consider the sport data set, as shown in Table 4.1. Let the concept to learn beplan.swimming, and let

αc = 0.6 andαa = 0.5. The concept thresholdαc = 0.6 defines the set of positive instances to be1, 2,

3, 9, 11 and16, using the instance indices in the table.

Figure 8.1 demonstrates FuzzConRI’s specialization process for this learning problem, and shows (only)

the conjunctions generated in the lattice of FuzzyCAL descriptions. Each node represents an antecedent,

where the conjuncts of the antecedent are shown below each other, and the most general conjuncts are

not shown. The two numbers in parentheses are the number of positive and negative instances covered by

the antecedent, respectively. The specialization processstarts with the antecedentTRUE, and appends

all possible terms to it, forming all one-term antecedents in the second layer. Since there are ten terms,

the second layer contains ten nodes. For this example we allow only the best antecedent to remain in

STAR for each iteration inFindBestAntecedent, and we use the Laplace estimateL(A) as an antecedent

evaluation function,

L(A) =
p+ 1

p+ n+ 2
(8.1)

wherep andn are the number of positive and negative instances covered bythe antecedentA, respec-

tively. The evaluation of a conjunction is shown as the thirdvalue in parentheses of each node. In the

second layer, the antecedent with the highest score is[hot], and[sunny] is the second best. If a beam

search with width two was selected, both antecedents would be expanded. Since no beam search is

specified, only[hot] is expanded by appending all possible terms to the conjunction. The third layer

contains nine conjunctions, since[sunny, sunny] is removed.

The best conjunction in the third layer is[sunny][hot], which covers five positive instances and no

negative instances. This is also the best conjunction foundduring the whole search process. Since it is

consistent, it is removed fromSTAR and not expanded further. For a beam search of width two this

antecedent could be generated both by appending[sunny] to [hot] or vice versa. Note the conjunction

[hot,mild] (i.e. temp.hot∧temp.mild) covers one positive and no negative instances, and ties thethird

best score. For more complicated problem domains it may wellbe that such conjunctions can be useful

concept descriptions.
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TRUE
(6) (10) (.39)

[sunny]
(5) (2) (.67)

[cloudy]
(1) (5) (.25)

[rain]
(0) (3) (.2)

[hot]
(6) (1) (.78)
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(1) (4) (.29)

[cold]
(0) (5) (.14)

[humid]
(3) (3) (.5)

[normal]
(3) (8) (.31)
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(1) (5) (.25)
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(5) (6) (.46)

[sunny]
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(5) (0) (.86)

[cloudy]
[hot]

(1) (0) (.67)
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(0) (1) (.33)
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(1) (0) (.67)
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[hot]
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(5) (1) (.75)

[hot]
[humid]

(3) (1) (.67)

[hot]
[normal]

(3) (1) (.67)

[hot]
[windy]

(1) (1) (.5)

[sunny]
[hot]

[calm]
(4) (0) (.83)

[cloudy]
[hot]

[calm]
(1) (0) (.67)
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(0) (1) (.33)

[hot, mild]
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(1) (0) (.67)

[hot]
[normal]
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(3) (1) (.67)

[hot, cold]
[calm]

(0) (0) (.5)

[hot]
[humid]
[calm]

(2) (1) (.6)

[hot]
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(0) (1) (.33)

[sunny]
[hot]

[normal]
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(2) (0) (.75)

[cloudy]
[hot]
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(1) (0) (.67)

[rain]
[hot]

[normal]
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[calm]

(1) (0) (.67)
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(0) (0) (.5)

[hot]
[humid, normal]
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(0) (1) (.33)

[hot]
[normal]

[windy, calm]
(0) (1) (.33)

Figure 8.1: The specialization paths followed using FUZZCONRI.

Since [sunny][hot] is removed from the search, the next best conjunction,[hot][calm] is expanded

further, forming the fourth layer with eight conjunctions.The best conjunction in this layer is the con-

junction [sunny][hot][calm]. This conjunction is also consistent and thus not expanded further. No

conjunction in the fourth layer covers five positive instances (like [sunny][hot] does). Thus, further

search cannot find a conjunction that outperforms[sunny][hot], and this conjunction is returned as the

best conjunction found. This lattice property was exploited by FUZZYBEXA to improve its search, and

we show in the next chapter that it can also benefit FUZZCONRI.

The five instances covered by the rule

IF outlook.sunnny ∧ temp.hot THEN plan.swimming

are instances1, 2, 9, 11 and16. These are removed from the setP , and sinceP 6= ∅ the process is

repeated and another rule is induced.

8.5 Summary

In this chapter we introduced FUZZCONRI, the fuzzy generalization of the CN2 rule induction algo-

rithm. FUZZCONRI’s description language is FuzzyCAL, which can form conjunctions containing any

set of terms in the problem space. This description languagehas no equivalent in the crisp case. We

showed that like for FuzzyAL, FuzzyCAL descriptions also form a lattice. We demonstrated the be-

haviour of the algorithm by tracing its specialization process for the Fuzzy Sport problem. Although
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they use different description languages, there are clearly many similarities between FUZZYBEXA and

FUZZCONRI—they are both fuzzy set covering algorithms. In the next chapter we introduce a general

fuzzy set covering framework, and show that FUZZYBEXA and FUZZCONRI, among others, fit within

this framework.
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CHAPTER 9

Fuzzy Specialization Models for a General

Fuzzy Set Covering Framework

9.1 Introduction

Thus far we have introduced two algorithms that apply fuzzy set covering, FUZZYBEXA and FUZZ-

CONRI. We now propose a general fuzzy set covering framework, which we call FCF (for Fuzzy Cov-

ering Framework). The framework is general in the sense thatit does not dictate the use of a specific

description language, or how the hypothesis (description)space should be searched. The framework

consists of three layers - a top layer implementing fuzzy setcovering, a middle layer implementing

several learning heuristics, and a bottom layer, called thespecialization model. A specialization model

receives a set of concept descriptions, and returns a set of refined concept descriptions to be evaluated

by the higher layers of the framework. Thus, the specialization model implements the specific search

strategy within the defined description space.

The separation and modularization of the different functions of the framework has several benefits. It

presents a unifying model for fuzzy set covering algorithms—of which crisp set covering algorithms are

special cases. It allows the characterization of differentalgorithms based on their description languages,

specialization operators, and search strategies. The modular design allows the incremental development

of new learning algorithms that follow the fuzzy set covering approach to rule learning. Furthermore,

the hierarchical architecture of the framework means that improvements to the top layers automatically

benefit all algorithms that fit into the framework.

We also propose four different specialization models for FCF. Each algorithm applies a different search

strategy, encompassing a mixture of different descriptionlanguages and search heuristics. The frame-

work allows for the fair comparison of these algorithms—thetop layers are kept constant and only the

specialization model is exchanged. The performance of the specialization models on data sets can be

compared, as well as the individual characteristics of the specialization models, such as search heuristics,

specialization operators, or search paths in the hypothesis space.

The layout of the chapter is as follows. In the following section we describe FCF, particularly the

top two layers of the framework. We then continue in the next four sections to describe several spe-

cialization models that fit within the general framework, respectively the specialization models FEM
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Table 9.1: FCF’s top layer.

PROCEDURE CoverConcepts(T , Concepts)
1 ruleset = ∅;
2 FOR each conceptci ∈ Concepts DO
3 P = XT (ci); N = T − P ;
4 REPEAT
5 bestconj =FindBestConjunction(P,N );
6 IF |XP (bestconj)| > θp AND isBetter(bestconj, getMGC(DL)) THEN
7 Add rule “IF bestconj@αa THEN concept is ci@αc” to ruleset;
8 END IF
9 P = P −XP (bestconj);
10 UNTIL (|P | ≤ θp);
11 END FOR
12 RETURNruleset;

END PROCEDURE

(Fuzzy Exclusion Model), FUZZYSEEDSEARCH, FUZZCONRI, and FUZZYPRISM. We introduce the

different characteristics of each specialization model aswe introduce the specialization model itself, and

then provide an overview and comparison of their different characteristics in Section 9.7. Section 9.8

presents an empirical comparison of the specialization models on data sets retrieved from the UCI Ma-

chine Learning Repository. In Section 9.9 we discuss partial covering, where we look at the implications

of fuzzifying the set of positive instancesP . We present final remarks and conclusions in Section 9.10.

9.2 FCF, A General Fuzzy Set Covering Framework

Thus far we introduced fuzzy set covering as a methodology for the induction of fuzzy rules, and we

proposed two algorithms, FUZZYBEXA and FUZZCONRI as examples of fuzzy set covering algorithms.

In this section we propose a general framework for algorithms following the fuzzy set covering approach,

which we call FCF. The framework will make the relationship between different covering algorithms

(both fuzzy and crisp) explicit, and will allow different covering algorithms to be characterized in terms

of their differences and similarities within this framework. FCF provides the functionality common

to all fuzzy set covering algorithms, and leaves the specificdetails, such as conjunction specialization

and related search heuristics, to the lowest layer. This allows each algorithm to only implement this

bottom layer, relying on the remainder of the framework to provide an implementation of the common

components.

Table 9.1 shows the top layer of the framework. It implementsthe general set covering approach, as

detailed in Chapter 4. It starts by initialising the rule setto empty. Then, for each concept, it divides

the training set into the sets of positive and negative instances. For each pair, rules are induced until the

number of positive instances remaining inP is equal to or less than the positive coverage thresholdθp.

The parameterθp may be zero, and is user-defined. The induction loop makes useof the second layer
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Table 9.2: FCF’s middle layer.

PROCEDURE FindBestConjunction(P,N, beamwidth)
1 bestconj =NULL;
2 specializations = {getMGC(DL)};
3 WHILE specializations 6= ∅ DO
4 specializations = GenerateSpecializations(P,N, specializations);
5 FOR each conjunctionc ∈ specializations DO
6 IF isBetter(c,bestconj) THEN
7 bestconj = c;
8 FOR each conjunctionc ∈ specializations DO
9 IF stopGrowth(c) THEN
10 specializations = specializations− c;
11 Retain inspecializations only thebeamwidth best conjunctions
12 END WHILE
13 RETURNbestconj;

END PROCEDURE

routine,FindBestConjunction, to induce a single good rule antecedent. If the induced antecedent passes

a set of criteria, a rule with this antecedent and the currentconcept as consequent is formed. Rules with

too low positive coverage (i.e.|XP (c)| ≤ θp) are not considered to be significant, thus the induced

antecedent must cover more thanθp positive instances before it can be used to form a rule. The function

isBetter(c1, c2) is a user-defined conjunction evaluation function that compares the two conjunctionsc1

andc2, and returns true only ifc1 is better thanc2. The evaluation function plays an important role in

guiding the search process—conjunctions are retained or pruned from the search based on their ranking

by the evaluation function. Since different domains may be suited to different evaluation functions,

FCF does not dictate the implementation of this function, and various possible conjunction evaluation

functions were discussed in Chapter 6.

The functiongetMGC(DL) returns the most general conjunction (mgc) in the description language used

by the current induction algorithm. In both the descriptionlanguages FuzzyAL and FuzzyCAL (see

Sections 4.3.1 and 8.2) this conjunction is equivalent toTRUE, and thus covers the whole instance

space. If the evaluation of the candidate antecedent is not better than that of themgc, it is not used to

form a rule. After the induction of each rule antecedent, thepositive instances covered by it are removed

from the set of positive training instancesP . SinceP always gets smaller, the algorithm is guaranteed

to terminate.

Table 9.2 shows FCF’s middle layer. This layer employs several heuristics to improve performance.

It implements a local beam search by maintaining the currentbest beamwidth conjunctions in the

setspecializations, as well as the current best overall conjunction in the variable bestconj. The set

specializations is initialized with themgcof the current description language. Then, while the set of

specializations is not empty, it is refined using the bottom layer routineGenerateSpecializations. The

bottom layer routine implements the specialization model specific to the induction algorithm using the

framework. Each specialization obtained by the refinement process is then compared to the current best
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Table 9.3: One implementation of the compare function.

PROCEDURE isBetter(c1, c2)
1 IF eval(c1)>eval(c2) THEN RETURN TRUE;
2 IF eval(c1)<eval(c2) THEN RETURN FALSE;
3 IF |XP (c1)| > |XP (c2)| THEN RETURN TRUE;
4 IF complexity(c1)<complexity(c2) THEN RETURN TRUE;
5 RETURN FALSE;

END PROCEDURE

conjunction, and replaces it only if it performs better. It is thus clear that the conjunction evaluation

and comparison process is an important factor in the search process. One example of such a compar-

ison routine is given in Table 9.3, whereeval(c) andcomplexity(c) are two user-defined functions for

evaluating the classification performance and the complexity of the conjunctionc, respectively. After

the best conjunction was selected from the current set of specializations, conjunctions satisfying the

stop growth prepruning criteria are removed. One implementation of the prepruning criteria is shown in

Table 9.4. It prunes conjunctions with empty negative extensions. It also prunes conjunctions that even

when evaluated optimistically still do not perform better than the current best conjunction. Optimistic

evaluation was described in Section 4.5.3. Note, both functions isBetterandstopGrowthcan be changed

and expanded by the user. The exact functionality of these functions can be controlled by a selection of

control parameters, and any additions or improvements to these functions will benefit all algorithms that

fit in the framework. When no more conjunctions remain to be specialized, the function returns the best

conjunction found during the search.

In the following section we present four different specialization models for the FCF framework. In or-

der to relate the different specialization models to one another, it is useful to compare them keeping the

following points in mind. Different specialization models(1) employ different description languages,

(2) specializes conjunctions in different ways (we will associate aspecialization operatorwith each

method to formalize its specialization method), (3) apply different search heuristics, (4) select differ-

ent specialization paths through their description lattices, and (5) search this lattice to different degrees

of thoroughness. The functionality of the specialization models need not be limited to specialization,

and one may also use the term “refinement model” instead of “specialization model,” where refinement

would also include in the general case a bottom-up search strategy. However, since all the algorithms

introduced in this chapter perform a top-down search, we use“specialization model” instead of “refine-

ment model.”

For the purpose of comparing the specialization models we will use the toy fuzzy learning problem in

Table 9.5. Three linguistic variablesA,B andclass are defined, and their respective term sets are{a, b},

{x, y, z}, and{pos, neg}. Six fuzzy instances are given, with the instances’ linguistic term memberships

sorted into term sets, and given in the order of declaration.
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Table 9.4: One implementation of the stop growth function.

PROCEDURE stopGrowth(c, bestconj)
1 IFXN (c) = ∅ THEN RETURN TRUE;
2 IF evalOptimistic(c) < eval(bestconj) THEN RETURN TRUE;
3 RETURN FALSE;

END PROCEDURE

Table 9.5: A small fuzzy learning problem.

@relation smallfuzzyproblem
@attribute A {a, b}
@attribute B {x, y, z}
@attribute class {pos, neg}
@data

(0.7 0.3), (0.6 0.2 0.4), (0.3 0.7) ;1
(0.8 0.2), (0.6 0.4 0.1), (0.4 0.6) ;2
(0.7 0.5), (0.1 0.4 0.6), (0.9 0.1) ;3
(0.2 0.7), (0.1 0.1 0.9), (0.1 0.9) ;4
(0.3 0.7), (0.3 0.7 0.6), (0.8 0.2) ;5
(0.6 0.5), (0.3 0.7 0.2), (0.6 0.4) ;6

9.3 Fuzzy Exclusion Model

The Fuzzy Exclusion Model (FEM) is the specialization modelemployed by FUZZYBEXA [Cloete and

van Zyl, 2006]. It uses FuzzyAL as description language, andthus allows internally disjunctive expres-

sions. Conjunction specialization entails the exclusion of a single linguistic term from the conjunction.

Thus, the specialization operator for FEM isexclude. Table 9.6 shows the FEM algorithm. FUZZY-

BEXA ’s specialization model was discussed in detail in Section 4.6, including the implementation of

“remove uninteresting terms” and the efficient computationof the positive and negative extensions of

specializations.

For the sake of comparison with the other specialization models, we demonstrate FEM’s specialization

behaviour by considering the specializations generated for the toy problem in Table 9.5. We set the beam

width to two,αc = 0.7, andαa = 0.5. The set of positive instances is thusP = {3, 5, 6}, and the set of

negative instances isN = T−P = {1, 2, 4}, where we denote instances by their indices. The maximum

memberships of all instancesi in the training setT to both linguistic variablesA andB are greater than

0.5, and thus the alpha complement can be ignored for this example, since∀(i ∈ T )(µA.ᾱ(i) = 0 and

µB.ᾱ(i) = 0). Figure 9.1 shows the lattice of FuzzyAL conjunctions. The sizes of the positive and

negative extensions of a conjunction is shown as the first andsecond value in parentheses in each node

in the figure, respectively. The third value in parentheses is the evaluation obtained by the respective

conjunction. The conjunctions were evaluated according tothe accuracy evaluation function in Eq (6.7).
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Table 9.6: The Fuzzy Exclusion Model.

INPUT: sets of positive instancesP , negative instancesN ,
and conjunctions to specializeC

OUTPUT: set of specializationsS
S = ∅
FOR each conjunctionc ∈ C DO

remove uninteresting terms fromc.usable
FOR each termL ∈ c.usable DO
cnew = specialize (c)
IF cnew ∈ S THEN CONTINUE
cnew.XP = computeXP (cnew)
IF cnew.XP = ∅ THEN CONTINUE
cnew.XN = computeXN (cnew)
S = S ∪ {cnew}

END FOR
END FOR
RETURNS

During the first iteration,GenerateSpecializationsreceives only themgc, i.e. the top element in the

lattice, to specialize. The circled nodes indicate the conjunctions generated by FEM, whereas the bold

nodes show thebeamwidth best conjunctions in each layer, i.e. those chosen for further specialization.

The paths followed during the search are indicated by bold edges. During the first iteration, it is possible

to exclude any of the five linguistic terms, and thus five specializations are formed, as shown in the

second layer of the graph. The best two conjunctions in the second layer are[b][x, y, z] and[a, b][x, y].

By either excludingz from the first conjunction, ora from the latter conjunction, the specialization

[b][x, y] is obtained. This conjunction covers all positive instances, and none of the negative instances,

and is the best conjunction found by FEM. It is a member ofCM , the set of most-general consistent

conjunctions. The middle layer will halt the search at this time, since no other candidate conjunction or

their specializations can obtain a better evaluation than this conjunction.

The search process is initialized with themgc of the respective description languages, in this case

FuzzyAL. Starting with themgc, FEM specializes by excluding single linguistic terms at a time, gen-

eratingall (useful) specializations. Thus, FEM performs a systematic, general-to-specific search of the

lattice of FuzzyAL descriptions. Besides the search efficiency measures which can only speed up the

search but not influence its outcome, FEM employs no heuristics for selecting a set of terms to use

for specialization while ignoring the remainder of useableterms. Thus it performs the widest possible

search for the given description language and beam width.
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Figure 9.1: The lattice of FuzzyAL descriptions for the toy problem in Table 9.5.

9.4 FUZZY SEEDSEARCH

The next specialization model borrows its creative inspiration from the AQ family of algorithms [Michal-

ski, 1969; Michalski et al., 1986a]. Like FEM, FUZZYSEEDSEARCH also uses FuzzyAL as description

language, and therefore its specialization operator is also exclude. If the description set for a particular

learning problem is very large, creating every possible specialization of a conjunction may have large

computational overhead. Thus, instead of specializing conjunctions by excluding all possible linguistic

terms, like FEM does, FUZZYSEEDSEARCH only excludes terms inTE, the set of terms to exclude.

This set is computed by a subroutine call. FUZZYSEEDSEARCH’s specialization procedure is shown in

Table 9.7.

The subroutineSelectTermsToExcludefunctions as follows. First, a positive seed instancesp and a

negative seed instancesn covered by a parent conjunctionc ∈ Conjuncts are selected, that is,sp ∈

XP (c) andsn ∈ XN (c). Note, if the seeds were not covered by any conjunction, thenthe specialization

process will not generate any new conjunctions due to the efficiency criteria. The seed selection process

is implemented by the routinesSelectPositiveSeedand SelectNegativeSeed, and can be user-defined.

We will discuss different seed selection strategies in the following section. Each linguistic term in the

description set of themgc is tested to determine if its positive extensiondoes notcontain the positive

seed and its negative extensiondoescontain the negative seed. If this is the case the linguisticterm is
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Table 9.7: The FUZZYSEEDSEARCH specialization model.

INPUT: sets of positive instancesP , negative instancesN ,
and conjunctions to specializeC

OUTPUT: set of specializationsS
S = ∅
TE = SelectTermsToExclude (Conjunctions, P,N )
FOR each conjunctionc ∈ C DO

remove uninteresting terms fromc.usable
FOR each termL ∈ TE DO
cnew = specialize (c)
IF cnew ∈ S THEN CONTINUE
cnew.XP = computeXP (cnew)
IF cnew.XP = ∅ THEN CONTINUE
cnew.XN = computeXN (cnew)
S = S ∪ {cnew}

END FOR
END FOR
RETURNS

SelectTermsToExclude(Conjunctions, P,N ):
TE = ∅
sp = SelectPositiveSeed(

⋃

XP (ci)); // ci ∈ Conjunctions
sn = SelectNegativeSeed(

⋃

XN (ci)); // ci ∈ Conjunctions
FOR each termL ∈ D(mgc) DO

IF (sn ∈ XN (L)) AND (sp 6∈ XP (L)) THEN
TE = TE ∪ {L}

RETURNTE

added to the setTE of linguistic terms to exclude from the search. The reasoning is that if this term

is excluded from a concept description, the negative seed will be removed from its negative extension,

while the positive seed will remain in its positive extension. Thus, all terms that cover the negative seed

but not the positive seed are found.

The terms fromTE are now used to specialize the conjunctions inC. Each conjunctionc is specialized

to form all descendantscnewi such thatD(cnewi) = D(c) − a, wherea ∈ TE. Thus, we exclude

a term fromc that before only contributed to the covering of the negativeseed. This allows the new

conjunction to possibly obtain a better evaluation. If the positive and negative seeds were representative

of distributions within the training set, many other negatives may now be uncovered. The remainder of

the algorithm is exactly the same as FEM, including all efficiency measures.

Figure 9.1 shows an example run for a beam width of two for the toy problem in Table 9.5. In the

first iteration, the conjunction to specialize is themgc, which contains all linguistic terms. Letsp be

instance 5 andsn be instance 1 during this iteration. Then the set of linguistic terms differentiating the

two instances isTE= {a, b, x, y, z}. Only the positive extensions of the termsa andx do not contain

sp and containsn. Thus, only two specializations of themgcare possible. The two specializations and
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the paths from themgcto them are indicated by dashed nodes and edges in Figure 9.1.Since the beam

width is two, both conjunctions are specialized further in the next iteration. Suppose next that instances

6 and 4 were selected as the positive and negative seeds, respectively. The terms that differentiate the

seeds are{a, b, y, z}. Of these, the positive extensions of{b, z} do not containsp, and their negative

extensions do containsn. Thus, the conjunctions[b][x, y, z] and[a, b][y, z] are specialized by excluding

b andz. Note, the dotted node[a][y, z] is generated by FUZZYSEEDSEARCH, but not by FEM. Finally,

FUZZYSEEDSEARCH finds the same conjunction as FEM.

9.4.1 Seed Selection Methods

The positive and negative seeds clearly play an important role in guiding FUZZYSEEDSEARCH’s refine-

ment process. FUZZYSEEDSEARCH is designed in such a way that the seed selection method can easily

be altered. The method of selecting the positive and negative seeds can be changed by changing the

implementation ofSelectPositiveSeedandSelectNegativeSeed, respectively. One implementation is to

simply select a random instance from the set.

Instead of selecting a random instance, FUZZYSEEDSEARCH can also select the instance with the high-

est membership to any conjunction inConjunctions. However, it is often the case that a data set also

contains linguistic variables that have linguistic terms with crisp membership values, e.g. the sex of

a patient. Thus, if the instance with the highest membershipis always picked, the seed selection will

be biased towards selecting instances from which no crisp terms were excluded since the crisp terms

contribute most to the membership degree. Another consideration is that the positive and negative seeds

with the highest confidence may not differ much, and therefore the setTermsToExcludecould be empty

(i.e. no term is such that it covers the negative seed and not the positive seed). This may be solved by

reverting to the random seed selection ifTermsToExclude= ∅ for the current iteration ofGenerateSpe-

cializations.

The algorithm can also be adapted not to use a positive seed, and to simply exclude those terms that

contain the negative seed in their negative extensions. Theargument for using the positive seed is that

we want to cover as many positive instances as possible. Thus, if we can uncover the negative instance

in some other way (i.e. by excluding another term) and still cover the positive instance, this route is

preferred. Another approach is to select those seed instances that differ in most terms. However, this

approach may have too much computational overhead, and the main goal of FUZZYSEEDSEARCH is to

reduce this overhead.

9.4.2 FUZZY SEEDSEARCH and FAQR

Wang et al. [2003] proposed a fuzzy learning algorithm, FAQR, which is also based on the AQR crisp

inductive learning strategy. Since FUZZYSEEDSEARCH and FAQR both take ideas from AQR, we

briefly review the FAQR algorithm (for a detailed review of FAQR refer to Section 2.3) and then discuss

the similarities and differences between FAQR and FUZZYSEEDSEARCH.
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FAQR consists of two layers. The top layer starts with an empty rule R, and a set of positive and

negative fuzzy instances,P andN respectively. The following steps are then iterated until the rule

covers all positive instances. The instance that has the highest concept membership and is notα-covered

byR is selected as positive seed. An instancei isα-covered ifµR(i) ≥ α. The functionGenComplexis

used to generate a set of candidate conjunctions thatα-cover the positive seed and no negative instances.

The best conjunctionCbest is then added to the rule by formingR = R ∨ Cbest. The best conjunction

has the highest evaluationE(c),

E(c) =µinclude(c) ρ µexclude(c) (9.1)

µinclude(c) =

∑

i∈P (µP (i) τ µc(i))
∑

i∈P µP (i)
(9.2)

µexclude(c) =

∑

i∈N (µN (i) τ (1 − µN (i))
∑

i∈N µN (i)
(9.3)

whereρ is an addition or a union operator, such as maximum, andτ is a t-norm operator, such as

minimum. WhenR covers all positive instances it is returned as result.

The procedureGenComplexgenerates a set of candidate conjunctions. It initialises asetCset of candi-

date solutions with the set of all single term descriptions,such as[Temperature = hot] thatα-cover

the positive seed. It then repeats the following procedure while any description inCset α-covers a neg-

ative instance. The conjunctionc ∈ Cset with the smallest valueµexclude(c) is selected and then the

negative instance inXN (c) that has the highest membership toN is chosen as the negative seed. All

conjunctions inCset are then refined not toα-cover the negative seed. This refinement process is per-

formed as follows. LetS be the set of terms thatα-cover the positive seed and not the negative seed.

Then the newCset is obtained by forming conjunctions of descriptions in the old Cset with terms inS.

All descriptions in the newCset that are subsumed by other descriptions are removed, and then the set

Cset is pruned by removing the worst complexes until its size is less than a specified threshold. Once all

complexes inCset cover no negative instances,Cset is returned as result.

Clearly FUZZYSEEDSEARCH and FAQR have many similarities. Both are inductive learning strategies,

and both induce incomplete fuzzy rules. An incomplete fuzzyrule is a rule of which the antecedent does

not necessarily contain all linguistic terms. FAQR and FUZZYSEEDSEARCH share the heuristic to use

positive and negative seeds to guide the search for rule descriptions. Both methods employ a generate-

and-test strategy of generating a set of candidate rule descriptions and then selecting the best based

on an evaluation function. Both methods also employ a beam search. However, there are also many

fundamental differences between the two algorithms’ search strategies, which we enumerate shortly.

(1) FAQRdoes notimplement the fuzzy set covering methodology. Set coveringalgorithms iteratively

induce rules that cover the set of positive instances, but not the set of negative instances, and after the

induction of each individual rule, the positive instances covered by the rule are removed from the training

set while the negative instances are retained (see Section 3.2 and Def. 3.2.1, Point 1). FAQR does not

remove covered instances from the training set, but keeps adding more rules until all positive instances

are covered. However, at each step FAQR will cover at least one positive instance that was not covered

before. FUZZYSEEDSEARCH, on the other hand, fits with in the FCF framework, and thus implements
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the fuzzy set covering methodology. At each rule induction step the positive instances covered by the

induced rule are removed. Thus, FUZZYSEEDSEARCH follows a separate-and-conquer strategy, and

each rule is biased to cover as many positive instances in theset of “still not covered” positive instances.

FAQR does not have this bias. FAQR will thus prefer rule one over rule two if rule one covers more

positive instances than rule two, regardless of whether thepositive instances are already covered by

other rules. For example, if rule one covers 20 positive instances of which one is the positive seed and

the others are already covered, and rule two covers 15 positive instances of which one is the positive

seed and the others were not covered before, FAQR will preferrule one. This can result in much more

complex rule sets, containing many rules that differ in onlya few terms and covers overlapping sets of

instances.

(2) FAQR’s description language only allows conjunctions of linguistic terms, i.e. it does not allow

internal disjunction. In contrast, FUZZYSEEDSEARCH induces a rule set where the antecedent of each

rule is a description in FuzzyAL.

(3) FUZZYSEEDSEARCH usesexclusionas specialization operator whereas FAQR usesappendas spe-

cialization operator. This has important implications. FUZZYSEEDSEARCH performs a systematic

search from top to bottom in its description lattice. The toplayer contains themgc that coversall

instances. By excluding terms from descriptions FUZZYSEEDSEARCH restricts the descriptions more

and more such that they cover fewer and fewer instances. The search is then guided to cover progres-

sively fewer negative instances while still covering as many positive instances as possible. FAQR starts

its search with a set of conjunctions, each consisting of only one term, such that the conjunctions cover

at least one positive instance. The conjunctions are then restricted to cover fewer and fewer instances

by adding more and more terms to them. The search is guided to result in a set of conjunctions that

cover none of the negative instances while still covering the positive seeds. Thus, during the search pro-

cess FUZZYSEEDSEARCH is biased toward high positive coverage and low negative coverage, whereas

FAQR is guided only toward low negative coverage.

(4) Due to the difference in FUZZYSEEDSEARCH and FAQR’s specialization operators they choose

seeds in different ways. The terms chosen for exclusion by FUZZYSEEDSEARCH should cover the

negative seed and not the positive seed. After the exclusionof a term, the specialization will still cover

the positive seed and may now not cover the negative seed any longer. It will (not) cover the negative

seed if (no more) terms that have the negative seed in their extensions remain in the internal disjunction.

The terms chosen by FAQR to add to the current conjunctions should cover the positive seed and not

the negative seed. Thus, the specializations still cover the positive seed, but will definitely not cover the

negative seed.

(5) FUZZYSEEDSEARCH as specialization model fits in the FCF framework. As such, FUZZYSEED-

SEARCH inherits all the beneficial characteristics of FCF’s top layers. Some of the more important

inherited characteristics are search efficiency measures,early stopping and rule pre-pruning criteria,

beam search, and an easily interchangeable description evaluation function. We showed that the evalua-

tion function is very important for the learning process, and it is also very important to note that different

evaluation functions are suited to different learning problems. The Accuracy evaluation function, for ex-
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ample, is well suited to deal with noisy data and incomplete domain knowledge, but is not the optimal

choice when dealing with the problem of small disjuncts. TheFuzzy Laplace andls-Content evaluation

functions, on the other hand, are better positioned to deal with the problem of small disjuncts. However,

they do not perform as well as the Accuracy function in the presence of noise or incomplete domain

knowledge, especially with respect to the size of the rule sets induced.

(6) FAQR and FUZZYSEEDSEARCH both perform a beam search. However, FUZZYSEEDSEARCH

performs a systematic top-to-bottom general-to-specific search of the description lattice, moving down

one layer at a time. During each step the next layer of the description lattice is considered, and up to

a user adjustable number of conjunctions in this layer are generated and tested. The best conjunction

found during the whole search is stored in the parameterbestconj. FAQR maintains a set of current

conjunctions which may be specialized. This set may grow up to a user adjustable size—if it grows

bigger than this size, the worst conjunctions are removed. If more specialized conjunctions are worse

than more general conjunctions these are removed from the set, and are in fact again specialized during

the next iteration of the search process. Thus, FAQR does notin general perform a systematic top-down

search, and may again jump back up to more general conjunctions. The beam search is also not done in

a systematic way, and may include conjunctions at differentlevels of generality.

(7) FAQR has two pruning steps. Conjunctions that are subsumed by other conjunctions and all con-

junctions worse than the user defined number of best conjunctions are pruned from the search. FUZZY-

SEEDSEARCH also employs a fixed beam width, but also has further pruning criteria. Since a general-

to-specific search is performed, FUZZYBEXA can determine whether further specialization can improve

a conjunction to such a degree that it can replace the currentbest conjunction. If this is not the case,

the conjunction is removed from the search. For example, if the best conjunction found thus far covers

20 positive and no negative instances, all conjunctions that cover less than 20 positive instances can be

removed from the search process. Conjunctions are also not overspecialised. During specialization a

conjunction is not simply specialized by excluding from it all the terms that cover the negative seed and

not the positive seed. If excluding a term has no benefit, it isnot excluded, resulting in FUZZYSEED-

SEARCH’s bias towards maximal generality and maximal classification accuracy. Duplicate specializa-

tions are removed from the search for efficiency reasons.

(8) The final difference we discuss here is not about the search method but about the semantic interpre-

tation of a rule. The interpretation of Wanget alstates that the membership degree of an instance to the

rule consequent can be set equal to the membership degree of the instance to the rule antecedent. Thus,

the degree to which an instance matches the antecedent can beused to predict the class membership of

the instance. Our interpretation differs in that we take themembership degree of an instance to a rule

as thecertaintyor confidencethat the rule fires. The certainty or degree to which a rule fires does not

predict the membership of the instance to the rule consequent, but specifies that the instance membership

to the rule consequent lies within a certain range—the range[αc, 1]. If αc was not set, then the instance

membership to the concept is simply greater than zero. For example, ifαc = 0.8 and we have the rule

IF X = x1 ∨ x2 THENY , and an instancei matches the antecedent to degree0.75, our interpretation is

that we are rather certain that the rule fires—we are certain to degree0.75 that the instance belongs to the
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Table 9.8: The FUZZCONRI specialization model.

INPUT: sets of positive instancesP , negative instancesN ,
and conjunctions to specializeC

OUTPUT: set of specializationsS
S = ∅
FOR each conjunctionc ∈ C DO

remove uninteresting terms fromc.usable
FOR each termL ∈ c.usable DO
cnew = specialize (c)
IF cnew ∈ S THEN CONTINUE
cnew.XP = computeXP (cnew)
IF cnew.XP = ∅ THEN CONTINUE
cnew.XN = computeXN (cnew)
S = S ∪ {cnew}

END FOR
END FOR
RETURNS

concept with membership in the range[0.8, 1]. We do not believe that the membership of an instance to

the antecedent can be used to predict the membership of the instance to the concept with an acceptable

degree of accuracy without any form of (likely non-linear) transformation of the input domain to the

output domain, e.g. like that performed by a neural network.

9.5 FUZZ CONRI as Specialization Model

FUZZCONRI is an acronym for Fuzzy Conjunctive Rule Inducer, and was the main subject of Chapter 8.

Two basic factors distinguish the algorithms FUZZCONRI and FUZZYBEXA, their respective descrip-

tion languages and specialization operators. FUZZCONRI employs FuzzyCAL as description language

and performs a general-to-specific search by usingappendas it specialization operator. In the remainder

of this section the term FUZZCONRI is used to refer to the specialization model implementingFUZZ-

CONRI’s conjunction specialization strategy.

FUZZCONRI follows the same strategy as FEM, and thus the same algorithm as in Table 9.6 can be used,

but with different operations associated with the different subroutines. FUZZCONRI also associates a

setusablewith each conjunction. This set contains the set of usable linguistic terms, i.e. the set of terms

that may still be used by the specialization operator. Theusable set of themgccontains all terms—the

same as for FEM. Note however, for FuzzyALD(mgc) contains all terms andmgc.usable = D(mgc),

whileD(mgc) = ∅ in FuzzyCAL.

The measure removing “uninteresting” terms from each conjunction’s usable set differs between FEM

and FUZZCONRI. FUZZCONRI’s measure consists of two tests, an efficiency measure anda pre-pruning

step. The efficiency measure tests whether the intersectionof the positive extension of the conjunctionc
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with the extension of a usable linguistic termL is empty, thus ifXP (c)∩XP (L) = ∅. If the intersection

is empty, appending this linguistic term will create a new conjunction with an empty positive extension,

which creates unnecessary work. By removing these linguistic terms from the conjunction’s usable set,

such conjunctions are never created. The second test prevents over-specialisation. If the union of the

negative extensions of the conjunctionc and the term to appendL is equal to the negative extension of

the term, i.e. ifXN (c) ∪XN (L) = XN (L), then appending the term will not improve the performance

of the conjunction. Since the append operator specializes conjunctions, no new (previously not covered)

instances can be covered, i.e. positive instances can only become uncovered. However, all the negative

instances covered by the conjunction are also covered by thelinguistic term, and therefore no negatives

will become uncovered. Since this overspecialisation is undesirable, we do not create such conjunctions.

Specialization proceeds via the specialization operatorappend, i.e. cnew = c ∧ L whereL ∈ c.usable.

The computation of the positive and negative extension of a specialization can of course be implemented

by considering the training set and matching each instance with the new conjunction. The instances that

contain the concept belong to the positive extension of the specialization and those that do not belong

to its negative extension. The calculation of the positive and negative extension can be done much more

efficiently by making use of the information of the parent’s extensions. The positive extension of the

specialization can be efficiently computed by intersectionof the positive extensions ofL and the parent

conjunction, i.e.XP (cnew) = XP (c) ∩ XP (L). This computation does not require any matching,

which is the computationally expensive part of this simplistic method. The negative extension follows

dually. The test for an empty positive extension ofcnew as in FEM is not required in FUZZCONRI,

since the efficiency test prevents the creation of such conjunctions.

Figure 9.2 shows the FuzzyCAL description lattice for the problem in Table 9.5, where we have set

αc = 0.6 andαa = 0.5. The nodes contain the same information as the nodes in Figure 9.1. The

top element is themgc, and can be expanded into five second layer nodes. The candidate antecedents

generated by FUZZCONRI for beam search with beam width two are marked by circled nodes, and the

bold circled nodes are the best candidate antecedents at each specialization step. In the second layer, the

conjunctions[y] and[b] obtained the highest (and equal) evaluation scores. At thispoint any one of the

two conjunctions could be picked at random if no beam search was performed. The solid bold edges

below [y] and[b] show the paths that are picked forbeamwidth = 2. The best conjunction returned is

[y, z], i.e. the expressionB = y∧z. This conjunction covers all positive instances and no negatives. The

middle layer halts the search upon finding this conjunction,since it is certain that there exists no other

conjunction that can outperform it. For example, the conjunction [b][y, z], which is a specialization of

[y, z] and has the same evaluation as[y, z], is never generated.

9.6 FUZZY PRISM

PRISM, a classical set covering algorithm for learning modular rules, was first introduced by Cendrowska

[Cendrowska, 1987]. Wang et al. [1999] proposed a fuzzy version of this algorithm based on the fuzzy

information gain, and the algorithm is shown in Table 9.9. Itproceeds by forming an initially empty
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Figure 9.2: The lattice of FuzzyCAL descriptions for the toy problem in Table 9.5.

conjunction, which is semantically equivalent toTRUE. It then computes the fuzzy information gain

I(δk|si) for the conceptδk and each linguistic termsi. The fuzzy information gain is calculated as,

I(δk|si) = log2(
H(δk|si)

H(δk)
) (9.4)

whereH(δk) andH(δk|si) are the antecedent and consequent fuzzy information, respectively, and are

defined as,

H(δk|si) =

∑n
j=1 µδk

(ej)τµsi
(ej)

∑n
j=1 µsi

(ej)
(9.5)

and

H(δk) =
1

n

n
∑

j=1

µδk
(ej) (9.6)

whereτ is a t-norm operator (like minimum),n the size of the training set, andµδk
(ej) the membership

degree to the conceptδk of ej , the jth instance in the training set. After calculating the information

gain for all linguistic terms, the term leading to maximum information gain is appended to the current

conjunctionC. The fuzzy strength of the rule is then computed using the fuzzy Bayes function,

B(δk|C) =

∑n
j=1 µC(ej)τµδk

(ej)
∑n

j=1 µC(ej)
(9.7)
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Table 9.9: The fuzzy inductive algorithm for learning modular rules.
1 Initiate a null complexC
2 Measure the fuzzy information gain,I(δk|si), of the classificationδk for each

possible linguistic termsi

3 Choose the linguistic termsi for which I(δk|si) is maximum
4 Addsi toC, C = C ∧ si, and calculateB(δk|C)
5 If B(δk|C) ≥ β, go to step 6, otherwise create a new training set in which each

instance is covered to degreeα by the termsi, and go to step 2.
6 Form the rule “IFC THEN δk”
7 Remove the instances covered to degreeα by the rule from the original training set.
8 Repeat steps 1 to 7 until all instances belonging to the class δk in the original

training set have been removed.

If the rule evaluation is larger than a predefined thresholdβ, a new rule is formed, and all instances

covered by the rule are removed from the original training set. If uncovered instances of classδk remain

in the training set, the procedure is repeated to induce the next rule. If the rule evaluation is below the

thresholdβ, the instances in the current training set covered by the linguistic term is used to form a new

training set, and the algorithm continues to add more linguistic terms to the conjunction.

We now propose a novel specialization model for FCF, called FUZZYPRISM. FUZZYPRISM makes

use of the same information theoretic heuristic as the algorithm by Wanget al (Table 9.9). However,

FUZZYPRISM is a specialization model within FCF, and thus employsthe fuzzy set covering rule

induction methodology. FUZZYPRISM’s description language is FuzzyCAL, its specialization operator

is thusappend. Contrary to Wang’s algorithm, FCF decouples conjunction refinement from conjunction

evaluation and other learning heuristics.

Table 9.10 shows the FUZZYPRISM specialization model. Clearly, FUZZYPRISM and FUZZCONRI

are strongly related. However, instead of generating all possible (useful) specializations, FUZZYPRISM

uses the fuzzy information as a heuristic to select the setTE of linguistic terms to append. The term

selection routine,SelectTermsToExclude, functions as follows. For each remaining linguistic termL

in the setc.usable the fuzzy information gain is computed. To allow a beam search of the hypothesis

space, FUZZYPRISM allows up to abeamwidth number of specializations inTE. The remainder of

the algorithm is the same as FUZZCONRI.

The early stopping criterion proposed by Wanget al amounts to search until the evaluation function

reaches a predefined threshold. It may be difficult to judge what threshold to use in general, and the

authors gave no method to determine its value. FCF can employseveral stopping criteria, of which

search until reaching some threshold may serve as one example (we discussed several others). More

importantly, Wang’s algorithmdoes notapply the fuzzy set covering methodology, sinceall instances

covered by a rule are removed after its addition to the rule set, while the set covering approach dictates

that after the induction of each individual rule, the positive instances covered by the rule are removed

from the training set, but the negative instances retained (see Section 3.2 and Def 3.2.1). In contrast, FCF

benefits from the separate-and-conquer search of the fuzzy set covering methodology, since the retention

of all negative instances in the training set means that moreinstances are available as counter examples
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Table 9.10:The FUZZYPRISM specialization model.
INPUT: sets of positive instancesP , negative instancesN ,

and conjunctions to specializeC
OUTPUT: set of specializationsS
S = ∅
FOR each conjunctionc ∈ C DO

remove uninteresting terms fromc.usable
TE = SelectTermsToExclude (c)
FOR each termL ∈ TE DO
cnew = specialize (c)
IF cnew ∈ S THEN CONTINUE
cnew.XP = computeXP (cnew)
cnew.XN = computeXN (cnew)
S = S ∪ {cnew}

END FOR
END FOR
RETURNS

SelectTermsToExclude(c):
FOR each termL ∈ c.usable DO

Compute the information gainI(concept|L)
RETURN set containingbeamwidth best terms

during the induction of subsequent rules, thereby improving the accuracy of these rules. However, of all

the algorithms surveyed, Wang’s algorithm is the most related to our work.

In Figure 9.2, the path followed by FUZZYPRISM for greedy search is indicated by dashed lines. In the

first iteration the linguistic termy had the highest andb the second highest information gain. For greedy

search, FUZZYPRISM pickedy to specialize further, which was a good choice. For the conjunction

[y], the linguistic termb had the highest andz the second highest information gain. The evaluation of

conjunction[][y, z] is worse than that of[b][y], and thus with greedy search FUZZYPRISM only selects

the second best conjunction in the third layer of the lattice. In the next step the heuristic seemed to

have failed. FUZZYPRISM selected to appenda to [b][y] as opposed to appendingz. Since[b][y] has

a higher evaluation than[a, b][y] the best conjunction returned for greedy search will be[b][y]. This

conjunction covers all positive instances, but also a negative instance. However, if a beam search of

width two is performed, FUZZYPRISM follows the same paths as FUZZCONRI, i.e. it generates all

the bold nodes. It therefore also finds[y, z], the best conjunction in the entire lattice. For this search

(beamwidth = 2) FUZZYPRISM thus only generated five conjunctions as opposed to thethirteen

conjunctions that FUZZCONRI generated. Since at most abeamwidth number of conjunctions are

specialized in at mostbeamwidth number of ways, FUZZYPRISM generates at mostbeamwidth2

specializations per layer of the lattice.
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9.7 Discussion

In the previous sections we presented four specialization models. Each specialization model has its

own strengths and weaknesses, and the problem domain will dictate which specialization model is best

suited. The first and most important distinguishing characteristic of the specialization models is their re-

spective description languages. FUZZYSEEDSEARCH and FEM use FuzzyAL as description language,

and FUZZYPRISM and FUZZCONRI use FuzzyCAL. The intersection of semantically equivalent de-

scriptions in FuzzyAL and FuzzyCAL is not empty, but at the same time relatively small compared to

the size of the lattice. There are many antecedents (and thusrules) that can be formed in FuzzyAL but

cannot be formed in FuzzyCAL, and vice versa. FuzzyAL descriptions can contain conjuncts such as

temp = mild ∨ hot, whereas FuzzyCAL can contain conjuncts such astemp = mild ∧ hot. For

example, for the toy problem withαc = 0.6 there does not exist a conjunction in FuzzyAL that covers

all positive and no negative instances, but the inverse is also true forαc = 0.7. Thus, there are some

problems that are better described by FuzzyCAL than FuzzyALand vice versa.

A most generalconjunctin FuzzyAL is a conjunct from which no linguistic terms were excluded, and

a most general conjunct in FuzzyCAL is a conjunct to which no terms were appended (i.e.[ ]). Most

general conjuncts in both FuzzyCAL and FuzzyAL cover the entire instance space. A most specific

conjunct in FuzzyAL is a conjunct from which the complete term set was excluded, and is equivalent

to FALSE. A most specific conjunction in FuzzyCAL is a conjunct to which the complete term set was

appended, and isnot necessarilyequivalent toFALSE. Consider for example instance five in Table 9.5

and the conjunct[B = x ∧ B = y ∧ B = z]. If αa < 0.3 the conjunct, although being most specific,

covers the instance. Such conjunctions may therefore stillbe generated. If a general to specific search is

desired, the specialization operator is dependent on the description language, e.g. FuzzyCAL descrip-

tions can only be specialized usingappend, while FuzzyAL descriptions can only be specialized using

exclude. The specialization model may, however, use the specialization operator in different ways, e.g.

a specialization model may choose to exclude all but one termfrom a conjunct in a single specialization

step.

FuzzyAL describes inherently more general conditions thanFuzzyCAL. The second layer of the Fuzzy-

CAL description lattice contains all descriptions with a single term appended. The semantically equiv-

alent descriptions in FuzzyAL is located in the layer just above the most specific conjunctionFALSE.

Some conjunctions in the third and lower layers in FuzzyCAL describe conditions that are more specific

than any conjunction in FuzzyAL (except forFALSE), since these conjunctions require that the mem-

bership functions overlap. The rate at which instances are excluded during search is also much higher

for FuzzyCAL than for FuzzyAL. By moving from themgcto the next layer, FuzzyCAL requires that

an instance belongs to a specific linguistic term, while FuzzyAL allows the instance to belong to any

linguistic term remaining in the conjunct. Clearly, in general many more instances will be matched by

conjunctions in the second layer of the FuzzyAL lattice thanin the FuzzyCAL lattice. The exclusion rate

is accelerated even more as more than one term from the same variable is appended to FuzzyCAL con-

junctions. In this case, only instances that fall in the region of overlapping membership functions remain

covered. Thus, although more descriptions from the FuzzyCAL lattice could potentially be generated,
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Table 9.11:Specialization model properties.

Complete Search Heuristic Search

FuzzyAL FEM FUZZYSEEDSEARCH

FuzzyCAL FUZZCONRI FUZZYPRISM

in practice less descriptions in FuzzyCAL are generated. The conjunctive expressions quickly restrict

the extensions such that only a few linguistic terms from a single term set are typically appended. This

of course will depend entirely on the membership functions.If there is no overlap between membership

functions, only a single linguistic term per term set will beappended to conjunctions. Thus, one indi-

cation of which description language to use is the amount of overlap between membership functions.

If there is no overlap (or very little) between membership functions, conjunctions with non-empty ex-

tensions will have semantically equivalent expressions inFuzzyAL, and FuzzyAL should be preferred

to enlarge the hypothesis space. In some cases however interesting regions may be exactly those where

membership functions overlap. These conditions canonly be described with FuzzyCAL, and an algo-

rithm using FuzzyCAL should thus be used in such cases.

The description lattice provides a visual method of comparison between different specialization models.

By marking the specialization paths followed through the description lattice the specific behaviour of

the specialization model becomes clear. FEM, for example, clearly performs the most comprehensive

search of the lattice of FuzzyAL conjunction descriptions.Depending on the size of the beam width, it

expands all conjunctions for which the possibility to improve exists. It is therefore more likely to find

good descriptions than an algorithm which expands only a selection of conjunctions. FEM is also guar-

anteed to find the most general consistent FuzzyAL conjunctions. FUZZYSEEDSEARCH and FEM are

clearly related. However, whereas FEM specializes using all terms inc.usable, FUZZYSEEDSEARCH

specializes using only a subset of the terms, employing a heuristic to guide its search. The heuristic

entails comparing seed positive and negative instances andselecting terms that differentiate them. The

quality of the outcome is dependent on the validity of the heuristic. While FEM may seem to require

much search, FCF makes use of the partial order to identify conjunctions that cannot be refined to form

specializations that can outperform the best conjunction,and therefore performs no unnecessary search.

Even with a moderate beam width FEM’s search requirement is seldom prohibitive.

FUZZCONRI and FUZZYPRISM both use FuzzyCAL as description language. FUZZCONRI performs

a comprehensive search of the hypothesis space, and generates all useful specializations. FUZZYPRISM

on the other hand use a heuristic to decide which specializations to generate. Using the fuzzy information

gain, it ranks linguistic terms and uses the beam width best linguistic terms to specialize a conjunction.

FUZZCONRI appends a single linguistic term per specialization stepto all conjunctions, and is therefore

guaranteed to find most general consistent conjunctions. FUZZYPRISM only appends linguistic terms

to selected conjunctions, and is therefore not guaranteed to find most general consistent solutions. In the

example it was shown that with a beam width of one, FUZZCONRI generated many more conjunctions,

but found the best result, while FUZZYPRISM did not find an optimum result. With a beam width of

two FUZZYPRISM still generated very few conjunctions, and also foundthe optimum result.
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It is clear that FEM and FUZZCONRI are counterparts of each other, performing a comprehensive sys-

tematic search of the hypothesis space, while FUZZYSEEDSEARCH and FUZZYPRISM both use heuris-

tics to guide their search. FUZZCONRI and FUZZYPRISM employ the same language bias, while

FUZZCONRI and FEM employ the same search bias, and FEM and FUZZYSEEDSEARCH employ the

same language bias, while FUZZYSEEDSEARCH and FUZZYPRISM both perform a heuristic search. If

search time is not a limitation, and an infinite beam search isfeasible, FEM and FUZZCONRI are both

guaranteed to find the optimum solution (according to the evaluation function) at each rule induction

step, while FUZZYSEEDSEARCH and FUZZYPRISM are not. In practice, a large beam search, for ex-

ample beam width fifty, is a good approximation of an infinite beam width. While FUZZYSEEDSEARCH

and FUZZYPRISM are not guaranteed to find most general consistent conjunctions, they are more likely

to do so with a larger beam width. FUZZYSEEDSEARCH uses a heuristic that may involve a random el-

ement, the picking of seed instances, depending on the implementation of the seed picking mechanism.

Thus, while the other specialization models will always return the same result for the same parameters,

FUZZYSEEDSEARCH will not—even with an infinite beam width. For the same beam width, FUZZY-

PRISM performs far less search than the other specialization models, since it will only append a limited

number (beamwidth2) of terms. Thus, a larger beam width should be used with FUZZYPRISM to

ensure a reasonable number of hypotheses are explored. The other specialization models perform more

search as the size of the lattice increases (i.e. with more linguistic terms in the problem domain).

Depending on the ability of the conjunction evaluation function to indicate good paths in the lattice,

FEM and FUZZCONRI will always find the most accurate and most general conjunctions. The price

paid for this ability is that a larger part of the search spaceis investigated. Both FUZZYPRISM and

FUZZYSEEDSEARCH try to limit this search by restricting the search in some manner. In fact, any other

specialization model using FuzzyAL or FuzzyCAL will have torestrict the search in some way to differ-

entiate them from FEM and FUZZCONRI, respectively. The inductive bias of all specializationmodels

described here include a general-to-specific beam search element. FUZZYPRISM adds the assumption

that good conjunctions will contain linguistic terms with high information gain. FUZZYSEEDSEARCH

adds the assumption that good conjunctions contain more linguistic terms that match positive instances

but not negative instances. Although the specialization models differ with respect to search and language

bias they all fit within the general set covering framework. FCF thus provides a unifying framework for

fuzzy set covering algorithms, regardless of their description language or specific conjunction refinement

mechanism.

9.8 Empirical Comparison

Table 9.12 shows the classification accuracy obtained by thedifferent specialization models on six data

sets retrieved from the UCI repository [Blake and Merz, 1998]. The data sets were fuzzified by using

a clustering technique to obtain centres for bell-shaped membership functions. The same membership

functions were used for all experiments. The results were obtained from 10-fold cross validation runs.

FCF using FEM obtained the best classification accuracy on average, with FUZZCONRI being sec-
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Table 9.12:The classification accuracy obtained using different specialization models.

Database Mean StdDev Mean StdDev Mean StdDev Mean StdDev
BreastCancer 73.02 4.77 64.88 5.74 72.33 4.83 70.58 5.20
Colic 85.60 4.30 84.78 5.25 85.87 5.31 75.82 6.83
Credit-A 85.80 6.22 85.22 6.44 85.65 6.35 85.51 6.07
Hepatitis 81.29 8.71 81.94 7.48 84.52 7.10 78.71 8.49
Iris 97.14 4.99 92.14 5.27 93.57 6.25 95.71 4.99
Lymph 83.78 12.42 80.41 13.31 76.35 12.76 76.35 13.15
Average 84.44 6.90 81.56 7.25 83.05 7.10 80.45 7.46

FuzzyBexa FuzzConRI FuzzyPRISMFuzzySeedSearch

Table 9.13:The search effort required by different specialization models.

Database Mean StdDev Mean StdDev Mean StdDev Mean StdDev
BreastCancer 4428.0 482.3 565.6 85.4 1324.4 246.6 25.6 9.2
Colic 11208.3 882.3 2353.8 248.9 10365.5 527.7 263.1 12.7
Credit-A 14198.1 856.5 2582.1 381.1 9070.1 641.9 1128.9 72.0
Hepatitis 2648.2 148.3 700.7 65.8 6411.3 308.2 108.7 16.6
Iris 283.6 34.3 119.9 30.0 283.9 26.2 47.4 8.9
Lymph 2973.6 254.4 790.3 73.0 6580.7 377.2 244.1 38.8
Average 5956.63 443.04 1185.40 147.37 5672.65 354.63 302.97 26.38

FuzzyBexa FuzzConRI FuzzyPRISMFuzzySeedSearch

ond best. In a few domains, for example for the hepatitis dataset, FUZZCONRI outperformed FEM.

FUZZYSEEDSEARCH and FUZZYPRISM both obtained slightly worse classification accuracyresults

than FUZZYBEXA and FUZZCONRI, respectively.

Table 9.13 shows the search effort measured by the number of candidate hypotheses generated for the

different specialization models. The good classification accuracy obtained by FEM clearly comes at

the cost of increased search effort. FUZZYSEEDSEARCH, for example, required roughly six times less

search. FUZZCONRI required slightly less search than FEM. The respective search effort results are

another confirmation that some domains are more suited to FuzzyCAL than to FuzzyAL, and vice versa.

For the BreastCancer domain, for example, FUZZCONRI required roughly four times less search than

FEM, while for the Lymph Data FEM required roughly half the search effort compared to FUZZCONRI.

Finally, FUZZYPRISM required extremely little search—on average about twenty times fewer hypothe-

ses were generated by FUZZYPRISM than by FEM. This casts FUZZYPRISM’s relatively bad classi-

fication accuracy in a new light. In very high dimensional domains FUZZYPRISM may be a sensible

choice as specialization model.

9.9 Partial Covering

One may ask why are the setsP andN kept crisp—should a fuzzy set covering not use fuzzy sets for

everything, including its internal representations such as P andN? (We could call such a covering

process “partial covering” or “weighted covering”.) The answer is not simply yes or no, and it is also
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not obvious how to fuzzifyP andN . First, we only need to investigateP as a fuzzy set, since the

set covering approach does not remove elements fromN . One approach is to assign to each instance a

membership (or weight) and that is initialize to one. After arule antecedent was found, the instances

covered by it is not removed from the training set entirely, but their memberships toP are decreased.

The question is, by how much? We briefly investigate three approaches. The first approach is to decrease

the membership by the degree with which the instance matchedthe antecedentc, that is,

µP (i)t = µP (i)t−1 − µc(i) (9.8)

whereµP (i)t is the membership ofi to P at timet, andµP (i)0 = 1. It is interesting to look at alpha

leveling in this case—should alpha-leveling also be applied toP , i.e. should instance memberships to

P be set to zero if they fall belowαa? If we do apply alpha leveling, anαa value above0.5 would mean

that covered instances will always be removed fromP entirely, and similarly, the largerαa is, the higher

the probability to remove instances entirely. The next issue arising is how much credit the evaluation

function should assign to a subsequent antecedent if it matches instances that were matched before. One

option is to use the instance membership toP , µP (i), as a weight, and multiply the evaluation with

the instance membership. The second partial covering approach is to removei from P by a fraction

determined byµc(i), that is,

µP (i)t = (1 − µc(i))µP (i)t−1 (9.9)

The third approach is simply to decreaseµP (i) by a constant factor each timei is covered. In this case,

µP (i)t = γµP (i)t−1 (9.10)

whereγ ∈ (0, 1). This approach has the complication that instances are never fully removed fromP ,

since their membership toP never reaches zero. Thus, in this case we are forced to apply alpha leveling.

It is clear that fuzzifyingP is not a simple extension. Thus, it is important to ask “what do we expect

to gain from partial covering?” The two goals of a rule learning algorithm are to induce accurate rule

sets, and to keep these simple and comprehensible. Partial covering leaves positive instances that were

already covered in the training set, while giving them less emphasis by reducing their contribution to

the evaluation of a conjunction. Thus, partial covering mayeasily lead to the induction of many, largely

overlapping rules. If the positive instances were all removed from the training set, the learning algorithm

would be more likely to explore other disjoint sections of the hypothesis space. Thus, partial covering

may yield slightly higher accuracy in some cases, but very often lead to the induction of slightly more

accurate, but much larger rule sets.

We implemented the different strategies described above. The third strategy of decreasingµP (i) by a

constant factor led to the induction of unacceptably large rule sets, where the same rule was often in-

duced multiple times. The second strategy of reducingµP (i) by µc(i) led to smaller rule sets than the

first method. However, the induced rule sets were still larger than using a crispP . The first method

described by Eq (9.10) yielded very similar results than thesecond method. Tables 9.14 and 9.15 com-

pare respectively classification accuracy and rule set sizeresults on different data sets for the normal

(crispP ) implementation of FUZZYBEXA and the second and third approaches to partial covering de-

scribed above. In this experiment we used the Accuracy evaluation function,αa = 0.2, beamwidth= 1,
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Table 9.14:The classification accuracy for normal and partial coveringstrategies.

Database Mean StdDev Mean StdDev Mean StdDev
anneal 93.99 3.07 93.99 3.07 93.99 3.07
colic 85.05 5.13 85.05 5.13 84.51 4.33
credit-a 85.22 6.58 85.22 6.58 84.64 6.34
diabetes 72.92 3.41 72.79 3.43 72.14 4.02
hepatitis 83.87 12.17 83.87 12.17 84.52 9.83
iris 95.00 5.88 95.00 5.88 95.00 5.88
labor 87.72 16.54 87.72 16.54 87.72 16.54
lymph 82.43 12.25 82.43 12.25 78.38 12.82

85.77 8.13 85.76 8.13 85.11 7.86

Method 2 Method 1 Normal

Table 9.15:The size of the rule sets for normal and partial covering strategies.

Database Mean StdDev Mean StdDev Mean StdDev
anneal 31.70 1.89 31.70 1.89 19.20 0.79
colic 13.50 1.51 13.50 1.51 5.10 0.99
credit-a 8.90 1.10 8.90 1.10 5.70 1.34
diabetes 7.80 3.03 11.00 5.96 4.80 1.48
hepatitis 8.50 1.18 8.60 0.97 4.70 0.67
iris 5.00 0.00 5.00 0.00 4.00 0.00
labor 6.80 1.32 6.80 1.32 3.90 0.57
lymph 13.30 1.34 13.30 1.34 5.90 1.20

11.94 1.42 12.35 1.76 6.66 0.88

Method 2 Method 1 Normal

andθp = 2 for all data sets. As expected, partial covering obtained slightly higher classification accu-

racy compared to the normal method, with the two partial covering approaches performing on average

very similarly with respect to classification accuracy. However, the normal method induced substantially

smaller rule sets, with the partial methods obtaining on average twice as many rules. Method 2 induced

on average slightly smaller rule sets than method 1.

It is also important to take into account the impact on the search effort of partial covering. Table 9.16

compares the search effort in terms of the number of conjunctions explored. Method 2 required on

average in double the search effort of the normal method, andmethod 1 resulted in a tripling of the

normal search effort. In addition the computation of each step for partial covering is more expensive,

since it requires more floating point operations compared tothe normal method which removes instances

without extra computation.

Our primary goal in this work is to investigate the inductionof comprehensiblefuzzy rule sets. For this

goal, partial covering is not an attractive proposition. However, when high accuracy is more important

than comprehensibility (and rule sets as a description language is desired), partial covering should be

considered.
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Table 9.16:The search effort for normal and partial covering strategies.

Database Mean StdDev Mean StdDev Mean StdDev
anneal 26520 1436 28700 2193 14471 746
colic 23617 1399 25903 1528 12501 845
credit-a 31771 3051 49658 6882 18317 977
diabetes 36426 1838 79972 4739 8582 573
hepatitis 5530 570 5899 743 3164 184
iris 353 21 498 64 234 19
labor 1174 200 1174 200 707 100
lymph 6214 685 6214 685 2970 275

16451 1150 24752 2129 7618 465

Method 2 Method 1 Normal

9.10 Conclusion

FUZZYBEXA is the first algorithm that made use of the set covering methodology for the induction of

fuzzy classification rules. Set covering has proven to be perfectly suitable for the induction of highly

accurate and interpretable fuzzy rule sets. In this chapterwe proposed the general fuzzy set covering

framework, FCF. FCF consists of two top layers and a bottom layer implementing a specialization

model. The top layers implement the fuzzy set covering methodology, and also apply various search

heuristics for improving the performance of the framework.FCF is designed to allow the implementa-

tion of various specialization models with different description languages and specialization behaviour.

Since different covering algorithms (both fuzzy and crisp)all fit within the same framework, they can

easily be characterized and compared. In the remainder of the dissertation we use the term FCF to refer

to the collection of fuzzy set covering algorithms that fit within the framework.

We also proposed four specializations models for the framework, thereby bringing the total number of

fuzzy set covering algorithms proposed in this dissertation to four. FUZZYSEEDSEARCH and FEM both

use FuzzyAL as description language, and we have shown that FEM is a more general algorithm per-

forming a more thorough search of its description space, while FUZZYSEEDSEARCH incorporates seed

instances to guide its search. FUZZYPRISM and FUZZCONRI’s description language is FuzzyCDL.

FUZZCONRI performs a more thorough search while FUZZYPRISM employs the fuzzy information

gain to decide how to specialize. We compared the different specialization models by tracing the con-

junctions generated during specialization in the lattice of concept descriptions of the respective descrip-

tion languages. Finally, we presented a comparison of the different specialization models with respect to

classification accuracy and search effort which substantiated the expectation that the more general and

thorough algorithms would obtain better classification accuracy, require more search.
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CHAPTER 10

Simultaneous Concept Learning

10.1 Introduction

Learning multiple concepts generally follows one of two strategies. (1) For a concept (or class) in the

data set, a set of disjunctive rules are induced by repeatingthe learning procedure for each concept in

turn. (2) Multiple concepts are learned by finding a good classification rule for any one of the con-

cepts, and assigning this class as consequent of the rule. The literature, e.g. [Mitchell, 1997], offers no

preference for one strategy over the other. We call the two strategies for this processiterated concept

learning (learning one class at a time, iterated over all classes) andsimultaneous concept learning(si-

multaneously considering all classes by learning one rule at a time for any class, repeated until all data

are covered), and abbreviate them as ICL and SCL, respectively. Examples of algorithms following the

ICL strategy are FUZZYBEXA, BEXA, and Webb’s rule learner, whereas C4.5, CN2, and Neural Net-

works all follow the SCL strategy [Cloete and van Zyl, 2006; Webb, 1993; Quinlan, 1996b; Clark and

Niblett, 1989]. Fuzzy classification rules can be extractedfrom fuzzy decision trees and fuzzy neural

networks, and although learning is done using SCL, unordered rule sets are obtained [Yuan and Shaw,

1995; Kasabov, 2001b].

FUZZYBEXA is the first algorithm to use set covering for the induction offuzzy classification rules. The

rule sets induced by FUZZYBEXA are unordered, and rules can be evaluated in any order. To thebest of

our knowledge, no work has been done on the induction of ordered fuzzy rule sets (also called decision

lists), using any induction method. Here we mean that the induction method explicitly uses the order

of rule induction, and not the ordering or prioritising of anunordered rule set after rule induction. The

semantics of an ordered rule set is thus different from that of an unordered rule set. In an ordered rule

set, as opposed to an unordered rule set, an instance is only matched against a rule (and the rule can thus

only fire) if all previous rules did not fire. Thus, a single rule rule cannot be seen in isolation, and the

antecedents of previous rules must also be considered.

In this chapter we introduce FUZZYBEXA II, the first fuzzy rule induction algorithm that inducesfuzzy

decision lists. FUZZYBEXA II makes use of SCL for its induction process. This inductionprocess

produces an ordered rule set, and we show that in many cases this methodology produces superior results

compared to ICL, i.e. on average better classification performance, radically smaller rule sets, and also

significantly less search effort. We also introduce the fuzzy Accuracy function for rule evaluation in
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Table 10.1: FUZZYBEXA II’s CoverConcepts procedure.

CoverConcepts
Input: Set of training instancesT , Set of concepts to learnC
Output: A rule set describing the concepts
Set the current rule set to empty
While T contains instances
best = FindBestRule(T , C)
Add best to the rule set
Remove the instances covered bybest

Return the rule set

SCL, and demonstrate that this function is much better behaved for SCL learning than, for example, the

fuzzy Entropy function used during SCL in fuzzy decision trees.

The layout of the chapter is as follows. In Section 10.2 we show how to extend FUZZYBEXA to use

the SCL strategy. In the next section we show that the rule evaluation function plays a pivotal role in

finding good classification rules, and we introduction the Accuracy function for SCL. In Section 10.4 we

provide the results of five different experiments on nine data sets for FUZZYBEXA with ICL and SCL

using several different evaluation functions, as well as anempirical comparison between FUZZYBEXA II

and other concept learners. The following section containsa discussion of the experimental data, and

Section 10.5 concludes the chapter.

10.2 FUZZY BEXA II: Induction of Ordered Fuzzy Rules

In this section we introduce FUZZYBEXA II, a novel SCL approach that induces ordered fuzzy rules

from a fuzzy data set. Table 10.1 shows FUZZYBEXA II’s CoverConceptsroutine. Compared to that of

FUZZYBEXA, the SCL top layer routine of FUZZYBEXA II is less complex. It starts by initialising the

rule set to empty. Then, it iteratively finds the bestrule for the current set of training examples using

the middle layer routineFindBestRule–in ICL the middle layer returned theantecedentthat best covered

the concept it was forced to use. For SCL the training set is not split into positive and negative parts,

but passed as a whole to the middle layer. The rule found by themiddle layer is then added to the rule

set, and all instances covered by the rule are removed from the training set. This also differs from ICL,

where only the positive instances covered by the rule are removed. We will discuss the implications of

this decision later.

FUZZYBEXA II’s middle layer, see Table 10.2, implements several heuristics for guiding the search in

the hypothesis space. It uses the setspec to maintain the set of current conjunctions to consider as rule

antecedents. This set is initialized with themgc. The routine functions as follows. A set of specializa-

tions of the conjunctions inspec is obtained by invoking FUZZYBEXA II’s bottom layer routine. Then,

for each specializationant in spec, the concept best described by the conjunction is selected.This is
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Table 10.2: FUZZYBEXA II’s FindBestRule procedure.

FindBestRule
Input: Set of instances, Set of conceptsC
Output: The best rule found during this search
Set the current best rule to empty
Add themgcto the set of current conjunctions,spec
While spec contains conjunctions
spec = GenerateSpecializations(T , spec)
For each conjunctionant in spec

Let consequent be the concept fromC best covered by the conjunctionant
If eval(ant, consequent) is better than that of the best rule,

Replace the current best rule with “IFant THEN consequent”
If ant can never be better than the best rule, remove it fromspec

Retain only thebeamwidth best conjunctions inspec
Return the best rule found

done by dividing the instances covered by the conjunction into groupsGi according to their class,

Gi(ant) = {d ∈ XT (ant)| µconcepti(d) ≥ αc} (10.1)

The sigma count or scalar cardinality of each group is then computed,

M(Gi(ant), ant) =
∑

d∈Gi(ant)

µant(d) (10.2)

and the concept of the group with the highest cardinality is chosen as the best rule consequent. The

potential rule is then evaluated according to an evaluationfunction. This function is fundamental in

guiding the search through the hypothesis space, and we willinvestigate its influence on the search

process and overall performance in more detail later. If thepotential rule outperforms the current best

rule, it replaces the current best rule.

The next step implements an efficiency measure. This measureis very important to prevent unnecessary

exploration of parts of the hypothesis space that cannot yield rules better than the current best rule.

Let j be the index of the concept chosen as rule consequent. Assumethat in the idealistic case all

groupsGi, i 6= j, are empty. If even in this case the performance of the potential rule is worse than

the best rule, it is futile to continue further exploration of this part of the hypothesis space. This is

true since we are specializing antecedents, moving from topto bottom in the lattice of antecedents, and

thus subsequent rules can never cover more instances, and therefore cannot increase their cardinality

and performance above that of the best rule. Note, this test includes the consistency test as a special

case—when an antecedent is consistent no subsequent antecedent can perform better than it. This test is

an adaptation of an approach by Quinlan and Cameron-Jones for the crisp iterated concept rule learner

by Webb [Quinlan and Cameron-Jones, 1995b; Webb, 1993]. After all conjunctions were considered, a

beam search is implemented by retaining only thebeamwidth best conjunctions in the setspec. The

process is iterated untilspec becomes empty and the best rule is returned.
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Table 10.3: FUZZYBEXA II’s specialization model.

GenerateSpecializations
Input: Set of instancesT , set of conjunctionsC
Output: Set of specializations of the conjunctions inC
spec = ∅
For each conjunctionc and associated usable termL,

If XT (L) andXT (c) have no instances in common,
Mark this term as unusable in this conjunction

For each conjunctionc and associated usable termL,
Create a specialization by excludingL from c
Add the specialization tospec

Remove all duplicate conjunctions fromspec
Returnspec

10.2.1 The Fuzzy Exclusion Model Using SCL

Table 10.3 shows FUZZYBEXA II’s bottom layer routine,GenerateSpecializations. Here the fuzzy ex-

clusion model is implemented. The function of this routine is similar to that of FUZZYBEXA, i.e. to

obtain a set of specializations of the input set of conjunctions. The routine starts by initialising the set of

specializationsspec to be empty. Then two loops follow . The first implements an efficiency measure,

and the second performs the specialization. With each conjunction we associate a set of “usable” terms

that may be used to specialize the conjunction, and we initialise themgcto contain all terms in its usable

set. The first loop compares the extension of the conjunctionand the extension of terms from its usable

set. Any term where the two extensions have no members in common, i.e. any termL and conjunction

c where

XT (L) ∩XT (c) = ∅ (10.3)

is removed from the set of usable terms for this conjunction.Excluding such a term will not change the

extension of the conjunction, and therefore make it overly specific. The next loop generates specializa-

tions by excluding from each conjunction the terms from its associated usable set in turn. Duplicates

may occur if two conjunctions were specialized by excludingthe same terms in different order, and are

removed. The resulting specializations are returned.

10.2.2 Other Specialization Models Using SCL

FUZZYBEXA II’s specialization behaviour can easily be adjusted by exchanging the specialization model

implementation. Table 10.4 shows the FUZZYBEXA II using FUZZCONRI as specialization model. Each

conjunctionc is specialized by appending one of the remaining usable terms to it. The new extension in

the training set can be efficiently computed usingXT (cnew) = XT (c) ∩XT (L), since the conjunction

with L restricts the extension to only allow instances that matchL. If the extension becomes empty the

conjunction is not useful and is discarded. Finally, if the conjunction was not already present inspec it
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Table 10.4: FUZZYBEXA II using FUZZCONRI as specialization model.

GenerateSpecializations
Input: Set of instancesT , set of conjunctionsC
Output: Set of specializations of the conjunctions inC
spec = ∅
FOR each conjunctionc and associated usable termL DO
cnew = c ∧ L
cnew.usable = cnew.usable− L
XT (cnew) = XT (c) ∩XT (L)
IF XT (cnew) = ∅ THEN

CONTINUE
IF cnew 6∈ spec THEN
spec = spec ∪ {cnew}

Remove all duplicate conjunctions fromspec
Returnspec

is added to it. FUZZYSEEDSEARCH may be adapted to implement the SCL strategy in a similar way.In

this case care must be taken that the seeds are from differentclasses.

10.3 The Rule Evaluation Function

The entropy evaluation function is often used for SCL learning, including decision tree and fuzzy de-

cision tree learning [Cios and Sztandera, 1992; Dong and Kothari, 2001]. Letr be a rule witha as

antecedent and{c1, ..., cN} the possible consequents ofr, then the normalized fuzzy entropy is given by

E(r) =
1

logN

N
∑

i=1

M(T, a ∧ ci)

M(T, a)
log

M(T, a ∧ ci)

M(T, a)
(10.4)

whereM(T, x) is the sigma count of the expressionx in the set of instancesT . Since we want an

evaluation function that assigns higher scores to better conjunctions, we use the evaluation function

1−E(r). This function has a maximum value of one for rules that coveronly one class, and a minimum

value of zero for rules that cover each class in the same proportion. However, the Entropy function does

not favour high coverage, e.g. a rule that covers five instances of one class and none of other classes and

a second rule that covers a thousand instances from one classand none of other classes will both have

a score of one. The Laplace estimate was suggested as an improvement to the CN2 algorithm that also

used the Entropy function [Clark and Boswell, 1991]. In Chapter 6 we suggested the fuzzy Accuracy

function for ICL,

AICL(r) =
∑

i∈XP (a)

µa(i) −
∑

i∈XN (a)

µa(i) (10.5)

whereP is a subset ofT containing all instances that belong to the concept, andN = T − P . We

adapt the Accuracy function for use in SCL by considering each concept in turn, and regard instances

belonging to other concepts as members ofN . We assign the rule consequent as the concept that results
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Figure 10.1: Results for ICL and SCL with different evaluation functionson the Zoo data.

in the highest evaluation, and also assign this evaluation value to the rule, that is,

ASCL(r) = M(Gj(a), a) −M(XT (a) −Gj(a), a) (10.6)

and

j = argmax
i

(M(Gi(a), a)) (10.7)

whereGi(a) is defined by Eq (10.1). This evaluation function will preferrules that cover a large number

of instances from one concept and few instances from the other concepts.

10.4 Experiments

In this section we show experimental results on six real world domains obtained from the UCI machine

learning repository. We fuzzified data by assigning membership values from{0, 1} to nominal attributes,

and by using a clustering method to place bell shaped membership functions on the continuous domains

of linearly ordered attributes. We will discuss results obtained for FUZZYBEXA (ICL) with the accuracy

and Laplace evaluation functions, and also for FUZZYBEXA II (SCL) with the entropy and accuracy

evaluation functions. We denote FUZZYBEXA II with the entropy and accuracy evaluation functions

as SCL-Ent and SCL-Acc respectively, and FUZZYBEXA with the accuracy and Laplace evaluation

functions as ICL-Acc and ICL-Lap, respectively.

10.4.1 Fuzzy Rule Induction With ICL and SCL

Figure 10.1 shows results obtained by SCL and ICL on the training set of the Zoo data, where we

ignored the variable “animal,” and learned the concept “type of animal,” e.g. mammal, bird, fish, etc.

The different methodologies of SCL and ICL are clearly discernable from Figure 10.1(a). For most

of the rules, ICL considered all the instances during the induction process. This happens since ICL

removes only the positive instances covered from the training set for each class, andreinsertsthese into

the training set when the next concept is considered. SCL, however,never reinsertscovered instances.
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The SCL graph of remaining uncovered instances is thus monotonely decreasing. From Figure 10.1(a)

one can also see the number of instances covered by each consecutive rule. This is indicated by the

difference on the y-axis of two consecutive points. When there is no difference for ICL, it implies that

the rule covered all the positive instances. The last seven rules induced by SCL-Ent covered very few

instances each. Figure 10.1(b) shows the number of candidate hypotheses generated for each rule during

the search. SCL-Ent started out with a very high number, and then, as there were successively fewer

instances available, generated successively fewer candidates rules. For the first six rules SCL-Acc and

ICL-Acc had similar behaviour. However, for the last two rules of SCL-Acc there were less than 10

instances, and consequently it searched only a few hypotheses before covering them. The use of the

Accuracy function also resulted in a much smaller rule set for SCL. SCL-Acc had 9 rules and SCL-Ent

14 rules.

Table 10.5 shows results for five experiments. All results quoted are on test set results from a 10-fold

cross validation. For each data set the mean and standard deviation were computed, and the average of

the means of all data sets are shown in the last column. The best performance on each data set is set in

bold face. The first experiment investigated the accuracy ofthe induced rule sets. SCL-Ent had the worst

overall performance, and did significantly worse on the Colic, Hepatitis and Lymph data sets. It had the

best performance on the Zoo data set. SCL-Acc, in contrast, performed very well, and obtained better

overall results than any of the other methods. ICL-Acc and ICL-Lap had very similar results, and was

overall about2% worse than SCL-Acc, but3.5% better than SCL-Ent. The second experiment compared

the size of the rule set induced by each method. Here, SCL-Accwas the clear winner. On average its rule

sets contained about three times fewer rules than ICL-Acc and ICL-Ent. It also became clear that SCL-

Ent is not a good method to use, as it induced 12 times more rules than SCL-Acc, and also had worse

classification accuracy performance. This result is most likely due to the entropy evaluation function not

favouring conjunctions with higher coverage. Thus, a largenumber of consistent conjunctions covering

only small sets of instances are induced.

One obvious observation is that SCL-Acc is able to induce extremely compact rule sets. This behaviour

cannot be attributed only to the Accuracy function, as ICL-Acc did not perform as well. One big dif-

ference between SCL and ICL is that the rules induced by SCL are ordered and that by ICL unordered.

Table 10.6 shows the rule set induced by SCL for the Zoo data. The first rule correctly classifies all

mammals. Thus, after the first iteration, all mammals are removed from the data set. Similarly, the

second rule removes all birds from the data set. Now considerthe third rule, it states that animals with

fins are fish. On its own, this rule would incorrectly classifywhales and dolphins as fish. However, since

the rules are evaluated in order, the first rule would fire for awhale, correctly classifying it as a mammal,

and further rules would not be considered.

We believe the aforementioned characteristic is present inmany data sets, and is the reason why SCL

outperforms ICL on many data sets. After the first few rules took care of macro features that are easily

identified, rules found later need not concern themselves with these features, and can distinguish between

the special cases. An ordered rule set is a representation ofa more complex unordered rule set, and also

does not require the arbitration process of unordered rule sets when multiple rules fire. When ICL has
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Table 10.5: Various test results for SCL with the Entropy and Accuracy evaluation functions and ICL with the

Accuracy and Laplace Evaluation functions.

Ave
Mean

SCL, Ent 78.0 6.0 68.2 2.7 76.8 11.2 93.6 6.3 73.6 12.196.0 8.2 81.0
SCL, Acc 84.5 3.3 74.0 4.8 86.5 6.9 96.4 5.1 81.1 12.3 96.0 10.5 86.4
ICL, Acc 85.3 4.7 71.2 4.1 83.9 10.1 95.7 6.0 81.1 11.5 91.1 11.2 84.7
ICL, Lap 83.4 5.7 71.1 2.8 80.6 7.6 96.4 5.1 81.8 14.4 93.1 13.4 84.4

SCL, Ent 88.0 7.8 183.2 16.5 34.0 2.1 9.9 0.3 41.8 3.5 12.7 0.7 61.6
SCL, Acc 5.1 0.3 4.4 1.7 3.1 0.3 3.9 0.3 6.5 0.7 7.9 0.3 5.2
ICL, Acc 34.4 2.7 2.4 0.5 19.3 1.2 4.0 0.0 19.6 1.5 12.3 1.1 15.3
ICL, Lap 34.5 1.6 8.6 1.1 19.0 1.1 4.3 0.5 21.8 1.3 10.6 0.7 16.5

SCL, Ent 184.4 20.8 759.2 79.1 56.0 4.3 13.5 1.0 70.0 8.6 12.5 1.1 182.6
SCL, Acc 14.2 2.8 5.6 2.9 4.5 1.4 3.5 0.5 12.7 1.7 10.3 1.3 8.5
ICL, Acc 128.0 9.6 6.2 1.9 62.9 5.0 6.0 0.0 67.9 7.2 35.4 3.9 51.1
ICL, Lap 166.7 12.1 36.6 6.0 68.3 5.9 7.0 1.6 76.5 5.3 27.9 2.2 63.8

SCL, Ent 53800 5632 24420 2349 11300 744 334 24 8008 722 955 134 16470
SCL, Acc 2409 192 355 110 632 74 123 15 907 55 315 23 790
ICL, Acc 10137 637 6780 436 2360 122 196 13 2243 222 601 61 3719
ICL, Lap 12373 1068 5851 306 2592 251 263 27 2719 168 493 38 4048

SCL, Ent 610.9 32.4 132.6 2.5 332.0 13.9 33.4 3.1 191.3 15.0 74.5 7.4 229.1
SCL, Acc 472.1 28.1 83.4 11.1 203.7 12.0 31.3 4.0 139.9 11.4 39.5 3.0161.7
ICL, Acc 294.6 11.4 2924.8 579.9 121.8 4.5 48.6 3.4 113.8 5.2 48.3 2.1 592.0
ICL, Lap 357.6 19.5 689.8 101.5 135.9 10.5 61.1 7.4 124.7 8.8 46.0 0.9 235.9

Complexity of the Rule Set Measured in Terms

Average Number of Hypotheses Generated per Rule

Number of Conjunctions Generated During Rule Set Induction

Lymph

Accuracy of the Rule Set

ZooColic Diabetes Hepatitis Iris
 Mean  StdDev  Mean  StdDev Mean  StdDev

Number of Rules in the Rule Set

 Mean  StdDev  Mean  StdDev  Mean  StdDev

to induce a rule for fish, it will have to find a more complex antecedent, e.g. [milk.false][fins.true], i.e.

the rule must not fire on any of the macro features, but still differentiate the special cases. Consequently,

ordered rule sets can be much smaller than unordered rule sets, while still obtaining high accuracy. ICL

often induces many more rules to prevent the covering of macro features while still covering some of the

micro features. The small number of instances available forinduction of the last rules in SCL implies that

less search is necessary for these rules. This is different for ICL and clearly visible in Figure 10.1(b)—

the number of hypotheses examined per rule remains relatively constant for ICL but is very small for the

last few rules for SCL. The overall result is that SCL-Acc requires less search for rule set induction. The

rule sets induced by SCL are also not unnatural, as humans also represent concepts such as animal type

using an ordered rule set, i.e. reasoning by working with exceptions. The last rule induced by SCL often

has the antecedentTRUE. This happens when after the exclusion of instances coveredby previous rules,

only instances of one class remain. This must not be confusedwith the default rule used in unordered

rule sets. In unordered sets, the default rule fires when no other rule fires, and usually has the majority

class as consequent. SCL could also employ such a default rule when the last rule does not haveTRUE

as antecedent.

SCL in combination with the Entropy function did not performwell. This is because entropy does not
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Table 10.6:SCL-Acc induced rule set for the Zoo data.

[milk.true]→ type.mammal [eggs.true][backbone.false][legs.¬ᾱ] → type.insect

[feathers.true]→ type.bird [backbone.true][tail.true]→ type.reptile

[fins.true]→ type.fish [aquatic.false]→ type.invertebrate

[eggs.true][breathes.false]→ type.invertebrate TRUE→ type.amphibia

guide the search in the direction of high coverage. The first rule induced by SCL-Ent, for example, had

“bird” as consequent. However, there are 20 bird and 41 mammal instances. Thus, SCL-Acc induced a

rule for the class with the most instances since this rule hasthe highest coverage. On the Colic data SCL-

Acc alternated between the classes such that the most instances are covered by each consecutive rule.

Subsequent rules should in general cover fewer instances than previous rules, thus rules with stronger

support are placed higher up in the rule hierarchy. This can be clearly seen in the shape of the graph for

SCL-ACC in Figure 10.1(a). SCL-Ent in the same figure, however, had subsequent slopes higher than

previous slopes, demonstrating its unbiasedness towards high coverage.

The third experiment in Table 10.5 measured the complexity of rules as the number of terms in the rule

set. Here, the good performance of the Accuracy function forboth SCL and ICL is evident. Again SCL-

Acc had the best performance, requiring six times fewer terms than ICL-Acc and seven times fewer than

ICL-Lap. The rule sets found by ICL-Acc were about 15% less complex than that found by ICL-Lap.

The rule set complexity found by SCL-Acc was on average about5% of that of SCL-Ent. The fourth

experiment shows that, interestingly, SCL-Acc needed to investigate only a very small part of the search

space to obtain its results. ICL-Acc was second, but generated 4.6 times more candidate rules, whereas

ICL-Lap generated 5.2 times more candidates. SCL-Ent’s struggle to obtain good rule sets becomes

clear; it generated 16470 hypotheses versus ICL-Acc’s 790.The last experiment compares the number

of hypotheses generated per induced rule. SCL-Acc again needed the least number of hypotheses.

Interestingly though, SCL-Ent generated the second least.However, since the induced rules cover so

few instances, many rules were needed making the total search very large. ICL-Acc generated the most

hypotheses. However, if we remove the outlier of the Diabetes data, the ICL-Acc would have 125.4,

ICL-Lap 145.1, and SCL-Acc 177.3, resulting in ICL-Acc withthe smallest search per rule. ICL-Acc

induced the smallest and second most accurate rule set for the diabetes data. However, it required 20

times more search than SCL-Acc, and therefore a very large number of hypotheses were generated per

induced rule.

10.4.2 Comparison With Other Concept Learners

We also compared our FUZZYBEXA II algorithm (using the Accuracy function) with three otherconcept

learners. The results quoted for C4.5, Layered Search and Exhaustive Search were obtained from the

literature [Quinlan and Cameron-Jones, 1995b; Quinlan, 1996a,b]. The first column shows the average

error on the test sets. FUZZYBEXA II had similar classification results as the other methods for the
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Table 10.7: Results of FUZZYBEXA II, C4.5, Layered Search and Exhaustive Search on three datasets. Theory

size for C4.5 is measured in tree nodes, in number of test conditions for layered and exhaustive search, and in

number of terms for FUZZYBEXA II.

Diabetes Hepatitis Lymph Diabetes Hepatitis Lymph
C4.5 25.4 20.4 21.7 44.0 17.8 N/A
Layered Search 26.9 19.1 18.9 207.4 27.0 30.1
Exhaustive Search 27.2 20.0 19.0 208.7 27.9 30.1
FuzzyBexaII 23.0 13.6 18.9 5.6 4.5 12.7

Error Theory Size

Lymph data, better results on the Diabetes data, and significantly better results on the Hepatitis data. It’s

theory size (complexity) is also significantly smaller in all cases.

10.5 Summary

This chapter presented FUZZYBEXA II, an algorithm for learning ordered fuzzy rule sets for classifica-

tion. We also enhanced the method with early stopping efficiency measures, without which the search

would be prohibitively large. We further presented five empirical experiments on six data sets, and

demonstrated that if the correct kind of evaluation function were used, i.e. functions that give preference

to rules with high coverage, ordered rule sets are much less complex than unordered rule sets, while at

the same time being very accurate. As an example of an appropriate evaluation function we showed how

to adapt the fuzzy Accuracy function for SCL. We discussed the various reasons for SCL’s good per-

formance, and also showed with further experiments that FUZZYBEXA II can outperform other learning

systems with respect to rule set size and accuracy.
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CHAPTER 11

Arguments in Favour of Fuzzy Set Covering

11.1 Introduction

In the previous chapters we developed fuzzy set covering as anew methodology for fuzzy rule induction.

In this chapter we address the validity of this approach as a concept learner. We assume a rule represen-

tation is desired, and thus we do not focus on the more generalcase of symbolic versus numeric concept

learning. We proceed to demonstrate two main points, (a) fuzzy rules, as a generalization of crisp rules,

are more powerful than crisp rules for several reasons, and (b) set covering as a methodology for fuzzy

rule induction performs very well compared to other fuzzy rule learners with respect to classification

accuracy, and especially with respect to comprehensibility.

The layout of the chapter is as follows. Section 11.2 addresses point (a) by presenting a set of theoret-

ical arguments in favour of fuzzy set covering. Section 11.3demonstrates FUZZYBEXA ’s performance

compared to the well-known decision tree learner C4.5 and one of the most powerful rule induction algo-

rithms, RIPPER1. In Section 11.4 we provide empirical results in support of point (b), and Section 11.5

further emphasizes this point by providing results where FCF significantly outperforms previous meth-

ods on two real world applications (the classification of SPAM and the prediction of mortality in septic

shock patients). We conclude the chapter with a summary in Section 11.6.

11.2 Fuzzy Versus Crisp Rule Learning

An elementi belongs to a fuzzy setA to a certain degree, typically in the range[0, 1], as defined by

the membership functionµA(i) associated with the fuzzy set. A crisp set is a special case ofthe more

general fuzzy set, where in the crisp case the membership function (characteristic function) assigns

membership degrees from theset{0, 1}. Thus, it is not surprising that rules based on fuzzy sets would

be more powerful with respect to representation power and modelling capability. In fact, it has been

proven that fuzzy sets can be used as universal approximators [Kosko, 1994].

In addition to their improved modelling capability, fuzzy sets provide a natural mechanism for dealing

with linearly ordered domains. Crisp rule learners either do not allow such attributes, or resort to defin-

1RIPPER is an acronym of Repeated Incremental Pruning to Reduce Error Reduction
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Figure 11.1: Membership functions and anα-cut plane at0.5 for the linguistic termsX andY .

ing ranges on the domain. These ranges, however, cannot represent the real world concept of gradual

transition from membership to non-membership, as encountered in most natural domains. For example,

the transition from the concepthot to the conceptcold is not sharp, and cannot be pinpointed at a certain

temperature. Fuzzy rules model numeric domains with linguistic terms. Each linguistic term is defined

by a fuzzy set, which deals with such transitions in a naturaland comprehensible manner. Furthermore,

fuzzy rules do not make the unnatural distinction between nominal and numerical domains, but treat all

the same.

A crisp instance can only have a single attribute value for a given attribute. Thus, there is no scope for

uncertainty, ambiguity, or vagueness. The use of fuzzy sets, however, allow these real world concepts

to be modelled in a mathematically sound way. A fuzzy instance can belong to several linguistic terms

from the same variable simultaneously, e.g. an instance maybehot to degree0.7 andcold to degree0.4.

A fuzzy instance matches fuzzy conditions (i.e. the antecedent of a fuzzy rule) to a certain degree,

whereas a crisp instance can either match a rule or not. Thus,in the fuzzy case additional information is

available to the inference system during classification of unlabeled instances. For example, the degree

to which unseen instances match a conjunction can be compared to those observed for instances from

the training set. This information can be used, for example,for rule conflict resolution. Large deviations

from the observed mean may indicate that the rule should not be used, or that the instance is a novelty,

i.e. it lies outside of the observed distribution for this rule.
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Figure 11.2: Crisp rules used to classify points inside and outside of thecircle. Each blue region is correctly

covered by a rule, while the red regions should have been covered, but are not.

Another fundamental difference between crisp and fuzzy rules is that in the fuzzy case decision bound-

aries need not be axis-parallel. This is illustrated in Figure 11.1 for the rule conditionX∧Y , and product

as the t-norm operator. Both linguistic termsX andY have the same domain, the range[0, 1], and their

respective membership functions to an instancei areµX(i) = sin(πx) andµY (i) = sin(πy). For the

classification task of identifying points inside and outside the circle with origin at(0.5, 0.5) and radius
1
3 , the single rule,

IF [X][Y ]@0.5 THEN inside (11.1)

provides a perfect classification. Crisp learners are forced to approximate the decision boundary, and

use more and more rules to increase their accuracy. Figure 11.2 shows the crisp approximation where

five rules were used. A perfect classification in the crisp case can only be achieved with infinitely many

rules.

11.3 Empirical Comparison with State of the Art Concept Learners

The previous section provided theoretical arguments why fuzzy rule learners are more powerful than

crisp rule learning algorithms. In this section we provide empirical evidence that fuzzy set covering is

a powerful rule induction methodology, and capable of competing with state of the art concept learners.

As stated before, we do not compare ourselves to numerical methods such as support vector machines or

neural networks, but to methods that provide an explanationfor their prediction. The two major concept

representations that explain their classification are decision trees and rule sets. C4.5, the successor of

ID3, is probably the best-known decision tree learner, and has proven very successful over time [Quinlan,

1993a]. RIPPER [Cohen, 1995] is arguably the most powerful rule induction algorithm available today

[Fürnkranz and Flach, 2004]. Both C4.5 and RIPPER employ a post-pruning phase, and RIPPER also
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Table 11.1:Classification accuracy results for state of the art conceptlearners.
OneR

Database ICL
ICL, Acc, 

θp=2
SCL, Acc, 

θp=0
SCL, Acc, 

θp=2
SCL, Acc, 

θp=5 Unpruned Pruned Unpruned Pruned
Anneal 99.00 93.76 93.65 93.43 93.32 98.44 98.33 98.44 98.44 83.63
BreastCancer 73.02 73.14 71.16 71.74 71.86 70.98 77.27 68.2 70.28 69.93
Colic 85.60 85.33 85.33 85.33 85.87 78.80 85.05 82.34 84.51 81.52
Credit-A 85.80 85.07 85.94 85.94 85.94 85.07 86.23 81.88 83.33 85.51
Digit 72.72 69.47 73.91 72.58 71.72 72.40 74.60 74.20 72.60 21.40
Hepatitis 81.29 82.58 81.94 82.58 82.58 81.29 78.06 80.65 83.87 81.29
Iris 97.14 95.00 96.43 96.43 96.43 92.00 94.67 96.00 96.00 94.00
Labor 91.23 87.72 89.47 89.47 89.47 84.21 77.19 78.95 73.68 75.44
Lymph 83.78 79.05 81.08 79.05 78.38 79.73 79.05 75.68 77.03 74.32
Average 85.51 83.46 84.32 84.06 83.95 82.55 83.39 81.81 82.19 74.12

RIPPERFCF C4.5

includes incremental pruning and multiple rule set optimisation phases (for a description of RIPPER see

Appendix A).

We compare FCF in several configurations with three concept learners, C4.5, RIPPER, and 1R, which

builds a single rule per class [Holte, 1993], on several benchmark data sets. Table 11.1 shows the accu-

racy of the various learners on the data using 10-fold cross-validation. The results for C4.5, RIPPER,

and 1R were obtained using the WEKA2 package [Witten and Frank, 2000]. RIPPER and C4.5 were

configured first not to use post-pruning, and then to include post pruning, in which case RIPPER was

allowed to optimise the rule set twice (thus leading to RIPPER2). We configured FCF in several ways.

The first column used ICL and evaluation functions suited to the domain. In the remaining columns we

used the Accuracy evaluation function for all data sets, which clearly had a detrimental effect on the

Anneal data, for example. We also setθp to different values ranging from0 to 5, and we applied SCL

where indicated.

The bottom row of the table shows the average classification performance over all data sets. On average

1R is outperformed by all methods, although on some data sets1R obtained similar performance. Elo-

maa [1994] discusses the results of 1R versus other concept learners, and provides arguments why the

small improvement in accuracy obtained by C4.5 is still significant. FCF with ICL (first column of the

table) obtains almost3% higher classification accuracy than RIPPER unpruned, and still over 2% higher

than RIPPER2. FCF compares even better with C4.5, and outperform the unpruned and pruned versions

with 3.7% and3.2%, respectively. It is also clear that the post-pruning phases in RIPPER and C4.5

improved their performance—something FCF does not have thebenefit of. We already did preliminary

work on the post-pruning of fuzzy rules, but future researchcan improve upon this further [Robbel, van

Zyl and Cloete, 2004].

Table 11.2 shows the average number of rules per rule set for the different learners and data sets. We

do not show the number of rules for 1R, since this is constant.Here the beneficial effect of pruning on

the rule set size is clearly demonstrated for RIPPER and C4.5. RIPPER is able to reduce the average

number of rules from13.33 to 5.22, while C4.5 was able to reduce the rule set, as measured by the

number of leaf nodes in the tree, from45.33 to 17.78. The high accuracy obtained by FCF configured

with ICL and suitable evaluation functions resulted in a comparatively large rule set, although still

2WEKA is an acronym of Waikato Environment for Knowledge Analysis
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Table 11.2:Average number of rules per rule set for state of the art concept learners.

Database ICL
ICL, Acc, 

θp=2 SCL, Acc
SCL, Acc, 

θp=2
SCL, Acc, 

θp=5 Unpruned Pruned Unpruned Pruned
Anneal 37.7 23.0 9.0 9.0 7.0 12.0 7.0 53.0 35.0
BreastCancer 32.9 10.0 5.0 2.0 2.0 12.0 2.0 59.0 24.0
Colic 44.8 3.0 5.0 4.0 4.0 14.0 3.0 95.0 17.0
Credit-A 55.1 6.0 4.0 3.0 2.0 18.0 4.0 101.0 30.0
Digit 42.5 29.0 23.0 15.0 11.0 34.0 13.0 32.0 16.0
Hepatitis 22.6 5.0 3.0 3.0 2.0 9.0 4.0 16.0 11.0
Iris 5.3 3.0 4.0 3.0 3.0 5.0 4.0 5.0 5.0
Labor 8.0 3.0 3.0 2.0 2.0 4.0 4.0 13.0 3.0
Lymph 27.5 4.0 6.0 5.0 4.0 12.0 6.0 34.0 19.0
Average 30.71 9.56 6.89 5.11 4.11 13.33 5.22 45.33 17.78

RIPPERFCF C4.5

much smaller than the unpruned decision trees. The Accuracyevaluation function clearly results in a

reduction of the rule set size, while classification performance is not severely influenced. For example,

a run of FCF with SCL, the Accuracy evaluation function, andθp = 5 obtained only1.56% worse

classification accuracy than the best classification accuracy configuration (first column), but the average

rule set size was reduced from30.71 to 4.11 rules. This is radically smaller than the pruned decision

tree, and also smaller than RIPPER2. At the same time this configuration obtained1.76% and0.56%

better classification accuracy than C4.5 pruned and RIPPER2, respectively. Thus, we can conclude that

FCF compares well with RIPPER and outperforms C4.5 on the benchmark data sets with respect to both

classification accuracy and rule set interpretability (as approximated by rule set complexity).

11.4 FCF versus Other Fuzzy Rule Learners

Set covering is one of the most successful machine learning methodologies in the crisp case, and many

different algorithms were proposed for this methodology [Fürnkranz, 1999]. The fuzzy set covering

methodology proposed in this dissertation extends these principles to the fuzzy realm, keeping the crisp

case as a special case of the more general fuzzy case. It will thus not be very surprising that the fuzzy

set covering methodology is also capable of competing with the fuzzy generalization of other crisp

symbolic methodologies, such as decision trees or simple beam search. In this section we will seek to

provide some empirical proof of this expectation. Note, theterm FCF is used to describe any fuzzy set

covering algorithm that fits with the general fuzzy set covering framework, as discussed in Chapter 9.

We will be interested primarily in the quality of the rule sets induced, as measured by the rule set size

and accuracy. The fuzzy systems investigated in this section all satisfy two of the three conditions for

interpretable fuzzy rule sets, they all produce incompleterules, and they all make use of defined fuzzy

sets as linguistic terms [Guillaume, 2001]. Guillaume’s third requirement is that the rule set should be

as small as possible. When the size of the rule set becomes very large, the inherit assumption that fuzzy

rules are more comprehensible disappears. In this case the question arises, what is gained by fuzzy rules

as opposed to powerful numeric methods such as support vector machines or neural networks?
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Figure 11.3: Fuzzy Decision tree induced by Yuanet al for the Fuzzy Sport data.

11.4.1 The Sport Problem

The results of Yuanet al’s fuzzy decision tree induction algorithm [Yuan and Shaw, 1995] on their sport

data set (see Table 4.1), are reproduced here. Their algorithm requires two parameters, the truth level and

the evidence level thresholds. The reported values for thisexperiment were0.7 and0.5, respectively. The

decision tree shown in Figure 11.3 was induced, and from the tree the following rule set was extracted:

1 IF [sunny][hot] THEN swimming

2 IF [cloudy][hot] THEN swimming

3 IF [rainy][hot] THEN weights

4 IF [mild][windy] THEN weights

5 IF [mild][calm] THEN volleyball

6 IF [cool] THEN weights

This rule set classifies81% of the data set correctly. Setting FCF’s corresponding parametersαa andαc

to 0.5 and0.7 respectively, withθp = 0 andbeamwidth = 1, and using FEM (Fuzzy Exclusion Model,

see Section 9.3), the following rules were induced:

1 IF [sunny, cloudy][mild, cold] THEN volleyball

2 IF [sunny][humid] THEN swimming

3 IF [mild, cold][windy] THEN weights

4 IF [rainy] THEN weights

where for brevity we do not showαa andαc for each rule. The classification accuracy of these rules for

the data set is94%. FCF found four rules, compared to six, with higher classification accuracy.

11.4.2 Comparison with Fuzzy Classifiers on Real World Data

For the final experimental evaluation, we compared FCF to thefuzzy classier learners FID [Janikow

and Fajfer, 1999] and FBS (Fuzzy Beam Search) [Fertig et al.,1999]. FID uses the divide-and-conquer

strategy to induce fuzzy decision trees (as discussed in Section 2.4), and FBS performs a beam search of
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Table 11.3:Accuracy and complexity results for different fuzzy classifiers on seven real world domains.
Data Set

FB 85.1  5.2    91.2  13.8  80.4  11.2  96.4  5.1    75.5  2.4    82.6  11.3  85.6  5.5    85.3  7.8    
FID 82.2  7.3    89.5  9.3    73.0  10.4  92.9  3.4    72.1  4.7    83.5  11.5  85.9  4.4    82.7  7.3    
FBS 69.4  6.2    91.2  13.8  60.1  15.1  91.2  13.8  69.9  3.5    83.9  8.6    74.2  7.9    77.1  9.8    

FB 7.1    1.0    4.9    0.7    8.0    1.3    5.0    0.0 8.8    1.3    5.0    0.7    5.6    1.4    6.3    0.9    
FID 69.0  51.6  11.9  3.8    8.6    1.8    7.0    2.5    20.4  21.6  12.7  6.4    24.3  7.5    22.0  13.6  
FBS 50.0  - 10.0  - 50.0  - 10.0  - 50.0  - 50.0  - 50.0  - 38.6  -

iris diabetes hepatitis coliccredit-a labor
classification accuracy

number of rules

averagelymph

its hypothesis space (see Section 2.3 for a detailed discussion of FBS). Table 11.3 shows the comparative

results for seven data sets from the UCI repository. We report the classification accuracy and the size of

the induced rule sets. The table shows the mean and standard deviation of the test set results of a 10-fold

cross validation, except for Diabetes where a 5-fold cross validation was performed.

The results for FID were obtained using a freely available implementation3. We used the default pa-

rameters as supplied with the software, with the exception that where possible we allowed the software

to define its own membership functions for numerical attributes. The reported number of rules was

calculated by counting the number of leaf nodes in the tree. For the data sets Credit-A and Hepatitis

the software failed to return an answer for three of the ten folds, and for each the results are the mean

and standard deviation of the remaining seven folds. The results for FBS were obtained from our own

implementation of the algorithm as specified in reference [Fertig et al., 1999], where we set the max-

imum search depth to 15. We performed experiments with beam widths 10, 20, and 50 for each data

set, and report the results for the beam width that resulted in the best test set classification accuracy.

By definition, the algorithm returns a rule set that containsa beamwidthnumber of rules, and thus the

standard deviation of the number of rules is not reported forFBS. FCF’s results were obtained using

FEM with a beam width of one for all data sets. We setθp = 1 for Lymph and Labor, andθp = 2 for the

remaining data sets. The accuracy evaluation function was used for all data sets, except for Iris, where

the Laplace function was used. The value forαc was set to0.5 for all data sets, and the value forαa

was set to 0.5, except for Iris (0.2), and for Hepatitis and Colic (both 0.8). The sameα values were used

for FCF and FBS. The experiments were also performed using the same instances for the different folds

between methods.

Table 11.3 shows that in general FCF outperforms the other fuzzy learning methods with respect to

classification accuracy. FID outperforms FCF by0.3% and0.9% on the colic and Hepatitis data sets,

respectively, but FCF outperforms FID on all the remaining data sets, for example by7.4% on the

Lymph data and2.9% on the Credit-A data. FBS often failed to return good rule sets, and FCF out-

performs FBS by15.7% and20.3% on the Credit-A and Lymph data sets, respectively. FBS obtained

the best classification accuracy for the Hepatitis data, outperforming FID by0.4%, and tied for the best

performance with FCF on the Labor data. Overall, FCF obtained the best classification accuracy results

for five of the seven data sets. Averaged over all the data sets, FCF, FID, and FBS obtained classification

accuracies of85.3%, 82.7%, and77.1%, respectively.

3We used FID3.3 obtainable at http://www.cs.umsl.edu/∼/janikow/fid/fid32/
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Table 11.4: Rule set induced by FCF for a single fold of Diabetes. The operator ! means the disjunction of all

terms in the respective term set, except for the indicated term (see Section 4.3.1). The default rule fires only if no

other rule fires, and classifies instances as negative.

IF [!plas.low][!mass.low][!age.young] THEN positive

IF [plas.high, plas.̄α][!insu.med][pedi.high, pedi.̄α] THEN positive

IF [!preg.many][plas.high, plas.ᾱ][!insu.high][!pedi.low][!age.middleage] THEN positive

plas

negative

plas1

age

plas2

positive

plas3

negative

plas4

negative

age1

negative

age2

pregnant

age3

negative
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preg3

skin

preg4

Figure 11.4: Fuzzy decision tree induced by FID. The lower part of the tree(13 more nodes) is not shown.

Overfitting occurs when classification performance on training data improves while deteriorating on

an independent test set [Mitchell, 1997]. FCF’s inductive bias prefers more general over more specific

hypotheses, as explained in Section 4.8. The intention of its pre-pruning criteria is to prevent too specific

rules and overfitting in general, while its user-defined parameters (especiallyθp) can be further adjusted

to cater to the characteristics of a particular data set and in this way inhibit overfitting (or fitting of noise)

and the corresponding inferior performance on an independent test set. Table 11.4 shows the rule set

induced by FCF for a single fold of the Diabetes data set, withparametersαa = 0.5, αc = 0.5, θp = 5,

beamwidth = 1, and using the accuracy evaluation function (Eq (6.7)). Figure 11.4 shows the decision

tree induced by FID for the same fold. We used the same parameters for FID as were used to obtain

the results in Table 11.3. For this single fold the classification accuracies for FCF and FID on the same

test set were80.4% and76.4%, respectively. (Recall that the classifiers used the identical independent

training set too.) The size of the induced trees on all five folds (measured by the number of leaf nodes)

varied considerably between folds, and very small or very large trees performed much worse than trees

closer to the average size. The first rule in Table 11.4 was induced in each fold, and for one of the folds

this rule comprisedthe entirerule set. FCF prevents the learning of rules with too low coverage of

positive instances, as controlled by theθp parameter. Rules that cover very few positive instances often

cover some or even comparatively many negatives, and could be fitting noise in the data. For the given
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fold’s training set, 68 rules, covering 90 positive and 340 negative instances in total, were not added to

the rule set. Most classifiers benefit from post-pruning of their classification rules, but this was not done

for the classifiers and rule sets induced here. With these statements we do not say that FCF’s rules do

not need post-pruning at all, but simply that its unpruned rules avoid overfitting to a large extent already.

A comparison of the rule set sizes obtained by the different methods demonstrates that FCF’s induction

strategy produces shorter and more comprehensible rule sets. FCF obtained the smallest rule sets onall

data sets. For the Credit-A data FCF induced 7.1 rules versus69 and 50 rules by FID and FBS, respec-

tively, and for the colic data, FCF, FID, and FBS induced 5.6,24.3, and 50 rules on average. Averaged

over all the data sets, FCF, FID, and FBS induced rule sets of sizes 6.3, 22.0, and 38.6, respectively.

Thus, the combination of FCF’s fuzzy set covering methodology, fuzzy evaluation function, and pruning

criteria performed better than the other related fuzzy rulelearners with respect to classification accuracy,

and performed much better with respect to rule set size. The significantly smaller sizes of the fuzzy rule

sets induced by FCF enhance their comprehensibility, and FCF does this while even increasing classifi-

cation accuracy. The results empirically demonstrate the validity of set covering as a new methodology

for learning fuzzy classification rules.

11.5 Application of FCF to Two Relevant Real World Problems

11.5.1 SPAM Classification

The Ling-Spam Corpus

With the increase use of email above regular mail, the opportunity of advertisement via email have

increased dramatically. When such mail advertisement is unsolicited, it is commonly referred to as

SPAM. Since the cost of advertisement through media such as television, newspaper or magazines is

much more expensive, the popularity of SPAM increased dramatically in recent times. In fact, the

number of SPAM emails is starting to overwhelm the number of legitimate emails—to such a degree

that it is feared that SPAM may cause the demise of the use of email, as users find it too cumbersome

to sort out legitimate messages from SPAM. Most users find SPAM at least annoying, if not blatantly

offensive, especially since a large proportion SPAM contains (graphic) advertisement for pornographic

sites.

Different strategies to combat this threat exist. On the onehand there is legislature, e.g. the “Controlling

the Assault of Non-Solicited Pornography and Marketing Actof 2003,” as passed on December 16,

2003, by the United States Congress. In some cases the law canbe applied effectively, e.g. an Internet

service provider, CIS Internet Servers, won a lawsuit against SPAM senders who were sending up to 10

million SPAM messages per day to their server. The law dictates that SPAM senders be fined $10 per

message, and the total damages amounted to one billion dollars [CNET News.com, 20 December 2004].

However, with the email protocols in use today the enforcement of such laws is often undermined, as it

is difficult or often impossible to identify where the SPAM was sent from. Thus, another approach is the
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Table 11.5:Performance comparison of different classifiers on the LingSpam corpus.

Classification 
Method

Classification 
Accuracy

SPAM 
Recall

SPAM 
Precision

FCF 98.17 92.95 95.42
Naive Bayesian 96.93 82.35 99.02
TiMBL(1) 96.89 85.27 95.92
TiMBL(2) 96.75 83.19 97.10
Outlook Patterns 90.98 53.01 87.93
TiMBL(10) 89.08 34.54 99.64
No Filter 83.37 0 ∞

proposal of new email standards that removes the anonymity of email. A third approach is identifying

SPAM and automatically deleting it. One common approach to distinguish between different classes of

text documents is the use of Bayesian classifiers such as Naive Bayesian [Mitchell, 1997]. This method

also proved relatively successful to separate SPAM from HAM(a term for legitimate email) [Sahami

et al., 1998; Schneider, 2003], outperforming advanced rule learners such RIPPER [Pantel and Lin,

1998].

The Ling-Spam corpus is a publicly available corpus of SPAM and legitimate messages4. The corpus

contains 2893 messages sent via the mailing list Linguist. Linguist is a moderated mailing about the

science of linguistics5. Approximately 16% of the messages in the corpus is SPAM, andthe labelling

was done by hand to minimize noise. Although the corpus covers mainly the domain of linguistics,

legitimate messages also include, for example, job postings and software announcements.

Experiments

To induce a fuzzy rule set capable of distinguishing betweenSPAM and HAM, the different text docu-

ments are first preprocessed into feature vectors. We used the freely available software FeatureFinder6for

feature extraction. FeatureFinder uses mutual information to select a user-defined number of features.

The feature types that can be created include TF (term frequency) and TF-IDF (Term Frequency / In-

verse Document Frequency). Let theith feature have theith greatest mutual information, letTFi be

the number of occurrences of theith feature in a given document, and let|D| be the total number of

documents, thenfi, the TF-IDF of theith feature for a given document is calculated as,

fi = log
|D|

TFi
(11.2)

To create a fuzzy training set for our experiments we first extracted 500 TF-IDF type features for each

document. We then extracted membership functions from eachfeature using the approach described in

Appendix C, where we allowed up to four linguistic terms per linguistic variable. However, in general

the extraction process suggested the use of three membership functions.

Sakkis et al compared the performance of an adaptedk-nearest neighbour classifier called TiMBL

4The Ling-Spam corpus can be downloaded at http://www.dcs.ex.ac.uk/corpora/
5An archive of the Linguist mailing list is available at http://listserv.linguistlist.org/archives/linguist.html
6Retrieved from http://www.cs.iastate.edu/∼andymenz/573Project.html on 1 December 2004
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[Daelemans et al., 2000] for values ofk = 1, 2, 10 with that of Naive Bayesian and MicroSoft Outlook

patterns on the Ling-Spam corpus [Sakkis et al., 2003; Androutsopoulos et al., 2000]. We repeat their

results along with that obtained using FCF in Table 11.5. FCFwas configured as follows,αc = 0.5,

αa = 0.2, beamwidth = 1, θp = 0, simultaneous concept learning, Laplace evaluation, and FUZZ-

CONRI as specialization model. SPAM recall is a measurement of the percentage of SPAM documents

correctly identified with respect to all SPAM documents, andis thus equivalent to the True Positive mea-

surement. SPAM precision is a measurement of the accuracy ofa prediction, and is computed by the

percentage of correctly identified SPAM documents with respect to all documents identified as SPAM,

and is thus equivalent to(1−False Postive Ratio)×100%. Classification accuracy measures the number

of correctly classified documents, where the classificationis either SPAM or HAM. The No-Filter clas-

sifier classifies all documents as legitimate, and accordingly has zero recall. It’s classification accuracy

is 83.19%.

FCF outperformed all the other methods with respect to classification accuracy. It obtained a classifi-

cation accuracy of98.17%, while the second best classifier, Naive Bayesian, obtaineda classification

accuracy of96.93%. FCF also significantly outperformed all other classifiers on SPAM recall. It ob-

tained92.95% recall, while the three next best classifiers, TiMBL(1), TiMBL(2), and Naive Bayesian,

obtained recall percentages85.27%, 83.19, and82.35%, respectively. FCF was thus much more suc-

cessful at identifying SPAM messages than any of the other learners. FCF’s SPAM precision was slightly

worse, but still comparable to that of the other classifiers.In the order of best recall, the precision of

FCF, TiMBL(1), TiMBL(2), and Naive Bayesian, were95.42%, 95.92%, 97.10%, and99.02%. We

provide the rule set induced by FCF during one fold of the 10-fold cross validation in Appendix E.

11.5.2 Septic Shock

Septic Shock is defined as “...a serious, abnormal condition that occurs when an overwhelming infection

leads to low blood pressure and low blood flow. Vital organs, such as the brain, heart, kidneys, and liver

may not function properly or may fail. Decreased urine output from kidney failure may be one symptom.”

[MedlinePlus Medical Encyclopedia, 2004]. Septic shock isassociated with a mortality rate of around

50%, and is still an important research subject for medical experts and data analysts [Paetz, 2003].

During the Deutsche Forschungsgemeinschaft (DFG) sponsored project MEDAN7, medical experts and

data analysts cooperated to gather data of septic shock patients. The H16 data set contains the sixteen

most measured physiological parameters of 138 septic shockpatients. Of the 138 patients, 68 patients

survived.

Paetz [2002] used a Fuzzy Rectangular Basis Function Dynamic Decay Adjustment Neural Network

(Fuzzy-RecBF-DDA-NN) [Berthold and Huber, 1995; Huber andBerthold, 1995] to learn rules for

predicting whether a patient will survive or not. The results reported were obtained from 5-fold cross

validation. The rule sets attained classification accuracywith mean and standard deviation84.02% and

4.44%, respectively. The average rule set size was 16 rules. We obtained the same test and training sets

7See http://www.medan.de/
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Table 11.6:Performance of different configurations of FCF on the MEDAN data.

Mean Std Dev Mean Std Dev
RecBF 84.02 4.44 16.0 N/A

HI 87.93 3.70 40.8 7.00
GO 87.00 3.49 26.2 3.03
SR 84.48 1.66 3.2 0.84

Accuracy Rule Set SizeConfig

Table 11.7:Different configurations of FCF on use with the MEDAN data.

Config Beam Width Spec. Mod. Inf. Thres. Weighted SCL Eval. Meth.
HI 1 FuzzConRI 0.1 T F lscontent
GO 4 FuzzConRI 0.1 F F lscontent
SR 3 FuzzyBexa 0.4 F T accuracy

as used in the experiments from the author of reference [Paetz, 2002] for direct comparison with FCF.

Table 11.6 reports the results for the three different configurations of FCF shown in Table 11.7, as well

as the results from reference [Paetz, 2002].

The goal of configurations HI and GO was high classification accuracy. The best classification accuracy

obtained by FCF was87.93%, which is3.91% better than the previous result obtained by the NN (neural

network). The weighted cover resulted in the induction of many overlapping rules, and the resulting rule

set has relatively many rules (40.8). If no weighted cover isused, as in configuration GO, a good overall

result is obtained, with87.0% classification accuracy and 26.2 rules on average. For configuration SR

we used the simultaneous concept learning induction strategy. The rule set classification accuracy for

these rules were only slightly better than that of the NN, however, the rule set sizes were dramatically

smaller—on average 3.2 rules per rule set. An example of one such rule set is the following:

IF [!BlutdruckSystolisch.mf0][! Temperatur.mf4][! Thrombozyten.mf0][! Urinmenge.mf0]

THEN class.ueberlebt

ELSE IF [!BlutdruckDiastolisch.mf4] THEN class.verstorben

ELSEclass.ueberlebt

FCF was thus able to improve significantly on the previous results, both with respect to rule set com-

prehensibility and rule set classification accuracy8.

11.6 Summary

In this chapter we provided arguments why set covering is a good methodology for the induction of

fuzzy rules. Crisp covering algorithms are a special case offuzzy covering algorithms, and as such fuzzy

covering algorithms are at least as powerful as crisp covering algorithms. We also provided theoretical

8In English, “BlutdruckSystolisch” means systolic blood pressure, “Temperature” means temperature, “Thrombozyten”

means platelets, “Urinmenge” means urine quantity, “ueberlebt” means survived, “BlutdruckDiastolisch” means diastolic

blood pressure, and “verstorben” means deceased.
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arguments why fuzzy covering algorithms are more powerful,for example that, unlike for crisp rules, the

decision boundary in the fuzzy case need not be axis-parallel. We also proposed a series of experiments

to demonstrate cases where crisp rule induction fail, but fuzzy rules provide good results. We provided

an empirical evaluation of different fuzzy methods on benchmark data sets to substantiate our claim that

fuzzy set covering often perform better than other fuzzy learning methods, such as fuzzy decision trees

or beam search, for example. FCF was able to convincingly outperform the other fuzzy classifiers with

respect to classification performance. In addition, FCF obtained significantly less complex rule sets.

Finally, we provided two applications where FCF improved upon the performance of previously used

methods.
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CHAPTER 12

Conclusions and Directions

for Future Research

The objective of this dissertation was to prove that set covering can be applied successfully for the

induction of fuzzy classification rules from training data.Set covering has proven to be a very successful

concept learning methodology in the crisp case, and many different algorithms applying this approach

have been proposed. Fuzzy sets are a generalization of crispsets, and a crisp set is a special case of

a fuzzy set. As such, many different methods for the induction of fuzzy rules have been proposed.

Some of the more successful induction methodologies are fuzzy decision trees, genetic algorithms, and

partitioning methods. One drawback of most of these methodsis that the induced rule sets are often

not very comprehensible due to their rather large number of rules. There are also comparatively few

methods that allow both the induction of incomplete rules. Furthermore, most methods concentrate on

extracting fuzzy set membership functions, and thus forgo the use of fuzzy sets as linguistic labels with

meaning to domain experts. However, according to Guillaume[2001], the use of linguistic terms, small

rule sets, and the induction of incomplete rules are exactlythe criteria for obtaining comprehensible

fuzzy rule sets.

By developing the fuzzy set covering rule induction methodology, this dissertation addressed the prob-

lem of inducing accurate, but also comprehensible fuzzy classification rules. Thus, we have extended

the different classes of rule induction methods, and added fuzzy set covering to it. We have also devel-

oped four new fuzzy rule induction algorithms implementingthis new methodology. The first algorithm,

FUZZYBEXA, inherits its structure from its crisp ancestor BEXA. FUZZYBEXA induces a single rule

through a conjunction specialization process based on excluding linguistic terms. It starts with the most

general conjunction in its description language, and expand this allowing a local beam search until cer-

tain stopping criteria are met. We have also proved various characteristics of the algorithm, for example

that its description language induces a lattice, and that the fuzzy extension operator is an order-preserving

mapping from descriptions to associated instance sets.

We also presented several experiments with FUZZYBEXA. An experimental evaluation with benchmark

data sets investigated its different learning parameters.We measured the effect of the beam width,

FUZZYBEXA ’s sensitivity to noise, it’s pre- and post-training sensitivity to the value of theα-cut, and

the effect of its various stop growth tests. The principle results are that FUZZYBEXA ’s search effort
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grows at most linearly with increasing beam width, that it behaves well in the presence of noise, that it is

not overly sensitive to the antecedent threshold, and that the use of the stop growth criteria significantly

improves the search in terms of rule set complexity and search effort. The experiments also show that

although FUZZYBEXA ’s hypothesis space for most problems can be very large, the algorithm easily

copes with normal size data sets, and that even very large data sets can be successfully searched.

The conjunction evaluation measure plays an important roleto guide the search for single rules. As such,

we proposed a range of conjunction evaluation functions specially adapted to the fuzzy case. We also

conducted experiments to investigate their performance for different data sets. The results showed that

the evaluation function should be matched to the data set’s characteristics, and that no single evaluation

function always performs best. However, our proposed Accuracy evaluation function performed very

well in most circumstances, especially as measured by the size of the rule set.

We also presented a survey of different algorithms for the induction of fuzzy rules. These algorithms can

be grouped into seven classes, depending on their inductionstrategy: greedy incremental rule learners,

divide-and-conquer, similarity, stochastic, partitioning, hierarchical, and gradient descent. Of course

there also some algorithms that do not fit neatly into one of these classes. We provided a comparison

between the different classes and FUZZYBEXA, as an example of a fuzzy set covering algorithm. None

of the algorithms have all of FUZZYBEXA ’s characteristics, in fact, most have very little in common

with FUZZYBEXA.

Since one new algorithm is not enough to establish a paradigm, we developed more fuzzy algorithms

applying the set covering approach, FUZZYSEEDSEARCH, FUZZCONRI, and FUZZYPRISM. FUZZ-

CONRI and FUZZYPRISM use FuzzyCAL as description language, and employappendas special-

ization operator. FUZZYBEXA and FUZZYSEEDSEARCH use FuzzyAL as description language, and

employexcludeas specialization operator.

FCF was introduced as a general framework for set covering algorithms, both crisp and fuzzy. The top

layers of the framework encapsulate everything that is similar between different set covering algorithms.

This include the fuzzy set covering approach, and search heuristics such as conjunction evaluation,

beam search, prepruning, and efficiency improvements. Any improvement to the top layers, or the

addition of new or more advanced heuristics, will automatically benefit all algorithms that fit in the

framework. FCF allows different covering algorithms to be characterized and compared. Thus, FCF

allows the rapid development of new covering algorithms, since the designer need to concentrate only

on what differentiates his algorithm from the rest. To demonstrate the applicability of the framework we

showed that all four proposed covering algorithms fit withinthe framework. We also characterised each

algorithm and described its various properties.

To the best of our knowledge, there existed no algorithm for the inductionorderedfuzzy rule sets, or

fuzzy decision lists. FUZZYBEXA II is a novel fuzzy rule induction algorithm following the simultaneous

concept learning approach, and is capable of inducing decision lists (ordered rule sets). We showed that

decision lists can compare favourably to unordered rule sets under the right conditions. If an appropriate

conjunction evaluation function is used, the induced rule set can be very descriptive and highly accurate,

while being extremely compact.
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To motivate the use of fuzzy set covering we have provided arguments for the use of fuzzy set covering as

opposed to crisp set covering of other fuzzy rule learning methods. Fuzzy set covering as a generalization

of crisp set covering is far more powerful, and includes crisp set covering as a special case. We have also

compared fuzzy set covering to other algorithms that are also capable of inducing incomplete rules and

use fuzzy sets as linguistic labels. On average, FCF outperforms methods such as decision trees (e.g.

FID) or beam search (e.g. FBS) in terms of classification accuracy. However, at the same time FCF

significantly outperforms these methods in terms of rule setcomprehensibility. Finally, we provided

results on two real world applications where FCF improved upon the state of the art. In the next section

we list the major scientific contributions made by this dissertation. We then provide some directions for

future research in Section 12.2, and Section 12.3 concludesthe dissertation.

12.1 Scientific Contributions

We list the major scientific contributions made by this dissertation:

1. Establishing a new paradigm for the induction of fuzzy classification rules

(“Fuzzy rule induction in a set covering framework”, [Cloete and van Zyl, 2006]);

2. Narrowing the gap between the symbolic and sub-symbolic machine learning communities

(“A machine learning framework for fuzzy set covering algorithms”, [Cloete and van Zyl, 2004c]);

3. The first ever algorithm for the induction of fuzzy decision lists

(“Simultaneous concept learning of fuzzy rules”, [van Zyl and Cloete, 2004f]);

4. A general fuzzy set covering framework

(“Specialization models for a general fuzzy set covering framework”, [van Zyl and Cloete, 2006]);

5. Novel fuzzy rule evaluation functions, and their importance during rule induction

(“Heuristic functions for learning fuzzy conjunctive rules”, [van Zyl and Cloete, 2004c], “Evalu-

ation function guided search for fuzzy set covering”, [Cloete and van Zyl, 2004a]);

6. The algorithm FUZZYBEXA based on exclusion

(“Fuzzy set covering with FuzzyBexa”, [Cloete and van Zyl, 2004b]);

7. The algorithm FUZZCONRI that induce rules in FuzzyCAL

(“An inductive algorithm for learning conjunctive fuzzy rules”, [van Zyl and Cloete, 2004d],

“FuzzConRI - a fuzzy conjunctive rule inducer”, [van Zyl andCloete, 2004a]);

8. The algorithm FUZZYPRISM that uses fuzzy information gain

(“FuzzyPRISM: a specialization model for the FuzzyBexa framework”, [van Zyl and Cloete,

2004b]);

9. Encoding FuzzyAL rules as prior knowledge in a neural network

(“Prior knowledge for fuzzy knowledge-based artificial neural networks from fuzzy set covering”,

[van Zyl and Cloete, 2004e]).
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12.2 Directions for Future Research

We have proposed fuzzy set covering as a new paradigm for fuzzy classification rule learning. However,

the field is still wide open for further research. Some ideas include further extensions and improvements

to FCF, the development of more algorithms, and the extension of fuzzy set covering in general. In the

remainder of the chapter we give a brief overview of some of the open problems and also propose some

possible strategies.

12.2.1 Neural Network Encoding of Fuzzy Rules

The encoding of an extracted fuzzy rule set in a neural network will provide a link between the sym-

bolic and sub-symbolic connectionist approaches to concept learning. In this area we have already taken

preliminary steps, and developed a method for encoding FuzzyAL rules [van Zyl and Cloete, 2004e].

The network can represent a fuzzy rule set with internal disjunction accurately under the right condi-

tions. The knowledge encoding strength (bias) should be large enough, and the slope parameter of the

sigmoidal activation functions should also be sufficientlylarge. We also showed empirically that the net-

work is capable of correcting incorrectly encoded knowledge, and of improving given further training

data. However, the final step of taking the trained neural network and again extracting FuzzyAL rules

has still not been taken. Rule extraction would allow the seamless migration between both knowledge

representations. Since the encoding method is related, butnot central to the theme of this dissertation,

we provide a summary of the method in Appendix D.

12.2.2 Extending the Description Language

FuzzyAL and FuzzyCAL are both powerful description languages - as can be seen from the good perfor-

mance of algorithms using them. However, as discussed in Section 4.10.4, these description languages

do not allow for the description of relations between different attributes. One possible way for extending

the description language is to add more operators, such as relational operators. A further extension is

the addition of fuzzy hedges, such as “very,” “little,” “at most,” etc.

12.2.3 Predicting Concept Membership

We discussed the semantic interpretation of the rules induced by FCF in Section 4.3.5. The membership

of an instance to a rule antecedent is no prediction of the membership of the instance to the rule conse-

quent. In some cases it may be desirable to know the membership to the concept. One approach may be

to learn a non-linear mapping between instances’ membership to a rule’s antecedent and its consequent

for all instances matched by the rule. Another approach may to adapt the induction process to learn a

hierarchy of rules, such that rules on higher levels have higher membership strengths.
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12.2.4 Rule Post-Pruning

FCF includes many efficiency criteria, and also includes theprepruning of rules. However, in this

dissertation we did not address the question of rule post-pruning—i.e. pruning after the induction of the

complete rule set. In the crisp case, rule post-pruning often increases the generalization performance of

the rule set [Mitchell, 1997, p. 71]. We have already undertaken some preliminary steps to address rule

post-pruning [Robbel, van Zyl and Cloete, 2004], but much more remains to be done.

12.2.5 Computing the Complete Most General Consistent RuleSet

FUZZYBEXA searches the lattice of conjunctions from top to bottom in a consistent manner, and it is

guaranteed to find members ofCM , the set of most general consistent conjunctions, during each itera-

tion when using an infinite beam width. In fact, using an infinite beam width, FUZZYBEXA will find

all members ofCM during thefirst iteration ofFindBestConjunction. However, presentlyFindBestCon-

junctionreturns only a single conjunction. A further possible extension to FCF is to keep track of the set

of “best conjunctions.” This can be implemented by maintaining the setbestconjunctionsin FindBest-

Conjunction. This set is cleared each time the best conjunction is replaced by a conjunction that has a

better evaluation. Each time a conjunction is found with thesame evaluation as the best conjunction, this

conjunction is added tobestconjunctions. The set of best conjunctions is then returned. To prevent the

addition of many similar rules,CoverConceptscould only add rules frombestconjunctionsthat have no

instances in common with other rules frombestconjunctions. Using this method, the set of all disjoint

but equally good rules is found during each iteration ofFindBestConjunction, which could be renamed

to FindBestConjunctions. A larger beam width may prove helpful in this case.

12.2.6 Automatic Selection ofαa

FCF requires the antecedent thresholdαa to be specified by the user. Often the user (domain expert)

may have a good feeling for a suitable value ofαa, but this may also not be the case. Another extension

to the framework is thus to allow the framework to selectαa automatically, and even select different

values ofαa for different rules. One concern, however, is that too many individually tuned values forαa

may reduce the comprehensibility of the rule set.

12.2.7 Evaluation Function Sensitivity toαa

We have not investigated the sensitivity of each rule evaluation method toαa. This may be an interesting

experiment, and we expect different evaluation functions to have different levels of sensitivity toαa. We

expect the Laplace function to be very sensitive, but the Accuracy function to be relatively insensitive to

αa. Depending on the problem domain, one may opt to use a more insensitive function ifαa cannot be

determined externally.
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12.2.8 Using Genetic Algorithms for Adapting Membership Functions

We have spent very little time exploring the influence of different membership functions on the induction

process. The rationale was that the membership functions are determined externally to the induction

process, and the induction algorithm should make do with what it has. However, the induction process

is certainly influenced by the membership functions, and better membership functions should allow

the induction of more accurate and also more comprehensiblerule sets. FCF would allow the genetic

optimisation of membership functions, by providing an objective function in the form of a rule set. The

process may functions roughly as follows. FCF is used to bootstrap the process by the induction of

a rule set. The rule set is then used as objective function formembership function optimisation. After

optimisation, the rule set is discarded, but the membershipfunctions are kept for the next iteration of rule

induction. The process can then be iterated until the classification performance of successive iterations

do not improve anymore.

12.2.9 Incremental Learning and Prior Knowledge

It may be desirable to keep an old tried-and-tested rule set even when new information (training data)

becomes available. In this case an incremental learning approach exploiting the prior information may

be used. Prior information may also be presented in the form of knowledge extracted from domain

experts. A first approach is to add the prior knowledge in the form of rules to the rule set prior to rule

induction, and to continue rule induction as usual. Rule antecedents may also be pruned using the extra

training data. Another approach may be to adapt rules that classify the new data incorrectly either by

specializing or generalizing them.

12.2.10 Information from Knowledge Discovery

The last aspect which we address is the application of FCF to real world domains. FCF presents a

new methodology for knowledge discovery which may prove very useful in many different domains.

We have showed some preliminary results for two such applications, and FCF performed very well.

However, we did not customize or adapt the data in any way. We expect a custom solution involving

FCF and data adapted to fit the algorithm to yield very satisfactory results.

12.3 Conclusion

This dissertation advanced the state of the art in fuzzy classification rule induction by establishing fuzzy

set covering as a new fuzzy rule induction paradigm. Fuzzy set covering algorithms are capable of

inducing very comprehensible but also highly accurate rulesets. Thus, we hope the work presented in

this dissertation make the use of fuzzy classification rulesmore acceptable to both the crisp rule set and

numerical concept learning communities.
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APPENDIXA

Classical Set Covering Algorithms

In this dissertation we established set covering as a methodology for rule induction in the fuzzy case.

Thus, it is appropriate to provide a brief review of classical (crisp) set covering algorithms. For a

definition of set covering please see Section 3.2. Section A.1 reviews the AQR family of algorithms,

Section A.2 reviews PRISM, Section A.3 reviews CN2, and Section A.4 reviews RIPPER.

A.1 AQR

The AQR family of inductive learning algorithms, of which AQ15 is an example, generates rules from

training instances by following the principles first introduced by Michalski in 1969 [Michalski et al.,

1986b; Michalski, 1969]. AQR builds decision rules that accounts for all positive and no negative in-

stances by following a heuristic search of the a space of legal logical expressions. AQR rules are repre-

sented in VL1, which is a multiple-valued logic propositional calculus with typed variables [Michalski,

1974a].

As an example of AQR, Table A.1 shows the basic AQ15 algorithm[Michalski et al., 1986a,b]. The

algorithm is initialized with a partial cover of the positive examples. This initial partial cover may

simply have the value true, or be a user defined hypothesis, providing AQ15 with an incremental learning

facility. The proceduregetStar obtains all maximally general complexes, or hypotheses, that cover a

positive seed and not a negative seed. These are obtained by generating all maximally general complexes

covering the positive seed, and removing those that also cover the negative seed. The maximally general

complexes are then intersected with the current partial cover. This results in a new partial cover that still

covers the positive seed, while not covering the negative seed.

This process is iterated and the results combined until no negative examples are covered. The best

complex from the result ofgetStar is then added to the current rule set. AQ15 iterates the wholeprocess

until all positive examples are covered. The most recent incarnation of the AQ algorithm is AQ20

[Cervone et al., 2001]. Important new features include an object oriented implementation, handling

continuous variables without prior discretization, and selecting multiple rules fromstar.
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Table A.1: The AQ15 algorithm.

PROCEDURE AQ15(partialcover)
1 WHILE partialcover does not cover all positive examples
2 seed = any uncovered positive example
3 star = getStar(seed)
4 best = best complex fromstar according to evaluation function
5 partialcover = patialcover ∨ best
6 RETURNpartialcover

END PROCEDURE

PROCEDURE getStar(positiveseed)
1 partialstar = TRUE
2 WHILE partialstar covers some negative examples
3 negativeseed = any negative example covered bypartialstar
4 negativestar = {c|c is maximally general,c coverspositiveseed,

andc does not covernegativeseed}
5 partialstar = patialstar ∩ negativestar
6 retainmaxstar best disjoint complexes inpartialstar
7 RETURNpartialstar

END PROCEDURE

A.2 PRISM

PRISM is an induction algorithm that borrows some ideas fromID3 to implement an inductive rule

learner [Cendrowska, 1987]. Rules are iteratively inducedfor each class following the algorithm shown

in Table A.2. In the first step the probability of occurrencep(δn|ax) of the classificationδn for each

attribute value pairax is calculated. In the second step the pair for whichp(δn|ax) is maximum is

selected, and a subset of the training set comprising all theinstances which contain the selectedax is

created. This subset is then considered as the new training set, and the previous two steps are repeated

until all instances in the training set belong to classδn. An IF-THEN rule is then formed by taking

the conjunction of allax chosen as antecedent andδn as consequent. The original training set is then

restored, but all instances covered by the new rule are removed. This procedure is iterated until all

instances of classδn are covered. At this point the initial training set is restored and the induction of

rules covering the next class begins. The induced rule set isclearly unordered. If two attribute values

have the same class probability, PRISM selects the attribute value that has the highest probability that

the class occurs within the subset considered, thereby opting to induce the most general rule first.

A.3 CN2

The CN2 induction algorithm is based partially on ID3 [Quinlan, 1986] and partially on the AQR family

described in Section A.1. CN2 removes the need for seed examples during the search process, and

employs a beam search and stop growth tests [Clark and Niblett, 1989]. The CN2 algorithm learns an

ordered list of rules, with a default rule predicting the most frequently occurring class as the last rule.
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Table A.2: The PRISM algorithm.

PROCEDURE PRISM(T )
1 Calculate the probability of occurrencep(δn|ax) of classificationδn for

each attribute-value pairax.
2 Select theax such thatp(δn|ax) is a maximum, and create a subsetF ,

of the training setT such thatF = {e|e containsax ande belongs toδn}.
3 Repeat steps 1 and 2 until∀e ∈ F (e belongs toδn). Form the ruler with δn

as consequent and as antecedenta1 ∧ a2 ∧ . . . ∧ an, where theai was chosen in step 2.
4 Remove all instances covered by the rule from the training set.
5 Repeat steps 1 to 4 until all instances of classδn have been removed.

END PROCEDURE

To classify an unlabeled instance, rules are considered in order until the first one fires. This rule is then

used to predict the class. Ordered rule learning uses entropy as an example evaluation function. The

relationship between ID3, CN2 and the AQ family is well studied in the literature [Clark and Niblett,

1989; Theron and Cloete, 1996].

The CN2 algorithm is given in Table A.3. The algorithm receives a training setE of instances. It then

iteratively searches for a complex (description) coveringa large number of instances from classC and

while covering few instances of other classes. If a rule is found, the examples covered by it are removed

from the training set and the rule is added to the rule list. This process repeats until the training set

becomes empty, or no new suitable rules are found.

New complexes are generated in a pruned general to specific search. A size-limited set of the best

complexes found thus far is maintained. Complexes from thisset are specialized by adding new con-

junctive terms. Specializations that cover no instances, or that was generated in the previous iteration,

are removed. For its rule evaluation function CN2 uses the entropy measure

H = −
∑

i

pi log2(pi) (A.1)

wherepi is the probability that an instance covered by the rule belongs to classi. CN2 prunes rules

by testing whether they are significant. The likelihood ratio statistic is used to compare the observed

distribution to the expected distribution of the training set. Only significant rules are added to the rule

set. In an improved version of CN2, the induction of an unordered rule set was proposed by using the

Laplace estimate to evaluate conjunctions [Clark and Boswell, 1991].

A.4 RIPPER

RIPPER (Repeated Incremental Pruning to Produce Error Reduction) [Cohen, 1995] is an improved

version of the algorithm IREP (Incremental Reduced Error Pruning) by Fürnkranz and Widmer [1994],

and is arguably the most powerful rule learning algorithm today [Fürnkranz and Flach, 2004]. The basic

algorithm is given in Table A.4.GrowRulestarts with an empty conjunction of conditions, and itera-

tively appends conditions that maximizes FOIL’s information gain criterion [Quinlan, 1990; Quinlan and
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Table A.3: The CN2 algorithm.

PROCEDURE CN2(E)
1 rulelist = ∅
2 REPEAT
3 bestcomplex = findBestComplex(E)
4 IF bestcomplex 6= NULL
5 E′ = examples covered bybestcomplex
6 E = E − E′

7 C = most common class inE′

8 rulelist = rulelist ∪ ‘IF bestcomplex THENC ’
9 UNTIL bestcomplex = NULL ORE = ∅
10 RETURNrulelist

END PROCEDURE

PROCEDURE findBestComplex(E)
1 star = TRUE, bestcomplex = NULL, selectors = all possible selectors
2 WHILE star 6= ∅
3 newstar = {x ∧ y|x ∈ star, y ∈ selectors}
4 newstar = newstar − star ∪ {c|c ∈ star, c = NULL}
5 FORci ∈ newstar
6 IF ci is statistically significant when tested onE AND
7 ci is better thanbestcomplex according to the evaluation function THEN
8 bestcomplex = ci
9 retainbeamwidth best complexes innewstar
10 star = newstar
11 RETURNbestcomplex

END PROCEDURE

Cameron-Jones, 1993] until no negatives are covered.PruneRuleconsiders deleting any final sequence

of conditions from the rule, choosing the deletion that maximizes the function

v(rule, pruneP, pruneN) ≡
p− n

p+ n
(A.2)

whereP andN are the numbers of positive and negative instances in the sets pruneP andpruneN ,

respectively, andp andn are the number of positive and negative instances covered byrule, respec-

tively. The deletion process continues until no deletion improves the valuev. For multi-class problems,

RIPPER orders classes in sequence of increasing prevalence. Rules are then induced using the first

class as positive and the remaining classes as negative instances. The instances of the first class are

then removed from the training set, and the process iterateduntil only the majority class remains, which

is classified by the default rule. RIPPER’s stopping criterion works as follows. The total description

length of rule set and instances are computed. Induction terminates when this description length is more

thand bits larger than the smallest description length obtained thus far, or when no positive instances

remain. For a discussion on computing the description length of a rule please see references [Cohen,

1995] and [Quinlan and Cameron-Jones, 1995a]. The rule set obtained from IREP* is further optimised

by a post-pruning phase. The whole process can be iterated byadding additional rules induced by IREP*

and optimising again. This algorithm is called RIPPERk for k optimisation steps. By design RIPPER

induces extremely compact rule sets. An accuracy based comparison on 37 data sets between RIPPER2
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Table A.4: The RIPPER algorithm.

PROCEDURE RIPPER (T ,Concepts)
1 orderConcepts in order of increasing prevalence
2 ruleset = ∅
3 REPEATk TIMES
4 FOR EACH conceptc ∈ Concepts DO
5 Let (P ,N ) be the positive and negative instances inT
6 ruleset = ruleset ∪ IREP*(P ,N )
7 remove instances belonging to conceptc from T
8 END FOR
9 PostPrune(ruleset)
10 END REPEAT
11 RETURNruleset

END PROCEDURE

PROCEDURE IREP* (P ,N )
1 ruleset = ∅,minmdl = ∞
2 WHILE P 6= ∅
3 split (P ,N ) into (GrowP , GrowN ) and (PruneP , PruneN )
4 rule = GrowRule (GrowP , GrowN )
5 rule = PruneRule (rule, PruneP , PruneN )
6 IFminmdl > MDL(rule) THEN
7 minmdl =MDL(rule)
8 IF MDL(rule)> minmdl+ d THEN
9 RETURNruleset
10 ruleset = ruleset ∪ rule
11 remove instances covered byrule from training data
12 END WHILE

END PROCEDURE

and C4.5 [Quinlan, 1993b] resulted in one draw, 21 wins and 15losses for RIPPER2 [Cohen, 1995].
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APPENDIXB

Fuzzy Attribute Relation File Format

The Fuzzy Attribute Relation File Format (FARFF) is an extension of the Attribute Relation File Format

(ARFF) used by the WEKA data mining package [Witten and Frank, 2000]. ARFF was designed for

crisp data sets, and does not allow the definition of membership functions. An example of an FARFF data

file is shown in Table B.1. The first line defines the name of the relation using the keyword@relation.

The definition of the linguistic variables is followed by thedefinition of the fuzzy instances and are

separated by the keyword@data.

FARFF allows the definition of three different fuzzy attribute types for dealing with linguistic variables.

The simplest type allows the definition of a linguistic variable with a single linguistic term. Such at-

tributes are indicated by the keyword@attribute, followed by the name of the linguistic variable

and then the keyword@mfvalue. The linguistic variableskill is an example of such a definition. The

membership degree to the fuzzy set for each instance is givenin the data section of the file. Each at-

tribute definition is delimited by parentheses and separated by commas. The membership for instances

1, 2 and 3 toskill is 0.4, 0.6, and 0.9, respectively. Linguistic variables with fuzzy sets for which the

instance membership degrees are known, but not the membership functions, are defined by the keyword

@attribute, followed by the name of the linguistic variable, followed by the definition of its term

set. The term set is delimited by curly braces, and the individual linguistic terms are comma separated.

The instance membership degrees to the individual linguistic terms are given in the same order as the

definition of the linguistic terms. For example the membership of instance 1 to the linguistic terms

Surrealism, AbstractExpressionism, andPopArtare 0.4, 0.7, and 0.0, respectively. Note, crisp nominal

observations are a special case of this type of attribute, like for example the linguistic variablestillAlive.

In this case the membership degree to a single linguistic term is one while the membership degrees to

remaining terms are zero.

FARFF also allows the definition of the membership functionsof the individual linguistic terms. Such

attributes are indicated by the keyword@mf, followed by the name of the linguistic variable and the

definition of the membership functions of its term set, delimited by curly braces. Each linguistic term is

defined by specifying its name, followed by a colon and the specification of the membership function.

The membership function can be any piece-wise linear function, specified by giving the coordinates

of the function. The membership degree specification of the lowest and highest points on the domain

defines the membership degrees for points lower and higher than these, respectively. For example, the

linguistic variableagehas four linguistic terms,child, young, midlife, andold. Instances contain the
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Table B.1: An example of a FARFF data file.

@relation FARFFExample
@attribute skill mfvalue
@attribute stillAlive {yes, no}
@mf age {

child: (15 , 1.0) - (20 , 0.0)
young: (10 , 0.0) - (20 , 1.0) - (30, 1.0) - (35 , 0.0)
midlife: (30 , 0.0) - (35 , 1.0) - (50, 1.0) - (65 , 0.0)
old: (60 , 0.0) - (70 , 1.0)

}
@attribute style {Surrealism, AbstractExpressionism, PopArt}

@data
(0.4), (1 0), (71.0), (0.4, 0.7, 0.0)
(0.6), (1 0), (55.0), (0.0, 0.2, 0.8)
(0.9), (0 1), (57.0), (0.9, 0.4, 0.0)
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Figure B.1: Membership functions of the linguistic terms for the linguistic variableage.

observation on the domain of the linguistic variable, for example instances 1, 2, and 3 specifyageas

71, 55, and 57, respectively. The membership of an instance with age 15 or less to the linguistic term

child will be one, and similarly the membership of an instance withage 20 or more will be zero. The

membership degree of an instance to all the specified linguistic terms can thus be computed from their

respective definitions.
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APPENDIXC

Membership Function Extraction

The fuzzy set covering algorithms introduced by this work assume that a fuzzy training set is avail-

able for the induction of fuzzy classification rules. Some approaches do not make this assumption,

and assume numerical observations as input [Wang and Mendel, 1992; Kasabov, 2001b]. One of their

main functions is thus also to induce a mapping from numerical observation to membership degrees.

Other methods, most notable fuzzy decision tree induction methods [Yuan and Shaw, 1995; Cios and

Sztandera, 1992], assume instances are defined by their membership degrees to linguistic terms. FCF

allows both approaches, either the membership degrees, or the membership function and numerical ob-

servations can be specified. Different methods for automatically determining membership functions

have been proposed in the literature. These include using self-organizing maps, clustering methods,

neural networks, and genetic algorithms (for an overview refer to Chapter 2). In the following discus-

sion we will introduce the method used to extract membershipfunctions as used for all the experiments

in this work.

C.1 Fuzzifying Training Data

If the training data is specified by the membership degrees ofinstances to linguistic terms, no further

fuzzification is required. However, it is more common that the data contain numerical observations of

system variables. In this case a membership function mapping the numerical domain to fuzzy member-

ship degrees is used. The definition of such membership functions may be clear from the application, or

given by an expert. If this is not the case, an automatic process can be used to extract suitable member-

ship functions directly from the data.

C.1.1 Membership Function Shapes

Several membership function shapes have been proposed and used in literature. The most common

functions used are the triangular, trapezoidal, and Gaussian functions. Except where stated otherwise,

we utilized rough piecewise-linear bell shaped functions.This kind of function fits many real world

problems [Surmann, 2000]. The bell shape is approximated using five lines, as shown in Figure C.1.

A six line approximation of the Gaussian function was used for evolutionary optimisation of a fuzzy

rule based system [Surmann, 2000]. Using an approximation instead of the real Gaussian function
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Figure C.1: A piecewise-linear bell shape function approximation.

speeds up computation, and allows for easier tuning of the membership functions. It further allows the

membership function to be adapted later to any other shape, in which case the bell shape only serves as

an initial starting point.

Let µ̂L(u) be any piecewise linear membership function, and letQ be an ordered set ofn points in the

Cartesian plain,

Q = {qi|, qi < qj for i < j} (C.1)

whereqi is a point in the Cartesian plain. We define the less-than operation in terms of the x-coordinates,

that is,qi is less thanqj, qi < qj, if the x-coordinate ofqi, qi.x, is less than thex-coordinate ofqj.

Definition C.1.1 qi < qj ↔ qi.x < qj.x

We then definêµL(u) = f(Q,u), wheref(Q,u) is defined as follows,

Definition C.1.2 f(Q,u) =















q1 for u ≤ q1.x

qn for u > qn.x
qi+1.y−qi.y
qi+1.x−qi.x

· u− qi+1.y−qi.y
qi+1.x−qi.x

· qi.x+ qi.y for qi.x < u ≤ qi+1.x

Thus,f(Q,u) defines the membership degree of any instanceu to the linguistic termL for the ordered

set of pointsQ.

C.1.2 Membership Function Extraction

Using definition C.1.2 we extract membership functions froma data set for all the continuous attributes

using the algorithm shown in Table C.1. The algorithm computes the elements ofQ as defined in

Eq (C.1). The algorithm functions roughly as follows. A continuous attribute is picked, and a clustering

is performed on the instances of the data set. Each point in the continuous domain can be assigned to

a closest cluster centre, and the section of the continuous domain belonging to a given cluster defines

the cluster interval. Along each interval a membership function of the shape depicted in Figure C.1 is

placed. If an interval is completely subsumed by another it is deleted.
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Table C.1: An algorithm for extracting bell shape membership functions from a data set, where the constants
0.25, 0.8 and 0.125 can be changed by the user.

FOR a continuous attributeAi

Cluster the instance data forAi into a list of clustersC
FOR each clusterCj ∈ C DO

Setminj = min(Cj),maxj = max(Cj), andrangej = maxj −minj

END FOR
SortC such thatCj < Cj+1 whenminj < minj+1

FOR each clusterCj ∈ C DO
IF maxj+1 exists ANDmaxj+1 < maxj THEN

DeleteCj+1

END IF
END FOR
FOR each clusterCj DO

IF minj+1 exists ANDminj+1 < maxj THEN
intersect = 0.5 · (minj+1 −maxj);
Setmaxj = maxj − intersect; Setminj+1 = minj+1 + intersect

END IF
SetQ1 = (minj − 0.25 · rangej , 0);
SetQ2 = (minj , 0.8);
SetQ3 = (minj + 0.125 · rangej, 1);
SetQ4 = (maxj − 0.125 · rangej, 1)
SetQ5 = (maxj , 0.8);
SetQ6 = (maxj + 0.25 · rangej , 0)
SetMFj(u) = f(Q,u);

END FOR
END FOR

A variation of this algorithm would be to use the complete input domain when computing the cluster

centres, i.e. to use all the continuous attributes togetherwhen clustering. This will mean that the cluster

centres in one dimension are not independent from the other dimensions. This may have the effect that

a classification algorithm will need less attributes to classify correctly. However, it may also be seen

as smoothing of the training data, and may degrade the performance of a good classifier when smaller

clusters in one dimension are grouped as a result of data grouping in other dimensions.

C.2 Influence of the Number of Clusters

We also conducted experiments to determine the influence of the number of membership functions

(linguistic terms) extracted on the classification accuracy and the rule set comprehensibility of our algo-

rithm. For this experiment we induced ordered rule sets using no beam search, the Accuracy evaluation

function andθp = 2. The value ofαa depended on the data set, and was kept constant for each respec-

tive data set for all experiments. For eight data sets we extracted fuzzy data sets with three, five, and

seven membership functions per variable. We then performed10-fold cross validation experiments for
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Table C.2: Classification accuracy results for different configurations.
# clusters 3 5 7 Ripper2

anneal 99.3 97.8 93.1 98.3
breastcancer 70.8 71.6 70.1 77.3
colic 82.9 82.6 83.4 85.1
credit-a 84.9 85.2 85.4 86.2
hepatitis 81.3 81.9 81.3 78.1
iris 96.4 92.9 95.7 94.7
labor 89.5 89.5 87.7 77.2
lymph 78.4 77.7 78.4 79.1
average 85.44 84.90 84.39 84.48

Table C.3: Number of rules per extracted rule set for different configurations.
# clusters 3 5 7 Ripper2

anneal 7.0 9.0 7.0 7.0
breastcancer 5.0 5.0 5.0 2.0
colic 5.0 5.0 5.0 3.0
credit-a 4.0 3.0 2.0 4.0
hepatitis 4.0 3.0 3.0 4.0
iris 3.0 3.0 3.0 4.0
labor 2.0 2.0 2.0 4.0
lymph 5.0 5.0 5.0 6.0
average 4.38 4.38 4.00 4.25

the different fuzzy data sets and report the averages obtained.

Table C.2 shows the classification accuracies obtained by FUZZYBEXA for the different data sets, and a

base line performance of RIPPER2. On average, FUZZYBEXA ’s classification performance was compa-

rable or better than RIPPER2’s for all configurations. FUZZYBEXA ’s average of the best result for each

dataset amounts to 85.75%, compared to its average of 85.44%for three terms, and RIPPER’s 84.48%.

On average, the classification accuracy declined for an increasing number of terms. However, this is

not necessarily true for each individual data set (e.g. credit-a). The anneal data set is the only one that

exhibited a clear decline in classification accuracy.

Table C.3 shows the corresponding information for the number of rules per rule set. Although FUZZY-

BEXA does not post-prune it’s rule sets whereas RIPPER2 does, FUZZYBEXA ’s rule set complexity is

very similar to that of RIPPER2. FUZZYBEXA ’s smallest rule set had fewer rules than RIPPER on five

data sets, on one they had the same, and on two data sets RIPPERhad fewer rules. The number of rules

per data set also decreased on average.

The main observation from the current experiment is that thenumber of clusters, and thus the number

of membership functions (linguistic terms) extracted per variable, does not have a dramatic influence

on either the classification accuracy performance or the rule set comprehensibility, as measured by rule

set complexity, for these data sets. In general, however, increasing the number of terms of a linguistic

variable, will require that more terms are needed to cover the same region as before since the domain is

divided into smaller fuzzy sets. This in turn will increase rule complexity and undermine rule compre-

hensibility, in line with the arguments of Guillaume [2001].
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Increasing the number of terms per variable will also negatively affect the search for the best rule. The

search effort as measured by the average number of conjunctions examined per rule set for 3, 5 and 7

terms were 987, 1125 and 1402, respectively. This is a consistent increase with increasing number of

membership functions. This should clearly be the case, since the size of the hypothesis space increases.

However, the increase in hypothesis space is exponential, whereas we only observe an almost linear

increase in search effort. This is further testimony to the effectiveness of FUZZYBEXA ’s search and

over-fitting avoidance biases. We conjecture, however, that when a large number of terms per variable

is extracted, that it will adversely affect classification accuracy as well. Due to the top-down search and

bias toward generality of rules, the search will be led astray by small incremental improvements dictated

by the many terms to choose from.
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APPENDIXD

Neural Network Encoding of FuzzyAL Rules

Knowledge Based Neurocomputing (KBN) concerns the encoding, extraction, and refinement of knowl-

edge in a neurocomputing paradigm [Cloete and Zurada, 2000]. Prior knowledge in a symbolic form,

i.e. a domain theory, can serve to initialise an artificial neural network (ANN) so that this knowledge

can be refined using all the techniques available for neural networks [Cloete, 1996; Cloete and Zurada,

2000]. These include further learning, analysis (such as sensitivity analysis) and rule refinement.

We provide preliminary results on addressing the problem ofencoding prior knowledge in the form

of FuzzyAL classification rules in ANN. A neural network encoding method provides a bridge from

the symbolic to the connectionist knowledge representation. Although there exist methods for encod-

ing purely conjunctive rules [Kasabov, 2001b], these methods cannot encode the internally disjunctive

FuzzyAL rules extracted by FUZZYBEXA, do not contain the alpha complementᾱ, and typically do not

function directly with membership degree data.

The layout of the appendix is as follows. Section D.1 gives anoverview of knowledge-based neural

networks, Section D.2 introduces our rule encoding method,and Section D.3 demonstrates the encoding

method by encoding rules extracted from the Fuzzy Sport data. Section D.4 demonstrates empirically

that the encoding method provides a one-to-one mapping between the symbolic and the connectionist

knowledge representations, and Section D.5 provides a summery.

D.1 Knowledge-Based Neural Networks

There exist several methods for encoding classification rules in neural networks. VL1ANN [Cloete,

2000] encodes propositional rules in VL1 syntax [Michalski, 1974b], and a knowledge based artificial

neural network (KBANN) encodes Horn clauses [Towell and Shavlik, 1994]. Abraham provides an

overview of Mamdani and Takagi Sugeno neuro-fuzzy systems,where neural networks are used to infer

the membership functions and parameters for fuzzy inference systems [Abraham, 2001]. In our case we

assume that the inputs to the neural network are membership values for each of the possible terms of a

linguistic variable.

In our encoding method we use KBANN conjunctive and disjunctive neurons [Towell and Shavlik,

1994]. All the weights of a KBANN disjunctive neuron are programmed to a predefined valueH, and
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the bias input is set to−0.5. Thus, the weighted sum of inputs for a disjunctive neuron is

g(x) =
∑

i

xiH − 0.5H = H(
∑

i

xi − 0.5) (D.1)

The input applied to KBANN neurons is binary, i.e. either0 or 1 values. Thus,g(x) will be at least

0.5H if any input is on, and if no input is on,g(x) = −0.5H. A big enough value forH will drive a

sigmoidal neuron into saturation, causing it’s output to beeither on or off (i.e. approximately zero or

one), depending on its input. KBANN conjunctive neurons areconstructed similarly, but the bias is set

toP − 0.5, whereP is the number of programmed input weights (with weightwij = H) to the neuron.

Thus, if all the inputs are ong(x) = 0.5H, and if at least one input is not ong(x) ≤ −0.5H, effectively

implementing the desired conjunctive property.

D.2 Encoding Extracted Rules

In this section we present the mapping from the symbolic to the connectionist domain. We will assume

FuzzyCAL descriptions imply the standard fuzzy operations. The neural network we propose consists

of six layers, the input, alpha complement, amplification, variable, rule, and class layers. FUZZYBEXA

induces rules from fuzzy data where each instance potentially has a non-zero membership degree to each

linguistic term. The neural network must function with the same input data, and therefore the input data

determines the number of input neurons—one input neuron perlinguistic term.

D.2.1 Amplifying Neurons

We encode the fuzzy rule set using KBANN conjunctive and disjunctive neurons [Towell and Shavlik,

1994]. KBANNs were originally designed for crisp rules. Fuzzy data may cause the KBANN neurons to

malfunction under certain circumstances. To remedy this problem and provide the KBANN layers with

suitable input, we add an amplification layer between the input and KBANN layers. The amplification

layer is simply a layer of neurons with standard sigmoidal activation functions, where the activation

function has a slope greater than1,

f(g) =
1

e−λg + 1
(D.2)

whereg is the weighted input to the neuron, and the slopeλ is set greater than1. As the slope approaches

infinity, this function approximates the step function. Each neuron in the input layer is connected to a

corresponding neuron in the amplification layer with fixed weight of 1.

The bias weight of the amplifying neuron shifts the functionto the left or right. We simulate the matching

procedure by setting the bias weight to1 and the bias input to−αa, or equivalently, setting the bias

input to−1 and the weight toαa. This will have the effect that fuzzy input values with membership

degrees less thanαa will activate the neuron only weakly, whereas input values with membership degrees

more thanαa will strongly activate the neuron. Thus, the functiong(x) for the amplifying neurons is

calculated as,

g(x) = x+ b = x− αa (D.3)
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D.2.2 Alpha Complement Neurons

The input data do not contain the linguistic term̄α for linguistic variables. We simulate thēα-term by

adding a new type of neuron, thealpha complement neuron(denoted as̄α-neuron), to the network. An

ᾱ-neuron is constructed for each linguistic variable. This neuron is connected to input neurons of the

term set of its linguistic variable with weight value1. It does not receive input from any other neurons.

The output is connected to one amplifying neuron. Like the other amplifying neurons, its bias weight is

set to1 and the bias input to−αa. Each input neuron is therefore connected to two other neurons, an

amplifying neuron and an̄α-neuron.

The activation function of thēα-neuron implements the functionality of thēα linguistic term. The

activation function adds the bias to the maximum input valueto the neuron,

g(X) = max(X) + b (D.4)

whereX =< x1, x2, ..., xn > is an input vector,b is the bias, and we set all weights to1. It then inverts

the result and applies it to the sigmoid function,

f(g) =
1

eλg + 1
(D.5)

whereλ is the slope of the activation function. The maximum membership will be equal or greater than

αa if the membership to any linguistic term is equal to or greater thanαa. If the biasαa is subtracted

from this value, the result will be positive, and the neuron will not fire. The maximum membership will

be less thanαa only if the memberships to all linguistic terms are less thanαa. Since−g(X) is applied

to the sigmoid in this case the neuron will fire. This effectively implements the functionality of thēα

linguistic term defined in Def (4.3.1).

D.2.3 The Variable, Rule and Class Layers

The rule section of the neural network can represent any conjunction in FuzzyAL, and is implemented

using KBANN conjunctive and disjunctive neurons. The network has the following structure. A con-

junctive rule neuronis created for each rule in the rule set. The activation of this neuron is analogous

to the firing of its corresponding rule. For each class a disjunctive class neuronis created. The class

neuron is connected to all the rule neurons with rules that have this class as the consequent. Thus, if

any rule neuron of the corresponding class fires, the class neuron also fires. The rule neurons receive

input from a group of disjunctivevariable neurons. Each rule has its own set of variable neurons—one

variable neuron for each linguistic variable for each rule.The variable neuron is connected to those

amplification layer neurons which represent the linguisticterms in the term set of the corresponding

linguistic variable.

The weights of a class neuron are all programmed toH, and its bias set to−0.5. The rule neuron weights

connected to variable neurons of linguistic variables present in the rule are programmed toH, and the

remainder are set to small random values. The bias of the ruleneuron is set to(0.5 − P ), whereP is

the number of linguistic variables occurring in the rule. Thus, the rule neuron requires all its variable
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neurons to fire before it will fire. The variable neurons are programmed according to the linguistic terms

required in the corresponding rule. Only the weights connecting a variable neuron with amplifying

neurons representing the linguistic terms present in the linguistic variable of the rule will be set toH,

and the remainder will be set to small random values. The biasof variable neurons are all set to0.5, and

the bias weight of any KBANN neuron that contains programmedweights is set toH. All weights not

set toH are initialized with small random values.

The “all except one” representation (e.g.[!x]) can also be programmed by setting the corresponding

linguistic term weight to−H, and the bias input of the variable neuron to+0.5 instead of−0.5. This

representation is only used when a single term is excluded. The input to the activation function of the

variable neuron is now

g(x) = −Hx+ bH = H(0.5 − x) (D.6)

Thus, when the linguistic term neuron fires, the variable neuron does not fire, and vice versa.

D.2.4 Training the Network

Many fuzzy neural networks are trained with a genetic algorithm because the neuron activation functions

are not differentiable [Abraham, 2001]. This methodology can find good results, but is often time

consuming and slow in convergence. Our network can be trained using normal back propagation, or

any other typical training method, as the activation functions of all neurons are differentiable. The

weights of the amplifying and̄α-neurons should be kept fixed, since the only implication of changing

these weights is a linear scaling of the input data. This is the case because each input neuron is only

connected to an̄α-neuron and an amplifying neuron.

D.3 A Practical Example

We demonstrate the process of creating a neural network encoding of an extracted rule set by a prac-

tical example using the sport data set. The sport data set is repeated in Table D.1, and has four

linguistic variables: temperature, wind, outlook, and humidity . The term set of temperature is

{hot,mild, cold}. For wind it is {windy, calm}, for outlook {sunny, cloudy, rainy}, and for hu-

midity {humid, normal}.

For each of the linguistic terms above an input neuron is created. Figure D.1 shows this structure and

enumerates the input neurons from0 to 9. For each of the four linguistic variables an̄α-neuron is

created. These are numbered10 to 13. The ᾱ-neuron for temperature, neuron11, is connected to the

input neurons forhot, mild,andcold. The bias values for the amplifying and̄α-neurons are all set to

−0.6, since0.6 was theαa value used during rule induction. All weights between neurons enumerated

1 to 27 are set to1, and are not updated during training.

We induced rules for the conceptsclass.volleyball andclass.swimming. Accordingly, there are two

class neurons, one representing the volleyball class and the other the swimming class. For the volleyball

188



(outlook)
sunny

0

ampl.
14

(outlook)
Ã−complement

10

(outlook)
cloudy

1
ampl.

15

(outlook)
rainy

2

ampl.
16

(temperature)
hot
3

ampl.
18

(temperature)
Ã−complement

11

(temperature)
mild

4
ampl.

19

(temperature)
cold

5

ampl.
20

(humidity)
humid

6 ampl.
22

(humidity)
Ã−complement

12

(humidity)
normal

7 ampl.
23

(wind)
windy

8

ampl.
25

(wind)
Ã−complement

13

(wind)
calm

9 ampl.
26

OR
28

OR
32

OR
36

ampl.
17

OR
29

OR
33

OR
37

ampl.
21

OR
30

OR
34

OR
38

ampl.
24

OR
31

OR
35

OR
39

ampl.
27

[outlook = {!rainy}]
[temperature = {!hot}]
[humidity = {!humid}]

[wind = {!windy}]
40

[outlook = {sunny|Ã}]
[humidity = {!humid}]

[wind = {!windy}]
41

[outlook = {!rainy}]
[temperature = {hot|Ã}]

42

volleyball
43

swimming
44

−0.6

−0.6

−0.6

−0.6

−0.6

−0.6

−0.6

−0.6

−0.6

−0.6

−0.6

−0.6

−0.6

−0.6

−0.6

−0.6

−0.6

−0.6

0.5

0.5

0.5

0.5

−0.5

RND

0.5

0.5

0.5

−0.5

RND

RND

−3.5

−2.5

−1.5

−0.5

−0.5

Figure D.1: The network generated for the FuzzySport data set for the classesvolleyballandswimming. The

alpha complement is indicated by the symbolÃ.
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Table D.1: A fuzzy learning problem.

@attribute outlook {sunny, cloudy, rainy}

@attribute temp {hot, mild, cold}

@attribute humidity {humid, normal}

@attribute wind {windy, calm}

@attribute activity {volleyball, swimming, weights}

@data

(.9 .1 .0), (1. .0 .0), (.8 .2), (.4 .6), (.0 .8 .2) ;1

(.8 .2 .0), (.6 .4 .0), (.0 1.), (.4 .6), (1. .7 .2) ;2

(.0 .7 .3), (.8 .2 .0), (.1 .9), (.2 .8), (.3 .6 .1) ;3

(.2 .7 .1), (.3 .7 .0), (.2 .8), (.3 .7), (.9 .1 .0) ;4

(.0 .1 .9), (.7 .3 .0), (.5 .5), (.5 .5), (.0 .0 1.) ;5

(.0 .7 .3), (.0 .3 .7), (.7 .3), (.4 .6), (.2 .0 .8) ;6

(.0 .3 .7), (.0 .0 1.), (.0 1.), (.1 .9), (.0 .0 1.) ;7

(.0 1. .0), (.0 .2 .8), (.2 .8), (.0 1.), (.7 .0 .3) ;8

(1. .0 .0), (1. .0 .0), (.6 .4), (.7 .3), (.2 .8 .0) ;9

(.9 .1 .0), (.0 .3 .7), (.0 1.), (.9 .1), (.0 .3 .7) ;10

(.7 .3 .0), (1. .0 .0), (1. .0), (.2 .8), (.4 .7 .0) ;11

(.2 .6 .2), (.0 1. .0), (.3 .7), (.3 .7), (.7 .2 .1) ;12

(.9 .1 .0), (.2 .8 .0), (.1 .9), (1. .0), (.0 .0 1.) ;13

(.0 .9 .1), (.0 .9 .1), (.1 .9), (.7 .3), (.0 .0 1.) ;14

(.0 .0 1.), (.0 .0 1.), (1. .0), (.8 .2), (.0 .0 1.) ;15

(1. .0 .0), (.5 .5 .0), (.0 1.), (.0 1.), (.8 .6 .0) ;16

class, two rules were found, and for the swimming class one rule was induced that perfectly covered

the training data. Class neurons are disjunctive, and therefore their biases are set to−0.5 and the bias

weight programmed toH. All programmed weights are indicated with solid lines in Figure D.1.

Neurons18 to 21 represent the input to the rule section of the network for thelinguistic variable temper-

ature. There were3 rules extracted, and therefore there are three variable neurons for the temperature

linguistic variable—neurons33, 29 and37. Each of these three variable neurons are connected to the

linguistic term amplifying neurons for the temperature linguistic variable, that is, neurons18 to 21.

Neuron41 represents the rule

[outlook is{sunny ∨ ᾱ}][humidity is{!humid}][wind is{!windy}]

→ volleyball

The linguistic variable temperature does not occur in this rule, and therefore the connection between

the rule neuron and the temperature variable neuron associated with this rule, neuron33, is not pro-

grammed. All unprogrammed weights are set to small random values, and are indicated by dotted lines

in Figure D.1. The connections between the variable neuron33 and its linguistic term neurons18 to 21

are also not programmed. Neuron41 has three programmed variable neuron connections, and therefore

its bias is set to−2.5 (P − 0.5). All bias weights (except for the ‘excluded one’ variable neurons) for

programmed neurons are set toH, indicated by a thin solid line on the figure.

Neuron40 represents the rule

[outlook is{!rainy}][temperature is{!hot}][humidity is{!humid}][wind is{!windy}]
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→ volleyball

This rule requires that[temperature is!hot]. Neuron18 represents thehot linguistic term. Neuron29

is the temperature variable neuron for this rule. Thereforethe connection between them is programmed

to −H, indicated by a thick line between them. The bias of neuron29 is programmed to−0.5. Since

the remaining linguistic terms are not present in the rule, the weights from neuron29 to the remainder

of the linguistic term neurons, neurons19 to 21, are left unprogrammed. Neuron40 has all4 linguistic

variables in its rule, and accordingly the bias is set to−3.5.

Neuron42 represents the rule

[outlook is{!rainy}][temperature is{hot ∨ ᾱ}]

→ swimming

This rule requires the temperature linguistic variable to be eitherhot or have no term membershipαa

or above. Neuron37 is the temperature variable neuron for this rule. Neuron18 represents thehot

linguistic term, and neuron21 the temperaturēα-neuron. Thus, the weights connecting neuron37 to

neurons18 and21 are programmed toH, indicated by a medium thick line on the figure. The bias is

programmed to−0.5, and as stated above, its weight is also programmed toH. The rule represented by

neuron42 makes use of two linguistic variables, and accordingly its bias is set to−1.5.

D.4 Experimental Results

D.4.1 Sensitivity to the Threshold Slope and toH

The network structure discussed in the above paragraphs forms a one to one mapping with the extracted

rules under the right conditions. The strength of the mapping will depend on the value ofH used to

program the network, and the value ofλ used to program the slope of the amplifying neurons. IfH is

too small, the information from the rules will not be encodedstrongly enough, and the cumulative effect

of the small random weights will in some cases dominate the behaviour of the network. If a too small

value ofλ is used, the input to the KBANN section of the network will be too weak to ensure a one to

one mapping without any training.

The best values of these two parameters will of course dependon the data set. For example, if a boolean

data set is used, the value ofλ will be less important. When most of the weights between the amplifying

and variable neurons are programmed, the value ofH will be less dominating. We tested our network

by encoding rules induced by our FUZZYBEXA algorithm, and then plotting the error surface againstH

andλ for untrainednetworks.

Figure D.2 shows the classification error for different values ofλ andH for an untrained network that

encodes fuzzy rules induced for the data set in Table D.1. As expected, the error is large for small values

of eitherλ orH. If one of the two parameters is programmed too weakly, the network does not properly

encode the prior knowledge, e.g. for any valueλ < 3 or H < 3 the error is greater than25%. For

λ = 5.0 andH = 6.0, no training is necessary to obtain zero error. Of course, this is the error on the
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Figure D.2: The classification error as a function ofH andλ for the FuzzySport data set.

training data, because for the purposes here we are only interested in how well the network encodes the

prior knowledge.

Figure D.3 shows the results for the Iris data set. For the Iris data, a strong knowledge encoding using

a largeH value, e.g.H = 10, can force the error down even for small values ofλ. Since the purpose

of encoding the rules in the network is to allow it to be trained further, huge values ofH may have a

detrimental effect if the rules they encode are not exactly correct, as the strong encoding of rules will not

be changed easily. Setting the slope even to a moderate valueallowsH to be much smaller while still

maintaining acceptable error. Note that the inverse of the argument is not true—big values forλ never

give good performance for small values ofH. This is reasonable since very smallH values correspond

to little prior information.

The best values for further training lie at smaller values for H with moderate values ofλ. Unfortunately

it is not easy to say which values ofH and λ will give good training performance. Snyderset al

suggested a method for determining good values forH in KBANNs [Snyders and Omlin, 2000]. This

method requires the calculation ofdE
dH

, with E the error. Using a similar methodology, it may also be

possible to determine good values ofλ by calculatingdE
dλ

.

D.4.2 Incremental Training

We have shown empirically in Section D.4.1 that the encodingmethod proposed in Section D.2 provides

a one to one mapping between a rule set and neural network under the right conditions. The question

remains whether this network can be trained to further refineits encoded knowledge.

To test this methodology we first generated a synthetic fuzzydata set, and then used threea priori rules

to classify the data into two classes. We then used FUZZYBEXA to extract rules from this data, and

encoded them into a neural network. Then an additional data set was created by synthesising more data
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Figure D.3: The classification error as a function ofH andλ for the Iris data set.

and classifying this data using the original rules plus an additional rule. This new data set was split into

a training and test set, and used to train and evaluate the encoded neural network. The additional rule

has the effect that some of the original instances were wrongly classified. The result is that some of

the information encoded in the neural network will be good and some bad. The network will have to

“unlearn” some information while keeping the correct information.

We encoded the rule information usingH = 4.0, λ = 10.0, and trained the network using backpropa-

gation with a learning rate of0.1 and momentum of0.1. To count a pattern as correctly classified, all

output neurons must be correct within a specified range. The training classification error range was set

to 0.25 and the test classification range to0.5. Note that this method of error evaluation is not exactly

the same as that used by the rule extractors. It is more strict, since only the rule neurons of the correct

class may fire if the pattern is to be counted as correctly classified. Rule inference systems typically use

a rule conflict resolution scheme, as discussed in Section 4.9.

Figure D.4 shows the root mean squared error on the training and test sets. The network starts with an

initial error of0.07, and is able to reduce the error on the test set to0.009 after a thousand epochs. The

training error decreased even more, but started to overfit the data after about600 epochs. Figure D.5

shows the classification accuracy for the test and training sets. During the first400 epochs the classifi-

cation error was rapidly reduced after which overfitting seemed to set in. The neural network is clearly

able to refine and change the encoded information.

We also used FUZZYBEXA [Cloete and van Zyl, 2006] to extract rules for the training set with a 10-

fold cross validation. FUZZYBEXA obtained96.7% accuracy on the training set and96.7% on the test

set. After training the neural network for400 epochs a maximum accuracy of98.0% on the test set is

obtained. A maximum accuracy on the training set of98.8% is obtained after900 epochs. With no

training the network contained only partial knowledge, andclassified65% of the patterns correctly.
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Figure D.4: The root mean squared error at each epoch of training on the training and test sets.

D.5 Summary

In this appendix we presented an encoding method for encoding prior knowledge in the form of FuzzyAL

rules (e.g. like those induced by FUZZYBEXA) into a neural network. Two parameters, the slopeλ and

the weight encoding strengthH, are used to specify how strongly the prior information is encoded. For

suitably big values ofλ andH the encoding method provides a one-to-one mapping between the sym-

bolic and connectionist knowledge representations. Sincewe only make use of differentiable activation

functions, the neural network can be trained using gradientdescent. We investigated the behaviour of the

error for different values ofλ andH by plotting the error surface for different data sets. Moderate values

of λ allow the knowledge encoding strengthH to be sufficiently small to allow further knowledge re-

finement. We also showed empirically that the network is ableto correct wrongly encoded information,

retain correct information, and further refine its knowledge when provided with new training data.
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APPENDIXE

Ling-Spam Rule Set

IF linguistic.medTHEN class.ham

ELSE IF linguistics.medTHEN class.ham

ELSE IF languages.medTHEN class.ham

ELSE IF!.medTHEN class.spam

ELSE IF language.medTHEN class.ham

ELSE IFenglish.medTHEN class.ham

ELSE IFdeadline.medTHEN class.ham

ELSE IFsummary.lowTHEN class.ham

ELSE IFclick.medTHEN class.spam

ELSE IF linguist.lowTHEN class.ham

ELSE IFremove.lowTHEN class.spam

ELSE IFedu.highTHEN class.ham

ELSE IFspeech.medTHEN class.ham

ELSE IFyour.medTHEN class.spam

ELSE IFbetween.medTHEN class.ham

ELSE IFprogramme.lowTHEN class.ham

ELSE IFclick.low THEN class.spam

ELSE IF in.medTHEN class.ham

ELSE IFreferences.lowTHEN class.ham

ELSE IF1995.medTHEN class.ham

ELSE IFtoday.lowTHEN class.spam

ELSE IF john.lowTHEN class.ham

ELSE IF).medTHEN class.ham

ELSE IFever.lowTHEN class.spam

ELSE IFwords.lowTHEN class.ham

ELSE IFgrammar.lowTHEN class.ham

ELSE IF100.lowTHEN class.spam

ELSE IFknow.lowTHEN class.ham

ELSE IFour.medTHEN class.spam

ELSE IFout.medTHEN class.ham

ELSE IFconference.medTHEN class.ham

ELSE IFde.highTHEN class.ham

ELSE IF j.low THEN class.ham

ELSE IFgo.lowTHEN class.spam

ELSE IF list.low THEN class.ham

ELSE IFfrench.medTHEN class.ham

ELSE IFalways.lowTHEN class.spam

ELSE IFcom.̄α THEN class.ham

ELSE IFover.lowTHEN class.ham

ELSE IFfree.lowTHEN class.spam

ELSE IFhave.medTHEN class.ham

ELSE IFbig.lowTHEN class.spam

ELSE IFprograms.lowTHEN class.ham

ELSE IFmodern.̄α THEN class.spam

ELSEclass.ham
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APPENDIXF

Decision Tree for Non-Overlapping Rule Set
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Figure F.1: The decision tree equivalent to the propositional logic rule setA ∧ B → Y es andC ∧D → No,

where the replicated subtree at nodeC is clearly visible.
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Glossary

≺ more specific than

� more specific than or equal to

≻ more general than

� more general than or equal to

αa antecedent threshold

αc consequent threshold

αaT antecedent alpha-cut value used during rule induction

αaI antecedent alpha-cut value used during inference

ᾱ alpha complement

I instance space

N set of negative instances

P set of positive instances

T set of training instances

θp positive coverage threshold

M(S, c) sigma count of descriptionc in the set of instancesS

XS(d) extension of the descriptiond in the set of instancesS

AQR Aq family of algorithms

ANN Artificial Neural Network

BEXA Basic Exclusion Algorithm

CN2 Clark and Niblett’s algorithm 2

ICL Iterated Concept Learning

KBANN knowledge-based artificial neural network

mgc most general conjunction

FARFF Fuzzy Attribute Ralation File Format
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FBS Fuzzy Beam Search algorithm

FCF Fuzzy Covering Framework

FEM Fuzzy Exclusion Model

FOIL First-Order Inductive Learner

FRIwE Fuzzy Rule Identification with Exceptions

FuzzyAL Fuzzy Attributional Logic

FuzzyBEXA Fuzzy Basic Exclusion Algorithm

FuzzConRi Fuzzy Conjunctive Rule Inducer

FuzzyCAL Fuzzy Conjunctive Attributional Logic

ID3 Iterative Dichotomiser 3

RIPPER Repeated Incremental Pruning to Produce Error Reduction

SCL Simultaneous Concept Learning
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INDEX

α-cut, 48, 50, 68, 81

alpha complement, 50

alpha leveling, 68

antecedent threshold, 48

sensitivity to, 81

AQR, 3, 11, 29, 36, 173

attribute, 30, 46

attribute value, 30, 46

beam search, 55, 75, 111

best-first search, 55

BEXA, 3, 29, 33

characteristic function, 41

classification accuracy computation, 72

CN2, 3, 10, 30, 36, 114, 144, 148, 174

complete, 30

comprehensibility (Guillaume), 4, 39, 45

concept learner, 7

concept threshold, 50

conjunct, 46

consistent, 30

crisp set, 42

decision list, 144, 145

decision trees, 13

default rule, 66

defuzzification, 20, 66

description language, 8, 30, 122

BEXA, 31

FUZZYBEXA, 46

description set, 52

evaluation functions, 94, 111, 122

Accuracy, 97

Entropy, 95

Fuzzy Laplace, 98

Information Content, 96

Laplace, 34, 97

LS-Content, 97

Purity, 98

simultaneous concept learning, 148

exclude, 37, 57, 124

exemplar learning, 14

extension, 30, 47

extension operator

crisp, 33

fuzzy, 48, 65

FAQR, 11, 128, 175

FARFF, 178

FBS (Fuzzy Beam Search algorithm), 10, 160

FCF, 120, 121

applications, 162

comparison with other learners, 158

FEM, 124, 126, 132, 138

FID (Janikow), 14, 160

FOIL, 11

FS-FOIL, 11

FUZZCONRI, 114, 132

algorithm, 115

fuzzy

basic set theory, 41

Bayes measure, 9

clustering, 16

decision list, 144, 145

event probability, 14

inference system, 65
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information gain, 9, 134

instance space, 42

membership degree, 42

operators, 42

positive and negative extension, 50, 57

set, 41

standard operators, 47

fuzzy concept learners

classes, 7

comparison to FUZZYBEXA, 108

divide-and-conquer, 13, 109

genetic algorithms, 18

gradient descent, 23

hierarchical systems, 22

inductive, 9, 109

other methods, 23

partitioning methods, 20, 110

similarity search, 16, 109

stochastic search, 110

fuzzy set covering, 39

fuzzy vs. crisp rule learning, 154

decision boundaries, 155

FuzzyAL, 46, 64, 69, 77, 110, 136

FUZZYBEXA, 44

bottom layer, 57

description language, 46

inductive bias, 64

middle layer, 54

most general conjunction, 49

rule semantics, 51

theoretical comparison, 108

top layer, 53

FUZZYBEXA II, 145

FuzzyCAL, 114, 115, 132, 136

FUZZYPRISM, 134

FUZZYSEEDSEARCH, 125

comparison to FAQR, 128

seed selection, 126, 128

Genetic Algorithm (GA), 18

ID3, 7, 13, 30, 96, 109

incomplete rules, 8

incremental training, 192

internal disjunction, 7, 29, 31, 46, 111

IREP, 175

iterated concept learning (ICL), 144

Knowledge Based Neurocomputing, 185

Knowledge-Based Neural Networks, 185

lattice, 52, 112

bottom, 53

bounded, 53

complete, 53

FuzzyAL, 52

FuzzyCAL, 115

top, 53

learning modular fuzzy rules, 9, 134

linguistic term, 42

linguistic variable, 42

membership and probability, 42

membership degree, 41

membership function, 41

mgc, 34, 49, 122

more general than, 115

more specific than, 36, 52

neural network encoding of rules, 186

alpha complement neuron, 187

amplifying neuron, 186

class neuron, 187

rule neuron, 187

sensitivity toλ andH, 191

variable neuron, 187

optimistic evaluation, 56

parameter identification, 45, 111

partial covering, 140

positive coverage threshold, 121

premises, 44

PRISM, 3, 36, 174
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refinement model, 123

RIPPER, 154, 156, 175

ROC, 72, 74

rule set complexity computation, 72

rules

BEXA, 31

compound, 24

FUZZYBEXA, 51

incomplete, 111

Mamdani, 8, 16

mixed fuzzy rules, 25

neural network encoding, 186

ordered, 145

propositional, 8

Takagi-Sugeno, 8, 16, 21

search effort, 77, 81

search effort computation, 73

sensitivity to noise, 79

set covering, 30

definition, 31

Shannon entropy, 14

sigma count, 95, 146

simultaneous concept learning, 112

simultaneous concept learning (SCL), 144

size of the hypothesis space, 68, 77, 81

SMART+, 26

specialization model, 35, 57, 120

characteristics, 123

comparison, 136

specialization operator, 123

append, 132

exclude, 124

specializations, 54

stop growth measures, 56, 60, 112

effect of, 88

structure identification, 45, 111

subsume, 24, 67

SVM (Support Vector Machine), 18

universe of discourse, 41

VL1, 7, 29, 31

weighted covering, 140

weighted fuzzy decision tree, 15

WEKA, 157, 178
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Dasgupta, D. and González, F. A.: 2001, Evolving Complex Fuzzy Classifier Rules Using a Linear
Tree Genetic Representation,in L. Spector, E. D. Goodman, A. Wu, W. B. Langdon, H.-M. Voigt,
M. Gen, S. Sen, M. Dorigo, S. Pezeshk, M. H. Garzon and E. Burke(eds),Proceedings of the Ge-
netic and Evolutionary Computation Conference (GECCO’2001), Morgan Kaufmann Publishers, San
Francisco, California, pp. 299–305.

Davey, B. A. and Priestly, H. A.: 2002,Introduction to Lattices and Order, 2 edn, Cambridge University
Press.

de Kleer, J.: 1986, An assumption-based TMS,Artificial Intelligence28, 127–162.

Dong, M. and Kothari, R.: 2001, Look-ahead based fuzzy decision tree induction,IEEE-FS9, 461–468.

Drobics, M., Bodenhofer, U. and Klement, E. P.: 2003, FS-FOIL: An inductive learning method for
extracting interpretable fuzzy descriptions,International Journal of Approximate Reasoning32, 131–
152.

Dubois, D., Esteva, F., Carcia, P., Godo, L., Mantaras, R. L.and Prade, H.: 1998, Fuzzy set modeling in
case-based reasoning,International Journal of Intelligent Systems13, 345–373.
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Moré, J.: 1978, The Levenberg-Marquandt algorithm: Implementation and theory,in G. Watson (ed.),
Proceedings of the Dundee Conference on Numerical Analysis, Springer-Verlag.

Murthy, S. K.: 1998, Automatic construction of decision trees from data: A multi-disciplinary survey,
Data Mining and Knowledge Discovery2(4), 345–389.

Nauck, D. and Kruse, R.: 1993, A fuzzy neural network learning fuzzy control rules and membership
functions by fuzzy error backpropagation,Proc. IEEE Int. Conf. on Neural Networks, San Francisco,
pp. 1022–1027.

Nozaki, K., Ishibuchi, H. and Tanaka, H.: 1996, Adaptive fuzzy rule-based classification systems,IEEE
Trans. on Fuzzy Systems3(4), 238–250.

Paetz, J.: 2002,Adaptive Regelgenerierung und ihre Verwendung zur Diagnose des septischen Schocks,
PhD thesis, Institut für Informatik, J.W.G.-Universität, Frankfurt.

Paetz, J.: 2003, Knowledge based approach to septic shock patient data using a neural network
with trapezoidal activation functions,Artificial Intelligence in Medicine, Elsevier, Special Issue:
Knowledge-Based Neurocomputing in Medicine2(28), 207–230.

Pagallo, G. and Hassler, D.: 1990, Boolean feature discovery in empirical learning,Machine Learning
5.

Pantel, P. and Lin, D.: 1998, SpamCop: A spam classification &organization program,Learning for
Text Categorization: Papers from the 1998 Workshop, AAAI Technical Report WS-98-05, Madison,
Wisconsin.

Peña-Reyes, C. A.: 2003, Incremental fuzzy CoCo: Incremental coevolution of fuzzy systems,Proceed-
ings of the Third European Symposium on Intelligent Technologies, pp. 353–362.

Peña-Reyes, C. A. and Sipper, M.: 2000, Applying fuzzy CoCoto breast cancer diagnosis,Proceedings
of the 2000 Congress on Evolutionary Computation, Vol. 2, IEEE Press, Piscataway, NJ., pp. 1168–
1175.

Peña-Reyes, C. and Sipper, M.: 2001, Fuzzy CoCo: A cooperative-coevolutionary approach to fuzzy
modeling,IEEE Transactions on Fuzzy Systems9(5), 727–737.
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