
Variational Domain Decomposition

for

Parallel Image Processing

Inauguraldissertation

zur Erlangung des akademischen Grades

eines Doktors der Naturwissenschaften

der Universität Mannheim

vorgelegt von

Dipl.-Inf. Timo Kohlberger

aus Heidelberg

Mannheim, 2007

Dekan: Professor Dr. Matthias Krause, Universität Mannheim
Referent: Professor Dr. Christoph Schnörr, Universität Mannheim
Korreferent: Professor Dr. Joachim Weickert, Universität des Saarlandes

Tag der mündlichen Prüfung: 11. Juni 2007

ii

Abstract

Many important techniques in image processing rely on partial differential equation
(PDE) problems, which exhibit spatial couplings between the unknowns throughout
the whole image plane. Therefore, a straightforward spatial splitting into indepen-
dent subproblems and subsequent parallel solving aimed at diminishing the total
computation time does not lead to the solution of the original problem. Typi-
cally, significant errors at the local boundaries between the subproblems occur. For
that reason, most of the PDE-based image processing algorithms are not directly
amenable to coarse-grained parallel computing, but only to fine-grained parallelism,
e.g. on the level of the particular arithmetic operations involved with the specific
solving procedure. In contrast, Domain Decomposition (DD) methods provide sev-
eral different approaches to decompose PDE problems spatially so that the merged
local solutions converge to the original, global one. Thus, such methods distinguish
between the two main classes of overlapping and non-overlapping methods, refer-
ring to the overlap between the adjacent subdomains on which the local problems
are defined. Furthermore, the classical DD methods — studied intensively in the
past thirty years — are primarily applied to linear PDE problems, whereas some
of the current important image processing approaches involve solving of nonlinear
problems, e.g. Total Variation (TV)-based approaches.

Among the linear DD methods, non-overlapping methods are favored, since
in general they require significanty fewer data exchanges between the particular
processing nodes during the parallel computation and therefore reach a higher scal-
ability. For that reason, the theoretical and empirical focus of this work lies primarily
on non-overlapping methods, whereas for the overlapping methods we mainly stay
with presenting the most important algorithms.

With the linear non-overlapping DD methods, we first concentrate on the the-
oretical foundation, which serves as basis for gradually deriving the different algo-
rithms thereafter. Although we make a connection between the very early methods
on two subdomains and the current two-level methods on arbitrary numbers of sub-
domains, the experimental studies focus on two prototypical methods being applied
to the model problem of estimating the optic flow, at which point different numerical
aspects, such as the influence of the number of subdomains on the convergence rate,
are explored. In particular, we present results of experiments conducted on a PC-
cluster (a distributed memory parallel computer based on low-cost PC hardware for
up to 144 processing nodes) which show a very good scalability of non-overlapping
DD methods.

With respect to nonlinear non-overlapping DD methods, we pursue two distinct

approaches, both applied to nonlinear, PDE-based image denoising. The first ap-
proach draws upon the theory of optimal control, and has been successfully employed
for the domain decomposition of Navier-Stokes equations. The second nonlinear DD
approach, on the other hand, relies on convex programming and relies on the de-
composition of the corresponding minimization problems.

Besides the main subject of parallelization by DD methods, we also investigate
the linear model problem of motion estimation itself, namely by proposing and
empirically studying a new variational approach for the estimation of turbulent
flows in the area of fluid mechanics.

Zusammenfassung

Viele Bildverarbeitungsverfahren basieren auf linearen und nicht-linearen partiellen
Differenzialgleichungen (PDG), welche räumliche Abhängigkeiten zwischen den Un-
bekannten über den gesamten Bereich der Bildebene aufweisen. Eine direkte räum-
liche Zerlegung in seperate Teilprobleme und daran anschließende parallele Berech-
nung führt nicht zur Lösung des ursprünglichen Problems. Typischerweise treten
starke Fehler an den lokalen Grenzen zwischen den Teilgebieten auf. Folglich ermög-
ichen die meisten PDG-basierten Bildverarbeitungsalgorithmen keine direkten grob-
körnigen Parallelisierungen, sondern nur solche für fein-körnige, z.B. auf der Ebene
der einzelnen Rechenoperationen des jeweiligen Lösungsverfahrens. Im Gegensatz
dazu stellen Gebietszerlegungsmethoden (GZ) verschiedene Ansätze zur räumlichen
Zerlegung von PDG-Problemen zur Verfügung, so daß die vereinigte Lösung der
lokalen Teilprobleme zur ursprünglichen Lösung konvergiert. Hierbei wird zwis-
chen den beiden Klassen der überlappenden und nicht-überlappenden Methoden –
in Bezug auf die Überdeckung von benachbarten Teilgebieten – unterschieden. Zu-
dem werden klassische Gebietszerlegungsmethoden – selbst Gegenstand intensiver
Forschung in den vergangenen dreißig Jahren – primär auf lineare PDG-Probleme
angewandt, wohingegen viele der heutigen Bildverarbeitungsverfahren, wie z.B. solche
basierend auf der total Ableitung (TA), nicht-lineare Probleme mit sich bringen.

Unter den linearen GZ-Methoden sind die Nicht-Überlappenden generell von
Vorteil, da sie im allgemeinen einen wesentlich geringen Datenaustausch zwischen
den einzelnen Rechenknoten während der parallelen Berechnung erfordern und hier-
durch eine höhere Skalierbarkeit erreichen. Daher liegt der theoretische und em-
pirische Schwerpunkt dieser Arbeit hauptsächlich auf nicht-überlappenden Meth-
oden, wohingegen wir in bezug auf die überlappenden Methoden im Großen und
Ganzen bei der Erklärung der verschiedenen Berechnungsverfahren verbleiben.

Bei den linearen nicht-überlappenden GZ-Methoden konzentrieren wir uns zu
Beginn auf die theoretischen Grundlagen, welche hernach als Basis für die Her-
leitung der verschiedenen Algorithmen dient. Obwohl wir einen großen Bogen von
den relativen simplen Methoden auf zwei Teilgebieten bis zu den heutigen Zwei-
Gitter-Methoden auf einer beliebigen Anzahl von Teilgebieten spannen, beschränken
sich die experimentellen Studien auf zwei prototypische Verfahren, anhand deren,
in Anwendung auf das lineare Modellproblem der Bewegungschätzung, verschiedene
numerische Aspekte, wie z.B. der Einfluß der Anzahl der Teilgebiete auf die Konver-
genzgeschwindigkeit, untersucht werden. Im besonderen präsentieren wir exper-
imentelle Ergebnisse, die auf einem PC-Cluster (einem auf kostengünstiger PC-
Hardware basierenden Parallelcomputer mit verteiltem Speicher) mit bis zu 144

Prozeßknoten durchgeführt erzielt, die ihrerseits die sehr guten Skalierungseigen-
schaften von nicht-überlappenden GZ-Methoden aufzeigen.

Im Hinblick auf nicht-lineare nicht-überlappende GZ-Methoden verfolgen wir
zwei unterschiedliche Ansätze, beide jedoch in Anwendung auf nicht-lineare, PDG-
basierte Bildentrauschung. Die erste Methode basiert auf einem kontrolltheoretischen
Ansatz, welcher bereits erfolgreich zur Parallelisierung von Navier-Stokes-Gleichungen
eingesetzt wurde. Der zweite nicht-lineare Gebietszerlegungsansatz hingegen fußt
auf konvexer Programmierung und basiert auf einer Zerlegung der korrespondieren-
den Minimierungsprobleme.

Neben des Hauptthemas der Parallelisierung durch GZ-Methoden untersuchen
wir auch das lineare Modellproblem der Bewegungsschätzung selbst. Hierbei stellen
wir einen neuen variationellen Ansatz zur Schätzung von turbulenten Flußfeldern
auf dem Gebiet der Flußmechanik vor und untersuchen ihn experimentell.

vi

Acknowledgments

First and foremost, I would like to express my gratitude to Prof. Christoph Schnörr
for supervising my doctorate, introducing me into the research areas of computer vi-
sion and pattern recognition, and for guiding me along the way of scientific thinking
and argumentation. Secondly, I am grateful to Prof. Joachim Weickert for serving
as an external referee.

Moreover, I would like to thank several people which contributed to this work in
a direct or indirect manner. In particular, there is Prof. Daniel Cremers with whom
I enjoyed and enjoy many fruitful scientific debates, be it on the conceptual design
or the correct mathematical modeling of new and existing approaches. Also, I am
most grateful to the countless in-depth discussions with Matthias Heiler on almost
all major topics in the field, as well as those in the area of flow estimation and convex
optimization with Yuan Jing and Paul Ruhnau, all of which being members of the
CVGPR research group at that time. Speaking of the latter, in addition, the broad
variety of scientific topics being worked on, the level of expertise and enthusiasm
with respect to each of those, and the willingness to discuss them at any time, gave
me great support. Moreover, there is Andres Bruhn of the MIA group at the Saar-
land University, with whom I enjoyed the close cooperation and additional insights
into the latest optic flow approaches as well as their implementation.

Also, I would like to thank the group of Prof. Patrick Bouthemy at the INRIA
in Rennes, France, for their hospitality in hosting me for three weeks in 2002. In
particular, I am grateful to Etienne Mémin both for the organization of the stay,
as well as the scientific discussions on high-order motion estimation approaches. In
terms of the latter, also I would like to thank Frederic Cao and Elise Arnaud for
their comments.

I greatly acknowledge the financial support of the taxpayers of Federal Republic
of Germany, in particular those of the State of Baden-Württemberg, which was given
to me through the Deutsche Forschungsgemeinschaft (DFG) (grant Schn457/4).

Furthermore, I am most grateful to my parents and my brother for giving me
great support as well as the opportunity to pursuing my doctorate.

Last but not least, I want to thank Roy Hovey for proofreading and commenting
on the textual parts of this work.

viii

Contents

1 Introduction 1

1.1 Motivation and Overview . 1

1.1.1 Parallel Computing . 1

1.1.2 Domain Decomposition . 2

1.1.2.1 Overlapping Methods 3

1.1.3 Non-overlapping Methods . 5

1.1.4 Domain Decomposition for Nonlinear Problems 6

1.1.4.1 A Control Approach 7

1.1.4.2 A Convex Programming Approach 7

1.1.5 Motion Estimation with High-order Regularization 8

1.2 Contribution and Organization . 9

1.3 Related Work . 11

1.3.1 Domain Decomposition . 11

1.3.2 Nonlinear Domain Decomposition 12

1.3.3 Motion Estimation with High-order Regularization 12

1.4 Mathematical Preliminaries and Notation 12

1.4.1 Sets and Function Spaces and other Notations 13

1.4.2 Finite Element Discretization 14

2 Variational Motion Estimation Methods 15

2.1 Problem Statement . 15

2.2 The Approach by Lucas and Kanade 16

2.3 The Approach by Horn and Schunck 17

2.4 The Combined Local-Global Approach 18

2.4.1 The Approach . 18

2.4.2 Discretization by Finite Elements 19

2.4.3 The Solving . 20

ix

CONTENTS x

3 Non-overlapping Domain Decomposition Methods 21

3.1 The Mathematical Basis of Substructuring 25

3.1.1 The Steklov-Poincaré Operator 25
3.1.1.1 The Model Problem in Two-Domain Formulation . 25

3.1.1.2 The Action of S . 26
3.1.1.3 The Action of S−1 27

3.1.2 The Schur Complement System 28
3.1.2.1 Two Case of Two Subdomains 28

3.1.2.2 The Multiple Subdomain Case 29
3.2 Iterative Substructuring Methods . 30

3.2.1 One-level Methods on Two Subdomains 31
3.2.1.1 The Dirichlet-Neumann Method 32

3.2.1.2 The Neumann-Neumann Method 34
3.2.1.3 Other Methods . 35

3.2.2 One-level Methods on Multiple Subdomains 35
3.2.2.1 The Dirichlet-Neumann Preconditioner 36
3.2.2.2 The Neumann-Neumann Preconditioner 37

3.2.2.3 The Block-Jacobi Preconditioner 38
3.2.3 Two-Level Preconditioners 40

3.2.3.1 The Bramble-Pasciak-Schatz Preconditioner 41
3.2.3.2 The Vertex Space Preconditioner 41

3.2.3.3 The Balancing Neumann-Neumann Method 42
3.2.4 Finite Element Tearing and Interconnection Methods 46

3.2.4.1 The One-Level FETI Method 46
3.2.4.2 The Dual-primal FETI Method 52

3.3 Experimental Studies . 57
3.3.1 Parameter Selection and Input Data 58

3.3.2 Algorithms and Implementation Details 59
3.3.3 The Impact of Interface Preconditioning 62

3.3.4 Convergence in Dependence on the Number of Subdomains . 62
3.3.5 Convergence in Dependence of the Local Solver’s Precision . 63

3.3.6 Scalability Study on a Parallel Computer 64
3.4 Conclusion . 66

4 Overlapping Domain Decomposition Methods 73

4.1 One-level Methods . 74

4.1.1 The Case of Two Subdomains 74
4.1.1.1 The Alternating Schwarz Method 74

4.1.1.2 The Multiplicative Schwarz Method 76
4.1.1.3 The Additive Schwarz Method 78

xi CONTENTS

4.1.2 The Case of Multiple Subdomains 78

4.1.2.1 The Multiplicative Schwarz Method 79

4.1.2.2 The Additive Schwarz Method 80

4.1.2.3 Schwarz Methods as Parallel Preconditioners 80

4.1.2.4 Links to Gauss-Seidel and Jacobi Iteration 81

4.1.2.5 Scalability Characteristics 82

4.2 Multi-level Algorithms . 83

4.2.1 Two-Level Methods . 83

4.2.2 Multiplicative Multi-level Methods 85

4.2.3 Additive Multi-level Methods 87

4.2.4 Multi-level Methods as Parallel Preconditioners 87

4.2.5 Links to Multigrid Methods 88

4.2.6 Scalability and Comparison to Iterative Substructuring . . . 90

4.3 Summary . 91

5 Motion Estimation with High-order Regularization 93

5.1 The Helmholtz Decomposition . 94

5.2 Direct Estimation of the Potential Functions 95

5.3 A Structure-preserving Regularization 96

5.3.1 The Approach . 96

5.3.2 Discretization and Solving . 98

5.3.3 Embedding into a Multi-resolution Framework 98

5.4 Experimental Studies . 99

5.4.1 Parameter Studies . 100

5.4.2 Comparison with Existing Approaches 101

5.4.3 Reconstructing the Vortexes of a Landing Air Plane 102

5.5 Conclusion . 103

6 TV-based Variational Image Restoration 109

6.1 Regularization Based on the TV-norm 110

6.1.1 Problem Statement . 110

6.1.2 Euler-Lagrange Equation . 112

6.2 Solving Methods . 112

6.2.1 Steepest Descent . 113

6.2.2 Fixed Point Iteration . 113

6.2.3 Newton’s Method . 114

6.2.4 Primal-dual Newton’s Method 115

6.2.4.1 Mitigating the Nonlinearity 115

6.2.4.2 The Algorithm . 116

6.2.5 Experimental Studies . 118

CONTENTS xii

6.2.5.1 Input Data, Parameter Values and Error Measures . 118

6.2.5.2 Results . 119

6.3 Conclusion . 120

7 A Control Approach to Nonlinear Domain Decomposition 127

7.1 The Case of Two Subdomains . 128

7.1.1 Problem Statement . 128

7.1.2 Lagrange Relaxation and the Optimality System 130

7.1.3 Gradient-based Solving . 132

7.1.3.1 Calculating the Gradient 133

7.1.3.2 Application to the Model Problem 135

7.1.3.3 The Solving Algorithm 136

7.1.3.4 Experimental Studies 136

7.2 The Case of Many Subdomains . 140

7.2.1 Problem Statement . 140

7.2.2 The Optimality System . 141

7.2.3 Calculation of the Gradient 142

7.2.4 The Solving Algorithm . 144

7.2.5 Experimental Studies . 145

7.2.6 Complexity Considerations 145

7.3 Conclusion . 146

8 A Convex Programming Approach to Nonlinear DD 151

8.1 Primal-dual Domain Decomposition 152

8.1.1 The Approach . 152

8.1.2 Solving . 153

8.1.3 Application to the Model Problem 153

8.1.4 Experimental Studies . 155

8.2 The Case of Many Subdomains . 158

8.2.1 Experimental Results . 159

8.2.2 Comparison to Control-based Decomposition 163

8.3 Conclusion . 163

9 Conclusion 165

9.1 Summary . 165

9.1.1 Linear Domain Decomposition 165

9.1.1.1 Non-overlapping Methods 165

9.1.1.2 Overlapping Methods 167

9.1.2 Nonlinear Domain Decomposition 167

9.1.2.1 Control Approach 167

xiii CONTENTS

9.1.2.2 Convex Programming Approach 168
9.1.2.3 Motion Estimation with High-order Regularization . 168

9.2 Future Work . 168

CONTENTS xiv

List of Figures

1.1 Examples for non-overlapping and overlapping decompositions of Ω . 4

3.1 An ad-hoc decomposition of a variational motion estimation problem 22

3.2 Exemplary partitions used with the different substructuring methods 38

3.3 Examples of torn meshes . 46

3.4 Input data for experiments with the marble data set 59

3.5 Input data for experiments with the particles data set 60

3.6 Optimized initialization initialization scheme for the coarse S0. . . . 61

3.7 Measured convergence rates and theoretical upper limits. 68

3.8 Per-pixel L2-errors . 69

3.9 Measured run and communication times on a PC-cluster 70

3.10 Measured relative and absolute speed-up factors 71

3.11 Measured communication volume for a varying number of subdomains 72

4.1 Examples for overlapping coverings 75

4.2 Example of an overlapping decomposition with coloring 81

4.3 Illustration of the different restriction operators 84

5.1 Input data for the parameter studies 101

5.2 Quantitative parameter studies. 102

5.3 Qualitative parameter study for γ . 103

5.4 Qualitative parameters study for λ 104

5.5 Input data for comparison experiment 1 and 2 104

5.6 Direct versus indirect approach results on data set 1. 106

5.7 Direct versus indirect approach results on data set 2. 107

5.8 Results of the real-world experiment 108

6.1 L2-norm versus TV-norm regularization in 1D denoising 111

6.2 L2-norm and TV-norm regularization in comparison 122

6.3 L2-norm and TV-norm regularization in comparison 123

xv

LIST OF FIGURES xvi

6.4 Convergence diagrams for the different solving methods 124
6.5 Depiction of the dual variable w for the synthetic data set 125

7.1 Illustration of the two model partitions used 128
7.2 Ground truth and noised input image 138
7.3 Total and per-pixel L2-error for a two-subdomain decomposition . . 139
7.4 Total and per-pixel L2-error for a 2× 2 decomposition 149

8.1 Ground truth and input image . 156
8.2 Result and per-pixel L2-error for a two-subdomain decomposition . . 156
8.3 Development of the L2-error for different step sizes 157
8.4 Result and per-pixel L2-error for a 2× 2 decomposition 161
8.5 Development of the L2-error for different step sizes 161
8.6 Development of the L2-error for different regularization strengths . . 162

List of Algorithms

1 The Dirichlet-Neumann method on two subdomains 33
2 The Neumann-Neumann method on two subdomains 35
3 PCG iteration with Balancing Neumann-Neumann preconditioning . . 45
4 PCG iteration applied to the FETI problem 50
5 Multiplicative Schwarz iteration in the continuous case 74
6 Alternating Schwarz iteration on non-matching grids 75
7 Multiplicative Schwarz iteration on matching grids 76
8 Additive Schwarz iteration . 78
9 Multiplicative multi-level Richardson iteration 86
10 The multiplicative multi-level method as preconditioner 88
11 V/W-cycle multigrid with Schwarz smoothing 89
12 Full multigrid with Schwarz smoothing 90
13 Gradient descent w.r.t. to the control g on two subdomains 137
14 Nonlinear DD by convex programming on a two-subdomain partition 154
15 Nonlinear DD by convex programming on a 2× 2 partition 160

xvii

LIST OF ALGORITHMS xviii

Chapter 1

Introduction

1.1 Motivation and Overview

In this chapter, we provide an introduction to the scientific subjects and questions
being dealt with in this work.

1.1.1 Parallel Computing

Parallelization denotes a set approaches for the distribution of either the computa-
tional requirements or the memory requirements associated with a computational
task from one to several computation nodes (one or more processors sharing the
same memory physically or virtually). In the first case, the goal is to decrease the
computation time, which is also denoted as run-time, whereas in the second case it is
to enable feasible computation for numerical problems whose memory requirements
are too high for one machine.

In order to reach either goal, the first step in terms of separating the solving
algorithm is to identify data independencies either along the work flow or within
data being processed at the same time. The first class of approaches is denoted by
functional parallelism, an example of which could be an image processing pipeline,
where the pre-processing, main processing, and post-processing of the video stream
is carried out on three different computers at the same time. The second class of
approaches, on the other hand, is referred to by data parallelism, which would, in the
previous example, amount to running several sequential image processing pipelines
on different subregions of the image domain.

Despite the existence of shared memory machines requiring almost no communi-
cation time for a small number of computation nodes, with every splitting approach
the total number of data communications as well as its volume needs to be minimized
in order to reach a sufficient scalability, i.e. the computation time will decrease when

1

Chapter 1. Introduction 2

increasing the computation nodes to even large numbers. In particular, the parame-
ters latency, i.e. the initial amount of time to transfer a message from one node to
another, and bandwidth, i.e. the amount of time to transfer a certain communica-
tion volume, need to be taken into account. Ideally, the total communication time
does not increase with the number of sub-procedures; however in reality it increases
up to a point where the gain by distributing the computation time to more nodes
is over-compensated by the increase in communication time. Especially with data
parallelism, various kinds of techniques for the optimal spatial splitting, denoted as
data partitioning, have emerged.

In terms of reaching low communication time, the so-called granularity of the al-
gorithm splitting plays an important role. Almost all numerical procedures provide
clues for parallel computing on an operationally local level — a matrix-vector mul-
tiplication for example where the per-component multiply-and-add operations can
be carried out group-wise on different machines concurrently and only the resultant
partial sums need to be added sequentially. This so-called fine-grained paralleliza-
tion approaches typically require a high communication volume, i.e. the distribution
and collection of the sub-vectors/-matrices by a central node in the aforementioned
example. By contrast, coarse-grained parallelization approaches aim at splitting the
computational problem into independent subproblems at a coarse scale, such that
the amount of parallel computation time is significantly larger than the time spend
for data exchange.

1.1.2 Domain Decomposition

Although classical image processing techniques, such as linear filtering techniques,
are directly amenable to data parallelism, many modern PDE-based methods exhibit
couplings between the variables throughout the image plane, which thereby prohibits
a direct coarse-grained decomposition. This holds especially true for the class of
variational problems, which play a significant role in areas like image segmentation,
motion estimation, image enhancement and restoration.

In order to clarify this aspect, let us consider an example from variational motion
estimation. The Euler-Lagrange equations of the well-known Horn and Schunck
approach read

(
∂2
xI u1 + ∂xI ∂yI u2 + ∂xI ∂tI

)
− α∆u1 = 0

(
∂xI ∂yI u1 + ∂2

yI u2 + ∂yI ∂tI
)
− α∆u2 = 0

(1.1)

with I : Ω × [0, T] → R denoting a sequence of images over the image plane sec-
tion Ω ∈ R

2 and the time period [0, T], α being a scalar parameter, and in con-
junction with the boundary conditions ∂nu1 = 0 and ∂nu2 = 0 on ∂Ω. Obviously,

3 1.1. Motivation and Overview

because of the presence of the Laplacian terms ∆u1 and ∆u2, after discretization,
all unknows in u1 and u2 are more or less tightly coupled, such that this problem
cannot be directly broken into independent subproblems. For example, partitioning
Ω into several subregions, and independent solving of (1.1) on each of those, would
yield strong discontinuities across partition boundaries (see also Fig. 3.1 in Chap-
ter (3)). Especially in the case of subregions with very little image information,
i.e. texture-less regions, strong artifacts occur when spatial couplings are neglected.
On the other hand, applying fine-grained parallelization to the (typically iterative)
solving method for problem (1.1), is insufficient to reach significant speed-ups for
the reasons mentioned above.

Fortunately, so-called domain decomposition (DD) methods provide approaches
to spatially decompose PDE problems, thereby making them amenable to coarse-
grained parallelization. DD needs to be distinguished from data parallelization in
parallel computing, which deals with optimizing the data partitioning and com-
munication patterns of algorithms which already provide clues for coarse-grained
parallelization. By contrast, DD methods apply on a higher level, providing means
to partition PDE problems on a mathematical level, which can then be optimized
for communication patterns by methods of parallel computing.

In general, DD methods are classified with respect to their underlying spatial
decomposition. With the first class, the overlapping methods, an overlapping cover-
ing of the image plane section Ω is assumed, see Figure 1.1(a) and (b), for example.
With non-overlapping methods on the other hand, is assumed a partition of Ω (in
the mathematical sense), (see Figure 1.1(c) and (d), for example). Since the two
classes rely on quite different approaches, throughout this work we focus on each
of them separately. In the following we provide short introductions for the discrete
case of each class. Thereby, we assume a generic linear system of equations A u = f
on Ω, which realizes a discretization of (1.1), for example, with u = (u1, u2)

⊤,
f = (f1, f2)

⊤ and the operator A structured accordingly.

1.1.2.1 Overlapping Methods

Overlapping methods are usually employed to parallelize the preconditioning step of
a Krylov subspace iteration, e.g. of GMRES or PCG type, on the original problem,
which involves the independent solving of restrictions of the original problem to each
of the subdomains.

For example, let us assume an overlapping covering of Ω by M subdomains
{Ωi, i = 1, . . . ,M}, and let Ri, i = 1, . . . ,M denote operators which restrict a
vector on Ω onto the subdomain Ωi, and where R⊤

i refers to its adjoint. Then, by
Ai := R⊤

i ARi, i = 1, . . . ,M it is given the restriction of the operator matrix A to
each of the subdomain. Then, an overlapping preconditioning step within a Krylov

Chapter 1. Introduction 4

(a) A two-subdomain partition (b) A grid-like 3 × 3 partition

(c) A two-subdomain overlap-
ping covering

(d) A grid-like 3× 3 overlapping
covering

Figure 1.1: Examples for non-overlapping and overlapping decompositions of Ω.

(a) and (b): Partitions of Ω into open subsets {Ωi} sharing boundaries Γ or {Γij ,ΓΠ},
respectively. (c) and (d): Overlapping coverings of Ω consisting of overlapping subdomains
{Ωi}.

subspace iteration is of the form

p(k) =
∑

i

R⊤
i A

−1
i Ri r

(k) , (1.2)

while k denotes the iteration count. Practically, i.e. in terms of parallel implementa-
tion, the Ri require a distribution (‘scattering’ in parallel programming terminology)
of the residual vector r(k) from the master process to N slaves processes. The N
slave pocesses carry out the action of A−1

i in parallel, and return their local re-
sults to the master process, where they are merged to a global p(k) (‘gathering’).
The remaining operations of the Krylov iteration, such as the operator application
step, are left unchanged by overlapping methods, and thus are usually carried out

5 1.1. Motivation and Overview

sequentially in a master process.
Although the preconditioner in (1.2) gives a maximum of data independence,

and therefore clues for coarse-grained parallel computing, it is a poor preconditioner
in terms the condition number and thus the overall convergence speed of the Krylov
iteration. This arises from the fact that (1.2) propagates information only from one
subdomain to the other, at each application. As a remedy, several variants of (1.2)
arising from different discretizations on coarser grids, in connection with different
partitions of Ω, are employed. Thereby, at each iteration, the coarser preconditioners
yield a propagation of (aggregated) update information over larger parts of Ω.

1.1.3 Non-overlapping Methods

By contrast, with non-overlapping methods or so-called substructuring methods, a
Krylov subspace iteration is applied to a reduced variant of the model problem
Au = f , which is defined on the inner partition boundaries, i.e. a one-dimensional
subset Γ of Ω.

In the case of partitioning Ω into two (non-overlapping) subdomains Ω1 and Ω2

for example, the first step is to consider the local restrictions A(i)u(i) = f (i), i = 1, 2
of the original problem to each subdomain. Then, each subproblem is further split
into unknowns on the common boundary Γ = Ω1 ∩ Ω2 and those on Ω \ Γ, which
reads (

A
(i)
II A

(i)
IΓ

A
(i)
ΓI A

(i)
ΓΓ

)(

u
(i)
I

u
(i)
Γ

)

=

(

f
(i)
I

f
(i)
Γ

)

, i = 1, 2 . (1.3)

Combining them into one global problem on Ω yields






A
(1)
II 0 A

(1)
IΓ

0 A
(2)
II A

(2)
IΓ

A
(1)
ΓI A

(2)
ΓI A

(1)
ΓΓ +A

(2)
ΓΓ











u
(1)
I

u
(2)
I

uΓ




 =






f
(1)
I

f
(2)
I

fΓ




 , (1.4)

where fΓ = f
(1)
Γ + f

(2)
Γ and uΓ = u

(1)
Γ = u

(2)
Γ . Thirdly, by solving the first two equa-

tions for u
(1)
I , u

(2)
I and substitution into the third equation one obtains a problem,

which is defined on the common boundary Γ only:

A
(1)
ΓI

(
A

(1)
II

)−1
(f

(1)
I −A

(1)
IΓuΓ) +A

(2)
ΓI

(
A

(2)
II

)−1
(f

(2)
I −A

(2)
IΓuΓ) +

(
A

(1)
ΓΓ +A

(2)
ΓΓ

)
uΓ = fΓ .

(1.5)

This can be written in a more readable form by means of the so called Steklov-
Poincaré operators (Schur complement operators in the discrete case), defined as

S(i) = A
(i)
ΓΓ −A

(i)
ΓI

(
A

(i)
II

)−1
A

(i)
IΓ, i = 1, . . . ,N , (1.6)

Chapter 1. Introduction 6

by which (1.5) reads:

(
S(1) + S(2)

)
uΓ = fΓ −A(1)

ΓI

(
A

(1)
II

)−1
f

(1)
I −A

(2)
ΓI

(
A

(2)
II

)−1
f

(2)
I . (1.7)

In case of a partitioning into an arbitrary number N > 1 of subdomains, (1.7) would
be of the form

(N∑

i=1

R⊤
i S

(i)Ri

)

︸ ︷︷ ︸

=:S

uΓ =
N∑

i=1

R⊤
i b

(i)
Γ −

N∑

i=1

R⊤
i A

(i)
ΓI

(
A

(i)
II

)−1
b
(i)
I

︸ ︷︷ ︸

=:χ

, (1.8)

while the Ri, i = 1, . . . , N denote restrictions from Γ to Γ \ ∂Ωi.
Now, the main idea of substructuring is to solve Equation (1.8) by a Krylov

subspace iteration, while computing the actions of the Si independently in parallel.
In addition, various kinds of preconditioners exist, which are parallelizable in a
similar manner, all of which we will addressed in detail in Chapter 3.

In general, non-overlapping methods have a systematic advantage over overlap-
ping methods in terms of scalability, since the only common unknowns between the
subdomain problems are located on a one-dimensional set. That is, the total number
of variables to be exchanged between per-subdomain problem processes grows much
slower with the number of subdomain problems than it does with the overlapping
methods — where overlapping widths of two to five nodes are typical (given a grid-
like partition). Especially on parallel computers with shared memory this aspect is
of importance, since there the amount of data to be transfered in each iteration can
have a significant impact on the total computation time. On the other hand, non-
overlapping methods are, in general, more complex both to apply to PDE problems
as well as in terms of implementation, as it is with their overlapping counterparts.

1.1.4 Domain Decomposition for Nonlinear Problems

Domain decomposition were primarily applied to linear problems. Nonlinear prob-
lems, such as apparent in the are of computational fluid dynamics for example,
were ususlly solved by repetitive local linearizations, while parallelization came into
play with solving the resulting linear problems at each linearization step. Other
approaches pursue the decomposition of the nonlinear problem itself, which then
yields nonlinear subproblems, being solved independently. Two approaches of the
latter type we will outline in the following sections. Thereby, we assume a generic
nonlinear model problem

A(u) = f (1.9)

on Ω.

7 1.1. Motivation and Overview

1.1.4.1 A Control Approach

Let us consider two non-overlapping subdomains Ω1 and Ω2 as defined above, and
the restriction of (1.9) to each of those, being of the form A(ui) = fi, i = 1, 2. As in
the linear case, an independent solving for each subdomain yields significant errors
for all model problems with spatial couplings.

However, these couplings can be re-established by enforcing the function values
of u1 and u2 as well as their normal derivatives to be the same. In the control
approach pursued in here, this is realized through artificial Neumann boundary
conditions at Γ:

A(u1) = f1 and
∂u1

∂n1
= g on Γ,

∂u1

∂n
= 0 on ∂Ω1 \ Γ

A(u2) = f2 and
∂u2

∂n2
= −g on Γ,

∂u2

∂n
= 0 on ∂Ω2 \ Γ

, (1.10)

while the function g is chosen such that the value of u1 and u2 is equal on Γ. The
latter condition is stated as a minimization problem of the form1

min
u1,u2,g

1

2

∫

Γ

(u1 − u2)
2 dχ+

γ

2

∫

Γ

g2 dχ (1.11)

subject to (1.10) , (1.12)

whith (1.10) giving additional equality constraints.
Thereby, it is gives a control problem with the control g, the state variables u1

and u2 and the objective functional in (1.11). Standard iterative solving methods
from optimal control theory can be applied, whose main computational efforts con-
centrate on the independent solving of the local problems (1.10), thereby making
the parallelization of nonlinear problems feasible.

1.1.4.2 A Convex Programming Approach

Another approach for the decomposition of a nonlinear problem can be pursued
on the level corresponding energy minimizations. Let the unique solution to the
minimization problem

min
u∈V (Ω)

J(u) (1.13)

with J(u) : V (Ω) → R being a convex functional, be the solution to the nonlinear
model problem (1.9). Subsequently, we consider the restriction of J(u) to each of

1The presence of the second integral is to exclude arbitrarily large solutions for g.

Chapter 1. Introduction 8

the subdomains, i.e. JΩ1(·) := J|Ω1
(·) and JΩ2(·) := J|Ω2

(·) in the two-subdomain
case, and to minimize the sum of those restrictions while requiring the local solutions
u1 := u|Ω1

and u2 := u|Ω2
to be equal on the shared boundaries:

min
u1,u2

J|Ω1
(u1) + J|Ω2

(u2) (1.14)

subject to: u1|Γ = u2|Γ . (1.15)

Thereby, it is known the global solution, given by merging the local ones to (1.14),
to converge to the one of the original, non-decomposed problem.

Technically, the equality constraints in (1.14) are relaxed by introducing a La-
grangian multiplier function λ, by which the following minimization-maximization
problem is reached:

sup
λ

{

min
u1

{JΩ1(u1) + 〈λ, u1〉Γ}+ min
u2

{JΩ2(u2)− 〈λ, u2〉Γ}
}

. (1.16)

Obviously, the minimization problems are independent with respect to the variables
being minimized for. This fact is exploited within an iterative convex program-
ming method for solving (1.16), where the main computational burden then lies
on the parallel solving of the local minimization problems, whereas the sequential
operations with respect λ are negligible within that respect.

1.1.5 Motion Estimation with High-order Regularization

Besides the main focus of the parallelization of PDE-based model problems in image
processing, the improvement of the model problems and their underlying approaches
is dealt with in this work too.

With respect to the Horn and Schunck motion estimation approach for example,
given by the energy minimization

inf
u1,u2

∫

Ω

(∂xIu1 + ∂Iu2 + ∂tI)
2 + α

(
|∇u1|2 + |∇u2|2

)
dx dy , (1.17)

the two last terms implement a prior smoothness assumption on the optical flow field
(u1, u2), in order to overcome the aperture problem. In some application areas, such
as that of computational fluid mechanics, however, this general assumption is not
appropriate for reconstructing motion patterns which are typical in such scenarios,
among which are vortices, or sink- and source-like patterns. Instead, our approach
is to penalize changes in the divergence and curl of the vector field to be estimated.
That gives energies of the form

inf
u1,u2

∫

Ω

(∂xIu1 + ∂yIu2 + ∂tI)
2 + α

(
|∇div u|2 + |∇curl u|2

)
dx dy , (1.18)

9 1.2. Contribution and Organization

where u = (u1, u2)
⊤.

Furthermore, u can be represented by scalar-valued potential functions φ ∈ V (Ω)
and ψ ∈ V (Ω) according to

u = ∇φ+∇⊤ψ , (1.19)

while ∇φ generates sink and source-like motions, and ∇⊤ψ vortices of either di-
rection. The representation through potential functions has the advantage of an
inherent separability into these two classes of motion patterns, as well as easier
localization of extrema, which becomes important for subsequent processing, e.g.
tracking. However, substituting u in (1.18) by its representation given in (1.19) re-
sults in third-order derivatives in the regularization terms, which means sixth-order
derivatives in the corresponding Euler-Lagrange equations, thereby rendering a dis-
cretization very involved. Thus, it makes sense to search for alternative formulations
of the same idea in order to decrease the degree of involved derivatives.

1.2 Contribution and Organization

Having provided a motivating outline of the topics being dealt with in this work, in
the following we outline our own contribution, as well as the organizational structure
of this work.

In Chapter 2 we provide a short introduction into optical flow estimation by
explaining the three most well-known approaches, one of which then will serve as the
linear model problem in the succeeding chapters on classical domain decomposition
methods.

Chapter 3 is dedicated exclusively to classical non-overlapping domain decom-
position methods. First, we introduce and discuss the mathematical foundation,
which will lead to the Steklov-Poincaré interface equation in the continuous and
the Schur complement equation in the discrete case. Subsequently, we derive and
explain most of the known iterative substructuring methods in the order of their
appearance. Thus, we always start with the simple case of two subdomains in order
to stress out the link to the aforementioned theory and then move on to the case
of an arbitrary number of subdomains. Besides the technical aspects of the various
methods, we address and discuss in particular the problem of limited information
propagation with single-level methods and show how this problem is overcome by
presenting different kind of two-level approaches.

Thereafter, we focus on Finite Element Tearing and Interconnecting (FETI)
methods, which can be seen as dual two-level substructuring methods. Here too,
starting with the theoretical foundation, we gradually derive the main algorithm
followed by a comparison to primal iterative two-level methods. The section is

Chapter 1. Introduction 10

followed by an elaboration on a combination of the primal and the dual approach,
which finally results in the recently emerged primal-dual FETI approach.

In the subsequent experimental section we present empirical results for two
prominent primal approaches being applied to a standard variational motion esti-
mation method. In particular, measurements of the convergence rate in dependence
on the number of subdomains for two different data sets, as well as its comparison
to theoretical upper limits, will be shown. In addition, measurement results of the
sensitivity of the convergence rate to the precision of the local solvers are given.
The experimental section concludes with results of run-time measurements on a
dedicated PC-cluster for up to 144 processors, including a scalability and speed-up
analysis in comparison to a non-parallel multi-grid implementation.

Chapter 4 is dedicated to overlapping methods. However, because of their adver-
sarial communication requirements in comparison to non-overlapping methods, we
leave out empirical studies and remain with the derivation and explanation of the
established methods, again in the order of their appearance. In particular, we show
the well-known multigrid methods to be special cases in the multi-level framework.

As already addressed in Section 1.1.5, the improvement of the model problem
itself, i.e. here the variational motion estimation, is pursued also. Thereby, a new
method for the direct estimation of the potential fields φ and ψ from a given image
sequence of turbulent flows is derived and explained in Chapter 5. After details
on a multi-resolution solving, the chapter concludes with an elaborate experimental
section showing results for synthetic and real input data.

In the remaining chapters we focus on the domain decomposition of nonlinear
PDE-based problems. As a prototypical exemplar of the latter type, we have chosen
an variational image denoising method based on a Total Variation (TV) regular-
ization. Because of its superior filtering results in comparison to L2-norm-based
methods while requiring special numerical schemes dealing with the nonlinearity, it
has been the subject of intensive research in the past 15 years, which we detail on
both theoretically and empirically in Chapter 6.

Subsequently, in Chapter 7 we propose a new decomposition approach stated as
a control problem, as outlined in Section 1.1.4.1. Starting with the formulation as
energy minimization on a two-subdomain partition, we derive step-by-step the cor-
responding solving method consisting of several linear PDE problems. Experimental
results for the denoising model problem at the end of the chapter show its feasibility
for two and more subdomains.

Alternatively, in Chapter 8 we propose another approach for decomposing non-
linear problems, this time based on a Lagrangian relaxation. As outlined in Sec-
tion 1.1.4.2, we formulate the decomposed problem as a constrained convex opti-
mization problem, relax it by the means of Lagrangian multiplier functions, and
solve the corresponding primal-dual problem by a subgradient iteration. Also here,

11 1.3. Related Work

besides the theoretical derivation, results of an experimental feasibility study are
presented at the end of the chapter.

The results in the aforementioned chapters have been published in journals [82]
and conferences [79, 80, 81], respectively.

1.3 Related Work

Since most of the relevant references are given along with their elaborations in the
following chapters, in this section we mention only the most important monographs
and survey papers.

1.3.1 Domain Decomposition

The extensive work which has been done and findings which have been published on
these topics can be found in the annual conferences on domain decomposition, whose
proceedings, beginning in the late eighties [60, 28, 74, 61], reflect the evolvement of
DD methods, their underlying theory as well as their application to various areas
(see, e.g., the proceedings of the latest conferences [71, 83]). In addition, the mono-
graphs by Quarteroni and Valli [101] and Toselli and Widlund [120] provide deep
insights into the mathematical foundations of Schwarz and substructuring meth-
ods and detailed overviews of the multitude of existing methods as well as many
application examples. In particular, in [120] also the more recently emerged dual
and primal-dual FETI methods are discussed. On the other hand, the monograph
by Smith, Bjørstad and Gropp [112] pursues a more algebraic approach of explain-
ing most of the primal overlapping and non-overlapping methods, while focusing
more on implementation issues in terms of parallel computation as well as com-
plexity, though providing a substantial chapter on the abstract convergence analysis
of Schwarz methods. Similarly, the survey articles by Chan and Mathew [34] and
LeTallec [87] give detailed algebraic and algorithmic explanations of the existing
primal procedures, while the publications by Xu and Zou [128] and Xu [127] pro-
vide explanations by well-founded continuous formulations then thoroughly focusing
on their discretization by finite elements. Especially in terms of dual substructur-
ing methods (FETI), the survey article by Farhat and Roux [55] provides a strong
algebraic insight amidst the application-context of computational mechanics.

An important application area of DD methods can be found in computational
fluid dynamics and computational mechanics, e.g. by parallelizing Stokes prob-
lems, advection-diffusion problems, or the linear elasticity problem, see, e.g., [101]

Chapter 1. Introduction 12

and [120]. More recently, vector-valued problems of the form

−∇ · (α div u) +Bu = f on Ω (1.20)

u · n = 0 on ∂Ω , (1.21)

with B denoting a symmetric positive coefficient matrix, α a positive scalar and n
the outer unit normal on ∂Ω, which are similar to our model problem (1.1), were the
subject of extensive studies in connection with Domain Decomposition, [126, 125]
and Chapter 10 of [120].

Regarding the fields of image processing and computer vision, we are not aware
of any published investigation of Domain Decomposition of variational problems.

1.3.2 Nonlinear Domain Decomposition

In general, the approaches for spatially decomposing nonlinear PDE problems can be
grouped into three different classes: With the oldest approach, a Newton is applied as
outer iteration in connection with a standard overlapping DD technique to parallelize
the involved linear problems (see [25], [45]). The Schwarz alternating method, a
well-known overlapping method, is applied directly to the nonlinear problem (see,
e.g., [91, 92]). Besides employing classical DD methods in the nonlinear case, by a
third group of approaches, a non-overlapping decomposition is reached by means of
control theory, which results in two sets of nonlinear subdomain problems (see [86,
65, 67, 66]).

1.3.3 Motion Estimation with High-order Regularization

Building upon the div-curl regularization proposed by Suter [116], Corpetti, Mémin
et al. [39, 40] proposed the splitting of the estimated flow field into an irrotational
and solenoidal component in Fourier space, followed by an estimation of the potential
functions φ and ψ by means of path integration. Subsequently, they show how to
track the local extrema once those estimates have been computed. In addition,
they present a technique to lower the degree of involved derivatives by relaxing the
regularization onto auxiliary functions.

The topics addressed in Chapter 5 have been recently extended end elaborated
by Yuan et al. [129, 130].

1.4 Mathematical Preliminaries and Notation

In this section we note the basic notation being used throughout this work.

13 1.4. Mathematical Preliminaries and Notation

1.4.1 Sets and Function Spaces and other Notations

Let Ω1,Ω2, . . . ,ΩN ⊂ Ω ⊂ R
2 be open and bounded domains with Lipschitz continu-

ous boundaries ∂Ω, ∂Ω1, ∂Ω2, . . . ∂ΩN , while the {Ωi} are referred to as subdomains
of Ω.

Moreover, we make use of the usual Sobolev space for second order elliptic bound-
ary value problems:

V (Ω) = H1(Ω) = W 1,2(Ω) = {v ∈ L2(Ω) : ∂αv ∈ L2(Ω) , 0 ≤ |α| ≤ 1} , (1.22)

with α denoting a multi-index. The corresponding scalar product is defined as

(u, v)1 =
∑

|α|≤1

(∂αu, ∂αv) , (1.23)

while the scalar product of L2(Ω) is given by:

(u, v) =

∫

Ω
u(x) v(x) dx , (1.24)

or by

(
u, v
)

Γ
:=

∫

Γ
u(x)v(x) dx, for Γ ⊂ Ω. (1.25)

when being restricted to some subset Γ ⊂ Ω, respectively. Often, we will make use of
subspaces Vi := V (Ωi), i = 1, . . . ,N which are restricted to a certain subdomain Ωi.

We do not need the notion of ‘traces’ and ‘trace spaces’ in the following. Hence
we loosely speak of functions with vanishing boundary values:

V0 = H1
0 (Ω) ⊂ H1(Ω) . (1.26)

Likewise, we use the symbolic notation

∫

Γ

∂u

∂n
v ds = 〈∂nu, v〉Γ (1.27)

for the duality pairing with respect to the trace space H1/2(Γ) and its dual, and call
∂nu, the outer normal derivative of u, a function as well.

For u, v ∈ H1(Ω) and ∆u ∈ L2(Ω), the following version of Green’s formula
holds: ∫

Ω
∇u · ∇v dx = (−∆u, v) + 〈∂nu, v〉∂Ω . (1.28)

Chapter 1. Introduction 14

1.4.2 Finite Element Discretization

If not specified otherwise, all discretizations in this work are based on standard
conforming piecewise linear finite elements.

Therefore, we restrict our considerations to those (sub)domains Ω,Ω1, . . . ,ΩN

which allow for conforming, shape-regular and quasi uniform triangulations T hi of
the maximum diameters hi, i = 1, . . . ,N . Furthermore, we will distinguish between
the sub-cases of matching and non-matching T hi triangulations. In the matching
case, all overlapping triangulations are compatible, i.e. all nodes in the overlap
region are element of all triangulations involved. In the non-matching case the
opposite holds.

To simplify notation, we use the same symbols for some function v = v(x) and
the coefficient vector v ∈ R

N representing the approximation of v(x) in the subspace
spanned by the piecewise linear basis functions {φ(x)}i=1,...,N :

v(x) ∈ H1(Ω) ↔ v ∈ R
N ↔

N∑

i=1

viφi(x) . (1.29)

Furthermore, we use the same symbol for the vector obtained by discretizing the
action of some linear functional on some function v(x). For example, we simply
write f and w for the discretized versions of the linear functionals (f, v) and a(w, v)
(with a(·, ·) being a bilinear form and w(x) fixed). We refer to standard textbooks
like, e.g. [5], [37], [107], for the discretization of boundary value problems with finite
elements.

Chapter 2

Variational Motion Estimation

Methods

In this chapter we introduce the main model problem for the linear domain decom-
position methods, which will be the so-called combined local-global (CLG) motion
estimation approach. Therefore, we start with motivating the problem of estimat-
ing the optical flow from an image sequence, introduce the global Horn and Schunck
approach, followed by the local approach by Lucas and Kanade and conclude with
the CLG approach. Thereby, we always address the aspect of parallel computation.

2.1 Problem Statement

Let I : Ω× 0, T→ R denote a sequence of images taken over the time period [1, T].
Assuming that a change of intensities over time arises from the movement of the
recorded objects only, the problem of optic flow is to determine the vector field
(u1, u2) ∈ V (Ω × {1, T}) × V (Ω × {1, T}) denoted as optic flow, which fulfills the
equation

I(x+ u1, y + u2, t+ 1) = I(x, y, t) , (2.1)

and are commonly referred to as brightness constancy assumption. Thereby, (u1, u2)
give a mapping of each intensity I at (x, y) from time point t to t+ 1.

Obviously, (2.1) not only is a nonlinear, but also an under-determined problem.
Unlike image registration approaches, nonlinearity here is avoided by a first-order
Taylor series expansion of the left term with respect to u1, u2 and t, respectively,
giving the so-called optic flow constraint

∂xI u1 + ∂yI u2 + ∂tI = 0 , (2.2)

15

Chapter 2. Variational Motion Estimation Methods 16

a solution (u1, u2) which is a sufficiently close to that of (2.1) if the magnitudes are
relatively small, e.g. not more than two pixels.

Still the problem of under-determination remains. In particular, having only
(2.1) or (2.2) only the so-called normal flow

un = − ∂tI

|∇I|
∇I
|∇I| , (2.3)

that is, the displacement vectors projected onto the image gradients can be deter-
mined, which is commonly denoted as aperture problem. However, since we are inter-
ested in the original displacement vectors, additional assumptions besides brightness
constancy, are necessary, which give rise to several different approaches. We will fo-
cus on three of the most important of these approaches in the following section.
Thereby, we will make use of the following notation:

u := (u1, u2)
⊤ Iξ := ∂ξI, ξ ∈ {x, y, t}

|∇u|2 := |∇u1|2 + |∇u2|2 ∇I := (∂xI, ∂yI)
⊤ .

2.2 The Approach by Lucas and Kanade

Common to all motion estimation approaches is the presence of additional prior as-
sumptions on the vector field (u1, u2). In the class of local approaches, for example,
Lucas and Kanade [90] in 1981 assumed (u1, u2) to be constant in a local neighbor-
hood of size ρ. In that case for each location (x, y, t) the flow components u1 and u2

are determined by minimizing the functional

J(û1, û2) = inf
u1,u2∈V

Kρ ∗
(
(Ixu1 + Iyu2 + It)

2
)
, (2.4)

with Kρ∗· denoting convolution by a Gaussian kernel Kσ(x, y) of standard deviation
σ, which is equivalent to a weighted least squares fit.

Deriving JLK for u1 and u2, respectively, and setting equal to zero, yields the
linear system

(
Kρ ∗ (Ix)

2 Kρ ∗ (IxIy)
Kρ ∗ (IxIy) Kρ ∗ (Iy)

2

)(
u1

u2

)

= −
(
Kρ ∗ (ItIx)
Kρ ∗ (ItIy)

)

. (2.5)

Important with respect to parallelization here is the fact that (2.5) can be solved
for each image location (x, y) ∈ Ω separately. Thus, the solving of (2.5) can be
parallelized directly so that the total execution time can be decreased by distributing
the computational effort to more than one processing node.

17 2.3. The Approach by Horn and Schunck

However, in image regions lacking sufficient intensity gradients, the matrix in
(2.5) becomes degenerate, that is, its second eigenvalue gets close to 0, which cor-
responds to having the aperture problem again. Consequently, this approach yields
only sparse flow fields for locations where both eigenvalues are significantly present,
which is a major disadvantage with respect to subsequent image analysis. On the
other hand, the magnitude of the second eigenvalue gives a good confidence measure
of the flow vectors at each location.

2.3 The Approach by Horn and Schunck

As opposed to the local approach by Lucas-Kanade, Horn and Schunck [72] at the
same time suggested to embed equation (2.2) into a global, variational optimization
problem, and to add a global regularization term:

J(û1, û2) = inf
u1,u2∈V

∫

Ω

(Ixu1 + Iyu2 + It)
2 + α

(
|∇u1|2 + |∇u2|2

)
dx dy , (2.6)

with α > 0 denoting the regularization strength. Here the additional assumption is
not local constancy, but global smoothness of the flow field throughout Ω, which is
implemented by penalizing the magnitude changes of u1 and u2.

In order to find a miminum, the first variations of J(u1, u2) must vanish, which
results in

∫

Ω

(
v1 v2

)
(
I2
x IxIy

IxIy I2
y

)(
u1

u2

)

+ α
(
∇u1 · ∇v1 +∇u2 · ∇v2

)
dx dy

= −
∫

Ω

(
ItIx
ItIy

)(
v1
v2

)

dx dy, ∀v1, v2 ∈ V (Ω) , (2.7)

for which it is known a unique solution to exist (See [105]).
By partial integration with respect to ∇u1 · ∇v1 and ∇u2 · ∇v2 one reaches the

Euler-Lagrange equations

I2
x u1 + IxIyu2 + IxIt − α∆u1 = 0 (2.8)

IxIy, u1 + I2
yu2 + IyIt − α∆u2 = 0 , (2.9)

with Neumann boundary conditions ∂nu1 = 0 and ∂nu2 = 0 at ∂Ω.
In contrast to the previous method, the values of (u1(x), u2(x)) are spatially

coupled throughout Ω, because of the presence of spatial derivatives of u1 and u2

in (2.7) and (2.8), respectively, which arise from the global regularization. Hence,

Chapter 2. Variational Motion Estimation Methods 18

problem (2.7) cannot be decomposed spatially and thus provides no direct clues
for coarse-grained parallel computing. On the other hand, the regularization term
(
|∇u1|2 + |∇u2|2

)
yields a so-called fill-in of flow information at locations where

|∇I| ≈ 0, by implicitly interpolating from the neighborhood. Thus this global
approach results in dense flow fields, advantageous for many applications. However,
it is also known to be more sensitive to noise [7] than the local methods.

2.4 The Combined Local-Global Approach

2.4.1 The Approach

Recently, Bruhn et al. [24, 23] proposed a hybrid optical flow approach, which com-
bines the robustness of local approaches with the density of global approaches. This
is reached by convoluting the products of the image derivatives in (2.7) with Gaussian
kernels:

∫

Ω

(
u1 u2

)
(
Kρ ∗ (I2

x) Kρ ∗ (IxIy)
Kρ ∗ (IxIy) Kρ ∗ (I2

y)

)(
v1
v2

)

+ α
(
∇u⊤1 ∇v1 +∇u⊤2 ∇v2

)
dx dy

︸ ︷︷ ︸

=:a(u,v)

=

∫

Ω

(
Kρ ∗ (ItIx)
Kρ ∗ (ItIy)

)(
v1
v2

)

dx dy

︸ ︷︷ ︸

=:f(v)

, ∀v1, v2 ∈ V (Ω) , (2.10)

which is equivalent to embedding (2.5) instead of the optical flow constraint equation
(2.3) into the variational energy in (2.6). By using the bilinear form a(·, ·) and linear
form f(·), (2.10) can be written as

a(u, v) = f(v) , ∀v ∈ V 2(Ω) , (2.11)

with u = (u1, u2)
⊤ and v = (v1, v2)

⊤. The corresponding Euler-Lagrange equations
read

Kρ ∗ I2
xu1 +Kρ ∗ IxIyu2 +Kρ ∗ IxIt − α∆u1 = 0

Kρ ∗ IxIyu1 +Kρ ∗ I2
yu2 +Kρ ∗ IyIt − α∆u2 = 0 ,

(2.12)

with Neumann boundary conditions ∂un = 0 on ∂Ω. By taking the constant terms
to the right-hand side, one reaches the form

Kρ ∗ I2
xu1 +Kρ ∗ IxIyu2 − α∆u1 = −Kρ ∗ IxIt (2.13)

Kρ ∗ IxIyu1 +Kρ ∗ I2
yu2 − α∆u2 = −Kρ ∗ IyIt , (2.14)

19 2.4. The Combined Local-Global Approach

which we compactly write as

Au = f (2.15)

by means of the continuous linear operator A : V (Ω) × V (Ω) → V ′(Ω) × V ′(Ω),
where V ′(Ω) denotes the dual space of V (Ω), the vector field u := (u1, u2) and the
right-hand side f .

Although experimental results [24, 23] have approved the superiority of this
approach in comparison to that of Horn and Schunck as well as Lucas and Kanade,
even further refinements exist. For example, Bruhn et al. suggested to assume flow
field smoothness also along the temporal dimension by replacing regularization term
in (2.6) by

|∇3u1|2 + |∇3u2|2 (2.16)

with ∇3 = (∂x, ∂y, ∂t)
⊤ denoting the spatio-temporal derivation operator. Further-

more, instead of using quadratic penalization both in the data term and the regular-
ization, the utilization nonlinear penalization functions lead to a better preservation
of flow discontinuities. Further improvements have been made by the introduction
of vectorial penalizers in the regularization term, which also take the spatial orienta-
tion into account and thus implement so-called anisotropic regularization. See [124]
for a survey for both types of extensions.

In the experimental section of Chapters 3, (2.10) will serve as the model problem,
since as a linear PDE-based problem, it is prototypical for many others in image
processing.

2.4.2 Discretization by Finite Elements

In order to compute the vector field u, we consider equation (2.11) to be discretized
by piecewise linear finite elements over the triangulated section Ω of the image plane.
We arrange the vectors of nodal variables u1, u2 corresponding to the finite element
discretizations of u1(x), u2(x) as follows: u = (u⊤1 , u

⊤
2)⊤. Taking into consideration

the symmetry of the bilinear form a(u, v), this induces the following block structure
of the discretized version of (2.11):

(
A11 A12

A21 A22

)(
u1

u2

)

=

(
f1

f2

)

⇔ Au = f , (2.17)

Chapter 2. Variational Motion Estimation Methods 20

where ∀i, j = 1, . . . , N :

(A11)ij = a
(
(φi, 0)

⊤, (φj , 0)
⊤) (2.18)

(A12)ij = a
(
(φi, 0)

⊤, (0, φj)
⊤) (2.19)

(A21)ij = (A12)ji (2.20)

(A22)ij = a
(
(0, φi)

⊤, (0, φj)
⊤) (2.21)

(f1)i = f
(
(φi, 0)

⊤) (2.22)

(f2)i = f
(
(0, φi)

⊤) . (2.23)

and with φk denoting linear basis function corresponding to the nodal variable (u1)k
or (u2)k, respectively. Again, we use the same symbols for referring to nodal finite
element weights and the continuous functions and operators they are discretizing.

2.4.3 The Solving

Bruhn et al. [22, 19] made extensive studies on multigrid solvers for (2.8) and other,
more advanced optic flow approaches, thereby reaching frame rates of 63 frames per
second for images sizes of 120×160 pixels on a single processor. Nowaday image
sensors, however, can provide sizes of 2000×2000 or even higher at similar frame
rates. Therefore, it is sought for speeding up the computations even further by
means of coarse-grained parallel computing.

With almost all variational optic flow approaches, however, A11 and A22 are
of banded structure with six off-diagonals when employing conformal linear finite
elements, whereas A12 and A21 are simply diagonal matrices. Thus, the inverse
operator matrix, A−1, is dense and a straightforward spatial splitting and subsequent
inversion of A, according to a spatial decomposition of the image plane, does not
yield the right solution.

This motivates the following chapters, where we will present different kinds of
methods to split LSEs like (2.17) spatially into independent smaller problems, such
that the merged local solutions will be consistent (up to a given tolerance) with the
solution of the original problem.

Chapter 3

Non-overlapping Domain

Decomposition Methods

Obviously the problem requiring solution, given either in variational (2.11) or differ-
ential (3.6) form, is global in the sense that all unknowns are coupled. Consequently,
a straightforward spatial separation of the problem, i.e. independent solvings fol-
lowed by assembling the local results to a global one, results in significant errors.
See Figure (3.1) for an example. Especially at subdomain boundaries where the reg-
ularization term is dominant, i.e. at places with little image structures, significant
artifacts appear, since the couplings across boundaries are all neglected.

In contrast to that ad-hoc approach, in the following two chapters we will present
approaches to decompose the model problem spatially into independent subproblems
while still preserving the global couplings and thus reaching the same solution, de-
pending on the number of iterations being introduced, as with sequential solving.

The motion estimation model problem given either in variational (2.11) or differ-
ential (3.6) form, is global, in the sense that all unknowns are more or less strongly
coupled. Consequently, a straightforward spatial separation of the problem into
local subproblems, in order to distribute the computational effort to several process-
ing nodes, results in strong artifacts across the subdomain boundaries. (See Fig-
ure (3.1).) Especially at subdomain boundaries where the spatial regularization term
is dominant, i.e. at places with little image structures, significant errors appear, since
the couplings across those boundaries are completely neglected. In contrast to this
ad-hoc approach, in the following chapter we will present methods to decompose
the model problem spatially indirectly. That is by first solving a reformulation on
the artificial boundaries and by solving for the remaining unknowns in a subsequent
step. Thereby, the spatial couplings will be preserved and one will reach the same
solution, depending on the number of iterations being introduced, as by sequentially

21

Chapter 3. Non-overlapping Domain Decomposition Methods 22

solving the original problem.

(a) Original optical flow estimation (b) Separated solving on 3 × 3 subdomains

Figure 3.1: An ad-hoc decomposition of a variational motion estimation problem.

Separate solving on subdomains while neglecting the spatial couplings yields strong artifacts
at the shared boundaries.

In this chapter, we consider partitions {Ωi | i = 1, . . . ,N} of the image section Ω,
i.e. subdomains which have no overlap and Ωi ∩ Ωj = ∅, j 6= i, and Ω = ∪iΩi. The
common boundary between two adjacent subdomains Ωi and Ωj we denote by Γij,
while Γij := Ωi ∩ Ωj \ ∂Ω. The union of all shared boundaries is referred to by Γ.
Furthermore, by Γi we denote that subset of a subdomain’s boundary ∂Ωi, which
are a part of other local boundaries too, i.e. Γi := ∂Ωi \ ∂Ω. Though the methods
to be presented below are applicable to arbitrarily shaped partitions, we restrict our
considerations to the case to grid-shaped ones in the following.

The central notion behind the so-called substructuring methods [112, 101, 120],
which are to be explained later, is to restate the original problem on Ω to a variant
which defined on the shared subdomain boundaries Γ only. It is then solved for the
unknowns on Γ, while in each iteration local problems for the interior, i.e. non-
shared, degrees of freedom on each subdomain are to be solved, giving clues for
parallel computation. Once a solution for the reduced problem has been determine
the remaining unknowns to gain the full solution are calculated in a similar, also
highly parallelizable, finalization step.

The chapter is organized as follows. First, we focus on the mathematical founda-
tions for restating the original problem and explicitly show the link between contin-
uous formulations and the algorithmic realization. Second, we present and explain

23

the various primal iterative methods in the order of their appearance in the past
two decades. In the third part, we concentrate on the more recently emerged dual
and primal-dual methods. In the concluding experiential part, we present results
of experimental studies made for two prominent primal methods, among which are
scalability measurements on a parallel machine for up to 144 processing nodes and
images sizes of 2000 × 2000 pixels.

Model Problems. For the time being, we consider the following convex, scalar-
valued model problem:

J(u) = inf
v∈V

∫

Ω
(v − I)2 + α|∇v|2 dx dy (3.1)

which is also known as the Definite Helmholtz equation, with V = H1(Ω), I ∈ V
giving image intensities over the image plane section Ω, and α ∈ R determining the
regularization strength imposed on u. Vanishing of the first variation yields

d

dτ
J(u+ τv)

∣
∣
∣
τ=0

= a(u, v) − (f, v) = 0 , ∀v ∈ V , (3.2)

with the bilinear form:

a(u, v) =

∫

Ω
u v + α∇u · ∇v dx dy . (3.3)

Since

a(v, v) ≥ min{1, λ}‖v‖2V , ∀v ∈ V , (3.4)

J is strictly convex, and the global minimum is the unique solution to the variational
equation:

a(u, v) = (f, v) , ∀v ∈ V . (3.5)

By applying (1.28), partial integration yields the Euler-Lagrange equation along
with the natural boundary condition [68]:

Lu := −α∆u+ u = f in Ω , ∂nu = 0 on ∂Ω . (3.6)

The solution u to (3.5) is the so-called weak solution to (3.6). Discretization yields
a linear system as the algebraic counterpart of (3.5),

Au = f , (3.7)

with a symmetric, sparse and positive definite matrix A.

Chapter 3. Non-overlapping Domain Decomposition Methods 24

In a subsequent step, the linear system (3.7) is permuted and partitioned in
order to group the variables on the shared boundaries Γ as well as the remaining
ones on Ω \ Γ:

(
AII AIΓ
AΓI AΓΓ

)(
uI
uΓ

)

=

(
fI
fΓ

)

, (3.8)

with the indices Γ and I referring to each of those two sets, respectively. Further-
more, we need restrictions of (3.8) to each of the subdomains Ωi, giving

(

A
(i)
II A

(i)
IΓ

A
(i)
ΓI A

(i)
ΓΓ

)(

u
(i)
I

u
(i)
Γ

)

=

(

f
(i)
I

f
(i)
Γ

)

, i = 1, . . . ,N . (3.9)

All relevant concepts and algorithms will be shown for this model problem. The
generalization on the algebraic level to the main model problem of optical flow esti-
mation (2.12), which will be assumed in the experimental section, will be straight-
forward, when partitioning the corresponding LSE (3.7), in the same manner as
in (2.17).

Mathematical Preliminaries. The decomposition of problem (3.6) into a set
of parallel solvable problems requires boundary conditions different from the nat-
ural boundary condition in (3.6). We will collect necessary details in the following
paragraphs.

Suppose we wish to have u|Γ = uΓ on Γ, i.e. a Dirichlet boundary condition,
with some given function uΓ:

Au = f in Ω, ∂nu = 0 on ∂Ω \ Γ, u = uΓ on Γ. (3.10)

To obtain the corresponding variational formulation as basis of a proper finite ele-
ment discretization, we define the subspace:

V0|Γ = {v ∈ V : v|Γ = 0} . (3.11)

The variational formulation of (3.10) then reads: Find u0|Γ ∈ V0|Γ such that:

a(u0|Γ, v) = (f, v)− a(PuΓ, v) , ∀v ∈ V0|Γ . (3.12)

where P is an arbitrary extension operator V (Γ) → V (Ω). The desired solution is
then given by u = u0|Γ + PuΓ ∈ V .

Alternatively, suppose we wish to have ∂nu = un on Γ, i.e. a Neumann boundary
condition, with a given function un:

Au = f in Ω , ∂nu = 0 on ∂Ω \ Γ , ∂nu = un on Γ . (3.13)

The corresponding variational formulation reads: Find u ∈ V such that:

a(u, v) = (f, v) + 〈un, v〉Γ , ∀v ∈ V . (3.14)

25 3.1. The Mathematical Basis of Substructuring

3.1 The Mathematical Basis of Substructuring

3.1.1 The Steklov-Poincaré Operator

3.1.1.1 The Model Problem in Two-Domain Formulation

In order to restate problem (3.6) as a problem on Γ let us start with its so-called
multi-domain formulation:

Lu(1) = f (1) in Ω1 ∂n1u
(1) = 0 on ∂Ω1 ∩ ∂Ω (3.15)

Lu(2) = f (2) in Ω2 ∂n2u
(2) = 0 on ∂Ω2 ∩ ∂Ω (3.16)

u(1) = u(2) on Γ (3.17)

∂nu
(1) = ∂nu

(2) on Γ . (3.18)

which is equivalent to Equation (3.6), i.e.

u(x, y) =

{

u(1)(x, y) (x, y) ∈ Ω1

u(2)(x, y) (x, y) ∈ Ω2

(3.19)

holds true, for u denoting the solution to the original solution, cf., e.g., [101]. Obvi-
ously, this still provides no clues for parallel computation, because of the coupling
of both subproblems via the artificial boundary conditions (3.17) and (3.18) on Γ.
Instead, let u(1) and u(2) formally denote the solution to either subproblem. Then,
by (3.17) we have for the restricted solutions that u(1)|Γ = u(2)|Γ =: uΓ. Subse-
quently, the restricted solution uΓ is substituted into (3.18) by means of the Steklov-
Poincaré operator introduced in the following. Once the resulting equation has been
solved for uΓ, the functions u(1) and u(2) then follow from the substitution of uΓ back
into (3.15) and (3.16) with boundary condition (3.17).

Consequently, in order to solve system (3.15)-(3.18), we have to make explicit the
dependency between ∂nu|Γ and u|Γ of the solution u to a boundary value problem.

First, let us decompose u into two functions,

u = u0 + uf , (3.20)

which are the unique solutions to the following problems:






Lu0 = 0 in Ω,

∂nu0 = 0 on ∂Ω \ Γ,

u0 = uΓ on Γ

(3.21)







Luf = f in Ω,

∂nuf = 0 on ∂Ω \ Γ,

uf = 0 on Γ.

(3.22)

Chapter 3. Non-overlapping Domain Decomposition Methods 26

Obviously, we have that uf ∈ V0|Γ and:

u|Γ = u0|Γ (3.23)

∂nu = ∂nu0 + ∂nuf . (3.24)

Then, the definition of the Steklov-Poincaré operator S is as follows(cf. e.g. [101]):

S : uΓ → ∂nu0|Γ (3.25)

which is known to be symmetric, coercive and continuous. Applying this mapping
to the solutions u(1), u(2) of equations (3.15) and (3.16) in the domains Ω1 and Ω2,
respectively, equation (3.18) becomes

(

S(1) + S(2)
)

uΓ = −∂n1u
(1)
f |Γ − ∂n2u

(2)
f |Γ (3.26)

with uΓ = u(1)|Γ = u(2)|Γ because of (3.17). (3.26) is denoted as the Steklov-Poincaré
interface equation.

That is, by (3.26) we have reduced the original problem (3.6) defined on Ω to a
problem restricted to the interface Γ, which is also denoted as interface problem in
the two-subdomain case.

In the following we will show the discretization and solution of (3.26) as well as
the calculation of the unknowns not on Γ.

3.1.1.2 The Action of S

First, we will explain the action of the Steklov-Poincaré operator by the algebraic
representation of its discretized version. For the following two sections, we therefore
restrict our considerations to one subdomain with an artificial boundary part Γ.

By equation (3.12), the variational formulation of problem (3.21) reads:

a(u0|Γ, v) = −a(PuΓ, v), ∀v ∈ V0|Γ,

u0 = u0|Γ + PuΓ ∈ V ,
(3.27)

with P denoting an arbitrary extension operator from V (Γ) to V (Ω), cf. [101].
Discretization yields a linear system with respect to u0|Γ of the form

AIIu0|Γ = −AIΓuΓ , (3.28)

while using the partitioning of A as noted with (3.8). Let us compare the linear sys-
tems (3.28) and (3.7), the latter corresponding to the boundary value problem (3.6).
Note that the dimension of the latter system is larger because v runs through V in
(2.11), whereas in (3.27) v only varies in V0|Γ.

27 3.1. The Mathematical Basis of Substructuring

Now consider u0 = u0|Γ + PuΓ, with u0|Γ from (3.27) and (3.28), respectively,
and let v vary in V . Note that for v ∈ V0|Γ ⊂ V ,

a(u0, v) = a(u0|Γ + PuΓ, v) = a(u0|Γ, v) + a(PuΓ, v) = 0 , (3.29)

due to (3.27). For v|Γ 6= 0 and taking into consideration Lu0 = 0 from (3.21), we
obtain by (3.14):

a(u0, v) =
〈
∂nu0, v

〉

Γ
, ∀v ∈ V . (3.30)

Since u0|Γ = uΓ due to (3.21), discretization of this variational equation yields the
linear system:

(
AII AIΓ
AΓI AΓΓ

)(
u0|I
uΓ

)

=

(
0

∂nu0|Γ

)

, (3.31)

from which we conclude by algebraically eliminating u0|I (cf. definition (3.25)):

S uΓ = (AΓΓ −AΓIA
−1
II AIΓ)uΓ = ∂nu0|Γ , (3.32)

which is also known as the Schur complement of A.
Hence, the action of S on some boundary data uΓ involves the solution of prob-

lem (3.28), exhibiting artificial Dirichlet boundary conditions at Γ and natural ones,
i.e. Neumann conditions for our model problem, on ∂Ω \ Γ. We will refer to those
local problems as ’Dirichlet problems’ in the sequel.

3.1.1.3 The Action of S−1

In order to make the action of S−1 explicit as well, we may formally invert equation
(3.32). Since S is dense, this is not advisable. Therefore, in practice, one solves the
Neumann problem (3.30) for u0 with f = 0 and given boundary data ∂nu0 (compare
with (3.14)) and obtains by restriction to the interface Γ: uΓ = u0|Γ.

Alternatively, this can also be algebraically derived from (3.31) by the following
factorization:

(
AII AIΓ
AΓI AΓΓ

)

=

(
I 0

AΓIA
−1
II I

)(
AII 0
0 S

)(
I A−1

II AIΓ
0 I

)

. (3.33)

Inverting this matrix yields

(
AII AIΓ
AΓI AΓΓ

)−1

=

(
I −A−1

II AIΓ
0 I

)(
A−1
II 0
0 S−1

)(
I 0

−AΓIA
−1
II I

)

, (3.34)

by which we conclude

S−1∂nu0|Γ =
(
0 I

)
(
AII AIΓ
AΓI AΓΓ

)−1(
0
I

)

∂nu0|Γ = u0|Γ = uΓ , (3.35)

Chapter 3. Non-overlapping Domain Decomposition Methods 28

see, e.g., [113].

Therefore, the action of S−1 to some boundary data ∂nu0|Γ is computed by
solving problem (3.31) with respect to uΓ, which exhibits artificial Neumann bound-
ary conditions at Γ, for which reason we will denote such problems as ’Neumann
problems’ in the following.

3.1.2 The Schur Complement System

3.1.2.1 Two Case of Two Subdomains

Using the results of the previous sections, we return now to equation (3.26) in
connection with solving the system of equations (3.15)–(3.18).

Suppose the boundary values uΓ = u(1)|Γ = u(2)|Γ on the interface Γ separat-
ing Ω1 and Ω2 were known. Then u(1) and u(2) within Ω1 and Ω2, respectively, can

be exactly computed as discussed for problem (3.10). Here, u0|Γ = u
(i)
I is given by

u
(i)
I =

(
A

(i)
II

)−1
(f

(i)
I −A

(i)
IΓuΓ) , i = 1, 2 . (3.36)

Thus, it remains to compute the unknown boundary function uΓ := u(1)|Γ =
u(2)|Γ. Again, this will be done by solving equation (3.18) stated as the Steklov-
Poincaré interface equation (3.26). Since we have shown how to invert the Steklov-
Poincaré operator S(i) by means of submatrices of A(i), we are left with the com-

putation of ∂niu
(i)
f , i = 1, 2. This can be reached by the same procedure used to

compute (3.30). Since Lu
(i)
f = f (i), i = 1, 2, we obtain

a(u
(i)
f , v) = (f (i), v) +

〈
∂niu

(i)
f , v

〉

Γ
, i = 1, 2 , ∀ v ∈ V . (3.37)

Discretization yields the linear systems

(

A
(i)
II A

(i)
IΓ

A
(i)
ΓI A

(i)
ΓΓ

)(

u
(i)
f

0

)

=

(

f
(i)
I

f
(i)
Γ + ∂ni

u
(i)
f |Γ

)

, i = 1, 2 . (3.38)

Due to the system (3.15)–(3.18), we have to solve these two linear systems si-
multaneously, along with the system (3.31) applied to either domain Ωi, i = 1, 2.

Since ui = u
(i)
0 + u

(i)
f , summation of the two systems (3.31) and (3.38) for each

domain, respectively, gives:

(

A
(i)
II A

(i)
IΓ

A
(i)
ΓI A

(i)
ΓΓ

)(

u
(i)
I

u
(i)
Γ

)

=

(

f
(i)
I

f
(i)
Γ + ∂ni

u(i)|Γ

)

, i = 1, 2 . (3.39)

29 3.1. The Mathematical Basis of Substructuring

We combine these equations into a single system:





A
(1)
II 0 A

(1)
IΓ

0 A
(2)
II A

(2)
IΓ

A
(1)
ΓI A

(2)
ΓI A

(1)
ΓΓ +A

(2)
ΓΓ











u
(1)
I

u
(2)
I

uΓ




 =






f
(1)
I

f
(2)
I

fΓ + ∂n1u
(1)|Γ + ∂n2u

(2)|Γ




 , (3.40)

where fΓ = f
(1)
Γ + f

(2)
Γ . By solving the first two equations for u

(1)
I , u

(2)
I and substi-

tution into the third equation of (3.40), we conclude that (3.18) holds iff:

A
(1)
ΓI

(
A

(1)
II

)−1
(f

(1)
I −A

(1)
IΓuΓ) +A

(2)
ΓI

(
A

(2)
II

)−1
(f

(2)
I −A

(2)
IΓuΓ) +

(
A

(1)
ΓΓ +A

(2)
ΓΓ

)
uΓ = fΓ .

Applying representation (3.32) of the Schur complement we finally obtain

(
S(1) + S(2)

)

︸ ︷︷ ︸

=:S

uΓ = fΓ −A(1)
ΓI

(
A

(1)
II

)−1
f

(1)
I −A

(2)
ΓI

(
A

(2)
II

)−1
f

(2)
I

︸ ︷︷ ︸

=:χ

(3.41)

being denoted as the Schur complement system and corresponding to the discretiza-
tion of the Steklov-Poincaré interface equation (3.26). Recall that equation (3.41)
was derived by substituting (3.15)–(3.17) into (3.18). Accordingly, imposing the
solution uΓ to (3.41) as boundary conditions as required in (3.17), the functions u(1)

and u(2) can be computed from (3.15) and (3.16) such that (3.19) holds.

3.1.2.2 The Multiple Subdomain Case

Let us now consider the case of N > 2 subdomains {Ωi|i = 1, . . . ,N}. Thereby,
we will make use of restriction operators Ri which restrict the nodal variables on Γ
those on each local shared boundary Γi, i = 1, . . . ,N , respectively. Its inverses R⊤

i

then the extensions by zero are from Γi to Γ. Accordingly, let A(i)u(i) = b(i) be
the original problem restricted to either subdomain and A(i) := RiAR

⊤
i . Further-

more, we consider each local stiffness matrix A(i) to be partitioned as having been
introduced with (3.8). Then, the local Schur complements are defined by

S(i) = A
(i)
ΓΓ −A

(i)
ΓI

(
A

(i)
II

)−1
A

(i)
IΓ, i = 1, . . . ,N . (3.42)

As opposed to the two-subdomain case, the local problem associated to A
(i)
II can

exhibit only artificial, Dirichlet boundary conditions, which is the case for interior
subdomains Ωi, i.e. ∂Ωi ∩ ∂Ω = ∅.

Subsequently, the Schur complement equation here reads

(N∑

i=1

R⊤
i S

(i)Ri

)

︸ ︷︷ ︸

=:S

uΓ =

N∑

i=1

R⊤
i f

(i)
Γ −

N∑

i=1

R⊤
i A

(i)
ΓI

(
A

(i)
II

)−1
f

(i)
I

︸ ︷︷ ︸

=:χ

, (3.43)

Chapter 3. Non-overlapping Domain Decomposition Methods 30

which can be derived in the same manner as in the two-subdomain case. With
this formulation the direct clues for parallel computation become quite clear: the
action of the global Schur complement matrix S mainly consists of those of the
local matrices S(i), which themselves require the solving local Dirichlet problems
(see above). Since the R⊤

i S
(i)Ri can be applied independently, so can be the local

solutions, that is at the same time on several processing nodes. This will be the
starting point of almost all methods determining a solution for uΓ to be presented
below. Once a such has been determined, the remaining values on Ω \ Γ are given
by

u
(i)
I =

(
A

(i)
II

)−1(
f

(i)
I −A

(i)
IΓRi u

Γ
)
, i = 1, . . . ,N , (3.44)

cf. (3.36) also.

An important issue with the case of multiple subdomains is the fact that for
many prominent model problems, such as the Poisson problem or that of linear elas-
ticity [98], for interior subdomains, i.e. those where ∂Ωi ∩ ∂Ω = ∅, the correspond-
ing A(i) become singular, and so the corresponding S(i) through (3.35), which is due
to purely artificial Neumann boundary conditions in that case. As a consequence,
if particular A(i) and S(i) are singular, it also means their null spaces kernel

(
A(i)

)

and kernel
(
S(i)

)
, respectively, are non-empty. In the case of the Poisson equation

−∆u = f on Ωi, u = 0 on ∂Ω (3.45)

for example, replacing the original Dirichlet boundary conditions by any Neumann
boundary conditions yields a singular problem, since u will then be defined only up
to a constant. Consequently, the operator’s null space would comprise all constant
functions on Ωi, which would hold true for the Schur complement operator on Γi
too. Those null spaces will become important with the coarse-grid preconditioners
being presented in Section 3.2.3.3 and Section 3.2.4.1 below.

3.2 Iterative Substructuring Methods

The starting point of all substructuring methods is the solving of equation (3.43).
Roughly, they can be classified in three groups.

The first and oldest group, denoted by direct substructuring methods, aim at
assembling and solving (3.43) explicitly. Thereby, the global Schur complement S is
not assembled in one step. Instead, the local Schur complements S(i) are assembled
themselves by even smaller ones in a recursive manner. That is, the direct substruc-
turing methods process upwards a tree of local Schur complement matrices, at the
top of which is the global one S. Once the global Schur complement equation has
been solved, typically by factorization, the tree is descended and it is backsolved for

31 3.2. Iterative Substructuring Methods

the remaining variables according to (3.44). Parallel computation comes into play
both in the assembling and the backsolve phase, and thus very large linear systems
can be solved on parallel machines. However, due to the Schur complements being
dense matrices, direct methods exhibit a high demand both in computation and in
memory.

In contrast, with so-called iterative substructuring methods, the second group of
methods, the Schur complements in (3.43) are never calculated explicitly. Instead,
iterative solving methods are employed, such as Richardson or PCG iteration, where
only the actions of the S(i) to some vector, but not the operator matrices themselves
are computed. This amounts to solving N local Dirichlet problems at every itera-
tion in parallel, cf. Section 3.1.1.2. Thus, preconditioning is necessary, since S is
usually very ill-conditioned. In fact, methods of this group only differ in the type of
preconditioner they employ, which, however, arises from quite different approaches
and leads to different algorithms in the end.

More recently, dual approaches have arisen, denoted by Finite Element Tearing
and Interconnecting (FETI). There, (3.43) is broken up into the local Schur comple-

ment equations S(i)u
(i)
Γ = χ(i), i = 1, . . . ,N , yielding a duplication of variables in uΓ,

and restating them as quadratic minimization problems. Equality of the duplicated
variables then is enforced by additional constraints. By Lagrangian relaxation of the
such defined constrained optimization problem, it is then restated as a dual problem
with respect to Lagrange multipliers λ, which is solved by a modified PCG iteration.

In the following, we will focus on iterative substructuring methods as well as
FETI methods, and elaborate on their mathematical foundation as well as algorith-
mic implementation. Direct substructuring methods will not be focused on further,
because of their disadvantages previously mentioned and since they have been over-
come by the more recent iterative methods.

3.2.1 One-level Methods on Two Subdomains

We will start with the two most basic iterative methods on two subdomains and
explain their link to the Schur complement equation.

Thereby, we always assume (3.41) for being solved by a Richardson iteration
using different kinds of preconditioners P :

uk+1 = uk + θP (χ− S uk), (3.46)

with θ > 0 being an acceleration parameter and k ≥ 0 denoting the iteration count.
As a matter of fact, all the following methods only differ in the type of precondi-
tioner P , which, however, arises from quite different approaches and also leads to
different kind of algorithms in the end. The same holds with the primal methods in
the case of multiple subdomains, where PCG iteration will be employed.

Chapter 3. Non-overlapping Domain Decomposition Methods 32

Although the following algorithms do not provide clues for parallel computation,
they will give the building blocks for those in the multiple-subdomain case, and
elucidate the connection between the iterative solving of the interface equation (3.41)
and the local problems on each subdomain.

Finally, note that the following preconditioners are commonly referred to as in-
terface preconditioners, according to their definition on the common boundary Γ.

3.2.1.1 The Dirichlet-Neumann Method

Let us start with the algorithm first. The Dirichlet-Neumann method, cf. e.g. [12,
17], is given in Algorithm 1. It is known to converge to the true solution uΓ of (3.41)
for an acceleration parameter 0 < θ < 2

ν , where ν denoting the greatest eigenvalue

of S(2)−1
S. That is, one has to first solve a local problem Ω1 with artificial Dirichlet

boundary conditions at Γ, followed by a problem on Ω2 with artificial Neumann
boundary conditions. The two problems in Algorithm 1 also allow for the following
weak formulation, see, e.g., [101]:

{

a1(u
(1),k, v(1)) = (f (1), v(1))Ω1 ∀v(1) ∈ V 0(Ω1)

u(1),k+1 = u
(k)
Γ on Γ

(3.47)

{

a2(u
(2),k, v(2)) = (f (2), v(2))Ω2 ∀v(2) ∈ V 0(Ω2)

a2(u
(2),k, Pν) = (f (2), Pν)Ω2 + (f (1), Pν)Ω1 − a1(u

(1),k, Pν) ∀ν ∈ V (Γ) ,

(3.48)

where the last equation corresponds the weak formulation of the Neumann boundary
conditions on Γ in in the second problem in Algorithm 1.

Discretization then results in the linear systems of equations

A
(1)
II u

(1),k+1
I = f

(1)
I −AIΓukΓ (3.49)

and
(

A
(2)
II A

(2)
IΓ

A
(2)
ΓI A

(2)
ΓΓ

)(

u
(2),k+1
I

u
k+1/2
Γ

)

=

(

f
(2)
I

fΓ −A(1)
ΓI u

(1),k+1 −A(1)
ΓΓu

k
Γ

)

. (3.50)

Moreover, algebraic solving for u
(1),k+1
I in (3.49) yields

u
(1),k+1
I =

(
A

(1)
II

)−1
f

(1)
I −

(
A

(1)
II

)−1
A

(1)
IΓu

k
Γ , (3.51)

33 3.2. Iterative Substructuring Methods

Algorithm 1: The Dirichlet-Neumann method on two subdomains

initialize u1
Γ with an arbitrary value

iterate k = 1, 2, . . . until convergence

solve for u(1),k+1:







Lu(1),k+1 = f (1) in Ω1,

∂nu
(1),k+1 = 0 on ∂Ω1 \ Γ,

u(1),k+1 = ukΓ on Γ

solve for u(2),k+1:







Lu(2),k+1 = f (2) in Ω2,

∂nu
(2),k+1 = 0 on ∂Ω2 \ Γ

∂nu
(2),k+1 = ∂nu

(1),k+1 on Γ ,

update: uk+1
Γ ← θu(2),k+1|Γ + (1− θ) ukΓ,

whereas eliminating u
(2),k+1
I in (3.50) results in

(
A

(2)
ΓΓ −A

(2)
ΓI

(
A

(2)
II

)−1
A

(2)
IΓ

)
u
k+1/2
Γ

= fΓ −A(1)
ΓI u

(1),k+1
I −A(1)

ΓΓuΓ −A(2)
ΓI

(
A

(2)
II

)−1
f

(2)
I ,

(3.52)

respectively. Substituting the expression for u
(1),k+1
I into (3.52) and subsequent

application of (3.42) results in

S(2)u
k+1/2
Γ = fΓ −A(2)

ΓI

(
A

(1)
ΓΓ

)−1
f

(1)
I −A

(2)
ΓI

(
A

(2)
ΓΓ

)−1
f

(2)
I − S(1)ukΓ . (3.53)

Also, we can identify the remaining terms which contain submatrices or subvectors
of the original linear system of equations as the right-hand side of (3.41):

S(2)u
k+1/2
Γ = χ− S(1)ukΓ . (3.54)

Finally, by eliminating for u
k+1/2
Γ and inserting the result into the update equation

of Algorithm 1 gives

uk+1
Γ = θS(2)−1(

χ− S(1)ukΓ
)

+ (1− θ)ukΓ (3.55)

⇔ uk+1
Γ = ukΓ + θS(2)−1(

χ− SukΓ
)
. (3.56)

The latter equation reveals that the algorithm indeed is a Richardson iteration on the
interface variables uΓ employing the local Schur complement S(2) as preconditioner.

Chapter 3. Non-overlapping Domain Decomposition Methods 34

Furthermore, (3.55) can be also explained by the details given in Section 3.1.1.2 and
Section 3.1.1.3: the problem on Ω1 having Dirichlet conditions at Γ is equivalent to
the action of S(1), and the Neumann problem on Ω2 to the action of S(2)−1

.

The reason for using S(2)−1
as a preconditioner here is because of the fact that its

eigenvalue spectrum is equivalent to S = S(1) + S(2) [12]. In particular, it is known
for condition number κ, i.e. the ratio of the largest to the smallest eigenvalue, of
the preconditioned operator to be independent from the mesh size h:

κ
((
S(2)

)−1
S
)

≤ Ĉ (3.57)

for a positive constant Ĉ. As a consequence, the error reduction rate, or convergence
rate, of the Dirichlet-Neumann algorithm is bound upwards independently of the
number of unknowns, i.e. the size of the problem. All preconditioners providing this
property are commonly referred to as optimal.

Note that, since S(i), i = 1, 2 is a symmetric preconditioner, if A(i) is symmetric
also, PCG iteration can be used to accelerate the Richardson procedure.

3.2.1.2 The Neumann-Neumann Method

Another important interface preconditioner is given by the Neumann-Neumann pre-
conditioner [14, 42, 85], reading

PNN :=
(
ρ1S

(1)−1
+ ρ2S

(2)−1)
(3.58)

where ρ1 and ρ2 denote two positive weights chosen such that ρ1 + ρ2 = 1. Thus,
the Richardson iteration is of the following form:

uk+1
Γ = ukΓ + θ

(

ρ1S
(1)−1

+ ρ2S
(2)−1

)(

χ− (S(1) + S(2)) ukΓ

)

. (3.59)

Consequently, the preconditioning step requires to solve a Neumann problem on both
subdomains, which is given in detail in Algorithm 2.

That is, the amount of computational work doubles in comparison to the previous
method. However computation time remains nearly the same if each subdomain
problem is solved on two processing nodes in parallel.

Besides the fact that the NN preconditioner is also optimal, its advantages arise
from the possibility of compensating for coefficient jumps at Γ through adjusting
the weights ρ1, ρ2 accordingly. The same holds for crosspoints on Γ in the case of
more than two subdomains also.

35 3.2. Iterative Substructuring Methods

Algorithm 2: The Neumann-Neumann method on two subdomains

initialize u1
Γ with an arbitrary value

iterate k = 1, 2, . . . until convergence

solve for u(i),k+1:







Lu(i),k+1 = f (i) in Ωi,

∂nu
(i),k+1 = 0 on ∂Ωi \ Γ,

u(i),k+1 = ukΓ on Γ

i = 1, 2

solve for w(i),k+1







Lw(i),k+1 = 0 in Ωi,

∂nw
(i),k+1 = 0 on ∂Ωi \ Γ, i = 1, 2

∂nw
(i),k+1 = ∂n w(1),k+1 − ∂nw(2),k+1 on Γ

update: uk+1
Γ ← ukΓ − θ

(
σ1w

(1),k+1|Γ − σ2w
(2),k+1|Γ

)
.

3.2.1.3 Other Methods

Several other methods have emerged. Besides variants to the Dirichlet-Neumann
method, such as the Robin method [88], we here mention the probing precondition-
ing method [31], where it is aimed at estimating a preconditioner matrix explicitly,
which can consists of only a few diagonals, prior to the iteration, which can then be
effectively inverted while solving. In order to get a good estimate, the action of S is
probed, i.e. calculated for a small set of chosen vectors.

Finally, for the standard model problem, the Poisson problem, an explicit pre-
conditioner based on an algebraic diagonalization of S has been devised, giving the
so-called J-operator [11].

3.2.2 One-level Methods on Multiple Subdomains

After having explained the role of interface preconditioners as well as their com-
putation for two well-known types on two subdomains, in the following we will
concentrate on the case of many subdomains. In this section, we restrict our focus
to one-level preconditioners, which provide only a very limited parallel scalability,
and proceed in the succeeding sections with two-level extensions which will overcome
this drawback.

Typically, a Krylov subspace method is employed, such as PCG or GMRES [63,
68], in order to solve the Schur complement equation (3.43). Since A is symmetric
and positive definite for our model problem, so is S, for which reason we only consider

Chapter 3. Non-overlapping Domain Decomposition Methods 36

PCG iteration as solving procedure in the following.
As with the Richardson iteration in the two-subdomain case, here too the meth-

ods only differ in the type of preconditioner employed as well as the choice of initial
value in a few cases. The operator application step

u←
(N∑

i=1

R⊤
i S

(i)Ri

)

r (3.60)

always remains the same, and mainly amounts to solving N Dirichlet problems, cf.
Section 3.1.1.2, in parallel. Also note that the actions of Ri and R⊤

i correspond to
a scattering of the input vector r to the N computing nodes, or a gathering of the
results from them, respectively. Both operations also allow for concurrent execution,
depending on the used hard- and software platform.

Moreover, upper bounds for condition number κ(P−1S) in dependence of H and
therefore the number of subdomains, measured by 1

H2 , play an important role with
the analysis of the forthcoming preconditioners P−1. Thereby, it is well known, [69,
p. 272], for κ(P−1S) to limit the convergence rate of the PCG iteration according
to:

||û− uk||
||û− u0|| ≤ 2

ck

1 + c2k
with c =

(√
κ− 1√
κ+ 1

)

(3.61)

with û denoting the true solution, u0 the initial value and k the iteration count. We
will make use of this relationship in the experiments presented at the end of this
section.

3.2.2.1 The Dirichlet-Neumann Preconditioner

Generalizing the two-subdomain case, half of the local Schur complement inverses
S(i)−1

serve as the building blocks of the Dirichlet-Neumann (DN) preconditioner [44,
9], given by

P−1
DN :=

∑

i∈IR
R⊤
i S

(i)−1
Ri , (3.62)

where IR denotes a subset of all subdomain indices, such that none of corresponding
subdomains are adjacent. Note that choosing IR is equivalent to applying a red-
black coloring to the partition of Ω. See Fig. 3.2(a) for an example, where IR then
refers to the indices of the ’red’ subdomains. Consequently, the DN preconditioner
can only be applied for partitions allowing for such a coloring.

Note that for certain model problems, the S(i) of interior subdomains can be
singular, as already mentioned in Section 3.1.2.2. As a remedy, the singular

(
A(i)

)−1

37 3.2. Iterative Substructuring Methods

in (3.35) are replaced by pseudo-inverses
(
A(i)

)†
, [42, 46], which can be obtained by

adding small constants to the diagonal entries of
(
A(i)

)
, for example. Then, through

computing the action of
(
A(i)

)†
in (3.35), one determines the result of applying the

pseudo-inverses
(
S(i)

)†
.

3.2.2.2 The Neumann-Neumann Preconditioner

Fortunately, a coloring of the subdomains is not required with the Neumann-Neumann
(NN) preconditioner [14, 85, 42, 47, 49]. Here, all Schur complement inverses are
involved equally:

P−1
NN :=

(∑

i

R⊤
i D

(i)S(i)−1
D(i)Ri

)

, (3.63)

where D(i) are diagonal weighting matrices to be focused on below. That is, the
NN preconditioner requires solving local Neumann problems on each of the subdo-
main. However, since this can be done in parallel, the run-time is more or less equal
to that of the DN preconditioner. In addition, the NN preconditioner is more robust
against coefficient jumps of A across subdomain boundaries and applies to partitions
where a red-black coloring is not possible.

The D(i) denote weighting matrices, which, in general, are chosen such that they
give a partition of unity, that is

∑

i

R⊤
i DiRi = I . (3.64)

In most cases, their diagonal entries are determined by the pseudo-inverses of the
counting functions νi(x) ∈ V (Γi), i = 1, . . . ,N , the latter giving the number of
subdomains a point x on Γ is a boundary point of. To be concrete, the νi(x) can be
defined as:

νi(x) :=







|Nx| x ∈ ∂Ωi ∩ ∂Ω

1 x ∈ (∂Ωi ∩ ∂Ω) \ Γ

0 x ∈ Γ \ ∂Ωi

i = 1, . . . ,N , (3.65)

where Nx denotes the indices of those subdomains, whose boundaries contain x, and
|Nx| refers to the number of such. Subsequently, the pseudo-inverses ν†i (x), which
again give the diagonal entries of the D(i), read

ν†i (x) =

{

ν−1
i (x) x ∈ ∂Ωi

0 x ∈ (Γ ∪ ∂Ω) \ ∂Ωi

. (3.66)

Chapter 3. Non-overlapping Domain Decomposition Methods 38

However, in case of heavily varying coefficients in the original operator matrix A
across subdomain boundaries, which cause the convergence of the Dirichlet-Neumann
method to deteriorate, |Nx| in (3.65) will be replaced by a sum of weightening func-
tions,

∑

j∈Nx
ρχj , in order to compensate for that hindrance. See, e.g. [119, 120] for

further details.
Both for the Neumann-Neumann as well as Dirichlet-Neumann preconditioned

operator matrix S, the condition number is known to be bounded according to

κ(P−1S) ≤ C 1

H2

(

1 + log
H

h

)2

(3.67)

where P−1 = P−1
NN or P−1 = P−1

DN , respectively, and C being a positive, scalar
constant. This reveals that the conditioning of P−1S deteriorates significantly with
decreasing subdomain sizes H, i.e. increasing number of subdomains. An explana-
tion is given by the error propagation argument: Since PBJ couples only the un-
knowns at adjacent subdomain boundaries, a residual error propagates only with the
speed of one subdomain per iteration. Consequently, the necessary number of itera-
tions must be at least 1/H. Therefore, the parallel scalability of a Krylov subspace
method utilizing NN or DN preconditioning is quite limited. This will be overcome
by the introduction of a second, coarse-level preconditioner, to be presented later.

(a) Partition with red-black
coloring as employed with the
Dirichlet-Neumann precondi-
tioner.

(b) Dividing Γ further into
edges and vertices as utilized
with the Block-Jacobi precon-
ditioner.

(c) Defining local regions
around the vertices gives the
basis for the Vertex Space
preconditioner.

Figure 3.2: Exemplary partitions used with the different substructuring methods.

3.2.2.3 The Block-Jacobi Preconditioner

As opposed to the Neumann-Neumann preconditioner, the Block Jacobi (BJ) pre-
conditioner is built upon a more geometrical decomposition of S. Here, the Schur

39 3.2. Iterative Substructuring Methods

complement equation is permuted according to the edges and vertices of Γ, such
that S can be written as

S =










SE1E1 . . . SE1Em SE1V

SE2E1 . . . SE2Em SE2V
...

. . .
...

...
SEmE1 . . . SEmEm SEmV

SV E1 . . . SV Em SV V










, (3.68)

where the subscript EiEj refers to the edge on the boundary between subdomain
Ωi and Ωj , and V to the set of all vertices. See Figure 3.2(b) for an illustrative
example. Note that SEiEj

is a zero-matrix if ∂Ωi and ∂Ωj have no point in common.
Neglecting the couplings between the edges and vertices of adjacent subdomains

then gives the basis for the preconditioner

P−1
BJ :=











S−1
E1E1

0 . . . 0

0 S−1
E2E2

0 . . . 0
...

. . .
. . .

. . .
...

0 . . . 0 S−1
ENE

ENE
0

0 . . . 0 S̃−1
V V











(3.69)

where S̃V V not only contains the diagonal of SV V , but also the couplings of adjacent
vertices.

By defining R⊤
Ei

as the extension by zero from the local edge ΓEi
to Γ, and

similarly R⊤
V as that from ΓV to Γ, (3.69) can be compactly written as

P−1
J =

m∑

i=1

R⊤
Ei
S−1
EiEi

REi
+R⊤

V S̃
−1
V RV . (3.70)

Again, the S−1
EiEi

are never computed explicitly. Since the inverses of the Schur
complements can be written as

S−1
EiEi

=
(
0 I

)
(
AIijIij AIijEi

A⊤
IijEi

AEiEi

)(
0
I

)−1

, (3.71)

with Iij referring to the interior nodes of Ωi and Ωj, the action of S−1
EiEi

corresponds
to solving a local Neumann problem on Ωi ∪Ωj ∪Eij .

On the other hand, due to AV V = RVAR
⊤
V being spectrally equivalent to SV V ,

e.g. [112], A−1
V V is commonly used to approximate S−1

V V .
As with the previous preconditioners, the condition number of the BJ precon-

ditioner P−1
BJ also worsens for increasing number of subdomains, which is due to

Chapter 3. Non-overlapping Domain Decomposition Methods 40

neglecting the couplings between subdomains. In particular, the upper bound (3.67)
applies also, [16, 44]. In addition, coefficient jumps between subdomains are known
to have a much stronger negative influence on the condition number κ.

3.2.3 Two-Level Preconditioners

Similar to the one-level overlapping methods (cf. Sec. 4.1), also iterative substructur-
ing methods exhibit a limited parallel scalability, which is due to the to deterioration
of condition number for an increasing number of subdomains. In particular, the lat-
ter fact is reflected by the factor 1

H2 in the upper bound of the conditioner numbers,
(3.67).

As in the overlapping case this is overcome by augmenting the existing precon-
ditioner by a coarse-grid preconditioning, which leads to an crude error propagation
throughout all unknowns on Γ for every iteration. However, as opposed to the over-
lapping two-level methods, the involved coarse problems here are of much smaller
size in relation to those on the fine grid. Usually, they consist of only one unknown
per subdomain. Thereby, almost optimal preconditioners are constructed, in the
sense that the condition number bounds are almost independent of the number of
subdomains and thus from the subdomain mesh size H.

We will start with two such approaches which extend the Block Jacobi precon-
ditioner, and then move on to the extension of the Neumann-Neumman precondi-
tioner, which will lead us to the widely used Balancing Neumann-Neumann (BNN)
preconditioner.

All of the following so-called two-level preconditioners yield condition numbers,
which do not deteriorate with decreasing H. In particular, the following upper limit
will hold:

κ(P−1S) ≤ C
(

1 + log
H

h

)2

(3.72)

for a positive constant C, which only depends on the relative subdomain size H
h .

Consequently, the number of PCG iterations in relation to a given error threshold
remains almost constant, if the number of subdomains is increased while fixing the
subdomain size. In the alternative case that the subdomain sizes shrink, because of
keeping the total problem size constant, (3.72) even decreases slowly, due to the finer
coarse-grid couplings. On the other hand however, the coarse systems to be solved
provide no clues for coarse-grained parallelization, and thus are usually computed
sequentially on one central processing node, which increases the computation and
communication time by some fixed costs per iteration significantly. Thus, two-level
preconditioners provide a much better scalability than their one-level counterparts,
although at additional fixed computational costs.

41 3.2. Iterative Substructuring Methods

3.2.3.1 The Bramble-Pasciak-Schatz Preconditioner

One of first two-level preconditioners was proposed by Bramble et al. in 1986 [16],
whose main idea is to replace the purely vertices-based submatrix S̃V V in (3.69)
by a coarse variant of the original stiffness matrix A, giving the so-called Bramble-
Pasciak-Schatz (BPS) preconditioner.

Let AH be the stiffness matrix of a finite element discretization of (2.11) on the
coarse triangulation T H . Furthermore, let R⊤

H be the weighted extension matrix
interpolating the nodal variables on T H to those on T h|Γ. The BPS preconditioner
then reads:

P−1
BPS :=

m∑

i=1

R⊤
Ei
S̃−1
EiEi

REi
+R⊤

HA
−1
H R̂H . (3.73)

That is, in contrast to the Block Jacobi preconditioner (3.70) the solely vertices-
based term R⊤

V S
−1
V VRV is replaced by the matrix RTHAHRH , which yields a coarse

coupling of all unknowns on Γ. Thereby, a global error propagation is realized for
every application of PBPS.

In particular, it is known that (3.72) holds for P−1 = P−1
BPSS in two dimen-

sions. In the three-dimensional case1 (3.73) does not hold, for which reason the
BPS preconditioner has been further developed to the Wire Basket preconditioners
[110, 111, 18], where the coarse problem is build upon the wire basket, i.e. the
union of edges and vertices, in order to reach the same upper limit (3.72) in three
dimensions as well.

3.2.3.2 The Vertex Space Preconditioner

In aiming to make the condition number independent of the relative subdomain sizes
also, i.e. abolishing the term H

h , couplings in local regions around the vertices at Γ
are considered in addition.

For each i = 1, . . . , NV , let Γδi refer to the union of the vertex node ΓVi
and

all those nearby nodes on Γ, which have a maximum distance of δ to ΓVi
. See

Fig. 3.2(c) for an example. Furthermore, let R⊤
δi
, i = 1, . . . ,NV be matrix which

extend by zero a nodal vector from Γδi to Γ. Then, by Sδi := R⊤
δi
SR⊤

δi
we denote

the Schur complement with respect to each such vertex region. In making use of
these components, the Vertex Space (VS) preconditioner [113, 114, 10, 64] reads as

1There, the coarse problem is defined on the vertices also, but is coupled to variables on common
faces and edges.

Chapter 3. Non-overlapping Domain Decomposition Methods 42

follows:

PVS :=

m∑

i=1

R⊤
Ei
S̃−1
EiEi

REi
+R⊤

HA
−1
H RH +

NV∑

i=1

R⊤
δiS

−1
δiδi

Rδi , (3.74)

which extends PBPS additively. Because of these additional terms, the residual errors
can propagated faster across the subdomains, and it is known for the conditioner
number to be limited according to, [48, 114]

κ(P−1
VS S) ≤ C

(

1 + log
H

δ

)2

, (3.75)

for relatively small coefficient discontinuities between the subdomains and

κ(P−1
VS S) ≤ C

(

1 + log
H

h

)

, (3.76)

at the presence of significant coefficient jumps. That is, for choosing an overlap
extent δ > h, the iteration number can be further diminished in comparison to the
BPS preconditioner. On the other hand, the computational costs per iteration are
higher.

Typically, the action of S−1
δiδi

is computed by the same approach as used for SEiEi

in Section 3.2.2.3, where the submatrix A(i) here is the restriction of A to the
union of those subdomains, i.e. edges and vertices, whose closures do intersect
with Γδi . Alternatively, the employment of probing preconditioners has also been
found satisfactory, [33, 32].

In the three dimensional case [64], which is not in the main focus in this work,
edge regions and their corresponding Schur complements are introduced in addition
to the vertex ones. Similar to the latter, an edge region comprises the nodes of an
edge ΓEi

and all those nodes on adjacent faces, which have a maximum distance of δ
from ΓEi

. In doing so, (3.75) and (3.76) also holds for a three-dimensional setting.

3.2.3.3 The Balancing Neumann-Neumann Method

Motivation and Approach. As opposed to the previous approaches which define
a coarse grid preconditioner upon a geometrical decomposition of S, in the following
approach the coarse space was originally motivated from the joint, low-dimensional
null spaces of the local Schur complements S(i). The latter are present for certain
model problems, such as the Poisson problem, cf. Section 3.1.2.2. Since for our model
problem those local null spaces are all empty, i.e. all A(i) and S(i) are invertible, we
will consider the Poisson problem for the time being, in order to better explain the
original motivation. Later on, we will generalize the findings to our model problem.

43 3.2. Iterative Substructuring Methods

With the Poisson problem (3.45) as the problem to be decomposed, the solution
to the corresponding local Schur complement equations

S(i)u(i) = r(i) , i = 1, . . . ,N , (3.77)

on inner subdomains, at the presence of Neumann boundary conditions only, are
only defined up to a constant. Let the indices of those subdomains be referred to by
Nπ in the following. There, S(i)−1

is usually approximated by the Moore-Penrose
pseudo-inverse, [63], S(i)† .

Moreover, in order to assure any solution to (3.77) exist, it is required the right-
hand side r(i) to lie within the range of S(i). The other way round, in case that S is
symmetric, which is the case here, one can equivalently enforce the projection of r(i)

into the null space of S(i) to vanish:

〈

v, r(i)
〉

= 0, ∀v ∈ kernel
(
S(i)

)
, ∀i ∈ Nπ (3.78)

i.e. to be L2-orthogonal to the null space2 of S(i). This is usually realized by
defining matrices Z(i) whose columns span spaces which include the corresponding
null spaces, i.e.

kernel
(
S(i)

)
⊂ range

(
Z(i)

)
, ∀i ∈ Nπ , (3.79)

and to then require

Z(i)⊤r(i) = 0 , ∀i ∈ Nπ (3.80)

to hold.

Based on that, the (low-dimensional) space of (weighted) non-admissible right-
hand sides vectors is defined by

Vr0 :=

{

w ∈ V : w =
∑

i∈π
R(i)⊤D(i)ui, ui ∈ range

(
Z(i)

)

}

, (3.81)

and let

R0 :=
(

Z(π1)⊤D(π1)R(π1) Z(π1−1)⊤D(π1−1)R(π1−1) . . .
)

(3.82)

be the corresponding projection from V (Γ) into Vr0(Γ). For the Poisson problem
for example, Vr0 consists of vectors which are piecewise constant on the interior

2Note that in the case of symmetry range
�
S(i)⊥

�
= kernel

�
S(i)⊤

�
= kernel

�
S(i)

�
.

Chapter 3. Non-overlapping Domain Decomposition Methods 44

subdomains (whose corresponding local problems have artificial Neumann boundary
conditions only) and zero else.

In order the global right-hand side vector r to lie in the orthogonal space of Vr0 ,
a possible component within Vr0 is removed by

r̃ =
(
I − SR⊤

0 S
−1
0 R0

)
r (3.83)

prior to applying the NN preconditioner, where S0 is defined as the projection of S
into Vr0, i.e. S0 := R⊤

0 SR0. This so-called balancing step is applied to the result of
the NN preconditioning,

ũ =
(∑

i

R⊤
i D

(i)S(i)†D(i)Ri

)

r̃ , (3.84)

again,

ỹ ←
(
I −R⊤

0 S
−1
0 R0S

)
ũ , (3.85)

thereby making the preconditioner symmetric.

The Algorithm. Integrating (3.83), (3.84) and (3.85) into a PCG iteration gives
Algorithm 3, see, e.g. [112]. Note that these steps can also be written as one
expression:

P−1
BNN :=

(
I −R⊤

0 S
−1
0 R0S

)(∑

i

R⊤
i D

(i)S(i)†D(i)Ri

)(
I − SR⊤

0 S
−1
0 R0

)

+R⊤
0 S

−1
0 R0 , (3.86)

which is referred to as the Balancing Neumann-Neumann preconditioner.

In comparison to NN preconditioner, the two-level variant requires two additional
applications of S, as well as three times that of R⊤

0 S
−1
0 R0. Whereas the computation

of each the former is exactly the same as with the previous methods, the inversion of
S0 provides no clues for coarse-grained parallelization. Thus it needs to be carried
out on a central processing node which requires additional collecting and spreading
communication steps (represented here by the operators R0 and R⊤

0 , respectively)
for each occurrence of R⊤

0 S
−1
0 R0. Computation costs w.r.t. to the inversion itself are

practically neglectible, since S0 is very small. Typically, S0 is calculated explicitly
or factorized prior to the iteration.

45 3.2. Iterative Substructuring Methods

Algorithm 3: PCG iteration with Balancing Neumann-Neumann precondition-
ing

initialize u0 with an arbitrary value

r0 ← χ− Su0

iterate k = 1, 2, . . . until convergence

r̃k−1 ←
(
I − SR⊤

0 S
−1
0 R0

)
rk−1

r̂k−1 ←
(

N∑

i=1

R⊤
i D

(i)S(i)†D(i)Ri

)

r̃k−1

yk−1 ←
(
I −R⊤

0 S
−1
0 R0S

)
r̂k−1

βk ← yk−1⊤qk−1

yk−2⊤qk−2
[β1 = 0]

pk ← yk−1 + βkpk−1 [p1 = q0]

αk ← yk−1⊤qk−1

pk⊤Spk

λk ← λk−1 + αkpk

rk ← rk−1 − αSpk

The second role of S−1
0 . Besides guaranteeing well-posedness and uniqueness,

the balancing steps lead to a global yet coarse information propagation. In par-
ticular, R⊤

0 S
−1
0 R0 plays the role of a coarse global operator there. This becomes

clear when considering the coarse space Vr0 in case of the Poisson problem as model
problem. As explained above, there the local null spaces of interior subproblems
consist of constant functions and thus the coarse space is of the form

Vr0 = span
{

R(i)⊤ν†i : kernel
(
S(i)

)
6= ∅
}

, (3.87)

with the weights ν†i as defined in (3.66). That is, the action of R0 is to compute a
weighted sum for each inner subdomain and S0 gives a global coupling of all such
sums according to a coarse representation of S. Therefore, the balancing steps lead
to a global, yet coarse, error propagation throughout all unknowns on Γ. Thereby,
the only local error propagation property of the NN preconditioner is compensated
for. In fact, the condition number of P−1

BNNS is known to be bounded according
to (3.72) also, and in addition to be independent of strong coefficient jumps across

Chapter 3. Non-overlapping Domain Decomposition Methods 46

subdomain boundaries. Hence, PBNN is close to an optimal preconditioner and in
comparison to the BPS and Vertex Space preconditioners the explicit knowledge
about the image partition geometry is much less.

Empty null spaces. Let us return to our model problem given in Section 2.4.
There, Vr0 is empty, since none of the local Schur complements S(i) are singular,
cf. Section 3.1.2.2. However, following a similar suggestion of Toselli et al. [120,
119], own experiments have shown that assuming the coarse space (3.87) and its
corresponding operators R0 and S0 with the motion estimation problem yields the
same advantageous convergence behavior as for the Poisson problem.

3.2.4 Finite Element Tearing and Interconnection Methods

(a) Completely torn mesh as used with
the dual FETI method

(b) Partially torn mesh as used with the
primal-dual FETI method

Figure 3.3: Examples of torn meshes as used with the dual and primal-dual FETI

methods. Gray patches indicate necessary equality constraints in the underlying energy
minimization problems.

3.2.4.1 The One-Level FETI Method

Approach. Substructuring approaches presented so far aimed at solving for the
global vector uΓ in (3.43) by PCG iteration. In contrast, the following methods
consider the local problem S(i)u(i) = χ(i), i = 1, . . . ,N separately — yielding a
duplication of unknowns from the view of the global problem — and enforce equality
across the subdomains boundaries by additional constraints. See Figure 3.3(a) for
an illustration. This gives the outline of the so-called Finite Element Tearing and

47 3.2. Iterative Substructuring Methods

Interconnection (FETI) method [54, 55, 117] which can be seen as a dual method
of BNN preconditioning and has gained strong interest especially in the area of
computational mechanics.

In order to re-establish continuity across the subdomain boundaries, the ap-
proach is to restate the local problems S(i)u(i) = χ(i) as separate optimization prob-
lems first, which are then coupled by additional constraints enforcing equality of the
duplicated unknowns.

First, we will make use of the following definitions:

Ŝ :=









S(1) 0 . . . 0

0 S(2) . . .
...

. . .
. . .

. . . 0

0 . . . 0 S(N)









, ûΓ :=






u
(1)
Γ
...

u
(N)
Γ




 , χ̂ :=






χ(1)

...

χ(N)




 (3.88)

by which the N local problems can be written as

Ŝû = χ̂ . (3.89)

Note that common variables in the global problem (3.43) have been split up into
several local ones. Hence, û has more components than does uΓ.

Subsequently, the inter-connection of the thus duplicated variables is realized by
equality constraints

BΓûΓ = 0 , (3.90)

with the matrix BΓ having a row for each pair of variables to be equal, and each row
consisting of exactly one 1 and one −1, respectively, at the columns corresponding
to each variable pair and zero else.

Now, the purpose of the FETI method is to formulate (3.89) as an optimization
problem which is constrained by the equality conditions stated in (3.90), which reads







J(ûΓ) :=
1

2
û⊤Γ ŜûΓ − χ̂⊤ûΓ → min

BΓûΓ = 0
. (3.91)

In a next step, the equality constraints are relaxed by a Lagrangian approach.
That is, by introducing the multiplier variables λ ∈ R

NB , with NB denoting the
number of equality equations in (3.90), we define the Lagrangian as

L(ûΓ, λ) :=
1

2
û⊤Γ ŜûΓ − χ̂⊤ûΓ + λ⊤BΓûΓ . (3.92)

Chapter 3. Non-overlapping Domain Decomposition Methods 48

by which the original problem (3.91) can be rewritten as the saddle-point problem

inf
ûΓ

max
λ
L(ûΓ, λ) (3.93)

a solution (ûΓ, λ) to which amounts to solving the following (static) equilibrium
equations

{

ŜûΓ +B⊤
Γ λ = χ̂

BΓûΓ = 0
. (3.94)

Algebraically solving the first equation for ûΓ then gives

ûΓ = Ŝ(−1)(χ̂−B⊤
Γ λ) , (3.95)

while Ŝ(−1) has block structure also and consists of the local inverses S(i)−1
. However,

central to FETI methods is the assumption that some of the S(i) are not invertible,
which we will assume for the time being. Also for the time being, we consider
the Poisson problem as model problem, as with the explanation of the Balancing
NN preconditioning above. In that case, the non-existing S(i)−1

in Ŝ−1 are replaced
by any suitable pseudo-inverse S(i)† giving the global pseudo-inverse Ŝ+ and (3.95)
can be rewritten as

ûΓ = Ŝ+(χ̂−B⊤
Γ λ)− Zα , (3.96)

with Zα giving a null space component of the solution, i.e. piecewise constant
vectors on interior subdomains in case of the Poisson model problem. In particular,
Z is made of the local null space-spanning matrices {Z(i) | S(i) singular} and we
have that range

(
Z
)

= kernel
(
Ŝ
)
.

Furthermore, the pseudo-inverse in (3.96) can only be applied if ûΓ in (3.96) is
perpendicular to the null space of Ŝ, i.e.

χ̂−B⊤
Γ λ ⊥ kernel

(
Ŝ
)

(3.97)

with ⊥ denoting orthogonality with respect to the euclidian 2-norm. Due to the
definition of Z, (3.97) can be equivalently written as

Z⊤(χ̂−B⊤
Γ λ) = 0 . (3.98)

In a next step, the expression for û in (3.96) is inserted into the second equation
of (3.94), which, after a minor modification, results in an equation

BΓŜ
+B⊤

Γ λ = BΓŜ
+χΓ −BΓZα , (3.99)

49 3.2. Iterative Substructuring Methods

where uΓ as been eliminated. By utilizing the abbreviating notation F := BΓŜ
+B⊤

Γ ,

G⊤ := Z⊤B⊤
Γ and d := BΓŜ

+χ̂ this can be compactly written as

Fλ+Gα = d . (3.100)

In combination with the necessary condition (3.98), which is rewritten using afore-
mentioned abbreviations as well as e := Z⊤χ̂, we obtain the system

{

Fλ+Gα = d

G⊤λ = e
, (3.101)

where the original variables ûΓ being sought for have been eliminated.
Because problem (3.91) is convex, (3.101) can be derived alternatively by con-

sidering the dual problem

max
λ
C(λ) := max

λ
inf
u
L(u, λ) , (3.102)

see, e.g. [55, 117]. For that reason, ûΓ and λ are commonly called primal and dual
(or multiplier) variables.

The Algorithm. With the FETI method, the dual vector λ in (3.101) first is
solved for, which is done in the null space kernel

(
G⊤) in order to be independent

from α. To be precise, this is realized by the projection

P := I −G(G⊤G)−1G⊤ , (3.103)

which is chosen such that range
(
P
)

= kernel
(
G⊤). Multiplying the first equa-

tion (3.101) by P⊤ then simplifies the system to

P⊤Fλ+Gα = P⊤d . (3.104)

Subsequently, the solving procedure is a PCG iteration applied to (3.104), where
the preconditioning step involves a projection by P before and by P⊤ afterwards,
respectively, see Algorithm 4. There, M̃−1 denotes a generic preconditioner, on
which we will detail later on, and we have that Q = I. Note that because of the
specific choice of the initial value, the second equation in (3.101) is fulfilled from the
beginning. Parallelization can be employed in the in the computation of Ŝ†, which
is contained in F , i.e. by solving the actions of the local pseudo-inverses S(i)† and
S(i)−1

, respectively, on different processing nodes.
Furthermore, P and P⊤ not only play the role of projections that areQ-orthogonal

to range
(
G⊤) and range

(
G
)
, respectively, but also that of a global, coarse error prop-

agating step [93]. In particular P and P⊤ can be seen as the dual counterparts of

Chapter 3. Non-overlapping Domain Decomposition Methods 50

Algorithm 4: PCG for the FETI problem iteration using an augmented precon-
ditioning step and a generic preconditioner M̃−1

λ0 ← QG
(
G⊤QG

)−1
e

r0 ← d− Fλ0

iterate k = 1, 2, . . . until convergence

Project: qk−1 ← Prk−1

Precondition: zk−1 ← M̃−1qk−1

Project: yk−1 ← P⊤zk−1

βk ← yk−1⊤qk−1

yk−2⊤qk−2
[β1 = 0]

pk ← yk−1 + βkpk−1 [p1 = q0]

αk ← yk−1⊤qk−1

pk⊤Fpk

λk ← λk−1 + αkpk

rk ← rk−1 − αFpk

the balancing terms (3.83) and (3.85) of the primal BNN method, respectively. Un-
like S0 however, (G⊤G)−1 is not a coarse version of the fine operator F here, but
also yields a global coarse coupling during iteration. In particular, the bounds given
in (3.72) hold for the preconditioner PM̃−1P⊤F also, see [94, 117, 77, 78].

The most standard preconditioner is given by

M̃−1 := BΓŜB
⊤
Γ =

N∑

i=1

B
(i)
Γ Ŝ(i)B

(i)⊤

Γ , (3.105)

which is denoted by the FETI Dirichlet preconditioner [54, 93]. Note that (3.105)
mainly amounts to solving N local Dirichlet problems in parallel, cf. Section 3.1.1.2.
See, e.g. [102] for alternative preconditioners.

In addition, (3.103) is the most simple choice too. In general, the projection is
of the form

P := I −QG(G⊤QG)−1G⊤ . (3.106)

51 3.2. Iterative Substructuring Methods

where Q is a symmetric, positive definite scaling matrix accounting for possible co-
efficient jumps in A across the subdomain boundaries. Thus, Q = M̃−1 is a common
choice. In terms of implementing (G⊤QG)−1, it is common to factorize G⊤QG in
the initialization, e.g. by Cholesky decomposition, in order to keep computation
costs low during iteration when it is applied.

Once a solution λ has been computed, with respect to a given error tolerance,
the null space component α is determined according to

α = (G⊤G)−1G⊤Q(d− Fλ) , (3.107)

by which the complete solution to the dual problem (3.101) is obtained. Finally, the
primal solution uΓ is calculated according to equation (3.95). Also here, direct clues
for coarse-grained parallelization exist.

Empty Null spaces. Unlike with the BNN method, the algorithms needs to be
changed for the of case of non-singular local matrices A(i) and therefore empty
null spaces kernel

(
S(i)

)
. Similarly, applying the above approach to model problems

exhibiting this property would yield an empty matrix Z and P = I. Thus, global
error propagation would not be present by the above approach. As a remedy, it
is shown [50, 119] that one can define an artificial coarse space range

(
Z
)
, if the

columns vectors of Z are chosen such that at least the following assumption3 holds:

range
(
Z
)
∩ kernel

(
BΓ

)
= ∅ . (3.108)

If so, G⊤ is defined as above: G⊤ = Z⊤B⊤
Γ . Subsequently, P is chosen to be

P := I −G(G⊤FG)−1G⊤F , (3.109)

that is, P is built upon the operator F , unlike the original definition in (3.106) where
Q is some scaling matrix. Furthermore, the initialization of the iteration needs to
be modified to:

Initialize

λ0 ← G
(
G⊤FG

)−1
F⊤d

r0 ← d− Fλ0
, (3.110)

see [50]. Thereby, one obtains a modified one-level FETI method with the same
convergence properties as above, and therefore it becomes applicable to our original
model problem as well.

3for further details we refer to [119]

Chapter 3. Non-overlapping Domain Decomposition Methods 52

The Second Function of P and Similarities to the BNN Method. Interest-
ingly, P not only has the function of ensuring every update to lye in the null space
of G⊤, but can also be seen as a coarse preconditioner.

In order to elucidate this fact, let us take a closer look at its definition (3.106).
Note that the columns of the product G⊤ = Z⊤B⊤

Γ consist of the rows of BΓ

having been projected into the null space of Ŝ. By definition, B∆ is of size |Γ| ×
|Γ|. In contrary, since almost always kernel

(
Ŝ
)

is of much smaller dimension than

range
(
Ŝ
)
, G⊤ has much fewer rows than columns. Consequently, the productG⊤QG

is of much smaller size than the operator matrix F . Moreover, since
(
G⊤QG

)−1
is

known to be dense, it realizes a global coupling of all unknowns in a coarser dual
subspace when applied. Therefore, P not only has the function of projecting into

the subspace kernel
(
G
)⊤

and thus asserting the constraint (3.97), but also that of a
global, coarse preconditioner having the effect of a global error propagation at every
iteration [93].

Furthermore, one discovers similarities between Algorithm 4 and the Balancing
Neumann-Neumann method presented in Sec. 3.2.3.3, since also with the latter the
coarse-grid correction steps can be interpreted as projection steps. Thus,

(
G⊤QG

)−1

could be seen as the dual counterpart to S−1
C , as well as the recurring projections P =

I −G(G⊤G)−1G⊤ to
(
I − R̂⊤

CS
−1
C R̂CS

)
, and the initial projections QG

(
G⊤QG

)−1

in comparison to R̂⊤
CS

−1
C R̂C [120, 55]. However, unlike with the BNN method, the

coarse problem as well as the projections here do not depend on the operator F , for
which reason it is only a similarity in the algebraic structure. Note that, because of
the latter observation, the pre-projection step with the FETI method cannot be left
out.

3.2.4.2 The Dual-primal FETI Method

More recently, mixed dual-primal approaches have attracted considerable interest,
motived both by the unsatisfying results of dual FETI method applied to problems
of higher order, such as fourth-order plate and shell problems [53] in computational
mechanics, as well as by the fact that the coarse operator of the original method,
i.e. without the adaption explained in the preceding subsection, is dependent on
the model problem’s null space. The idea behind the so-called Dual-Primal FETI
(FETI-DP) methods [51, 52, 95, 100, 75] is to partially reverse the process of tearing
nodes, and thus the duplication of variables, which was the starting point of the one-
level FETI method, such that a few variables in (3.43) remain global. Those degrees
of freedom then are continuous across the subdomains by construction, thereby
diminishing the number of constraints in comparison to the purely dual method.
Finally, one reaches a primal subproblem in addition to the remaining dual one,

53 3.2. Iterative Substructuring Methods

for which reason the FETI-DP method can be seen as intermediate between the
purely dual one-level or two-level FETI methods and the purely primal Balancing
Neumann-Neumann methods.

Approach. One of the standard cases with DP-FETI methods is to have primal
variables at the crosspoints of Γ, i.e. at vertex points being elements of more than
two subdomain boundaries. Thus, we will denote the duplicated nodes by ΓE and
the crosspoints by ΓC , according to which we set up the following global-local Schur
complement systems:












S
(1)
EE 0 . . . 0 S

(1)
EC

0 S
(2)
EE

. . .
... S

(2)
EC

...
. . .

. . . 0
...

0 . . . 0 S
(N)
EE S

(N)
EC

S
(1)⊤

EC S
(2)⊤

EC . . . S
(N)
EC SCC






















u
(1)
E

u
(2)
E
...

u
(N)
E

uc











=











χ
(1)
E

χ
(2)
E
...

χ
(N)
E

χc











, (3.111)

(3.112)

⇔
(
SEE SEC
SEC SCC

)(
uE
uC

)

=

(
χE
χC

)

⇔ Ŝû = χ̂ (3.113)

which, unlike equation (3.88), contains global dependencies in the unknowns at ΓC .
As a consequence, none of the local matrices

S(i) =

(

S
(i)
EE S

(i)
EC

S
(i)⊤

EC S
(i)
CC

)

(3.114)

is singular. As a consequence, here will be no need for a projection as with the dual
FETI method.

Subsequently, by algebraically eliminating for the global variables, in the same
manner as for the degrees of freedom on Ω̄\Γ in Section 3.1.2, we obtain the reduced
system

(
SEE − SECS−1

CCS
⊤
EC

)

︸ ︷︷ ︸

=:S̃EE

= χE − S⊤
CES

−1
CCχC

︸ ︷︷ ︸

χ̃EE

. (3.115)

Again, this is embedded into a minimization problem with additional constraints
ensuring equality of the duplicated degrees of freedom:







J(uE) :=
1

2
u⊤ES̃EEuE − χ̃⊤

EuE → min

BEuE = 0
. (3.116)

Chapter 3. Non-overlapping Domain Decomposition Methods 54

Note that unlike Ŝ in (3.91), here S̃EE is not purely block-diagonal, due to the
term SECS

−1
CCS

⊤
EC in (3.115) realizing a global, coarse discretization of S on ΓC .

As with the one-level FETI approach, problem (3.116) can be rewritten as a
saddle-point problem with respect to ũΓ and the Lagrange variables λ, which would
result in the system of equations

{

S̃ûE +B⊤
Eλ = χ̂

BEûE = 0
. (3.117)

However, in order to explain the final algorithm better we will take two steps
back and reverse both the elimination for the unknowns at ΓC as well as for those
on Ω̄ \ Γ and consider the fully expanded system












A
(1)
RR 0 . . . 0 A

(1)
RC

0 A
(2)
RR

. . .
... A

(2)
RC

...
. . .

. . . 0
...

0 . . . 0 A
(N)
RR A

(N)
RC

A
(1)⊤

RC A
(2)⊤

RC . . . A
(N)⊤

RC ACC






















u
(1)
R

u
(2)
R
...

u
(N)
R

uC











=











f
(1)
R

f
(2)
R
...

f
(N)
R

fC











(3.118)

(3.119)

⇔
(
ARR ARC
ARC ACC

)(
uR
uC

)

=

(
fR
fC

)

, (3.120)

where the subscript R refers to the local nodes, i.e. non-crosspoints here, and C to
the global nodes, i.e. crosspoints in our case. The constrained minimization problem
then reads







J(u) :=
1

2

(
u⊤R u⊤C

)
(
ARR ARC
A⊤
RC ACC

)(
uR
uC

)

−
(
f⊤R fC

)
(
uR
uC

)

→ min

BRuR = 0

, (3.121)

while BR only affects duplicated variables on torn edge nodes, i.e.

BR :=

(
0 0
0 BE

)

. (3.122)

As with the dual FETI method, (3.121) is then stated as saddle-point problem
by introducing Lagrange multipliers λ, a solution to which is obtained by solving

55 3.2. Iterative Substructuring Methods

the following equilibrium equations:





ARR ARC B⊤
R

A⊤
RC ACC 0
BR 0 0









uR
uC
λ



 =





fR
fC
0



 (3.123)

which corresponds to (3.117).
Algebraically solving the first equation for uR yields

uR = A−1
RR

(
fR −B⊤

Rλ−ARCuC
)
, (3.124)

which, inserted into the second and third equation results in

(
BRA

−1
RRB

⊤
Rλ BRA

−1
RRARCuC

−A⊤
RCA

−1
RRB

⊤
Rλ (ACC −A⊤

RCA
−1
RRARC)

)(
λ
uC

)

=

(
BRA

−1
RRfR

fC −A⊤
RCA

−1
RRfR

)

.

(3.125)

By utilizing the notation

FRR := BRA
−1
RRB

⊤
R

FRC := BRA
−1
RRARC

FCC := ACC −A⊤
RCA

−1
RRARC

dR := BRA
−1
RRfR

dC := fC −A⊤
RcA

−1
RRfR

(3.126)

(3.125) can be compactly rewritten as

(
FRR FRC
F⊤
RC FCC

)(
λ
uC

)

=

(
dR
dC

)

. (3.127)

In comparing this system of equations to that in (3.101) two important observations
can be made. First, not all primal variables have been eliminated here. Those on
non-torn nodes are still present since no Lagrange multipliers are associated to them.
Second, because of these global couplings, none of the local problems is singular and
consequently no subspace constraint is required as by the second equation in (3.101).

Solving. With respect to solving (3.127) however, a solution is first sought to the
dual vector λ in the equation

(

FRR + FRCF
−1
CCF

⊤
RC

)

λ = dR − FRCF−1
CCdC , (3.128)

Chapter 3. Non-overlapping Domain Decomposition Methods 56

where uC has been eliminated. As with the dual FETI method, PCG iteration is uti-

lized. Note that unlike F in (3.99), here the operator matrix
(

FRR +FRCF
−1
CCF

⊤
RC

)

consists of two components. The first one, FRR is also block-diagonal and thus will
lead to local and independent problems. The second one, FRCF

−1
CCF

⊤
RC , on the other

hand, results in a coarse, global problem, which arises not from a null space, but
the non-torn nodal variables in (3.111) and (3.118), respectively.

Let us replace all elements withing the brackets in (3.128) except for FCC by its
definitions given in (3.126) again, in order to detail on the real operations to be car-
ried out while solving (FCC will be represented explicitly). The operator application
step within PCG iteration then is implemented by the following substeps [54]:

yR,1 ← BRA
−1
RRB

⊤
R x

zC,1 ← A⊤
RCA

−1
RRB

⊤
R x

zC,2 ← F−1
CC zC,1

yR,2 ← BRA
−1
RRARC zC,2

y ← yR,1 + yR,2 .

(3.129)

while x refers to the vector to which the bracketed term in (3.128) is applied. Because
of the block-diagonal structure ARR, its inversion in the first and second step is
again implemented by concurrent solving of the corresponding local problems for
each subdomain. Its result is then used in the first and second step of (3.129),
whereas with the first one it is multiplied by BR, which mainly corresponds to
a restriction onto the edge nodes, while the second step, A⊤

RC gains a weighted
restriction of the local variables to the global ones on the crosspoints (which can also
be parallelized in the same manner). In the third step, the global error propagation is
realized, whereas the lower-dimensional matrix FCC is usually calculated explicitly or
factorized beforehand, in order to minimize the computational effort during iteration.
Similarly, A−1

RRARC in the fourth step is also pre-calculated explicitly, since the
number of columns in ARC is only that of the number of coarse degrees of freedom.
To summarize, one application of the operator mainly amounts to solving local
problems with hybrid boundary conditions for every subdomain in parallel (A−1

RR),
as well as to solving a lower-dimensional problem (F−1

CC).

Preconditioning. Standard preconditioners are similar to those of the one-level
FETI method. For example, the FETI-DP Dirichlet preconditioner here reads

M̃D :=
N∑

i=1

D(i)B
(i)
R

(

0 0

0 S
(i)
EE

)

B
(i)⊤

R D(i) (3.130)

57 3.3. Experimental Studies

with the Schur complements

S
(i)
EE = A

(i)
EE −A

(i)⊤

IE

(
A

(i)
II

)−1
A

(i)
IE (3.131)

andD(i) being weighting functions accounting for coefficient jumps across subdomain
boundaries. For our model problem, we suggest to use the weights γ†i having been
proposed in [119] and introduced here in the previous section.

Similarly to the one-level method, with the FETI-DP lumped preconditioner it
is omitted the second term of the Schur complement (3.131), resulting in

M̃L :=

N∑

i=1

D(i)B
(i)
R

(

0 0

0 A
(i)
EE

)

B
(i)⊤

R D(i) . (3.132)

Extensions to three Three Dimensions. So far, the primal problem was de-
fined only at the subdomains’ crosspoints. However, especially for three-dimensional
problems, FETI-DP with primal problem so defined gives unsatisfying results in
terms of the convergence rate (see, e.g., [52]). As a remedy, recent research activi-
ties [52, 76, 75] focus on extending the primal problem. For example, continuity can
not only be realized by the identity of the crosspoint variables, but also by that of the
per-edge means. In that case, the dual problem is reduced to asserting equality of
the deviations from the per-edge means only. In the three-dimensional case this ex-
pands to the face-means and/or edge means. In terms of implementating such mean
identities, two different approaches have emerged: First, edge and/or face mean
equalities of adjacent subdomains are enforced by additional Lagrange multipliers,
which are treated as additional components of the coarse, yet primal variables uC ,
and hence are also eliminated when going from equation (3.127) to equation (3.128),
see [52, 76]. Alternatively, such means can be represented explicitly by appropriate
coarse basis functions, see [75].

Scalability. Although the FETI-DP methods provide the same convergence rate
bounds as the purely dual ones, their cost per iteration is lower since only one coarse
problem needs to be solved, which, in general, is also smaller, see, e.g., [51].

3.3 Experimental Studies

Here we study the numerical properties of primal non-overlapping DD methods
experimentally. As two representative algorithms we chose the one-level Neumann-
Neumann (NN) as well as the two-level Balancing Neumann-Neumann (BNN) pre-
conditioners in connection with PCG iteration in order to parallelize the CLG optical

Chapter 3. Non-overlapping Domain Decomposition Methods 58

flow problem, see Section 2.4. In terms of the latter, we consider the correspond-
ing LSE (2.17) being partitioned in the same manner as for the definite Helmholtz
equation in (3.9) and (3.9).

Experiments are conducted on two different data sets: An image pair of the well-
known Marble sequence (512 × 512 pixels), and a synthetically generated particle
image pair (2000 × 2000 pixels) as it appears in particle image velocimetry (PIV).

In particular, the experimental studies focus at the following issues:

(i) The impact of interface preconditioning on the convergence rate of the Krylov
subspace iteration.

(ii) The evolution of the convergence rate while increasing the number of subdo-
mains N having the total number of unknowns n fixed.

(iii) The impact of the subdomain solver’s precision on the convergence rate.

(iv) The scalability behavior on a real parallel machine (PC-cluster with up to 144
processing nodes).

In all experiments, we assume the the total number of unknowns n, and hence
1/h2, with h denoting the mesh-size of the finite element discretization, which is
fixed in our considerations and is only the number of subdomains N , and thus
1/H2, with H denoting the maximum subdomain diameter, which varies with our
experiments. Obviously, there are other scenarios, e.g. those where it sought to
increase the discretization accuracy. In that case, one seeks to decrease mesh-size h
while keeping the total computation constant, which is reached by decreasing H
also, i.e. increasing the number of subdomains and thus distributing the additional
computational effort on more processing nodes. In most image processing applica-
tions, however, the primary goal is to lower the total computation time by increasing
the number of subdomains, i.e. decreasing H while having h fixed.

3.3.1 Parameter Selection and Input Data

For ease of implementation, in the following we assume the image plane Ω to be
partitioned into equally sized, quadratic subdomains Ωi in all experiments, i.e. the
aspect ratio, whose influence on convergence was not in our focus, was one always.

Two distinct datasets served as input data. First, frame 16 and 17 of the well-
known Marble sequence4, Fig. 3.4, was chosen as a representative for the class of a
moving three-dimensional scene, and served as input image pair for the experiments
1–2. In order to investigate the practicability of the proposed methods in the context

4Created 1993 by Michael Otte, Institut für Algorithmen und Kognitive Systeme, University of
Karlsruhe, Germany. Available at http://i21www.ira.uka.de/image sequences.

59 3.3. Experimental Studies

of particle image velocimetry (PIV) also, as a second data set we generated an
2000×2000 image pair consisting of small particle movements (see Fig. 3.4), which
were used for the experiments 2–4. We will refer to the first dataset by ’Marble 512’
and to the second one by ’PIV 2000’ in the following.

The parameter values of the CLG motion estimation were: α = 1000, σ = 2.6,
ρ = 1.8, while the intensity values were from the range [0, 255]. The implementation
was realized in C/C++ using the Intel compiler 7.0, with O3 optimization option,
and MPI-conform[58, 57] inter-process communication libraries on the Linux OS
on standard PC hardware. Vectorization operations (SSE(2) or 3dnow-commands)
were not used.

(a) Frame #16 of the marble data set
(b) True motion field between frame #16
and #17

Figure 3.4: Input data for experiments with the marble data set. (512×512 pixels,
maximum velocity: 2.58 pixels/frame)

3.3.2 Algorithms and Implementation Details

We briefly explain the important details in terms of the parallel implementation. In
case of the used parallelization methods these are the implementation of the action
of the Steklov-Poincaré operator S, cf. Sec. 3.1.2.2, that of the NN preconditioner
PNN , see Sec. 3.2.2.2, and, in case of the BNN method only, that of the coarse
preconditioner S−1

C , see Sec. 3.2.3.3.
A already explained above, S can be written as a sum of local Schur complements:(

∑

iR
Γ⊤

Γi
SiR

Γ⊤

Γi

)

. That is, its application, e.g. within an PCG iteration in order

to solve (3.43), allows for a separation into N local operators Si, whose actions can

Chapter 3. Non-overlapping Domain Decomposition Methods 60

(a) First image of input image pair (b) True motion field

Figure 3.5: Input data for the particle sequence experiments. (2000× 2000 pixels,
maximum velocity: 0.96 pixels/frame)

then be carried in parallel. Again, the local Schur complements are never computed
explicitly, but mainly amount to solving local Dirichlet problems, as pointed out in
Sec. 3.1.1.2. Similarly, the action of PNN is computed by solving the local Neumann
problems associated with the local Schur complement inverses (Si)−1.

Besides the computational aspects, also the question of how to assign optimally
— in terms of communication time — the parallelizable computations to the avail-
able processing nodes, is of importance. This then results in a specific communica-
tion pattern. For the NN method however, this is rather obvious: Since the results of
applying S and PNN are needed in all remaining operations, such as matrix-vector
multiplications, we have chosen to carry them out on one central node. On the
other hand, the computation of Si and (Si)−1, respectively, are carried out on N
separate processing nodes in parallel. Consequently, for each occurrence of S and
PNN within the iteration, it was necessary to select and distribute the correspond-
ing local interface variables to each of the nodes, and in turn to collect and merge
the local results into a global vector on the central node. The aforementioned two
operation groups–which are denoted by scattering and gathering, respectively, in the
context of parallel programming exactly correspond to the actions of the restriction
matrices RΓ

Γi
, i = 1, . . . , N and its transpose RΓ⊤

Γi
, i = 1, . . . ,N , respectively. In par-

ticular, a scatter operation amounts to sending to each local node, associated with
the subdomain Ωi, the subset ∂Ωi ∩ Γ of nodal variables. In turn, the transposed
operator RΓ⊤

Γi
amounts to receiving and adding the nodal values of all local shared

61 3.3. Experimental Studies

boundaries.
In case of the BNN method, additional considerations for implementing the ac-

tion of the coarse Schur complement inverse S−1
0 =

(
R0SR0

)−1
, cf. Sec. 3.2.3.3,

need to be made. Unlike PNN , a straightforward implementation of its definition
would involve the inversion of S, which does not allow for a substitution by the local
S(i), as can be seen easily. Instead, we found it efficient to compute SC explicitly
beforehand, and then to invert it during iteration up to an sufficient accuracy. In
particular, the entries of SC are determined column-wise, by carrying out

(
SC
)

·j ← RΓ
ΓC

(∑

i

RΓ⊤

Γi
SiR

Γ
Γi

)

RΓ⊤

ΓC
ej , (3.133)

with ej denoting a vector containing a one-entry at j and zero-entries else. Obviously,
this would need to be done N times.

However, a closer look on RΓ⊤

ΓC
reveals that its j-th column affects only the

boundaries of subdomain Ωj, as well as its left, right, upper and lower neighbors, if
any, as well as the vertex variables of its diagonal neighbors. Making use of this fact,
several columns of S0 can be computed by (3.133) at one time, by having several
one-entries in the ej-vectors. In addition, we have found the vertex couplings to
be negligible, such that in total only eight executions of (3.133) are necessary. See
Figure 3.6 for an illustration.

Figure 3.6: Illustration of the optimized initialization scheme for the coarse Schur

complement matrix S0. Each gray cross depicts non-zero couplings in S0, i.e. on the
coarse level, except for those at vertices. Also, the black framed subdomains correspond
to one-entries in the vector e0 (see text), and thereby gray indicates a non-zero entry of

RΓ

ΓC
SRΓ

⊤

ΓC
e0.

Finally, the initial calculation of the right-hand sides of the interface equa-
tion (3.43), as well as the concluding calculation of the remaining inner nodal vari-
ables by (3.44) allow for parallel execution by concurrent solving of the corresponding
local Dirichlet systems also.

Chapter 3. Non-overlapping Domain Decomposition Methods 62

3.3.3 The Impact of Interface Preconditioning

In this first experiment, the goal was to observe the influence of interface precondi-
tioning in general. Therefore, we solved equation (3.43) w.r.t. uΓ once making use
of the NN preconditioner and once without using it. As local solver PCG iteration
was used too, with a relative residual error tolerance of 10−5. As input data served
image 16 and 17 of the Marble sequence, see above.

Table 3.1 depicts the number of necessary outer (P)CG iterations to reach an

residual error of 10−3, i.e. ||χ − Su(N)
Γ ||2/||χ||2 < 10−3, with χ denoting the right-

hand-side of (3.43). It clearly shows that, in agreement with theory [101], the system
becomes more and more ill-conditioned if the number of subdomains increases. Using
the Neumann-Neumann preconditioner (3.63), however, largely compensates this
effect and enables shorter computation times through parallelization.

Partition Subdomain Preconditioner Necessary outer

size iterations

2× 2 256× 256 NN 6

2× 2 256× 256 none 42

4× 4 128× 128 NN 7

4× 4 128× 128 none 42

Table 3.1: The impact of interface preconditioners while solving the Schur com-

plement equation. The number of necessary iterations to reach a relative residual error
of 10−3 is given. Results show the strong improvement in convergence when employing
NN-preconditioning within a CG iteration.

3.3.4 Convergence in Dependence on the Number of Subdomains

Here we studied the influence of the number of subdomains, and thereby that of
1/H, on the convergence rate of the PCG iteration, while using NN or BNN pre-
conditioning, and compared them to the theoretical upper limits given in (3.67) and
(3.75), respectively.

In order to measure the convergence rate ρ after k PCG iterations, we first
determined the relative residual error by

ǫ(k) :=
||û−Au(k)||2
||û−Au(0)|| (3.134)

and subsequently estimated ρ by

ρ =
k
√

ǫ(k) . (3.135)

63 3.3. Experimental Studies

Furthermore, the convergence rate bounds were computed from the theoretical con-
dition number bounds by (3.61). Thereby, the constant parameter C in (3.67) and
(3.75) was set to 1

6 .

Results are depicted in Figure 3.7. First, let us consider the results for the Marble
sequence (blue curves). As expected by theory, the convergence rates deteriorate for
increasing subdomain numbers using the NN preconditioner, since it lacks a global
error propagation. In contrast, with the BNN preconditioner, the rate remains rel-
atively constant, because of the additional coarse-grid correction. However, for PIV
Sequence (black curves), the deterioration using the NN preconditioner is much less
than for the Marble sequence, and the rate is even slightly better for larger number
of subdomains. The explanation for these quite differing observations is found in
the fact that with the PIV data the spatial couplings play a lesser role than with
the Marble sequence, since with the former an image gradient is available almost
everywhere throughout the image plane, which is not the case with the latter where
the spatial smoothness term yields a fill-in of motion vectors at regions without any
or only few image gradients. This phenomenon is clearly illustrated by the per-
pixel L2-error between resulting motion fields and their corresponding groundtruth
solutions (obtained without parallelization), see Figure 3.8. Consequently, for the
Marble sequence, the lack of global information propagation of the NN precondi-
tioner affects convergence much less when the number of subdomains and therefore
locality is increased. In view of the fact that the BNN preconditioner demands more
than three times the computational effort than the NN per iteration, the additional
coarse-grid preconditioning is reasonable when spatial couplings are dominant across
a greater number of subdomains.

3.3.5 Convergence in Dependence on the Precision of the Local

Solver

Besides the degree of image plane partition, also the influence of the local Dirichlet
and Neumann problems‘ solving precision in connection with the NN preconditioner
was studied, in order to reach a rule of thumb for the minimum error tolerance
needed to reach a given tolerance level for the outer PCG iteration.

Therefore, we observed the final relative residual error for the Schur complement
equation while varying the maximum residual error threshold of the local Dirichlet
and Neumann problem solvings. Again, PCG iteration was used as local solver also.
The results shown in Table 3.2 for the Marble sequence applying a 4 × 4 or 8 × 8
partition, suggest that local solving must be about one order of magnitude more
precise than the desired precision for the Schur complement equation.

Chapter 3. Non-overlapping Domain Decomposition Methods 64

Residual error Resulting residual error

of the local solver of the Schur complement problem

4× 4 subdomains 8× 8 subdomains

10−5 2.1 · 10−4 3.6 · 10−4

10−4 2.7 · 10−3 6.1 · 10−3

10−3 1.2 · 10−2 3.0 · 10−2

10−2 1.6 · 10−1 3.6 · 10−1

10−1 7.9 · 10−1 9.3 · 10−1

Table 3.2: Influence of the local solver’s precision. The first column shows the error
thresholds up to which the local Dirichlet and Neumann problems were solved. The sec-
ond and third column give the resulting error of the outer PCG iteration employing BNN
preconditioning for the Schur complement problem. Results show that the precision of the
local solvers need to be about one order of magnitude higher than the desired precision of
the Schur complement problem.

3.3.6 Scalability Study on a Parallel Computer

In order to study the advantage of employing substructuring methods compared to
non-parallel methods in practice, we conducted scalability experiments on a state-
of-the-art parallel machine5 varying the number of processing nodes from four up to
144, i.e. using partitions of 2× 2 to 12 × 12.

Due to limited access to the PC-cluster, only experiments for the particle image
data set could be made. Full multigrid iterations derived from an algorithm for
the original problem [20, 21, 22, 19] served as local solvers for the Dirichlet and
the Neumann problems6. The algorithmic parameters, such as the outer number of
PCG iterations as well as the number of V- or W-cycles and number of pre- and
post-recursion Gauss-Seidel relaxations in connection with the local solvers, were
adjusted manually, in order for the L2-error7 to be lower than 10−3 in comparison
to a reference solution. The reference solution was obtained by solving the original
problem up to a residual error of less than 10−8.

For each of the different experiments, both the time spent for computations
(either in the master node or the slave nodes) and the communication time were
measured. Results for employing each of the two preconditioning techniques are de-
picted in the diagrams 3.9(a) and (b). At first glance, one observes that the run-times

5The dedicated PC-cluster HELICS, 512 Dual AMD Athlon MP 1.4 GHz processing nodes,
Myrinet2000 network, Interdisciplinary Center for Scientific Computing, University of Heidelberg,
Germany

6Thanks to Andrés Bruhn for providing us with his implementation.
7i.e. ||w−ŵ||2

||ŵ||2

65 3.3. Experimental Studies

with BNN preconditioning are about four times larger than for NN preconditioning,
which is congruent with fact the former requires two additional applications of the
Schur complement operator S as well as three inversions of its coarse variant, S0,
see (3.86). On the other hand, both preconditioners show almost the same scalabil-
ity characteristics, which, as we found in Section 3.3.4, is a data-dependent fact for
the NN preconditioner. However, in this case, NN preconditionering clearly beats
BNN preconditioning, since the latter cannot compensate for its higher computa-
tional effort per iteration by an increase in scalability.

In order to assess the practical use of substructuring methods, we compared the
measured run-times to that of Bruhn’s highly-optimized full multigrid implementa-
tion for the original problem, which needed 8.25 seconds (in average) on the same
dataset when being run on one processing node of the aforementioned PC-cluster
(Note that the code was optimized for current Intel Pentium machines on smaller
images sizes, e.g. 160 × 120, where run-times around 0.02 seconds per frame were
measured, [22]). Comparing this result to those of the two substructuring methods
shows that only with NN preconditioning is it possible to reach a speed-up, but at
the cost of at least 25 or more processing nodes, which can be most clearly seen
with the speed-up diagrams in Fig. 3.10. Further analysis revealed that the reason
for the substructuring methods not to perform better lies in the about four to eight
times higher number of smoothing cycles for the local multigrid solvers when being
employed with the (local) Dirichlet problems (which do not appear in the original
problem). In particular, one V-cycle with two pre- and post-Gauss-Seidel relax-
ations per level have been employed with the Neumann problems (both the global
as well as for the local ones), whereas four W-cycles in connection with six to eight
Gauss-Seidel smoothing steps per level were necessary to solve the local Dirichlet
problems. These findings must be seen in view of the fact that the current multigrid
solver had been optimized with respect to Neumann boundary conditions. Because
of very limited access to the PC-cluster, further experiments with different local
solvers, e.g. PCG iteration, could not be conducted.

Besides the communication time, also the communication volume was recorded,
see the diagram in Fig. 3.11. It results from the following phases of the parallel
algorithm: (a) initial distribution of input data, i.e. the image pair, (b) exchange of
values on shared boundaries nodes, and (c) collection of the final vector field from
the slave processes. Whereas the communication volumes for (a) and (c) are nearly
independent of the number of subdomains8, for step (b) they grow linearly with
the square root of the number of subdomains, as can be seen in Fig. 3.11, which is

8In fact, in our implementation it increases slightly with the number of subdomains for (a), since
there the distributed regions must have a small overlap in order to obtain the same convolution
results on the shared boundary nodes of neighboring local systems.

Chapter 3. Non-overlapping Domain Decomposition Methods 66

consistent with the fact that the overlap between subdomains is one dimension less
than that of the problem. This observation clearly shows the advantage of the non-
overlapping substructuring methods in terms of higher scalabilities in comparison
to overlapping methods being presented in Chapter 4.

3.4 Conclusion

In this chapter, we explained the mathematical foundation of substructuring meth-
ods, in particular the Steklov Poincaré operator and the Schur complement equation,
and gradually derived the associated algorithms for the parallelization of a proto-
typical linear PDE problem. Moreover, we explained the common primal iterative
methods and have shown their link to the aforementioned theory. Furthermore, we
addressed the numerical problem of local information propagation with one-level
algorithms and elucidated its remedy by means of additional coarse-grid precondi-
tioners. Finally, we focused on the more recent dual and primal-dual substructuring
methods, which consider local Schur complement problems within the setting of an
constrained optimization problem, and compared them to their primal counterparts.

Within the experimental section, we studied two representative primal iterative
substructuring methods with respect to their convergence behavior in dependence
on the number of subdomains (while having the total number of unknowns fixed),
the influence of the local solver’s precision, the scalability on a real parallel ma-
chine, and the speed-up in comparison to a highly-tuned sequential multigrid imple-
mentation. Although the experiments confirm the very good scalability of the two
investigated non-overlapping methods, the unequally higher number of iterations
and recursions involved with solving the local Dirichlet problems, in comparison to
the corresponding Neumann problems, suggest further investigations, e.g. on better
prolongation/restriction operators with the Dirichlet solvers or alternative solving
methods, like conjugate gradient iteration.

By the derivation of the dual FETI method, we have given an alternative two-
level substructuring approach and have shown its similarity to the Balancing NN method.
Although empirical studies were not made, convergence rates are most likely to be
comparable. The subsequently presented primal-dual FETI approach then gave
means to freely chose the coarse couplings, which allows to adjust information prop-
agation during iteration with respect to the given model problem, the partitioning
of the image domain and the hardware requirements imposed by the specific parallel
computer on which the computations are carried out. Future work is to concen-
trate on an empirical comparison of the BNN and the dual FETI method on a
representative model problem, as well as an empirical studies of primal-dual FETI
implementations with different kinds of (primal) coarse dependencies.

67 3.4. Conclusion

To conclude, we have shown that substructuring methods are feasible means to
parallelize computational intensive PDE-base problems. Thereby, variational image
processing approaches on large two-dimensional data sets or standard-size three-
dimensional sets, come into reach of real-time computing.

Chapter 3. Non-overlapping Domain Decomposition Methods 68

2x2 4x4 5x5 6x6 7x7 8x8 9x9 10x10 11x11 12x12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

co
nv

er
ge

nc
e

ra
te

number of subdomains

PIV 2000 dataset
Th. upper limit
Marble 512 dataset
Th. upper limit

(a) with one-level Neumann-Neumann preconditioning

2x2 4x4 5x5 6x6 7x7 8x8 9x9 10x10 11x11 12x12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

co
nv

er
ge

nc
e

ra
te

number of subdomains

PIV 2000 dataset
Th. upper limit
Marble 512 dataset
Th. upper limit

(b) with two-level Balancing Neumann-Neumann preconditioning

Figure 3.7: Measured convergence rates and theoretical upper limits. The mea-
sured (solid) convergence rates for each data set and each of the two preconditioners are
depicted, as well as their corresponding theoretical upper limits (dashed), respectively.
Whereas with BNN preconditioning the rates stay almost constantly low, with the NN pre-
conditioner the rates increase rapidly for problems with dominant spatial couplings across
the subdomain borders.

69 3.4. Conclusion

0.5

1

1.5

2

2.5

3

3.5

4

4.5

x 10
−3

(a) Marble seq. with NN preconditioning

1

2

3

4

5

6

7

8

9

x 10
−4

(b) Particle seq. with NN preconditioning

0.5

1

1.5

2

2.5

3

3.5

4

4.5

x 10
−3

(c) Marble seq. with BNN preconditioning

1

2

3

4

5

6

7

8

9

x 10
−4

(d) Particle seq. with BNN preconditioning

Figure 3.8: Per-pixel L2-errors. Depicted are the per-pixel L2-errors for 12× 12 decom-
positions with respect to a highly accurate reference solution of the original model problem.
Whereas with the particle sequence the one-level NN preconditioner already yields good
results because of the spatial couplings are very local, for the Marble data set, BNN precon-
ditioning helps diminish significant strong errors present at some of the subdomains. Note
that local errors are uniformly smaller than 10−3 and 10−4, respectively.

Chapter 3. Non-overlapping Domain Decomposition Methods 70

1 4 9 16 25 36 49 64 81 100121144

1

10

100

tim
e

[s
ec

]

number of subdomains

Total run−time
Communication time
Ideal

(a) with one-level Neumann-Neumann preconditioning

4 9 16 25 36 49 64 81 100121144

1

10

200

tim
e

[s
ec

]

number of subdomains

Total run−time
Ideal run−time
Communication time

(b) with two-level Balancing Neumann-Neumann preconditioning

Figure 3.9: Measured run and communication times on a PC-cluster. The logarith-
mic plots depict the total run-time for varying numbers of subdomains in comparison to the
ideal development (relative to the minimal number of subdomains) for both preconditioner
types. In addition, the part of the communication time is shown. Although both NN and
BNN preconditioning exhibit a similar very good scalability, the BNN preconditioner cannot
compensate for the three times higher cost per iteration.

71 3.4. Conclusion

4 9 16 25 36 49 64 81 100121144
1

10

100

number of subdomains

sp
ee

du
p

fa
ct

or
relative speedup
absolute speedup
ideal

(a) with one-level Neumann-Neuman preconditioning

4 9 16 25 36 49 64 81 100121144
1

10

100

number of subdomains

sp
ee

du
p

fa
ct

or

relative speedup
absolute speedup
ideal

(b) with two-level Balancing Neumann-Neuman preconditioning

Figure 3.10: Measured relative and absolute speed-up factors. The speed-up factors
are shown either relative to the run-time on a 2 × 2 partition, or to a highly-optimized
non-parallel multigrid implementation on the same hardware.

Chapter 3. Non-overlapping Domain Decomposition Methods 72

2 3 4 5 6 7 8 9 10 11 12
50

60

70

80

90

100

110

120

130

140

150

sqrt(number of subdomains)

co
m

m
un

ic
at

io
n

vo
lu

m
e

[M
B

yt
e]

NN preconditioner
BNN preconditioner

Figure 3.11: Measured communication volume for a varying number of subdo-

mains. The measured communication volume is plotted for the two different preconditioner
types over the square root of the number of subdomains. This clearly shows that, in accor-
dance with theory, the amount of data to be exchanged between the subdomain problems
expands one-dimensionally.

Chapter 4

Overlapping Domain

Decomposition Methods

Besides the family of non-overlapping methods, in the following chapter we will focus
on the second large class of overlapping domain decomposition methods. Unlike
with the former, here, parallel preconditioners are realized by local inversions of the
original problem being restricted to overlapping subdomains.

We will explain the most important approaches and their algorithmic realiza-
tion in what follows, beginning with earlier basic variants on two subdomains and
proceeding to recent, more complex methods on many subdomains and several res-
olution levels. Also, we will focus on relations to classical multigrid methods, which
appear as degenerate cases of methods being presented below. The objective of this
chapter is firstly to outline the basic mathematical and algorithmic principles of
this class of decomposition approaches, and secondly to point out and discuss its
connections to the main topic of this work, the substructuring approach.

Throughout this chapter, we consider overlapping coverings {Ωi | i = 1, . . . ,N}
of Ω, i.e. Ω = ∪iΩi and Ωi ∩ Ωj 6= ∅, Ωj is neighbor of Ωi, i = 1, . . . ,N , while
denoting {Ωi} as subdomains. Moreover, let Γi := ∂Ωi \ ∂Ω, i = 1, . . . ,N be those
parts of the local boundary which are interior of Ω.

Model Problem. As model problem, again, we consider the Definite Helmholtz
equation (3.1), as introduced in Chapter 3. Unlike the notation used in the parti-
tioning (3.9), in the following, we refer to the sets Γi and Ωi \Γi, respectively, in the
superscript, which yields the form:

(
AIIi AIΓi
AIΓ

⊤

i AΓΓ
i

)(
uI

uΓ

)

=

(
f I

fΓ

)

, i = 1, . . . ,N . (4.1)

73

Chapter 4. Overlapping Domain Decomposition Methods 74

4.1 One-level Methods

In order to explain the principles of the basic overlapping methods — the alternating,
multiplicative and additive Schwarz methods — first we consider a covering of only
two subdomains, Ω1 and Ω2, either in the continuous, discrete non-matching or
discrete matching case, and then move on to the case of multiple subdomains. See
Fig. 4.1 for partition examples for these three cases.

4.1.1 The Case of Two Subdomains

4.1.1.1 The Alternating Schwarz Method

The first overlapping domain decomposition method was already proposed over a
hundred years ago by H. Schwarz [106]. There a solution to problem (3.6) is com-
puted indirectly by the algorithm:

Algorithm 5: Multiplicative Schwarz iteration in the continuous case

initialize u0
1, u

0
2 by an arbitrary value

iterate k = 1, 2, . . . until convergence

solve for uk+1
1 in







Luk+1
1 = f1 in Ω1

uk+1
1 = uk2 |Γ1 on Γ1

∂nu
k+1
1 = 0 on ∂Ω1 \ Γ1

solve for uk+1
2 in







Luk+1
2 = f2 in Ω2

uk+1
2 = uk+1

1 |Γ2 on Γ2

∂nu
k+1
2 = 0 on ∂Ω2 \ Γ2

while information exchange takes place at the artificial boundaries Γ1 and Γ2, re-
spectively, and with fi := f|Ωi

and fi, ui ∈ Vi := V (Ωi). (In the following, subscripts
always refer to subdomains). In particular, both subproblems are coupled by artifi-
cial Dirichlet boundary conditions applied at Γi, respectively, whereas the original
boundary conditions remain at ∂Ωi\Γ. Finally, once that uk1 and uk2 have converged,
the global solution is given by

uk+1(x, y) :=

{

uk+1
1 (x, y) : (x, y) ∈ Ω1

uk+1
2 (x, y) : (x, y) ∈ Ω2

, (4.2)

75 4.1. One-level Methods

which is known to be equal to the non-decomposed original solution, i.e. to prob-
lem Lu = f . Thereby, the convergence speed is linear, i.e.

‖û− uk‖A ≤ ρk‖û− u0‖A ,

while ρ < 1 denotes the reduction factor.

In the discrete case having non-matching meshes T h(Ωi), i = 1, 2 on either sub-
domain, however, additional interpolation operators which map nodal variables from
Ω1 to Γ2 and from Ω2 to Γ1, respectively, are required:

Algorithm 6: Alternating Schwarz iteration on non-matching grids

initialize u0
1, u

0
2 by an arbitrary value

iterate k = 1, 2, . . . until convergence

solve for uk+1
1 in

{(
AII1 AIΓ1

)
uk+1

1 = f I1 on Ω1 \ Γ1

uk+1
1 = IΩ2→Γ1u

k
2 on Γ1

solve for uk+1
2 in

{(
AII2 AIΓ2

)
uk+1

2 = f I2 on Ω2 \ Γ2

uk+1
2 = IΩ1→Γ2u

k+1
1 on Γ2

with Aiui = bi, i = 1, 2 resulting from separate Finite Element discretization on
either sub-mesh and while making use of the matrix partition as explained in begin-
ning of this chapter.

(a) Overlapping continuous
subdomains used with the al-
ternating Schwarz method in
the continuous case

(b) Overlapping discrete sub-
domains with non-matching
grids as with the the alter-
nating Schwarz method in the
discrete case

(c) Overlapping discrete
subdomains with matching
grids as used with the
multiplicative Schwarz
method

Figure 4.1: Examples for overlapping coverings used with the different Schwarz

methods.

Chapter 4. Overlapping Domain Decomposition Methods 76

4.1.1.2 The Multiplicative Schwarz Method

However, in case the subdomain‘s meshes are conformal, i.e. match, one can dispense
with the interpolation mappings, thereby gaining the following procedure:

Algorithm 7: Multiplicative Schwarz iteration on matching grids

initialize u0
1, u

0
2 by an arbitrary value

iterate k = 1, 2, . . . until convergence

solve for uk+1
1 in

{(
AII1 A

IΓ
1

)
uI,k+1

1 = f I1 on Ω1 \ Γ1

uΓ,k+1
1 = uk2|Γ on Γ1

solve for uk+1
2 in

{(
AII2 A

IΓ
2

)
uI,k+1

2 = f I2 on Ω2 \ Γ2

uΓ,k+1
2 = uk+1

1|Γ on Γ2

.

Taking the Dirichlet boundary values to the right-hand side and solving for uI1 and
uI2, respectively, results in

uI,k+1
1 = AII

−1

1

(
f I1 −AIΓ1 uI,k2|Γ1

)

uI,k+1
2 = AII

−1

2

(
f I2 −AIΓ2 uI,k+1

1|Γ2

)
,

(4.3)

which can be written as interleaved Richardson iterations by further adding uI,ki −
uI,ki , i = 1, 2, respectively, on either right-hand side, and by drawing −uI,ki , i = 1, 2
within the brackets:

uI,k+1
1 = uI,k1 +AII

−1

1

(
f I1 −AII1 uI,k1 −AIΓ1 uI,k2|Γ1

)

uI,k+1
2 = uI,k2 +AII

−1

2

(
f I2 −AII2 uI,k2 −AIΓ2 uI,k+1

1|Γ2

)
.

(4.4)

Still, we have a formulation based on local vectors ui, bi. In aiming at a represen-
tation by means of global vectors u and b, which will be necessary for subsequent
analysis, we modify (4.4) to

uI,k1|Ω1∩Ω2
← uI,k2|Ω1∩Ω2

uI,k+1
1 = uI,k1 +AII

−1

1

(
f I1 −AII1 uI,k1 −AIΓ1 uI2|Γ1

)

uI,k2|Ω1∩Ω2
← uI,k+1

1|Ω1∩Ω2

uI,k+1
2 = uI,k2 +AII

−1

2

(
f I2 −AII2 uI,k2 −AIΓ2 uI,k+1

1|Γ2

)
,

(4.5)

which means that uI,k1 and uI,k2 are updated by the most recent values of uI,k2

and uI,k+1
1 , respectively, in the overlap region. Note that we do not change the

77 4.1. One-level Methods

scheme, because uI,ki − AII
−1

i AIIi u
I,k
i cancels out at the right-hand sides. Most im-

portant, by this formulation, uI,k1 and uI,k2 no longer differ in their common variables
in the overlap region, and hence can be replaced by restrictions of the global vector u:

uk+1/2 = uk +R⊤
I1A

II−1

1

(
f I1 −AII1 uk|I1 −A

IΓ
1 uk|Γ1

)

uk+1 = uk+1/2 +R⊤
I2A

II−1

2

(
f I2 −AII2 uk+1/2

|I2 −AIΓ2 u
k+1/2
|Γ2

)
,

(4.6)

with R⊤
I1

and R⊤
I2

denoting extensions by zero from Ω1 and Ω2 to Ω, respectively.

Finally, due to AIIi u|Ii + AIΓi u|Γi
= RIiAu and f Ii = RIif, i = 1, 2, we find the

expressions in brackets to be restrictions of the global residuals (f −Auk) and (f −
Auk+1/2), respectively, and end up with

uk+1/2 = uk +R⊤
I1A

II−1

1 RI1
(
f −Auk

)

uk+1 = uk+1/2 +R⊤
I2A

II−1

2 RI2
(
f −Auk+1/2

)
.

(4.7)

This reveals that one iteration of the multiplicative Schwarz method corresponds to
two Richardson relaxation steps, which apply the preconditionersB1 := R⊤

I1
AII

−1

1 RI1
and B2 := R⊤

I2
AII

−1

2 RI2 alternatingly.

Moreover, the effect on the iteration error ek = û− uk, with û denoting the true
solution vector, can be shown straightforwardly. Since Aû = f , we can introduce
the error vector to (4.7) as follows:

uk+1/2 = uk +B1A ek

uk+1 = uk+1/2 +B2Ae
k+1/2 .

(4.8)

Multiplying by −1 and adding û on both sides then yields

ek+1/2 = (I −B1A) ek

ek+1 = (I −B2A) ek+1/2 .
(4.9)

Finally, substituting for ek+1/2 in the second equation results in

ek+1 = (I −B2A)(I −B1A) ek , (4.10)

which not only shows the sequential manner of this method, but also gives grounds
for denoting it as a multiplicative procedure. Because of the relaxations are applied
sequentially, direct clues for parallel computation are not present with this method,
although it will serve as a building block in a parallel algorithm in the case of multiple
grid levels. (See below).

Chapter 4. Overlapping Domain Decomposition Methods 78

4.1.1.3 The Additive Schwarz Method

Besides multiplicative methods, an important variant is given by the Additive Schwarz
method :

Algorithm 8: Additive Schwarz iteration

initialize u0
1, u

0
2 by an arbitrary value

iterate k = 1, 2, . . . until convergence

solve for uk+1
1 in

{(
AII1 A

IΓ
1

)
uI,k+1

1 = f I1 on Ω1 \ Γ1

uk+1
1 |Γ1 = uk2 |Γ1 on Γ1

solve for uk+1
2 in

{(
AII2 A

IΓ
2

)
uI,k+1

2 = f I2 on Ω2 \ Γ2

uk+1
2 |Γ2 = uk1 |Γ2 on Γ2

.

The main difference from the former methods that solving the local problems can
be carried out concurrently and not sequentially since the second one does not
depend on the result of the first one (note that the second problem relies on the old
iterate uk1).

In form of a Richardson iteration this reads

uk+1 = uk +R⊤
I1A

II−1

1 RI1
(
f −Auk

)
+R⊤

I2A
II−1

2 RI2
(
f −Auk

)
, (4.11)

which can be compactly written as

uk+1 = uk + (B1 +B2)
(
f −Auk

)
, (4.12)

and, after some minor restatements, results in the error propagation rule

ek+1 =
(
I − (B1 +B2)

)
ek , (4.13)

both making the additive character more obvious.

Unlike the multiplicative or alternating methods, here the local subdomain prob-
lems can be solved in parallel. However, the iteration count to reach the same final
error as using with the multiplicative method is about twice (see, e.g. [101]), that
is, theoretically, a speed-up by parallelization cannot be reached here, in general.

4.1.2 The Case of Multiple Subdomains

Before combining the idea of domain decomposition with that of multiple grid solv-
ing, let us first focus on the extension of the previous methods to the case of more
than two subdomains and its representation as preconditioners. Thus, we are now

79 4.1. One-level Methods

looking at N > 2 overlapping subdomains {Ωi |Ωi ∩ Ωi+1 6= ∅, i = 1, . . . ,N − 1}
forming a covering of Ω, which we denote as the multiple-subdomain case in the
following. See Fig. 4.2 for an example.

4.1.2.1 The Multiplicative Schwarz Method

Skipping the explicit formulation of N coupled subproblems similar to that of the
two-subdomain case in (7), with the multiplicative Schwarz method, one implicitly
carries out the following relaxation steps:

uk+1/N = uk +B1

(
f −Auk

)

uk+2/N = uk+2/N +B2

(
f −Auk+2/N

)

...

uk+1 = uk+(N−1)/N +BN
(
f −Auk+(N−1)/N

)
.

(4.14)

Again, coarse-grained parallel computation cannot be employed here, since every
step depends on the results of the previous one.

However, with a variant to (4.14), relaxations on mutually non-overlapping sub-
domains are carried out at the same time, In particular, it is considered a coloring
of the subdomains with a minimum number of K colors such that overlapping sub-
domains always have differing ones (see, e.g., Fig. 4.2) in case of a rectangular
decomposition (hatches there). Then, relaxations which correspond to subdomains
of the same color are executed in parallel, while those of different color are carried
out consecutively. Let {P1, . . . , PK} be the set of subdomain indices for each of the
K colors. Then the iteration rule reads

uk+1/K = uk +
∑

i∈P1

Bi
(
f −Auk

)

uk+2/K = uk+2/K +
∑

i∈P2

Bi
(
f −Auk+2/K

)

. . .

uk+1 = uk+(M−1)/K +
∑

i∈PK

Bi
(
f −Auk+(K−1)/K

)
.

(4.15)

Obviously, this scheme is different from (4.14) in the way update information is
propagated, namely not sequentially from the unknowns on Ω1 to ΩN , but between
the differently colored groups of subdomains. However, this is known to have no
significant difference in the overall convergence speed.

Chapter 4. Overlapping Domain Decomposition Methods 80

4.1.2.2 The Additive Schwarz Method

In the extreme case of having as many colors as subdomains one obtains the additive
Schwarz method on multiple subdomains:

uk+1 = uk +

N∑

i=1

Bi
(
f −Auk

)
, (4.16)

which provides the highest degree of parallelism, but the lowest degree of information
propagation per iteration. Even worse, it is known, see e.g., [112], that convergence is
not guaranteed while using it as Richardson preconditioner. Therefore, it is typically
used a as a building block in multi-level methods. (See below).

4.1.2.3 Schwarz Methods as Parallel Preconditioners

As with case of two subdomains, both the multiplicative and the additive method
can be stated as single preconditioners B being applied to the residual rk = f −Auk
in a Richardson iteration, which we will do in the following.

Whereas for the additive method we just have

BAS :=

N∑

i=1

Bi =

N∑

i=1

RI
⊤

i A−1
i RIi , (4.17)

for the multiplicative method, let us recall the error propagation rule in (4.10) for
the case of two subdomains, which, for the purely sequential algorithm, is of the
form

ek+1 = (I −BNA) · · · (I −B2A)(I −B1A) ek (4.18)

(û− uk+1) = (I −BNA) · · · (I −B2A)(I −B1A)(û− uk) . (4.19)

Subsequent subtraction of û on both sides, substitution of û by A−1f and some
minor modifications then yield the iteration rule

uk+1 = uk +
(
I − (I −BNA) · · · (I −B2A)(I −B1A)

)
A−1(f −Auk) . (4.20)

Hence, the multiplicative method is equivalent to applying the preconditioner

BMS :=
(

I −
N∏

i

(I −BiA)
)

A−1 =
(

I −
N∏

i

(I −RI⊤i A−1
i RIiA)

)

A−1 . (4.21)

81 4.1. One-level Methods

Figure 4.2: Example of an overlapping decomposition with coloring as employed

with the parallelized multiplicative Schwarz iteration.

4.1.2.4 Links to Gauss-Seidel and Jacobi Iteration

Interestingly, the well-known Gauss-Seidel and Jacobi iterations can be interpreted
as degenerate cases of multiplicative and additive Schwarz iterations. For both
cases, a degenerate decomposition is assumed such that the subdomains have no
variables in common, i.e. Ωi ∩ Ωj = ∅, ∀j 6= i, and each subdomain consists of
only one node. That is, the number of subdomains is equal to the total number
of unknowns which is equal to the number of nodes on Ω. Consequently, each of
the matrices AIi , i = 1, . . . , N is is dimension 1× 1 only, and contains the diagonal
element of the original operator matrix Aii. Hence, in that case the iteration rule
for the additive Schwarz method can be written as

uk+1 = uk +
N∑

i=1

R⊤
IiD

−1
ii RIi

(
f −Auk

)
= uk +D−1

(
f −Auk

)
, (4.22)

with D = diag(A), which describes the Jacobi iteration.
On the other hand, the multiplicative iteration can be stated as

uk+1/N = uk +R⊤
I1D

−1
11 RI1

(
f −Auk

)

uk+2/N = uk +R⊤
I2D

−1
22 RI2

(
f −Auk

)

· · ·
uk+N/N = uk+(N−1)/N +R⊤

IN
D−1
NNRIN

(
f −Auk

)
,

(4.23)

which is equivalent to the steps

for i = 1, . . . , N do
(
u
)

i
←
(
u
)

i
+

1

Dii

(
f −Au

)

i
, (4.24)

Chapter 4. Overlapping Domain Decomposition Methods 82

describing Gauss-Seidel iteration applied to Au = f .
Furthermore, when assuming each subdomain to contain more than one node,

but still have no overlap among each other, both Schwarz methods correspond to
block Jacobi and block Gauss-Seidel iterations, respectively, being applied to the
system








AII1 0 0 . . .
0 AII2 0 . . .
...

...
. . .

0 0 . . . AIIN







u = f, (4.25)

which becomes clear if one replaces Dii by AIIi in (4.22) and (4.23) above.
Moreover, in the case of overlapping subdomains each containing at least one non-

overlapped node, the procedures described in (4.14) and (4.16) can be interpreted as
generalized block Gauss-Seidel or generalized block Jacobi iterations, respectively,
i.e. those with an overlap, being applied to the LSE








AII1 AIΓ1 RΓ1R
⊤
I2

AIΓ1 RΓ1R
⊤
I3

. . . AIΓ1 RΓ1R
⊤
IN

AIΓ2 RΓ2R
⊤
I1

AII2 AIΓ2 RΓ2R
⊤
I3

. . . AIΓ2 RΓ2R
⊤
IN

...
...

...
. . .

...
AIΓN RΓN

R⊤
I1

AIΓN RΓN
R⊤
I2

. AIIN















uI1
uI2
...
uIN








=








f1

f2
...
fN







.

(4.26)

There, the block-matrices AIIi do overlap, unlike in (4.25), i.e. have those coefficients
in common which lie in the overlap regions.

4.1.2.5 Scalability Characteristics and Comparison to Substructuring

For the case of elliptic problems, as with our model problems, the condition num-
ber of the multiplicative and additive one-level preconditioners exhibit a strongly
dependence on the number of subdomains by which Ω is covered. In particular, the
number of iterations grows proportionally with 1/H when employing them within
PCG iteration, i.e. the with square root of the number of subdomains in case of
quadratic subdomains. As with the one-level iterative substructuring methods, the
reason for this effect becomes clear in view of the information propagation argu-
ment: within each iteration, update information is transported further for only one
subdomain. Again, in terms of parallel scalability, this is a major drawback, since
with increasing number of subdomains, and processing nodes respectively, the speed
gain by parallelization is quickly taken away by the additional number of iterations
necessary.

83 4.2. Multi-level Algorithms

As opposed to the non-overlapping methods, the overlap width δ has a significant
influence on the convergence rate as well. Typical values for δ are 10 to 20 percent
of H, while the convergence rate deteriorates significantly when there is no overlap,
i.e. information exchange takes place via the shared boundaries only. In addition,
it is known, see e.g. [113], that the convergence speed is independent from the total
number of unknowns, if the overlap δ is kept proportional to H. That is, then it is
independent of the discretization mesh size h.

On the other hand, having to exchange more than the boundary variables be-
tween adjacent subdomain processes increases the communication volume involved
with each iteration by several times. Consequently, non-overlapping methods run-
ning on distributed parallel machines exhibit, in general, a better scalability, since
the communication volumes and therefore the communication costs grow with a
smaller magnitude than the number of subdomains. However, the implementation
of the overlapping algorithms is much less complex since only restrictions of the
original operator matrix A are involved. Whereas with the iterative substructuring
approaches, the local matrices need to be disassembled in various manners, depend-
ing on the specific substructuring algorithm, which renders the implementation of
the overall solving scheme more complex.

4.2 Multi-level Algorithms

In order to make convergence rates independent from the number of subdomains,
addititional coarse-level relaxations are introduced, which yield a global, though
coarse, information propagation in each iteration. Unlike the two-level precondi-
tioners presented in Chapter 3, several levels of relaxations based on different mesh
sizes are employed, similar to multigrid approaches. On each level, either the ad-
ditive or multiplicative one-level overlapping method is applied. In addition, the
relaxations on each resolution level can be carried out consecutively or in parallel,
which is also referred to by the adjectives multiplicative or additive, respectively.

First we will consider the case of only one coarse relaxation and explain the
employment of either Schwarz method. Then we focus on the case of an arbitrary
number of resolution levels, describing each reasonable combination of additive and
multiplicative methods and address their use for parallel computing.

4.2.1 Two-Level Methods

Let T C be a grid on Ω with a coarser mesh-size than T h, and let ACuC = fC be the
corresponding system of nodal variables resulting from a finite element discretization
of the model problem. Moreover, let the operator RC appropriately restrict a nodal

Chapter 4. Overlapping Domain Decomposition Methods 84

Figure 4.3: Illustration of the different restriction operators employed with the

multi-level methods.

vector u of the fine discretization Au = f on Ω to uC . Vice-versa, R⊤
C denotes an

interpolation.

Making use of these definitions, the multiplicative two-level method is described
by the following iteration rule:

uk+1/2 = uk +R⊤
CA

−1
C RC

(
f −Auk

)

uk+1 = uk+1/2 +B
(
f −Auk+1/2

)
,

(4.27)

while B stands for one of the previously presented one-level Schwarz preconditioners.
That is, additive or multiplicative Schwarz relaxation steps are carried out alternat-
ing with the coarse ones, while the latter involve the non-decomposed solving of a
global, yet smaller LSE involving AC . Due to the latter step, update information,
though aggregated, is exchanged between all unknowns mutually for each iteration.
With the additive variant,

uk+1 = uk +
(
B +R⊤

CA
−1
C RC

)(
f −Auk

)
, (4.28)

the coarse-grid relaxation is done in parallel with the fine ones, thereby increasing
parallelism but worsening the convergence rate.

85 4.2. Multi-level Algorithms

By having introduced a global updating step, the iteration speed no longer de-
teriorates when increasing the number of subdomains, i.e. it is independent of 1/H.
However, with this two-level methods, there is still a rather low limit in terms of par-
allel scalability. This is because of the computation time for sequentially inverting
AC fully compensating the gain of solving smaller local problems associated with B
in parallel.

4.2.2 Multiplicative Multi-level Methods

In aiming to exploit parallelism with the coarse relaxation steps too, so-called
multi-level methods are constructed by recursively applying the two-level method
to the coarse step. That is, the action of A−1

C in (4.27) is again approximated by
method (4.27) this time considering T H(Ω) as the fine level.

In order to formalize this notion, we first need to define the following notations.
We consider M different grids T Hj(Ω), j = 1, . . . ,M on Ω, whose mesh sizes Hj

increase with j and which will be referred to as levels in the following. Besides the
corresponding finite element discretizations A(j)u(j) = f (j) on each level, let R(j) be
the restriction of a nodal vector defined on grid T Hj to the next coarser grid T Hj+1 ,
and R(j)⊤ the corresponding interpolation operator. Moreover, we will make use of
cumulative variants R̄(j) :=

∏j
l=1R

(l) restricting directly from the finest to the j-th
level.

On each level j, we consider an overlapping covering {Ωj
i , j = 1, . . . ,Nj}, which

is compatible with T Hj , with the same properties as in the one-level case, and Nj

denoting the number of subdomains. Furthermore, on each level, we will make use of

operators R
(j)
i , which restrict a nodal vector corresponding to the whole mesh T Hj

to one corresponding to the subdomain mesh T Hj

|Ωj
i

only. See Figure 4.3 for an

illustration.

By means of this notation, we can formalize the idea which was outlined above,
and state the following iteration rule:

u(k+ 1
M

) = u + R̄(M)⊤A(M)−1
R̄(M)

(

f −Au(k)
)

u(k+ 2
M

) = u + R̄(M−1)⊤B(M−1)R̄(M−1)
(

f −Au(k+ 1
M

)
)

...

u(k+ M
M

) = u + B(1)
(

f −Au(M−1
M

)
)

,

with B(j) representing either the additive or the multiplicative Schwarz precondi-
tioner, as given in Section 4.1.2.3, applied to level T Hj .

Chapter 4. Overlapping Domain Decomposition Methods 86

The number of levels M is usually adapted to the decomposition size, i.e. an
optimal trade-off between the computation time for inverting A(M) at level M and
the computation and communication time for additional Schwarz relaxations on
intermediate levels (including all additional restriction and interpolation operations)
can be sought, while keeping the overlap on each level low.

Since the relaxations are carried out consecutively, these algorithms are denoted
as multiplicative multi-level (independent from the type of Schwarz preconditioners
used on each level).

Although the steps in (4.2.2) give a good description of the main idea, it is
in general not an effective formulation for implementation. The reason for this is
that all assignments are formulated on the finest grid, i.e. each residual would be
calculated on the finest grid, then restricted across several levels to the level on which
the preconditioner is applied, followed by an interpolation of update back to the
finest grid. Instead, in cases where the {A(j)} are Galerkin, i.e. either A(j) or theR(j)

have been constructed such that A(j+1) = R(j+1)A(j)R(j+1)⊤ , for j = 1, . . . ,M − 1
holds, the updating steps in (4.2.2) can be done only on the current grid level j and
the result is interpolated only to the next finer one. As an algorithm, this reads:

Algorithm 9: Multiplicative multi-level Richardson iteration

initialize u0 by an arbitrary value

iterate k = 1, 2, . . . until convergence

for j = 1, 2, . . . ,M − 1 do u(j+1) ← R(j+1)u(j)

r(M) ← (f (M) −A(M)u(M))

u(M) ← u(M) +A(M)−1
r(M)

r(M−1) ← R(M)⊤(f (M) −A(M)u(M))

u(M−1) ← u(M−1) +B(M−1)r(M−1)

...

r(j) ← R(j+1)⊤(f (j+1) −A(j+1)u(j+1))

u(j) ← u(j) +B(j)R(j)r(j)

...

r(1) ← R(2)⊤(f (2) −A(2)u(2))

u(1) ← u(1) +B(1)R(1)r(1)

(4.29)

where the for-loop is necessary for the initialization of the u(j) at each iteration.

87 4.2. Multi-level Algorithms

Obviously, this variant requires less sequential instructions in comparison to
Alg. (4.2.2), since up to the last relaxation, all correction steps are executed on
the coarser grids having less nodes, i.e. fewer unknowns. In addition, the opera-
tors {R(j)} as well as their inverses need fewer instructions than does their cumu-
lative versions {R̄(j)} for j > 1, since they operate on smaller vectors. The only
additional costs, in terms of execution time, are due to the initial calculation of A(j)

and f (j) for j > 1 before the iteration as well as the computation of the u(j).

In comparison to the multiplicative two-level method, the advantage of the
multi-level extension is the much higher degree of parallel scalability, since the
non-parallelizable inversion on the coarsest grid here requires only an negligible
computational effort since AM is much smaller than AC .

4.2.3 Additive Multi-level Methods

In order to gain parallelism across the levels, the per-level steps in Algorithm 9 can
also be carried out consecutively (while using uk on all right-hand and uk+1 on all
left-hand sides), which gives the additive multi-level methods, similar to those in the
two-level case. Here too, the convergence rate deteriorates in comparison to the
multiplicative algorithms, though the total parallelization gain can — depending on
the problem and the computing hardware — be higher.

Furthermore, in the case of the additive multi-level algorithm with additive
Schwarz relaxation steps on each level, the highest degree of parallelization is achiev-
able. Typically, that is implemented by combining the level restriction operators R̄(j)

and the subdomain restriction operators R
(j)
i on each level to a single operator:

R̄
(j)
i := R

(j)
i R̄(j), i = 1, . . . ,N (j), j = 1, . . . ,M , (4.30)

which restricts a vector defined on whole Ωi to the subdomain Ω
(j)
i on level j directly.

Thereby, the
∑K

j=1Mj relaxations

u← u+





K∑

j=1

Mj∑

i=1

R̄
(j)⊤

i A
(j),II
i

−1
R̄

(j)
i




(
f −Au

)
, (4.31)

can be calculated independently.

4.2.4 Multi-level Methods as Parallel Preconditioners

As with the one-level methods, overlapping multi-level methods are typically used
as preconditioners in a Krylov subspace iteration, such as PCG or GMRES. There,

Chapter 4. Overlapping Domain Decomposition Methods 88

besides the operator application step A · x, for some vector x, one has to implement
the application of the preconditioner B to a vector r.

With the additive multi-level method this is straightforward, namely by replacing
the term

(
f −Au

)
by a residual function r in (4.21). For the multiplicative method

however, as given by Algorithm 9, one has to replace every occurrence of f by r
as well as initializing u by zero, which therefore gives a slightly different procedure:

Algorithm 10: The multiplicative multi-level method as preconditioner

r(1) ← r

iterate k = 1, 2, . . . until convergence

for j = 1, 2, . . . ,M − 1 do r(j+1) ← R(j+1)r(j)

u(M) ← A(M)−1
r(M)

r(M−1) ← R(M)⊤(r(M) −A(M)u(M))

u(M−1) ← B(M−1)r(M−1)

...

r(j) ← R(j+1)⊤(r(j+1) −A(j+1)u(j+1))

u(j) ← B(j)R(j)r(j), j = M − 3, . . . , 1

(4.32)

This gives a non-symmetric preconditioner, suitable for GMRES or BiCG-Stab
iteration, for example. A symmetrized version is reached by carrying out the pairwise
steps in Alg. (10) in reverse order, i.e. starting from the finest level up to the coarsest
one, see, e.g., [113].

4.2.5 Links to Multigrid Methods

Algorithm (10) can be written in a recursive manner too. In case of the symmetric
multiplicative preconditioner with N1 pre-recursive and N2 post-recursive Schwarz
relaxation steps, for example, one obtains Algorithm 11, with r ← v-cycle(r, 0, 1).

Interestingly, in the extreme case of having only one node per subdomain and
no overlap in connection with additive Schwarz relaxation steps, i.e. B(j) = D(j)−1

,
with D(j) being the diagonal of A(j), Algorithm 11 is equivalent to a multigrid
v-cycle with Jacobi smoothing, which is also denoted as diagonal scaling in the
domain decomposition context. In the case of multiplicative Schwarz relaxation
steps on each level, this corresponds to Gauss-Seidel smoothing. In those cases,
Algorithm 11 is utilized as independent solver and not as preconditioner, while
u ← v-cycle(f, 0, 1) gives the solution. Furthermore, when reverting back to the

89 4.2. Multi-level Algorithms

Algorithm 11: V/W-cycle multigrid with Schwarz smoothing

v-cycle (r(j), u(j), j)

if j == M then

u(M) ← u(M) +A(M)−1
r(M)

else

for i = 1, . . . , N1 do u(j) ← u(j) +B(j)
(
r(j) −A(j)u(j)

)

u(j) ← u(j) +R(j+1)⊤v-cycle
(

R(l+1)
(
r(j) −A(j)u(j)

)
, 0, j + 1

)

for i = 1, . . . , N2 do u(j) ← u(j) +B(j)
(
r(j) −A(j)u(j)

)

end

return u(j)

standard case of overlapping subdomains, the additive and multiplicative Schwarz
methods are denoted Schwarz smoothers.

Finally, the full multigrid algorithm is reached, if the v-cycles are started not only
one time from the finest level, but used to correct a coarse intermediate solution u(j)

on every grid level (except for the coarsest one), which gives Algorithm 12.

Although one can interpret the multiplicative multi-level methods as a general-
ized multigrid methods, note that the motivation to incorporate relaxations steps
on coarser levels for the latter is of a slightly different nature. Multigrid methods
rely on the fact that with the standard iterative LSE solving methods lower spatial
frequency components in the error decline much slower that those with high spatial
frequencies. Hence, the idea is to do certain iterations on coarser grids where a
part of the persisting error appears as having high spatial frequencies. Recursion is
used to exploit the fast attenuation of the iterative solver for almost all frequency
components, with respect to the original resolution of the error. In terms of do-
main decomposition methods on the other hand, coarse-level iterations have been
introduced to overcome locality of the error correction propagation arising from the
spatial decomposition. Recursion there is used as a mean to exploit parallelism for
the coarse iterations too.

Chapter 4. Overlapping Domain Decomposition Methods 90

Algorithm 12: Full multigrid with Schwarz smoothing

r(1) ← f (1)

r(2) ← R(2)r(1)

...

r(M) ← R(M)r(M−1)

u(M) ← A(M)−1
r(M)

u(M−1) ← R(M)⊤u(M)

u(M−1) ← u(M−1) + v-cycle(r(M−1), u(M−1),M − 1)

u(M−2) ← R(M−1)⊤u(M−1)

u(M−2) ← u(M−2) + v-cycle(r(M−2), u(M−2),M − 2)

...

u(1) ← u(1) + v-cycle(r(1), u(1), 1).

4.2.6 Scalability and Comparison to Iterative Substructuring

Given a sufficient number of coarse-level updates, the convergence rates of the above-
explained multi-level preconditioners are independent of the number of subdomains,
since thereby update information is propagated between all subdomains on the finest
level within each iteration. Naturally, the influence of the overlap widths δ on each
level on the convergence speed still remains, similar to the single-level case. Again,
for a fix ratio δ/H, the number of iterations becomes independent of the total number
of unknowns.

In comparison to the two-level substructuring methods, obviously, multi-level
overlapping methods involve much more total costs in comparison to their single-
level level counterparts. Whereas with the former a small, non-decomposed system
with a few unknowns per subdomain has to be inverted on the coarse level, with the
latter, the one-level Schwarz updates need to conducted on several, incrementally
coarser levels, resulting in significant additional computation and communication
demands.

On the other hand, and especially with the two-level approaches, the non-
overlapping procedures require more complex implementations again, in particular
since for the overlapping ones same or very similar one-level schemes are to be carried

91 4.3. Summary

out on each of the different levels.

4.3 Summary

In this chapter, we presented the common overlapping domain decomposition meth-
ods after having explained their foundation on classical two-subdomain Schwarz
methods. Besides relations to standard multigrid methods, we focused on the dif-
ferent factors influencing the convergence rates and discussed the disadvantages of
overlapping methods versus non-overlapping ones, depending on the computational
environment.

Chapter 4. Overlapping Domain Decomposition Methods 92

Chapter 5

Motion Estimation with

High-order Regularization

Though the main focus of the first half of this work is on studying the paralleliza-
tion of linear PDE-based problems at the example of CLG motion estimation, this
chapter is devoted to the model problem itself and in particular with respect to
computational fluid mechanics.

In a number of domains affecting our everyday life, the analysis of image se-
quences involving fluid phenomena is of importance. This includes, for instance,
domains such as visualization in experimental fluid mechanics [2, 96], environmen-
tal sciences (meteorology [6, 39, 84, 99, 131], oceanography [41]) or medical imaging
[3, 56, 115]. For all these domains it is of primary interest to extract reliable velocity
fields, though this is far from being the ultimate goal of the analysis. Differential
or integrated information from the velocity field is indeed far more valuable for con-
cerned experts. For example, it is essential to characterize fluid flows to extract
the vorticity fields, the streamlines, or the singular points of the flows. All these
features may be estimated indirectly from the velocity field by differentiation or by
integration. Among all these information, the two potential functions called the
velocity potential and the stream function are of great interest: (i) their gradients
provide a description of the irrotational and the solenoidal components of the ve-
locity fields; (ii) their Laplacians give access to the vorticity and the divergence of
the velocity fields; (iii) their level lines allow us to extract directly the streamlines
and the equipotential curves of the velocity potentials; (iv) their extrema provide
the location of the singular points of major interest [40] (namely sources, sinks and
vortexes).

Knowing the curl and the divergence of the flow, the extraction of such potential
functions can be done by solving two Dirichlet problems. Such an estimation is

93

Chapter 5. Motion Estimation with High-order Regularization 94

particularly difficult for sparse velocity fields such as those obtained by the usual
correlation methods [96] since an additional interpolation step is needed [108, 109].
Dense motion estimation, on the other hand, allows us to recover these potential
functions more accurately. However, such an estimation as proposed in [40] is not
“direct”. It requires a process of three steps: First, the motion field has to be
extracted, next the motion field is separated into its irrotational and solenoidal
components in Fourier space, and finally the potential functions are estimated from
these two vector fields by integration. Obviously, this not only involves a rather
complex implementation, but also the problem of numerical inaccuracies and image
artifacts. By contrast, we propose to estimate directly the velocity potential and the
stream function in one joint energy minimization directly. Thereby, one problem is
the high degree of derivatives involved in the regularization term, which we tackle
by means of auxiliary functions, similarly to the approach in [40].

The organization of this chapter is as follows: First, we will give mathemati-
cal definitions of the aforementioned flow field components and their representation
by potential functions. Second, we will gradually develop our new direct estima-
tion approach while especially detailing on the regularization involving third-order
derivatives. Third, we will present thorough experimental studies on synthetic and
real data.

5.1 The Helmholtz Decomposition

Let us consider the smooth optical flow field u = (u1(x, y), u2(x, y))
⊤ defined over

the image plane section Ω, as defined in Chapter 2. Without loss of generality we can
extend u to the whole plane and assume that it vanishes at infinity. Then it allows
for the decomposition into a divergence free component (denoted solenoidal) and
a curl free component (denoted as irrotational), which is known as the Helmholtz
Decomposition of a vector field:

u = uso + uir , (5.1)

with

div uso =
∂u1

∂x
+
∂u2

∂y
= 0 and curl uir = −∂u1

∂x
+
∂u2

∂y
= 0 . (5.2)

In case of a non-zero border condition, the decomposition also includes a laminar
component which is neither irrotational nor solenoidal:

u = uso + uir + ulam . (5.3)

95 5.2. Direct Estimation of the Potential Functions

Furthermore, it is well known that both uso and uir can be derived from potential
functions φ and ψ : Ω×[1, T]→ R denoted as stream potential and velocity potential,
respectively:

uir = ∇φ =

(
∂φ

∂x
,
∂φ

∂y

)⊤
(5.4)

uso = ∇ψ⊥ =

(

−∂ψ
∂y
,
∂ψ

∂x

)⊤
. (5.5)

Thus, an optical flow field can be represented uniquely by

u = ∇φ+∇ψ⊥ + ulam . (5.6)

Following the proposition by Corpetti et al. [39, 40], we assume ulam to be estimated
separately by the (multi-resolution) Horn-Schunck method with a very strong regu-
larization and to be removed from the image pair in advance.

5.2 Direct Estimation of the Potential Functions

Let us start with the brightness constancy equation, (2.1), using the such represented
vector field:

I(x +∇φ(x, t) +∇ψ⊥(x, t), t + 1) = I(x, t) , (5.7)

and x := (x, y). Embedding into an energy framework yields the energy functional

J(φ,ψ) :=

∫

Ω

(

I(x +∇φ(x, t) +∇ψ⊥(x, t), t+ ∆t)− I(x, t)
)2
dx . (5.8)

Similar to the Horn-Schunck approach in Chapter 2, the idea is linearize with
respect to the displacement functions. Here, this means to apply a first-order Taylor
series expansions for ∇ψ⊥ and ∇φ separately, giving the two energy functionals

J1(φ,ψ) :=

∫

Ω

(

∇I(x +∇φ, t+ ∆t)⊤∇ψ⊥ + I(x +∇φ, t+ ∆t)− I(x, t)
)2
dx

J2(φ,ψ) :=

∫

Ω

(

∇I(x +∇ψ⊥, t+ ∆t)⊤∇φ+ I(x +∇ψ⊥, t+ ∆t)− I(x, t)
)2
dx .

By means of the notation

∇Iξ(x) := ∇I(x +∇ξ, t+ ∆t) (5.9)

∂Iξ := I(x +∇ξ, t+ ∆t)− I(x, t), ξ ∈ {φ,ψ} , (5.10)

Chapter 5. Motion Estimation with High-order Regularization 96

we write those compactly as

J1(φ,ψ) =

∫

Ω

(

∇I⊤φ ∇ψ⊥ + ∂Iφ

)2
dx (5.11)

J2(φ,ψ) =

∫

Ω

(

∇I⊤ψ∇φ+ ∂Iψ

)2
dx . (5.12)

Thereby, the idea is to minimize in alternation each energy with respect to the
function for which it was linearized, respectively, while keeping the other function
fixed. Specifically, the first variation of J1 w.r.t. φ is set equal to zero, as well as the
first variation of J2 w.r.t. ψ is set to zero, yielding the following coupled equations:







∫

Ω

(

(∇Iφ∇I⊤φ) ∇ψ⊥ + ∂Iφ∇I⊤φ
)

∇ψ̃⊥ dx = 0

∫

Ω

(

(∇Iψ∇I⊤ψ) ∇φ+ ∂Iψ∇I⊤ψ
)

∇φ̃ dx = 0 ,

(5.13)

with φ̃ and ψ̃ denoting the arbitrary test functions. Note that we still have an
under-determined problem, which is reflected by the fact the matrices ∇Iφ∇I⊤φ and

∇Iψ∇I⊤ψ in (5.13) are singular.
As an ad-hoc regularization, we added small scalars ǫ to the diagonal entries of

those to two matrices, i.e. the innermost brackets in (5.13) are replaced by∇Iφ∇I⊤φ +

ǫI and ∇Iψ∇I⊤ψ + ǫI, with I referring to the identity matrix, respectively. However,
while carrying out several experiments using a first-order finite elements discretiza-
tion, this has emerged to be an inappropriate approach, since it leads to an sys-
tematic underestimation of ψ and φ. As explanation for this observation, it became
clear that additional terms of the form ǫ∇ψ⊥∇ψ̃⊥ and ǫ∇φ∇φ̃, to the integrands
in (5.13), respectively, correspond to additional terms ǫ‖∇ψ⊥‖2 and ǫ‖∇φ‖2 in (5.11)
and (5.12), respectively. Thereby, any magnitudes of the solenoidal field, ∇ψ⊥, and
the irrotational field, ∇φ, are penalized while seeking for the minima of J1 and J2,
respectively, which explains the systematic underestimation.

5.3 A Structure-preserving Regularization

5.3.1 The Approach

This gives raise for better a regularization. In particular, an important property
besides non-biasing is the preservation of sink-, source- and vortex-like patterns,
which argues against standard regularizations as employed with the Horn-Schunck
approach. In other works, we aim at extending the general smoothness assumption
on the optical flow field towards a notion of smoothness by means of those structures.

97 5.3. A Structure-preserving Regularization

The starting point thereby was the work of Suter [116] where it was proposed to
use a so-called second-order div-curl regularization:

∫

Ω

‖∇div u‖2 + ‖∇curl u‖2 dx , (5.14)

i.e. not discontinuities in the flow field itself, but in the divergence and curl are
penalized. However, since we are interested in directly estimating the potential
functions φ and ψ instead of u, we modify it by replacing u by the representation
introduced in (5.6) (having ulam ≡ 0), by which we obtain

∫

Ω

‖∇div ∇φ‖2 + ‖∇curl ∇ψ⊥‖2 dx , (5.15)

since div ∇ψ⊥ = 0 and curl ∇φ = 0 by definition (see (5.2), (5.4-5.5)).
Unfortunately, the third-order derivatives in (5.15) make a direct numerical ap-

proach quite complicated. To be concrete, the corresponding Euler-Lagrange equa-
tions would contain sixth-order derivatives of φ and ψ, respectively. To remedy
this numerical problem, we subsequently follow the approach of Corpetti et al. [39]
and introduce auxiliary variables ξ1 and ξ2, enforce them to approximate curl ∇ψ⊥

and div ∇φ by additional (soft) constraints and impose the original discontinuity
penalizing constraint on them, i.e.

∫

Ω

γ
((

div ∇φ− ξ2
)2

+
(
curl ∇ψ⊥ − ξ1

)2
)

+ λ
(
‖∇ξ2‖2 + ‖∇ξ1‖2

)
dx , (5.16)

with the regularization strength parameters γ, λ ∈ R
+. By this, the degree of

derivation can be lowered to the order of four in the Euler-Lagrange equations, at the
cost of slightly weakening the regularization constraints. Merging the regularization
and the data-driven energies (5.8) into one functional finally gives

J(φ,ψ, ξ1, ξ2) :=

∫

Ω

(

I(x, t) − I(x +∇φ+∇ψ⊥, t+ ∆t)
)2

(5.17)

+γ
((

div ∇φ− ξ2
)2

+
(
curl ∇ψ⊥ − ξ1

)2
)

+ λ
(
‖∇ξ2‖2 + ‖∇ξ1‖2

)
dx ,

which we again linearize with respect to ∇ψ⊥ and ∇φ separately:

J1(φ,ψ, ξ1) :=

∫

Ω

(

∇I⊤φ ∇ψ⊥ + ∂Iφ

)2
+ γ
(
curl (∇ψ⊥)− ξ1

)2
+ λ‖∇ξ1‖2 dx ,

(5.18)

J2(φ,ψ, ξ2) :=

∫

Ω

(

∇I⊤ψ∇φ+ ∂fψ

)2
+ γ
(
div (∇φ)− ξ2

)2
+ λ‖∇ξ2‖2 dx , (5.19)

Chapter 5. Motion Estimation with High-order Regularization 98

while keeping only the involved regularization terms. Again, the idea is to min-
imize iteratively and by alternation both energies with respect to either φ or ψ,
respectively, while, in addition, the minima w.r.t. the auxiliary variables have to be
calculated.

5.3.2 Discretization and Solving

In order to avoid the implementation efforts involved with finite elements of sec-
ond order, here a discretization is realized by finite differences. Hence, the Euler-
Lagrange equations for J1 w.r.t. ψ, ξ1 and for J2 w.r.t.φ and ξ2, respectively, are
determined:







curl
((
∇I⊤φ ∇ψ⊥ + ∂Iφ

)⊤∇Iφ
)

+ γ
(
∆2ψ + ∆ξ1

)
= 0

γ (∆ψ + ξ1)− λ∆ξ1 = 0

div
((
∇I⊤ψ∇φ+ ∂Iψ

)⊤∇Iψ
)

+ γ
(
∆2φ−∆ξ2

)
= 0

γ (−∆φ+ ξ2)− λ∆ξ2 = 0 ,

(5.20)

with

∆2 = ∂x4 + 2∂x2y2 + ∂y4 , (5.21)

denoting the so-called biharmonic operator, which was approximated by a standard
13-points-stencil [68], and require mixed Dirichlet and Neumann boundary condi-
tions

φ(x) = σφ(x) ∧ ∇nφ(x) = ρφ(x), ∀x ∈ ∂Ω

ψ(x) = σψ(x) ∧ ∇nψ(x) = ρψ(x), ∀x ∈ ∂Ω ,
(5.22)

with boundary functions σφ, σψ, ρφ and ρψ (see the second but last paragraph in
Section 5.4 for details on their concrete selection in our case).

5.3.3 Embedding into a Multi-resolution Framework

Since first experiments with small velocities (below one pixel per image pair) show
promising results, we integrate the current approach into a multiresolution frame-
work in order to estimate φ and ψ also for larger displacements. Therefore, we
consider a pyramid of M discretization meshes with the original, the finest one at
the bottom being labeled by index 1. Moreover, we consider approximations of every
function in (5.18) and (5.19) on each resolution level l – indicating the level by upper

indices – while operators P l provide a prolongation (P l) or restriction (P l
⊤
) from

level l to l − 1 or l + 1, respectively.

99 5.4. Experimental Studies

Given the solutions φl−1 and ψl−1 from resolution level l − 1, while at level M
with setting φM = 0 and ψM = 0, φl and ψl are calculated by iteratively carrying
out

(ψl, ξl1) = (Pψl−1, 0) + arg min
ψ,ξ1

J1(φ, Pψ
l−1, ψ, ξ1, γl, λl) (5.23)

(φl, ξl2) = (Pφl−1, 0) + arg min
φ,ξ2

J2(Pφ
l−1, φ, ψ, ξ2, γl, λl) , (5.24)

with

J1(φ,ψ0, ψ, ξ1, γ, λ) := (5.25)
∫

Ω

(

∇Ī⊤φ ∇ψ⊥ + ∂Īφ

)2
+ γ
(
curl ∇(ψ0 + ψ)⊥ − ξ1

)2
+ λ‖∇ξ1‖2 dx

J2(φ0, φ, ψ, ξ2, γ, λ) := (5.26)
∫

Ω

(

∇Ī⊤ψ∇φ+ ∂Īψ

)2
+ γ
(
div ∇(φ0 + φ)− ξ2

)2
+ λ‖∇ξ2‖2 dx ,

and

Ī(x, t) := I(x, t)

Ī(x, t+ ∆t) := I(x +∇φ0 +∇ψ⊥
0 , t+ ∆t). (5.27)

Note that except for the coarsest resolution level M , φ and ψ are incremental re-
finements of the whole solution, thereby describing only small velocities and thus
keeping the linearization error low. By contrast, the regularization terms apply to
the complete potential functions (Pφl−1 + φ and Pψl−1 + ψ), not only to the incre-
ments. For the auxiliary variables, on the other hand, the multi-resolution is not
applied, since they are not involved in the linearization. Hence, ξ1 and ξ2 are not
increments, but calculated independently at each resolution.

5.4 Experimental Studies

This section is organized into three parts. First, the quantitative and qualitative
influence of the parameters γ and λ is investigated in Section 5.4.1. Second, the
proposed method is compared with the method of Corpetti et al. [40] on artificial
motion fields, i.e. with ground truth, in Section 5.4.2. Finally, results for a real
image sequence will be presented.

In all experiments, the Euler-Lagrange equations (5.20) were solved sequentially
in 3000 iterations using an incomplete CLG solver iterating 50 times in each (outer)

Chapter 5. Motion Estimation with High-order Regularization 100

iteration. Two resolution levels (including the original one) have been used for the
experiments in Sections 5.4.1 and 5.4.2 and three for those in Section 5.4.3.

In terms of the boundary functions in (5.22), because of lack of data, it has
been assumed σφ = 0, σψ = 0, ρφ = 0 and ρψ = 0 at distance of 30% of the
image height and width, respectively. That is, the image plane has been artificially
enlarged by 30% of its width and height, respectively, on all sides, in order to have
sufficient space for φ and ψ to decay1. The image intensity has been set to zero
on this artificial frame. Consequently, there, only the regularization term in (5.17)
determined values for φ and ψ.

As error measures the average squared L2 norm error and the average angular
error (mean and first standard derivation), see [7], applied to the flow fields resulting
from φ and/or ψ were chosen. An error measure on φ and ψ directly was avoided,
thus the potentials are only defined up to a constant.

The intensities of all input images have been normalized to the range [0, 1].

5.4.1 Parameter Studies

In early experimental studies the influence of the parameters γ and λ were inves-
tigated on synthetic potentials in order to have a ground truth (cf. Figure 5.1).
The associated synthetic flow field was applied to a real image, i.e. the real image
was mapped using the velocity field to obtain a second image resulting in the input
image pair for the current experiments. Note that the vector field consist of an exact
spatial overlap of the true components we wish to determine and distinguish.

Figure 5.3 shows the results for estimating the potential functions with varying
values for γ ∈ {0.1, 0.25, 0.5, 1, 2, 3, 4} and a fixed λ = 103. These results clearly il-
lustrate the positive regularizing effect of the high-order smoothness terms in (5.18)
and (5.19) which were made computationally tractable by means of auxiliary func-
tions. It’s remarkable that both vector field components can be distinguished —
despite a complete spatial overlap and only partially given image structures — by
subsequent linearizations of a single data term (cf. Section 5.1).

Whereas Figs. 5.4(a,c) and 5.3(d,k) show that the potential fields have been
reconstructed well, Figs. 5.4(b,d) reveal a relatively large angular error of 10◦ − 20◦

of the respective velocity fields. This is plausible since the velocity fields are related
to the derivatives of the quantities we estimate directly (potential functions). As
a consequence, inaccuracies appear amplified. However, it should be noted again
that the potential functions are the quantities of primary interest for flow pattern
analysis. A comparison with an approach which uses indirect computation of the

1Note that this is (approximately) consistent with the initial assumption (w.r.t. the Helmholtz
Decomposition) that the velocity field vanishes at infinity.

101 5.4. Experimental Studies

potential functions by integrating velocity fields along stream lines is the object of
the next section.

Figure 5.4 shows that for low values of the regularizing parameter γ the corre-
sponding auxiliary function must not be smoothed too much (too large values of λ).
This finding reveals a dependency between γ and λ, the closer investigation of which
is left for future work.

(a) Synthetic velocity
potential φ

(b) Synthetic stream
function ψ

(c) Corresponding ve-

locity field ∇φ+ ∇ψ⊥

(d) Image to which (c)
was applied to

Figure 5.1: Input data for the parameter studies. Based on the synthetic potential
functions depicted in (a) and (b), the image in (d) was mapped by the corresponding velocity
field (c) to obtain a synthetic image pair with ground truth data. (128× 100 pixels)

5.4.2 Comparison with Existing Approaches

In [40] an approach was presented in which the potential functions were approxi-
mated indirectly by first estimating a motion field using a regularization similar to
(5.17) and a subsequent integration along the stream lines in order to obtain the
velocity potential and the stream function. Both approaches were compared in two
experiments here based on given synthetic potential functions (cf. Figure 5.5). In
order to have another reference solution, a Horn and Schunck motion estimation [72]
has been carried out with both data sets in addition. The parameters of all methods
have been optimized manually. Note that the setting of comparison experiment 1 is
the same as for the parameters studies.

The results for experiment 1 (Figure 5.6 and Table 5.1) and experiment 2 (Figure
5.7 and Table 5.2) both show that the new approach yield good results similar to
those obtained by the the approach of Corpetti et al., despite the higher order of
differential equations involved in the minimization. Furthermore, they show that the
standard regularization of Horn and Schunck is insufficient to preserve the desired
image structures, since this regularization penalizes strong discontinuities like those
in the center of the velocity field in experiment 1 resulting from a vortex and a
source, which we want to preserve. Even for weak regularizations the results of the
Horn and Schunck estimator are less accurate in both experiments.

Chapter 5. Motion Estimation with High-order Regularization 102

0 1 2 3 4
gamma

0.1

0.2

0.3

0.4

0.5

(a) squared L2-error for varying γ

0 1 2 3 4
gamma

0

5

10

15

20

25

(b) angular error for varying γ

2 2.5 3 3.5 4 4.5 5
log10lambda

0.1

0.2

0.3

0.4

0.5

(c) squared L2-error for varying λ

2 2.5 3 3.5 4 4.5 5
log10lambda

0

5

10

15

20

25

(d) angular error for varying λ

Figure 5.2: Quantitative parameter studies. (a,c) Average squared L2-error of ûir + ûso

(solid), ûir (pointed) and ûso (dashed) depending on (a) γ and (c) λ. (b,d) Average angular
error of ûir + ûso (solid), ûir (pointed) and ûso (dashed) depending on (b) γ and (d) λ.
Direct estimation of potential functions as the objects of primary interest leads to a small
global error of the corresponding gradient velocity fields (a,c) but to local angular errors
from 10◦ − 20◦.

5.4.3 Reconstructing the Vortexes of a Landing Air Plane

Finally, the new approach has been applied on an image pair coming from a real
image sequence. The sequence is a recording of the motion of smoke behind a
landing passenger air plane. It contains a strong vortex in the center and a weaker
but larger one in the other direction with its center laying outside the image plane,
approximately 50% from the right border. In addition a weak source is present in
the right half, centered vertically (cf. Figure 5.8(a,b)).

In order to eliminate the laminar component of the velocity field, the laminar
flow has been approximated roughly by a Horn and Schunck estimator with a strong
regularization α2 = 106 and used to map the second image of the input image pair
back (cf. Section 5.1).

103 5.5. Conclusion

(a) (b) (c) (d) (e) (f) (g)

(h) (i) (j) (k) (l) (m) (n)

Figure 5.3: Qualitative parameter study for γ. Estimated velocity potentials φ ((a)-(d))
and stream functions ψ ((e)-(h)) for γ taking values of {0.1, 0.25, 0.5, 1, 2, 3, 4} and λ = 103.
Both vector field components can be distinguished, despite a complete spatial overlap. The
positive effect of the high–order regularization implemented by means of auxiliary functions
is clearly visible.

The results in Figure 5.8 show that both the main vortex and the weak source
are well reconstructed, despite the lack of image structures in the lower half of
the sequence. But the weaker counter-vortex is detected only in outlines. This
is plausible since the latter one has its maximum outside the image plane and the
stream function ψ is set to be zero on the large border (see beginning of this section).

5.5 Conclusion

The problem of computing highly non-rigid fluid flow from image sequences involves
important application issues. In contrast to traditional variational approaches for
optical flow computation which have disadvantages in this context, we dealt with this
problem by using higher-order regularization terms which merely penalize changes of
the principal flow constituents. The approach was made computationally tractable
by the use of auxiliary functions. A significant feature of the approach is that the
associated potential functions are directly computed. This is a favorable property
regarding the recognition and analysis of flow patterns. Numerical experiments
confirmed that both components can be estimated separately by subsequent lin-
earizations of a single data term. A comparison with an indirect approach revealed
no loss in performance, despite the higher order of differential equations to be solved.

The research area of variational fluid flow estimation from image sequences is
rapidly evolving. We refer in Section 9.2 to the most recent developments since the
completion of this thesis.

Chapter 5. Motion Estimation with High-order Regularization 104

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5.4: Qualitative parameters study for λ. Estimated velocity potentials φ ((a)-
(d)) and stream functions ψ ((e)-(h)) for λ taking values of {102, 103, 104, 105} and γ = 0.5.
Parameters for enforcing regularization γ and smoothing the auxiliary functions λ are not
independent. For low values of γ, the auxiliary functions must not be smoothed too much.

(a) Synth. velocity potential φ (b) Synth. stream potential ψ
(c) Corresponding velocity
field (max. 1.86 pixels/frame)

(d) Synth. velocity potential φ (e) Synth. velocity potential ψ
(f) Corresponding velocity
field (max. 1.89 pixels/frame)

Figure 5.5: Input data for comparison experiment 1 and 2. Either synthetic velocity
field has been used to map the image in Fig. 5.1(d) in order to generate an image pair.

105 5.5. Conclusion

Approach/ Direct approach Corpetti et al. Horn&Schunck

Error measure γ = 3.0, λ = 1000 α = 300, λ = 250 α2 = 0.17

Av. squared L2-error uir + uso 137.11 175.81 208.979

×103 uir 116.38 152.89

uso 67.51 102.24

Av. angular error uir + uso 8.69◦ ± 6.72◦ 10.12◦ ± 7.95◦ 8.93◦ ± 6.39◦

(mean/1. std. dev.) uir 11.52◦ ± 5.58◦ 12.89◦ ± 7.71◦

uso 8.35◦ ± 5.39◦ 10.36◦ ± 6.12◦

Table 5.1: Measured errors of comparison experiment 1. Both the average squared
L2-error and the average angular error of the resulting velocity field (uir + uso) and sep-
arately for the irrotational and solenoidal components (uir, uso) are given. Approach-
dependent parameters have been optimized manually. The errors of the Horn and Schunck
approach show clearly that, despite the flow directions are estimated with similar accuracy,
there is a significant higher error in the magnitudes which results from the penalization of
the discontinuity in the velocity field (cf. Fig. 5.5(c)).

Approach/ Direct approach Corpetti et al. Horn&Schunck

Error measure γ = 0.5, λ = 100 α = 300, λ = 250 α2 = 0.07

Av. squared L2-error uir + uso 162.18 168.7 170.514

×103 uir 60.69 70.59

uso 129.56 65.76

Av. angular error uir + uso 14.68◦ ± 9.59◦ 14.65◦ ± 11.51◦ 16.19◦ ± 10.26◦

(mean/1. std. dev.) uir 10.56◦ ± 5.93◦ 11.15◦ ± 7.52◦

uso 14.11◦ ± 9.72◦ 10.29◦ ± 7.36◦

Table 5.2: Measured errors of comparison experiment 2. While the approximation
quality compared to the indirect approach of Corpetti et al. is more equal here, the difference
in approximation quality to the approach of Horn and Schunck is not as distinct as in
experiment 1 since the discontinuities of the velocity field are smaller in this case see Fig.
5.5(f).

Chapter 5. Motion Estimation with High-order Regularization 106

(a) Est. velocity potential φ̂ (b) Est. stream function ψ̂ (c) Corresponding vel. field

(d) Irrotational part of vel. field (e) Solenoidal part of vel. field (f) Difference to ground truth

(g) Est. velocity potential φ̂ (h) Est. stream function ψ̂ (i) Corresponding vel. field

(j) Irrotational part of vel. field (k) Solenoidal part of vel. field (l) Difference to ground truth

Figure 5.6: Direct versus indirect approach on data set 1. (a)–(f) Results of the
proposed direct approach (γ = 3.0, λ = 1000). (g)–(l) Results of the indirect approach by
Corpetti et al. (α = 300, λ = 250). Both methods lead to very similar results in this case,
despite significant differences in the approach.

107 5.5. Conclusion

(a) Est. velocity potential φ̂ (b) Est. stream function ψ̂ (c) Corresponding vel. field

(d) Irrotational part of vel. field (e) Solenoidal part of vel. field (f) Difference to ground truth

(g) Est. velocity potential φ̂ (h) Est. stream function ψ̂ (i) Corresponding vel. field

(j) Irrotational part of vel. field (k) Solenoidal part of vel. field (l) Difference to ground truth

Figure 5.7: Direct versus indirect approach on data set 2. (a)–(f) Results of the
proposed direct approach (γ = 0.5, λ = 100). (g)–(l) Results of the indirect approach by
Corpetti et al. (α = 300, λ = 250). Also here the results are quite similar, although the
false second maximum of the stream function is more distinct with the direct approach.

Chapter 5. Motion Estimation with High-order Regularization 108

(a) Image #1 (128 × 100 pixels) (b) Image #2

(c) Est. velocity potential φ̂ (d) Est. stream function ψ̂

(e) Corresponding irrotational comp. (f) Corresponding solenoidal comp.

Figure 5.8: Results of the real-world experiment. The images in (a) and (b) are part
of sequence showing a wake vortex of a landing air plane. Both the main vortex and the
weak source are well reconstructed by the new approach, despite the lack of image structures
in the lower half of the sequence. However, the weaker counter-vortex is reconstructed only
in outlines. This is plausible since the latter one has its maximum outside the image plane
and the velocity potential ψ is set to be zero on the enlarged border. (γ = 0.5, λ = 103,
maximum velocity: 2.75 pixels/frame)

Chapter 6

TV-based Variational Image

Restoration

Variational image restoration employing the Total Variation (TV) norm regular-
ization has been recognized for giving very good results in comparison to those
based on L2-norm regularization, because of its edge-preserving property. On the
other hand, the underlying partial differential equations are nonlinear and demand
a significantly higher computational effort for solution by dedicated methods. Fur-
thermore, because of the variational nature of the approach, the solution methods
do not provide direct clues for coarse-grained parallelism, neither with respect to a
spatial nor to a functional decomposition. Due to the nonlinearity, standard non-
overlapping domain decomposition methods, e.g. substructuring methods as pro-
posed in Chapter 3, cannot be applied directly, but only within iterations based on
local linearizations. In contrast, in the succeeding two chapters different approaches
for the direct domain decomposition of nonlinear problems will be discussed. Since
TV-based image restoration will serve as the model problem there, details on the
approach and common solving methods will be discussed in the following chapter
first.

The plan of this chapter is as follows. First the underlying optimization prob-
lem in comparison to the L2-based restoration problem is explained, followed by
addressing the difficulties in solving the corresponding nonlinear equations systems.
Second, an outline of the four most known dedicated solving techniques is given,
followed by presentation and discussion of experimental results for two meaningful
examples.

109

Chapter 6. TV-based Variational Image Restoration 110

6.1 Regularization Based on the TV-norm

6.1.1 Problem Statement

TV-based image restoration is founded on the following minimization problem [104,
103, 27]:

min
u

∫

Ω

1

2
(Ku− f)2 dx + αJTV (u) =: J(u) , (6.1)

where f ∈ H1(Ω) = V (Ω) denotes the degenerated input image, u the reconstructed
image being sought for, K : V (Ω) → V (Ω) a linear compact integral operator
describing the degradation process. JTV refers to the so-called Total Variation
norm, given in weak formulation by

JTV (ξ) := sup
w∈(C∞

0 (Ω))2







∫

Ω

ξ div w dx : ‖w‖∞ ≤ 1






, (6.2)

with test functions w and ξ ∈ L1(Ω), see, e.g., [121]. Furthermore, by JTV one can
construct the space of Bounded Variations, denoted by BV (Ω), which consists of all
functions ξ ∈ L1(Ω) for which

‖ξ‖BV := ‖ξ‖L1(Ω) + JTV (ξ) ≤ ∞ , (6.3)

and it is u ∈ BV (Ω) in (6.1).
Note that for all ξ ∈W 1,1(Ω) the explicit formulation

JTV (ξ) :=

∫

Ω

|∇ξ| dx (6.4)

can be given1. However, for ξ ∈ H1(Ω) = W 1,2(Ω) = V (Ω), as we assume for u in
the following, (6.4) is commonly approximated by

JTV,β(ξ) :=

∫

Ω

√

(∇ξ)2 + β dx, (6.5)

with β being small scalar constant in R. The reason for using this approximation is
to obtain a differentiable functional that allows for using standard tools in a common
Hilbert-space setting. In the following we will always approximate2 JTV by JTV,β.

1W 1,1(Ω) := {v ∈ L1(Ω) : ∂αv ∈ L1(Ω) , 0 ≤ |α| ≤ 1}
2However, we point out that discrete implementations of (6.1) exist, that do not rely on the

approximation (6.5), but use the exact definition (6.2) of the TV-measure [26]. Convergence of the
corresponding iteration is slow, however, and any acceleration will result in a primal-dual iteration
similar to that investigated in Section 6.2.4.

111 6.1. Regularization Based on the TV-norm

Furthermore, note that problem (6.1) can be regarded as a nonlinear instance of
the class of Tikhonov regularizations [118], which is applied to the inverse problem

f = K u+ η , (6.6)

with η being a Gaussian-distributed random function modeling the measurements
noise. Due the compactness of K, problem (6.6) is ill-posed, which gives rise to the
regularization in connection with the least-squares minimization as stated in (6.1),
see [43] and the references therein. Note that (6.6) is also denoted as image degra-
dation model in the restoration context.

Additionally, in comparison to approaches applying the squared L2-norm, i.e.
∫

Ω(∇u)2 dx, as regularizer, TV regularization has the superior property of not pe-
nalizing strong magnitudes of ∇u, and thus strong discontinuities of u much less,
leading to considerably better results, which is illustrated for a 1D-example in Fig-
ure 6.1(a). However, at the presence of weak gray value gradients, staircase-like
artifacts are known to appear, emerging from the preference of piecewise constant
gray levels, see Figure 6.1(b).

0 100 200 300 400 500 600 700 800 900 1000

−0.2

0

0.2

0.4

0.6

0.8

1

1.2 noised input signal

original signal

H1−semi−norm reconstr., α=150

TV−norm reconstruction, α=7

H1−semi−norm reconstr., α=1000

(a) Reconstructions of a ramp function

0 100 200 300 400 500 600 700 800 900 1000
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

noised input signal
original signal
H1−semi−norm reconstr., α=4500
TV−norm reconstruction, α=12

(b) Reconstruction of a triangular function

Figure 6.1: L2-norm versus TV-norm regularization at the example of 1D de-

noising. Depicted are reconstructions of (a) a step function signal perturbed and (b) a
triangle function signal both having being perturbed by additive Gaussian noise (signal-
to-noise ratios: 1.7 dB and -11 dB, respectively, K ≡ I, β = 10−14). In case of the step
function, TV-regularization leads to a much better reconstruction, since it allows for strong
discontinuities. On the other hand, staircase-like artifacts do occur with smooth gradients.

Chapter 6. TV-based Variational Image Restoration 112

6.1.2 Euler-Lagrange Equation

Computing formally the first variation of the functional of (6.1), while using the
TV-norm approximation (6.5), we obtain

∫

Ω

K∗(Ku− f) v + α
∇u⊤∇v

√

(∇u)2 + β
dx = 0, ∀v ∈ V (Ω), (6.7)

which is the first variation of J being set equal to zero, and with K∗ denoting the
adjoint operator to K. Here we see that β > 0 also has the function to prevent (6.7)
from becoming singular at locations where |∇u| = 0. It is known, [1], that a solution
to the approximation converges to that of the original problem for β approaching 0.
Equation (6.7) will serve as our model problem in the sequel.

The Euler-Lagrange equations being derivable from (6.7) by partial integration
read:

(
Ku− f

)
K∗− α ∇ · ∇u|∇u|β

= 0 , (6.8)

where |·|β :=
√

|·|2 + β, and with the Neumann boundary condition

∂u

∂n
= 0 on ∂Ω , (6.9)

where n denotes the outer unit normal on ∂Ω.
We rewrite (6.8) to

⇔ K K∗u− α ∇ · ∇u|∇u|β
= K∗ f , (6.10)

and define φ(u) := K K∗u− α ∇ · ∇u
|∇u|β , of which we will make use of later on.

6.2 Solving Methods

Four common iterative solving approaches will be presented in the following, which
also reflects chronological order of their appearance.

Concerning the perturbation parameter β, note in advance that it is either set to
its final value, e.g. 10−8 for all iterations, or initialized by some large value and then
gradually diminished within while solving, which is referred to as ’continuation’ in
TV restoration literature. However, the denotation ’continuation’ in optimization
theory is commonly utilized for non-convex objective functionals whose number of
local minima change with the continuation parameter. This is not the case here, since
J(u) is convex even for β → 0. Therefore, we will use the denotation β-decrement
procedure in the following.

113 6.2. Solving Methods

6.2.1 Steepest Descent

In their first publication on TV-based regularization [104], Rudin, Osher and Fatemi
also proposed the following time-marching scheme:

∂u

∂t
= −φ(u) = α∇ ·

(∇u
|∇u|β

)

−K∗(Ku− f), t > 0, (6.11)

with initial condition u = z at t = 0. Hereby, one obtains as the steady state a
solution to (6.10). After time-discretization, an explicit (forward Euler) marching
scheme leads to the iteration rule

uk+1 = uk − τ φ(uk) (6.12)

for some fixed time step size τ , 0 < τ ≤ 1, and the iteration count k ∈ N; which
is equivalent to the steepest descent method. Unfortunately, this method has poor
asymptotic convergent rates. Furthermore, it almost always leads to oscillation at
the minimum, and has little robustness for small values of β, such as β = 10−8.

6.2.2 Fixed Point Iteration

In order to overcome the disadvantages of the steepest descent method, Vogel and
Oman [122, 123, 43], proposed the fixed point iteration

α∇ ·
(∇uk+1

|∇uk|β

)

−K∗(Kuk+1− f) = 0, (6.13)

with initial value u0 = z, leading to solve the linear equation system

(

K∗K − α∇ ·
(∇
|∇uk|β

))

uk+1 = K∗f , (6.14)

for each iteration k. The weak formulation reads:

∫

Ω

K∗(Kuk+1 − f)v + α

(∇uk+1

|∇uk|β

)⊤
∇v dx =

∫

Ω

K∗f v dx, ∀v ∈ V (Ω). (6.15)

The main idea of this approach is to fix the the nonlinear term L(uk) := ∇ ·
(
∇/|∇uk|β

)
in (6.14) and to consider it as a linear equation

(
K∗K − αL(uk)

)
uk+1 = K∗f (6.16)

Chapter 6. TV-based Variational Image Restoration 114

instead. In doing so, L(uk) can be interpreted as a diffusion operator being applied
to uk+1, cf. [122]. Since L depends on the solution uk of the previous iteration,
this method is denoted as lagged diffusivity fixed point iteration [122]. However,
later Heers et al. [70] found, that this procedure had been already introduced as the
Kačanov method over 35 years ago [73, 59]. After discretization, standard methods
from numerical linear algebra, e.g., conjugate gradient iteration in connection with
multigrid or FFT-based preconditioning can be applied.

Although the designated method turned out to be robust and convergence is
ensured, [43], its convergence rate is only linear [35].

6.2.3 Newton’s Method

In aiming to improve the convergence rate, Vogel and Oman [122], as well as Chan,
Chan and Zhou [36] suggested to apply Newton’s method, leading to the iteration
rule

uk+1 = uk −H−1
φ (uk)φ(uk) , (6.17)

with φ(uk) denoting the gradient of J at uk, as defined in (6.10), as well as its
Hessian Hφ(u

k), given by

Hφ(u) = K∗K − α∇ ·
(

1

|∇u|β

(

I − ∇u∇u
⊤

|∇u|2β

)

∇
)

. (6.18)

That is, at each iteration one has to solve the equation

(

K∗K − α∇ ·
(

1

|∇u|β

(

I − ∇u∇u
⊤

|∇u|2β

)

∇
))

δu = −φ(u(k)) , (6.19)

with respect to an update δu, followed by setting uk+1 ← uk + δu. The variational
formulation of 6.19 reads:

∫

Ω

K∗K δu v + α
1

|∇u|β
∇v
(

I − ∇u∇u
⊤

|∇u|2β

)

∇δu dx = −
〈
∂J

∂u
, δu

〉

, ∀v ∈ V (Ω).

(6.20)

Although the convergence of this procedure is quadratical, its domain of convergence
has turned out to be very small, which is especially the case for small values of β since
the nonlinear characteristics becomes most apparent then. I.e. the Newton Method
practically always diverges for reasonable small values of β, such as 10−6, even
though u is initialized with values close to the solution, e.g. by the non-degradated
ground truth image.

115 6.2. Solving Methods

As a remedy, Chan, Chan, and Zhou [36, 29] proposed a decrement procedure,
where Newton’s Method is carried out several times for different, decreasing values
of β, i.e. β is fixed within the Newton iteration. In detail, β is initially set to a
relatively high value of e.g. 1 and the decreased by a heuristic procedure — e.g.
multiplication by a fixed factor in the simplest variant — until the the final value
is attained. However, our experimental studies have revealed that the decrement
step and the Newton iteration can be interleaved, i.e. β can be decreased within the
Newton procedure without loss of convergence. In doing so, a significantly faster
convergence could be observed, see Figure 6.4(b)3 (see Sec. 6.2.5 for details on input
data and parameters values).

6.2.4 Primal-dual Newton’s Method

6.2.4.1 Mitigating the Nonlinearity

Although the Newton method, in connection with an appropriate decrement proce-
dure on β, is appropriate for solving the TV-based reconstruction problem; much
heuristics and parameter tuning is involved there. In order to overcome the main
cause for the numerical instability, which is the presence of the term ∇u/|∇u|β
in (6.7), Chan et al. [29, 35, 13, 30] suggested to substitute this term by the auxil-
iary function

w :=
∇u
|∇u|β

, w ∈ (V (Ω))2, (6.21)

which can also be interpreted as the unit normal vector of the level sets of u, cf. [29].
Applying this substitution to the Euler-Lagrange equations (6.10) then yields the
coupled system

{

K∗(Ku− f)− α∇ · w := ϕ(u,w) = 0

w|∇u|β −∇u := ψ(u,w) = 0.
(6.22)

The advantage of this is substitution is the first equation now to be linear in u, in
contrast to the original E.-L. equation.

In order to solve the coupled problems (6.22), Newton’s method is applied, lead-
ing to the equation system

(
K∗K −α∇·

−
(

I − w∇u⊤
|∇u|β

)

∇ |∇u|β

)(
δu
δw

)

= −
(
ϕ(u,w)
ψ(u,w)

)

(6.23)

3Also here, the reduction factor was chosen manually to be the smallest one from a discrete set
of values leading to convergence

Chapter 6. TV-based Variational Image Restoration 116

for the updates δu, δw, which is obtained by linearizing
(
φ(u,w), ψ(u,w)

)
around

(u,w)⊤ (see [29] for further details). In a next step, the second equation in (6.23) is
algebraically solved for δw and ψ(u,w) is replaced by its definition, giving

δw =
1

|∇u|β

(

I − w∇u⊤
|∇u|β

)

∇δu− w +
∇u
|∇u|β

. (6.24)

Subsequently, replacing by this δw in the first equation of (6.23) results in

(

K∗K − α∇ ·
(

1

|∇u|β

(

I − w∇u⊤
|∇u|β

)

∇
))

δu = −φ(u). (6.25)

By this, one solves (6.25) for the update δu only, followed by evaluating (6.24) in
order to obtain the corresponding update for w.

Weak formulations of (6.24) and (6.25) are given by

∫

Ω

δw w̃ dx =

∫

Ω

1

|∇u|β
w̃

(

I − w∇u⊤
|∇u|β

)

∇δu− w⊤w̃ +
∇u⊤w̃
|∇u|β

dx, ∀w̃ ∈ (V (Ω))2,

(6.26)

and

∫

Ω

K∗K δu v + α
1

|∇u|β
∇v
(

I − w∇u⊤
|∇u|β

)

∇δu dx =

−
∫

Ω

K∗(Ku− f) v + α

(∇u
|∇u|β

)⊤
∇v dx, ∀v ∈ V (Ω), (6.27)

respectively.

6.2.4.2 The Algorithm

After applying an appropriate discretization, the inner loop of the iteration consists
of the following steps:

(i) solve (6.25) for the update δuk

(ii) evaluate (6.24) for the update δwk

(iii) determine the step size τu for δuk

(iv) determine the step size τw for δwk such that ‖wk + δwk‖∞ ≤ 1

117 6.2. Solving Methods

(v) set uk+1 ← uk + τuδu

(vi) set wk+1 ← wk + τwδw

(vii) set k ← k + 1

where uk and wk are initialized by arbitrary feasible values. These steps are iterated
until the L2 norm of the gradient, ‖dJdu‖L2 , has fallen below a given threshold.

Let us take a closer look at the first step. Discretization of (6.25) (or (6.27) when
using finite elements, respectively), yields a linear equation system of the formAδu =
b. A typically is a sparse and banded matrix (assuming a regular discretization
grid), whose inverse A−1 is dense, which suggests the employment of an iterative
solving technique not requiring A−1 to be calculated explicitly. Furthermore, it is
known [29], A to be regular and positive definite, if α > 0, K is invertible and
|wi| < 1, ∀i. Though, A is also known to be non-symmetric, which prevents from
applying appropriate methods like conjugated gradient iteration. As a remedy Chan
et al. propose, [29], to instead solve the symmetrized equation 1

2(A + A⊤) δu = b,
which corresponds to modifying the left-hand sides of (6.25) to

(

K∗K − α∇ ·
(

1

|∇u|β

(

I − 1

2

w∇u⊤ +∇uw⊤

|∇u|β

)

∇
))

δu = . . . , (6.28)

or in the weak formulation (6.27) to

∫

Ω

K∗K δu v + α
1

|∇u|β
∇v
(

I − 1

2

w ∇u⊤ +∇u⊤w
|∇u|β

)

∇δu dx = (6.29)

Empirically, it has turned out, [29], that the symmetrized operator 1
2 (A+A⊤) con-

verges to the original operator A while applying Newton’s method, since w converges
to ∇u

|∇u|β
, without changing the convergence rate significantly. Hence, conjugated gra-

dient iteration can now be applied to the symmetrized problem, which was also done
with our experiments.

Whereas the implementation of step (ii) is obvious, different line search methods
for step (iii) can be employed in order to guarantee global convergence with respect
to u. Chan et al. suggested the commonly utilized Armijo’s rule, cf., e.g., [8], which
amounts to determining the first m in ascending order, starting with m = 0, for
which the following inequality holds true:

J(u)− J(u+ τ0ν
mδu) ≥ −κτ0νm

〈
dJ(u)

du
, δu

〉

, (6.30)

where ν denotes a given reduction factor, τ0 an initial step size guess, κ a scalar
parameter, and with J and 〈dJdu , δu〉 as defined in (6.1) and (6.7), respectively. Once

Chapter 6. TV-based Variational Image Restoration 118

such an m has been found, the final step size is given by τ0ν
m. Our experiments

have shown, that setting τ0 = 1, ν = 1
2 , and κ to a value within [10−6, 10−4] lead

to satisfactory step size selections. However, in most experiments, using a constant
step size of τu = 1 led to convergence also, while the convergence rate of the primal-
dual Newton Method could not be improved in utilizing Armijo’s rule. Since J has
to be evaluated several times for each step size selection, we skipped choosing a fixed
step size in almost all experiments.

Moreover, the determination of proper step sizes for w in order to fulfill |wi| <
1, ∀i, see step (iv), also by own experiments has shown to be essential with respect
to convergence. Therefore, at each iteration k, it is necessary to solve a problem of
the form

τw = ρ sup { τ : |wki + τδwki | < 1, ∀i } , (6.31)

where ρ is a given scalar parameter being in the range [0, 1]. A simple but robust
procedure to determine τw is to test step sizes τ = (1

2)k, for k being iteratively

incremented by 1, beginning with zero, and to then set τw = τ for the first k̂, for
which the inequality (6.31) holds. Furthermore, manually choosing ρ = 0.9 has been
found most appropriate in terms of convergence.

Besides the step size selections, the decrement procedure for β, as suggested
with Newton’s method in Section 6.2.3, can be applied here also, which has led to
small convergence speed improvements with our experimental studies. On the other
hand, convergence was reached in all cases also without this. The latter is a distinct
property in comparison to the (solely primal) Newton method, where the decrement
w.r.t. β is essential for convergence.

6.2.5 Experimental Studies

The main goals of the experimental studies have been first to approve the results
presented in the designated publications and second to compare the four presented
methods with respect to their convergence characteristics as well as computational
effort. The studies were restricted to the denoising problem only, i.e. K was the
identity in all experiments, since only general convergence characteristics were to be
studied.

6.2.5.1 Input Data, Parameter Values and Error Measures

Standard conforming piecewise linear finite elements were used for discretization. As
ground truth images, an artificial, Fig. 6.2(a), as well as an (artificially generated)
real world example4, Fig. 6.3(a), were utilized. Both data sets did contain intensity

4being provided to us by Prof. R. Plemmons of Wake Forest University, Winston-Salem, U.S.A.

119 6.2. Solving Methods

values of the range [0, 1] and were perturbed by adding (artificially generated) white,
mean-free Gaussian noise of variance σ2 = 1

4 , in order to obtain the input images,
depicted in Fig. 6.2(b) and Fig. 6.3(b).

With respect to choosing a value for the perturbation parameter β, a common
value is 10−2 in literature, given a range of [0, 255] for the intensity values. This
corresponds to choosing 10−8 for intensities being normalized to [0, 1], as it was the
case also here. Using smaller values than 10−8, which decreases the convergence rate
further, has shown to change the result on 2D-data only slightly; e.g. it leads to an
improvement of only 0.2% in the rel. L2 error for the example depicted in Fig. 6.2.

As the solving method for the linear equation system occurring in the presented
methods, preconditioned conjugate gradient iteration while using the inverse of the
diagonal of the operator matrix as preconditioner was used. As error threshold, the
final relative residual L2 error must have been dropped below 10−4.

Finally, as error measures, both the final (nonlinear) relative residual error

‖u− α∇ ·
(

∇u
|∇u|β

)

− f‖L2

‖f‖L2

(6.32)

for β = 0, as well as the relative L2 error to a reference solution û were utilized. The
reference solution û was calculated in applying the primal Newton method with a
final L2 norm of the gradient of 10−12.

6.2.5.2 Results

First the qualitative results for a synthetic example, Figs. 6.2(g)–(j), and a real world
example, Figs. 6.3(a)–(e), in utilizing the Newton method were studied for different
regularization strengths α, see Figs. 6.2(g)–(j) and Figs. 6.2(g)–(j), respectively.
The outcomes show the superior properties of TV-based denoising especially at the
presence of heavy noise.

Second, the convergence behavior for each of the four described solving methods
was observed in terms of the relative residual L2 error and the relative L2 error to the
corresponding reference solution (see Figs. 6.4(b), (d), (e) and (f)). In comparing the
residual error of the four methods as in Fig. 6.4(f) the superior quadratic convergence
of the Newton methods becomes clear.

In addition, differing β-decrement procedures were studied with the two Newton
methods, Figs. 6.4(a)–(d). With the primal Newton method, cf. Section 6.2.3, we
compared the decrement method proposed by Chan et al., which diminishes β out-
side the Newton procedure, with our new approach of integrating the decrement into
the Newton procedure, see Figs. 6.4(a)5 and (b), respectively. By this we observed,

5The error threshold for each nested application of Newton’s method was 10−5 w.r.t. to the rel.

Chapter 6. TV-based Variational Image Restoration 120

that our decrement methods leads to significant better convergence rates while con-
vergence was always reached, if only the reduction rate with respect to β was high
enough.

In addition, the convergence behavior of the primal-dual Newton method with
and without β-decrement was explored (see Figs. 6.4(c) and (d), respectively) show-
ing that the decrement improves the convergence speed only slightly. This was also
observed for α = 0.5 and the same input data, as well as for the real world example
depicted in Fig. 6.3. Besides the step size for w, depicted in both diagrams also,
the two components of the dual variable w are shown in Fig. 6.5. In order to obtain
a meaningful depiction, the latter were scaled by the Euclidean length of the gra-
dient of the corresponding solution to u. The density plots clearly show, that the
components of ∇u/|∇u|β are correctly approximated by w.

Moreover, comparing the best results of the (solely) primal Newton method and
the primal-dual Newton method, Figs. 6.4(b) and (d), shows that the latter only
takes approx. 25% more iterations than the former. In consideration of the fact
that one iteration of the non-dual method comprises fewer instructions than for the
primal-dual method, employing the former method can be even faster, depending
on the implementation. E.g. for a Matlab v7.0 implementation on a 3 GHz Intel
Pentium machine, the non-dual method took 461 s in comparison to 592 s for the
primal-dual method to converge. This proportion was nearly the same for a choosing
weaker regularization strength α = 0.5, as well as with for different input data, e.e.
the real world example in Fig. 6.3(a) for α = 1.

Finally, with respect to the additional step size selection algorithms, the con-
vergence speeds of both Newton-based approaches could not be improved by using
Armijo’s rule w.r.t. δu. In contrast to that, the latter was necessary to obtain con-
vergence of the steepest descent method. Concerning a step size selection for δw in
view of the constraint given in Section 6.2.4, which are shown in Figs. 6.4(c) and
(d) also, the reported strong necessity in terms of convergence of the primal-dual
method was proved in addition.

6.3 Conclusion

We presented the TV-based image restoration approach and explained its advan-
tages in comparison to L2-based approaches. The ill-posedness of the associated
Euler-Lagrange equations was explained and the standard remedy of introducing a

nonlinear residual, which corresponds to the threshold of 10−4 on ‖φ‖L2 used in the experiments by
Chan et al. Furthermore, a reduction factor of 0.25 for β, which was applied at each outer iteration,
was found to be the smallest one not leading to divergence, while manually trying values at steps
of 0.05.

121 6.3. Conclusion

perturbation parameter β was presented. Furthermore, four of the most common
iterative solving methods were described and their different approaches to deal with
the nonlinearity were discussed. Finally, numerical results for a synthetic as well
as for a real world example, showing the convergence behavior for each method, as
well as the difference between TV-based and L2-based denoising for varying regu-
larization strengths were given and discussed. In terms of computation time, the
experiments revealed that although the primal-dual Newton Method needs less iter-
ations to converge, the primal Newton method turned out to be faster, at least for
the implementation employed here.

Chapter 6. TV-based Variational Image Restoration 122

(a) Ground truth (b) with noise added

(c) α = 1, e = 0.14 (d) α = 5, e= 0.127 (e) α = 10, e= 0.127 (f) α = 20, e = 0.15

Denoising results for L2-norm regularization

(g) α= 1
4
, e = 0.1 (h) α= 1

2
, e= 0.057 (i) α = 1, e= 0.061 (j) α = 2, e= 0.089

Denoising results for TV-norm regularization

(k) 3D-plot of (d) (l) 3D-plot of (h)

Figure 6.2: L2-norm and TV-norm regularization in comparison for a synthetic

data set. (a) Synthetic ground truth image (256×256 pixels, intensity range [0, 1]). (b) In-
put data generated by adding mean-free white Gaussian noise (signal-to-noise ratio: -0.5 dB).
(c)–(f) Denoising results and its rel. L2 error to ground truth in applying L2 norm-based
restoration for varying regularization strengths α. (f)–(h) Results and relative L2 error
in applying TV-based restoration for varying regularization strengths α (β = 10−8 in all
experiments). (k) and (l) 3D-plots of the best results for each regularization type.

123 6.3. Conclusion

(a) Ground truth (b) with noise added

(c) α = 1, e = 0.54 (d) α = 5, e = 0.4 (e) α = 10, e = 0.41

Denoising results for L2-norm regularization

(f) α = 1
4
, e = 0.37 (g) α = 1

2
, e = 0.31 (h) α = 1, e = 0.36

Denoising results for TV-norm regularization

Figure 6.3: L2-norm and TV-norm regularization in comparison for real-world

data set. (a) Ground truth image (200×200 pixels, intensity range [0, 1]). (b) Generated
input image by adding mean-free white Gaussian noise (signal-to-noise ratio -7 dB). (f)–
(h) Denoising results and relative L2 error to the ground truth in applying L2 norm-based
restoration for varying regularization strengths α. (f)–(h) Results and relative L2 error
in applying TV-based restoration for varying regularization strengths α (β = 10−8 in all
experiments) .

Chapter 6. TV-based Variational Image Restoration 124

0 10 20 30 40 50 60 70
10

−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

iterations

residual error
real error
beta

(a) Newton’s m., fixed β during inner iteration

0 5 10 15 20 25 30
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

iterations

residual error
real error
beta

(b) Newton’s m., decreasing β

0 5 10 15 20 25
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

iterations

residual error
real error
beta
tau

(c) Primal-dual Newton’s method, β fixed

0 2 4 6 8 10 12 14 16 18 20
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

iterations

residual error
real error
beta
tau

(d) Primal-dual Newton’s m., decreasing β

0 5 10 15 20 25 30 35 40 45 50
10

−3

10
−2

10
−1

10
0

10
1

10
2

iterations

res. error of steepest descent
real error of steepest descent
res. error of fixed point iter.
real error of fixed point iter.

(e) Steepest descent and fixed point iteration

0 5 10 15 20 25 30
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

iteration

re
la

tiv
e

re
si

du
al

 e
rr

or

steepest descent
fixed point iteration
newton method
primal−dual newton m. w. cont.

(f) Evolvement of L2-error for each method

Figure 6.4: Convergence diagrams for the different solving methods. Input data:
synthetic example, as depicted in Fig. 6.2(b). Error measure: relative L2 error. Parameter
values: α = 1, β = 10−8 in all experiments. (a) β0 = 10, red. factor for β: 0.25, rel.
res. error threshold for Newton’s method: 10−5. (b) β0 = 10, Nβ = 21. (c) ρ = 0.9.
(d) β0 = 10−2, Nβ = 11, ρ = 0.9. See Sec. 6.2.5 for further descriptions.

125 6.3. Conclusion

(a) w1|∇u| = ∂xu (b) w2|∇u| = ∂yu

Figure 6.5: Depiction of the dual variable w when carrying out the primal-dual

Newton’s method for the synthetic data set. It is depicted the x- and y-component
of w, multiplied by the Euclidean norm of ∇u at each node, which are the result of applying
the primal-dual Newton Method to the artificial example depicted in Fig. 6.2(a) (α = 1,
β = 10−8).

Chapter 6. TV-based Variational Image Restoration 126

Chapter 7

A Control Approach to

Nonlinear Domain

Decomposition

Whereas the previous chapters dealt with the domain decomposition of linear PDE
problems, in the remainder of this work we focus on the non-overlapping decomposi-
tion of nonlinear PDE-based and energy minimization-based problems. In the case
of nonlinear PDE problems, overlapping Schwarz methods can be directly applied
as well (see, e.g. [91, 92] and the references therein). With non-overlapping meth-
ods however, a local linearization via a Newton-like algorithm is usually employed
and an iterative substructuring technique is used to parallelize the resulting linear
system at each nonlinear iteration [25, 45].

More recently, there a different approach has been proposed for nonlinear non-
overlapping DD, namely by means of optimal control theory [86, 65, 67, 66]. In the
scant literature available concerning that approach, the nonlinear model problem
is almost always that of Navier-Stokes fluid estimation. In this chapter, we give a
step-by-step explanation of the control-based decomposition in generic variational
formulation and show its application to the TV-based denoising problem explicitly.

The organization of the chapter is as follows. We start by introducing the cen-
tral energy minimization problem with nonlinear equality constraints on two sub-
domains, and explain its link to the multi-domain formulation (see Chapter 3).
Thereafter, we apply a Lagrangian relaxation, derive the corresponding optimality
system, and focus on the numerical disadvantages in solving the latter directly. In-
stead, we focus on the two different ways for calculating the gradient, then being
used in a gradient descent iteration. We extend the findings to the case of many
subdomains by considering a 2 × 2 partition and elucidate the special treatment

127

Chapter 7. A Control Approach to Nonlinear Domain Decomposition 128

of corner points. For both partition cases, we present results of numerical experi-
ments based on our model problem, thereby studying the convergence behavior and
showing the empirical feasibility of the approach.

7.1 The Case of Two Subdomains

(a) Partitioning of Ω into two
subdomains.

(b) Partitioning into four subdo-
mains with one corner point ΓΠ.

Figure 7.1: Illustration of the two model partitions used.

7.1.1 Problem Statement

As in Chapter 3, we assume a partition of Ω into two subdomains Ω1,Ω2, such that
Ω = Ω1∪Ω2,Ω1∩Ω2 = ∅, and let Γ denote the common boundary, i.e. Γ := Ω1∩Ω2.
See Fig. 7.1(a) for an example.

As a representative for the class of nonlinear elliptic PDE problems we consider
that of TV denoising, as introduced in the previous chapter. In particular, here we
have K = I, such that the nonlinear PDE reads

u− α∇ ·
(∇u
|∇u|β

)

= f (7.1)

⇔ A(u) = f , (7.2)

where β > 0, and with the homogeneous Neumann boundary conditions

∂u

∂n
= 0 on ∂Ω . (7.3)

129 7.1. The Case of Two Subdomains

Let us consider the restriction of (7.1) to either of the subdomains, while modi-
fying the Neumann boundary conditions as follows:

A(u1) = f1 and
∂u1

∂n1
= g on Γ,

∂u1

∂n
= 0 on ∂Ω1 \ Γ ,

A(u2) = f2 and
∂u2

∂n2
= −g on Γ,

∂u2

∂n
= 0 on ∂Ω2 \ Γ ,

(7.4)

where g is a given function in L2(Γ), and

u =

{

u1(x) x ∈ Ω1

u2(x) x ∈ Ω \Ω1 .
(7.5)

That is, by (7.4) the original problem A(u) = f is split into two subproblems, whose
Neumann boundary conditions have been modified so that the normal derivatives of
the local solutions u1 and u2 are equal to g and −g, respectively. Since g is given,
we can thus write u1(g) and u2(g).

Furthermore, (7.4) shall now serve as the constraints of the constrained opti-
mization problem

min
u1,u2,g

1

2

∫

Γ

(u1 − u2)
2 dχ+

γ

2

∫

Γ

g2 dχ := JΓ

(
u1, u2, g

)
(7.6)

subject to (7.4),

cf. [86], whereas for the time being we assume γ = 0, i.e. neglect the second integral.
Then, for a global minimum (û1, û2, ĝ) of JΓ it obviously holds that û1(g) = û2(g)
on Γ, because of the definition of JΓ; as well as ∂nû1 = g = −∂nu2, because of the
construction of the constraint equations. That is, a solution to problem (7.6) does,
in negligence of the second integral, also satisfy







A1(u1) = f1 and
∂u1

∂n1
= 0 on ∂Ω1 \ Γ

∂u1

∂n1
= g = −∂u2

∂n2
on Γ

u1 = u2 on Γ

A2(u2) = f2 and
∂u2

∂n2
= 0 on ∂Ω2 \ Γ

(7.7)

which is the so-called multi-domain formulation of the original problem A(u) =
f . Interestingly, if A would be a linear operator, the optimization problem (7.6)
could therefore be associated with the well-known class of non-overlapping domain

Chapter 7. A Control Approach to Nonlinear Domain Decomposition 130

decomposition methods, substructuring methods, since the multi-domain formulation
serves as basis of the Steklov-Poincaré interface equation there, cf. [101]. Although,
since one assumption for the latter is linearity of the operator, it is not applicable
here and hence classical substructuring methods are not feasible in this case. On
the other hand, by following the constrained optimization-based approach (7.6), we
are also able to exploit parallelization for nonlinear problems.

Concerning the second integral in (7.6), its purpose is to prevent getting arbi-
trarily large solutions for g, since its magnitude is not involved in the first integral.
However, experiments with the chosen model problem on two and four subdomains
showed convergence for γ = 0, see details below.

Independent of that, the problem in (7.6) belongs to the well-known class of op-
timal control problems, see, e.g., [89], where g here is a boundary control ; JΓ is the
objective functional ; (7.4) are the state equations and

(
u1(g), u2(g)

)
are denoted as

the state.

7.1.2 Lagrange Relaxation and the Optimality System

A direct approach to the optimal control problem (7.6) could be to solve the optimal-
ity system which belongs to the Lagrange relaxation of the constrained optimization
problem, see, e.g., [66].

In order to simplify the Lagrange multiplier function to be defined below, we
will make use of the weak formulation of the constraint equation system (7.4):

a1(u1, v1) = b1(v1) +
(
u1, v1

)

Γ
, ∀v1 ∈ V1, u1 ∈ V1

a2(u2, v2) = b2(v2)−
(
u2, v2

)

Γ
, ∀v2 ∈ V2, u2 ∈ V2,

(7.8)

cf., e.g., [4], which can be written in more compact form

(
F1(u1, g), v1

)

Ω1
= 0, ∀v1 ∈ V1, u1 ∈ V1 (7.9)

(
F2(u2, g), v2

)

Ω2
= 0, ∀v2 ∈ V2, u2 ∈ V2 , (7.10)

by making use of the nonlinear operators Fi(·, ·):
(
Fi(ui, g), vi

)

Ωi
:= ai(ui, vi)− bi(vi) + (−1)i−1(g, vi)Γ, ∀vi ∈ Vi, i = 1, 2. (7.11)

Now, we are ready to give a compact definition of the Lagrange functional by

L(u1, u2, g, λ1, λ2) := JΓ(u1, u2, g)−
(
F1(u1, g), λ1

)

Ω1
−
(
F2(u2, g), λ2

)

Ω2
, (7.12)

where λ1 ∈ V1, λ2 ∈ V2 are the Lagrange multiplier functions.

131 7.1. The Case of Two Subdomains

First-order necessary conditions for finding a solution (û1, û2, ĝ) to the origi-
nal problem (7.6) are to find a stationary point (û1, û2, ĝ, λ̂1, λ̂2) of the Lagrange
functional L. That is, one has to solve the system

∇5L(u1, u2, g, λ1, λ2) = 0,

where ∇5 := (∂/∂u1, ∂/∂u2, ∂/g, ∂/∂λ1 , ∂/∂λ2), which gives the optimality system
to the Lagrange relaxation and is derived in detail in the following.

Partially differentiating L(u1, u2, g, λ1, λ2) with respect to the Lagrange functions
λ1 and λ2, respectively, yield the so-called state equations

〈
∂L

∂λi
, vi

〉

Ωi

= 0, ∀vi ∈ Vi, i = 1, 2 (7.13)

⇔
(
Fi(ui, g), vi

)

Ωi
= 0, ∀vi (7.14)

⇔ ai(ui, vi) = bi(vi) + (−1)i−1(g, vi)Γ, ∀vi (7.15)

which are just the constraint equations of the original problem. On the other hand,
deriving with respect to u1 and u2, respectively, results in the adjoint or co-state
equations

〈
∂L

∂ui
, vi

〉

Ωi

= 0, ∀vi ∈ Vi, i = 1, 2 (7.16)

⇔
〈
∂JΓ

∂ui
, vi

〉

Ωi

−
(〈

∂Fi
∂ui

, vi

〉

Ωi

, λi

)

Ωi

= 0, ∀vi (7.17)

⇔ a′i(ui; vi, λi) =
(
u1|Γ − u2|Γ, (−1)i−1vi|Γ

)

Γ
, ∀vi (7.18)

where a′i(ui; vi, λi) is defined as follows:

a′i(ui; vi, λi) :=

(〈
∂Fi(ui, g)

∂ui
, vi

〉

Ωi

, λi

)

Ωi

(7.19)

=

∫

Ωi

vi λi + α

(
1

(∇u⊤i ∇ui + β)1/2
∇v⊤i −

1

(∇u⊤i ∇ui + β)3/2
∇u⊤i ∇vi∇u⊤i

)

∇λi dx

(7.20)

=

∫

Ωi

viλi +
α

|∇ui|β
∇v⊤i

(

I − ∇ui∇u
⊤
i

|∇ui|2β

)

∇λi dx. (7.21)

Chapter 7. A Control Approach to Nonlinear Domain Decomposition 132

Additionally, solutions to u1 and u2 to (7.18) are denoted as co-states. Finally, by
partially deriving for the control g we obtain the optimality condition

〈
∂L

∂g
, g̃

〉

Γ

= 0, ∀g̃ ∈ L2(Γ), i = 1, 2 (7.22)

⇔
〈
∂JΓ

∂g
, g̃

〉

Γ

−
(〈

∂F1

∂g
, g̃

〉

Γ

, λ1

)

Γ

−
(〈

∂F2

∂g
, g̃

〉

Γ

, λ2

)

Γ

= 0, ∀g̃ (7.23)

⇔ γ
(
g, g̃
)

Γ
+
(
λ1|Γ − λ2|Γ, g̃

)

Γ
= 0, ∀g̃. (7.24)

To summarize, in order to find a solution for the Lagrange relaxation with the
model problem one has to solve the following coupled system of five equations







∫

Ωi

ui vi + α
∇u⊤i ∇vi
|∇ui|β

dx =

∫

Ωi

fi vi dx + (−1)i−1
(
g, vi

)

Γ
,

∀vi ∈ Vi , i = 1, 2 ,

∫

Ωi

viλi +
α

|∇ui|β
∇v⊤i

(

I − ∇ui∇u
⊤
i

|∇ui|2β

)

∇λi dx =
(
u1|Γ − u2|Γ, viΓ

)

Γ
,

∀vi ∈ Vi , i = 1, 2 ,

γ
(
g, g̃
)

Γ
= −

(
λ1|Γ − λ2|Γ, g̃

)

Γ
, ∀g̃ ∈ L2(Γ).

(7.25)

A direct approach would be to discretize and solve the whole system in a fixed point
iteration1, similar to that in Chapter 6, which is usually denoted by one-shop method
in literature, see, e.g., [66]. However, because of the large number of unknowns
involved, the convergence rate is known to be relatively slow. Furthermore, and
more important with respect to parallel computing, the solving (7.25) cannot be
broken apart into independent iterations, hence no possibilities for coarse-grained
parallel computation would be given.

7.1.3 Gradient-based Solving

As opposed to the one-shot method, other methods minimize JΓ by carrying out
a gradient descent with respect to g, while determining u1(g) and u2(g) according
to (7.4). In particular, for each iteration k, given the current value gk, one first
determines the states uk1(g

k) and uk2(g
k) by solving the state equations, secondly

1That is, one would solve the first two equations w.r.t. u1 and u2, the second two equations
w.r.t. λ1 and λ2 and the last w.r.t. g, respectively.

133 7.1. The Case of Two Subdomains

calculates λk1(u
k
1) and λk2(u

k
2) via the co-state equations, and thirdly determines the

gradient d
dgJΓ

(
u1(g

k), u2(g
k), gk

)
from which an update δg for g is deduced (See

Algorithm 13 for an example.). The advantage of this iterative method, in terms of
parallelization, lies in the fact each of the state and co-state equations to be solvable
independently from each other. That is, u1 and u2 can be calculated concurrently,
as well as λ1 and λ2, respectively. Thereby, values only on the common boundary Γ
need to be exchanged.

7.1.3.1 Calculating the Gradient

In the following we will focus on the computation of the total derivative ∇JΓ =
d
dgJΓ

(
u1(g

k), u2(g
k), gk

)
in general, as well as for our model problem in particular.

We start with the formal structure of the total derivate of JΓ with respect to g
at (u1, u2, g) in an arbitrary direction g̃ ∈ L2(Γ):

〈
dJΓ

dg
, g̃

〉

Γ

=

〈
∂JΓ

∂u1
,
〈∂u1

∂g
, g̃
〉

Γ

〉

Γ

+

〈
∂JΓ

∂u2
,
〈∂u2

∂g
, g̃
〉

Γ

〉

Γ

+

〈
∂JΓ

∂g
, g̃

〉

Γ

. (7.26)

Defining ũi(g) :=
〈
∂ui

∂g , g̃
〉

Γ
, i = 1, 2, this can be rewritten as

〈
dJΓ

dg
, g̃

〉

Γ

=

〈
∂JΓ

∂u1
, ũ1

〉

Γ

+

〈
∂JΓ

∂u2
, ũ2

〉

Γ

+

〈
∂JΓ

∂g
, g̃

〉

Γ

. (7.27)

Here, ũ1(g) and ũ2(g) are the directions of infinitesimal change of the state func-
tions u1 and u2, respectively, in dependence of the direction of infinitesimal change g̃.
Or, in other words, ũ1 and ũ2 represent the variation directions in the state depend-
ing on of a variation direction in the control g. Therefore, ũ1(g) and ũ2(g) are
commonly referred to as sensitivities in literature [66].

In general, two ways of calculating ũ1(g) and ũ2(g) exist. The first one follows
from considering the total derivative of the state equations with respect to g, which
is given by

(

Pi

〈
d

dg
Fi(ui, g), g̃

〉

Γ

, vi

)

Ωi

= 0, ∀vi ∈ Vi, i = 1, 2 , (7.28)

with Pi : V (Γi)→ V (Ωi) denoting an extension by zero. Due to u1 and u2 depending
on the control g, the chain rule applies again, yielding

⇔
(〈

∂Fi
∂ui

, Pi

〈∂ui
∂g

, g̃
〉

Γ

〉

Ωi

+ Pi

〈
∂Fi
∂g

, g̃

〉

Γ

, vi

)

Ωi

= 0, ∀vi. (7.29)

Chapter 7. A Control Approach to Nonlinear Domain Decomposition 134

By substitution of
〈
∂ui

∂g , g̃
〉

Γ
, i = 1, 2 through ũ1 and ũ2, respectively, we obtain

⇔
(〈

∂Fi
∂ui

, ũi

〉

Ωi

+ Pi

〈
∂Fi
∂g

, g̃

〉

Γ

, vi

)

Ωi

= 0, ∀vi (7.30)

⇔
(〈

∂Fi
∂ui

, ũi

〉

Ωi

, vi

)

Ωi

= −
(

Pi

〈
∂Fi
∂g

, g̃

〉

Γ

, vi

)

Ωi

, ∀vi . (7.31)

Hence, with equation (7.31), denoted as sensitivity equation, we have given the de-
pendency between ũ1, ũ2 and g̃. Unfortunately, it is clear that, since equation (7.31)
is not formally inverted, ũ1, ũ2 can be determined only for particular g̃, through solv-
ing (7.31). In recapitulation of the gradient formulation in (7.27), it becomes obvious
that by (7.31) we are only able to compute the action dJΓ

dg onto a given function g̃,
but not the gradient itself.

However, in most continuous cases g̃ need to be arbitrary, therefore we are in-
terested in a formulation without the incorporation of the sensitivities ũ1 and ũ2,
which is referred to as ’calculation of the gradient through adjoint equations’ in
literature, [66]. Such a formulation can be reached by considering the adjoint equa-
tions (7.18),

(〈
∂Fi
∂ui

, vi

〉

Ωi

, λi

)

Ωi

=

〈
∂JΓ

∂ui
, vi

〉

Γ

, ∀vi ∈ Vi, i = 1, 2, (7.32)

of the previous section again. Since this holds for any vi, it is in particular true
for setting vi = ũi. Analogical, (7.31) is true for an arbitrary vi and thus for an
particular vi = λi. In applying these substitutions to (7.32) and (7.31), respectively,
and comparing the outcomes, one can deduce that

〈
∂JΓ

∂ui
, ũi

〉

Γ

= −
(

Pi

〈
∂Fi
∂g

, g̃

〉

Γ

, λi

)

Ωi

. (7.33)

Thus, terms in the gradient formulation (7.27) involving the sensitivities ũ1 and ũ2

can now be substituted due to (7.33), which yields the gradient formulation
〈
dJΓ

dg
, g̃

〉

Γ

= −
(

P1

〈
∂F1

∂g
, g̃

〉

Γ

, λ1

)

Ω1

−
(

P2

〈
∂F2

∂g
, g̃

〉

Γ

, λ2

)

Ω2

+

〈
∂JΓ

∂g
, g̃

〉

Γ

(7.34)

⇔
〈
dJΓ

dg
, g̃

〉

Γ

=

〈
∂JΓ

∂g
, g̃

〉

Γ

−
(

P1

〈
∂F1

∂g
, g̃

〉

Γ

, λ1

)

Ω1

−
(

P2

〈
∂F2

∂g
, g̃

〉

Γ

, λ2

)

Ω2

.

(7.35)

135 7.1. The Case of Two Subdomains

Obviously, we have now given a closed-form of the gradient for arbitrary g̃ and not
for particular ones only, since there is no need to solve the sensitivity equations in an
intermediate step any longer. Instead, one has to solve the adjoint equations (7.32)
for λ1 and λ2, respectively. Since the latter only involves the state functions u1, u2

and the control g, but not the change direction g̃, this solving has to be done only
once for any g̃.

7.1.3.2 Application to the Model Problem

Now that we have general formulation of the gradient, the concrete ones for our
model problem are straightforward. Obviously, in considering the definition of JΓ as
given in (7.6), the gradient formulation in (7.27) for the model problems here reads

〈
dJΓ

dg
, g̃

〉

Γ

=
(
u1|Γ − u2|Γ, ũ2|Γ − ũ2|Γ

)

Γ
+ γ
(
g, g̃
)

Γ
. (7.36)

Furthermore, the sensitivity equations corresponding to (7.31) is of the form

a′1(u1; ũ1, ξ1) = (g̃, ξ1)Γ, ∀ξ1 ∈ V1

a′2(u2; ũ2, ξ2) = −(g̃, ξ2)Γ, ∀ξ2 ∈ V2,
(7.37)

with a′i(·; ·, ·) as defined in (7.19) in connection with the adjoint equations.

Alternatively, in following the adjoint equations approach, the gradient formula-
tion in (7.35) here reads

〈
dJΓ

dg
, g̃

〉

Γ

=
(
g̃, λ1

)

Γ
−
(
g̃, λ2

)

Γ
+ γ(g, g̃)Γ (7.38)

=
(
g̃, λ1|Γ − λ2|Γ

)

Γ
+ γ
(
g, g̃
)

Γ
(7.39)

or, in explicit formulation

dJΓ

dg
=
(
λ1|Γ − λ2|Γ

)
+ γg, (7.40)

where the co-states λ1, λ2 are to be determined by solving the adjoint equations

a′1(u1; v1, λ1) =
(
u1|Γ − u2|Γ, v1|Γ

)

Γ
, ∀v1 ∈ V1

a′2(u2; v2, λ2) =
(
u1|Γ − u2|Γ,−v2|Γ

)

Γ
, ∀v2 ∈ V2

(7.41)

which have been already introduced with the Lagrange multiplier approach, see (7.18).

Chapter 7. A Control Approach to Nonlinear Domain Decomposition 136

The relation between the sensitivity and the co-state functions, as shown gen-
erally in (7.33), can be reproduced here by setting ξ1 = λ1, ξ2 = λ2 in (7.37), and
v1 = ũ1, v2 = ũ2 in (7.41), resulting in

(g̃, λ1)Γ =
(
u1|Γ − u2|Γ, v1|Γ

)

Γ

(g̃, λ2)Γ =
(
u1|Γ − u2|Γ,−v2|Γ

)

Γ

(7.42)

and thus

(
g̃, λ1|Γ − λ2|Γ

)

Γ
=
(
u1|Γ − u2|Γ, ũ2|Γ − ũ2|Γ

)

Γ
, (7.43)

which, utilized to substitute the first term at the right-hand side of the first gradient
formulation (7.36), just leads to the formulation in (7.38).

7.1.3.3 The Solving Algorithm

After having explained the calculation of d
dgJΓ

(
u1(g

k), u2(g
k), gk

)
in detail, we will

give an example of a simple gradient method in Algorithm (13), which was imple-
mented for the experimental studies to be presented in the succeeding section.

As outlined in the beginning of this section, in step 1 of the algorithm, it is
solved for the states uk1 and uk2, which can be done on different processing nodes,
since the corresponding problems are independent from each other. The same holds
true for the adjoint equations in step 2, where the values of uk1 and uk2 only on the
common boundary Γ have to be determined sequentially beforehand. In step 3,
the current derivative is computed, from which an update is deduced in step 4.
Furthermore, a line search along the update direction δg is employed (step 5) which
has turned out to necessary to guarantee global convergence2. This step requires
additional solvings of the state equations, in order to determine u1(g

k + τδgk) and
u2(g

k + τδgk), respectively, which can be done in parallel again. The remaining
steps are self-explanatory.

7.1.3.4 Experimental Studies

After discretization by first-order conforming finite elements, a LU decomposition
was chosen as solver for the adjoint equations, which are linear w.r.t. λ1 and λ2,
respectively. For the state equations, which are nonlinear w.r.t. u1 and u2, the
primal-dual Newton method, cf. Section 6.2.4, with LU decomposition as inner
solver, was employed. The nonlinear problems were solved up to a relative residual
error of less then 10−10 for all experiments. The regularization strength α was set
to the relatively high value 1.0, in order to demonstrate that the algorithm returns

2In our implementation we used ten nested iterations starting with an interval of [0, 5]

137 7.1. The Case of Two Subdomains

Algorithm 13: Gradient descent w.r.t. to the control g on two subdomains

g0 ← 0, k ← 0

Choose a feasible g0.

do

1. Solve the state equations for uk1, u
k
2 (in parallel):

a1(u
k
1 , v1) = b1(v1) + (gk, v1)Γ, ∀v1 ∈ V (Ω1)

a2(u
k
2 , v2) = b2(v2)− (gk, v2)Γ, ∀v2 ∈ V (Ω2)

(7.44)

2. Solve the adjoint equations for λk1 , λ
k
2 (in parallel):

a′1(u
k
1 ; v1, λ

k
1) = (uk1 − uk2 , v1)Γ, ∀v1 ∈ V (Ω1)

a′2(u
k
2 ; v2, λ

k
2) = (uk1 − uk2 , v2)Γ, ∀v2 ∈ V (Ω2)

(7.45)

3. Calculate the gradient:

∇JkΓ ← (λk1|Γ − λk2|Γ) + γgk (7.46)

4. Calculate a new update direction δgk:

δgk ← −∇JkΓ + ρkδgk−1, where ρk ← ∇J
k
Γ ·
(
∇JkΓ −∇Jk−1

Γ

)

∇Jk−1
Γ · ∇Jk−1

Γ

(7.47)

5. Do a line search along δdk to determine a new step size τk:

τk ← min
0<τ≤τmax

JΓ

(
u1(g

k + τδgk), u2(g
k + τδgk), gk + τδgk

)
(7.48)

6. Update the control:

gk+1 ← gk + τkδgk (7.49)

7. k ← k + 1

until ‖∇Jk−1
Γ ‖/‖∇J0

Γ‖ ≤ ǫ

Merge the local solutions:

u|Ω1
← uk−1

1

u|Ω2
← uk−1

2

(7.50)

Chapter 7. A Control Approach to Nonlinear Domain Decomposition 138

the correct global solution also under substantial regularization. Finally, we set β =
10−6 in all experiments. Figure 7.2(b) served as input image, which was generated
by adding Gaussian noise to the synthetic image depicted in Fig. 7.2(a). All error
measurements refer to the solution of the original problem calculated without domain
decomposition for the same set of parameter values.

The goal of the experiments, whose results are shown in Figure 7.3, was to
study the general feasibility of the proposed domain decomposition approach, i.e.
convergence, convergence rate, as well as the spatial distribution of the error in
comparison of a sequential reference solution with the same parameters and the
same local solver’s accuracy (in terms of error threshold).

The results in Fig. 7.3(a) reveal that the relative L2-error linearly drops to 10−4

with a relatively good rate of ≈ 0.89 until iteration 50, but then deteriorates to ≈
0.99. Furthermore, setting γ = 0, i.e. switching off the regularization of g, does
not lead to divergence here. In contrast, experiments show that the convergence
behavior does not change significantly for setting γ to values smaller than 10−4

or equal to zero. Despite the worsening convergence rate, the density plots of the
resulting image in Fig. 7.3(b) show that the remaining error after 50 iterations is
acceptable for most image processing applications.

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(a) Ground truth

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

(b) With added Gaussian noise

Figure 7.2: Ground truth and noised input image (128 × 128 pixels, signal-to-noise
ratio -4.2 dB).

139 7.1. The Case of Two Subdomains

0 50 100 150 200 250 300
10

−5

10
−4

10
−3

10
−2

10
−1

iterations

re
la

tiv
e

L2 e
rr

or

γ=1e−2

γ=1e−3

γ=1e−4

γ=1e−5

γ=0

(a) Development of the L2-error for different control regularization strengths γ

2

4

6

8

10

12

x 10
−4

(b) Per-pixel L2-error to reference solution after
300 iterations

Figure 7.3: Total and per-pixel L2-error for a two-subdomain decomposition

(α = 1.0, β = 10−6, γ = 10−5).

Chapter 7. A Control Approach to Nonlinear Domain Decomposition 140

7.2 The Case of Many Subdomains

Subsequently, we extend our approach to the case of multiple subdomains. However,
it suffices to consider a 2×2 partition, since the special treatment for the one corner
point there extends naturally to the case of many corner points. Thus, let us define
four open subdomains {Ωi|i = 1, . . . , 4}, such that Ω = ∪4

i=1Ωi, ∩4
i=1Ωi = ∅, an

having the common boundary Γ := ∪∀j∈N>(i), ∀iΓij∪Π, which is further divided into

the corner point ΓΠ := ∩4
i=1Ωi, and the sections Γij := (Ωi∩Ωj)\Π, ∀j ∈ N>(i), ∀i,

whereas N>(i) := {Ωj |Ωj is cityblock-neighbor of Ωi, j < i}. See Fig. 7.1(b) for an
illustrating example.

7.2.1 Problem Statement

Induced by partitioning of Ω, we decompose the original problem A(u) = f on Ω
into the subproblems

A(u1) = f1 and
∂u1

∂n1
= g on Γ,

∂u1

∂n
= 0 on ∂Ω1 \ Γ

A(u2) = f2 and
∂u2

∂n2
= −g on Γ,

∂u2

∂n
= 0 on ∂Ω2 \ Γ

A(u3) = f3 and
∂u3

∂n3
= −g on Γ,

∂u3

∂n
= 0 on ∂Ω3 \ Γ

A(u4) = f4 and
∂u4

∂n4
= g on Γ,

∂u4

∂n
= 0 on ∂Ω4 \ Γ ,

(7.51)

for g ∈ L2(Γ), where Γ = Γ12∪Γ13∪Γ42∪Γ43∪ΓΠ here. As with the two-subdomains
case, the natural Neumann boundary conditions have been modified. In order to
reach a more compact formulation of the Lagrange functional later on, we will make
again use of the weak formulation of (7.51),

a1(u1, v1) = b1(v1) +
(
g, v1

)

Γ
, ∀v1 ∈ V1, u1 ∈ V (Ω1)

a2(u2, v2) = b2(v2)−
(
g, v2

)

Γ
, ∀v2 ∈ V2, u2 ∈ V (Ω2)

a3(u3, v3) = b3(v3)−
(
g, v3

)

Γ
, ∀v3 ∈ V3, u3 ∈ V (Ω3)

a4(u4, v4) = b4(v4) +
(
g, v4

)

Γ
, ∀v4 ∈ V4, u4 ∈ V (Ω4) ,

(7.52)

141 7.2. The Case of Many Subdomains

in the sequel. Furthermore, the objective functional reads:

JΓ(u1, u2, u3, u4, g) :=
1

2

{
∑

i=2,3

∫

Γ1i

(u1|Γ1i
− ui|Γ1i

)2 dx + (u1|ΓΠ
− ui|ΓΠ

)2 +

∑

i=2,3

∫

Γ4i

(u4|Γ4i
− u4|Γ4i

)2 dx + (u4|ΓΠ
− ui|ΓΠ

)2 + γ

∫

Γ
g2 dx

}

. (7.53)

In contrast to the two-subdomains case, four constraints for the unknowns at ΓΓΠ

are implicitly applied here: u1|Γ = u2|Γ, u1|Γ = u3|Γ, u4|Γ = u2|Γ, and u4|Γ = u3|Γ,
which turned out to have an impact on the step size selection of gradient-based
methods in experiments, as will be described later on.

Finally, the problem of optimal control is stated as:

min
u1,...,u4,g

JΓ(u1, u2, u3, u4, g) (7.54)

subject to (7.51).

7.2.2 The Optimality System

Although an iterative, gradient-based method shall be used for solving (7.54), the
Lagrange functional

L(u1, . . . , u4, g, λ1, . . . , λ4) := JΓ(u1, u2, u3, u4, g) − (7.55)

4∑

i=1

ai(ui, λi) + bi(λi) + (−1)i−1
(
g, λi

)

Γ
, (7.56)

and its optimality system are first elaborated here, since the involved adjoint equa-
tions do also appear with the gradient-based algorithm. Again, partially deriving
for the Lagrange multiplier functions λ1, . . . , λ4 yields the state equations

〈
∂L

∂λi
, vi

〉

= 0 ⇔ ai(ui, vi) = bi(vi) + (−1)i−1
(
g, vi

)

Γ
, i = 1, . . . , 4 , (7.57)

whereas deriving for the control function g results in the optimality condition

〈
∂L

∂g
, g̃

〉

= 0, ∀g̃ ⇒ γ(g, g̃)Γ +
4∑

i=1

(−1)i−1
(
g̃, λi

)

Γ
= 0 . (7.58)

Chapter 7. A Control Approach to Nonlinear Domain Decomposition 142

The adjoint equations here read as follows:

a′1(u1; v1, λ1) =
∑

i=2,3

(
u1|Γ1i

− u2|Γ1i
, v1|Γ1i

)

Γ1i
+
(
u1|ΓΠ

− ui|ΓΠ

)
v1|ΓΠ

a′2(u2; v2, λ2) =
∑

i=1,4

(
ui|Γi2

− u2|Γi2
,−v2|Γi2

)

Γi2
−
(
ui|ΓΠ

− u2|ΓΠ

)
v2|ΓΠ

a′3(u3; v3, λ3) =
∑

i=1,4

(
ui|Γi3

− u3|Γi3
,−v3|Γi3

)

Γi3
−
(
ui|ΓΠ

− u3|ΓΠ

)
v3|ΓΠ

a′4(u4; v4, λ4) =
∑

i=2,3

(
u4|Γ4i

− ui|Γ4i
, v4|Γ4i

)

Γ4i
+
(
u4|ΓΠ

− ui|ΓΠ

)
v4|ΓΠ

(7.59)

with a′(·; ·, ·) as defined in (7.19).

7.2.3 Calculation of the Gradient

Since the general mathematical structure for computation of the gradient
〈
dJΓ
dg , g̃

〉

,

is described in Section 7.1.3.1, we immediately proceed to the explicit calculation
for the model problem.

The gradient formulation involving the sensitivities, i.e. variation directions,
ũ1, . . . , ũ4, here reads

〈
dJΓ

dg
, g̃

〉

=
∑

i=2,3

(
u1|Γ1i

−ui|Γ1i
, ũ1|Γ1i

−ũi|Γ1i

)

Γ1i
+
∑

i=2,3

(
u1|ΓΠ

−ui|ΓΠ
, ũ1|ΓΠ

−ũi|ΓΠ

)

ΓΠ

+
∑

i=2,3

(
u4|Γ4i

− ui|Γ4i
, ũ4|Γ4i

− ũi|Γ4i

)

Γ4i
+
∑

i=2,3

(
u4|ΓΠ

− ui|ΓΠ
, ũ4|ΓΠ

− ũi|ΓΠ

)

ΓΠ

+ γ(g, g̃)Γ. (7.60)

The associated sensitivity equations are of the form

a′1(u1; ũ1, v1) =
∑

i=2,3

(g̃1|Γ1i
, v1|Γ1i

)Γ1i
+ g̃|ΓΠ

v1|ΓΠ

a′2(u2; ũ2, v2) = −
∑

i=1,i4

(g̃|Γi2
, v2|Γi2

)Γi2 − g̃|ΓΠ
v2|ΓΠ

a′3(u3; ũ3, v3) = −
∑

i=1,4

(g̃|Γi3
, v3|Γi3

)Γi3 − g̃|ΓΠ
v3|ΓΠ

a′4(u4; ũ4, v4) =
∑

i=2,3

(g̃|Γ4i
, v4|Γ4i

)Γ4i
+ g̃|ΓΠ

v4|ΓΠ

(7.61)

corresponding to equations (7.31), for i = 1, . . . , 4, in the generic formulation.

143 7.2. The Case of Many Subdomains

Again, by setting vi = ũi in (7.59), and vi = λi in (7.61) we obtain the following
equations:

∑

i=2,3

(
u1|Γ1i

− u2|Γ1i
, ũ1|Γ1i

)

Γ1i
+
(
u1|ΓΠ

− ui|ΓΠ

)
ũ1|ΓΠ

=

∑

i=2,3

(g̃1|Γ1i
, λ1|Γ1i

)Γ1i
+ g̃|ΓΠ

λ1|ΓΠ
,

∑

i=1,4

(
ui|Γi2

− u2|Γi2
,−ũ2|Γi2

)

Γi2
−
(
ui|ΓΠ

− u2|ΓΠ

)
ũ2|ΓΠ

=

−
∑

i=1,4

(g̃|Γi2
, λ2|Γi2

)Γi2 − g̃|ΓΠ
λ2|ΓΠ

,

∑

i=1,4

(
ui|Γi3

− u3|Γi3
,−ũ3|Γi3

)

Γi3
−
(
ui|ΓΠ

− u3|ΓΠ

)
ũ3|ΓΠ

=

−
∑

i=1,4

(g̃|Γi3
, λ3|Γi3

)Γi3 − g̃|ΓΠ
λ3|ΓΠ

,

∑

i=2,3

(
u4|Γ4i

− ui|Γ4i
, ũ4|Γ4i

)

Γ4i
+
(
u4|ΓΠ

− ui|ΓΠ

)
ũ4|ΓΠ

=

∑

i=2,3

(g̃|Γ4i
, λ4|Γ4i

)Γ4i
+ g̃|ΓΠ

λ4|ΓΠ
,

(7.62)

between the sensitivities ũi and the co-states λi. Applying these relations to replace
the sensitivities in (7.60) by the co-states, yields

〈
dJ

dg
, g̃

〉

=
∑

i=2,3

(
g̃|Γ1i

, λ1|Γ1i
− λi|Γ1i

)

Γ1i
+ g̃|ΓΠ

(
λ1|ΓΠ

− λi|ΓΠ

)

+
∑

i=2,3

(
g̃|Γi4

, λ4|Γi4
− λi|Γi4

)

Γi4
+ g̃|ΓΠ

(
λ4|ΓΠ

− λi|ΓΠ

)
+ γ(g, g̃)Γ, (7.63)

i.e. the gradient formulation independent of g̃, which is analogical to (7.38) for the
two-subdomains case. The explicit formulation reads:

dJ

dg
=
∑

i=2,3

PΓ1i

(
λ1|Γ1i

− λi|Γ1i

)
+ PΓΠ

(
λ1|ΓΠ

− λi|ΓΠ

)

+
∑

i=2,3

PΓ4i

(
λ4|Γi4

− λi|Γi4

)

Γi4
+ PΓΠ

(
λ4|ΓΠ

− λi|ΓΠ

)
+ γg , (7.64)

with Pij : V (Γij)→ V (Γ) and PΠ : V (ΓΠ)→ V (Γ) denoting extensions by zero.

Chapter 7. A Control Approach to Nonlinear Domain Decomposition 144

Note that the gradient at locations ΓΠ is the sum of four differences, in contrast to
the points on Γ\ΓΠ where it is only of one difference. That is, the magnitude of dJdg at
this corner point is in average four times larger as it is for the remaining locations.
Since the step size in step 5 of Algorithm 1 is selected for the whole gradient,
experiments have shown that it is systematically chosen too large at ΓΠ, which
leads to divergence even when employing line search. As a remedy, an additional
scaling factor ν for dJ

dg at ΓΠ is introduced, where a value of 1
4 has shown to be

appropriate.

7.2.4 The Solving Algorithm

As a consequence of the findings in the previous section, with the four-subdomains
case, steps 1–3 of Algorithm 1 have to be replaced by the following actions:

1. Solve the state equations for uk1 , . . . , u
k
4 (in parallel):

a1(u1, v1) = b1(v1) +
(
g, v1

)

Γ
, ∀v1 ∈ V (Ω1),

a2(u2, v2) = b2(v2)−
(
g, v2

)

Γ
, ∀v2 ∈ V (Ω2),

a3(u3, v3) = b3(v3)−
(
g, v3

)

Γ
, ∀v3 ∈ V (Ω3),

a4(u4, v4) = b4(v4) +
(
g, v4

)

Γ
, ∀v4 ∈ V (Ω4),

(7.65)

2. Solve the adjoint equations for λk1, . . . , λ
k
4 (in parallel):

a′1(u1; v1, λ1) =
∑

i=2,3

(
u1|Γ1i

− u2|Γ1i
, v1|Γ1i

)

Γ1i
+
(
u1|ΓΠ

− ui|ΓΠ

)
v1|ΓΠ

,

a′2(u2; v2, λ2) =
∑

i=1,4

(
ui|Γi2

− u2|Γi2
,−v2|Γi2

)

Γi2
−
(
ui|ΓΠ

− u2|ΓΠ

)
v2|ΓΠ

,

a′3(u3; v3, λ3) =
∑

i=1,4

(
ui|Γi3

− u3|Γi3
,−v3|Γi3

)

Γi3
−
(
ui|ΓΠ

− u3|ΓΠ

)
v3|ΓΠ

,

a′4(u4; v4, λ4) =
∑

i=2,3

(
u4|Γ4i

− ui|Γ4i
, v4|Γ4i

)

Γ4i
+
(
ui|ΓΠ

− u4|ΓΠ

)
v4|ΓΠ

(7.66)

3. Calculate the gradient:

dJkΓ
dg
←

∑

i=2,3

PΓ1i

(
λ1|Γ1i

− λi|Γ1i

)
+ νPΓΠ

(
λ1|ΓΠ

− λi|ΓΠ

)

+
∑

i=2,3

PΓ4i

(
λ4|Γi4

− λi|Γi4

)

Γi4
+ νPΓΠ

(
λ4|ΓΠ

− λi|ΓΠ

)
+ γg (7.67)

145 7.2. The Case of Many Subdomains

7.2.5 Experimental Studies

Although a theoretical approximation of the scalability characteristics of the pro-
posed method has been discussed, the focus of the experimental studies was re-
stricted to the feasibility for the 2 × 2 case and its influence of the parameters ν
and γ.

The algorithm was run on the same input image, Fig. 7.2(b), as with the two-
subdomains case, where the common boundary Γ here included the 64th row and
64th column of the discretized image plane. The discretization, the local solving
method as well as all the parameter values, except the starting interval of the step
size selection which was [0, 10], have been the same as with the previous experiments.
Results are depicted in Fig. 7.4.

Besides the influence of the control regularization strength γ, also the impact
of the step size reduction ν at ΓΠ were studied. (See the diagrams in Fig. 7.4(a)
and (b), respectively). Figure 7.4(a) shows that the convergence behavior for the
2× 2 case has not changed significantly in comparison to the two-subdomains case,
despite the fact that the rate has deteriorated to ≈ 0.93 after 50 iterations. Leaving
out the control regularization has no significant impact on the L2 error in comparison
to setting γ to values small than 10−4. Moreover, studies for the step size reduction
factor ν revealed that only values less or equal to 1

2 led to convergence, whereas
greater values always led to divergence at ΓΠ.

Again, the result after 50 iterations in Fig. 7.4(c), as well as the per-pixel relative
L2 error shown in Fig. 7.4(d), are satisfactory for denoising purposes.

7.2.6 Complexity Considerations

As in the two-subdomains case, step (a) and (b) can be obviously carried out on
different processing nodes, which holds also for the case of Mx ×My subdomains
(Mx > 2,My > 2).

With respect to inter-process communication for the Mx ×My case, note that
only variables lying on the interface Γ have to be exchanged within the main loop. To
be explicit, the control vector gk has to be distributed by a central process, carrying
out the steps (c)–(g), to the subdomain processes before step (a), which amounts to

sending approximately 4
√
N√
M

unknowns per subdomain, whereM := Mx ·My andN is

the total number of unknowns, i.e. M 4
√
N√
M

= 4
√
MN in total. Before step (b), again

only variables on Γ have to be communicated in order to set-up the right-hand sides,
but this time only mutually among processes which have adjacent subdomains; i.e.
a distributed communication step can be applied, which amounts to interchanging

only approx. 4
√
N√
M

variables sequentially. Furthermore, before step (c), the local co-

Chapter 7. A Control Approach to Nonlinear Domain Decomposition 146

states vectors λki , being restricted to their local interfaces Γi, are gathered by the
central process, again resulting in a sequential communication volume of 4

√
MN

variables. Finally, the total amount of bytes to be communicated sequentially is
given by the expression:

V (M,k) = k

(

8
√
MN + 4

√
N√
M

)

vv + Vc ,

where k denotes the total number of iterations, vv denotes the size of one variable
in bytes and Vc the constant amount of bytes for the initial distribution of the input
vector f as well as the final collection of the local solutions ui. Obviously, as it is
with standard non-overlapping domain decomposition methods, the communication
volume scales only with the square root of the number of subdomains here, which
is due to exchanging only the interface variables and indicates very good scalability
properties.

With respect to the total computation time, we have the approximation:

T (M) = TNL(N/M) + TL(N/M) + tbyteV (M,k(M)) + Tc ,

where TNL(n) and TL(n) denote the average computation time for solving the non-
linear and linear state systems, respectively, in parallel, Tc the computation time
for the steps (c)–(g), which are independent from M , and with tbyte denoting the
communication time per byte. Note that communication latency times as well as
synchronization times have been neglected here. Furthermore, although the outer
iteration number k(M) naturally increases with the number of subdomains M , the
processing time of the computationally demanding steps (a) and (b) is supposed to
decrease strongly, depending on the complexity of the inner solving methods.

Finally, note that depending on the applied line search procedure, coarse-grained
parallelization can be employed also there. In the case of nested iteration for ex-
ample, the two necessary evaluations of JΓ within each iteration can be carried out
simultaneously.

7.3 Conclusion

We investigated a new control-based approach for decomposing nonlinear PDE prob-
lems using the example of variational TV-denoising. Beginning with the constrained
energy minimization problem on two-subdomain case, we gradually developed the
involved local nonlinear equations — both in a generic and in an explicit formulation
with respect to our model problem. After having addressed the issue involved with
a direct solving of the nonlinear equation systems, we showed an alternative solving

147 7.3. Conclusion

approach by means of a CG iteration. In particular, we explained in detail the two
different ways to calculate the gradient of the constrained energy.

When addressing the many-subdomain case, we restrict our considerations to a
rectangular partition of only 2× 2 subdomains, since the special treatment involved
with one corner point directly extends to an arbitrary number of corner points.
Again, we show the two alternatives of calculating the gradient and note the involved
calculation steps explicitly.

The experimental results for both partition cases suggest that the approach
is practically feasible. However, despite an already employed step size selection
heuristics, the convergence rate needs to be further improved, which can most likely
be reached by the utilization of appropriate preconditioners, the subject of future
work.

Chapter 7. A Control Approach to Nonlinear Domain Decomposition 148

0 50 100 150 200 250 300
10

−4

10
−3

10
−2

10
−1

γ=1e−3

iterations

re
la

tiv
e

L2 e
rr

or

γ=1e−4

γ=1e−5

γ=1e−6

γ=0

(a) Development of the L2-error for different control regularization strengths γ

0 20 40 60 80 100 120 140 160 180 200
10

−4

10
−3

10
−2

10
−1

iterations

re
l.

L2 e
rr

or

step size reduction coeff. ν = 1/4
step size reduction coeff. ν = 1/3
step size reduction coeff. ν = 1/2

(b) Development of the L2-error with step size reduction (γ = 0)

149 7.3. Conclusion

2

4

6

8

10

12

14

16

18

x 10
−4

(c) Per-pixel L2 error after 300 iterations (γ =
10−5)

Figure 7.4: Total and per-pixel L2-error for a 2 × 2 decomposition (α = 1.0, β =
10−6).

Chapter 7. A Control Approach to Nonlinear Domain Decomposition 150

Chapter 8

AConvex Programming

Approach to Nonlinear Domain

Decomposition

Besides the control approach introduced in the previous chapter, in this chapter
we present a different mathematical programming approach to decompose nonlinear
problems. Interestingly, in [62] the authors give another derivation, instead of by the
multi-domain formulation, of the non-overlapping Robin method [88] — a variant to
the Neumann-Neumann method on two subdomains — by stating the decomposed
problem as a constrained energy minimization being subsequently relaxed and solved
by an augmented Lagrangian relaxation.

In the following we will apply this energy-based decomposition to non-quadratic
convex problems, at the example of TV-denoising, as it was proposed in general
in [15] for the two-subdomain case. As in the previous chapter, we first consider
the two-subdomain case, and then detail on the special treatment of corner points,
apparent in the case of many subdomains, at the example of a 2× 2 partition.

Again starting with the two-subdomain case, we present the central idea of de-
composing the nonlinear problem on the energy level. We proceed with a Lagrangian
relaxation of the involved constrained minimization problem, and propose to employ
a subgradient iteration to solve the resulting primal-dual problem. As with the con-
trol approach in the previous chapter, we use a generic formulation for the derivation
of the algorithm and in the end give an explicit formulation for our model problem.
Similarly for the case of many subdomains, we focus on the special treatment of one
corner point in a 2× 2 partition as an example to illustrate the case of many corner
points. For both partition cases, experimental results for small images are given,
showing the empirical feasibility (for those data sets) and providing an initial study

151

Chapter 8. A Convex Programming Approach to Nonlinear DD 152

of the convergence behavior.

8.1 Primal-dual Domain Decomposition

8.1.1 The Approach

The approach is applied to energy minimization formulations of problem in terms
of convex functionals:

min
u

J(u). (8.1)

This encompasses a wide range of problems in image processing and computer vision.
In the following, we focus on the nonlinear model problem (6.1).

Given a partition by two open subdomains, Ω1, Ω2 (see, e.g., Fig. 7.1(a)), we
separate J(·) into two convex functionals: JΩ1(·) := J|Ω1

(·) and JΩ2(·) := J|Ω2
(·).

Next, following [15], we rewrite (8.1) as

min
u1,u2

JΩ1(u1) + JΩ2(u2) (8.2)

subject to: u1|Γ = u2|Γ, (8.3)

with u1 := u|Ω1
∈ V (Ω1) and u2 := u|Ω2

∈ V (Ω2). That is, by (8.2) we have split
the original minimization (8.1) into the minimization of two independent energies
while preserving the spatial couplings through (linear) equality constraints.

In order to obtain a solving algorithm for (8.2) which exhibits significant clues
for coarse-grained parallelization, we, in a next step, relax the constraints in (8.2) by
introducing a Lagrangian multiplier function λ, which leaves us with the primal-dual
optimization problem

sup
λ

min
u1,u2

{
JΩ1(u1) + JΩ2(u2) + 〈λ, u1|Γ − u2|Γ〉Γ

}

︸ ︷︷ ︸

=:J∗(λ)

, (8.4)

with λ ∈ L2(Γ) being the Lagrangian multiplier function and J∗ the dual to J .
Interestingly, the two minimizations can be separated:

sup
λ

{

min
u1

{JΩ1(u1) + 〈λ, u1〉Γ}+ min
u2

{JΩ2(u2)− 〈λ, u2〉Γ}
}

. (8.5)

That is, the direct coupling between u1 and u2 can be replaced by an indirect
coupling through the dual function λ. If we think of the dual λ as being fixed,
the two minimization problems, which yield the local solutions û1(λ) and û2(λ)
respectively, are independent from each other and can thus be solved in parallel.

153 8.1. Primal-dual Domain Decomposition

8.1.2 Solving

In terms of solving (8.5) with respect to λ we chose the subgradient iteration method
(See [8, 15]).

First, we consider

u1,λ = arg min
u1

{JΩ1(u1)− 〈λ, u1〉Γ} and u2,λ = arg min
u2

{JΩ2(u2)− 〈λ, u2〉Γ} ,
(8.6)

and we define uλ := {u1,λ, u2,λ}. Then, the subgradient method generates a sequence
of dual feasible points according to the iteration

λk+1 = λk + τk g
k (8.7)

with k denoting the iteration count, τk ∈ R appropriate step sizes, and gk = g(uλk) =
dJ∗

dλ (λk) as subgradients of the subdifferential ∂J∗(λk). Thereby, it is made use of
the fact that

J∗(λ̃) ≤ J∗(λ) + (λ̃− λ) g(uλ) , ∀λ̃ ∈ L2(Γ) . (8.8)

In particular, we have that

g(uλ) = u1,λ|Γ − u2,λ|Γ . (8.9)

That is, within one iteration, firstly, u1,λk and u2,λk have to be determined,
according to (8.6), which require independent minimizations and can therefore be
done in parallel. Secondly, gk is calculated according to (8.9), and thirdly, an ap-
propriate step size τk is selected and the update is carried out following (8.7). See
Algorithm 14 for a formalization.

Concerning the selection of step sizes τk, different methods exist (See, e.g., [97]).
Typical choices are a constant step size: τk = const, or exponentially decreasing step
sizes: τk+1 = ρkτk, ρ ∈ (0, 1), τ0 > 0, both of which were used in the experiments
to be presented below.

8.1.3 Application to the Model Problem

In a next step, we apply Algorithm 14 to the model problem of TV-based denoising,
see Chapter 6. Thereby, the local energies JΩi

(ui), i = 1, 2 read

JΩi
:=

1

2

∫

Ωi

(u− f)2 + α|∇u|β dx, i = 1, 2, (8.11)

Chapter 8. A Convex Programming Approach to Nonlinear DD 154

Algorithm 14: Nonlinear DD by convex programming on a two-subdomain partition

k ← 0. Choose a τ0 > 0 and a ρ ∈ (0, 1).

Choose a dual feasible λ0.

do

(a) Determine a primal solution:

u1,λk ← arg min
u1

{

JΩ1(u1) + 〈λk, u1〉Γ
}

u2,λk ← arg min
u2

{

JΩ2(u2)− 〈λk, u2〉Γ
}

(b) Calculate the subgradient:

gk ← u1,λk |Γ − u2,λk |Γ .

(c) Update the dual solution:

λk+1 ← λk + τk g
k

(d) Calculate a new step size:

τk+1 ← ρk+1τk

(e) Increment : k ← k + 1

until ‖u1,λk |Γ − u2,λk |Γ‖L2 < ǫ

Merge the local solutions:

u|Ω1
← uk−1

1

u|Ω2
← uk−1

2

(8.10)

with f ∈ V (Ω) denoting the input image, α ∈ R the regularization strength, and β ∈
R the regularization parameter of the TV norm, and we have K = I.

Including the Lagrange multipliers, minima of the subproblems in the prob-
lem (8.5) are given by solving the first their variations being equal to zero, which

155 8.1. Primal-dual Domain Decomposition

yields:

∫

Ωi

(ui − fi) ũi + α

(∇ui
|∇ui|β

)

∇ũi dx ±
∫

Γ

λũi dx = 0 ∀ũ ∈ H1
0 , i = 1, 2,

(8.12)

or, in PDE-formulation:

(ui − fi) + α∇ ·
(∇ui
|∇ui|β

)

±RΓΩi
λ = 0, i = 1, 2, (8.13)

where RΓΩi
denotes an extension by zero from Γ to Ωi, i = 1, 2. In comparison with

the formulations in Chapter 6, the additional Lagrangian multipliers λ only amount
to replacing each occurrence of the original first variation, which is the left-hand
side of (6.7), by the left-hand side of (8.12), or, respectively, every occurrence of the
left-hand side of (6.10), by the left-hand side of (8.13), in PDE-formulation. Finally,
when using the Primal-Dual Newton’s method ∇u/|∇u|β need to be replaced by w,
see Section 6.2.4.

8.1.4 Experimental Studies

Numerical experiments have been made on a 32×32 grid, which was partitioned into
two subdomains of size 17×32 and 16×32 (height × width). Newton’s Method with
continuation (α = 0.5, β = 10−6, β0 = 10, nβ = 15, eL2 = 10−12), in connection
with PCG iteration with a maximum residual L2-error of 10−3 has been employed as
local solver. Results and input data are depicted in Figures 8.21 and 8.1, respectively.

The convergence behavior w.r.t. to the relative L2-error (‖uk − uref‖2/‖uref‖2)
is depicted in Fig. 8.3, while uref is a reference solution generated by a sequential
run of the local solver with a final residual error of 10−12. Several constant step
sizes have been tried, as well as some exponentially diminishing step sizes τk+1 =
ρττ

k, 0 < ρτ < 1.
The per-pixel error depicted in Figure 8.2 shows that the remaining error is

mainly located at the interface Γ, which is to be expected, since the natural spa-
tial couplings are broken up right there and are relaxed through the Lagrangian
functions. Furthermore, the diagram in Fig. 8.3 clearly points out an exponential
convergence rate for constant step sizes, while for this small data set, exponentially
decreasing step sizes do not help to improve the convergence rate, but instead are
most likely to prevent further convergence below a relative error of less than 10−4.

1Note that asymmetric artifacts especially occurring in the upper corners of Fig. 8.2(a) are due
to the asymmetry of the finite element basis functions used in the discretization.

Chapter 8. A Convex Programming Approach to Nonlinear DD 156

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) Ground truth

−1

−0.5

0

0.5

1

1.5

2

2.5

(b) With added Gaussian noise

Figure 8.1: Ground truth and input image with added Gaussian noise (32 × 32
pixels, signal-to-noise ratio 1.4 dB).

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(a) Result after 300 subgradient iterations

2

4

6

8

10

12

x 10
−5

(b) Per-pixel L2-error to reference solution

Figure 8.2: Result and per-pixel L2-error for a two-subdomain decomposition1.

157 8.1. Primal-dual Domain Decomposition

10
0

10
1

10
2

10
3

10
−5

10
−4

10
−3

10
−2

10
−1

τ = 1.0

τ = 0.8

τ = 0.5

τ = 0.2

τ = 1.0 θτ = 0.98
τ = 1.0 θτ = 0.97

iterations

re
la

tiv
e

l2
−

er
ro

r

Figure 8.3: Development of the L2-error for different step sizes in the two-

subdomain case. It is plotted the relative L2-error w.r.t. the reference solution for either
fixed step sizes τ ∈ {0.2, 0.5, 0.8, 1.0}, or exponentially decreasing step sizes τ = ρk

τ , ρτ ∈
{0.97, 0.98}, k : iteration count, respectively.

Chapter 8. A Convex Programming Approach to Nonlinear DD 158

8.2 The Case of Many Subdomains

Extending the proposed decomposition approach to more than two subdomains
brings up the need for special equality constraints at inner corner points, i.e. points
on Γ which are shared by more than two subdomains. Since these special conditions
are the same (up to a multiplication by −1) for all other inner corner points, we,
as in the previous chapter, restrict our considerations to the case of 2× 2 partition
with only one corner point Π, Figure 7.1(b) for an example and a mathematical
definition.

Then, a straightforward extension of (8.2) in this setting would be

min
u1,...,u4

4∑

i=1

JΩi
(ui) (8.14)

subject to: u1|Γ12∪Π = u2|Γ12∪Π

u1|Γ13∪Π = u3|Γ13∪Π

u2|Γ24∪Π = u4|Γ24∪Π

u3|Γ34∪Π = u4|Γ34∪Π .

(8.15)

Although mathematically correct, numerical experiments based Algorithms 14 ex-
tended to (8.14) revealed a highly insufficient convergence behavior in terms of
persistent oscillations, even for relatively small step sizes, while the error mainly did
concentrate at Π.

Therefore, we propose to have separate constraints for the unknowns on Π, such
that

min
u1,...,u4

4∑

i=1

JΩi
(ui) (8.16)

subject to: u1|Γ12
− u2|Γ12

= 0

u1|Γ13
− u3|Γ12

= 0

u2|Γ24
− u4|Γ24

= 0

u3|Γ34
− u4|Γ34

= 0

u1|Π − u2|Π = 0

u1|Π − u3|Π = 0

u1|Π − u4|Π = 0 .

After applying Lagrangian relaxation as in the two-subdomain case, the correspond-

159 8.2. The Case of Many Subdomains

ing primal-dual optimization reads:

sup
λ12,λ13
λ24,λ34

λΠ,1,...,λΠ,3

min
u1,...,u4

4∑

i=1

JΩi
(ui) +

3∑

i=1

∑

j∈N>(i)

〈λij , ui|Γij
− uj|Γij

〉Γij

+

3∑

i=1

λΠ,i(u1|Π − ui|Π) .

(8.17)

Subsequent splitting into local minimization problem yields

sup
λ12,λ13
λ24,λ34

λΠ,1,...,λΠ,3

{

min
u1

{JΩ1(u1)+〈λ12, u1〉Γ12 + 〈λ13, u1〉Γ13 + (λΠ,1 + λΠ,2 + λΠ,3) u1|Π}

+ min
u2

{
JΩ2(u2)− 〈λ12, u1〉Γ12 + 〈λ13, u1〉Γ13 − λΠ,1u2|Π

}

+ min
u3

{
JΩ3(u3)− 〈λ13, u3〉Γ13 + 〈λ34, u3〉Γ34 − λΠ,2u3|Π

}

+ min
u4

{
JΩ4(u4)− 〈λ24, u4〉Γ24 − 〈λ34, u4〉Γ34 − λΠ,3u4|Π

}}

.

(8.18)

Finally, by applying the subgradient method in an analogous manner as above, we
obtain Algorithm 15.

8.2.1 Experimental Results

Experiments were conducted on the same grid and input data as in the two-subdomain
case, with the difference that the interface Γ did divide the discrete image plane at
the 17. column and 17. row, respectively. Again, Newton’s method served as inner
solving method, using the same parameters as in the previous experiments.

Figure 8.4(b) shows that the error is distributed mainly equally along Γ and does
not concentrate at Π as encountered with the non-special constraints on Π. In ad-
dition, while conducting the experiments, it has been found to improve convergence
at Π if the step size for uΠ is one fourth the step size for the other unknowns.

The error plots in Fig. 8.4 reveal an almost similar convergence rate for step sizes
of 0.8 and 0.5 as in the two-subdomain case, although the number of subdomains
has doubled. In addition, according to the error plots in Fig. 8.6 the regularization
strength α, controlling the strength of the spatial couplings, influences the conver-
gence rate only moderately. Only for α = 0.2 the step size had to be reduced in
comparison to the other cases in order to prevent divergence at Π.

Chapter 8. A Convex Programming Approach to Nonlinear DD 160

Algorithm 15: Nonlinear DD by convex programming on a 2× 2 partition

k ← 0. Choose a τ0 > 0, and a ρ ∈ (0, 1).

Choose a dual feasible λ0
ij and λ0

Π,i = 0, e.g. 0.

I ← {(i, j) | 1 ≤ i ≤ 4, j ∈ N>(i)}
do

(a) Solve the local minimization problems (in parallel):

u1,λk ← arg min
u1

{
JΩ1(u1) + 〈λk12, u1|Γ12

〉Γ12 + 〈λk13, u1|Γ13
〉Γ13

+ (λkΠ,1 + λkΠ,2 + λkΠ,3)u1|Π
}

u2,λk ← arg min
u2

{

JΩ2(u2)− 〈λk12, u2|Γ12
〉Γ12 − 〈λk24, u2|Γ24

〉Γ24 − λkΠ,1u2|Π
}

u3,λk ← arg min
u3

{

JΩ3(u3) + 〈λk13, u3|Γ13
〉Γ13 + 〈λk34, u3|Γ34

〉Γ34 − λkΠ,2u3|Π
}

u4,λk ← arg min
u4

{

JΩ4(u4)− 〈λk24, u4|Γ24
〉Γ24 − 〈λk34, u4|Γ34

〉Γ34 − λkΠ,3u4|Π
}

(b) Update the dual functions (sequentially):

foreach (i, j) ∈ I do λk+1
ij ← λkij + τk

(
ui,λk |Γij

− uj,λk |Γij

)

for i = 1, . . . , 3 do λk+1
Π,i ← λkΠ,i + τk

(
u1,λk |Π − ui+1,λk |Π

)

(c) Calculate a new step size:

τk+1 ← ρk+1τk

(d) Increment: k ← k + 1

until

(

∑

(i,j)∈I
‖ui|Γ − uj|Γ‖L2 +

3∑

i=1
‖u1|Π − ui+1|Π‖L2

)

< ǫ

for i = 1, . . . , 4 do u|Ωi
← ui

161 8.2. The Case of Many Subdomains

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(a) Result after 300 subgradient iterations

2

4

6

8

10

12
x 10

−5

(b) Per-pixel L2-error to reference solution

Figure 8.4: Result and per-pixel L2-error for a 2× 2 decomposition.

10
0

10
1

10
2

10
3

10
−5

10
−4

10
−3

10
−2

10
−1

τ = 1.0

τ = 0.8

τ = 0.5

τ = 0.2

τ
0
 = 1.0 θτ = 0.97

τ
0
 = 1.0 θτ = 0.95

τ
0
 = 1.0 θτ = 0.92

iterations

re
la

tiv
e

l2
−

er
ro

r

Figure 8.5: Development of the L2-error for different step sizes on a 2 × 2 de-

composition. It is plotted the relative L2-error w.r.t. the reference solution for either
fixed step sizes τ ∈ {0.2, 0.5, 0.8, 1.0} and exponentially decreasing step sizes τ = ρk

τ , ρτ ∈
{0.92, 0.95, 0.97}, k : iteration count, respectively.

Chapter 8. A Convex Programming Approach to Nonlinear DD 162

10
0

10
1

10
2

10
3

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

α = 0.2 τ = 0.3
α = 0.5 τ = 0.8

α = 0.7 τ = 0.8

α = 1.0 τ = 0.8

α = 2.0 τ = 0.8

iterations

re
la

tiv
e

l2
−

er
ro

r

Figure 8.6: Development of the L2-error for different regularization strengths

on a 2 × 2 decomposition. It is plotted the relative L2-error for different regularization
strengths α ∈ {0.2, 0.5, 0.7, 1.0, 2.0}.

163 8.3. Conclusion

8.2.2 Comparison to Control-based Decomposition

In comparison to the solving algorithms (both in the two- and the multi-subdomain
case) of the control approach in Chapter 7, it is obvious the computational effort per
iteration to be less here, since with the control-based algorithms, two (linear or non-
linear) partial differential equations are to be solved per subdomain, whereas with
the convex decomposition-based methods it is only one minimization problem per
iteration and subdomain. Furthermore, as experiments are suggesting, the convex
methods seem to be less sensitive to the step size selection, thus allowing simpler
and much less computationally expensive selection rules.

From a theoretical perspective, the parallelization approach here is founded on
mathematical programming. By contrast, the control-theoretic decomposition ap-
proach, as well as all the linear domain decomposition approaches in Chapter 3 and 4,
are based on a splitting of partial differential equations. As mentioned in the intro-
duction of this chapter, in terms of the classical domain decomposition approaches,
a link between the mathematical programming and PDE-based formulations can be
found in [62].

8.3 Conclusion

In this chapter we proposed a new convex programming approach for the decompo-
sition of nonlinear energy minimization problems, using the example of TV-based
denoising. Starting with the two-subdomain case, we split the original minimization
problem into separate minimizations of local energies while preserving the global
couplings through Lagrangian multiplier functions. Thus, the main computational
burden can be distributed to several processing nodes at the cost of an outer sequen-
tial iteration, where the Lagrangians updated. Analogue to the previous chapter,
we restrict our considerations to only one corner point when addressing the case
of arbitrary many subdomains. For both cases, we propose solving by subgradient
iterations and give concrete formulations of the resulting computational steps in a
generic manner.

As in the previous chapter, experimental results show the practical feasibility of
the approach on small data sets. In comparison to the control approach. However,
the involved systems of nonlinear equations are less complex and require a smaller
computational effort. In addition, the few experimental results show a better and
more constant convergence rate.

Chapter 8. A Convex Programming Approach to Nonlinear DD 164

Chapter 9

Conclusion

9.1 Summary

The main subject of this work is to provide methods for data parallelization through
the domain decomposition of linear and nonlinear PDE problems in image process-
ing. Whereas the first three chapters deal with linear domain decomposition methods
at the example of a well-known variational motion estimation problem, the last three
chapters focus on nonlinear DD techniques based on the model problem of varia-
tional image denoising employing TV-regularization. Besides the main subject, in
Chapter 5 we propose an extension of the linear model problem in order to improve
optic flow reconstructions in the context of computational fluid mechanics.

9.1.1 Linear Domain Decomposition

9.1.1.1 Non-overlapping Methods

After giving a short introduction into variational motion estimation and definition
of the model problem, the second chapter starts by elaborating the theoretical basis
for non-overlapping DD techniques, first by introducing the Steklov-Poincaré op-
erator and following the Schur complement equation, which gives the basis of all
primal substructuring methods. Based on the Schur complement equation, we then
develop the first one-level algorithms based on two subdomains and show their equiv-
alence to preconditioning techniques with a Richardson iteration. Subsequently, in
the multiple-subdomain case, we first explain the typical algorithmic framework
of iterative substructuring methods, namely that of a Krylov-subspace solving ap-
plied to the Schur complement equation by means of a parallelized solving step and
various different types of parallel preconditioning techniques. We then focus on
common one-level preconditioners and address their impact on the condition num-

165

Conclusion 166

ber of the preconditioned system. In addition, we address and explain the problem
of limited information propagation and show how it is overcome by different two-
level preconditioning approaches. Thereby, we put a strong focus on the Balancing
Neumann-Neumann preconditioner, because of its prominent role as a current pri-
mal substructuring method, and by elaborating also on the algebraic foundation
and its application to our model problem. The remaining sections of the theoretical
part are dedicated to dual and primal-dual substructuring methods, notably the
solely dual FETI and the primal-dual FETI method. In either case, we elucidate
the mathematical background by drawing a line from the constrained optimization
problem involving local Schur complement equations, over its Lagrangian relaxation,
up to the dual and primal-dual problem, respectively, solved by an extended PCG
iteration. In particular, with the dual approach, we address the intrinsic two-level
character of the involved projection, compare it to its primal counterpart in Balanc-
ing NN preconditioning, and show the necessary modifications in order to apply the
method to our model problem.

In the experimental section we study different numerical aspects by the ex-
ample of two well-known primal preconditioners, Neumann-Neumann and Balanc-
ing Neumann-Neumann, in connection with our model problem using a multi-grid
Gauss-Seidel local solver. Thereby, the following empirical findings are made:

• Preconditioning the Schur complement system has a strong impact on the con-
vergence rate. Specifically, theoretical upper limits for either the NN or BNN
preconditioner hold. While convergence deteriorates with increasing number of
subdomains for NN preconditioning in case the spatial couplings are dominant,
it remains nearly constant for BNN preconditioning.

• With respect to the final relative residual error, that of the outer Schur com-
plement solver is about one order of magnitude larger than that of the local
subdomains solvers.

• Both the NN and BNN preconditioning method provide a very good relative
scalability on a relatively cheap PC-cluster even for larger numbers of sub-
domains. However, the BNN preconditioner cannot compensate for its three
times higher computational effort, if spatial couplings are not dominant over
larger image regions. Hence, for model problems with primarily local spatial
couplings, NN preconditioning is probably preferable over BNN precondition-
ing.

• In comparison to an highly-tuned multi-grid implementation, only little speed
gains can be reached for the NN method at very high costs of 25 processing
nodes or more.

167 9.1. Summary

• In accordance with theory, the communication volume increases only with the
square root of the number of subdomains.

9.1.1.2 Overlapping Methods

Starting with the very first DD method by H. Schwarz we first present the basic
one-level algorithms on two and on multiple subdomains, respectively, and identify
each of them with additive and multiplicative, respectively, preconditioners. In
particular we show that Gauss-Seidel and Jacobi iteration are special cases within
this framework. With same numerical argument as with one-level non-overlapping
methods — limited spatial information propagation — we move on to two-level and
multilevel methods presenting the different combinations of additive (sequential) or
multiplicative (parallel) algorithms with respect to either the order of level updates
or the order of subdomain updates within each level, respectively. Thereby, we
always address the aspect of scalability in terms of parallel computing. Finally,
we show that standard multigrid methods appear as special cases in the multilevel
framework and, in particular, that level-multiplicative methods can be seen as w-
cycle multigrid algorithms while employing Schwarz smoothers.

9.1.2 Nonlinear Domain Decomposition

Instead of considering the extensions of classical non-overlapping DD methods for
their application to nonlinear problems, we pursue two distinct alternative ap-
proaches to decompose nonlinear PDE problems. By giving a thorough introduction
into TV-based image denoising, including all main algorithms as well as several ex-
periments, we chose a prototypical nonlinear model problem.

9.1.2.1 Control Approach

Based on the work of Lee, Gunzburger et al. [86, 65, 67, 66], we give a step-by-
step presentation of the control-theoretic approach for the denoising model problem.
Both for the two and the multiple-subdomain case, we first formulate the optimal
control problem as constrained energy minimization, proceed with its Lagrangian
relaxation and derive the corresponding optimality system for our model problem,
respectively. Subsequently, we explain the two different iterative solving approaches
in general, and show their formulation for the denoising problem. In the experi-
mental sections we show the empirical feasibility on two and 2×2 subdomains and
provide explicit formulations for the communication volume and the total run-time
in dependence on the number of unknowns and the number of subdomains.

Conclusion 168

9.1.2.2 Convex Programming Approach

With the convex programming approach we provide another method for a nonlinear
non-overlapping decomposition. Given that the model problem can be written as
energy minimization, we propose a decomposition on the energy level, while enforc-
ing the inter-subdomain couplings by equality constraints. Similar to the control
approach, the constraints are relaxed by the Lagrangian multiplier method resulting
in a primal-dual problem, which is then solved by subgradient iteration. Here too,
numerical experiments on two and 2×2 subdomains based on the nonlinear denoising
problem show the empirical feasibility of the approach.

9.1.2.3 Motion Estimation with High-order Regularization

As an off-topic, we investigate the improvement of the linear model problem, vari-
ational motion estimation, with respect to its application to fluid mechanical prob-
lems. In particular, after introducing the notion of potential fields as well as regular-
izations based on high-order derivatives, we present a novel approach for the direct
estimation of the potential fields from a given image sequence. As with the indi-
rect, three-step approach by Corpetti et al. [39, 40], we too decrease the degree of
derivatives by their relaxation through auxiliary functions. Thereby, the maximum
order of derivatives in the corresponding partial differential equations can be low-
ered from six to four. Furthermore, we embed the approach into a multi-resolution
framework in order to make larger flow speeds computationally feasible. In the suc-
ceeding experimental section, we provide qualitative and quantitative comparisons
of our approach to the indirect method as well as the well-known Horn and Schunck
motion estimation for several synthetic data sets, which shows the superiority of the
new method.

9.2 Future Work

Although answering of the scientific questions posed in the beginning of this work
were pursued as posed, new questions or issues appeared in the course of this study,
which are to be subject of future investigations.

• Chapter 3:

– Adaption of the multigrid scheme, i.e. the discretization on lower reso-
lutions as well as the restriction and prolongation operators, for solving
the local Dirichlet problems, or investigation of alternative local solvers
in connection with NN and BNN preconditioning, in order to increase the
total convergence rate of the parallel algorithm.

169 9.2. Future Work

– Experimental studies of the dual and the primal-dual FETI method ap-
plied to optical flow estimation on a parallel computer, and comparison to
the quantitative and qualitative results for NN and BNN preconditioning.

• Chapter 5:

– Meanwhile, after completion of this thesis and spurred by both posi-
tive and negative (cf. Section 5.3.2) results, and in-depth study of the
approach (5.8) together with higher-order regularization (5.14) has been
conducted in our group [129, 130]. An independent benchmark evaluation
as part of work package 5 of the european FLUID project (http://fluid.irisa.fr/)
has shown recently that by adding a boundary penalizer to (5.14), and
by using a more sophisticated discretization scheme, a well-posed and
stable variational approach can be implemented that not only makes the
use of auxiliary variables obsolete but also computed significantly more
accurate fluid flow estimates than the approach by Corpetti et al. [38].

– Decomposition of the energies (5.18) and (5.19) by applying the approach
of Chapter 8, in order to parallelize the computation of the higher-order
regularization problems.

• Chapter 8:

– Theoretical proof of equivalence of the problem decomposition on the
energy level and the original minimization problem.

– Derivation of the energy-based decomposition from the Steklov-Poincaré
equation.

– Further experimental studies using more advanced solvers, such as the
cutting plane method, on larger data sets.

Conclusion 170

Bibliography

[1] R. Acar and C.R. Vogel. Analysis of total variational penalty methods for
ill-posed problems. Inverse Problems, 10:1217–1229, 1994.

[2] R. Adrian. Particle imaging techniques for experimental fluid mechanics. An-
nal Rev. Fluid Mech., 23:261–304, 1991.

[3] A. Amini. A scalar function formulation for optical flow. In European Con-
ference on Computer Vision, ECCV ’94, pages 125–131, 1994.

[4] K. Atkinson and W. Han. Theoretical Numerical Analysis. Springer, Heidel-
berg, Germany, 2001.

[5] J.P. Aubin. Approximation of Elliptic Boundary-Value Problem. John Wiley
& Sons, New York, NY, 1972.

[6] L. Bannehr, R. Rohn, and G. Warnecke. A functionnal analytic method to
derive displacement vector fields from satellite image sequences. Int. Journ.
of Remote Sensing, 17(2):383–392, 1996.

[7] J. L. Barron, D. J. Fleet, and S. S. Beauchemin. Perfomance of optical flow
techniques. Int. Journal of Computer Vision, 1(12):43–77, Feb. 1994.

[8] D. P. Bertsekas. Nonlinear Programming. Athena Scientific, Belmont, MA, 2
edition, 1999.

[9] P. Bjørstad and A. Hvidsten. Iterative methods for substructured elasticity
problems in structural analysis. In R. Glowinski, G. Golub, G. Meurant, and
J. Périaux, editors, Domain Decomposition Methods for Partial Diff. Eqs.,
pages 301–312, Philadelphia, PA, 1988. SIAM.

[10] P. Bjørstad and M. Skogen. Domain decomposition algorithms of schwarz
type, designed for massively parallel computers. In D. Keyes, T.F. Chan, and
G. Meurant, editors, Fifth. Int. Symp. on Domain Decomposition Meth. for
Part. Diff. Eqs., pages 362–375, Philadelphia, PA, 1992.

171

BIBLIOGRAPHY 172

[11] P. Bjørstad and O.B. Widlund. Elliptic Problem Solvers II. Academic Press,
New York, NY, 1984.

[12] P. Bjørstad and O.B. Widlund. Iterative methods for the solution of elliptic
problems on regions partitioned into substructures. SIAM J. of Numer. Anal.,
23(6):1097–1120, 1986.

[13] P. Blomgren, T. Chan, P. Mulet, and C.K. Wong. Total Variation image
restoration: numerical methods and extensions. In IEEE Proc. Int. Conf.
Image Proc., volume 3, pages 384–387. IEEE, 1997.

[14] J.-F. Bourgat, Glowinski R., P. Le Tallec, and Vidrascu M. Variational formu-
lation and algorithm for trace operator in domain decomposition calculations.
In T. Chan, Glowinski R., J. Périaux, and O. Widlund, editors, Second Int.
Symp. on Domain Decomposition Meth., pages 3–16, Philadelphia, PA, 1989.
SIAM.

[15] S. Boyd, L. Xiao, and Almir Mutapcic. Notes on decomposition methods, 2003.
Notes for course EE3920, http://www.stanford.edu/class/ee392o/#lectures.

[16] J. Bramble, J. Pasciak, and A. Schatz. The construction of preconditioners
for elliptic problems by substructuring I. Math. Comp., 47:103–134, 1986.

[17] J. Bramble, J. Pasciak, and A. Schatz. An iterative method for elliptic prob-
lems on region partitioned into substructures. Math. Comp., 46:361–369, 1986.

[18] J. Bramble, J. Pasciak, and A. Schatz. The construction of preconditioners
for elliptic problems by substructuring IV. Math. Comp., 53(187):1–24, 1989.

[19] A. Bruhn. Variational Optic Flow Computation: Accurate Modelling and Ef-
ficient Numerics. PhD thesis, Department of Mathematics and Computer
Science, Saarland University, Saarbrücken, Germany, 2006.

[20] A. Bruhn, J. Weickert, C. Feddern, T. Kohlberger, and C. Schnörr. Real-time
optic flow computation with variational methods. In N. Petkov and M. West-
enberg, editors, Proc. Computer Analysis of Images and Patterns (CAIP’03),
volume 2756 of LNCS, pages 222–229. Springer, 2003.

[21] A. Bruhn, J. Weickert, C. Feddern, T. Kohlberger, and C. Schnörr. Varia-
tional optical flow computation in real-time. IEEE Trans. Image Processing,
14(5):608–615, 2005.

[22] A. Bruhn, J. Weickert, T. Kohlberger, and C. Schnörr. A multigrid plat-
form for real-time motion computation with discontinuity-preserving varia-
tional methods. Int. Journal of Computer Vision, 70(3):257–277, 2006.

173 BIBLIOGRAPHY

[23] A. Bruhn, J. Weickert, and C. Schnörr. Combining the advantages of local
and global optic flow methods. In L. van Gool, editor, Pattern Recognition,
Proc. 24th DAGM Symposium, volume 2449 of LNCS, pages 454–462, Zürich,
Switzerland, 2002. Springer.

[24] A. Bruhn, J. Weickert, and C. Schnörr. Lucas/Kanade meets Horn/Schunck:
Combining local and global optic flow methods. Int. Journal of Computer
Vision, 61(3):211–231, 2004.

[25] X.C. Cai and M. Dryja. Domain decomposition methods for monotone nonlin-
ear elliptic problems. In D. Keyes and J. Xu, editors, Domain Decomposition
Methods in Scientific and Engineering Computing, pages 335–360, Providence,
RI, 1994. AMS.

[26] A. Chambolle. An algorithm for total variation minimization and applications.
J. of Math. Imag. Vision, 20:89–97, 2004.

[27] A. Chambolle and P.-L. Lions. Image recovery via total variation minimization
and related problems. Numer. Math., 76(2):167–188, 1997.

[28] T. Chan, R. Glowinski, J. Périaux, and O.B. Widlund eds. Third Int. Sym-
posium on Domain Decomposition Methods for Partial Differential Equations.
SIAM, Philadelphia, PA, 1990.

[29] T. Chan, G.H. Golub, and P. Mulet. A nonlinear primal-dual method for
Total Variation-based image restoration. In M. Berger, R. Deriche, I. Her-
lin, J. Jaffre, and J. Morel, editors, ICAOS’96, 12th Int. Conf. on Analysis
and Optimization of sytems: Images, wavelets, and PDEs, volume 219 of Lec-
ture Notes in Control and Information Sciences, pages 241–252, Heidelberg,
Germany, 1996. Springer.

[30] T. Chan, G.H. Golub, and P. Mulet. A nonlinear primal-dual method for tv-
based image restoration. SIAM J. of Scientifc Computing, 20(6):1964–1977,
1999.

[31] T. Chan and D. Keyes. Interface preconditioning for domain-decomposed
convection-diffusion operators. In T. Chan, R. Glowinski, J. P’eriaux, and
O. Widlund, editors, Third Int. Symp. on Domain Decomposition Meth. f.
Part. Diff. Eqs., pages 245–262, Philadelphia, PA, 1990. SIAM.

[32] T. Chan and T. Mathew. An application of the probing technique to the ver-
tex space method in domain decomposition. In R. Glowinski, Y. Kuznetsov G.
Meurant, and O. Widlund, editors, Fourth Int. Symp. on Domain Decomposi-
tion Meth. f. Part. Diff. Eqs., pages 101–111, Philadelphia, PA, 1991. SIAM.

BIBLIOGRAPHY 174

[33] T. Chan and T. Mathew. Efficient variants of the vertex space domain de-
composition algorithms. SIAM J. of Scientifc Computing, 15(6):1349–1374,
1994.

[34] T. Chan and T.P. Mathew. Domain decomposition algorithms. In Acta Nu-
merica 1994, pages 61–143. Cambridge University Press, 1994.

[35] T. Chan and P. Mulet. Iterative methods for total variation image restoration.
Technical Report 96-38, Dept. of Mathematics, Univ. of California at Los
Angeles, Los Angeles, CA, 1996.

[36] T. Chan, H. Zhou, and R. Chan. A continuation method for total variation
denoising problems. In F.T. Luk, editor, Proc. of the SPIE Conference on
Advanced Signal Processing Algorithms, pages 314–325. SPIE, 1995.

[37] P.G. Ciarlet. The Finite Element Method for Elliptic Problem. North-Holland,
Amsterdam, The Netherlands, 1978.

[38] T. Corpetti, D. Heitz, G. Arroyo, E. Mémin, and A. Santa-Cruz. Fluid ex-
perimental flow estimation based on an optical-flow scheme. Experiments in
Fluids, 40:80–97, 2006.

[39] T. Corpetti, E. Mémin, and P. Pérez. Dense estimation of fluid flows. IEEE
Trans. Pattern Anal. Machine Intell., 24(3):365–380, 2002.

[40] T. Corpetti, E. Mémin, and P. Pérez. Dense motion analysis in fluid imagery.
In A. Heyden, G. Sparr, M. Nielsen, and P. Johansen, editors, European Con-
ference on Computer Vision, ECCV’02, volume 2350 of LNCS, pages 676–691.
Springer, 2002.

[41] S. Das Peddada and R. McDevitt. Least average residual algorithm (LARA)
for tracking the motion of arctic sea ice. IEEE trans. on Geoscience and
Remote sensing, 34(4):915–926, 1996.

[42] Y.-H. De Roeck and P. Le Tallec. Analysis and test of a local domain de-
composition preconditioner. In R. Glowinsiki, Y. Kuznetsov, G. Meurant,
J. Périaux, and O. Widlund, editors, Fourth Int. Symp. on Domain Decom-
position Methods for Part. Diff. Equations, pages 112–128, Philadelphia, PA,
1991. SIAM.

[43] D.C. Dobson and C.R. Vogel. Convergence of an iterative method for total
variation denoising. SIAM J. of Numer. Anal., 34(5):1779–1791, 1997.

175 BIBLIOGRAPHY

[44] M. Dryja. A method of domain decomposition for three-dimensional finite
element elliptic problems. In R. Glowinski et al., editor, First Int. Symp.
on Domain Decomposition Methods for Partial Differential Equations, pages
43–61, Philadelphia, 1988. SIAM.

[45] M. Dryja and W. Hackbusch. On the nonlinear domain decomposition method.
BIT, 37(2):296–311, 1997.

[46] M. Dryja and O. Widlund. Additive schwarz methods for elliptic finite element
problems in three dimensions. Technical Report 580, Courant Institute of
Mathematical Sciences, 1991. Computer Science Technical Report 570.

[47] M. Dryja and O.B. Widlund. Towards a unified theory of domain decomposi-
tion algorithms for elliptic problems. In T. Chan, R. Glowinski, J. P’eriaux,
and O. Widlund, editors, Third Int. Symp. on Domain Decomposition Meth.
for Elliptic Problems, pages 3–12, Philadelphia, PA, 1990. SIAM.

[48] M. Dryja and O.B. Widlund. Domain decomposition algorithms with small
overlap. SIAM J. of Scientifc Computing, 15(3):604–620, 1994.

[49] M. Dryja and O.B. Widlund. Schwarz methods of Neumann-Neumann type for
three-dimensional elliptic finite element problems. Comm. Pure Appl. Math.,
48(2):121–155, 1995.

[50] C. Farhat, P.S. Chen, and J. Mandel. A scalable lagrange multiplier based
domain decomposition method for time-dependent problems. Int. J. Numer.
Meth. Engng., 38:3831–3853, 1995.

[51] C. Farhat, M. Lesoinne, P. LeTallec, K. Pierson, and D. Rixen. FETI-DP: A
dual-primal unified FETI method—part i: A faster alternative to the two-level
FETI method. Int. J. Numer. Meth. Engng., 50:1523–1544, 2001.

[52] C. Farhat, M. Lesoinne, and K. Pierson. A scalable dual-primal domain de-
composition method. SIAM J. of Numer. Anal., 7:687–714, 2000.

[53] C. Farhat and J. Mandel. Scalable substructuring by lagrange multipliers in
theory and in practice. In P. Bjørstadt, M. Espedal, and D. Keyes, editors,
Proc. Ninth Int. Conf. on Domain Decomposition Methods, Bergen, Norway,
1996.

[54] C. Farhat and F.X. Roux. A method of finite element tearing and inter-
connecting and its parallel solution algorithm. Int. J. Numer. Meth. Engrg.,
32:1205–1227, 1991.

BIBLIOGRAPHY 176

[55] C. Farhat and F.X. Roux. Implicit parallel processing in structural mechanics.
Compuational Mechanics Advances, 2(1):1–124, 1994.

[56] J.M. Fitzpatrick and C.A. Pederson. A method for calculating fluid flow in
time dependant density images. Electronic Imaging, 1:347–352, March 1988.
Institute for Graphic Communication.

[57] Message Passing Interface Forum. MPI-2: Extensions to the Message-Passing
Interface. University of Tennesse, Knoxville, TN, 1995.

[58] Message Passing Interface Forum. MPI: A Message-Passing Interface Stan-
dard. University of Tennesse, Knoxville, TN, 1995.

[59] S. Fučik, A. Kratochvil, and J. Nečas. Kačanov-Galerkin method. Comment.
Math. Univ. Carolinae, 14(4):651–659, 1973.

[60] R. Glowinski, G.H. Golup, G.A. Meurant, and J. Périeux (Eds.). First Int.
Symposium on Domain Decomposition Methods For Partial Differential Equa-
tions. SIAM, Philadelphia, PA, 1988.

[61] R. Glowinski, G.H. Golup, G.A. Meurant, J. Périeux, and O.B. Widlund
(Eds.). Fourth Int. Symposium on Domain Decomposition Methods For Partial
Differential Equations. SIAM, Philadelphia, PA, 1991.

[62] R. Glowinski and P. Le Tallec. Augmented Lagrangian interpretation of the
nonoverlapping Schwarz alternating method. In T. Chan, R. Glowinski, J. Pe-
riaux, and O. B. Widlund, editors, Third Int. Symp. on Domain Decomposition
Methods for Partial Differential Equations, Philadelphia, PA, 1999. SIAM.

[63] G. Golub and C.V. Loan. Matrix Computations. The Johns Hopkins Univ.
Press, Baltimore, MD, 2nd edition, 1989.

[64] W. Gropp and B. Smith. Experience with domain decomposition in three
dimension: Overlapping schwarz methods. In J. Mandel, C. Farhat, and X.-
C. Cai, editors, Sixth Int. Conf. of Domain Decomposition, volume 157 of
Contemporary Mathematics, pages 323–334. AMS, 1994.

[65] M. Gunzburger, H. Lee, and J. Peterson. An optimization based domain
decomposition method for partial differential equations. Comput. Math. Appl.,
37(10):77–93, 1999.

[66] Max D. Gunzburger. Perspectives in Flow Control and Optimization. SIAM,
Philadelphia, PA, 2003.

177 BIBLIOGRAPHY

[67] M.D. Gunzburger and H.K. Lee. An optimization-based domain decomposition
method for the navier-stokes equations. SIAM J. of Numer. Anal., 37(5):1455–
1480, 2000.

[68] W. Hackbusch. Theorie und Numerik elliptischer Differentialgleichungen.
B.G. Teubner, Stuttgart, Germany, 1986.

[69] W. Hackbusch. Iterative Solution of Large Sparse Systems of Equations.
Springer, Heidelberg, Germany, 1993.

[70] J. Heers, C. Schnörr, and H.S. Stiehl. Globally convergent iterative numerical
schemes for nonlinear variational image smoothing and segmentation on a
multiprocessor machine. IEEE Trans. Image Processing, 10(6):852–864, June
2001.

[71] I. Herrera, D. Keyes, O. Widlund, and R. Yates (Eds.). Domain Decomposi-
tion Methods in Science and Engineering. National Autnomous University of
Mexico, Mexico City, Mexico, 2003.

[72] B.K.P. Horn and B.G. Schunck. Determining optical flow. Art. Int., 17:185–
203, 1981.

[73] J. Kačúr, J. Nečas, J. Polák, and J. Souček. Convergence of a method for
solving the magnetostatic filed in nonlinear media. Aplikace Mathematiky,
13:456–465, 1968.

[74] D.E. Keyes, T.F. Chan, G. Meurant, J.S. Scroggs, and R.G. Voigt eds. Fifth
Int. Symposium on Domain Decomposition Methods for Partial Differential
Equations. SIAM, Philadelphia, PA, 1990.

[75] A. Klawonn and O. Widlund. Dual-primal FETI methods for linear elastic-
ity. Technical Report TR2004-855, Fachbereich Mathematik, Campus Essen,
Universität Duisburg-Essen, Germany, 2004.

[76] A. Klawonn, O. Widlund, and M. Dryja. Dual-primal FETI methods for three-
dimensional elliptic problems with heterogeneous coefficients. SIAM J. of
Numer. Anal., 40(1):159–179, 2002.

[77] A. Klawonn and O.B. Widlund. A domain decomposition method with lagr-
nage multipliers and inexact solvers for linear elasticity. SIAM J. of Scientifc
Computing, 22:1199–1219, 2000.

[78] A. Klawonn and O.B. Widlund. FETI and neumann-neumann iterative sub-
structuring methods: Connections and new results. Comm. Pure Appl. Math.,
54:57–90, 2001.

BIBLIOGRAPHY 178

[79] T. Kohlberger, E. Mémin, and C. Schnörr. Variational dense motion esti-
mation using the helmholtz decomposition. In L.D. Griffin and M. Lillholm,
editors, Proc. 4th Int. Conf. on Scale-Space Theories in Computer Vision,
ScaleSpace’03, volume 2695 of LNCS, pages 432–448. Springer, 2003.

[80] T. Kohlberger, C. Schnörr, A. Bruhn, and J. Weickert. Domain decomposition
for parallel variational optical flow compuation. In B. Michaelis and G. Krell,
editors, Pattern Recognition, Proc. 25th DAGM Symposium, volume 2781 of
LNCS, pages 196–202. Springer, 2003.

[81] T. Kohlberger, C. Schnörr, A. Bruhn, and J. Weickert. Parallel variational
motion estimation by domain decomposition and cluster computing. In T. Pa-
jdla and J. Matas, editors, Eighth European Conf. on computer Vision, ECCV
’04, volume 3024 of Springer LNCS, pages 205–216, Prague, Czech Republic,
2004.

[82] T. Kohlberger, C. Schnörr, A. Bruhn, and J. Weickert. Domain decomposi-
tion for variational optical flow computation. IEEE Trans. Image Processing,
14(8):1109–1124, 2005.

[83] R. Kornhuber, R. Hoppe, J. Périaux, O. Pironneau, O. Widlund, and J. (Eds.)
Xu. Domain Decomposition Methods in Science and Engineering. LNCS.
Springer, Berlin, Germany, 2004.

[84] R. Larsen, K. Conradsen, and B.K. Ersboll. Estimation of dense image flow
fields in fluids. IEEE trans. on Geoscience and Remote sensing, 36(1):256–264,
Jan. 1998.

[85] P. Le Tallec, De Roeck Y.-H., and Vidrascu M. Domain decomposition meth-
ods for large linearly elliptic three dimensional problems. J. Comp. Appl.
Math., 34:93–117, 1991.

[86] H.K. Lee. Optimization Based Domain Decomposition Methods for Linear and
Nonlinear Problems. PhD thesis, Faculty of the Virginia Polytechnic Inst. and
State Univ., Blacksburg, VA, 1997.

[87] P. LeTallec. Domain decomposition methods in computational mechanics.
Comp. Meth. Applied to Mech. Engrg., 1(2):121–220, 1994.

[88] P.-L. Lion. On the Schwarz alternating method III: A variant for non-
overlapping subdomains. In T. Chan, R. Glowinski, J. P’eriaux, and O. Wid-
lund, editors, Third Int. Symp. on Domain Decomposition Meth. for Part.
Diff. Eqs., pages pp. 202–231, Philadelphia, PA, 1990. SIAM.

179 BIBLIOGRAPHY

[89] J.L. Lions. Optimal Control of Systems Governed by Partial Differential Equa-
tions, volume 170 of Die Grundlagen der math. Wissenschaften in Einzel-
darstellungen. Springer, Heidelberg, Germany, 1971.

[90] B.D. Lucas and T. Kanade. An iterative image registration technique with
an application to stereo vision. In Proc. of the 7th Int. Joint Conference on
Artificial Intelligence, 1981.

[91] S.-H. Lui. On linear monotone iteration and Schwarz methods for nonlinear
elliptic pdes. Numer. Math., 93(1):109–129, 2002.

[92] S.-H. Lui. On monotone iteration and Schwarz methods for nonlinear parabolic
pdes. J. Comput. Appl. Math., 161:449–468, 2003.

[93] F. Mandel and F.X. Roux. Optimal convergence properties of the FETI do-
main decomposition method. Comp. Meth. Applied to Mech. Engrg., 115(367–
388), 1994.

[94] J. Mandel and R. Tezaur. Convergence of a substructuring method with la-
grange multipliers. NM, 73:473–487, 1996.

[95] J. Mandel and R. Tezaur. On the convergence of a dual-primal substructuring
method. Numer. Math., 88:543–558, 2001.

[96] S.P. McKenna and W.R. McGillis. Performance of digital image velocimetry
processing techniques. Experiments in Fluids, 32:106–115, 2002.

[97] A. Nédic and D. P. Bertsekas. Incremental subgradient methods for nondiffer-
entiable optimization. SIAM J. of Optimization, 12(1):109–138, 2001.

[98] J. Nečas and I. Hlavácek. Mathematical theory of elastic and elostaplastic
bodies: an introduction. Elsevier, Amsterdam, 1981.

[99] A. Ottenbacher, M. Tomasini, K. Holmlund, and J. Schmetz. Low-level cloud
motion winds from Meteosat high-resolution visible imagery. Weather and
Forecasting, 12(1):175–184, March 1997.

[100] K.H. Pierson. A Familiy of Domain Decomposition Methods for the Mas-
sively Parallel Solution of Computational Mechanics Problems. PhD thesis,
Aerospace Engineering, University of Colorado at Boulder, Boulder, CO, 2000.

[101] A. Quarteroni and A. Valli. Domain Decomposition Methods for Partial Dif-
ferential Equations. Oxford University Press, Oxford, UK, 1999.

BIBLIOGRAPHY 180

[102] D.J. Rixen and C. Farhat. A simple and efficient extension of a class of sub-
structure based preconditioners to heterogeneous structural mechanics prob-
lems. Int. J. Numer. Meth. Engng., 44:489–516, 1999.

[103] L.I. Rudin and S. Osher. Total variation based image restoration with free
local constraints. In IEEE Proc. Int. Conf. Image Proc., volume 1, pages
31–35, 1994.

[104] L.I. Rudin, S. Osher, and E. Fatemi. Nonlinear total variation based noise
removal algorithms. Physica D, 60:259–268, 1992.

[105] C. Schnörr. Determining optical flow for irregular domains by minimizing
quadratic functionals of a certain class. Int. Journal of Computer Vision,
6(1):25–38, 1991.

[106] H.A. Schwarz. Gesammelte Mathematische Abhandlungen, Vol. 2:133–143,
Springer, Berlin, 1890. First published in Vierteljahrsschrift der natur-
forschenden Gesellschaft in Zürich, 15:272–286, Springer, Berlin, 1870.

[107] H.R. Schwarz. Methode der finiten Elemente. B.G. Teubner, Stuttgart, Ger-
many, 1980.

[108] J. Shukla and R. Saha. Computation of non-divergent streamfunction and ir-
rotational velocity potential from the observed winds. Monthly weather review,
102:419–425, 1974.

[109] J. Simpson and J. Gobat. Robust velocity estimates, stream functions, and
simulated Lagrangian drifters from sequential spacecraft data. IEEE trans. on
Geosciences and Remote sensing, 32(3):479–492, 1994.

[110] B. Smith. A domain decomposition algorithm for elliptic problems in three
dimensions. Numer. Math., 60(2):219–234, 1991.

[111] B. Smith. A parallel implementation of an iterative substructuring algorithm
for problems in three dimensions. SIAM J. of Scientifc Computing, 13(1):364–
378, 1992.

[112] B. Smith, P. Bjørstad, and W. Gropp. Domain Decomposition: Parallel Multi-
level Methods for the Solution of Elliptic Partial Differential Equations. Cam-
bridge Univ. Press, Cambridge, UK, 1996.

[113] B.F. Smith. Domain Decomposition Algorithms for Partial Differential Equa-
tions of Linear Elasticity. PhD thesis, Courant Insitute of Mathematical Sci-
ences, New York University, 1990.

181 BIBLIOGRAPHY

[114] B.F. Smith. An optimal domain decomposition preconditioner for the finite
element solution of linear elasticity problems. SIAM J. of Scientifc Computing,
13(1):364–378, 1992.

[115] S.M. Song and R.M. Leahy. Computation of 3D velocity fields from 3D cine
and CT images of human heart. IEEE trans. on medical imaging, 10(3):295–
306, 1991.

[116] D. Suter. Motion estimation and vector splines. In Proc. Conf. Comp. Vision
Pattern Rec., pages 939–942, Seattle, WA, June 1994.

[117] R. Tezaur. Analysis of Langrange Multiplier Based Domain Decomposition.
PhD thesis, Univ. of Colorado at Denver, CO, 1998. URL:http://www-
math.cudenver.edu/graduate/thesis/rtezaur.ps.gz.

[118] A. N. Tikhonov. Regularization of incorrectly posed problems. Soviet Mathe-
matics Doklady, 4:1624–1627, 1963.

[119] A. Toselli and A. Klawonn. A FETI domain decomposition method for edge el-
ement approximations in two dimension with discontinuous coefficients. SIAM
J. of Numer. Anal., 39(3):932–956, 2001.

[120] A. Toselli and O. Widlund. Domain Decomposition Methods - Algorithms and
Theory. Springer, Berlin, Germany, 2004.

[121] C.R. Vogel. Computational methods for inverse problems. SIAM, Philadelphia,
PA, 2002.

[122] C.R. Vogel and M.E. Oman. Iterative methods for total variation denoising.
SIAM J. of Scientifc Computing, 17(1):227–238, 1996.

[123] C.R. Vogel and M.E. Oman. Fast, robust total variation-based reconstruction
of noisy, blurred images. IEEE Trans. Image Processing, 7(6):813–824, 1998.

[124] J. Weickert and C. Schnörr. A theoretical framework for convex regulariz-
ers in PDE–based computation of image motion. Int. J. Computer Vision,
45(3):245–264, 2001.

[125] B. Wohlmuth. Discretization Methods and Iterative Solvers Based on Domain
Decomposition, volume 17 of LNCS. Springer, Berlin, 2001.

[126] B. Wohlmuth, A. Toselli, and O. Widlund. An iterative substructuring method
for Raviart-Thomas vector fields in three dimensions. JNA, 37(5):1657–1676,
2000.

BIBLIOGRAPHY 182

[127] J. Xu. Iterative methods by space decomposition and subspace correction.
SIAM Review, 34(4):581–613, 1992.

[128] J. Xu and J. Zou. Some nonoverlapping domain decomposition methods. SIAM
Review, 40(34):857–914, 1998.

[129] J. Yuan, P. Ruhnau, E. Mémin, and C. Schnörr. Discrete orthogonal decom-
position and variational fluid flow estimation. In Scale-Space 2005, volume
3459 of LNCS, pages 267–278. Springer, 2005.

[130] J. Yuan, C. Schnörr, and E. Mémin. Discrete orthogonal decomposition and
variational fluid flow estimation. J. Math. Imag. Vision. in press.

[131] L. Zhou, C. Kambhamettu, and D. Goldgof. Fluid structure and motion analy-
sis from multi-spectrum 2D cloud images sequences. In IEEE Conference on
Computer Vision and Pattern Recognition, CVPR ’00, volume 2, pages 744–
751, Hilton Head Island, SC, 2000.

	Introduction
	Motivation and Overview
	Parallel Computing
	Domain Decomposition
	Overlapping Methods

	Non-overlapping Methods
	Domain Decomposition for Nonlinear Problems
	A Control Approach
	A Convex Programming Approach

	Motion Estimation with High-order Regularization

	Contribution and Organization
	Related Work
	Domain Decomposition
	Nonlinear Domain Decomposition
	Motion Estimation with High-order Regularization

	Mathematical Preliminaries and Notation
	Sets and Function Spaces and other Notations
	Finite Element Discretization

	Variational Motion Estimation Methods
	Problem Statement
	The Approach by Lucas and Kanade
	The Approach by Horn and Schunck
	The Combined Local-Global Approach
	The Approach
	Discretization by Finite Elements
	The Solving

	Non-overlapping Domain Decomposition Methods
	The Mathematical Basis of Substructuring
	The Steklov-Poincaré Operator
	The Model Problem in Two-Domain Formulation
	The Action of S
	The Action of S-1

	The Schur Complement System
	Two Case of Two Subdomains
	The Multiple Subdomain Case

	Iterative Substructuring Methods
	One-level Methods on Two Subdomains
	The Dirichlet-Neumann Method
	The Neumann-Neumann Method
	Other Methods

	One-level Methods on Multiple Subdomains
	The Dirichlet-Neumann Preconditioner
	The Neumann-Neumann Preconditioner
	The Block-Jacobi Preconditioner

	Two-Level Preconditioners
	The Bramble-Pasciak-Schatz Preconditioner
	The Vertex Space Preconditioner
	The Balancing Neumann-Neumann Method

	Finite Element Tearing and Interconnection Methods
	The One-Level FETI Method
	The Dual-primal FETI Method

	Experimental Studies
	Parameter Selection and Input Data
	Algorithms and Implementation Details
	The Impact of Interface Preconditioning
	Convergence in Dependence on the Number of Subdomains
	Convergence in Dependence of the Local Solver's Precision
	Scalability Study on a Parallel Computer

	Conclusion

	Overlapping Domain Decomposition Methods
	One-level Methods
	The Case of Two Subdomains
	The Alternating Schwarz Method
	The Multiplicative Schwarz Method
	The Additive Schwarz Method

	The Case of Multiple Subdomains
	The Multiplicative Schwarz Method
	The Additive Schwarz Method
	Schwarz Methods as Parallel Preconditioners
	Links to Gauss-Seidel and Jacobi Iteration
	Scalability Characteristics

	Multi-level Algorithms
	Two-Level Methods
	Multiplicative Multi-level Methods
	Additive Multi-level Methods
	Multi-level Methods as Parallel Preconditioners
	Links to Multigrid Methods
	Scalability and Comparison to Iterative Substructuring

	Summary

	Motion Estimation with High-order Regularization
	The Helmholtz Decomposition
	Direct Estimation of the Potential Functions
	A Structure-preserving Regularization
	The Approach
	Discretization and Solving
	Embedding into a Multi-resolution Framework

	Experimental Studies
	Parameter Studies
	Comparison with Existing Approaches
	Reconstructing the Vortexes of a Landing Air Plane

	Conclusion

	TV-based Variational Image Restoration
	Regularization Based on the TV-norm
	Problem Statement
	Euler-Lagrange Equation

	Solving Methods
	Steepest Descent
	Fixed Point Iteration
	Newton's Method
	Primal-dual Newton's Method
	Mitigating the Nonlinearity
	The Algorithm

	Experimental Studies
	Input Data, Parameter Values and Error Measures
	Results

	Conclusion

	A Control Approach to Nonlinear Domain Decomposition
	The Case of Two Subdomains
	Problem Statement
	Lagrange Relaxation and the Optimality System
	Gradient-based Solving
	Calculating the Gradient
	Application to the Model Problem
	The Solving Algorithm
	Experimental Studies

	The Case of Many Subdomains
	Problem Statement
	The Optimality System
	Calculation of the Gradient
	The Solving Algorithm
	Experimental Studies
	Complexity Considerations

	Conclusion

	A Convex Programming Approach to Nonlinear DD
	Primal-dual Domain Decomposition
	The Approach
	Solving
	Application to the Model Problem
	Experimental Studies

	The Case of Many Subdomains
	Experimental Results
	Comparison to Control-based Decomposition

	Conclusion

	Conclusion
	Summary
	Linear Domain Decomposition
	Non-overlapping Methods
	Overlapping Methods

	Nonlinear Domain Decomposition
	Control Approach
	Convex Programming Approach
	Motion Estimation with High-order Regularization

	Future Work

