
Researching methods for efficient hardware specification,

 design and implementation

of a

next generation communication architecture

Inauguraldissertation

zur Erlangung des akademischen Grades

eines Doktors der Naturwissenschaften

der Universität Mannheim

vorgelegt von

Dipl.-Inf. Patrick R. Haspel

aus Mannheim

Mannheim, 2006

Dekan: Professor Dr. M. Krause, Universität Mannheim

Referent: Professor Dr. U. Brüning, Universität Mannheim

Korreferent: Professor Dr. V. Lindenstruth, Universität Heidelberg

Tag der mündlichen Prüfung: 4. Mai 2007

Abstract

The objective of this work is to create and implement a System Area Network (SAN) ar-
chitecture called EXTOLL embedded in the current world of systems, software and stan-
dards based on the experiences obtained during the ATOLL project development and test.

The topics of this work also cover system design methodology and educational issues in
order to provide appropriate human resources and work premises.

The scope of this work in the EXTOLL SAN project was:

• the Xbar architecture and routing (multi-layer routing, virtual channels and their arbi-
tration, routing formats, dead lock aviodance, debug features, automation of reuse)

• the on-chip module communication architecture and parts of the host communication

• the network processor architecture and integration

• the development of the design methodology and the creation of the design flow

• the team education and work structure.

In order to successfully leverage student know-how and work flow methodology for this
research project the SEED curricula changes has been governed by the Hochschul Didaktik
Zentrum resulting in a certificate for "Hochschuldidaktik" and excellence in university ed-
ucation.

The complexity of the target system required new approaches in concurrent Hardware/Soft-
ware codesign. The concept of virtual hardware prototypes has been established and exces-
sively used during design space exploration and software interface design.

Zusammenfassung

Das Ziel dieser Arbeit ist der Entwurf sowie die Implementierung einer System Area Net-
work (SAN) Architektur namens EXTOLL, die in die heutige Welt der Rechensysteme,
Software und Standards eingebettet ist.

Diese Arbeit beinhaltet auch die Aspekte der Systementwurfsmethodik und Ausbildungs-
fragen um eine geeignete Arbeitsumgebung sowei ein kompetentes Team zu gewährleisten.

Die Beiträge zu der EXTOLL SAN Architektur sind:

• Die XBar Architektur sowie Routing (multi-layer routing, Virtuelle Kanäle sowie deren
Arbitrierung, Routingformate, Deadlockvermeidung, Testeigenschaften, Automa-
tisierung der Wiederverwendung)

• Die on-chip Modulkommunikationsarchitektur und Teile der Hostkommunikation

• Netzwerkprozessorarchitektur und Integration

• Die Entwicklung einer Entwurfsmethodik und die Erstellung eines Designflows

Um den erforderlichen Ausbildungsstand der Studenten sowie eine geeignete Arbeit-
sabläufe für dieses Forschungsprojekt sicherzustellen wurden die Änderungen des SEED
Lehrplanes von dem Hochschuldidaktikzentrum begleitet und dabei als Ergebnis das Zer-
tifikat für Hochschuldidaktik und Exzellenz in der Lehre verliehen.

Die Komplexität des Zielsystems erforderte neue Ansätze im simultanen Hardware/Soft-
ware Codesign. Das Konzept virtueller Hardwareprototypen wurde geschaffen und intensiv
während der Entwurfraumanalyse und dem Entwurf der Softwareschnittstellen genutzt.

Inaugural Dissertation Patrick R. Haspel

Table of Contents Page I

1 Introduction ... 1

1.1 Objectives .. 1
1.2 Topics of this work .. 2

1.2.1 Creating the work/design environment ... 2
1.2.2 Architecture definition .. 3
1.2.3 Hardware/Software design methodology .. 3

1.3 Thesis organization .. 3

2 Cluster Computing and Implementations .. 5

2.1 Communication demands of distributed and parallel computing 5
2.2 State of the art hardware support ... 7

2.2.1 QsNetII by Quadrics .. 8
2.2.2 Myrinet by Myricom ... 17
2.2.3 Pathscale .. 19
2.2.4 PCI-ASI (Advanced Switching Interconnect) 21
2.2.5 IBM Blue Gene BG/L ... 23
2.2.6 Mellanox Infiniband .. 25
2.2.7 Cray XT3 ... 26
2.2.8 10GigEthernet by Chelsio ... 28

3 SANs in general ... 30

3.1 Functions, Features and important quality metrics of a SAN 31
3.1.1 Latency .. 31
3.1.2 Bandwidth ... 37
3.1.3 Network Topology .. 40
3.1.4 Supported Parallel Programming Model ... 48
3.1.5 Cost .. 50
3.1.6 Communication to / Location of the Network Interface Controller 50

4 Methods - Approach .. 53

4.1 Providing the basis for efficiency in hardware design 53
4.1.1 Education ... 53
4.1.2 EDA tooling .. 57
4.1.3 Realization - SEED Project ... 58
4.1.4 The System Realisation Bi-Cone .. 60

4.2 Hardware/Software Codesign and Cosimulation ... 63
4.2.1 Concurrent development of hardware and related low level software .. 70

Inaugural Dissertation Patrick R. Haspel

Table of Contents Page II

4.2.2 Seamless hardware/software interfacing ... 70
4.2.3 Integrity and completeness of software required functionality 71

4.3 FPGA based ASIC prototyping ... 71
4.4 Physical design impact of UDSM designs ... 74

4.4.1 Creating a leading-edge design flow ... 74
4.4.2 UDSM characteristics .. 75

5 Architecture and Function Scope of Building Blocks ... 78

5.1 Top-Level Architecture Decisions ... 78
5.2 NPU (Network Processing Unit) ... 80

5.2.1 NPU Features and Overview ... 81
5.2.2 Reasons for a dedicated compute resource in a SAN 83
5.2.3 Instruction Set enhancements .. 85
5.2.4 Implementation details .. 86

5.3 Network Switch ... 89
5.3.1 Design Space Exploration - Approach and Methods 91
5.3.2 Functional Enhancements .. 95

5.4 Hostinterface and EXTOLL block level communication 114
5.4.1 Intermodule Communication Architecture .. 115
5.4.2 The Slave interface Unit .. 119
5.4.3 The Master Interface Unit ... 126

6 Conclusion and Outlook .. 135

7 References ... 137

Inaugural Dissertation Patrick R. Haspel

Introduction Page 1

1 Introduction

System Design is a highly complex challenge requiring the breath and depth of more
than one science. A team facing this challenge needs manifold know-how resources as
well as several levels of expertise. Reseach/Teaching associates focusing on different ar-
eas lead groups of students with different levels of expertise guided and mentored by the
head of the group, the professor. One very critical key to success is the ability to perceive
and identify the different abilities and furthermore the leadership to encourage and chal-
lenge them.

The involved students experience a dedication in the team’s success in a way that mostly
all of them do not simply work for grades but sacrify their spare free time willingly and
consciously to contribute their part to the system design challenge.

My role in this team was to lead a group of students (10 diploma students, 11 students at
their studies-related project work, 11 seminar students and a bunch of research assistants
over the period of 5 years) focusing on routing architectures for the scientific part and
hardware design methodology for the engineering part. In order to educate, guide and
stear the diverse characters I worked closely with the university didactics group (ger-
man: Zentrum für Hochschuldidaktik, Baden-Württemberg). The work of every student
contributed a piece of a puzzle of the system design challenge formed in this work to a
comprehensive section of the entire system design ATOLL/EXTOLL.

1.1 Objectives

The objective of this work is to create and implement a System Area Network (SAN)
architecture called EXTOLL embedded in the current world of systems, software and
standards based on the experiences obtained during the ATOLL project development
and test.

The ATOLL project was established around 1996 at the Computer Architecture Group
of the University of Mannheim. My contribution as research assistant, diploma student
and later on as research associate and Ph.D. student built the history that influenced the
methodology applied and architecture decisions made during the evolution of this work.

The influences with the greatest impact on this work came from the experiences during
the final RTL implementation, functional verification, physical implementation (back-
end) and system burn in phases. It has to be mentioned that the ATOLL project was not

Inaugural Dissertation Patrick R. Haspel

Introduction, Topics of this work Page 2

only chip design and implementation but also software development (like API, daemons,
low level OS drivers, MPI port), printed circuit board (PCB) design, cable design, dis-
crete component selection and qualification (like qualification of LVDS signaling, dou-
ble stacked connectors, ...) as well as chip package design.

1.2 Topics of this work

As the objective of this work is not only architecture definition but also implementation
with a system focus, the topics of this work also cover system design methodology and
educational issues in order to provide appropriate human resources and work premises.

1.2.1 Creating the work/design environment

For leading edge design environment we engaged with the major EDA (Electronic De-
sign Automation) vendors like Cadence and Mentor. Together with the VCAD services
group of Cadence Design Systems we deployed a leading edge design flow covering the
entire ASIC design methodology from front to back and also include major enhance-
ments students’s education curriculum. This project is called SEED (Support for Educa-
tion in Electronic Design) and is still operational due to it’s success and tremendous
feedback from industry.

For design and verification IP we engaged with major IP companies like Denali, CoWare
(acquired LisaTek) or Virage Logic. Denali and CoWare provided most of the IP used
in [47].

For cell libraries we engaged with Virtual Silicon Technologies and Artisan (now part
of ARM), for I/O we created a close collaboration with Prof. Tielerts Microelectronics
Group of the University of Kaiserslautern being able to design LVDS IO’s before any
library vendors were on market.

For foundry access we talked to TSMC and UMC as well as later on IBM.

In order to successfully leverage student know-how and work flow methodology for this
research project the SEED curricula changes has been governed by the Hochschul
Didaktik Zentrum resulting in a certificate for "Hochschuldidaktik" and excellence in
university education.

Inaugural Dissertation Patrick R. Haspel

Introduction, Thesis organization Page 3

1.2.2 Architecture definition

The scope of this work in the EXTOLL SAN project was:

• the Xbar architecture and routing (multi-layer routing, virtual channels and their ar-
bitration, routing formats, dead lock aviodance, debug features, automation of reuse)

• the on-chip module communication architecture and parts of the host communication

• the network processor architecture and integration

• the development of the design methodology and the creation of the design flow

• the team education and work structure.

1.2.3 Hardware/Software design methodology

The complexity of the target system required new approaches in concurrent Hard-
ware/Software codesign. The concept of virtual hardware prototypes has been estab-
lished and excessively used during design space exploration and software interface
design. Therefore, the ESL (Electronic System Level) language SystemC has been intro-
duced. The definition of the EXTOLL API strongly relies on this concept.

Furthermore, a design methodology has been developed and a corresponding design
flow has been created in order to target leading edge deep submicron designs.

1.3 Thesis organization

Because of the different scopes covered in this work the thesis is organized in three main
parts:

1. The general metrics and requirements of SANs (chapter 3 "SANs in general"
on page 30)

2. The applied methods and the approach (chapter 4 "Methods - Approach" on
page 53)

3. The architecture definition and discussion (chapter 5 "Architecture and Func-
tion Scope of Building Blocks" on page 78)

Before this main parts start application driven communication requirements and state of
the art SAN solutions are presented in chapter 2 "Cluster Computing and Implementa-

Inaugural Dissertation Patrick R. Haspel

Introduction, Thesis organization Page 4

tions" on page 5.

The work is concluded and provides the reader with an outlook in chapter 6: ’Conclusion
and Outlook’ on page 135.

Enjoy reading!

Inaugural Dissertation Patrick R. Haspel

Cluster Computing and Implementations, Communication demands of distributed and parallel

2 Cluster Computing and Implementations

As already depicted in chapter 1: ’Introduction’, cluster computing is an emerging trend
in High Performance Computing (HPC). In order to build efficient cluster interconnect
or SANs the demands in HPC need to be analyzed. HPC is clearly dominated by distrib-
uted and parallel computing. This work focuses on the communication part in HPC omit-
ting the compute part. The architectures of compute parts are well researched and usually
known as processor architecture. The reader might wonder, why we then analyzed pos-
sible processor architectures in chapter 5.2: ’NPU (Network Processing Unit)’ on page
80. Here, the processor architecture exploration was done regarding the needs of com-
munication and the application on a network interface controller, not regarding general
purpose computation power.

2.1 Communication demands of distributed and parallel computing

Consider a task, that has to be accelerated beyond the point, that is possible to compute
on a single CPU. Consider further, that this task can be parallelized in a way that multiple
CPUs can work on it. Now, it depends on the requirements of communication between
these parallel threads/CPUs. Depending on the kind of task or algorithm these require-
ments can range from:

No communication required during computation

This means the only communication is required to scatter the working set (the data
to be worked on) at the very beginning and to gather the results at the very end. A

Inaugural Dissertation Patrick R. Haspel

Cluster Computing and Implementations, Communication demands of distributed and parallel

perfect example for this category of algorithms is the computation of Mandelbrot Set
fractal images like Figure 1.

Figure 1: Mandelbrot Set fractal image
The parallel Mandelbrot algorithm does not need any communication during com-
putation. Every image point can be calculated without interaction with his neigh-
bours. So, considering 4 CPUs every CPU works on his dedicated image part
without any communication needed at the boundaries. The only communication re-
quired is to assign the image part (working set) to the CPU at the beginning of the
computation (scather) and to gather the results at the very end.

The example mentioned before refers to the problem of raytracing an entire movie.
Here, the single frames are computed separately and therefore, there is no need for
communication during the computation of a single frame. However, if one decides
to further parallelize the computation of a single frame, the problem shifts classes,
as rays in a frame are far from independent.

Massive communication demands during computation

This means communication is required to exchange iteration results between in-
teracting CPUs. Here it is from highest importance to differentiate on the communi-
cation pattern of interacting CPUs. One example for all2all communication, defined
as every CPU needs to interact with every other CPU, is the N-body simulation of
fluid hydrodynamics [2]. The other extreme, called nearest neighbour communica-

Inaugural Dissertation Patrick R. Haspel

Cluster Computing and Implementations, State of the art hardware support Page 7

tion, exchanges interation data only with their next (in terms of interconnection to-
pology) partners. An example for nearest neighbour communication algorithms is
the computation of heat distribution or QCD [39].

Now, applications and algorithms can be classified by their communication demand.

Algorithms with ’No communication required during computation’ are in the class
solved by distributed computing, where algorithms with ’Massive communication de-
mands during computation’ are in the class solved by parallel computing. Figure 2:
’Classification of communication demands’ gives an overview.

Some interconnection networks can take advantage of the algorithm specific communi-
cation pattern depending on its architecture and implemented topology.

In the following sections a couple of SANs are described and analysed, starting with the
most sophisticated architecture of QsNetII. During the description of the SAN features
their use model and functionality are analyzed.

2.2 State of the art hardware support

There are several SANs available to build up clusters, which are discussed in the follow-
ing sections. However, regulars LANs like Gigabit Ethernet are also used because of the
low cost and the wide acceptance and big user community. In the TOP500 list of No-
vember 2004 there are 176 (which is 35.2%) systems using Gigabit Ethernet. The fastest
Gigabit Ethernet cluster achieved rank 44. So, all faster systems do not use Gigabit
Ethernet. It is a matter of fact, that from the performance point of view Gigabit Ethernet
is not the optimal interconnection network to be used in cluster systems. There is no
hardware support at all for common parallel computation constructs like barriers, broad-

Massive communication

all2all
nearest
neighborNo communication

Parallel computingDistributed computing

Figure 2: Classification of communication demands

Inaugural Dissertation Patrick R. Haspel

Cluster Computing and Implementations, State of the art hardware support Page 8

casts and also small message sizes. Performance always comes at a cost, so relying on
Gigabit Ethernet for low cost low communication performance is still an option. Espe-
cially clusters used for distributed computing (i.e. raytracing a movie, where the frames
are computed in parallel or distributed web servers or databases), that does not require
special SAN features are candidates for feasible Gigabit Ethernet communication. Here
it has to be pointed out the difference in communication demands between parallel com-
putation and distributed communication:

2.2.1 QsNetII by Quadrics

With a market share of only 4% in the TOP500 list (November 2004) Quadrics is not one
of the big players despite of its dedicated architecture.

The current interconnection network by Quadrics is called QsNetII [27]. It consists of
two hardware building blocks: a PCI-X based network interface controller called Elan4
and a connecting switch called Elite4.

Figure 4: Layout of the Elan4 and the Elan4 network interface card [28]
Elan4

The network interface controller is responsible to insert messages from the host into the

Inaugural Dissertation Patrick R. Haspel

Cluster Computing and Implementations, State of the art hardware support Page 9

network and vice versa. The Elan4 chip measures 7.5mm by 7.5mm, has approx. 6 mil-
lion transistors consuming 4 Watts. It is fabricated using the LSI 0.18um process. The
Elan4 contains a thread processor and an event engine responsible for CPU offloading
of protocol tasks like MPI tag matching or global operations. Also some parts of the MPI
progress engine are considered to be transferred from the main CPU to the NIC.

CPU protocol offloading are considered in [43].

Figure 5: Elan4 top level block diagram [28]
Elite4

The Elite4 ASIC is the connecting switch of the QsNetII. It is responsible for routing the
messages through the switch hierarchy from and to the Elan4. The Elite4 chip measures
8.67mm by 8.67mm, has approx. 1 million gates consuming 6.5 Watts. It is fabricated

Inaugural Dissertation Patrick R. Haspel

Cluster Computing and Implementations, State of the art hardware support Page 10

using the LSI 0.18um process and contains a 4 by 4 bidirectional crossbar supporting 2
virtual channels at each input port [29].

Figure 6: Layout of the Elite4 ASIC [28]

Some remarkable aspects for QsNetII are following, that are described in detail later on:

• Pageable Virtual Memory support including address translation on the NIC and TLB
coherence

• Fixed topology: quaternary fat tree

• Reliable transmission

• Virtual network interfaces

• Special short message processing for ultra-low latency

• Support for global operations

Virtual Memory Support

Quadrics with QsNet has been the first SAN delivering native support for the use of vir-
tual addresses in communication. However, the concept has been initially developed in
the SHRIMP (Scalable High-performance Really Inexpensive Multi-Processor) project

Inaugural Dissertation Patrick R. Haspel

Cluster Computing and Implementations, State of the art hardware support Page 11

at Princeton University using the virtual memory-mapped communication (VMMC)
model.

Virtual memory-mapped communication (VMMC) was developed out of the
need for a basic multicomputer communication mechanism with extremely
low latency and high bandwidth. This is achieved by allowing applications to
transfer data directly between two virtual memory address spaces over the
network. The basic mechanism is designed to efficiently support applications
and common communication models such as message passing, shared mem-
ory, RPC, and client-server.

Experience with implementing connection-oriented communication using
VMMC exposed some deficiencies in the VMMC model. VMMC-2 was de-
signed to overcome those deficiencies. VMMC-2 extends VMMC with three
mechanisms: a user-managed TLB mechanism for address translation which
enables user libraries to dynamically manage the amount of pinned space
and requires only driver support from many operating systems, a transfer re-
direction mechanism which allows to avoid a copy on the receiver's side, and
a reliable communication protocol at the data link layer which allows to
avoid a copy on the sender's side. [34]

An efficient implementation of the programming paradigm of one-sided communication
demands the initiator, regardless whether it is a "PUT" or "GET", to handle remote ad-
dresses in contrast to the paradigm of two-sided communication, where the remote ad-
dress is delivered by the remote "RECEIVE" call.

Using one-sided communication, also called remote DMA, the initiator issues a commu-
nication instruction including localID, local_address, amount_of_data as well as the re-
modeID and the remote_address. The localID identifies the initiating node and process.
The local_address is a virtual address in the context of the process (identified by lo-
calID). Respectively, the remoteID identifies the target node and process and the
remote_address is the target virtual address within the process context.

As user-level communication is necessary regarding the demand for low-latency, the OS
may not be involved recurrently in the address translation. To give an example the
"PUT" communication pattern is described in the following:

Inaugural Dissertation Patrick R. Haspel

Cluster Computing and Implementations, State of the art hardware support Page 12

1. The NIC is informed about the intended communication, by a "PUT" instruc-
tion containing the above described parameters.

2. In order to fetch the data the NIC needs to know the physical address of the data
values to be processed.

2.1 To avoid recurrent OS calls asking for an address translation for every
message, a TLB (Transaction Look Aside) like structure is meaningful.

2.2 In a system that uses paging, the NIC needs to be informed about paging
activity as ongoing transfers to/from memory need to be cancelled, if the
OS decides to swap a page to memory. More details about possible opti-
ons can be found in chapter 3.1 "Functions, Features and important qua-
lity metrics of a SAN" on page 31.

3. Data will be fetched page by page and transmitted

4. On the target side the data arrives together with the remodeID (specifying also
the remote process context) and the remote virtual address.

5. Address translation needs to be perfomed on the target side also. The same re-
strictions as in 2.1 and 2.2 apply.

The Elan4 contains a TLB structure and delivers a LINUX patch in order to get the NIC
TLB involved in OS triggered CPU TLB flushes. This enables the QsNet to use virtual
addresses in communication without pinning down related pages. Again, all possible op-
tions and design decisions are described in detail in chapter 3.1 "Functions, Features and
important quality metrics of a SAN" on page 31. To get further information about
LINUX patches and TLB coherence please refer to [14] ’Thomas Schlichter, "Explora-
tion of Hard- and Software Requirements for one-sided, zero copy user level Communi-
cation and its Implementation", Diploma Thesis, Computer Architecture Group,
University of Mannheim, 2003’

Fixed topology: quaternary fat tree

QsNet connects Elite switches in a quaternary fat-tree topology, which be-
longs to the more general class of k-ary n-trees. A quaternary fat tree of di-

mension n is composed of 4n processing nodes and n × 4n-1 switches
interconnected as a delta network; it can be recursively built by connecting

Inaugural Dissertation Patrick R. Haspel

Cluster Computing and Implementations, State of the art hardware support Page 13

four quaternary fat trees of dimension n - 1. Figure 7 shows quaternary fat
trees of dimensions 1, 2, and 3.[30]

The fat tree topology was selected due the large number of alternate routes
between nodes, the linear scaling in bisectional bandwidth with network
growth and the ease of implementing global network operations such as
broadcast. The broadcast mechanism is the same as implemented in previous
generations of Elite allowing broadcasts to arbitrary ranges of nodes be-
tween an upper and lower limit.[28]

A further advantage of this topology is to make use of nearest-neighbor communication

Figure 7: Quaternary n-trees of dimensions 1 (a), 2 (b), and 3 (c).

Inaugural Dissertation Patrick R. Haspel

Cluster Computing and Implementations, State of the art hardware support Page 14

patterns. Adjacent nodes have lower communication latencies.

The worst disadvantage can be seen in the scalability issue. Adding nodes to a complete
topology means adding a dimension n. In the case of an incomplete node configuration
parts of the topology remain unused and therefore, the hardware utilization is not effi-
cient.

As the wiring between the Elite4 ASICs is hard mounted in the switch boxes custom
changes are not possible. The topology is fixed on the PCBs of the switches.

Reliable transmission

The term "reliable transmission" has a defined meaning in the area of SANs. It states,
that no security layer in software is needed to ensure a correct transmission. Instead, the
hardware is responsible to retransmit packets in the case of bit errors on the link.

SAN architects have observed the distribution of latency between software and hardware
and have found a heavy impact of copy operations due to the security layer in safe pro-
tocols. The security layers have been responsible to preserve a copy of every transmitted
message in order to retransmit it in the case of a failure. As the hardware is now respon-
sible for correct (reliable) transmission, there is no need to duplicate every message for
security reasons. This reduces the over-all latency dramatically.

Of course, there are more operation principles to be applied in order to further reduce
latency, that will be discussed in chapter 3.1 "Functions, Features and important quality
metrics of a SAN" on page 31.

OS trap

Driver

Device
Network

MPI

Application

1 µs

5 µs

IP stack

I/O Bus

OS trap

Driver

Device
Network

MPI

Application

<1 µs
I/O Bus

<1 µs

Figure 8: Latency distribution using 10GEthernet (right) and a typical SAN (left)

Inaugural Dissertation Patrick R. Haspel

Cluster Computing and Implementations, State of the art hardware support Page 15

Virtual network interfaces

Virtualizing devices is a quite mature concept, that has been applied on most available
devices from CPUs to disc controllers and also common LAN devices like Ethernet con-
trollers in order to deliver the functionality of the device to arbitrary processes. Howev-
er, this virtualization is currently managed by the operating system as the control
instance. A perfect example are TCP ports, that are virtual endpoints of LAN communi-
cation. There is only one physical LAN device, that can be operated by arbitrary process-
es using the port concept.

As SANs always try to avoid OS calls due to latency aspects, the real challenge is virtu-
alizing devices without OS interaction.

So called user-level virtual devices deliver full functionality of a regular device to arbi-
trary processes without OS intervention. The virtualization is meant to be 100% trans-
parent to the software. However, OS interaction is still needed to create/manage/delete
virtual device contexts, but regular communication happens on the user level only.

The entire concept of virtualizing a device, including the management of device contexts
is described in [42].

Special short message processing for ultra-low latency

As the PCI-X bus is the main contributor of latency to communication, it is from highest
priority to limit the number of PCI-X cycles, that are necessary to start a communication.
So, it is an optimization for short messages to provide a way to start a communication
with fewer PCI-X cycles than regular messages. A common way is to include the data
payload in the message descriptor in order to save the data fetch step from main memory,
that usually requires one or more PCI-X cycles.

Another possibility is to avoid main memory accesses by the NIC at all. The perfor-
mance of the PCI-X bus delivering data by programmed I/O (PIO) regarding latency (ap-
prox. 350ns depending on the chip set) is much better, than a DMA read access to main
memory (approx. 750ns) by the NIC [27]. Depending of the ability of the main CPU to
combine stores directed to the PCI-X bus, the bandwidth increases also. Table 1 shows

Inaugural Dissertation Patrick R. Haspel

Cluster Computing and Implementations, State of the art hardware support Page 16

the influence of burst length on the resulting bandwidth.

QsNetII supports different handling of messages depending on their size. It is important
to deliver high bandwidth and low latency for all message sizes, so there is a threshold
where messages are delivered in one way or the other.

In Figure 9 the latency for variable message sizes is drawn. It can be seen, that the laten-
cy is quite stable for messages smaller than 32 byte. These messages are delivered using
the "small message mode". For messages bigger than 32 byte the latency raises sudden-
ly; the message transfer mode has been switched.

Support for global operations

The Elan4 has a synchronization engine, called the Event Processor, used to
control the action to be performed when an operation completes. This con-
trols the signaling of the completion of an operation. When an Event fires it

Processor Maximum burst length by
PIO Resulting bandwidth

Itanium Tiger 128bytes 600MByte/s

Opteron 64bytes 450MByte/s

Table 1: Ability to combine program stores to bursts[27]

Figure 9: Latency depending on the message size

Inaugural Dissertation Patrick R. Haspel

Cluster Computing and Implementations, State of the art hardware support Page 17

causes a copy of data of up to 2KB in size to be written to a user defined vir-
tual address. This copy can be directed into a command queue and provides
a very flexible mechanism for a very low latency response to stimulus from
the network without the need to start a thread running on the thread proces-
sor. For example this can be used in network scatter/gather operations. In-
coming data, from the network, is gathered together and then copied in
separate packets routed to a number of different network destinations. Using
this method in excess of 4 million packets per second have been constructed
and injected back into the network.[27]

There is a rudimentary support by Elan4 for NIC controlled and processed global oper-
ations, but is not clear which MPI2 commands are hardware accelerated nor how big the
performance impact is.

However, there are ways to offload the main CPU from simple arithmetic transforma-
tions if there is some kind of programmable processing unit running concurrently on the
NIC. Methods and requirements are described in chapter 3.1 "Functions, Features and
important quality metrics of a SAN" on page 31.

2.2.2 Myrinet by Myricom

With a share of 38,6% in the TOP500 list (Nov. 2004) Myricom has the widest accep-
tance and surpasses even Gigabit Ethernet with a share of 35,2%. Please find below the
list of interesting features and Figure 10: ’Block diagram of a Myrinet F-Card [38]’.

Features:
• central crossbar (CLOS network)
• build from 16 x 16 integrated switch
• PCI-X Interface
• LANai on chip processor for communication function support

(333MHz)
• does hashing for the TLB table lookup
• Cameleon port is 10GEthernet compatible
• 1067MB/s for 64-bit, 133MHz PCI-X

Inaugural Dissertation Patrick R. Haspel

Cluster Computing and Implementations, State of the art hardware support Page 18

Network Topology

All Myrinet flavors implement a CLOS network. The tree topology is build in a manner,
that all computation nodes (tree leafs) has the same distance with regard to the number
of hops through switches. So, there is no positive impact of nearest neighbour commu-
nication patterns on communication performance.

Communication processor

Myrinet uses a 32-bit communication processor called LANai to enable message trans-
fer. As every transfer task is controlled by the LANai this system is highly configurable
with regard to the transfer mechanism. A dedicated message SRAM is used to buffer
messages being sent and received. The LANai has control over the Host DMA engine,
the SRAM and the Packet DMA. Configurability as an advantage stands against the dis-
advantage of complex programming of the LANai and the cost impact of the dedicated
SRAM.

However, the presence of the dedicated SRAM and the communication processor en-
ables Myrinet to implement a TLB-like functionality for virtual/physical address trans-
lation.

Network interface

The network interface called Cameleon is capable of driving the 10Gig Ethernet proto-
col. This feature is used to hook up to commodity 10Gig Ethernet LANs in order link
clusters of high-performance communication with regular LANs.

Network-
Interface

Paket-
DMA

2 MB-
4 MB

SRAM

Host-
DMA

32-Bit
RISC

PC
I-X

-Interface

IO
-B

us (PC
I-X

)

SAN-
Port

SRAM

LanAI 4 RISC Prozessor

PCI-X-Bus Interface

SAN-Port

optical
transceiver

Paket-
DMA

send

receive

2 x 2Gb/s

Figure 10: Block diagram of a Myrinet F-Card [38]

Inaugural Dissertation Patrick R. Haspel

Cluster Computing and Implementations, State of the art hardware support Page 19

Myrinets cost/performace ratio and the stability of the system as well as some historical
issues led to the enormous market share. From a scientific view point the architectural
features are not as interesting as for example Quadrics network.

2.2.3 Pathscale

The Pathscale’s approach is a very pragmatic one creating a pretty simple but very ef-
fective SAN mostly build around de-facto and industry standards.

Being able to step up one hop nearer to the main CPU reduces latency fundamentally.
Please refer to section chapter 3.1.6 "Communication to / Location of the Network In-
terface Controller" on page 50 for further discussion on other location related benefits.

Pathscape has no switching capability and relies on the Infiniband network infrastructure
for routing messages through the network.

To sum up, Pathscale is the perfect example how to reduce latency by moving nearer to
the main CPU. All other aspects of SANs (chapter 3 "SANs in general" on page 30) are
not considered in this solution as Pathscape is more like a Hypertransport/Infiniband in-
terface. However, the consequent use of standards and the avoidance of additional on
NIC memory can make this solution very cost effective.

One drawback for current systems is, that only clusters of AMD CPU (because of the
Hypertransport bus) can be used and a dedicated Hypertransport slot on the mainboard
must be present (HTX connector).

Inaugural Dissertation Patrick R. Haspel

Cluster Computing and Implementations, State of the art hardware support Page 20

Streamlined approach to signifi-
cantly reduce latency

• Fully pipelined
hardware

• No external memo-
ry necessary

• Low processor uti-
lization

Built around industry standards:
• InfiniBand Physi-

cal/Link Layers and subnet ma-
nagement

• Linux
• MPI
• HyperTransport bus & HTX con-

nector (Iwill motherboard)

4x IB Link

Figure 11: Pathscale’s InfiniPath [38]

4x IB Link

HT-IO Phy

IB
SERDESCCE

InfiniPath NIC

IB
Controller

TXE RXE

HT-Control

16x HT IO HT 1600

HTX Connector
Figure 12: Block diagram of Pathscale’s InfiniPath [38]

Inaugural Dissertation Patrick R. Haspel

Cluster Computing and Implementations, State of the art hardware support Page 21

2.2.4 PCI-ASI (Advanced Switching Interconnect)

ASI is based on the layer 1 and 2 (physical and link layers) of the PCI express (PCIe)
standard. The PCIe’s transaction layer and above are exchanged in order to add features
like protocol encapsulation and routing (in addition to the simple load/store interface of

Performance:

Peak bandwidth at HT IO (no overhead) = 1.6GHz x 16bit (2B) x bidir =
3.2GB/s x2 = 6.4GB/s
Peak bandwidth at IB = 4 x 2.5Gbit/s x 2 = 2.5GB/s, with coding overhead
2GB/s, one direction 1GB/s, protocol overhead ~5% = 950MB/s
Max. bandwidth = 952MB/s
n1/2 message size is 385B, reduces further if more CPUs are in the node.
Bi-directional Streaming Bandwidth = 1875 MB/s

TCP/IP Latency of 6.7µs and a bandwidth of 583MB/s (Standard LINUX
stack).

1 2 4 8 16 32 64
log scale

M length
[Bytes]

L
[µs]

B
[MB/s]

1

2

3

4

5

6

0
128 256 512 1024 2048 4096

200

400

600

800

1000952MB/s

476MB/s

385B

MPI Unidirectional Streaming Bandwidth

1,32
1,7

MPI Latency

Inaugural Dissertation Patrick R. Haspel

Cluster Computing and Implementations, State of the art hardware support Page 22

PCIe) (Figure 12). It is important to note that despite of the other SAN examples given
in this work this is the description of a standard not an implementation. Up to now there
are no implementations of the ASI standard. However, there are concepts in this standard
that has to be discussed as some of these ideas influenced this work.

Especially interesting and needful to be considered is the routing function of ASI. It re-
lies on a relative turn mechanism. The output port is calculated depending on the input
port by adding the right turn value in the routing string. The right turn value is marked
by the turn pool pointer (Figure 13). This routing function supports switches with differ-
ent amount of ports as the turn pool pointer is interpreted bit-wise. Also interesting is the
implicit return route. By processing the routing string backwards subtracting turn values,

Figure 12: AS integration in PCIe (courtesy of ASI-SIG)

Inaugural Dissertation Patrick R. Haspel

Cluster Computing and Implementations, State of the art hardware support Page 23

the return route is implicitly given.

However, none of the principles has been adopted due to several drawbacks:

• Using dimension ordered routes to minimize deadlock probability in tori topologies
limits the use of return routes that are identical to the original route.

• As the routing string is not consumed, the crossbar arbiter needs to gather the entire
string prior to a routing decision. This puts additional penalty on the latency intro-
duced by the crossbar.

2.2.5 IBM Blue Gene BG/L

The ’IBM Blue Gene BG/L’ is kind of a brute force response to the Japanese Earth Sim-
ulator build by NEC. Using a large number of nodes with moderate clocked CPUs puts
lots of pressure on the required parallelization of algorithms. However, using the cost
saving principle of commodity CPUs (dual core PowerPC440 plus additional FPUs, Fig-

Figure 13: AS routing (courtesy of ASI-SIG)

Inaugural Dissertation Patrick R. Haspel

Cluster Computing and Implementations, State of the art hardware support Page 24

ure 14) the resulting price /performance ratio is impressive.

Interesting for this work is the use of application dedicated concurrent networks (Figure
15). The 3D torus network has a bandwidth of 2,1 GBit/s per node coming from 6 bidi-
rectional 350 MBit/s links. Due to the pin limitation IBM used serial links supporting
four virtual channels. The route through latency is only 69ns per hop.

The tree network used for global operations and barrier communication has an ALU in-
tegrated to compute bitwise operations like XOR as well as integer operations like ADD
or MAX.The latency for a global sum over 64k nodes is below 2,5 us. The tree network
supports up to four independent barriers or interrupt channels with a latency of only 1,5

PLB (4:1)

“Double FPU”

Ethernet
Gbit

JTAG
Access

144 bit wide
DDR
256/512MB

JTAG

Gbit
Ethernet

440 CPU

440 CPU
I/O proc

L2

L2

Multiported
Shared
SRAM
Buffer

Torus

DDR
Control
with ECC

Shared
L3 directory
for EDRAM

Includes ECC

4MB
EDRAM

L3 Cache
or
Memory

6 out and
6 in, each at
1.4 Gbit/s link

256

256

1024+
144 ECC256

128

128

32k/32k L1

32k/32k L1

“Double FPU”

256

snoop

Tree

3 out and
3 in, each at
2.8 Gbit/s link

Global
Interrupt

4 global
barriers or
interrupts

128

2kB

2kB

PLB (4:1)

“Double FPU”

Ethernet
Gbit

JTAG
Access

144 bit wide
DDR
256/512MB

JTAG

Gbit
Ethernet

440 CPU

440 CPU
I/O proc

L2

L2

Multiported
Shared
SRAM
Buffer

Torus

DDR
Control
with ECC

Shared
L3 directory
for EDRAM

Includes ECC

4MB
EDRAM

L3 Cache
or
Memory

6 out and
6 in, each at
1.4 Gbit/s link

256

256

1024+
144 ECC256

128

128

32k/32k L1

32k/32k L1

“Double FPU”

256

snoop

Tree

3 out and
3 in, each at
2.8 Gbit/s link

Global
Interrupt

4 global
barriers or
interrupts

128

2kB

2kB

PLB (4:1)

“Double FPU”

Ethernet
Gbit

JTAG
Access

144 bit wide
DDR
256/512MB

JTAG

Gbit
Ethernet

440 CPU

440 CPU
I/O proc

L2

L2

Multiported
Shared
SRAM
Buffer

Torus

DDR
Control
with ECC

Shared
L3 directory
for EDRAM

Includes ECC

4MB
EDRAM

L3 Cache
or
Memory

6 out and
6 in, each at
1.4 Gbit/s link

256

256

1024+
144 ECC256

128

128

32k/32k L1

32k/32k L1

“Double FPU”

256

snoop

Tree

3 out and
3 in, each at
2.8 Gbit/s link

Global
Interrupt

4 global
barriers or
interrupts

128

2kB

2kB

Figure 14: Block diagram of IBM’s BlueGene [38]

Inaugural Dissertation Patrick R. Haspel

Cluster Computing and Implementations, State of the art hardware support Page 25

over 64k nodes.

The remaining two networks are commodity. A Gigabit Ethernet for file IO and a JTAG
control network for the boot process, control access and diagnostics.

The integration of a compute resource in the EXTOLL network (chapter 5.2 "NPU (Net-
work Processing Unit)" on page 80) has been influenced by BlueGene’s ability to com-
pute global operations by the network decreasing main CPU load as well as latency.

The barrier hardware support of the EXTOLL network (chapter 5.3 "Network Switch"
on page 89) was solved avoiding additional physical networks by mapping a virtual tree
topology on the torus physical connectivity.

2.2.6 Mellanox Infiniband

The Infiniband standard has been defined in the year 2000 in version 1.0 by the Infini-
band Trade Association. Dell, Hewlett-Packard, IBM, Intel, Microsoft and Sun Micro-
systems founded the organization and sit on its steering committee. Mellanox was one
of the first vendors supplying Infiniband standard conform hardware beginning of the
year 2001. As the standard was originally defined to be the PCI successor the support for

3D Torus for Point-to-Point; nearest neighbour

Tree for global operations, barriers, interrupts

Control network for boot, control access and diagnostic

GigEthernet for file IO and JTAG for

Figure 15: Different networks of the ’IBM Blue Gene BG/L’

Inaugural Dissertation Patrick R. Haspel

Cluster Computing and Implementations, State of the art hardware support Page 26

parallel computation constructs like barriers and global operations is negligible. Also,
the complexity of the standard is hampering fully compliant hardware implementations.
However, the large consortium behind the standard drives industry acceptance and the
success in the TOP500 list (rank 5) is proving the concept.

Nevertheless, from the research point of view only some principles like credit based flow
control, virtual channels and the "Memory and Translation Mechanism (MTP)" are in-
teresting.

2.2.7 Cray XT3

Cray started to install the successor of the Cray T3E in September 2004 at the Sandia
Lab called RedStorm. The system consists of 11.646 AMD Opteron processors with 10
TByte memory and 240 TByte hard disk space.

Figure 16: MHEA28-XT Card
(courtesy of Mellanox)

Figure 17: Installation in
the Pittsburgh Super-

computing Center
(courtesy of the PSC)

Inaugural Dissertation Patrick R. Haspel

Cluster Computing and Implementations, State of the art hardware support Page 27

The building block consists of an AMD Opteron CPU with dedicated (local) memory
and a HyperTransport link to the Cray proprietary SeaStar communication resource
(Figure 18).

The 16x HyperTransport interface provides up to 6,4 GBit/s bandwidth between the
AMD Opteron and the SeaStar communication resource. This removes the bottleneck of
the PCI interface used in most commodity SANs.

The Cray SeaStar chip combines communications processing and high speed
routing on a single device. Each communications chip is composed of a
HyperTransport link, a Direct Memory Access (DMA) engine, a communica-
tions and management processor, a high-speed interconnect router, and a
service port. The chip features a DMA engine and an associated PowerPC™
440 processor. These work together to off-load message preparation and de-
multiplexing tasks from the Opteron Processor [38]

The decentralized crossbar architecture is comparable to the ATOLL network providing
a peak bandwidth of 6 Gbit/s per bidirectional link, which sums up to 36 Gbit/s (6 links
for the 3D torus topology) bandwidth to the network. The chip is manufactured in a
130nm IBM CMOS technology.

Here, Cray makes a promising move to use commodity computations resource combined
with a proprietary communication resource linking these via the HyperTransport inter-
face tightly. As mentioned throughout this work (chapter 3.1.6 "Communication to / Lo-

3D Torus

DMA

Internal Interconnect

NIC
processor

LinkNetwork
Interface

LinkNetwork
Interface

XBar

HT interfaced NIC

LinkNetwork
Interface

X

Y

Z

Service
Port

16x HT IO
HT 800 DDR

PowerPC 440

Sea Star chip

Host
Interface

TXE RXE

service port

(local bus)

Router
Memory

Figure 18: Cray SeaStar block diagramm [38]

Inaugural Dissertation Patrick R. Haspel

Cluster Computing and Implementations, State of the art hardware support Page 28

cation of the Network Interface Controller" on page 50) integrating the communication
resource as tight as possible to the computation resource is reducing latency, enabling
cache coherence and higher bandwidths.

2.2.8 10GigEthernet by Chelsio

Chelsio Communications is the market and technology leader for 10 Gigabit
Ethernet adapters. Chelsio's board-level products employ the company's
unique ICs that process compute-intensive communications protocols at
10Gbps rates. Unburdened of this communications-processing overhead,
host servers and storage systems that use Chelsio adapters dramatically in-
crease both applications performance, and communications bandwidth.

Chelsio products accelerate network performance in enterprise data centers,
high performance cluster computing (HPCC), enterprise-wide data storage
systems, and post-production shops for digital film and video. Chelsio is a
privately-held subsystems company in Sunnyvale, California. [48]

The Chelsio approach relies on the ethernet standard, offloading TCP stack processing
from the node’s CPU. For compute intensive protocol stacks like the TCP stack and link
bandwidths of 1Gbyte and more, TCP offload engines like the Chelsio’s Terminator ar-
chitecture reduce the node’s CPU load dramatically. The Terminator architecture imple-

Inaugural Dissertation Patrick R. Haspel

Cluster Computing and Implementations, State of the art hardware support Page 29

ments an entire TCP stack, providing a standard socket interface to the application.The

application to application latency of <10 us is quite in the range of typical SANs, but
these are usually not measured though one or more switches. It further need to be con-
sidered, that the Chelsio hardware does only support a socket data transfer and no paral-
lel computation paradigms. This requires the software to handle typical MPI operations,
like barriers or global operations. Please refer to chapter 3.1: ’Functions, Features and
important quality metrics of a SAN’ on page 31 to read about why it is not sufficient
comparing just latency and bandwidth of a communication device in order to predict or
forecast the performance of parallel applications.

However, for certain parallel applications with a low degree of communication-to-com-
putation ratio fast LANs like the Chelsio N210 might be used as cluster interconnect.

Figure 19: Chelsio’s N210 10GigEthernet Adapter [48]

Inaugural Dissertation Patrick R. Haspel

SANs in general, State of the art hardware support Page 30

3 SANs in general

Different classes of communication has been discussed in chapter chapter 2.1 "Commu-
nication demands of distributed and parallel computing" on page 5. System Area Net-
works are considered to deliver the communication task in a parallel computing
environment. Depending on the intended computational problem that has to be solved
some requirements on SANs are from more or less importance to the overall perfor-
mance of the parallel system.

Derived from the above, it is like in the processor evolution, where performance evalu-
ation isn’t just a collection of numbers combined in a performance expression. Like in
the area of SANs evaluation of processor performace is done using a set of benchmarks,
that have different characteristics. Again, depending on the computational problem to be
solved a specific benchmark might be of more or less importance for the intended prob-
lem solution. The collection of benchmarks (Figure 20) range from microbenchmarks,
that focus on a single or small set of metrics, over general benchmarks that consider a
generic arithmetic problem like matrix multiplication, to application benchmarks that
emulate exactly the intended algorithm.

There are some metrics enhancing communication in any way, like the communication
latency. However, the problem in comparing different SANs still persists as SANs with

Micro benchmarks

Parallel benchmarks

Application benchmarks

round trip latency

ping pong bandwidth

LINPACK

NAS parallel

IBM DB2
SAP R/3

benchmark

fo
re

ca
st

 a
cc

ur
ac

y

an
al

yt
ic

 m
et

ri
c

de
te

rm
in

at
io

n

Figure 20: Collection of Benchmarks

Inaugural Dissertation Patrick R. Haspel

SANs in general, Functions, Features and important quality metrics of a SAN Page 31

equal latency might behave completely different in different applications or even com-
pute systems. This work focuses on methods, operation principles, architectures and pro-
gramming models of SANs instead of numbers solely in order to highlight the
background of the why and how.

The TOP500 list, a ranking of the 500 fastest compute systems worldwide, use the LIN-
PACK benchmark to rank every system. Here, some comments of them regarding
benchmarks:

The benchmark used in the LINPACK Benchmark is to solve a dense system
of linear equations. For the TOP500, we used that version of the benchmark
that allows the user to scale the size of the problem and to optimize the soft-
ware in order to achieve the best performance for a given machine. This per-
formance does not reflect the overall performance of a given system, as no
single number ever can. It does, however, reflect the performance of a dedi-
cated system for solving a dense system of linear equations. Since the prob-
lem is very regular, the performance achieved is quite high, and the
performance numbers give a good correction of peak performance.

3.1 Functions, Features and important quality metrics of a SAN

Obviously, SANs add some functionality to regular data transport networks or LANs
like Ethernet or ATM. In the following sections SAN specific functions and features, im-
portant for performance and efficiency as well as scalability, will be categorized. Fur-
thermore, operation principles and architectures are discussed in order to enhance the
specific issue.

3.1.1 Latency

Latency is considered to have the most overall impact on parallel computation speedup.
The higher the latency the coarser the granularity of the possible (and feasible) parallel-
ization. So, it is from highest importance to decrease the overall latency. The first step is
to analyze the contributing sources for latency starting with the MPI function call (Fig-

Inaugural Dissertation Patrick R. Haspel

SANs in general, Functions, Features and important quality metrics of a SAN Page 32

ure 21, left).

User-level communication

It is common understanding these times to avoid the OS with its protocol stack and the
device drivers for regular communication. This is called user-level communication.

As the most time consuming task of the protocol stack is to provide reliable (and error
free) communication the derived requirement for SAN hardware to get rid of the proto-
col stack is a hardware retransmission of faulty packets. All available SANs use hard-
ware retransmission and so clear the need for a protocol stack.

Although, the OS and the device driver are involved during the setup and initialization
phase, after the communication channels are setup no OS nor device driver intervention

Figure 21: Latency contributing sources; no optimizations (left), regular SAN with user-
level communication (right)

Application

MPI

OS trap

Protocol Stack

Device Driver

Peripheral Bus

NIC device

Network, cable, switches

NIC device

Peripheral Bus

Device Driver

Protocol Stack

OS trap

Application
MPI

Application

MPI

Peripheral Bus

NIC device

Network, cable, switches

NIC device

Peripheral Bus

Application
MPI

Inaugural Dissertation Patrick R. Haspel

SANs in general, Functions, Features and important quality metrics of a SAN Page 33

are needed.

Regular SANs always use user-level communication. So, the sources of latency reduce
to the communication library (MPI, i.e.), the bus the NIC is connected to, the NIC itself
and the network with the cabelling and the switches (Figure 21, right).

User-level communication is enabled by mapping memory regions of the device to the
user application’s address space. Load and stores from these mapped pages by the user-
level application (or the communication library) result in the corresponding bus
read/writes to the device. OS and the device driver are needed to do the mapping [13],
[14], but the system’s bridge recognizes accesses to the mapped pages and forwards
them to the device without OS interaction. All user-level communication works like this.

If a device can be accessed without OS interaction the device is attached to a single user-
level process. In order to enable access to more processes, there are basically two ways:

1. Replicate the device
Like in ATOLL [20], there are four replicated "Host Ports" to serve 4 different
processes concurrently in order to satisfy compute nodes up to four way SMPs.
The silicon area for one "Host Port" needs to be added for every process to be
supported. This solution is inflexible in the number of concurrent processes cur-
rently allocating one "Host Port" but is easy to handle.

2. Virtualize the device
Virtualizing a device means enabling a fast context switch mechanism. This
mechanism needs to be so fast, that switching between contexts does not have
a latency contributing impact. The advantage is that only one virtual "Host Port"
is needed. Please refer to [42] for details on device context creation and han-
dling and chapter chapter 5.4 "Hostinterface and EXTOLL block level commu-
nication" on page 114 for access mechanisms to virtual devices.

Optimizations to the communication library

The box titled "MPI" in Figure 21 refers to the entire communication software environ-
ment and includes the basic low-level Application Programming Interface (API) also.

Optimizations regarding latency can target the MPI implementation as well as the low-
level API. Best results in optimization can be achieved if during the interface design of
the hardware all requirements derived from the software are considered. Please find
chapter chapter 4.2.2 "Seamless hardware/software interfacing" on page 70 and chapter

Inaugural Dissertation Patrick R. Haspel

SANs in general, Functions, Features and important quality metrics of a SAN Page 34

chapter 4.2.3 "Integrity and completeness of software required functionality" on page
71 for general methodology steps.

For opportunities offloading the MPI progress engine and the MPI tag matching task
please refer to [43]. The MPI progress engine is responsible for the progress of non-
blocking MPI commands. Currently most MPI implementations only progress if an MPI
command is issued as no additional thread is spawn for concurrency. Also the tag match-
ing task, that finds messages with a tag corresponding to the MPI command in the pool
of received messages might be offloaded to the NIC processor. Offloading has the addi-
tional benefit of freeing the main CPU from communication tasks in order to accelerate
computation.

Generally it can be stated, that all software levels need to be as lean as possible.

Location of the NIC (Box "Peripheral Bus")

Every bus bridge between the NIC and the main CPU adds latency. Therefore, regarding
latency the NIC should be as close as possible to the main CPU.

Figure 22 shows possible locations for the NIC in a commodity compute node. All com-
mercially available SANs are located on the I/O bus. The reason herefore is the avail-
ability of open specifications like PCI, PCI-X or PCIexpress. The development of SANs

I/O I/O

Cache Bus

Processor/System Bus

Processor

Memory

NI

NI

NIL2 cache

NI

I/O-Bus

Bridge

NI

Integration into Processor

Processor/System Bus

I/O Bus

Transputer iWarp

Avalance

PowerMANNA

Myrinet

IBM SP/2

StartTVoyager
T3E

L2-Cache Bus
MIT: Alewife

Start

intel Paragon

nCubeMaspar

MANNA

ATOLL
SCI

Quadrics ELAN4

Memory
RDIMM

Figure 22: Network Interface Locations [31]

Inaugural Dissertation Patrick R. Haspel

SANs in general, Functions, Features and important quality metrics of a SAN Page 35

would target more closer interfaces to the main CPU, if there would be a processor in-
dependent bus specification of a system or cache bus available. Also a suitable possibil-
ity would be the AMD’s Hypertransport processor interface, although it would limit the
applicability of the SAN to AMD systems.

A very interesting aspect is the possible cache coherence of processor busses. Opportu-
nities and enhancements are described in [44]. Cache coherence enables the SAN to de-
liver a virtual distributed shared memory system, where native processor loads and
stores might be transparent remote loads and stores to arbitrary remote compute nodes.

NIC device

There are lots of opportunities reducing or hiding latency on NIC devices depending on
the device’s architecture. Here, all relevant operation principles of the computer archi-
tecture science can be applied. The more advanced the NIC devices become the more do
they look like a superscalar processor: Concurrently working communication units, fast
context switching, reorder unit, reservation stations, (communication-) instruction fetch
and much more are on their way on to the NIC devices. One of the key elements of this
work is the design space exploration and implementation of building blocks for a future
interconnection network. Please refer to chapter chapter 5 "Architecture and Function
Scope of Building Blocks" on page 78 for a detailed analyses of pros and cons of the se-
lected architecture decisions.

However, in current systems the main factor for hardware communication latency is the
amount of bus accesses to/from the NIC device to initiate a communication. Consider
the PCI-X bus with an arbitration latency of between 350ns and 450ns. With this num-
bers it is from highest importance to reduce the amount of accesses needed for commu-
nication. In [32] we measured the resulting PCI-X bandwidth using different burst
length. As accesses are not pipelined the high start-up latency reduces the available
bandwidth dramatically depending on the bytes transferred with one access. Please refer

Inaugural Dissertation Patrick R. Haspel

SANs in general, Functions, Features and important quality metrics of a SAN Page 36

Figure 23 for a visualization.

Network, cable, switches

Similarly to the latency considerations for the NIC device, there are lots of ways to re-
duce latency on the network. The factor with the least potential to reduce latency is the
cable. Typical cable delays are from 3-9ns per meter depending on the type of cable.
Please refer Table 2 for details. As the cable length is very limited in a SAN, consider
30 meters, the cable delay is between 100 and 270ns:

Quite more potential can be found in the switch architecture. The evolution comes from
the so called store-and-forward networks emerged to wormhole-routed networks and is
basically now in the virtual-cut-through networks. These concepts have been thoroughly
researched and can be found in [33]. The ATOLL SAN for example uses wormhole
routing [22].

Cable type Delay per meter [ns] Factor of c (speed of
light)

Copper - twisted pair 9 0,37

Copper - Coaxial 5 0,66

Optical fibre 3,3 approx. 1

Table 2: Cable delay

8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8

65
53

6
0

100

200

300

400

500

600

700

800

900

1000

1100
Bandwidth
Peak Bandwidth

Bytes per Transfer

Ba
nd

w
id

th
 [M

B/
se

c]

Figure 23: Bandwidth reduction due to high arbitration latency

Inaugural Dissertation Patrick R. Haspel

SANs in general, Functions, Features and important quality metrics of a SAN Page 37

3.1.2 Bandwidth

The bandwidth, which is the most important quality metric for LANs, also must not be
neglected, as data transmission needs to be completed as fast as possible in order to con-
tinue computation.

In fact, latency and bandwidth directly relate to the time needed to transmit a message.
Derived from the below formula, latency is the offset and bandwidth the gradient of the
straight line representing the needed time for a given amount of communication data:

For very small messages latency dominates, for very large ones the bandwidth. As in
parallel computing small messages occur very frequently, because they are used to syn-
chronize the parallel threads, the latency is especially important. Neglecting the band-
width would let the network suffer during data set distribution of for example big
matrixes. So, both metrics influence the network’s performance drastically.

However, generating bandwidth is from the view of computer architects an easy task
compared to lowering the latency. This stems from the fact that technology delivering
bandwidth might be just multiplied in order to generate more bandwidth.

During benchmarking, when concrete numbers of bandwidth and latency are either un-
known or should be verified, the definition bandwidth and latency somehow change. For
latency, the time is measured to start-up a message of a given size and noted as latency
of msglength. For bandwidth, the transferred bytes per second are measured for a given
message size using the arithmetic average of a big number of messages and noted as
bandwidth of msglength. In the following graphs exemplary benchmarks for start-up la-
tency and send/receive bandwidth on MPI level are given. These measurements are tak-
en during the hands-on tutorial of the International Supercomputer Conference 2005

Time msglength() latency bandwidth msglength×+=

Inaugural Dissertation Patrick R. Haspel

SANs in general, Functions, Features and important quality metrics of a SAN Page 38

(ISC05) by Holger Fröning.

Figure 24: MPI Start-up latency for a given message size

Inaugural Dissertation Patrick R. Haspel

SANs in general, Functions, Features and important quality metrics of a SAN Page 39

The n/2 bandwidth metric

As stated above SANs rely on high bandwidths for small message sizes. Accounting this

Figure 25: MPI Send/Receive bandwidth for a given message size (top) and in detail
for smaller message sizes

Inaugural Dissertation Patrick R. Haspel

SANs in general, Functions, Features and important quality metrics of a SAN Page 40

the n/2 bandwidth metric has been established. It notes the message size, where half of
the peak bandwidth is reached. For the above measurements the following numbers cal-
culate:

3.1.3 Network Topology

The network topology defines how communicating partner are connected to each other.
Most commonly used is the classification by Duato [35].]

Shared-Medium Networks

As the name impies all contributing communication partners share one physical medi-
um, resulting in a blockage of the single communication channel during peer-to-peer
communication. No further communication between the remaining communication part-

SAN configuration n/2 bandwidth metric [Byte]

Myrinet 2048

Quadrics 4096

Mellanox x4 8192

Mellanox x8 32768

Infinipath 4096

Gigabit Ethernet 8192

Table 3: The n/2 bandwidth metric for several SAN configurations

Interconnection Networks

Shared-Medium Networks Direct Networks Indirect Networks Hybrid Networks

Inaugural Dissertation Patrick R. Haspel

SANs in general, Functions, Features and important quality metrics of a SAN Page 41

ners is possible, if two of them communicate peer-to-peer.

This problem aggravates the more communication partners are connected to the Shared-
Medium and therefore, it prevents scalability.

However, communication patterns like multi- and broadcasts work perfect on this medi-
um. Also, the "snooping" method, used frequently in cache coherence protocols, is only
possible in Shared-Medium Networks.

In former times this network was also called bus; unfortunately misused by industry
specifications like USB (Universal Serial Bus), which is indeed a pure point-to-point
network in the class of direct networks.

Direct Networks

A direct network consists of a set of nodes, each one being directly connected
to a (usually small) subset of other nodes in the network. Each node is a pro-
grammable computer with its own processor, local memory, and other sup-
porting devices. A common component of these nodes is a router, which
handles message passing among nodes. Each router has direct links to the
router of its neighbors. Direct networks has been a popular interconnection
architecture for constructing large-scale parallel computers. [36]

Each communication partner brings in his own routing resource to the network. So each
scaling step of communication partners also adds routing resources to the network. This
is the reason why Direct Networks are supposed to scale very well. Usually SANs im-

A B C

D E

Figure 26: Communication of C->B blocks all other communication. A, D, E are blocked
[17].

Inaugural Dissertation Patrick R. Haspel

SANs in general, Functions, Features and important quality metrics of a SAN Page 42

plementing Direct Networks integrate the router into the NIC [11].

In general, k-ary n-cubes are Direct Networks, where the n parameter is the dimension
of the topology and the k parameter is the number of nodes along a dimension (also
called radix). A 4x4 3d-torus would then be a 4-ary 3-cube. Binary n-cubes (2-ary n-
cube) are also called hypercubes.

Indirect Networks

In contrast to the Direct Networks the Indirect Networks have switches or routers in be-
tween the communication partners. So, communication always is happening through a
dedicated router or switch. Figure 28 shows a typical example.

In order to keep the number of ports of the routers constant during scaling, additional
stages of routers might be introduced (Figure 29). These subclass is then called multi-

Figure 27: 3x3 cube (left), 3-ary 2-cube (right)[17]

A

B

C

D

E

F

G

H

Figure 28: Indirect Network with 8 nodes in a star topology [17]

Inaugural Dissertation Patrick R. Haspel

SANs in general, Functions, Features and important quality metrics of a SAN Page 43

stage networks.

So, during scaling the number of ports per router remain constant, only the number of
levels of the multi-stage network changes.

Hybrid Networks

In the class of Hybrid Networks all combinations of shared-medium, direct and indirect
networks are concluded. Figure 30 shows an example of three shared-medium networks
connected via an indirect network.

Important topology characteristics

There are lots of topology metrics available for most types of regular networks. Table 4
gives a rough overview.

Figure 29: The butterfly topology as an example of multi-stage networks [17]

Router

Router

Router

Figure 30: Hybrid Network consisting of a combination of Shared-Medium
and Indirect Networks [17]

Shared-Medium Network1 Shared-Medium Network2

Shared-Medium Network3

Indirect Network

Inaugural Dissertation Patrick R. Haspel

SANs in general, Functions, Features and important quality metrics of a SAN Page 44

However, only some of them have proven themselves as efficient for parallel computing.
The reasons for this range from scalability issues over blocking behaviour to deadlock
freedom or even manufacturability. All network/topology types for example that need to
add ports to switches during scaling are totally omitted due to implementation econom-
ics.

From section chapter 2.2 "State of the art hardware support" on page 7, the viable topol-
ogies are clos networks, fat trees and tori/grids in various dimensions. Even for this lim-
ited amount of topologies some characteristics differ dramatically [54].

• Considering deadlock behavior and routing algorithms

• Considering blocking behavior

• Considering scalability

• Considering suitability for communication patterns (nearest neighbour, multicast,
barriers)

• Considering reliability?

1D-torus

binary tree

2D-torus

3D-grid

Hypercube

vollst. Vernetzung

Topology Degree Diameter # of connections

2

3

4

6

1

Scalability

yes

no

no

yes

yes

1D-grid 2 yes

2D-grid 4 yes2 N 1–()⋅

N 1–

N 1–
1
2
--- N 1–()⋅

3 N3 1–()⋅

3D-torus 6 yes
3
2
--- N3 1–()⋅

N 1–

N

2N 2 N⋅–

2N

3N 3 N3⋅–

3N

N2log N2log N N 2⁄()2log⋅

2 N2()log 1–()⋅ N 1– yes

N 1– N N 1–()⋅
2

Symetrie

yes

yes

yes

yes

no

no

no

yes

yes

Table 4: Some topology metrics [55]

Inaugural Dissertation Patrick R. Haspel

SANs in general, Functions, Features and important quality metrics of a SAN Page 45

Considering deadlock behaviour and routing algorithms

A set containing a certain topology and a certain routing algorithm allow to make state-
ments regarding deadlock freedom [50] [51] [52]. Considering the quaternery fat trees
(like Quadrics’s QsNet) all minimal routes are deadlock free. Quite more interesting are
candidates in the class of direct networks, as these have proven to scale very well. Table
5 lists a set of combinations of topologies and routing algorithms that are deadlock free:

There is a well understood relationship of routing algorithms on direct networks regard-
ing deadlock freedom summarized in [18] ’Richard Sohnius, "Creating an Executable
Specification using SystemC of a High-Performace Low-Latency Muli-Level Network
Router", Diploma Thesis, Computer Architecture Group, 2005’ and a description of
routing algorithms in [37] ’Mondrian Nüssle, "Design and Implementation of a distrib-
uted management system for the ATOLL high-performance network", Diploma Thesis,
Computer Architecture Group, University of Mannheim, 2005’.

Also described in [18] introducing virtual channels can improve the deadlock behavior
by providing so called "escape channels".

Considering blocking behavior

In most network topologies, physical links between nodes are used for more than one
route (In this context every pair of communicating nodes require a "way" through the
network called route). In this case one link is used by two or more routes resulting in a
reduction of the link or network bandwidth available for the communication partners.
The metric that describes this fact is called "number of routes per link":

#routes/link

Topology Routing algorithm minimal routes?

Grid Dimension-order yes

Torus Dimension-order no

Torus Dimension-order + Virtual
Channels

yes

Torus Up/Down no

Grid Up/Down no

Table 5: Deadlock free combinations of topology and routing algorithm

Inaugural Dissertation Patrick R. Haspel

SANs in general, Functions, Features and important quality metrics of a SAN Page 46

As the generation of the routes is depending on the routing algorithm, only the combi-
nation of network topology and routing algorithm defines the #routes/link metric.

The switching behavior of the switching element in the interconnection network can in-
crease the impact of the described effect for the communication performance. Using
wormhole switching, message transfer A is blocked if one of the by the route defined
links is already used by message B. This causes the message A being blocked. All links
now used by message A are blocked also resulting in zero bandwidth for all links.

Reducing the maximum transfer unit (MTU) reduces the blocking penalty on the band-
width until the switching behavior of the switching elements is "store-and-forward".

Another way to reduce the blocking penalty is to introduce virtual channels being able
to reschedule the link after blocked by a non-transferring message [53].

However, the impact of the more-than-one-route-per-link circumstance on the link band-
width still persists and must be observed during network scaling. Depending on the net-
work topology the metric might vary if the number of nodes is scaled. Please refer the
paragraph ’Considering scalability’ for further discussion.

Considering scalability

The terms scalability has been defined in a former published research paper [21]:

The term scalability can refer to many aspects of a network. Here, scalability
regarding the size of the network, addressing and performance is considered.
These three aspects are now treated in more detail.The major aspect regard-
ing scalability in size is the required switching capability. Because every
ATOLL card adds all the switching capability required for the integration
into the network, the network is scalable without limitation. Regarding scal-
ability of static networks, the node degree has to be invariant of the size of the
network. The preferable topology for the ATOLL interconnect is a 2D-torus,
and this topology has a fixed node degree of four. Thus, a typical ATOLL net-
work with a 2D-torus topology has no limitations regarding scalability of
network size. For a source-path-routed network the major issue regarding
scalability is the maximal length of the routing string. In fact, for the ATOLL
network the length of the routing string is practically unlimited (the length of

the routing string is limited to 227 hops)and consequently provides adequate
support for a scalable network.

Inaugural Dissertation Patrick R. Haspel

SANs in general, Functions, Features and important quality metrics of a SAN Page 47

Regarding the scalability of performance, the first issue is the end-to-end la-
tency. Latency increases with each additional hop by 90 nsec, as mentioned
before. For example, the network diameter of a 2D-torus with 256 nodes is 8.
Thus, in worst case the start-up latency is increased by 7 hops or 0.63 usec,
which is negligible compared to other latencies in the communication path.
The bandwidth is not affected by the number of hops due to the pipelined
crossbar as switching element. Unlike interconnects using bus structures as
building blocks, here the full bandwidth is available to the four bidirectional
channels in and out of the NIC. The only issue affecting bandwidth is blocking
of messages. Long messages can block a lot of intermediate crossbar stages.
This problem can be diminished by reducing the maximum size of the packet
length. Per-channel FIFO input buffers in front of the crossbar reduce the ef-
fect of blocking and provide a smooth transition from wormhole switching to
store-and-forward in case of a heavy loaded interconnect.[21]

Considering suitability for communication patterns (nearest neighbour, multicast,
barriers)

Another new metric must be defined depending on the network topology and the routing
algorithm called "distance between nodes". This is the number of switching elements be-
tween two communicating nodes impacting the latency. A similar effect is known from
wide area networks (WANs) where the latency is highly depending on the destination.
If the distance between nodes is fix for all routes, which is the case in the ’Myrinet by
Myricom’ the communication pattern especially nearest neighbour pattern has no impact
at all in contrast to a grid or torus topology where the distance per node and the corre-
sponding latency is highly varying. Here, nearest neighbour patterns can positively in-
fluence network performace.

Other communication patterns like barriers or broad/multicasts can be easily mapped on
tree like network topologies as there search algorithms like depth-first or breadth-first
search exist. These algorithms are required to implement a decentralized management of
broadcasting patterns. Regarding a torus it is not easily possible to broadcast a message
without sending and receiving it only once.

This is the reason why the highly sophisticated network architecture of chapter 2.2.5
"IBM Blue Gene BG/L" on page 23 describes several networks with tree and tori topol-
ogies for the different communication patterns.

Inaugural Dissertation Patrick R. Haspel

SANs in general, Functions, Features and important quality metrics of a SAN Page 48

Considering reliablility

Reliablility is of increasing importance the bigger the systems are. Every component in
the system contributes with his chance of failure to the total system failure chance.

Therefore, failure models for each system entity has to be defined:

• What happens if a switch fails?

• What happens if a node fails (power-down)?

• What happens if the nodes OS crashes?

• What happens if the user application crashes (protection of remote memory available,
message reception in wormhole switched networks)?

• What happens if a link fails (completely or increasing transmission errors)?

For each failure model the impact on the transmission capability of the network has to
be considered. Especially for switch or link failures the availability of alternate routes is
important. Again, tree like network topologies differ dramatically from grid like topol-
ogies as the availability of alternate routes becomes more and more difficult the nearer
the failure to the tree’s root is. Generally, it can be stated that topologies with some kind
of centralized functionality, like a tree’s root, are more sensitive to failures as a failure
of exactly the root has to be managed in a special way. Grid or tori topologies are less
sensitive in this area as they have no centralized functionality.

3.1.4 Supported Parallel Programming Model

In general, there are two parallel programming paradigms "message passing" and
"shared memory". The applicability is defined by the node’s and the network’s architec-
ture. We will see that the NIC location with regard to possibility of network wide cache
coherence is the key issue in this discussion.

Inaugural Dissertation Patrick R. Haspel

SANs in general, Functions, Features and important quality metrics of a SAN Page 49

Please refer Figure 31: ’General parallel communication architectures [38]’.

Distributed Memory (Message Passing)

In distributed memory architectures remote memory can only be reached via explicit
communication instructions. Message passing is used to issue a communication. De-
pending on whether only one or both communication partners need to issue a communi-
cation instruction we differentiate "one-sided communication" from "two-sided
communication:

Two-sided communication uses so called "send" and "receive" instructions, most easy
to implement in hardware, as the send call contains the memory address to send in the
process context and the receive call the receive memory address respectively. User pro-
cesses reside in their virtual memory context only and therefore, are not aware of the ac-
tual physical address. Memory paging, protection and segmentation features of the
operating system can swap pages in physical memory without the knowledge of the pro-
cess itself.

One sided communication uses so called "put" and "get" instructions being able to put
or get memory contents of remote processes without the remote process’s knowledge.

Mg Mg Mg Mg

P P P P

M M M M

‘shared memory’
Multiprocessor

‘message based’
Multiprocessor

hybrid

• IN with high bandwidth
• connections only over re-

latively short distances
(motherbord, backplanes)

• fixed wiring possible

• IN with lower bandwidth
• connections over longer

distances (cables)
• modular, extendable sy-

stem

IN

IN

P P P P

NIC

Figure 31: General parallel communication architectures [38]

Inaugural Dissertation Patrick R. Haspel

SANs in general, Functions, Features and important quality metrics of a SAN Page 50

The communication instruction therefore, must contain local and remote memory ad-
dresses.

Shared Memory (Threads using shared pages)

Using a shared memory architecture implicit communication via native processor
load/store instructions is possible. Cache coherence can be obtained as the network is
able to snoop at the processor’s cache bus. Mixed architectures like clusters of SMP
nodes might provide both communication paradigms; shared memory within the SMP
node and message passing between the SMP nodes.

3.1.5 Cost

Especially for cluster systems where the cost/performance ratio was key to the commer-
cial success the cost for the network must not be neglected. Therefore, the metric cost
per network port which is cost of NIC plus router divided by the number of ports
(NIC+router/#ports) has been introduced. During the development of the ATOLL net-
work the cost factor has been taken into account leading to the decision to keep all mes-
sage data in the main memory of the node avoiding costly SRAMs on the NIC [20]. Due
to the recent SRAM cost reduction and the advances process technologies being able to
integrate SRAMs on the same die this decision has to be reevaluated for future develop-
ments. The ATOLL network also was the only network integrating the routing capability
into the NIC avoiding dedicated switching hardware further reducing cost in the above
metric.

3.1.6 Communication to / Location of the Network Interface Controller

Figure chapter 22 "Network Interface Locations [31]" on page 34 shows possible loca-
tions of the NIC. There has been research as well as commercial solutions for every pos-
sible NIC location. Unfortunately all architectures with the best location with regard to
the communication features - directly integrated into the node’s CPU - died as they has
been "before their time". They have been developed in a time where the communication
ability of the system was not as demanding to performace as the compute power itself.
Nowadays, CPU die area is growing to a point where additional on die cache size is not
contributing to computation performace in a relevant factor as it has been in former days.
Therefore, now might be the right time to dedicate any additional die area to implement

Inaugural Dissertation Patrick R. Haspel

SANs in general, Functions, Features and important quality metrics of a SAN Page 51

communication features.

There are two reasons why to put the NIC as near as possible to the node’s CPU:

1. Reduction of latency
Every bridge adds a significant portion to the latency.

2. Possibility of participating at the cache coherence protocol
Placing the NIC at a position where it might participate at the cache coherence
protocol enables true shared memory communication in distributed memory
systems. For further discussion, please refer to [44].

The is another reason not placing the NIC (like ATOLL) on the CPU’s bus: Intellectual
property of bus protocols and processor interfaces hinders developments in this area. As
well as quite frequently changing processor interfaces eliminating the possible commer-
cial application due to small product life cycles.

Inaugural Dissertation Patrick R. Haspel

SANs in general, Functions, Features and important quality metrics of a SAN Page 52

*) DDR double data rate transfer

Features

max length of

data width

usage

operation mode

clock frequency

signal transmission

burst transfers

signal lines

Split Transactions

max. Bandwidth

max.no of devices

Standard

PCI-X PCI-Express PCIe Hypertransport HT

termination

64 + 39 = 101

I/O-Bus
Peripheral-Extension

yes Address/Data

32/64 bit

fully synchronous, clocked

CMOS-Level
reflective wave signalling

no

yes, many modes
4x burst, arbirary length

yes

533MB@66MHz-64bit
1GB@133MHz-64bit

aprox. 10cm

0 - 33/64 MHz
100/133 (266*) MHz

4,8,16,32,64

I/O-Bus
Peripheral-Extension

yes

2,4,8,16,32 bit

CML-Level
serial, differential

100-110 Ohm

yes,
message transfers

yes

2x2,5Gbit/s@2bit
10GB@32bit

point to point

aprox. 3-10cm at FR4***

2,5 GHz

26,36,57,105,199

I/O-Bus**
Peripheral-Extension

yes, message orient.

U-Level 600mV
NRZ, serial, differential

yes, comand +
message transfers

yes

0,2GB@200MHz-2bit
12,8GB@1600MHz-32bit

point to point, bidir.

aprox. 3-10cm at FR4

**) extended version for CPU Interconnect
with Cache Coherency-Protocoll

Industrie (AMD)
+ Konsortium

***) PCB material

200 - 800 MHz
(1-1.6GHz)

source synchronous
8B/10B coded data

Bridge + 4,2,1 Devices
1 I/O-Device @133MHz

Link width
2,4,8,16,32 bit

Spec. page no. aprox. 220 aprox. 420

data transmission CMOS-Level
clock synchronous

coded
embedded clock

DDR double data rate
packetized
100 Ohm

on chip, overdamped

Industrie (Intel)
+ Konsortium

Industrie (Intel)
+ IEEE

source synchronous
1 x clock pro Byte

multiplexed
operation

number of
signal lines

Web Infos www.pcisig.org www.intel.com www.hypertransport
.org

aprox. 330

Figure 32: Overview of commodity compute node interfaces [38]

Inaugural Dissertation Patrick R. Haspel

Methods - Approach, Providing the basis for efficiency in hardware design Page 53

4 Methods - Approach

The approach and the methods applied during the course of this work are key issue for
efficient developments in the field of high performance architectures and their leading
edge design (ASIC) implementations. Raising complexity in communication architec-
tures as well as in deep submicron ASIC design require massive mutations in education,
methods and Electronic Design Automation (EDA) tooling.

Coping with the complexity of this project absolutely required these issues and there-
fore, they are mentioned in this work. Starting with [4.1] ’Providing the basis for effi-
ciency in hardware design’, where student education and EDA tooling are covered, I will
continue with [4.2] ’Hardware/Software Codesign and Cosimulation’ describing inno-
vative approaches for concurrent hardware and software development as well as the con-
cept of "The Concept of Virtual Hardware Prototyping" on page 63. In chapter [4.3]
’FPGA based ASIC prototyping’ project related demands not suitable for simulation are
introduced and finally, chapter [4.4] ’Physical design impact of UDSM designs’ ad-
dresses the influences on the hardware design methodology.

4.1 Providing the basis for efficiency in hardware design

The chapters [4.1.1] ’Education’ and [4.1.2] ’EDA tooling’ summarize the efforts in a
abstract way, going into detail in section [4.1.3] ’Realization - SEED Project’.

4.1.1 Education

It’s not a secret that for efficient use of most EDA tools an amount of experi-
ence is needed, that students typically don’t have. Teaching these tools prac-
tical courses or exercises including the challenges imposed by the latest
technological advances requires a thorough understanding of the underlying
methodologies and up to date practices. Students have to deal with a lot of
new skills at the same time and the complexity of the things to be considered
can easily lead to frustration. Therefore, most universities try to avoid prac-
tical work in the field of backend (physical) design, work with simplified
methodology and older technology, or even leave the ASIC domain to favor
FPGAs [5].

Inaugural Dissertation Patrick R. Haspel

Methods - Approach, Providing the basis for efficiency in hardware design Page 54

Due to the complexity and required EDA tooling most german universities skip the field
of physical design needed for ASIC implementation. This tends to result in a lack of hu-
man resource capable of designing complex ASICs. Universities still doing ASICs make
use of their research associates for backend tasks resulting in an improper and ineffective
workload. In addition, university education in this field can not stand with the require-
ments of industry.

An EU integrated project proposal [7] targeted at the 6th EU framework program (FP6)
has been initiated by IMEC during the course of this work (March 2005) and focuses ex-
actly this problematic nature. Some relevant sections of [7]:

This proposal addresses the need for complementary measures, in particular:
Stimulation actions aim at increasing the interest of students and improving
the quality of education in SoC design. This will be done through IPs that em-
phasize research carried out by, and training of, students in SoC design.

Implementation skills are slowly decreasing or even disappearing in many
universities. This is shown by a decrease in the take-up of advanced SoC de-
sign tools by universities within the Europractice IC service and in a steady
decrease in the number of circuits submitted for prototyping by these univer-
sities.

Physical design in general, moving to nanoelectronics, has become very com-
plex (SoC design, RF design, deep submicron technology, heterogeneous sys-
tems, etc.). As a result of the continuously increased complexity only a small
number of ‘top’ universities can cope with the most modern nanoelectronics
design techniques. These are the universities that perform research and edu-
cation that is relevant to industry. Many of the 550 universities are lagging

Inaugural Dissertation Patrick R. Haspel

Methods - Approach, Providing the basis for efficiency in hardware design Page 55

behind the technology curve and perform activities that are of less use to in-
dustry in this respect.

Figure 33: Univesities lagging behind technology [7]
It is the defined aim of the Computer Architecture Group (LSRA) to prove viability of a
system architecture by designing a complete implementation in hardware.

During the last five years I worked on structural enhancements increasing the value of
graduate students working on LSRA research. This covers several different activities:

• Improving Soft Skills (Teamwork, ability to communicate difficult contexts)
Communicating with our industrie partners it turned out that industry requires more
and more soft skills in addition to technical knowledge. This springs from the team
aspect required for nowadays complex systems. Encouraging students presenting
their work once a week in a common meeting together with research associates and
assistants was one of the ways providing a platform for communication on different
levels, please refer Figure 34: ’Students in the focus of educational endeavours’.

• Shift non-research work from research associates to graduate students of different ex-
perience levels (Diploma thesis, research assistants, project work...)
Delegating non-research work from research associates to proper educated students
frees resources that now can be used for deeper research. This requires proper educa-
tion, please refer to [4.1.3] ’Realization - SEED Project’.

• Enable different ways of doing lessons to facilitate project oriented education (scan-
dinavian way of teaching [8],[9].

Inaugural Dissertation Patrick R. Haspel

Methods - Approach, Providing the basis for efficiency in hardware design Page 56

• Force students to work independently, concurrently providing the permanent option
of lecturer support (away from details to methods)[9].
The students are supposed to learn how to cope with EDA tool complexity, especially
avoiding tool focused education. The methodology is key, scripting is minor detail, to
be learned on the job. During my lecture ’Semicustom Design Flow (SCDF)’ the stu-
dents learn what to do and why, providing them with some details of tool operation.
Deeper tool details are discussed after they dig deeper in the manuals in a separate
more practical lesson. This is the way to induct independency in working. They read
manuals and consult faculty for the why and for what.

• Tightening relations to industry partners providing them with highly educated stu-
dents for internships.

Other graduate students and graduates that passed our curriculum were rated by the
Group Leader of ‘Automotive Driver Information ASSP Design’ at Toshiba Electronics
Europe GmbH. He said:

“It is ideal for us, if students get an overview of the entire VLSI process chain
(from front-end down to testing prototypes). This is outstanding for Man-
nheim’s graduates, I didn’t have the opportunity at my university.”

Figure 34 shows the different influences on a student’s education

Figure 34: Students in the focus of educational endeavours

Student

Tools + Manuals Methods

Team
Professor

Associates Assistants

Inaugural Dissertation Patrick R. Haspel

Methods - Approach, Providing the basis for efficiency in hardware design Page 57

4.1.2 EDA tooling

We understand the importance of the design environment for our business
and recognize Cadence's experience in electronic design, electronic design
automation and design environments. We wish to improve the quality and ef-
ficiency of our design process by utilizing Cadence tools. Cadence will use its
experience in design environments to help us by creating and maintaining de-
sign environments focused on our requirements. This will help us to reduce
internal efforts and allow us to focus our efforts on education and research.
By virtually integrating Cadence engineers into our Computer Aided Design
(“CAD”) activities, we will benefit not only from the experience of the spe-
cific engineers, but also from a direct channel to Cadence's know-how net-
work. This will typically result in a more reliable design environment
designed for flexibility and also in a faster and smoother integration of tech-
nology enhancements. For us, this will provide the possibility of designing
higher quality designs, within shorter design cycles. Additionally we got ac-
cess to Cadence’s Sourcelink, a to Cadence users restricted documentation
database that contains application/technical notes, known problems and
workarounds, as well as customer focused solutions from Cadence VCAD
services [5].

A leading edge design environment supported by Cadence VCAD services [6] enables
us to implement highest performance on newest technologies (below 130nm), not pos-
sible with standard university tooling like Europractice. Also supporting us with engi-
neering knowhow we have been able to meet industry like deadlines for volume
production runs using 180nm UMC technology. Cadence also lets us change the EDA
tool environment depending on current research projects enabling a perfect starting sit-
uation for our architecture developments.

It is observed that providing access to CAD tools and ASIC prototyping is not
sufficient any longer. [...] Installing and maintaining those tools requires a
high investment in staff, teaching SoC design moreover also requires a high
investment in expert staff members.[7]

Inaugural Dissertation Patrick R. Haspel

Methods - Approach, Providing the basis for efficiency in hardware design Page 58

4.1.3 Realization - SEED Project

Together with Cadence Design Systems and SEED2002 we took a step for-
ward. Beginning with this semester (mid of october to mid of february[2002])
we teach a lecture and practical course named ‘Semi-Custom Design Flow’
(SCDF), where our students learn the methodology of high-speed nanometer
ASIC design by the use of the most innovative EDA tools. These include Phys-
ically Knowledgeable Synthesis (PKS), FirstEncounter, Nanoroute, CeltIC
and Fire&Ice supported by Cadence Design Systems. This lecture and prac-
tical course affiliates perfectly to the lecture ‘hardware design’, that has been
held for years now and covers (architectural) system, interface and digital
circuit design using Verilog HDL [5].

SEED is supposed to be understood as a precursor for further and tighter relations to
leading industry enabling university researchers implementing leading edge designs.
Covering education in the field of electronic design it ’seeds’ the origins of the ASIC
Competence Center (ASICCC), a collaboration of the Universities of Mannheim,
Heidelberg and Kaiserslautern. All contributing universities undertake efforts to create
or redesign curricula for lectures, practical courses and project work in the field of elec-
tronic design and electronic design automation (EDA).

SEED related Tooling

In Table 6 the EDA tools used in the context of SEED associated with the sites are listed.

Table 6: SEED EDA Tools

Tool/Package
University

of
Mannheim

University
of

Heidelberg

University
of Kaisers-

lautern

SemiCustomWorkBench X

BuildGates(R) Synthesis X X

First Encounter X X

Nanoroute X X

PKS X X

Virtuoso(R) Schematic Composer X X

Inaugural Dissertation Patrick R. Haspel

Methods - Approach, Providing the basis for efficiency in hardware design Page 59

Cadence(R) Analog Design Environment X X

Spectre(R) Circuit Simulator X

Cadence(R) AMS Designer Environment X X

Cadence(R) AMS Designer Simulator X X

Cadence(R) Chip Assembly Router X

Diva(R) Physical Verification and Extraction
Suite

X X

Virtuoso(R) Layout Editor X X X

Virtuoso(R)-XL Layout Editor X X X

Assura(TM) Design Rule Checker X

Assura(TM) Layout Vs. Schematic Verifier X

Assura(TM) Parasitic Extractor X

Assura(TM) Graphical User Interface Option X

Assura(TM) RCX Field Solver Option X

Incisive(TM) X X

Route Accelerator Multi-Threaded Route
Option

X X

VoltageStorm (gate & transistor) X X

SI Timing Convergence with VoltageStorm X X

SI Timing Convergence X X

Fire & Ice QX (gate & transistor) X X

Cadence(R) SoC Encounter X X

Advanced Package Engineer Expert X

Advanced package designer expert X

Conformal Ultra X

CeltIC NDC X

Table 6: SEED EDA Tools

Tool/Package
University

of
Mannheim

University
of

Heidelberg

University
of Kaisers-

lautern

Inaugural Dissertation Patrick R. Haspel

Methods - Approach, Providing the basis for efficiency in hardware design Page 60

SEED related lecture ’Semi Custom Design Flow’ (SCDF)

As described in [5] one of the first actions after the start of the SEED project was the
establishment of the completely new created lecture ’Semi Custom Design Flow
(SCDF)’. Here students learn the methodology of physical design (also known as the
backend task) of high-speed nanometer ASIC design by the use of the most innovative
EDA tools. These include Physically Knowledgeable Synthesis (PKS), FirstEncounter,
Nanoroute, CeltIC and Fire&Ice supported by Cadence Design Systems with a strong
commitment to hands-on practical exercises focused on specific real-world projects.
This lecture and practical course affiliate perfectly to the lecture ‘hardware design’, that
has been held for years now and covers (architectural) system, interface and digital cir-
cuit design using Verilog HDL.

The enhancements in student education have already been reflected by industry, one
quote of Dr. Gunter Strube, Senior Services Manager, Cadence Design Systems says:

„The SEED-2002 VCAD project with the ASIC Competence Center is a role-
model for partnerships: open, result oriented, and efficient. This perfectly
matches our VCAD culture. We are delighted about the level of expertise and
commitment from the University staff. Students with such excellent education
are highly valued at Cadence, during and after their studies.“

4.1.4 The System Realisation Bi-Cone

System realization is a very complex task where lots of project related constraints have
to be considered. The idea to represent this task in a bi-cone springs from the famous
"Platform Based Design" idea of Prof. Alberto Sangiovanni-Vincentelli. The content of
the bi-cone drawn in Figure 35: ’ATOLL system realisation cone’ is derived from the
experiences gained during the ATOLL system development of the Computer Architec-
ture Group.

Fire&Ice Nanometer Option X

SignalStorm Library Characterizer X X

Table 6: SEED EDA Tools

Tool/Package
University

of
Mannheim

University
of

Heidelberg

University
of Kaisers-

lautern

Inaugural Dissertation Patrick R. Haspel

Methods - Approach, Providing the basis for efficiency in hardware design Page 61

The journey starts with the idea of what is beeing to be developed, nothing is fixed. Just
the idea. This situation is extremely rare, usually there are constraints limiting the design
space. However, for the task of imparting knowledge this idealization is acceptable.

The design space spans during the process of continuous refinement of the specification
and further implementation. At some stage, when all considerable design spaces are ex-
plored and decision are made the diversity decreases and finally collapse to a single
point, the final implementation. There are ways that lead to road blocks of which some
of them might be detoured by a work around. There are also ways that lead to "complex-
ity holes" where you might get lost in steadily increasing complexity. Sometimes one
can not decide if he is on the "right" way, there might be some fog on its way with poor
visibility. It is the challenge to find a path through this space that is possible, feasible,

Inaugural Dissertation Patrick R. Haspel

Methods - Approach, Providing the basis for efficiency in hardware design Page 62

viable and, with respect to the current business environment, efficient.
Diversity of implementation complexity (Design Space)

Le
ve

l o
f i

m
pl

em
en

ta
tio

n
de

ta
il

Id
ea

/
C

ha
lle

ng
ePh

as
e

I -

sy
st

em
 sp

ec
ifi

ca
tio

n

A
PI

D
riv

er
 /

PC
B

Pa
ck

ag
e

C
ab

el
lin

g

O
S

in
te

rf
ac

in
g

O
bs

ta
cl

e
I -

pr
oj

ec
t s

pe
ci

fic
at

io
n

fr
oz

en

M
ile

st
on

e
I -

ex
ec

ut
ab

le
 sp

ec
ifi

ca
tio

n
co

m
pl

et
e

Sy
st

em
C

 sp
ec

ifi
ca

tio
n

Sy
nt

he
si

s l
ib

ra
rie

s
(a

cc
ur

ac
y,

 c
om

pl
et

en
es

s)

re
fin

ed
 (t

im
in

g
in

cl
ud

ed
)

O
bs

ta
cl

e
II

 -
te

ch
no

lo
gy

se
le

ct
io

n

Ph
as

e
II

 -
co

nt
. H

W
/S

W
co

de
si

gn

R
oa

db
lo

ck

co
m

pl
ex

ity
 h

ol
e

R
oa

db
lo

ck
 w

ith
 w

or
ka

ro
un

d

Po
w

er

fo
g

es
tim

at
io

n
C

os
t o

f c
om

m
er

ci
al

 IP
 (P

C
I-

C
or

e)

hi
gh

-s
pe

ed
 IO

 (P
C

I-
X

, L
V

D
S)

 w
or

ka
ro

un
d

by
 p

ar
tn

er
in

g
w

ith
 o

th
er

 re
se

ar
ch

 g
ro

up
s

B
ad

 R
TL

 a
vo

id
s t

im
in

g
cl

os
ur

e
du

rin
g

sy
nt

he
si

s o
r e

ve
n

w
or

se
 d

ur
in

g
P&

R

w
or

ka
ro

un
d

by
 a

rr
an

gi
ng

 sp
ec

ia
l a

gr
ee

m
en

ts
,

re
qu

ire
s t

ho
ur

ou
gh

 c
on

fid
en

tia
lit

y

lo
w

 v
ol

um
e

re
st

ric
tio

ns

Pa
ck

ag
e

ve
nd

or
 se

le
ct

io
n

re
qu

ire
s v

ol
um

e
fo

re
ca

st
s

C
os

t o
pt

im
iz

at
io

n
le

ns

Fo
cu

se
s t

o
co

st
 o

pt
im

al
 so

lu
tio

n

D
es

ig
ni

ng
 IP

 in
ho

us
e

m
ig

ht
 b

lo
w

 h
um

an
 re

so
ur

ce
s

(n
o

re
se

ar
ch

 a
sp

ec
t)

Pa
ck

ag
e

se
le

ct
io

n
PC

B
 s

el
ec

tio
n

Sy
st

em
 c

om
p.

C
ab

el
lin

g
se

l.

SoftwareASICHardware

Ti
m

in
g

cl
os

ur
e

fo
g

C
ur

re
nt

 d
es

ig
n

st
at

e
w

av
ef

ro
nt

Sy
st

em

im
pl

em
en

ta
tio

n

RT
L

im
pl

em
en

ta
tio

n

Si
lic

on
 v

irt
ua

l p
ro

to
ty

pe

an
d

ve
rif

ic
at

io
n

PC
B

 d
es

ig
n

C
ab

le
 d

es
ig

n

Fi
gu

re
 3

5:
 A

T
O

L
L

 sy
st

em
 r

ea
lis

at
io

n
co

ne

Pa
ck

ag
e

de
si

gn

Inaugural Dissertation Patrick R. Haspel

Methods - Approach Page 63

4.2 Hardware/Software Codesign and Cosimulation

Computer Architecture and System Design are not limited to hardware related issues,
but also cover the entire system (system defined as a complex structure of software, firm-
ware and hardware) driven by a challenge, verified by the correctness of the functional-
ity and rated by the time required to solve the challenge as well as the related cost
(knowhow, material, implementation, maintenance, operation). Estimations without an
assessment factor or quality metric are inaccurate, so the goal is to have an exhaustive
description of the entire system, executable at its best.

Each set of estimated quality metrics is compared to the given requirements
and the implementation that satisfies the requirements optimally is select-
ed.[1]

As complex systems in most cases do not have a closed solution, simulation is the only
way to gather reliable and significant characteristics of the system. The most profound
issue here is to have models that reflect reality in a proper way. What proper is, has to
be defined by the system architect. The accuracy with regard to the real system then de-
fines the quality of work of the system architect.

Beside rating a system there are couples of other advantages HW/SW Codesign and Co-
simulation has:

1. "Concurrent development of hardware and related low level software" on page
70

2. "Seamless hardware/software interfacing" on page 70

3. "Integrity and completeness of software required functionality" on page 71

The Concept of Virtual Hardware Prototyping

Virtual Hardware Prototyping is a special way of HW/SW Codesign focusing on soft-
ware transparency and host-device interaction. The term 'Virtual Hardware Prototyping'
refers to the fact that the software part is natively executed on the target host system as
the hardware part -the device under test (DuT)- is simulated.

Ideally Virtual Hardware Prototyping is 100% software transparent. As there is always
some software communicating with the HW directly (kernel-level device drivers) it is
impossible to achieve 100% transparency. To keep the above advantages as effective as
possible it is from highest importance to push transparency to a maximum. As more SW

Inaugural Dissertation Patrick R. Haspel

Methods - Approach Page 64

needs to be changed during the transition from virtual to real HW as more loss of advan-
tages can be observed. The reasons are the potential insertion of all kind of human errors
as well as the degradation of closeness to reality, that obviously alleviates all advantages
of HW/SW codesign and cosimulation.

The ATOLL test case is a perfect environment to explore and demonstrate the mighti-
ness of this concept. Starting from a working hardware/software environment, we devel-
oped a SystemC representation of the complete ATOLL device functionality. Only
minor changes in the kernel device driver has been made to get a fully working virtual
hardware prototype of the ATOLL chip. All software layers above the kernel device
driver remain unchanged [45].

This demonstrates the power of this concept, enabling the software development teams
to influence the hardware functions and interfaces even during the design exploration
phase. Also test software might be written prior to silicon delivery. As fewer changes has
to made during the transition from the virtual hardware prototype to the real silicon de-
vice, the closer is the virtual prototype to reality.

As our research group is currently working on the development of the next-generation
SAN called EXTOLL, we are using this concept now from scratch. The software devel-
opment team starts writing the API concurrently to the design of the hardware pointing
out obstacles and possible workarounds in interfacing and function of the hardware.
Changes early in the design cycle are easy to handle and are more effective than costly
software detours needed if silicon is already delivered.

The Verification Realm

Hardware Verification can be coarsely divided in two large areas (please refer also Fig-
ure 36: ’The Verification Realm’):

• Formal Verification,
using formal mathematical methods

and

• Functional Verification,
using user defined test patterns and user defined return values.

Furthermore, Formal Verification can be divided in Equivalence Checking and Model
Checking.

Inaugural Dissertation Patrick R. Haspel

Methods - Approach Page 65

Equivalence checking focuses on the boolean comparison of two netlists, RTL-netlist
or netlist-netlist and has been introduced to double check the work of netlist transform-
ing EDA tools. This can be Clock Tree Synthesis (CTS) or In-Place-Optimization (IPO)
steps or even logic synthesis. So, Equivalence Checking can be omitted if EDA tools be-
come more reliable and mature. There is no functional verification nor crosschecking
against specifications.

"Model checking is a method for formally verifying finite-state concurrent systems.
Specifications about the system are expressed as temporal logic formulas, and efficient
symbolic algorithms are used to traverse the model defined by the system and check if
the specification holds or not. Extremely large state-spaces can often be traversed in
minutes." [Carnegie Mellon, http://www-2.cs.cmu.edu/~modelcheck/]

Figure 36: The Verification Realm

Functional verification on the other hand can be splitted in regression tests and corner-
case tests.

Functional verification of the ATOLL system as an example

Regarding the ATOLL system development [11], [12] it was an implementation goal to
integrate the ATOLL NIC in a commodity compute node using PCI-X. Here, Bus Func-
tional Models (BFM) for PCI-X have been used during verification and Synopsys’s De-
sign Ware Implementation IP (DW_PCIX) for implementation.

Referring Figure 37: ’Verification Environment for the ATOLL NIC[4]’ the PCI-X
BFM consists of a PCI-X master acting as host CPU, a PCI-X slave acting as host main

Verification

Functional Formal

Regression Corner-Case
Equivalence
Checking

Model
Checking

Inaugural Dissertation Patrick R. Haspel

Methods - Approach Page 66

memory and a PCI-X monitor checking the PCI-X protocol.

The DesignWare implementation IP has been integrated into the ATOLL ASIC.

The so called Command Streams provide the BFM with PCI commands (like
pcimaster_write_cycle), which then generates the PCI signalling.

All test benches are build using Verilog tasks (the library has been called atoll_tasks)
like DMA_send using these BFM commands.

The atoll_tasks library

The atoll_tasks library (about 1900 lines-of-code) contains a set of Verilog tasks using
the PCI-X BFM commands to communicate with the ATOLL NIC. This set ranges from
configuring host ports to create and send a complete message. A list of relevant tasks is

Figure 37: Verification Environment for the ATOLL NIC[4]

Figure 38: Test bench creation - levels of abstraction

Bus functional model

Command Streams

atoll_tasks

Regression Corner-case
test benches test benches

Inaugural Dissertation Patrick R. Haspel

Methods - Approach Page 67

listed in Table 7.

Task Functional description

write_burst
(handle, addr,
data, length)

Sequence of BFM commands to emulate a burst of length to
addr with ongoing word patterns based on data

atoll_conf (han-
dle, base_addr,
dma_threshold

Configure the ATOLL device (configure DW_pcix implementa-
tion IP: set BAR, command reg, lat timer, etc. and configure

ATOLL global state: PLL freq, IRQs, Resets and the host ports)
at PCI address base_addr and set the DMA receive threshold

to dma_threshold

dma_send (han-
dle, hp,
data_len,
header_len,

route, tag, ...)

Send a message with the length of the header frame
header_len, the length of the data frame data_len via

route and host port hp using DMA (check for sufficient space
in data region and descriptor region, write data and header, write
descriptor to main memory, write pointer to the ATOLL device

to signal a message ready to send)

dma_receive
(handle, hp,
tag, ret_val)

Poll on read/write pointers of the descriptor table of hp to recog-
nize message reception. Get descriptor. Read and compare

header and data with predefined word patterns. Return message
tag and ok/nok signal in ret_val

pio_receive
(handle, hp,
tag, ret_val)

Poll on FIFO level of hp to recognize message reception. Read
and compare header and data with predefined word patterns.

Return message tag and ok/nok signal in ret_val

pio_send (han-
dle, hp,
data_len,
header_len,
route, tag

Send a message with the length of the header frame
header_len, the length of the data frame data_len via

route and host port hp using PIO (check for sufficient space in
NIC FIFO, write header and data to NIC, on every last word of
the respective frames write to special register to signal end of

frame)

irq_handle (han-
dle, irq_val)

Checks the ATOLL NIC’s IRQ registers and returns the content
in irq_val. Also reports the IRQ reasons in clear text to simu-

lation log file.

disable_dma
(handle, hp)

Disable DMA engine of hp

wait_dma_idle
(handle, hp)

Polls on read/write pointers of descriptor region of hp and reads
idle bit of HW status registers (used to safely switch contexts)

Table 7: Set of relevant Verilog tasks of the atoll_tasks library

Inaugural Dissertation Patrick R. Haspel

Methods - Approach Page 68

The ATOLL test benches

The ATOLL testbenches take advantage of the Verilog tasks defined in the atoll_tasks
library in order to simulate certain communication scenarios. There are testbenches fo-
cusing on a special communication function (like bench_DMA, testing DMA send and
receive) as well as regression testbenches covering a randomly generated communica-
tion pattern using PIO and DMA with different routes and length of routes. Table 8 lists
the available testbenches of the ATOLL simulation.

Testbench Type Lines-of-
code

bench_bsd corner-case; decrease size of descriptor table and
data region in order to increase wrap-around fre-
quency, switch contexts, enforce pressure on host

ports

767

bench_clk_pci corner-case; send and receive very big messages in
order to generate high bandwidth on the PCI bus

639

bench_cntlregs corner-case; global control register test, loop-back,
general purpose IOs, global counter, hardware sema-

phore

1400

bench_dl_recover corner-case; simulate link failure, test XBAR debug
port for deadlock recovery

794

bench_dma corner-case; send/receive DMA message in various
configurations (header_length = 0, data_length = 0,

massively big messages, send/receive with high
pressure, switch contexts and continue)

767

bench_pingpong1 regression; send/receive PIO/DMA messages with
random route, send host port, receive host port,

header_length and data_length, vary pressure, auto-
mated response/verification of message reception

451

bench_pingpong2 regression; same as pingpong1 but with different
pingpong cycle length

451

Table 8: ATOLL testbenches

Inaugural Dissertation Patrick R. Haspel

Methods - Approach Page 69

It seams to be a reliable verification environment as all possible PCI cycles can be gen-
erated and ATOLL responses are monitored/checked. In order to reduce simulation time
one has to make assumptions about the behaviour of the main board’s host to PCI bridge.

Unfortunately, the behaviour of these PCI bridges was a big secret and far from any rea-
sonable. This leads to the first golden rule in verification: Never make assumptions!

In addition, the verification environment does not reflect reality at 100% because the
communication of the host processor to main memory uses the PCI-X bus, which in re-
ality is done via the system bus. Also, performance measurements (forecasts) has been
extremely inadequate because response times of communication between ATOLL and
main memory has been neglected.

Obviously, simulation has its drawbacks here and they can not be removed due to miss-
ing models of the entire system and of course simulation complexity.

Further difficulties of this simulation environment:

• Verification of implementation IP
Does it make sense to check the implementation IP (from Sysnopsys) with the verifi-
cation IP (from Synopsys)?

bench_pio corner-case; send/receive PIO message in various
configurations (header_length = 0, data_length = 0,

massively big messages, send/receive with high
pressure, enabled/disabled PIO micro-pipelining,

check extreme FIFO fill levels), check FIFO behav-
iour for unused addresses

453

bench_pio_np_fault corner-case; send specially crafted PIO messages to
track down missbehaviour of network port logic

340

bench_gatelevel_scan corner-case; runs without PCI BFMs to check correct
behaviour of internal and boundary scan chains at

gatelevel with backannotated SDF, patterns are gen-
erated automatically extracting the BSDL file using
JTAG compliance. Please refer [15] ’Thomas Schli-

chter, "Development of a Boundary Scan Pattern
Generation Language", Project work, Computer

Architecture Group, University of Mannheim, 2003’

31416

Testbench Type Lines-of-
code

Table 8: ATOLL testbenches

Inaugural Dissertation Patrick R. Haspel

Methods - Approach Page 70

• Performance forecast
The latency of main memory responses influences architecture decisions and can not
reliably derived from simulation.

However, it is a big advantage beeing able to simulate the entire NIC hardware in their
cycle accurate PCI-X bus environment. During the time, where this verification hap-
pened, no main board supporting the PCI-X bus existed. The correctness of both the Ver-
ification IP and the Implementation IP are mandatory for a successful first
implementation.

All verification techniques of ATOLL are described thoroughly in [4].

4.2.1 Concurrent development of hardware and related low level software

By parallelization of the hardware and software development phases time-to-market can
be significantly decreased. By [45] it has been proved that even driver development can
be started on a register accurate SystemC (hardware-)model. This work can be regarded
as system level evaluation of this concept. A register accurate and fully functional model
of the ATOLL [11] [12] ASIC using SystemC has been developed with the "The Con-
cept of Virtual Hardware Prototyping" on page 63 in mind. This has been accomplished
in all software levels beyond the Linux OS driver. Only the driver has to be changed in
a few lines of code due to direct hardware system calls like ’pci_find_device’. A simple
’IFDEF’ is now included in the regular ATOLL driver to enable the same driver to be
used with the SystemC simulation model. All other software from API (called PALMS)
including the ATOLL MPI (MPICH based) implementation and all applications run
without any changes. So software development can be started as soon as the SystemC
hardware model is accurate with respect to the interface seen by the low level software.

4.2.2 Seamless hardware/software interfacing

During the development of hardware devices the question arises how to interface with
the regarding software/OS levels. There might be situations, where software is already
completely developed or is in a fixed state (OS, MPICH’s MPI implementation). In this
case it is meaningful to test the interfacing by veridical simulation to ensure an elegant
(in this meaning fast) implementation. The work of [49] ’Sven Stork, "Anpassungen für
Virtual Hardware Prototyping des LINUX-Kerneltreibers des EXTOLL NICs", Project

Inaugural Dissertation Patrick R. Haspel

Methods - Approach Page 71

work, Computer Architecture Group, University of Mannheim, 2003’ describes this ap-
proach for the EXTOLL API intended to interface with the MPI2.0 specification.

4.2.3 Integrity and completeness of software required functionality

Hardware systems designed for complex software environments see the complexity of
required functionality. It is a verification mechanism to co-simulate the software envi-
ronment with the intended hardware ensuring completeness of the designed hardware
functions. As an example, consider Ethernet as communication device. Ethernet is fea-
sible for UDP/TCP like packet transmission, but regarding the MPI2.0 specification, as
a message passing library, there are lots of requirements ethernet can not provide effi-
ciently. An efficient hardware implementation must cover these requirements to avoid
costly software detours. It has been found impossible to overview such complex soft-
ware layers without a detailed implementation and coding.

4.3 FPGA based ASIC prototyping

The term ’FPGA based ASIC prototyping’ refers to the use of reprogrammable hard-
ware (i.e. FPGA) to emulate the function and behaviour of the intended hardware. This
concept is already well known in industry for simulation acceleration [10].

ASIC-Prototyping Station using a 64Bit/66MHz PCI interfaced FPGA

In a diploma thesis [13] we developed the complete prototyping environment including
LINUX kernel driver and FPGA design flow using a PCI interfaced FPGA board. Please
find Figure 39: ’AVnet Virtex Development Board [13]’ for a photo of the prototyping

Inaugural Dissertation Patrick R. Haspel

Methods - Approach Page 72

board.

Figure 39: AVnet Virtex Development Board [13]

This thesis focuses on the definition and implementation of a hardware ab-
straction layer (HAL) which on the one hand provides ASIC engineers with
easy-to-use interfaces to connect their designs to and on the other hand
grants access to a 64 Bit / 66 MHz PCI bus to guarantee high bandwidth con-
trol and test possibilities. [13]

The work focuses on a generic Hardware Abstraction Layer (HAL) in order to get easy

Inaugural Dissertation Patrick R. Haspel

Methods - Approach Page 73

access to all components on the prototyping board.

Figure 40: User application encapsulated by the HAL [13]
Using this prototyping station any interfacing from hardware components located on the
PCI bus to the host system can be tested and benchmarked. We tested several systems
on their main memory DMA bandwidth and latency as well as interrupt reaction laten-
cies and used these information during design space exploration for the EXTOLL sys-
tem.

Regarding EXTOLL several OS specific mechanisms like TLB (Transaction Lookaside
Buffer) coherence (investigated in [14]) with external devices are perfect candidates for
this prototyping station as simulation is not feasible.

Inaugural Dissertation Patrick R. Haspel

Methods - Approach Page 74

4.4 Physical design impact of UDSM designs

Efficiency, methodology and complexity (integration) are heavily related and
interdependent. The higher the degree of integration (the more transistors
per area), the better the design methodology must be to result in a true in-
crease in efficiency.[16]

Motivation of a backend flow inhouse

Since the introduction of the top-down design methodology system architects need to es-
timate technical and physical limiting conditions. The design exploration phase regular-
ly driven by the specification might also be driven by engineering feasibility.
Considering the EXTOLL design exploration phase the number of dimensions for the
future crossbar was evaluated by a technical exploration of the possibilities of IBM’s
0.13um process node [17], while some other decisions like Virtual Channel capability
was evaluated by high-level SystemC simulations in [18].

Additionally, there are some physical design constraints besides the regular floorplan
hard to communicate to the back-end team. During the ATOLL design phase the back-
end task was outsourced to IMEC’s IC Design Service, Leuven, Belgium. Regarding the
ATOLL chip layout there has been several special requirements:

• Placement of input and output sample registers
Using parallel clocked transmission it is crucial to avoid skew between the parallel
bits and the clock.

• Placement and routing of the Delay Locked Loop (DLL)
The design of the DLL requires well defined signal delay elements. The routing im-
pact must not be neglected.

4.4.1 Creating a leading-edge design flow

Starting with a diploma thesis [16], we got a thourough understanding of design meth-
odology and tooling, as well as file interface formats and industry standards. The ab-
stract of the work follows:

The present work deals with the methodology of today’s Application-Specific
Integrated Circuit (ASIC) construction process, their design, practical imple-
mentation and theoretical cornerstones. It analyzes the crucial points and

Inaugural Dissertation Patrick R. Haspel

Methods - Approach Page 75

challenges in the design of cell-based ASICs, identifies the key elements and
procedures and differentiates between important principles and minor mat-
ters. It prepares the physical implementation design flow, elaborates solu-
tions to practical obstacles and shortcomings and provides the knowledge
and experience an engineer must have to bring an up-to-date high-perfor-
mance, multi-million gate System on a Chip (SoC) from RTL to silicon. [15]

The work took as a basis, we build up a complete leading-edge nanometer aware design
flow in order to get reliable physical implementation forecasts of the desired circuits. In
chapter 4.4.2: ’UDSM characteristics’ is explained why logic synthesis does not longer
deliver reliable and accurate physical implementation forecasts.

4.4.2 UDSM characteristics

With nanometer process technologies of 150nm and below, the combination
of fine-line geometries, high clock rates and lower supply voltages used in
leading-edge designs gives rise to electrical and physical effects that can dra-
matically degrade design function and performance. [19]

Shrinking design geometries expose physical effects not supported nor handled by the
traditional design flow. Second order effects not modeled by these tools are the driving
factor behind the decreasing accuracy of the used models.

With shrinking geometries the signal delay related impact of the nets rises in comparison
to the gate delay. Depending on the circuit and the technology the net delay may rise to
80% of the total delay (net delay and cell delay) [24].

Figure 41: Wire and gate delay in Al and Cu [25]

Inaugural Dissertation Patrick R. Haspel

Methods - Approach Page 76

In the traditional design flow, there is a symbolic wall between the frontend (logic) and
the backend (physical) design. Frontend designers usually don’t care about the backend
design process. Just handing over a netlist/constraint set (so called ASIC sign off) often
prevents timing closure. The only physical impact in logic synthesis was introduced by
the wire load model (WLM) modelling net delays and net load depending on the net’s
fanout and the module size. WLMs are statistically generated and delivered together
with the .lib technology file [16]. Alternatively, WLMs can be generated on the design
itself (custom WLM) beeing some more accurate.

Taking into account that the net delay rises against the cell delay, the possible variation
of the accuracy changes, also leading to a miss-prediction of the synthesis tools. The syn-
thesis tool reports inaccurate timing and also treats capacitive related transformations
like buffer insertion/deletion and cell up/down sizing in a wrong way.

The netlist now contains buffers or other driving cells that are inappropriate leading to a
unpropitious starting point for the heuristic placement algorithms.

There are now two general possibilities how to address this problem:

• Physical Synthesis

• Physical Implementation

Both try to overcome the traditional burden of the separation of physical design from
logic design and either bring physical information to synthesis or synthesis abilities to
the placer.

Physical Synthesis

This way pushes physical information to the synthesis tool. Physical synthesis is geom-
etry aware and also reads .lef files just like the placer[16]. Together with the technology
file and the cell libraries some floorplan information is also needed to do a quick place-
ment and a trial route. The information now available for timing analysis is derived from
the initial placement and the trial route. The so called placed gate netlist or placed netlist
feeds in to the placer back to the regular design flow.

As the synthesis tools is aware of the placement/routing information the generated netlist
is much closer to the final netlist. WLMs are no longer needed.

Physical Implementation

This way integrates some synthesis features into the placer. The placer now knows how

Inaugural Dissertation Patrick R. Haspel

Methods - Approach Page 77

to correct wrong driving strengths and is able to insert/delete buffers. The "footprint" in-
formation classifies the standard cells in categories with the same boolean function and
so enables the placer to switch cells with different driving strengths. Some placers even
know how to split complex gates in order to buffer up long paths.

Signal Integrity issues

In addition to the increased wire delay, other timing related effects like IR drop and
crosstalk induced delay need to be considered. The EDA vendors react with appropriate
analysis tools integrated in the regular design flow.

With all these effects the implementation complexity rises and turn around time prolongs
to an inacceptable level. During design space exploration some corners require a tech-
nology focused feasibility study and also during RTL design timing closure is the key
issue. For these requirements a prototyping way is provided to deliver a quick forecast.
Of course this way is not as reliable as the sign-off flow. Cadence calls their prototyping
flow the Silicon Virtual Prototyping (SVP) flow [25].

IBM proposes another interesting way to qualify designs for the backend process. So
called Zero-Wire-Load-Models (ZWLM) assume "perfect" wires with zero resistance
and zero capacitance [26]. There are several effects described below:

• The timing calculated by the synthesis tool is a hard bound. It can not be faster after
P&R as wires only add delay and no net induced delay is assumed during synthesis.
Technology specialists can set rules of thumb to define a certain slack for a specific
design flow step in order to do risk assessment for the later steps. I.e. "To enter the
floorplanning phase, the incoming netlist must meet the -30% of a cycle ZWL slack
target."[26]

• The netlist is free of WLM introduced buffers. This is supposed to be a better starting
point for placement tools capable of above mentioned (chapter 4.4.2 "UDSM charac-
teristics" on page 75) physical implementation transformations. As WLMs have been
introduced in times where the placer doesn’t have any netlist transformation capabil-
ities it makes no sense to start the placement step with an "over-buffered" netlist.

Inaugural Dissertation Patrick R. Haspel

Architecture and Function Scope of Building Blocks Page 78

5 Architecture and Function Scope of Building Blocks

In this section the building blocks of the EXTOLL network are described, namely:
1. Host Interface (and EXTOLL block level interfacing) in section 5.4 on page

114

2. Network interface device (for EXTOLL they are virtualized and called Virtual
Devices)[42]

3. Network switch in section 5.3 on page 89

4. Network Processing Unit (NPU) in section 5.2 on page 80

Please refer Figure 42: ’EXTOLL Top-level schematic’ for an overview.
In this thesis the Host Interface, the Network Switch as well as the NPU are cov-
ered. For details on the Virtual Devices please find [42].

5.1 Top-Level Architecture Decisions

As in the ATOLL network a single chip solution for lower cost and better scalabil-
ity is aimed. The routing resource therefore will be located together with the net-
work interface device on a single die. Also the PHY’s for the physical
transmission are integrated.
The superseeding idea of EXTOLL might be summarized as follows:
"Building Massively Scalable Building Block For A Monolithic Supercomputer
Out Of Commodity Hardware"
The commodity idea is based on the cost advantages of mass production, which is
the underlying principle of commodity cluster systems and system area networks

Inaugural Dissertation Patrick R. Haspel

Architecture and Function Scope of Building Blocks Page 79

in general.

Figure 42: EXTOLL Top-level schematic

Host
Interface

Host

EXTOLL ASIC

ccH
T IP

system
Virtual
Devices

Network
Switch

3D
 T

or
us

 T
op

ol
og

y

10Gbit/s

16bit@500MHz
12x12 bidir XBAR

8VCs in
2 VC groups

64k devices

Virtual memory
support

Host system dependent

Superscalar
Communication Units

64bit NPU
Exceptions, configurability

Inaugural Dissertation Patrick R. Haspel

Architecture and Function Scope of Building Blocks Page 80

5.2 NPU (Network Processing Unit)

This section covers all considerations as well as implementation details of a dedicated
processing resource on the network interface working concurrently to the node’s main
CPU.

There have been three diploma thesises influencing this work:

1. Holger Bellm, "Architectural Design and Prototype Implementation of an Em-
bedded Network Processor Core using Language for Instruction Set Architec-
tures (LISA)", Diploma Thesis, Computer Architecture Group, University of
Mannheim, 2003
This work covered the complete instruction set elaboration and processor de-
sign space exploration. Also, the implementation using CoWare’s Language for
Instruction Set Architectures (LISA) and the technology synthesis step have
been performed.

2. Ingo Feldner, "High Level Executable Specification Development of a high
performance SAN chip", Diploma Thesis, Computer Architecture Group, Uni-
versity of Mannheim, 2005
This work covered the EXTOLL integration issues like program loading, exe-
cution, interrupt servicing and exploration of the access architecture to the func-
tional units as well as the cache design space exploration. Furthermore, a
system level simulation environment has been established using the HW/SW
Codesign methodology reported in section 4.2 on page 63.

3. Timo Sponer, "Development, Verification and Integration of a Processing Unit
in the Communication Function of a SAN Device in SystemC", Diploma The-
sis, Computer Architecture Group, University of Mannheim, 2005
This work finalized the EXTOLL integration and system simulation and elabo-
rated the MPI window locking functionality as an example to be offloaded to a
concurrent NPU.

During the course of this work a complete pipelined 64-bit RISC processor has been de-
veloped. The discussion about the following design consideration can be found in [47]:

• RISC vs CISC Processors

• Superscalar vs VLIW Architecture

Inaugural Dissertation Patrick R. Haspel

Architecture and Function Scope of Building Blocks Page 81

• Pipeline Architecture

• Dependencies Between Instructions and NPU Instruction Dependency Detection

• NPU Integer Arithmetic Implementation

• Control Flow Architecture

• Result State Concept using Condition Codes (Two-Instruction Implementation with
Condition Registers versus Single-Instruction Implementation with Compare and
Branch)

• NPU Control Flow Architecture

• Reducing Branch Penalty by Branch Prediction

• Addressing Modes

• External Events to the NPU Core (Signals and Interrupts)

This section is structured in four parts beginning with the ’NPU Features and Overview’
followed by the ’Reasons for a dedicated compute resource in a SAN’ and the NPU spe-
cial ’Instruction Set enhancements’ and concluding with the ’Implementation details’.

5.2.1 NPU Features and Overview

The following list comprises the NPU features [47]:

• RISC microprocessor core

• 64-bit architecture

• five-stage load use interlocked pipeline

• one instruction issue per clock cycle

• single clock cycle execution for all except memory load instructions

• 32 x 64-bit general purpose registers

• two read, two write port register file

• high instruction throughput

• 64-bit integer arithmetic logical unit

Inaugural Dissertation Patrick R. Haspel

Architecture and Function Scope of Building Blocks Page 82

• completely decoupled compare and branch

• non-interlocked pipeline with forwarding paths to eliminate data dependencies

• one delay slot for control flow instructions

• outstanding loads supported

• out of order load completion supported

• support for touch-loads

• hardware interrupt and software signal servicing

Figure 43 provides a block diagram of the APU processor core pipeline
structure. It shows the fivestage RISC pipeline layout with the most important
data and control paths. All pipeline stages are separated by pipeline regis-
ters. The Instruction Fetch (IFE) unit supplies the pipeline with operations
from the instruction memory, which is accessed via a separate bus (Harvard
Architecture). The Instruction Decode (ID) unit generates the control and ac-
tivation signals depending on the processed instruction for the following
pipeline stages. It also generates control signals used by the pipeline control-
ler to flush or stall pipeline registers. The Register Read (RR) unit fetches the
values of the register file needed for the calculations performed in the Execu-
tion Unit. The Execution (EX) unit selects which values to use for calculation,
the ones provided by the RR Unit, or the values provided by the forwarding
paths. Data memory load and store operations are also initiated in this unit.

Inaugural Dissertation Patrick R. Haspel

Architecture and Function Scope of Building Blocks Page 83

The Register Write (RW) unit stores the calculated results to the register
file.[47]

5.2.2 Reasons for a dedicated compute resource in a SAN

Embedded processing units in network interfaces have already been used in several
SANs like ’Myrinet by Myricom’ (please refer section 2.2.2 on page 17) or ’QsNetII
by Quadrics’ (please refer section 2.2.1 on page 8). However, they usually worked on
regular message transfer tasks. That is not the case in the EXTOLL SAN, where dedi-
cated hardware in the form of functional units work on all the regular duties of the SAN.
In the EXTOLL SAN the NPU is dedicated for special tasks like:

• Protocol offloading
The embedded network processor, which is user programmable, can be used to off-
load asynchronous protocol handling tasks. Current MPI implementations use threads
to avoid the need to wait for an MPI call in order to do message reception work, if at
all. Having a dedicated compute resource on the network interface doing MPI mes-
sage reception tasks will further reduce MPI software latency. Protocol offloading is
already standard for LAN implementations like ’10GigEthernet by Chelsio’ (please
refer section 2.2.8 on page 28) but here protocol offloading is aimed to reduce the
node’s CPU load. For networks dedicated to TCP like data transport this makes sense

Figure 43: The NPU block diagram [47]

Instruction
Fetch
(IFE)

Instruction
Decode

(ID)

Register
Read
(RR)

Execution
(EX)

Register
Write
(RW)

Instruction
Memory

Register File

Data
Memory

Pipeline
Control

IF
E

/I
D

ID
/R

R

R
R

/E
X

E
X

/R
W

Inaugural Dissertation Patrick R. Haspel

Architecture and Function Scope of Building Blocks Page 84

as the TCP stack is quite compute intensive and high data rates then result in a non-
negligible CPU load. Therefore, protocol offloading in LANs increases the node’s
compute power. In the area of SANs, the goal is to increase the communication power
as in parallel computation usually the communication power lags behind the compu-
tation power, which lowers the maximum degree of parallelization (please refer chap-
ter 2.1 "Communication demands of distributed and parallel computing" on page 5).
So, protocol offloading for SANs differs from LANs in the type of tasks being off-
loaded.

• Support for parallel computation global collective operations
The embedded network processor can support communication library specific or user
defined collective communication primitives like broadcasts, scatter, gather or even
reduce operations. MPI supports the following arithmetic/logic functions for the re-
duce operation:

- MPI_MAX maximum
- MPI_MIN minimum
- MPI_SUM sum
- MPI_PROD product
- MPI_LAND logical and
- MPI_BAND bitwise and
- MPI_LOR logical or
- MPI_BOR bitwise or
- MPI_LXOR logical exclusive or
- MPI_BXOR bitwise exclusive or
- MPI_MAXLOC max value and location
- MPI_MINLOC min value and location

• Support for intelligent communication protocols
The embedded network processor is a programmable processor in the network inter-
face that allows the implementation of intelligent communication protocols. As in
[45] specified, the NPU is able to modify messages on-the-fly. This makes user de-
fined flexible protocols possible.

All these features add flexibility in the form of programmability and concurrency to the
node’s main CPU, which is especially interesting for the research purpose of the EX-

Inaugural Dissertation Patrick R. Haspel

Architecture and Function Scope of Building Blocks Page 85

TOLL SAN.

5.2.3 Instruction Set enhancements

The NPU’s instruction set was augmented with extra instructions to construct network
packets, manipulate events, effectively schedule threads and block, save and restore a
thread’s state when scheduled.

The flexibility of adding or modifying instructions was supported through a dedicated
language called LISA (property of LisaTek acquired by CoWare in 2003):

A unified language, LISA 2.0 (Language for Instruction Set Architectures), is
used to model embedded processors. All required software tools, fast simula-
tion models, as well as a synthesizable HDL model of the architecture can be
automatically derived from this model. This allows the concurrent develop-
ment of hardware and software. LISA can be used to describe the behavior,
the instruction set coding and the syntax of processor architectures in a syn-
tax similar to the C programming language. Instruction set architecture ac-
curate and cycle accurate models of processor architectures including
pipeline behavior and memory hierarchies can be modelled using LISA.[47]

The LisaTek environment further generates necessary implementation software like a
debugger and even a C compiler able to compile ANSI C to the defined instruction set.

Special Instructions

These instructions are introduced to perform byte mask and merge operations. Every in-
struction in this group provides one destination register index, one source register index
and two 6 bit values to specify bit ranges.

This group contains the following instructions:

• invert selected bitrange (BITINV R[dst], R[src], #i, #j)
Invert selected bit range copies the value of the source register to the destination reg-
ister. Each bit in the range specified by i and j is inverted.

• clear selected bitrange (BITCLR R[dst], R[src], #i, #j)
Clear selected bit range copies the value of the source register to the destination reg-
ister with each bit in the range specified by i and j set to 0.

• set selected bitrange (BITSET R[dst], R[src], #i, #j)

Inaugural Dissertation Patrick R. Haspel

Architecture and Function Scope of Building Blocks Page 86

Set selected bit range copies the value of the source register to the destination register
with each bit in the range specified by i and j set to 1.

• extract selected bitrange (BITEXT R[dst], R[src], #i, #j)
Extract selected bit range only copies the bits in the range specified by i and j to the
lowest part of the destination register. The upper part of the destination register is set
to 0.

• replace selected bitrange (BITINS R[dst], R[src], #i, #j)
Overwrite selected bit range copies the correct amount of bits out of the lower part of
the source register to the destination register. The position in the destination register
is specified by i and j. All other bits of the destination register remain unchanged.

In Figure 44 some examples of the instruction format have been given. For a complete
instruction set format description please refer [47].

SWAP instructions

The SWAP instructions swap the lowest two bytes (SWAP.B), words (SWAP.W) or
double words (SWAP.D) of a source register into a destination register. The remaining
bits are untouched. There instructions are especially interesting for routing manipula-
tion.

Logic instructions

In the group of logic instruction in addition to the regular arithmetic and logic shift op-
eration a special rotate instruction (ROTL for rotate left, ROTR for rotate right) has been
introduced. The rotate operations are useful for field manipulations because no "content"
in the sense of bits is lost during the operation in contrast to the shift operation.

These extra instructions ease the register manipulation in a very efficient way by reduc-
ing the amount of instructions needed dramatically.

5.2.4 Implementation details

First synthesis results from [47] show impressive results in area and timing for a 0,18um
standard cell library. The pre-layout area is below one square millimeter, where approx-
imately 55% of the area is consumed by the register file. Here, VLSI optimization might
reduce the area effort even further. The pre-layout maximum frequency is slightly above

Inaugural Dissertation Patrick R. Haspel

Architecture and Function Scope of Building Blocks Page 87

300MHz and can be further increased by the targeted 0,13um library and a better arith-
metic architecture selection, as the critical path goes through a 64-bit adder (Figure

BITINV (Invert Selected Bitrange)
Operation:

R[dst] <= R[src1] with R[src1][i:j] inverted

Assembler Syntax:

BITINV R[dst], R[src1], #i, #j

Description:

In the region specified by the immediate values i and j all bits of the source register are inverted, the result is
stored in R[dst]. All other bits of the source register are not affected. If i < j nothing is done. Both immediates i
and j are 6 bit unsigned values, thus have to be specified between 010 an 6310.

Instruction Format:

BITCLR (Clear Selected Bitrange)
Operation:

R[dst] <= R[src1] with R[src1][i:j] set to 0

Assembler Syntax:

BITCLR R[dst], R[src1], #i, #j

Description:

In the region specified by the immediate values i and j all bits of the source register are set to 0, the result is
stored in R[dst]. All other bits of the source register are not affected. If i < j nothing is done. Both immediates i
and j are 6 bit unsigned values, thus have to be specified between 010 an 6310.

Instruction Format:

Figure 44: Instruction Set Format of BITINV and BITCLR [47]

31 29 28 26 25 22 21 16 15 10 9 5 4 0

mopc fid reserved immediate immediate register index register index
1 0 1 0 0 0 x x x x i j src1 dst

31 29 28 26 25 22 21 16 15 10 9 5 4 0

mopc fid reserved immediate immediate register index register index
1 0 1 0 0 1 x x x x i j src1 dst

Inaugural Dissertation Patrick R. Haspel

Architecture and Function Scope of Building Blocks Page 88

45).A clean design style would require a register at the outputs of a pipeline stage, which

is here not the case (see cloud 1). This is one of the drawbacks of the limited design free-
dom using automated generators like the LisaTek tools. However, newest synthesis tech-
nology is able to "retime" critical paths by moving registers through combinational logic
relaxing critical paths.

EXTOLL integration

The design of an on-chip communication structure which connects the func-
tional units with the NPU is a basic requirement. It has to provide access to
all functional units that has been designed so far and it has to be extendable
to allow an attachment of future modules. The communication structure al-
lows the NPU to move data from and to the functional units. These data move-
ments are initiated and controlled by the NPU whereas the functional units
are passive and only respond to actions initiated by the NPU. The NPU can
be considered as a master and the functional units as slaves. [32]

With the NPU being a second master concurrently to the node’s CPU the NPU is able to
perform the same tasks as the main CPU. This brings in full flexibility for the range of
possible tasks performed by the NPU. In addition the NPU’s memory can be considered
a slave module, which enables the main CPU to access the NPU’s memory structure. For
details of the on-chip communication structure please refer chapter 5.4: ’Hostinterface
and EXTOLL block level communication’ on page 114.

Figure 45: Timing Critical Path of the NPU [47]

DW01_add_
64

RR/EX EX
Execute Execute} } } }

td1=0,73ns td2=0,89ns td3=1,13ns td4=0,51ns

1 2 4

3

EX EX/RW}

tsu=0,22ns

Inaugural Dissertation Patrick R. Haspel

Architecture and Function Scope of Building Blocks Page 89

5.3 Network Switch

The Network Switch is the routing resource of the EXTOLL network and is implement-
ed in a XBAR architecture like the ATOLL network. There has been several project
works and diploma thesises to approach this complex building block on one hand side
finding the physical constraints derived from semiconductor technology on the other
hand exploring the architectural possibilities of multiple transmission levels and virtual
channels avoiding head-of-queue blocking and enabling fast hardware supported paral-
lel computation functions like barriers. The final implementation is a 12x12 bidirectional

Inaugural Dissertation Patrick R. Haspel

Architecture and Function Scope of Building Blocks Page 90

XBAR. Please find Figure 46 and Figure 47 for top level diagrams.

VC 1

VC 2

VC 1

VC 2

VC 1

VC 2

VC 1

VC 2

VC 1

VC 2

VC 1

VC 2

VC 1

VC 2

VC 1

VC 2

Crossbar
12x12

Arbiter

O
ut

qu
eu

e
1

O
ut

qu
eu

e
4

VC 1

VC 2

VC 1

VC 2

VC 1

VC 2

VC 1

VC 2

in

out
Special

x+

x-

y+

z+

z-

y-

x+

x-

y+

z+

z-

y-

Logical Hostport (4 physical connects)

O
ut

qu
eu

e
1

O
ut

qu
eu

e
4

Purpose

in

out

Figure 46: Top level diagramm (unidirectional view)

Inaugural Dissertation Patrick R. Haspel

Architecture and Function Scope of Building Blocks Page 91

This subchapter is organized as follows; section 5.3.1 will describe the approach and

methods used to explore the complex design space, section 5.3.2 digs into details of the
functional enhancements of the XBAR architecture.

5.3.1 Design Space Exploration - Approach and Methods

The work performed on this building block has been divided in 4 steps:

1. Analysis and generator creation for the ATOLL XBAR arbiter [40]

2. Complete parametrizable ATOLL XBAR IP generator including synthesis
scripts [41]

3. Adding next generation features in an executable specifiation [18]

4. Hardware implementation of the EXTOLL XBAR [17]

The work on this building block has started with the analysis of the currently in the
ATOLL network implemented arbitration functions. With the deep understanding of the
boolean equations and state machines responsible for the XBAR arbitration it was pos-
sible to build a parametrized generator [40] for Verilog RTL. With this results we did
first measurements on scalability with respect to the number of ports being arbitrated.

Figure 47: Top level diagramm (bidirectional view)

Inaugural Dissertation Patrick R. Haspel

Architecture and Function Scope of Building Blocks Page 92

Furthermore, the results built the basis of the next student work targeting the entire
XBAR implementation to be parametrizable and also beeing able to generate synthesis
scripts for a first shot on timing [41]. These two student works has been mainly done to
estimate the effort in introducing automation in the design space exploration step as sil-
icon was ready as these works has been performed. We started with the current imple-
mentation of the ATOLL XBAR and ended up with a fully parametrizable and
synthesizable soft IP of the XBAR building block, including synthesis scripts. Again, we
also used this work to get first estimates on how potent the next generation silicon tech-

Inaugural Dissertation Patrick R. Haspel

Architecture and Function Scope of Building Blocks Page 93

nology is. First pre-layout results can be found in Figure 48.Regarding methodology,

this work for the first time used and defined a group wide (Computer Architecture
Group) Verilog RTL coding style automatically checked by a linter software. As well
for the first time incorporated signal integrity EDA tooling using CeltIC and the SI-

Figure 48: Pre-layout timing and area results from [41]

Inaugural Dissertation Patrick R. Haspel

Architecture and Function Scope of Building Blocks Page 94

aware features of the router NanoRoute. Both tools are Cadence tools available through
the SEED project (chapter 4.1.3 "Realization - SEED Project" on page 58).

Regarding parametrization it was a challenge to extract "repeating" terms in the boolean
logic of XBAR arbiter. This was solved by the use of a sophisticated visualization meth-
od.

 Please find below (Figure 49) an example of how we visualized the boolean functions

of the arbiter in order to analyze the repeating structures for parametrization. Each row
represents an "and" term and each column an input variable, where a green marked cell
stands for the positive appearance of an input variable in the term and red for the nega-
tive respectively. A white cell means that the input variable does not appear at all.

The original Verilog RTL code below (Figure 50) exemplifies how hard to understand

the arbiter functions without visualisation are. At the end a perl script was able to gen-
erate the Verilog RTL arbiter functions with the different parameters:

Figure 49: Visualisation of the arbiter boolean functions[40]

A1_o0 <= #(Tco) (
(~A1_m1 & ~A1_m2 & ~A1_m3 & ~A1_m4 & ~A1_m5 & ~A1_m6 & ~A1_m7 & req0 & ~stop
& ~h_full) |
(A1_m0 & req0 & ~stop) |
(req0 & ~req1 & ~req2 & ~req3 & ~req4 & ~req5 & ~req6 & ~req7 & ~stop &
~h_full) |
(~A1_m1 & req0 & ~req2 & ~req3 & ~req4 & ~req5 & ~req6 & ~req7 & ~stop &
~h_full) |
(A1_m3 & req0 & ~req3 & ~req4 & ~req5 & ~req6 & ~req7 & ~stop & ~h_full) |
(A1_m4 & req0 & ~req4 & ~req5 & ~req6 & ~req7 & ~stop & ~h_full) |
(A1_m5 & req0 & ~req5 & ~req6 & ~req7 & ~stop & ~h_full) |
(A1_m6 & req0 & ~req6 & ~req7 & ~stop & ~h_full) |
(A1_m7 & req0 & ~req7 & ~stop & ~h_full) |
(A1_o0 & req1 & ~stop & h_full) |
(A1_o0 & req2 & ~stop & h_full) |
(A1_o0 & req3 & ~stop & h_full) |
(A1_o0 & req4 & ~stop & h_full) |
(A1_o0 & req5 & ~stop & h_full) |
(A1_o0 & req6 & ~stop & h_full) |
(A1_o0 & req7 & ~stop & h_full));

Figure 50: Verilog RTL code of the example function of Figure 49.

Inaugural Dissertation Patrick R. Haspel

Architecture and Function Scope of Building Blocks Page 95

• number of requests/grants

• a selector to choose if the disjunctive normal form (DNF) consists of 0-terms or 1-
terms

• several switches to enable testbench generation, debug features and delay for Verilog
assignments

The next two diploma thesises worked on the functional design space exploration of new
features like hardware barriers and virtual channels resulting in an executable specifica-
tion in SystemC [18] and their hardware implementation in synthesizable Verilog RTL
[17]. Please refer to chapter 4.2: ’Hardware/Software Codesign and Cosimulation’ on
page 63 for the value added by executable specifications to the entire system develop-
ment process.

The scope of the last two steps is covered in the next section ([5.3.2] ’Functional En-
hancements’).

5.3.2 Functional Enhancements

There has been introduced major changes to the ATOLL XBAR mostly related to flow
control, which is now credit based, and multiple transfer levels, used for the barrier
mechanism as well as the virtual channel methods used for head-of-queue blocking re-
duction and deadlock avoidance. This work focuses on the following important enhance-
ments, other enhancements like credit-based flow control was just an implementation
issue, well known in the scientific society, and therefore omitted.

The important functional enhancements can be coarsely divided in:

1. "Virtual Channels" on page 95

2. "Barriers" on page 105

3. "Routing string format" on page 110

Virtual Channels

One of the lessons learned from the ATOLL network design and its implementation is
the significant impact of so called "Head-of-queue" (HOQ) or "Head-of-line" blocking.

Inaugural Dissertation Patrick R. Haspel

Architecture and Function Scope of Building Blocks Page 96

It is a known fact that wormhole switched networks are sensible to this effect. [17]
’Frank Ueltzhöffer, "Design, Verification and Physical Implementation of a High-Per-
formance Low-Latency Multi-Level Network Router", Diploma Thesis, Computer Ar-
chitecture Group, University of Mannheim, 2005’ describes this effect in detail. HOQ
blocking has an impact on latency and bandwidth of physical channels, if a physical
channel is assigned to a route (a message is currently transmitted) and transmission
progress is stalled because of some blocking. The blocking can have several reasons
from blocked XBAR ports to reception delays at the compute nodes.

Introducing virtual channels ensures that the bandwidth reducing effect of HOQ block-
ing can be eliminated by re-assigning the physical channels to different routes if the orig-
inally assigned route stalls. Possible hardware implementations of virtual channels are
well known and also described in [17]. The amount of virtual channels is a design space
exploration decision based on the area impact of the additional buffers and the network’s
probability of HOQ blocking. The network’s probability of HOQ blocking is strongly
depending on its #routes/physical link metric and the message size.

Before digging deeper in the design space exploration and hardware implementation of
the different virtual channel arbitration algorithms, please note the difference to ’Virtual
Channel Groups’ which are pre-assigned during the route creation algorithm and there-
fore, do not be arbitrated in this sense. The next section covers ’Virtual Channel Groups’
in detail.

The crucial question is how virtual channels are arbitrated/assigned. Running out of vir-
tual channels or missing to assign a virtual channel where it is needed eliminates the pos-
itive effect on the average bandwidth at all.

So how would a perfect virtual channel arbitration algorithm behave? When
receiving a virtual channel request, the arbitration algorithm would grant
this request only if the assignment of the virtual channel increases the
throughput of the physical channel. If the physical channel is already utilized
100%, there is no point in assigning an additional virtual channel (at least
from a throughput point of view). For example, a perfect arbitration algo-
rithm should not assign a virtual channel to a message that will get blocked
in a congested area. Assigning a virtual channel to such a message would
only increase link throughput temporarily until the head of the message be-
comes blocked and all buffers on the way are full. Then, the utilization of the

Inaugural Dissertation Patrick R. Haspel

Architecture and Function Scope of Building Blocks Page 97

virtual channel would drop to 0 while preventing the virtual channel from be-
ing reused by a message that could otherwise utilize it. Of course, such a vir-
tual channel arbitration algorithm would require complete knowledge of the
network and its future behavior, which is not realistic.[17]

In the context of the EXTOLL network architecture this issue would reduce to the
knowledge of the final message destination as routes are not adjusted adaptively. So, if
two messages have the same destination node, in the EXTOLL network, they would use
the same route. Now, if there is a block somewhere in this route, assigning a new virtual
channel to the second message would not help in any way as the blocking factor exists
for both. However, as stated before omitting virtual channels at all would hinder mes-
sages to different destinations to proceed along the "worm".

An intelligent virtual channel arbitration algorithm is needed, that prevents running out
of virtual channels in the case that several messages to the same destination node would
use up all available virtual channels but block all at the same blocking cause.

Please refer to Figure 51 below to understand the following illustration. Consider sce-
nario (b) where both messages have the same destination node in a congested or even
blocked area. Further consider that message 1 uses virtual channel 1 and message 2 vir-
tual channel 2 in a case where the arbitration algorithm assigns virtual channels as soon
as it determines some blocking at the selected OutPort of the XBAR. More messages
with the same destination might follow using up all available virtual channels with no
positive impact on the link usage. When all available virtual channels are used up anoth-
er message arrives with a different destination now beeing unable to proceed, although,
the physical channel is currently not used as all messages before are stalled.

Now, imagine that the arbitration algorithm will only assign new virtual channels to
messages with different destinations. A message like in scenario (c) might use a virtual
channel to bypass the blocked message 1.

Inaugural Dissertation Patrick R. Haspel

Architecture and Function Scope of Building Blocks Page 98

 As the EXTOLL network is source path routed it is quite difficult to determine in hard-

ware what messages do have the same destination. This would require a comparison and
storage of the entire routing string for each virtual channel. The algorithm to come
around the described problems is called the "Smart Arbitration Algorithm".

A problem of the smart arbitration scheme is that only the outport knows
which of its outgoing virtual channels is bound to which destination node in
the network. Therefore, it is necessary to transfer the information about the
destination node of a message from crossbar inport to crossbar outport when
a virtual channel is being requested.

One way to avoid this overhead of transferring the information from inport
to outport is to leave part of the arbitration decision up to the inport. In such
a simplified smart arbitration scheme, each inport independently checks
whether it is already holding an outgoing virtual channel destined to a cer-
tain node before it sends a request for a virtual channel to the outport. There-
fore, each inport can at hold no more than one outgoing virtual channel
destined to a certain node.

As the inports are not allowed to share their information, it is possible that
there are several outgoing virtual channels destined to the same node in the
network. However, those virtual channels are bound to different inports.

The hope is that this “imperfect smart arbitration” provides similar perfor-
mance results at lower implementation costs. This hope is justified as mes-

Congested
Region

Considered
Node

1
2

(a) (b) (c)

2
1

2
1

Figure 51: Virtual channel arbitration scenario [17]

Inaugural Dissertation Patrick R. Haspel

Architecture and Function Scope of Building Blocks Page 99

sages within a dimension-order routed network have the tendency to stay
within a single dimension for a relatively long period of time.

Therefore, most messages going to the same node should also arrive through
the same inport, and this case can be handled perfectly by the simplified
smart arbitration scheme.[17]

For very small packets, none of the smart arbitration schemes provides any
performance advantage over the original first-come-first-serve algorithm.
This is not surprising as short messages fit entirely into the inport buffers of
the crossbar. Thus, if a message becomes blocked in a node, only the incom-
ing virtual channel remains blocked. All previously used virtual channels are
already deallocated and available to other messages.

With increasing message sizes, however, the link packets of a blocked mes-
sage spread over several inport buffers and block all virtual channels in be-
tween them. In this situation, the number of available virtual channel
becomes the bottleneck and the smart arbitration schemes can prove their ef-
fectiveness.[17]

Again, implementing this algorithm would require a comparision of the complete rout-
ing strings and as this is not feasible the following solution has been implemented:

Figure 52: Comparision of Smart Arbitration with the Simplified Smart Arbitration Al-
gorithm [17]

Inaugural Dissertation Patrick R. Haspel

Architecture and Function Scope of Building Blocks Page 100

Introducing the Destination Host Tag

The destination host tag consists of 16 bits being able to differentiate 216 different des-
tinations. Although, this amount of hosts is quite large for a cluster system even larger
systems are supported with the possibility of double assigned destination host tags. In
this case the system will face a decreased performace due to unassigned virtual channels,
due to the misinterpretation of the fact that same destination host tags might target dif-
ferent destinations. The arbitration algorithm denies the assignment of additional virtual
channels, thus preventing the positive impact of virtual channels to head-of-queue block-
ing.

For an overview please refer Figure 54: ’Illustration of an EXTOLL message switching
virtual channels[17]’. The figure is simplified with regard to the number of XBAR ports.

Figure 53: Destination host tag introduced before the actual routing string[17]

Inaugural Dissertation Patrick R. Haspel

Architecture and Function Scope of Building Blocks Page 101

Channel A, B and C are physical channels connecting LinkPorts of different nodes.

Please note that the virtual channels are switched at each Inport of the XBAR. Here the
arbitration decision is made. The unit responsible for issuing request for incoming mes-
sages is called Virtual Channel Requester. This unit also stores successful arbitration re-
quests for succeeding message parts in a data structure showed in Figure 55. VCin
denotes the virtual channel number where the message enters the InPort and VCout the

Link Packet assigned to virtual channel x
Link Packet assigned to virtual channel y
Link Packet assigned to virtual channel z

In-Port3

Link
Port0

Link
Port1

Link
Port2

Crossbar
XBar

InPort2

XBar
InPort3

XBar
InPort1

XBar
InPort0

XBar
OutPort2

XBar
OutPort3

XBar
OutPort1

XBar
OutPort0

In-Port3

NIC 1

NIC 2

Channel B

Channel C

Channel A
Link
Port0

Link
Port1

Link
Port2

Crossbar

Link
Port3

XBar
InPort2

XBar
InPort1

XBar
InPort0

XBar
OutPort3XBar

OutPort1

XBar
OutPort0

Link
Port3

XBar
OutPort2

XBar
InPort3

Figure 54: Illustration of an EXTOLL message switching virtual channels[17]

Inaugural Dissertation Patrick R. Haspel

Architecture and Function Scope of Building Blocks Page 102

virtual channel number leaving the Inport.

The next figure (Figure 56) depicts the simplified OutPort implementation.

And to understand the necessary connectivity between InPorts and OutPorts please find
Figure 57.

XBar InPort

VC Requester

VCin VCout VCGrp
0
1
2
3
4
5
6
7

yes
no
no
no
no
yes
no
no

high
high
low
high

high
-

low
high

request0

request1

request11

assign0
assign1

assign11

To Crossbar
Outports

From Crossbar
Outports

OutPort Req
-
-
6
6
-
-
0
2

3
-
3
10
-
1
0
5

Figure 55: Generic virtual channel requester for eight incoming vir-
tual channels [17]

Figure 56: Destination Host Tag aware OutPort [17]

Inaugural Dissertation Patrick R. Haspel

Architecture and Function Scope of Building Blocks Page 103

Just as an example to demonstrate the complexity of the entire XBAR InPort solution
please find the next figure. The work [17] contains the entire specification and imple-

Figure 57: InPort - OutPort connectivity [17]

Inaugural Dissertation Patrick R. Haspel

Architecture and Function Scope of Building Blocks Page 104

mentation details, including timing diagrams and complete block level schematics.

XB
ar

 L
in

k
In

po
rt

S
O

P

VCE
O

P
EO

M

destPort

V
C

-a
w

ar
e

M
ul

tiQ

el
ig

ib
le

VC
s

tra
ns

fe
rV

C
_v

al
id

tra
ns

fe
rV

C

vc
2o

p

ph
its

R
em

ai
n_

va
lid

ph
its

R
em

ai
n

vc
H

ig
hR

eq
ue

st
s

cr
ed

itV
C

s

V
C

in
-to

VC
ou

t

(B
ig

 B
en

)

cr
ed

itV
C

cr
ed

it_
va

lid

Po
rt

M
ap

pe
r

N
et

w
or

k

R
eq

ue
st

er
P

or
t

vc
O

ut
G

rp
s

re
qN

et
w

or
kP

or
t

ne
tw

or
kP

or
t

ne
tw

or
kP

or
t_

va
lid

18
di

n18

doReplace

do
S

am
pl

e

1 1

8 8*
4

4

1

3

1

11

1

1 11

3

1

vc
Lo

w
R

eq
ue

st
s

ne
w

V
C

As
si

gn
s

cr
ed

itV
C

_v
al

id
s

12
*3

8 12 14

3
as

si
gn

VC
in

vc
D

es
tH

os
ts

oldVC

80

70

21
00

20
0

27
00

FI
FO

newVC

31

1

tra
ns

fe
rV

C
_v

al
id

tra
ns

fe
rV

C

3

1

5

41
00

gr
an

ts
12

re
qu

es
ts

12

3
33

3

co
ns

um
eP

hi
t

SO
P

SO
M

V
C

EO
P

EO
M

1 1
E

O
PE

rr
E

O
M

E
rr

E
O

PE
rr

E
O

M
Er

r
11

A
dm

in

St
or

e

53
0

21
70

0

D
at

a

32
00

00

D
at

a-
O

ut
 C

on
tro

l
M

ux
A

nd
R

eg
s27

60
00

O
ut

po
rt

P
ip

el
in

e
St

ag
es

D
at

a-
In

M
ux

A
nd

R
eg

s

do
ut

newRoutingPhit18

m
ap

pe
dD

es
tP

or
t

4

vc
R

eq
s

8 8

8*
16

3

SO
M

1

R
ou

tin
g

In
te

rp
re

te
r

19
0

18
00

1
ro

ut
e_

va
lid

VC
O

ut
G

rp
1

vc
R

eq
D

es
tH

os
tT

ag
88

1*
16

V
C

R
eq

ue
st

er
51

0
10

10
0

69
00

R
eq

ue
st

er
/

G
ra

nt
 S

el
ec

to
r

P
or

t A
cc

es
s

43
0

Inaugural Dissertation Patrick R. Haspel

Architecture and Function Scope of Building Blocks Page 105

Virtual Channel Groups

Another case where virtual channels improve a network’s behaviour is deadlock avoid-
ance. Here, virtual channels define additional routes used to break circles in the channel
dependency graph. Topology/routing algorithm combinations that usually are not dead-
lock free can profit from so called escape channels that break circles in the dependency
graph. Please refer to Table 5: ’Deadlock free combinations of topology and routing al-
gorithm’ on page 45. Especially interesting for EXTOLL and this work is the combina-
tion of 3d-tori and dimension order routing, which is usually not deadlock free.
However, introducing virtual channels to add escape routes to the dependency graph
solves this problem. A in-depth discussion on how virtual channels impact the channel
dependency graph can be found in [18] ’Richard Sohnius, "Creating an Executable Spec-
ification using SystemC of a High-Performace Low-Latency Muli-Level Network Rout-
er", Diploma Thesis, Computer Architecture Group, 2005’.

Using virtual channels to solve the deadlock issue is a well known method. Here, virtual
channels are assigned through the routing algorithm and coded in the routing string (in
source path routed networks). The pre-assignment is the fundamental difference to the
use of virtual channels avoiding HOQ blocking where from routing hop to routing hop
the arbitration decision must be made adaptively.

Therefore, we group the existing virtual channels used to avoid HOQ blocking and name
them Virtual Channel Groups. The virtual channel groups itself form another virtual
channel used to solve the deadlock issue.

Barriers

Barriers are a fundamental paradigm in parallel computing and have a long history in
proprietary parallel computers. Although, there are no existing hardware solutions in
commodity SANs like Myrinet or Quadrics. Where no hardware solution is present, bar-
riers are handled in software resulting in performance drawbacks. Therefore, modern su-
percomputers like the chapter 2.2.5 "IBM Blue Gene BG/L" on page 23 have dedicated
networks to support hardware barriers. Due to cost reasons dedicated barrier networks
are not feasible for SAN solutions.

The challenge in the context of this work therefore is to use the existing torus network
cabelling topology to implement a hardware solution for barriers.

Usually tree topologies are used to scather and gather barrier information. It is important

Inaugural Dissertation Patrick R. Haspel

Architecture and Function Scope of Building Blocks Page 106

to broadcast barrier information to every participating node/process without duplicating
the information. For tree topologies there exist search algorithms like depth-first search
or breadth-first search that ensure visiting all nodes without visiting them twice.

The solution presented in this work is based on the approach to map a tree topology on
a torus topology and use this virtual network for barrier distribution.

Figure 58 shows the design space explorated during this work.

There are well known mathematical algorithms that are able to map trees on tori easily.
From the hardware implementation view the virtual tree network is no more that an "up"
or "down" tag available at each XBAR port. Exactly one port per XBAR has the up tag
asserted (except the root node, which has none) and one or more ports have the down
tags asserted (except the leaf nodes, which have none).

During the collect phase all barrier notifications head to the root, during the release phase

Hardware Supported Barrier

Message Transport Tree Definition Data Storage

normal
message

message link centraldecentralized
- every node needs
 a counter for every
 possible barrier
+ O(1)

- every port needs
 space to store as
 many messages
 as there are con-
 current barriers
- O(n²) or at least
 O(n)

- high latency
- high network load
- needs to be
 detected

+HP channel
- even more HW
 effort

- can get stuck in
 congestion

- extra virtual
 channel

- requires HW for
 message creation

- requires HW for
 message creation
+ cannot get stuck

message
- can get stuck
- requires HW for
 message creation
+ bypasses crossbar

control
character
- reqires extra
 control char.
+ minimal net-
 work load
+ cannot get
 stuck
+ minimal
 latency

Definition Time

in advance during each call
- requires data to be
 stored in each node
+ allows nodes not to
 take part in barrier

- tree must not contain
 nodes that do not take
 part
+ no permanent data
 stored in node

Way of Definition

Static Per Barrier
- non optimal tree for - requires more data to be
 small process groups
- no load balancing
+ less data required

 stored
+ load balancing
+ minimal height trees

Figure 58: Design space exploration tree traversed [18]

Inaugural Dissertation Patrick R. Haspel

Architecture and Function Scope of Building Blocks Page 107

to the leaves respectively.

This functionality is considered to be an additional layer on top of the regular message
routing capability of the EXTOLL XBAR.

Barrier message flow - Collect-Phase

The start of the barrier operation for the barrier module in the collect phase is either trig-
gered by a HostPort through a process entering a barrier (1) or a barrier message travel-
ling up the tree (2).

(1) A process enters a barrier using the MPI_barrier function. The MPI implementation
needs to check if this is the only process in the affected MPI communicator on the cur-
rent node (because of the possibility of multiple MPI processes running on an SMP
node). If this is the only process in the current communicator on this node or all process-
es of the current communicator entered the barrier, the MPI implementation notifies the
NIC. The notification works through the regular communication possibilities.

(2) An up message entered the barrier module. Only if from all available down links an
up message has arrived and the current node entered the barrier also (see (1)), an up mes-
sage is send to the up link. In the hardware implementation the possibility of nodes not
taking part in the barrier mechanism is realized also.

Now, if the root receives up messages from all of his down links and the current node,
the collect phase has ended and the release phase starts.

Barrier message flow - Release-Phase

The release phase always begins at the root, as described before. Now, the root notifies
the MPI implementation of the current node to release the barrier for its processes and
sends down messages to all down ports. Every barrier module receiving a down message
from an up port notifies the node’s MPI implementation and further sends down messag-
es to all of its down ports. If no down ports are available the release phase for this node

Figure 59: The two phases of the barrier communication [17]

Inaugural Dissertation Patrick R. Haspel

Architecture and Function Scope of Building Blocks Page 108

and barrier has ended.

The hardware implementation supports 16 different barriers by tagging the barrier mes-
sages with a barrier ID.

Depending on the host to NIC communication the barrier module needs to store a virtual
port ID per barrier in order know how and who to notify if the barrier releases.

The overall hardware impact of the barrier logic is considered to be very low (in the
range of <500 D Flip-Flops for 16 supported barriers. Please refer [18] for the in depth
analysis of the hardware implementation and their area impact.

We considered to also virtualize the barrier module in order to support an almost infinite
amount of barriers, but due to performance and complexity issues this has been discard-
ed. The barrier logic has to be extremely low latency and therefore, any accesses to the
node’s main memory needs to be avoided.

In the case an MPI program needs more than 16 different barriers or there are running
more than 16 different applications on the network, there is still the possibility to support
the additional barrier requirements in software.

Barrier XBAR interfacing

The interfacing to the barrier module heading in the direction to links is pretty simple
(Figure 60).

• direction: Up/Down direction for incoming or outgoing barriers

• barried_id: ID of the transmitted barrier

• barrier_id_valid: Asserted if direction and barrier_id are valid

Figure 60: Interfacing to the LinkPort [17]

1

4

1

1 stop

direction
barrier_id

barrier_id_valid

1

4

1

direction
barrier_id

barrier_id_valid

Barrier
Module

Link
Port

To/From
Host Port

Inaugural Dissertation Patrick R. Haspel

Architecture and Function Scope of Building Blocks Page 109

• stop: Asserted if the link is not able to transmit data

The interface to the HostPort (Figure 61) is nearly as simple.

• virtual_port_ID: The virtual port ID of the process that issues a barrier operation or
that needs to be notified in the case of a barrier release

• barrier_id: The ID of the barrier to be used (The software needs to arbitrate the avail-
able hardware barriers).

• barrier_id_valid: The flow control signal

• barrier_reset: In the case of a software abort due to any reason, the hardware needs to
be able to reset a barrier operation (release barrier with error)

Again, for a complete discussion of the design space exploration and the hardware effort
analysis please refer to [18].

Debug and Fault Tolerance Features

The diploma thesis working on the complete XBAR IP generator [41] included the entire
ATOLL XBAR implementation with parametrizable FIFO structures. Here, also some
improvements of the ATOLL XBAR regarding debug functions has been implemented
as lessons learned from the first ATOLL silicon start-up tests.

The XBAR now has functionality to:

1. Mask individual ports to be unavailable in order to address faulty nodes

2. Signal the software if a masked port is addressed (IRQ)

Figure 61: Interfacing to the HostPort

1

4

1

1 barrier_reset

virtual_port_ID
barrier_id

barrier_id_valid

16

4

1

virtual_port_ID
barrier_id

barrier_id_valid

Barrier
Module

Host
Port

To/From
Link Port

Inaugural Dissertation Patrick R. Haspel

Architecture and Function Scope of Building Blocks Page 110

3. Enter default detour ports in case of addressing a masked port (automatic route
detouring without software interaction)

This functionality enables software controlled routing changes for messages in transfer.
By these add-ons now new fault models are available to address node/link breakdowns,
that can be further controlled in software.

Furthermore, performance counters has been introduced in order to set the basis for
adaptive routing controlled by software. The software is able to read the link utilization
and specifically and locally change the eligible routes.

Routing string format

The evolution of the proposed routing string format has under gone several changes due
to massive constraints from the architecture and the implementation side.

The crossbar and links of the EXTOLL architecture will use 18-bit phits in
contrast to the 9-bit phits used by ATOLL.

The routing string preceding each ATOLL message is determined by the
sender (source path routing). On the way to the recipient of the message, each
hop removes the first routing phit of the routing frame. Although this routing
scheme is simple, it suffers from the disadvantage that the length of the rout-
ing string is directly proportional to the number of hops on the path to the
destination node. In large networks and/or in the case of very short messages,
this overhead is no longer negligible.

The EXTOLL network is designed to achieve high throughput even with very
short messages as they are typical for remote direct memory accesses (RD-
MA). As the EXTOLL phit is twice as large as that of ATOLL, using the same
routing scheme as ATOLL would double the routing overhead. This is unac-

Inaugural Dissertation Patrick R. Haspel

Architecture and Function Scope of Building Blocks Page 111

ceptable, and therefore a new routing scheme for EXTOLL has been devel-
oped in diploma thesis [18].

Figure 62: 16-Bit EXTOLL routing phit
Each routing phit will now contain a destination port field and two counters
(Figure 62). The destination port field specifies through which outport the
message must leave from the current node, whereas the counters specify for
how many hops this port needs to be taken. Each time a hop forwards the mes-
sage to the specified node, the counter is decremented. As Figure 62 depicts,
each phit contains two counters: one for the low virtual channel group and
one for the high virtual channel group. As long as the low-VC counter is not
zero, the message is forwarded on a low virtual channel. As soon as this
counter reaches zero while the high-VC counter is still greater than zero, the
message remains in the same dimension but is sent through high virtual chan-
nels. When both counters have reached zero, the routing phit will be con-
sumed.

Assuming a 3-D torus network and minimal routing, more than 16,000 nodes
can be addressed with only 4 routing phits.

During the design phase of the crossbar, slight modifications became neces-
sary to the originally suggested routing scheme.[17]

0

3
4

9
10

15

}
}
}

Destination
Port

Low-VC
Counter

High-VC
Counter

Inaugural Dissertation Patrick R. Haspel

Architecture and Function Scope of Building Blocks Page 112

The routing string is build out of routing phits in the following fashion (Figure 63).

The return route is optional and will be important for source-destination acknowledge-
ments [42].

The possible values for the DestPort (destination port) field can be found in Table 9.
During regular operation messages to be routed to a network port (going out to the host)
need to be routed to destination port 15. Here, the crossbar itself determines which phys-
ical network port is to be used depending on the availability. For debug purposes the net-
work ports might be addressed directly (ports 8 to 11).

Destination-Port ID Crossbar Port Comment
0 Link-Port 0

1 Link-Port 1

2 Link-Port 2

3 Link-Port 3

4 Link-Port 4

5 Link-Port 5

6 Special Purpose Port 0

7 Special Purpose Port 1

8 Network Port 0
Only used internally by the

crossbar. Must not be used as
destination port directly.

9 Network Port 1

10 Network Port 2

11 Network Port 3

0

3
4

9
10

15

Low
-VC

C
ounter

H
igh-VC

C
ounter

Low
-VC

C
ounter

H
igh-VC

C
ounter

Low
-VC

C
ounter

H
igh-VC

C
ounter

D
um

m
y

C
ounter

Dest
Port

Dest
Port

Dest
Port

Dest
Port

Low
-VC

C
ounter

H
igh-VC

C
ounter

Low
-VC

C
ounter

H
igh-VC

C
ounter

Low
-VC

C
ounter

H
igh-VC

C
ounter

D
um

m
y

C
ounter

Dest
Port

Dest
Port

Dest
Port

Dest
Port

forward route return route

x-Dim z-Dim y-Dim z-Dimx-Dimhosty-Dim host

optional

1 x 28≤ ≤ 1 x 28≤ ≤

example usage

R
eserved

R
eserved

Figure 63: EXTOLL routing string [17]

Inaugural Dissertation Patrick R. Haspel

Architecture and Function Scope of Building Blocks Page 113

Table 9: Routing destination ports
The fields "Low-VC Counter" and "High-VC Counter" represent the virtual channel
groups mentioned earlier. Every hop taken reduces the respective counter by one. The
message stays in the high virtual channel group as long as the High-VC Counter counter
does not equal zero. If both counters are zero the destination dimension is reached and
the routing phit is consumed. As soon as the phits for each of the three dimensions are
consumed, the host phit denotes if the message goes to one of the four networks ports (to
the node) or to one of the two special purpose ports. At this step the networks ports are
never addressed directly, instead the "Logical Network Port" (Destination Port ID = 15)
is addressed to let the XBAR itself choose the actual network port depending on avail-
ability. The function of the special purpose ports is described in the following section.

The Reserved field contains information for the HostPort that includes the possible ex-
istence of a return route and other information for the special purpose ports. Please refer
to [42] for more details on possible usage of this field.

Broadcasts / Multicast - Special Purpose Ports

There are two special purpose ports considered in the EXTOLL XBAR. They have spe-
cial functions available not related to the common user processes taking part in the par-
allel application.

The so called "Debug Port" might be used to remove misrouted or erant messages from
the network. The debug port is implemented like the former ATOLL DMA function of
a host port spooling messages to a dedicated pinned supervisor page in main memory.
The daemon software is responsible to screen this area and decide how to process the
incoming messages. For example, the XBAR outport to a faulty link might be masked
and messages to this port would then be redirected to the debug port to be processed by
the software.

The so called "Multicast Port" is considered to spool incoming multicast messages to

12

reserved13

14

15 Logical Network Port

Crossbar determines which of
the physical network ports is
available and redirects the

message.

Destination-Port ID Crossbar Port Comment

Inaugural Dissertation Patrick R. Haspel

Architecture and Function Scope of Building Blocks Page 114

main memory and automatically resend them to the different ports without software in-
teraction. This function is not implemented yet.

5.4 Hostinterface and EXTOLL block level communication

This section covers the communication architecture of the building blocks of EXTOLL
as well as the communication interface architecture to the host. Depending on the actual
location of the NIC and the protocol used to connect to the host, the host interface is re-
quired to support different features. The PCI Bus for example relies during burst cycles
on a continuous data stream and also requires the "forecast" of the length of the burst
cycle. During the course of this work the requirements from several node bus protocols
has been taken into account to design a most generic and performant architecture.

Mainly two diploma thesises contributed to this section:

1. ’Thomas Schlichter, "Exploration of Hard- and Software Requirements for
one-sided, zero copy user level Communication and its Implementation", Di-
ploma Thesis, Computer Architecture Group, University of Mannheim,
2003’[14]

2. ’Timo Sponer, "Development, Verification and Integration of a Processing
Unit in the Communication Function of a SAN Device in SystemC", Diploma
Thesis, Computer Architecture Group, University of Mannheim, 2005’[32]

Atomic virtual command queue modification

One of the most challenging issues was the atomic trigger functionality for virtual devic-
es via a bus protocol not supporting atomic operations. As EXTOLL implements virtual
devices [42], the question was how to enter commands in the virtual command queue re-
sponsible for triggering operations of virtual devices. Task switching by the operating
system introduces the requirement for atomic accesses. For a detailed discussion of the
design space please refer [14].

The solution is to use read accesses to virtual channel dedicated mapped pages of the
NIC and refer to the read value as an acknowledge or negative acknowledge signal. The
address of the referred page indicates the virtual device ID and the operation being trig-
gered. The response on this request signals if the request has been entered in the virtual
command queue successfully or not. This mechanism is atomic as it uses a single access
to the device, communicates the virtual device ID as well as the command type using the

Inaugural Dissertation Patrick R. Haspel

Architecture and Function Scope of Building Blocks Page 115

referred address. Also, lowest latency is ensured to issue the communication command.

TLB coherence

Another challenge was to keep the TLB (Transaction Look aside Buffer) of the NIC con-
sistent to the CPU’s TLB. It was necessary to have a TLB located on the NIC to imple-
ment zero copy remote memory accesses (RMA) for virtual to physical address
translation. Also in [14] a hook mechanism was developed for the LINUX operating sys-
tem to signal a TLB flush or modification to the NIC concurrently to the CPU. This was
submitted as a change request to the LINUX kernel community and accepted as soon as
the hardware is available. The TLB hook mechanism was tested in an FPGA environ-
ment developed by ’Matthias Scheerer, "Definition and Implementation of a Hardware
Abstraction Layer (HAL) for an ASIC-Prototyping Station using a 64Bit/66MHz PCI in-
terfaced FPGA", Diploma Thesis, Computer Architecture Group, University of Man-
nheim, 2002’. Please refer to chapter 4.3: ’FPGA based ASIC prototyping’ on page 71
for a detailed discussion of the hardware platform.

5.4.1 Intermodule Communication Architecture

The requirements to be put on the on chip communication architecture has been derived
from the following [32]:

1. A huge amount of functional units that can even increase if future modules will
be developed. So the design has to be extendable.

2. An arbitrary distance between the functional units and the communication
structures on the die. This is necessary as a floorplaning step has not been per-
formed. When the floorplaning reveals the need for a pipeline stage the design
has to cope with such a situation.

3. A generic interface towards the peripheral bus. As the support for a specific pe-
ripheral bus has not been decided a generic interface allows a connection to a
wide range of peripheral busses.

There are three modules involved in the communication with the host (Figure 64):

1. Host Interface: Responsible for the communication to the connected host bus.
It allows the remaining EXTOLL system to be as independent as possible from
a specific peripheral bus

Inaugural Dissertation Patrick R. Haspel

Architecture and Function Scope of Building Blocks Page 116

2. Master Interface: Responsible for accesses initiated through the EXTOLL de-
vice

3. Slave Interface: Responsible for accesses initiated through the host

Depending on the location of the NIC the South Bridge might be omitted.

In order to derive the communication constraints from the several functional units, we
grouped them in bunches depending on their functional task (Figure 65):

• The modules present in the Initiator Path group start network transmissions initiated
by applications running on the local node.

• Messages that are received from the network are forwarded to the addressed applica-
tion by a module of the Completer Path group.

• The Cache group contains the context cache, the window descriptor cache and the
routing cache. The caches buffer the EXTOLL data structures that reside in the main
memory. A functional unit always requests a data structure from the appropriate
cache. In case of a cache miss the cache fetches the data structure from the main mem-
ory, buffers it and hands it over to the functional unit.

H
os

t I
nt

er
fa

ce

Master
Interface

Slave
Interface

EXTOLL
Fuctional Units

Peripheral Bus

South
Bridge

Memory Bus

CPU
of the

Host System

EXTOLL

Figure 64: EXTOLL host communication [32]

Inaugural Dissertation Patrick R. Haspel

Architecture and Function Scope of Building Blocks Page 117

• The Response Path group contains all modules that injects a message into the network
as a reaction to a received message. So the functional units respond to received mes-
sages without the interaction of an application. [32]

From these groups we derived the communication pattern required for each functional
unit. Figure 66 depicts the initiator path; Figure 67 the completion and response path.
The light grey boxes denote the amount of data and transferred for each step as well as
the communication direction (master/slave). Please refer [32] for a detailed description

Hostport

DMA Send Request

DMA Send Completion

RMA Get Request

Context Cache

RMA Put Request

RMA Get Completion

RMA Get Response

Ack Completion

Routing Cache

RMA Put Completion

Window Descriptor Cache

Caches

Initiator Path

Response Path

Completion Path

Figure 65: Functional Units grouped [32]

Inaugural Dissertation Patrick R. Haspel

Architecture and Function Scope of Building Blocks Page 118

of each step.
1 Insert VCI in VCI-Queue

Host CPU => Main Memory
CPU write burst

8 words

2 Triggerpage Access
Host CPU => EXTOLL

EXTOLL slave access
single read

3 Context Request
Functional Unit => Context Cache

3a Context Fetch
Context Cache => Main Memory

EXTOLL master access
8 word read burst

4 Fetch VCI from VCI Queue
Functional Unit => Main Memory

EXTOLL master access
8 word read burst

5 Window Descriptor Request
Functional Unit => WinDesc Cache 5 Routing Request

Functional Unit => Routing Cache

6 Address Translation Request
Functional Unit => TLB

7 Fetch Data
Functional Unit => Main Memory

EXTOLL master access
8 word read burst

8 Write Back Completion Bit
Functional Unit => Main Memory

EXTOLL master access
single write

cache hit cache miss

cache hit cache miss

cache hit cache miss

cache hit cache miss

5a Window Descriptor Fetch
WinDesc Cache => Main Memory

EXTOLL master access
3 word read burst

6a TLB Request
Host CPU => EXTOLL

EXTOLL slave access
burst/single read/write

Transfer Description
Initiator => Target

Type of Transfer
 Size of Transfer

RMA Put Request

DMA Send Request

RMA Get Request

5a Routing Fetch
Routing Cache => Main Memory

EXTOLL master access
X word read burst

Figure 66: Communica-
tion pattern of the initia-

tor path [32]

Inaugural Dissertation Patrick R. Haspel

Architecture and Function Scope of Building Blocks Page 119

5.4.2 The Slave interface Unit

The following figure depicts the entire design space exploration tree for the slave inter-

cache hit cache miss

cache hit cache miss

cache hit cache miss

5 Write Back Completion Bit
Functional Unit => Main Memory

EXTOLL master access
single write

#. Description
Initiator => Target

Type of Transfer
 Size of Transfer

RMA Put Completion

RMA Get Completion

RMA Get Response

1 Context Request
Functional Unit => Context Cache

1a Context Fetch
Context Cache => Main Memory

EXTOLL master access
8 word read burst

2 Window Descriptor Request
Functional Unit => WinDesc Cache

2a Window Descriptor Fetch
WinDesc Cache => Main Memory

EXTOLL master access
3 word read burst

3 Address Translation Request
Functional Unit => TLB

5 Write Notification
Functional Unit => Main Memory

EXTOLL master access
8 word read burst

6 Update Notification Queue Pointer
Functional Unit => Main Memory

EXTOLL master access
single write

3a TLB Request
Host CPU => EXTOLL

EXTOLL slave access
burst/single read/write

4 Write Data
Functional Unit => Main Memory

EXTOLL master access
8 word write burst4 Fetch Data

Functional Unit => Main Memory
EXTOLL master access

8 word read burst

Figure 67: Communication pattern of the completion and response paths [32]

Inaugural Dissertation Patrick R. Haspel

Architecture and Function Scope of Building Blocks Page 120

face observed:

As the result the Slave Interface Unit is divided in three main modules (Figure 69):

• The Request Path accepts transaction requests from the two masters. It converts the
requests into an internal format and passes the requests one after the other to the Sock-
et Tray. If the request is a write request the Request Path also accepts the write data,
buffers it and passes the data along with the request to the Socket Tray.

• The Socket Tray provides an interface for each Slave Module. In case of an incoming
request it forwards the transaction to the appropriate Slave Module. In case of a read
request the Socket Tray delivers the read data to the Response Path.

• The Response Path collects the read data from the Slave Modules and delivers it to
the master that has requested the data.[32]

Usually there is only one master connected to the Slave Interface Unit, which is the
host’s CPU. However, in our case, where a Network Processing Unit works concurrently

Slave Interface

Interconnection

BusSwitching Device
Flow Control

Retry
Byte Enable

Not Supported

Split-Phase Transactions

Supported

HandshakeBuffer

Necessary Not necessary

Not SupportedSupported

Transfer Size

BurstsSingle Cycle

Functional Unit Classification

NonuniformUniform

Figure 68: Design Space Exploration tree of the Slave Interface [32]

Response Path

Slave Unit

Host
Interface
(Master)

Socket
Tray

Slave
Module 1

Slave
Module X

NPU
Interface
(Master)

Request Path

Figure 69: The Slave Interface Unit [32]

Inaugural Dissertation Patrick R. Haspel

Architecture and Function Scope of Building Blocks Page 121

to the node’s CPU, we need two interfaces. As both have identical features and con-
straints the interface is just duplicated.

In order to increase performance and concurrency the Slave Interface Unit supports split-
phase transactions from both masters.

The Request Path

The main elements of the Request Path are the Job Generator Unit, the Job Queue, the
Write Data Buffer and the Issue Unit all described below in more detail.

The Job Queue used to enable concurrency of consecutive requests contains all issued
requests. Each element of the Job Queue represents one request and is defined in Table
10:

Table 10: Element of the Job Queue [32]
If the request is a write request the corresponding data is stored in the Write Data Buffer.

The SlaveID is derived from the requested address by the Job Generator Unit.

The Job Generator Unit (Figure 72) contains an Address Decoder responsible for assign-

Field Name Bitwidth Description

Command 2 Specifies whether job is read or write transaction

Master ID 1 Number of the Master that has initiated the request.

Slave ID 5 Number of the Slave Module that represents the
destination of a transaction

Address 64 Start address of transaction

Size 5 Amount of 64-bit word involved in the transfer

Sequence ID 5 Split-phase transaction tag associated with the transaction

Issue
Unit

Job Generator Unit

Job Queue
Score
board

Interface to Collect Unit

Write Data Buffer

Interface to
Socket Tray

NPU

Host
Interface

Figure 70: The Request Path [32]

Inaugural Dissertation Patrick R. Haspel

Architecture and Function Scope of Building Blocks Page 122

ing address spaces to the slave modules. Depending on the actual address space distri-
bution the address translation is perfomed resulting in a SlaveID and a local slave
address.

Usually the address space is divided in chunks of 2n. If the address spaces for each Slave
Module would be equal, the resulting hardware of the Address Translator just would be
a bit split. Consider for example that each Slave Module gets an address space of 29

(512) Bytes. Then, in Verilog notation the SlaveID would be:

assign SlaveID = Global Device Address [63:9]

and the Slave Local Address:

assign Slave Local Address = Global Device Address [8:0]

However, the hardware effort strongly depends on how regular the address space distri-
bution is. Also important to consider is the support from the peripheral bus side, where
the available address space for the entire device might be very limited.

In general, the Slave Local Address is the Global Device Address minus the Slave Start
Address. Only if the entire Slave Modules are well defined the creation of the address

Address TranslatorGlobal Device
Address

Slave Local
Address

SlaveID

Figure 71: The Address Translator

Inaugural Dissertation Patrick R. Haspel

Architecture and Function Scope of Building Blocks Page 123

space distribution makes sense.

The Job Generator Unit further is responsible for the arbitration of the two masters. The
acknowledge (Ack) and retry (Retry) signals are used to control the data flow. The re-
questing signals need to be asserted as long as the Job Generator Unit asserts either the
Ack signal or the Retry signal. A request will be acknowledged as long as there is space
in the Job Queue and if it is a write request there is enough space in the Write Buffer.

A detailed timing diagram for both read and write requests can be found in [32].

The Issue Unit shown in Figure 73 is pulling requests from the Job Queue dispatching
them to the available Slave Modules:

clk

Job Generator
Unit

Command
Size
Address
SequenceID

Command
Size
Address
SequenceID

Ack
Retry

Ack
Retry

{
{

MasterID
NPU Interface

Host CPU Interface

} Multiplexer

Command

Size
Address
Sequence ID

Master ID
Slave ID

Job Queue Element

} Job Queue

ShiftIn
FifoFull

Figure 72: The Job Generator Unit [32]

clk

Issue Unit

Command

Size
Address
Sequence ID

Master ID
Slave ID

Job Queue Entry

ShiftOut

Write Data
ShiftOut

Size
Address
Sequence ID

Master ID
Slave ID

Write Data

Size

Write Data Valid

Request Valid

Collect Buffer Entry

Shift In{ }
Address

Job Queue

{Write Data
Buffer

Collect Buffer

}
Slave ID

Socket Tray

SlaveID
SlaveIDValid } Collect UnitScore-

board
FifoFull

FifoEmpty

FifoEmpty

Figure 73: The Issue Unit [32]

Inaugural Dissertation Patrick R. Haspel

Architecture and Function Scope of Building Blocks Page 124

The availability of the Slave Modules can be derived from the Score Board entries con-
sisting of the SlaveID and the pending read data values. Furthermore, the Issue Unit in-
terfaces to the Collect Buffer (part of the Response Path) to enable the correct
assignment of split-phase read requests to the requesting master.

The Socket Tray

The Socket Tray contains an array of Slave Sockets (Figure 74) providing a point-to-
point connection to each Slave Module. The Slave Sockets run an OCP (On Chip Proto-
col) protocol [46].

Each Slave Socket (Figure 75) has three interfaces, one to the Request Path (Issue Unit)
accepting requests and forwarding them to the Slave Modules, one to the Response Path
providing read responses and one to the Slave Modules themselves

Slave Socket Tray

Slave Module 1

Slave Module 2

Slave Module 3

OCP

Request Path

Response Path

Slave Unit

Slave Socket

Slave Socket

Slave Socket

Figure 74: The Socket Tray [32]

Slave Socket

clk

MCmd
MAddr
MData
MDataInfo

SData
SDataInfo

SResp

Write Data

Size

Write Data Valid

Request Valid

Address } Slave Module

Issue Unit {
Read Data

Read Data Valid
Go{Response Path

Figure 75: The Slave Socket [32]

Inaugural Dissertation Patrick R. Haspel

Architecture and Function Scope of Building Blocks Page 125

In order to decrease the complexity of the Slave Module’s interface, we decided to trans-
late burst requests into single requests by the Slave Socket. This also abolishes the need
for dedicated flow control signals. So, the Slave Socket only issues commands to the
Slave Modules if it has been signalled by the Go signal from the Response Path. Details
of the OCP signalling and the Slave Socket implementation can be found in [46] and [32]
respectively.

The Response Path

The Response Path uses the Collect Unit fed by the Collect Buffer to collect response
data from the Socket Trays (Figure 76).

Each entry of the Collect Buffer (Table 11) represents the response to one request:

Table 11: Content of a Collect Buffer entry [32]
It identifies the requesting master, the target slave as well as the SequenceID for tagged
split-phase transactions. The Collect Unit graps an entry and controls the multiplexer to
target the correct Slave Socket in the Socket Tray. For each data word transferred it is-

Field Name Bitwidth Description

Master ID 1 The number of the Master that has initiated the request

Slave ID 5 The number of the Slave Module that has pending read data values

Size 5 The amount of 64-bit words that has to be retrieved from the Slave Module

Sequence ID 5 The split-phase transaction tag associated with the transaction

Address 64 The address of the first read data value

Collect
Unit

Read Completed
Buffer

From Request Path

Read Data Buffer

Collect
Buffer

Socket Tray

Return
UnitNPU

Host Interface

Figure 76: The Response Path [32]

Inaugural Dissertation Patrick R. Haspel

Architecture and Function Scope of Building Blocks Page 126

sues the SlaveID to the Scoreboard in the Issue Unit of the Request Path in order to keep
track of the outstanding read data values and stores the data in the Read Data Buffer. As
soon as the transfer is complete it feeds the Read Completed Buffer with the transaction
information (same as the content of a Collect Buffer Entry without the SlaveID, which
is no longer needed).

It is necessary to store the complete transaction in the Read Data Buffer and wait for the
end of the transaction due to possible constraints from the peripheral bus not to interrupt
burst transfers. The PCI-X protocol for example requires this behaviour.

The Return Unit (Figure 77) waits for entries in the Read Completed Buffer and issues
the response to the appropriate master:

Detailed timing diagrams can be found in [32].

5.4.3 The Master Interface Unit

The master interface unit contains of three submodules:

• Request Path: Buffers all requests from a Master Module and forwards them to the
host interface.

• Response Path: Handles all incoming read data values that are delivered by the host
interface. It determines the Master Module that has requested the data and forwards
the data to the Socket Tray.

• Socket Tray: Provides an array of uniform interfaces or sockets for the Master Mod-
ules. If a Master Module requests a data packet transfer the Socket Tray forwards this

clk

Return Unit

RespValid
RespSequenceID

RData

RespSize
RespAddress

RDataNext

RespValid
RespSequenceID

RData

RespSize
RespAddress

RDataNext

{
{Host Interface

NPU Read Data
ShiftOut

Size
Address

Sequence ID

Master ID

Read Completed
Buffer Entry

ShiftOut
Read Completed

Buffer

Read Data
Buffer

FifoEmpty

FifoEmpty }

}
Figure 77: The Return Unit [32]

Inaugural Dissertation Patrick R. Haspel

Architecture and Function Scope of Building Blocks Page 127

request to the Request Path. In case of a read request the Socket Tray forwards the
incoming read data to the Master Module.[32]

The "Master Modules" refer to each functional unit with master functionality, i.e. RMA
put request, RMA get request, DMA send request or even the NPU.

This keeps the architecture extendable and generic. In order to support concurrency of
the different Master Modules the Master Interface Unit is capable of split-phase transac-
tions. The Socket Tray is responsible to handle these transactions and forwards split-
phase replies to the dedicated Master Module. Figure 78 shows the submodules of the

Master Interface Unit.

The Socket Tray

The Socket Tray (Figure 79) contains an array of Master Sockets, where each Master
Socket can be regarded as an adaptor to a Master Module. Also, the Socket Tray is re-

H
os

t I
nt

er
fa

ce

Request Path

Response Path

Pe
rip

he
ra

l B
us

Socket Tray

Master Module 1

Master Module 2

Master Module N

Master Interface Unit

Figure 78: The Master Interface Unit [32]

Inaugural Dissertation Patrick R. Haspel

Architecture and Function Scope of Building Blocks Page 128

sponsible for the data handling to and from the Request and Response Paths.

 The interface of a Master Socket is shown in Figure 80:

The protocol to the Master Modules is designed to accept pipeline stages introduced to
allow signals with a net delay more than the cycle time. With this feature the global rout-
ing can be relaxed. Further architecture decision can now be made independently from
the floorplan.

Master Module 1

Master Module 2

Master Module N

Master Socket 1

Socket Tray

Request Path

Response Path

Master Socket 2

Master Socket N

Figure 79: The Socket Tray [32]

Master Socket

clk

Request Path

RequestValid
MasterID

MasterTag
Size

Address
TransferType

WData
WDataValid

WDataBE

Grant
Request

RData
RDataValid
RDataTag

Response
Path {

Figure 80: Interfacing of a Master Socket

Master Module
(part of each Func-

tional Unit)

TransferType
MasterTag

Address
Size

Ack

WData
WDataValid

2

3

64

6

64

RDataValid
RDataTag
RData

3

64

WDataBE

clk

Request Group

Write Data Group

Read Data Group

Response Group

Master Interface
Unit

Inaugural Dissertation Patrick R. Haspel

Architecture and Function Scope of Building Blocks Page 129

The split-phase transaction protocol supports up to eight outstanding read requests,
tagged by the signal MasterTag (Figure 80) handled by a Master Module.

Each Master Module needs to accept incoming data as requested, so there is no buffer
space available in the Master Interface Unit.

The signals of the Request Group are marked valid throughout the TransferType signal
encoded as follows:

All signals of the request group are invalid if the coding of the TransferType signal is
IDLE.

Write Transactions

A Master Module starts a write transaction by asserting the WRITE command on the
TransferType signal bus together with the address and the size of the transfer. The Mas-
ter Tag signal is ignored as it is only used for tagging split-phase read transactions. After
the Master Socked signals the acknowledge of the request by a one cycle assertion of the
Ack signal, the Master Module writes the data on the WData bus. The WDataValid sig-
nal marks the data as valid; the WDataBE signals are the corresponding byte enable sig-
nals. As soon as the transaction is completed the signals of the request group must
change to IDLE again.

Read Transactions

A Master Module starts a read transaction by asserting the READ command on the
TransferType signal bus together with the address and the size of the transfer. Further-
more, it has to tag the request with a MasterTag in order to assign the later data transfer
to the corresponding request. After the Master Socked signals the acknowledge of the
request by a one cycle assertion of the Ack signal, the Master Module might issue further
requests. When the data arrives valid data is marked by the RDataValid signal and the
RDataTag. Using the RDataTag the incoming data can be assigned to the corresponding
read request. The Master Modules are responsible to handle the split-phase transaction
tags appropriately.

Command Description Bit Encoding

00 No Request IDLE

01 Master indicates read request READ

10 Master indicates write request WRITE

11 - reserved

Inaugural Dissertation Patrick R. Haspel

Architecture and Function Scope of Building Blocks Page 130

Detailed timing diagrams of write and read transactions can be found in [32].

The Request Path

The Request Path arbitrates and collects the requests from the Socket Tray (Figure 79).
Please find Figure 81 for a block diagram of the Request Path.

The Job Queue stores the requests from the Master Modules. Each Job Queue Element
has the following structure (Table 12):

Table 12: Format of a Job Queue Element
The MasterID field was introduced by the Socket Tray, where the rest of the information
directly comes from the Master Modules. By introducing a FIFO for these requests con-
currency between the Master Modules is possible.

The Write Data Buffer stores (in the case of a write request) the data corresponding to

Field Bitwidth Description

Master ID 5 The number of the Master Module that initiates the transaction

Master Tag 3 A tag associated with request

Size 6 The amount of bytes involved in the transaction

IsRead 1 The type of the transfer, i.e. read or write

Address 64 The start address of the transfer

Issue Unit

Arbiter

Job Queue

Write Data Buffer

Request Path

To Response Path

Host
Interface

Socket
Tray

Figure 81: The Request Path [32]

Inaugural Dissertation Patrick R. Haspel

Architecture and Function Scope of Building Blocks Page 131

the request represented by the Job Queue Entry. This FIFO is needed because of the con-
straint from several bus protocols i.e. PCI-X to deliver burst data continuously with min-
imum delay/latency.

The Arbiter issues grants for requesting Master Sockets if there is a free entry in the Job
Queue and space for at least one maximum transfer unit in the Write Data Buffer. Cur-
rently, the maximum transfer unit equals the size of a link packet (64bytes) but this is
free to define as soon as the bus connected to the Host Interface is fixed. Furthermore,
the Arbiter notifies which Master Socket has been granted to add the MasterID to the re-
quest and to control the multiplexers (Figure 82 and Figure 81).

The Issue Unit compiles the necessary interfacing signals from a Job Queue Entry (Fig-

Arbiter

clk

Grant
Request } Master Socket 1

MasterID

Go

Go

Write Data Buffer

Grant
Request } Master Socket N

Job Queue

{

{

Job Queue Multiplexer /
Write Data Buffer

Multiplexer
{

Figure 82: The Arbiter [32]

5

Inaugural Dissertation Patrick R. Haspel

Architecture and Function Scope of Building Blocks Page 132

ure 83):

It combines the Master Tag, the Size and the Master ID fields of the Job Queue Element
with the Sequence ID coming from the Host Interface and forwards it to the Split-Phase
Transaction Unit (described later in the Response Path section).

The complete interface signalling to the Host Interface then looks like this:

Again, for timing diagrams please refer [32].

Issue Unit

clk

ShiftOut
MasterID

MasterTag
Size

Address
IsRead

Job Queue
Element

} Job Queue

Host Interface {
SequenceID

SequenceIDValid

Split-Phase
Transaction Unit

JobValid
Read
Size

Address
SequenceID
Ack

Figure 83: The Issue Unit

5

5
64
6

5
3
6
64

MasterID
MasterTag

Size

5
3
6{

Host Interface Master InterfaceUnit
JobValid

Read
Size

Address

SequenceID

WData

5

64

64

RDataValid
RDataSequenceID
RData

5

64

clk clk

Ack

WDataNext

5

Request Path

Response Path

WDataBE8

Figure 84: Signalling to the Host Interface [32]

Inaugural Dissertation Patrick R. Haspel

Architecture and Function Scope of Building Blocks Page 133

The Response Path

The Response Path mainly consists of the Split-Phase Transaction Unit and a multiplex-
er structure to connect the Master Sockets (Figure 85):

The Split-Phase Transaction Unit contains all necessary information (Table 13) to assign
an incoming split response to the correct Master Socket. This Unit is able to manage in-
terrupted split responses as long as the byte/word order within each spit responses is
kept, which is the case for all common peripheral bus protocols. The Size field, initiated
by the transfer word count is decreased for each word transmitted.

Table 13: A Split-Phase Transaction entry [32]
Only if the Size equals zero the Valid bit is deasserted, which marks the entry as invalid.
A new entry is generated if the Issue Unit (from the Response Path) signals a new re-
quest. The amount of entries depends on the amount of by the peripheral bus supported
pending split-phase transactions. There is no need for a content addressable memory
(CAM) as the array may be ordered by the SequenceID assigned by the peripheral bus.
With an incoming split response the Split-Phase Transaction Unit just needs to read the
MasterID and MasterTag and decrease the Size until it reaches zero. It must be consid-
ered an error if a split response arrives with an invalid SequenceID. The MasterID con-

Field Bitwidth Description

Master ID 5 Number of master to which a read data value has to be delivered

Master Tag 3 This value tags each data value forwarded to a Master Module

Size 6 The amount of pending read data values

Sequence ID 5 Split-phase transaction tag. Allows the assignment of incoming
read data to a Master Module

Valid 1 Indicates whether entry contains valid data

Response Path

Host
Interface

Socket Tray

Split-Phase
Transaction

Unit

Master Socket 1

Master Socket 2

Master Socket N

Request Path

Figure 85: The Response Path [32]

Inaugural Dissertation Patrick R. Haspel

Architecture and Function Scope of Building Blocks Page 134

trols the multiplexer structure so that the incoming data can be forwarded together with
the MasterTag to the appropriate Master Socket in the Socket Tray.

Inaugural Dissertation Patrick R. Haspel

Conclusion and Outlook Page 135

6 Conclusion and Outlook

During the course of this work the greatest experience with the strongest impact on my
personality was to sense the effect or factor of education and staff leadership. The stu-
dents has been engaged, open-minded and thirsty for knowledge. And together with the
outstanding technical requisites this combination exponentiates the efficiency in order to
cope with the complexity of a system designs like ATOLL/EXTOLL. It was challenging
to explore the very different disciplines from software engineering to ASIC design, from
parallel computing paradigms to system area network architectures and from system ex-
ploration and implementation to EDA methodology and design flow development; many
thanks for this opportunity.

The main results are:

- a next-generation credit based flow controlled XBAR architecture with a deadlock free tori
based routing and a virtual tree based hard coded barrier.

- as transaction accurate ESL model in C++ integrated in a network simulator (cal-
led SWORDFISH)

- as block-level simulated synthesizable RTL code in Verilog including syn-
thesis scripts for Cadence’s RTL Compiler

- as timing clean gate-level netlist synthesized with a IBM 0.13u CMOS standard
cell library and IBM RAM hardmacros

- a pipelined 64-bit network processing unit with a special instruction set
- as instruction set architecture written in LISA
- as ESL model in System C integrated as virtual hardware prototype in a

real system with Linux kernel driver and parallel programming API
- as timing clean gate-level netlist synthesized with a UMC 0.13u CMOS standard

cell library
- a SOC interconnect architecture

- as ESL model in System C integrated as virtual hardware prototype in a
real system with Linux kernel driver and parallel programming API

The results of this work are part of the system design EXTOLL which will be completed
by the results of the work of Holger Fröning, David Slogsnat and Mondrian Nüssle. EX-
TOLL then is a system area network architecture implemented in a submicron ASIC
technology on a hyper transport based HTX-board with software support including
Linux kernel driver, network daemon, low-level message passing API and MPI2.0 sup-
port. As first steps hardware would be implemented using FPGA prototype HTX boards

Inaugural Dissertation Patrick R. Haspel

Conclusion and Outlook Page 136

connected via Hyper Transport to the host system.

A second way of implementing the EXTOLL system area network architecture is just
evolving due to the great opportunity of beeing on the radar of AMD R&D research. The
Computer Architecture Group just got access to the cache coherent Hyper Transport pro-
tocol specification and the corresponding soft IP including test benches. This enables the
Computer Architecture Group to design for a AMD processor core. EXTOLL would
then be the communication unit of AMD’s high-performance server CPUs implementing
a revolutionary communication architecture.

The contract in order to continue the SEED project (chapter 4.1.3 "Realization - SEED
Project" on page 58) for another 3 years has been signed end of 2004. My former diplo-
ma student David Slogsnat, who is since 2003 research associate, has taken over my du-
ties in this project. The upcoming Cadence Technology Day will take place at the
University of Mannheim bringing together more than six universities. This is unique in
Europe and shows Cadence’s confidence in the SEED "idea".

Inaugural Dissertation Patrick R. Haspel

References Page 137

7 References

[1] Daniel D. Gajski, et.al., "Specification and Design of Embedded Sys-
tems", PTR Prectice Hall, Englewood Cliffs, New Jersey, USA, 1994

[2] Sellwood, J.A., "The art of N-body building", Annual Review of As-
tronomy and Astrophysics, 25, p.151-186,1987

[3] Fabrizio Petrini, Wu-chun Feng, Adolfy Hoisie, Salvador Coll, Eitan
Frachtenberg, "The Quadrics Network (QsNet): High-Performance
Clustering Technology", The Ninth Symposium on High Performance
Interconnects (HOTI '01), p. 125ff, 2001

[4] Lars Rzymianowicz, Patrick Schulz, Ulrich Brüning, "Designing the
ATOLL ASIC with the EUROPRACTICE EDA tools packages", DATE
Year 2001 Design Contest Category: Conceptual Designs, 3rd rank,
DATE 2002: Design, Automation and Test in Europe

[5] Patrick R. Schulz, Ulrich Brüning, Gunter Strube. SEED2002: Support
of Educational course for Electronic Design. IEEE International Con-
ference on Microelectronic Systems Education (MSE), June 1-2, 2003,
Anaheim CA, USA

[6] W.-E. Matzke, G. Strube, H. Schmidt-Habich, L. Drenan. VCAD - A
Virtual Enterprise Collaboration Model Impacting the Semiconductor
Industry. IASTED International Conference on Knowledge Sharing and
Collaborative Engineering KSCE 2004

[7] Integrated project proposal for IST Call 4 (FP6-2004-IST-4), "Stimulat-
ing of SOC-implementation through academia (STIM-SoC)", March
2005

[8] Patrick R. Haspel, "Didaktische Reflexion einer experimentellen Le-
hrveranstaltung in Modul III „Vorlesung und Übung - SemiCustom
DesignFlow (SCDF)“", submitted to and accepted by the Hochschul-
didaktikzentrum der Universitäten des Landes Baden-Württemberg,
April 2005

Inaugural Dissertation Patrick R. Haspel

References Page 138

[9] Bernhard Christmann, "Berufliche Handlungskompetenz von Inge-
nieurinnen und Ingenieuren - Eine Herausforderung für die Studienre-
form.", H. Orth, M. Fickenscher (Hg.): Schlüsselqualifikationen
praktisch, Neuwied 2001

[10] "Accelerated Hardware/software Co-verification", Cadence Design
Systems, White Paper, 2005

[11] Jörg Kluge, Ulrich Brüning, Markus Fischer, Lars Rzymianowicz,
Patrick Schulz and Mathias Waack, "The ATOLL approach for a fast
and reliable System Area Network", Third Intl. Workshop on Advanced
Parallel Processing Technologies (APPT'99) conference, October 19-21
1999, in Changsha, P.R. China

[12] Lars Rzymianowicz, Ulrich Brüning, Jörg Kluge, Patrick Schulz and
Mathias Waack, "ATOLL: A Network on a Chip", Cluster Computing
Technical Session (CC-TEA) of the PDPTA'99 conference, June 28 -
July 1 1999, in Las Vegas, NV

[13] Matthias Scheerer, "Definition and Implementation of a Hardware Ab-
straction Layer (HAL) for an ASIC-Prototyping Station using a
64Bit/66MHz PCI interfaced FPGA", Diploma Thesis, Computer Ar-
chitecture Group, University of Mannheim, 2002

[14] Thomas Schlichter, "Exploration of Hard- and Software Requirements
for one-sided, zero copy user level Communication and its Implemen-
tation", Diploma Thesis, Computer Architecture Group, University of
Mannheim, 2003

[15] Thomas Schlichter, "Development of a Boundary Scan Pattern Genera-
tion Language", Project work, Computer Architecture Group, Universi-
ty of Mannheim, 2003

[16] Matthias Harter, "Quality Analysis of Back-end Tools in a Cell-based
Design Flow of a High-performance Multi-million Gate ASIC", Diplo-
ma Thesis, Computer Architecture Group, University of Mannheim,
2002

Inaugural Dissertation Patrick R. Haspel

References Page 139

[17] Frank Ueltzhöffer, "Design, Verification and Physical Implementation
of a High-Performance Low-Latency Multi-Level Network Router",
Diploma Thesis, Computer Architecture Group, University of Man-
nheim, 2005

[18] Richard Sohnius, "Creating an Executable Specification using SystemC
of a High-Performace Low-Latency Muli-Level Network Router", Di-
ploma Thesis, Computer Architecture Group, 2005

[19] Simon Young, "Post-Layout Analysis Is Critical For High-Speed Na-
nometer Designs", EDAVision Magazine, March 2002

[20] Ulrich Brüning, Holger Fröning, Patrick R. Schulz, Lars Rzymianow-
icz, "ATOLL: Performance and Cost Optimization of a SAN Intercon-
nect", IASTED Conference: Parallel and Distributed Computing and
Systems (PDCS), Nov. 4 - 6, 2002, Cambridge, USA

[21] Holger Fröning, Mondrian Nüssle, David Slogsnat, Patrick R. Haspel,
Ulrich Brüning, "Performance Evaluation of the ATOLL Interconnect",
IASTED Conference: Parallel and Distributed Computing and Net-
works (PDCN), Feb. 15 - 17, 2005, Innsbruck, Austria

[22] David Slogsnat, Patrick R. Haspel, Holger Froening and Ulrich Bruen-
ing, "The ATOLL System Area Network (SAN)", IEEE Task Force
Cluster Computing Newsletter, September 2003

[23] Markus Fischer, Ulrich Brüning, Jörg Kluge, Lars Rzymianowicz,
Patrick Schulz and Mathias Waack, "ATOLL, a new switched, high
speed Interconnect in Comparison to Myrinet and SCI", IPDPS 2000,
PC NOW Workshop, May 1-5 2000, Cancun Mexico

[24] Dennis Sylvester, Kurt Keutzer, "Rethinking Deep-Submicron Circuit
Design", IEEE Computer, Vol. 32 No. 11; November 1999, pp. 25-33

[25] Lavi Lev, Ping Chao, "Down To The Wire - Requirements For Nanom-
eter Design Implementation", White Paper, Cadence Design Systems,
2002

Inaugural Dissertation Patrick R. Haspel

References Page 140

[26] Brad Marshall, Jürgen Köhl, Tilman Wagner, "A New ASIC Timing Si-
gnoff Methodology", IBM MicroNews, Second Quarter 2002

[27] Jon Beecroft, David Addison, David Hewson, Moray McLaren, Fabriz-
io Petrini, Duncan Roweth, "Quadrics QsNetII: Pushing the Limit of the
Design of High-Performance Networks for Supercomputers", IEEE Mi-
cro, to appear 2005

[28] Jon Beecroft, David Addison, Fabrizio Petrini, Moray McLaren,
"Quadrics QsNetII: An Interconnect for Supercomputing Applications",
Quadrics White Paper, 2003

[29] David Addison, Jon Beecroft, David Hewson, Moray McLaren, Fabriz-
io Petrini, "Quadrics QsNetII: A network for Supercomputing Applica-
tions", Presentation at IEEE HotChips’03, Stanford USA, August 2003

[30] Fabrizio Petrini, Wu-chun Feng, Adolfy Hoisie, Salvador Coll, Eitan
Frachtenberg, "The Quadrics Network: High-Perfomance Clustering
Technology", IEEE Micro, Volume 22, Issue 1, Jan.-Feb. 2002

[31] Ulrich Brüning, Wolfgang K. Giloi, "Future Building Blocks for Paral-
lel Architectures", Keynote talk at of the 2004 International Conference
on Parallel Processing (ICPP.04), Montreal, CA, 2004

[32] Timo Sponer, "Development, Verification and Integration of a Process-
ing Unit in the Communication Function of a SAN Device in SystemC",
Diploma Thesis, Computer Architecture Group, University of Man-
nheim, 2005

[33] Ho Won Kim, Hyun Suk Lee, Sunguu Lee, Jong Kim, "Adaptive Virtu-
al Cut-Through as a Viable Routing Method", Journal of Parallel and
Distributed Computing, Vol. 52, Academic Press, 1998

[34] SHRIMP project, http://www.cs.princeton.edu/shrimp/html/communi-
cation.html, Princeton University

Inaugural Dissertation Patrick R. Haspel

References Page 141

[35] J. Duato, S. Yalmanchili, "Interconnection Networks - An Engineering
Approach", IEEE Computer Society Press, Los Alamos, California,
1997

[36] S. Peng, "Design of Interconnection Networks for MPP of Next Gener-
ation", Faculty of Computer and Information Sciences, Hosei Universi-
ty, Tokyo, Japan

[37] Mondrian Nüssle, "Design and Implementation of a distributed man-
agement system for the ATOLL high-performance network", Diploma
Thesis, Computer Architecture Group, University of Mannheim, 2005

[38] Ulrich Brüning, "Network Interfaces and their Features", Talk at the In-
ternational Supercomputer Conference (ISC2005), Heidelberg, Germa-
ny, 2005

[39] Tilo Wettig, "QCDOC: a massively parallel supercomputer", Talk at the
GSI (Gesellschaft für Schwerionenforschung), May 19, 2004, Darms-
tadt, Germany

[40] Holger Bellm, "Entwurf und Implementierung eines parametrisierbaren
Arbitergenerators in Verilog", Project Work, Computer Architecture
Group, University of Mannheim, 2002

[41] Alexandra Bernardt, "Design, Implementation and Synthesis of a Pa-
rameterizable Soft IP Cell for a high performance crossbar", Diploma
Thesis, Computer Architecture Group, University of Mannheim, 2003

[42] Holger Fröning, "Methods and Mechanisms for efficient Multithread-
ing Device Structures", Inaugural Dissertation, Computer Architecture
Group, University of Mannheim, 2006 (to be submitted)

[43] Mondrian Nüssle, Inaugural Dissertation, Computer Architecture
Group, University of Mannheim, 2006 (to be submitted, currently inter-
nal technical report)

Inaugural Dissertation Patrick R. Haspel

References Page 142

[44] David Slogsnat, Inaugural Dissertation, Computer Architecture Group,
University of Mannheim, 2006 (to be submitted, currently internal tech-
nical report)

[45] Ingo Feldner, "High Level Executable Specification Development of a
high performance SAN chip", Diploma Thesis, Computer Architecture
Group, University of Mannheim, 2005

[46] OCP International Partnership, "Open Core Protocol Specification",
Release 2.0, 2003

[47] Holger Bellm, "Architectural Design and Prototype Implementation of
an Embedded Network Processor Core using Language for Instruction
Set Architectures (LISA)", Diploma Thesis, Computer Architecture
Group, University of Mannheim, 2003

[48] Chelsio web page, http://www.chelsio.com/about/index.php, Chelsio
Communications, 2005

[49] Sven Stork, "Anpassungen für Virtual Hardware Prototyping des
LINUX-Kerneltreibers des EXTOLL NICs", Project work, Computer
Architecture Group, University of Mannheim, 2003

[50] J. Duato, "A necessary and sufficient condition for deadlock-free rout-
ing in cutthrough and store-and-forward networks", IEEE Transactions
on Parallel and Distributed Systems, vol.7, no.8, pp.841-854, August
1996

[51] William J. Dally, Charles L. Seitz, "Deadlock Free Message Routing in
Multiprozessor Interconnection Networks", IEEE Transactions on
Computers, vol. C-36, no.5, pp.547-553, 1987

[52] R. Cypher, L. Gravano, "Requirements for deadlock-free, adaptive
packet routing", 11th Symposium on Principles of Distributed Comput-
ing, pp. 25-34, August 1992

Inaugural Dissertation Patrick R. Haspel

References Page 143

[53] William J. Dally, "Virtual Channel Flow Control", IEEE Transactions
on Parallel and Distributed Systems, vol.3, no.2, pp.194-205, March
1992

[54] Andrew S. Tanenbaum, “Computernetzwerke”, 3rd revised edition,
Prentice Hall, München, Germany, 1998

[55] Ulrich Brüning, "Computer Architecture II", lecture notes, Computer
Architecture Group, University of Mannheim, 2004

Inaugural Dissertation Patrick R. Haspel

Acknowledgements Page 144

8 Acknowledgements

The years at Prof. Brüning’s group have been an extremely exciting part of my life.

I would like to thank all contributors starting with Prof. Brüning. We have been worked
together for more than 9 years. During this time he mentored me not only in science but
also in social skills and something like just being human. I thank my collegues Holger
Fröning, David Slogsnat and Mondrian Nüssle. They are a great team and I really appre-
ciate the time in that we have worked together. Boris Strohmeier was not only a col-
league but is also a good friend. We met first at the very first day at university in the first
semester both being late to our first course. Thanks, Boris.

Beyond university my best friend for a very long time Thomas Kinfe decided to share a
flat with me. We had just a tremendous time. Thank you, Thomas!

But the best year at university was the last one. I met my wife, Stefanie Haspel. She
changed my life. Her support gave me the necessary power to complete my work. We
are now facing the exciting challenge of parenting our daughter Nemira.

I’m looking forward to experience our future. Thank you!

	1 Introduction
	1.1 Objectives
	1.2 Topics of this work
	1.2.1 Creating the work/design environment
	1.2.2 Architecture definition
	1.2.3 Hardware/Software design methodology

	1.3 Thesis organization

	2 Cluster Computing and Implementations
	2.1 Communication demands of distributed and parallel computing
	2.2 State of the art hardware support
	2.2.1 QsNetII by Quadrics
	2.2.2 Myrinet by Myricom
	2.2.3 Pathscale
	2.2.4 PCI-ASI (Advanced Switching Interconnect)
	2.2.5 IBM Blue Gene BG/L
	2.2.6 Mellanox Infiniband
	2.2.7 Cray XT3
	2.2.8 10GigEthernet by Chelsio

	3 SANs in general
	3.1 Functions, Features and important quality metrics of a SAN
	3.1.1 Latency
	3.1.2 Bandwidth
	3.1.3 Network Topology
	3.1.4 Supported Parallel Programming Model
	3.1.5 Cost
	3.1.6 Communication to / Location of the Network Interface Controller

	4 Methods - Approach
	4.1 Providing the basis for efficiency in hardware design
	4.1.1 Education
	4.1.2 EDA tooling
	4.1.3 Realization - SEED Project
	4.1.4 The System Realisation Bi-Cone

	4.2 Hardware/Software Codesign and Cosimulation
	4.2.1 Concurrent development of hardware and related low level software
	4.2.2 Seamless hardware/software interfacing
	4.2.3 Integrity and completeness of software required functionality

	4.3 FPGA based ASIC prototyping
	4.4 Physical design impact of UDSM designs
	4.4.1 Creating a leading-edge design flow
	4.4.2 UDSM characteristics

	5 Architecture and Function Scope of Building Blocks
	5.1 Top-Level Architecture Decisions
	5.2 NPU (Network Processing Unit)
	5.2.1 NPU Features and Overview
	5.2.2 Reasons for a dedicated compute resource in a SAN
	5.2.3 Instruction Set enhancements
	5.2.4 Implementation details

	5.3 Network Switch
	5.3.1 Design Space Exploration - Approach and Methods
	5.3.2 Functional Enhancements

	5.4 Hostinterface and EXTOLL block level communication
	5.4.1 Intermodule Communication Architecture
	5.4.2 The Slave interface Unit
	5.4.3 The Master Interface Unit

	6 Conclusion and Outlook
	7 References
	8 Acknowledgements

