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A b s t r a c t
The architecture of modern computing systems is getting more and more parallel, in 
order to exploit more of the offered parallelism by applications and to increase the system's 
overall performance. The recent trend for single systems is to include multiple cores in one 
processor module. Another trend is the introduction of virtual machines, which allows to 
run several operating systems (O/S) independently on one physical node. If the performance 
of one single system is not sufficient to meet the requirements, multiple single systems are 
combined in one parallel distributed system. Clusters are parallel distributed systems based 
on commodity computing parts and an interconnection network. They have an excellent 
cost-effectiveness and a high efficiency. This is substantiated by their increasing use in high 
performance computing. But they rely on a highly efficient interconnection network; 
otherwise computation is limited by the communication overhead.

While the computing nodes and systems become more and more parallel due to 
architectural improvements, virtual machines and parallel programming paradigms, the 
network interface is typically available only once. If the network interface is not able to 
exploit the offered parallelism, it becomes a bottleneck limiting the system's overall 
performance.

Goal of this work is to overcome this situation and to develop a network interface 
architecture which offers unconstrained and parallel access by multiple processes. Any 
available parallelism should be exploited without limitations, which is in particular true for 
virtual machine environments. Beside the network interface architecture a set of 
communication and synchronization methods is developed, which allow a close coupling of 
the computing nodes. In particular for fine grain communication such a tight coupling is 
inevitable.

The developed network interface architecture has many similarities with the 
architecture of modern processors, but also introduces new techniques. It is based on 
Simultaneous Multi-Threading (SMT) and a memory hierarchy including an on-device 
Translation Look-aside Buffer. The SMT approach removes any partitioning, which allows 
to exploit any type of parallelism without constraints. While the SMT architecture for main 
processors relies on the O/S for context switching, the architecture here is self-switching. 
Upon an issue of a work request an available resource is switched to one of 2^16 contexts, 
each storing the configuration of the calling process.

The main contribution of this work is the introduction of a new technique to enqueue 
work requests by multiple producers into a central shared work queue. The processes are the 
producers, which issue work by enqueuing requests. The scheduler of the network interface 
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is the consumer, which forwards the work requests to available functional units. This 
enqueue technique is essential for an efficient virtualization of the network interface. It 
allows almost any number of processes to issue simultaneously work requests, is 
completely transparent to the processes and provides security by separation. The key 
component to achieve a high efficiency is to avoid explicit mutual exclusion. This is 
achieved by integrating the complete issue process into a single operation, including flow 
control to inform the process of the success or failure of the enqueue operation.

Another key component of the network interface architecture is the Ultra Low Latency 
Transmission (ULTRA) unit. The goal here is to reduce the communication latency to a 
minimum, providing a tight coupling between nodes. In particular fine grain 
communication schemes rely on a close coupling. ULTRA uses techniques called pre-
initialization and pre-completion to achieve lowest latencies. A single write access is then 
sufficient to inject a message into the network and a single read access can retrieve it. 
Instead of collecting small data structures into large bulk messages, they can now be sent 
out independently.

The new developed techniques like virtualization and ULTRA are successfully tested 
and evaluated. Both have been implemented on FPGA-based prototyping stations. It is 
noteworthy that both can be used with any I/O interface, because they do not require any 
special functionality. But in particular ULTRA can benefit a lot from a closer coupling 
between peripheral device and main processor than traditional I/O standards like PCI or 
PCIe can offer. For this purpose a new rapid prototyping station is developed, called HTX-
Board. It is based on an FPGA and connects to the main system over a HyperTransport 
(HT) interface. The HT interface avoids any intermediate bridges between device and main 
processor, providing an excellent coupling. With the HTX-Board the full potential of 
ULTRA's communication technique is shown, resulting in yet unmatched latencies for 
commodity systems.

The most recent development in high performance computing is an increasing use of 
coprocessors for acceleration. A high-performance network interface is also a kind of 
coprocessor, providing CPU-offloading and acceleration. The insights gained during the 
development of the virtualization technique and ULTRA are used to analyze the 
requirements for a generic coprocessor interface. An instruction set extension is proposed to 
achieve a tight coupling between main processor and coprocessor. Key component is the 
tagging of load and store operations, which allows to include additional information. The 
efficiency and performance of the virtualization and ULTRA can be even improved by 
using the proposed instructions of this extension.



Z u s a m m e n f a s s u n g
Die Architektur moderner Computersysteme wird immer paralleler, um mehr der in 
Applikationen enthaltenen Parallelität zu nutzen und die Gesamtleistung des Systems zu 
erhöhen. Eine der neueren Entwicklungen ist mehrere Kerne in einem Prozessormodule zu 
integrieren. Eine andere Entwicklung ist wiedererwachtes Interesse in virtuellen 
Maschinen, welche es erlauben mehr als ein Betriebssystem auf einem Knoten auszuführen. 
Wenn aber die Leistung eines einzelnen Systems nicht ausreicht um die Anforderungen zu 
erfüllen, werden mehrere einzelne Systeme zu einem parallelen verteilten System zusam-
mengeschlossen. Cluster sind solche parallele verteilte Systeme und basieren auf Standard-
komponenten und einem spezialisiertem Verbindungsnetzwerk. Cluster sind sehr 
kostengünstig und bieten eine hohe Leistungseffizienz. Dies wird auch durch die 
zunehmende Nutzung im Hochleistungsrechnen belegt. Allerdings benötigen Cluster 
hochperformante Verbindungsnetzwerke, ansonsten ist die Rechenleistung durch den 
Kommunikationsoverhead beschränkt.

Während Rechenknoten und -system durch architektonische Verbesserungen, virtuelle 
Maschinen und paralleles Programmieren immer paralleler werden, ist die Netzwerkschnitt-
stelle üblicherweise nur einmal pro Knoten vorhanden. Wenn die Netzwerkschnittstelle 
nicht in der Lage ist, die vorhandene Parallelität auszunutzen wird sie zu einem 
Flaschenhals und limitiert die Gesamtleistung des Systems. Ziel dieser Arbeit ist es diese 
Beschränkung zu überwinden und eine Netzwerkschnittstelle zu entwickeln, welche 
simultanen und parallelen Zugriff von mehreren Prozessen ermöglicht. Jegliche Art von 
Parallelität sollte ohne Einschränkungen nutzbar sein, was insbesondere für Virtuelle 
Maschinen gilt. Zusätzlich zu der Netzwerkschnittstelle wird ein Satz von Kommunika-
tions- und Synchronisationsmethoden entwickelt, welche eine möglichst enge Kopplung 
der Knoten erlauben. Insbesondere für feingranulare Kommunikation ist eine enge 
Kopplung notwendig.

Die entwickelte Netzwerkschnittstelle hat viele Ähnlichkeiten mit der Architektur von 
modernen Prozessoren, nutzt aber auch in dieser Arbeit neu entwickelte Techniken. Sie 
basiert auf dem Prinzip des Simultaneous Multi-Threading (SMT) und einer Speicherhier-
archie mit on-device Translation Look-aside Buffer. Der SMT Ansatz entfernt jegliche 
Partitionierung der Ressourcen, wodurch jede Art von Parallelität ohne Einschränkung 
genutzt werden kann. Währen die SMT Architektur von CPUs das Betriebssystem zum 
Kontextwechsel benötigt, ist die hier entwickelte Architektur in der Lage die Kontexte ohne 
Unterstützung und vollautomatisch zu wechseln. Wenn eine Arbeitsanforderung abgesetzt 
wird, wird bei einer freien Ressource zu einem der 216 Kontexte gewechselt um die Arbeits-
anforderung dort auszuführen.
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Der Hauptbeitrag dieser Arbeit ist die Entwicklung einer neuartigen Methode zur 
Einreihung von Arbeitsanforderungen mehrerer Prozesse in eine zentrale geteilte 
Warteschlange. Die Prozesse agieren als Produzenten, welche Arbeit an die Netzwerk-
schnittstelle ausgeben. Der Scheduler auf der Netzwerkschnittstelle ist der Abnehmer, 
welcher dann die Arbeitsanforderungen an eine verfügbare Ressource ausgibt. Für eine 
effiziente Virtualisierung der Netzwerkschnittstelle ist diese Methode grundlegend. Die 
Anzahl Prozesse, welche gleichzeitig Arbeitsanforderungen ausgeben, kann nahezu 
beliebig hoch sein, die Virtualisierung ist transparent für die Prozesse und stellt Sicherheit 
und Abgrenzung der Prozesse sicher. Die wichtigste Aspekt für eine hohe Effizienz ist die 
Vermeidung von gegenseitigen Ausschluß. Dies wird erreicht indem der komplette 
Ausgabevorgang in einer einzigen Operation integriert wird. Dies beinhaltet auch eine 
Rückmeldung an den Prozeß über den Erfolg der Operation.

Eine weitere wichtige Komponente der Netzwerkschnittstelle ist das Ultra Low Latency 
Transmission (ULTRA) Modul. Das Ziel hier ist die Kommunikationslatenz auf ein 
Minimum zu reduzieren, um eine möglichst enge Kopplung der Knoten zu erreichen. 
Insbesondere feingranulare Kommunikationsschematas sind auf eine solche enge Kopplung 
angewiesen. ULTRA erreicht niedrigste Latenzen durch die Nutzung von pre-initialization 
und pre-completion Techniken. Ein einziger Schreibzugriff ist ausreichend um eine 
Nachricht zu generieren, und ein einziger Lesezugriff um die Nachricht zu empfangen. Statt 
kleine Datenmengen in großen Strukturen zu sammeln, kann man mit ULTRA diese auch 
sofort versenden.

Die neu entwickelten Techniken wie die Virtualisierung und ULTRA wurden 
erfolgreich getestet und evaluiert. Beide wurden als Prototyp auf einem FPGA 
implementiert. Erwähnenswert ist daß beide mit jeder I/O-Schnittstelle nutzbar sind, da 
keine spezielle Funktionalität gefordert wird. Allerdings kann insbesondere ULTRA von 
einer engeren Kopplung zwischen peripherem Gerät und CPU profitieren, als sie in einem 
traditionellen System mit PCI oder PCIe gegeben ist. Daher wurde ein neues FPGA-
basiertes Prototypensystem entwickelt, genannt HTX-Board. Es nutzt als Verbindung zum 
Hauptsystem HyperTransport (HT). Eine HT-basierte Schnittstelle vermeidet Protokollkon-
vertierungen und bietet somit eine exzellente Kopplung. Mit dem HTX-Board kann das 
ganze Potential von ULTRAs Kommunikationstechnik gezeigt werden, was durch bisher 
unerreichte Kommunikationslatenzen für Standardsysteme sichtbar wird.

Der neueste Trend im Hochleistungsrechnen ist eine zunehmende Nutzung von 
Koprozessoren zur Beschleunigung. Eine Netzwerkschnittstelle kann auch als Koprozessor 
gesehen werden, da die CPU entlastet wird und die Operationen beschleunigt werden. Die 
Erkenntnisse die während der Entwicklung der Virtualisierung und ULTRA gewonnen 
wurden werden nun genutzt um ein die Anforderungen an eine generische Koprozessor-
schnittstelle zu analysieren. Eine Instruktionssatzerweiterung wird vorgeschlagen um eine 
möglichst enge Kopplung zwischen CPU und Koprozessor zu erreichen. Schlüsselkompo-
nente ist die Kennzeichnung von Lade- und Speicheroperationen, welche es erlaubt 
zusätzliche Informationen in die Operation zu integrieren. Durch diese Erweiterung kann 
die Effizienz und die Leistung der Virtualisierung und der ULTRA sogar noch verbessert 
werden.
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CHAPTER 1
 I N T R O D U C T I O N
The architecture of modern computers is improving steadily. This is in particular true
for the ability to process in parallel, achieved by architectural techniques like pipelining and
replication. The most recent trend is to include an increasing number of computing cores in
one processor module. Today processors with two cores are even available for mobile
computing. Server processors with up to four cores are already announced by the leading
processor manufacturers, while research projects already show processors consisting of up
to 80 cores. The goal of the multi-core trend together with multi-threading techniques and
multiple processors per system is to exploit as much of the offered parallelism from
applications as possible. An increased exploitation of parallelism also increases the
throughput of the system and the overall performance rises.

Another recent development is the resurgence of interest in Virtual Machine
environments, where one physical computing machine is used to host more than one
operating system. This allows to consolidate the workloads from multiple physical
machines to a single one. Then the needs of the various applications regarding operating
system type can still be fulfilled, while the administration costs are reduced. These Virtual
Machines also increase the parallelism offered by a single system.

If the available performance of a single system is no longer sufficient to meet the
requirements, several ones are combined to form parallel distributed systems. Each
formerly single system is now a node in the parallel system. These parallel computing
systems are based on interconnection networks to connect all nodes for communication and
synchronization purposes. Clusters are parallel and distributed systems based on
commodity computing parts and interconnection networks. The list of the 500 fastest
supercomputers in the world shows that cluster computing is increasingly used to achieve
highest performances. In the most recent list (November 2006, [1]) more than 70% of the
fastest systems are clusters, substantiating the efficiency and cost-effectiveness of parallel
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distributed systems. The interconnection networks used for clusters are widely available,
but differ significantly from commodity networks like Ethernet. They offer a much higher
performance to allow a close coupling of the computing nodes. Otherwise the interconnect
turns into the main bottleneck of the parallel system, limiting it’s performance and
scalability dramatically.

While the computing nodes become more and more parallel due to the architectural
improvements, the network interface is typically only available once in a node.
Unconstrained, efficient and simultaneous access to the network interface becomes
inevitable. Only then the parallelism offered by the computing resources can also be fully
exploited by the communication and synchronization resource. One of the major goals of
this work is to develop a network interface architecture for an improved and unconstrained
exploitation of any available parallelism. This architecture has many similarities with
modern processor architectures. It can be seen that many techniques used for processors
also apply for network interfaces. In order to offer as much parallelism as possible to the
network interface architecture, a virtualization technique allows almost any number of
processes to simultaneously access the network interface. The virtualization is not limited to
network interfaces, almost any high performance device can benefit a lot from it. Key
component of this virtualization technique is a highly efficient access scheme from user
level. This new and unique method allows multiple processes to access a centralized shared
queue without constraints. A single access is used to enqueue elements, which is in
particular used to issue new work requests from processes to the device.

Virtualization of network interfaces is not only usable in the area of high performance
computing, also computational data centers offering utility computing can benefit from it
[2]. They differ significantly in their mode of operation from clusters. The virtualization of
network interfaces is required to form logical sub-networks, resulting in an increased
flexibility and availability.

Beside the architectural improvements, a sophisticated set of communication and
synchronization methods is developed to allow a close coupling in a parallel distributed
system. This close coupling is in particular essential for fine grain computation and
communication.

The most recent development during this work is an increasing interest in coprocessing
for acceleration of certain tasks. In particular the virtualization technique can also be
applied for coprocessors, which are then accessible with less restrictions. The benefits of
virtualization in parallel environments also apply for coprocessors. For an even improved
virtualization with less required resources an instruction set extension is developed and
presented. This extension is only based on three new instructions, which take into account
the different application requirements.

Overview of remaining parts. This work starts with an introduction into the most
important topics of parallel computing, including parallel systems, interconnection
networks and network interfaces. The introduction is completed with a summarization of
goals developed during this first chapter.
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The second chapter focusses on communication and synchronization. It starts with a
short introduction, followed by the development of communication and synchronization
methods for high performance computing. The basic functionality of communication is
explained and a set of communication instructions is developed.

These insights are applied in the third chapter, where the network interface architecture
itself is developed. For a comprehensive understanding, this chapter again starts with an
introduction into the basic topics of network interfaces. Then the architecture itself is
developed, suitable to exploit any kind of parallelism. This together with a scalable queue
design leads to the development of the virtualization. The virtualization allows to offer
enough parallelism to the architecture. The third chapter is completed with an architecture
and communication method suitable for fine grain communication. This method allows
lowest communication latencies, which are yet not achieved with commodity parts. The
summary of the developments in this chapter forms a network interface suitable for almost
all use cases where high performance is inevitable.

The developments of the previous two chapters are agglomerated in chapter four and a
specification of the required data structures, communication instructions and the
architecture is provided. Key components of this work are implemented and evaluated to
prove their efficiency and performance.

Chapter five takes into account the recent interest in coprocessing for acceleration. In
particular the developed virtualization technique is also suitable for coprocessors, but the
close coupling to the main processors allows even improvements. An instruction set
extension is proposed for a close coupling of coprocessor and main processors. Only three
new instructions are introduced. This efficient and performant interface allows the
virtualization of the coprocessor with less required resources. Also other applications like
fine grain communication can benefit a lot from this extension.

This work concludes in chapter six, showing what is achieved and provides an outlook
on future developments. Key developments of this work are an architecture exploiting any
kind of parallelism, device virtualization based on a highly efficient issue method, support
for fine grain communication and an instruction set extension for a close coupling of
coprocessors.
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1.1  P A R A L L E L  S Y S T E M S

Parallel systems target to increase the performance of a computing system. If a non-
parallel system does not meet the requirements regarding throughput, parallel techniques
can increase the overall performance of the now parallel system. Two basic techniques
exist, which are pipelining and replication. 

The pipelining approach is based on forming an assembly line or pipeline by a number
of functional units. Each functional unit performs a certain stage of the computing. For a
single computation a pipeline does not provide any parallelism. But if several computations
are executed they are overlapped by the functional units. If the time required to fill the
pipeline is negligible compared to the amount of time when the pipeline is full, the speed-up
equals the pipeline depth. Another important property of pipelining is the efficiency.
Pipelining does not increase the required resources linearly, instead only a small overhead is
required for each pipeline stage. Pipelining is typically applied inside a processor, when a
functional unit is divided into several pipeline stages to increase the throughput. For
instance, a functional decomposition of the execution leads to one stage for instruction
fetch, instruction decode, register fetch, execute and write back.

The other approach is simply based on replication of units. These units can be complete
nodes, processors or functional units of a processor. Each replicated unit adds the same
amount of resources and in summary the resource requirement scales linearly. Hence the
replication is less efficient than pipelining. But while pipelining suffers from the overhead
to fill a pipeline, replication can be used without constraints. If enough parallelism is
included in the workload and the required resources are available, replication fully exploits
the available parallelism.

1.1.1 Design space diagrams

With the classification of parallel systems also the design space analysis is introduced.
To depict a design space, representations based on [3] and [4] are used.

Figure 1.1 Design space diagrams

topic

option 1 option 2

topic

aspect 1 aspect 2

exclusive options orthogonal design aspects
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In figure 1.1 the two different design space diagrams used in this work are shown.
These two kinds of diagrams are building blocks and can be concatenated to represent more
complex design spaces.

The diagram on the left side shows a design space with several implementation options.
Only two are shown, if more possibilities exist the number of branches increases. The
different options of a topic can only be used exclusively, combinations are not possible.
Options are always depicted using straight lines.

The diagram on the right side shows the design space for orthogonal design aspects. In
this case the branches are completely independent of each other. Comparable to the first
diagram, this diagram can also be extended by more branches. Design aspects are always
depicted using orthogonal lines.

1.1.2 Classif icat ion

The first classification is based on the kind of parallelism used. Figure 1.2 shows that
the design space of parallel architectures can be divided into data-parallel and function-
parallel architectures [3]. While there are no major representatives for data-parallel
architectures today, the function-parallel architectures are widely used. For this work data-
parallel architectures are not relevant, hence the following focusses on the analysis of
function-parallel architectures.

Figure 1.2 Design space of  paral lel  architectures

After the classification based on the kind of parallelism, in figure 1.3 the function-
parallel architectures are now divided according to the granularity of the parallelism they
utilize. The different types of granularity are instructions, threads and processes. The
resulting parallelism is also referred to as fine, medium and coarse grain parallelism. The
large amount of dependencies in fine grain parallelism requires a close coupling of the
parallel units. This can usually only be achieved within one computational unit, for instance
a Central Processing Unit (CPU).

The granularity of process-level parallel architectures allows to replicate complete
computational units, which can be a multi-processor system or a network of computing
nodes. These two examples already show the next classification, which takes the memory
access scheme into account. 

parallel architectures (PA)

data-parallel
architectures

function-parallel
architectures

not targeted in this work
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Figure 1.3 Design space of  function-paral lel  
architectures

Process-parallel systems can be classified into shared or distributed memory systems.
In a shared memory system each computational unit can directly access every memory
location without involvement of other units, resulting in a single address space. The shared
memory limits the scalability of such systems, because for instance the overhead for cache
coherency increases dramatically.

In a distributed memory system access to remote locations involves other units. This
leads to multiple address spaces and the memory is divided into local and remote regions.
Multiple address spaces allow to build up a parallel system by replicating complete nodes,
which include processor, memory, I/O and peripherals. These nodes communicate and
synchronize using an interconnection network. A very popular type of distributed memory
architectures are clusters. The building block of a cluster is a more or less standard
workstation. The use of clusters has steadily increased during the past years, which is also
shown in the bi-annual TOP500 list [1].

The scalability of clusters is limited by the applied workload and, more important, by
the used interconnection network. Widely available commodity products like Ethernet are
not suitable, because they do not provide sufficient performance for a close coupling of the
computing nodes. Specialized interconnects especially designed for cluster computing
provide a higher performance. But comparable to the advances in computer architecture,
these interconnects must be steadily improved to keep pace with the processor performance
increase.

1.1.3 Communicat ion and Synchronizat ion

Communication and synchronization is the working basis for a parallel architecture.
Computational units (e.g. computing nodes) communicate in order to transfer data and
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synchronize to notify each other of data availability, which is required to continue
processing.

Analogue to the parallelism types the communication can be classified into fine,
medium and coarse grain communication. While coarse grain communication is based on
bulk transfers of large data structures, in fine grain communication small data elements are
exchanged among the computational units. Hence for fine grain communication much less
overhead can be tolerated compared to medium and in particular coarse grain
communication. But for a close coupling of the computing units support for fine grain
communication is inevitable, otherwise the system does not scale.

Figure 1.4 Design space of  communicat ion and 
synchronizat ion

Figure 1.4 shows the design space of communication and synchronization, which can
be classified into message passing and shared memory. Communication is useless without
synchronization and vice versa. Otherwise data is transferred, but the counterpart is not
informed of new available data. Hence the communication and synchronization scheme
must always be seen together.

Figure 1.5 Explici t  and implici t  
communicat ion/synchronizat ion

In message passing data is transferred between two units using messages. A message
includes the data as payload. To identify the received data and associate it’s purpose,
additionally a source and destination identification and a tag is included to describe it’s

communication and synchronization

shared memory message passing

communication
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synchronization
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payload. Because the transfer of messages involves both the source and the destination in
the communication, this mechanism also provides implicit synchronization.

Shared memory is based on memory regions which are accessible by all communication
partners. For communication data is stored in a shared memory region, and then fetched
from there. Sharing a region leads to multiple writers accessing the same location. If these
accesses are performed simultaneously the correct behavior cannot be ensured. Mutual
exclusion is required to ensure that a certain location is only accessed by one writer per
point of time. Mutual exclusion requires synchronization, which can be achieved using
semaphores.

While the implicit communication provided by shared memory is more intuitive than
the explicit communication for message passing, shared memory requires explicit synchro-
nization. In message passing provides implicit synchronization for each communication.
The required synchronization complexity for both methods is equal.

Network Interface Controller. Message passing systems rely on a Network Interface
Controller (NIC) (or network device), which is explicitly accessed for sending and
receiving of messages (see figure 1.6). This NIC does not only controls the access to the
network, more sophisticated ones also off-load certain tasks required for message passing
from the CPU.

Figure 1.6 Network Interface Control ler  (NIC)

Shared Memory Mapper. For communication and synchronization based on shared
memory no explicit access to the network is required. Either all memory is accessible
directly from the main system interconnect, or a device called Shared Memory Mapper is
present in the system. The first applies for all single systems, where the processors and the
memory are directly interconnected (see figure 1.7). Shared Memory Mappers are only
required in systems composed of multiple computing nodes (see figure 1.8), where the
access to remote memory is otherwise not possible.
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Figure 1.7 Single shared memory system

Shared Memory Mappers provide a set of pages in their I/O space. These pages are
mapped to remote memory locations. Each access to such a page results in a communication
to the appropriate node, where the data is either fetched or stored. A Shared Memory
Mapper allows to combine a parallel architecture with distributed memory and a shared
memory communication and synchronization scheme. But unpredictable latencies for
memory accesses limit the scalability of such systems. A user process cannot distinguish
between a local access and a remote access. Because cache coherency protocols are based
on collective communication they are limited in scalability. A directory-based cache
protocol can diminish this effect, but for larger distributed memory architectures it is not
possible to cache remote accesses.

Figure 1.8 Shared Memory Mappers (SMM)

Because shared memory systems and in particular Shared Memory Mappers are limited
in their scalability, this work focusses on improvements of network interfaces for message
passing. The message passing approach is much more suitable for distributed systems,
where the access to remote locations suffers from a latency several orders of magnitude
larger than a local access.
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1.1.4 Messaging layers  and communicat ion funct ions

Message passing applications rely on the use of messaging layers which provide an
Application Programming Interface (API). These software layers are typically implemented
as libraries. The API includes functions for communication and synchronization, which are
used by the application to communicate and synchronize.

Each messaging layer includes a certain software overhead. This overhead increases
with the gap between requirements from the application and functionality offered by the
network [5]. For instance, if the network does not provide reliability, the messaging layer
must ensure this. Another example is in-order delivery of messages. If the network cannot
ensure that messages are delivered in-order, the messaging layer must re-sort the messages.

These layers also abstract the underlying hardware. The application can use generic
communication functions, which are independent of the hardware implementation. This
allows to exchange the interconnection network, while the application remains unchanged.

Typical communication libraries are based on the specification of the Message-Passing
Interface 1 (MPI-1) [6][7] and Message-Passing Interface 2 (MPI-2) [8][9]. Two example
implementations are MPICH [10] and OpenMPI [11]. They are all similar in their basic
functionality, but differ in the details.

Figure 1.9 Send/Receive communicat ion scheme

Obviously message passing requires functions to send and receive messages. This is in
the following referred to as Send/Receive scheme (see figure 1.9). For such a scheme both
the source and the destination are involved in the communication.
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Figure 1.10 Collect ive communicat ion scheme

Collective communication schemes (see figure 1.10) involve more than one destination
in the communication. Such a communication function either distributes data to several
destinations by a single send and multiple receives, or it collects data by multiple sends and
a single receive. Support for collective operations a typical task for a communication
library, where it is performed by multiple send/receive operations. Some basic collective
operations like broadcasts, multicasts or barriers are sometimes supported directly by the
network interface.

Another communication scheme is Remote Memory Access (RMA) (see figure 1.11).
While a send/receive function cannot directly access the remote memory, some network
interfaces provide support for RMA. To write the payload in a remote memory an RMA Put
operation is used, while an RMA Get operation fetches data from remote locations. RMA
operations do not involve the destination process in the communication, thus here no
synchronization is possible.
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Figure 1.11 Remote Memory Access (RMA) 
communicat ion scheme

1.1.5 Node archi tecture

In order to increase the performance of modern computing systems more and more, one
goal is an increased exploitation of available parallelism. This is achieved by the parallel
techniques introduced above, which are pipelining and replication. The replication
technique results in multi-processor computing systems (Symmetric Multi Processor, SMP).
Each of the processors is composed of several computing cores (multi core). Furthermore
each core (or single processor with only one core) is superscalar with multiple functional
units, perhaps even multi-threaded which allows to execute multiple threads simultaneously
on time shared resources (Simultaneous Multi-Threading [12][13] or HyperThreading
[14][15]).

The high access costs to main memory are diminished by a memory hierarchy, which
introduces caching structures and register files. The caches in an SMP system are kept
consistent and coherent using a cache coherency protocol, which ensures that data copies in
caches are not outdated. Either these copies are invalidated or updated, depending on the
policy (write-invalidate policy or write-update policy).

The I/O sub-system is separated from the main system by an I/O bridge. Peripheral
devices are located in the I/O sub-system. The peripheral interconnect is usually a
standardized one, allowing to use peripheral devices in different architectures. The
peripheral protocol differs significantly from the main system protocol, hence bridges are
necessary to perform protocol conversions. While modern main system interconnects are
always cache coherent, no modern peripheral interconnect offers this. A typical I/O device
is thus not cache coherent.
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Figure 1.12 Node architecture

1.1.6 Virtual  Machine Environments

The performance potential housed in a modern computing node recently lead to a
resurgence of interest in Virtual Machine (VM) environments [16]. On a normal computing
node only one Operating System (O/S) is running.

VM environments offer the ability of several simultaneously running O/S by
abstracting the underlying hardware. Each VM is a complete set of resources, which are
required for computing. This includes in particular the CPU, the memory and I/O. A
privileged software layer above each O/S virtualizes the physical machine and provides
several virtual machines. By running on a VM each O/S has the illusion of a physical
machine for it’s exclusive use. VM environments are perfectly suited for workload
consolidation, when several computing systems with different requirements regarding the
O/S are now executed on one single physical machine.

main system interconnect

peripheral interconnect

CPU

cache

core

cache

core

cache
CPU

cache

core

cache

core

cache

main memory I/O bridge

storage human I/O graphics NIC
co

he
re

nt
no

n-
co

he
re

nt



C H A P T E R  1 Introduction14
1.2  I N T E R C O N N E C T I O N  N E T W O R K S

The goal of this sub-chapter is to shortly introduce Interconnection Networks (INs). It
starts with the key functionality, followed by basic performance metrics and finally some
interconnect examples are shown.

A full and in-depth analysis is not required here. More details about the large area of
interconnection networks can be found in [17] and [18].

1.2.1 Basics

Figure 1.13 shows the design space of interconnection networks. All these design
aspects influence significantly the overall performance of the network.

An IN is composed of a number of nodes which are connected using switches. The
switches forward incoming packets to the appropriate outputs. The source node injects
packets into the network which are routed over one or several hops until they finally reach
their destination node. Packets are composed of a header containing in particular the
routing information, the payload and a tail as delimiter.

Figure 1.13 Design space of  interconnection 
networks

Topology. The topology of INs describes the connections among the nodes of an IN. It can
be furthermore classified into direct and indirect topologies. In a direct topology each node
is directly connected to it’s neighbors, while in an indirect topology intermediate switches
are used. These switches connect several nodes with each other. Hence in a direct topology
the switching resources are distributed over the network and in an indirect topology
centralized switching resources are used. The node degree, which is the number of links per
node, can be only one for an indirect topology, while a direct topology requires more than
one link per node.

Furthermore the topology can be regular or irregular. A regular topology usually
results in simplifications of the routing. It is important to be mentioned, that a single fault of

interconnection networks

topology switching routing fault toleranceflow control
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an IN component turns almost every regular topology into an irregular one. Hence it is not
desirable to rely on a regular topology if fault tolerance is important.

Figure 1.14 Design space of  interconnection 
network topologies

Switching. The switching describes the method to forward packets on their way from
source to destination. The first switching method is store-and-forward. Here an incoming
packet is completely stored in the switch, before it’s next hop is calculated. Optimizing this
method leads to virtual cut-through, which immediately starts to calculate the next hop if
the sufficient header of a packet has arrived in a switch. This reduces the required latency to
forward a packet. The need to buffer complete packets in a switch can be diminished by
wormhole switching. Here a packet is pipelined through the network by dividing it into
smaller units (flow control units, flits). Each switch only provides buffer space to store one
flit. Only the first flit of a packet contains the routing information, all subsequent flits are
following the route of the first flit. If the first flit is blocked, immediately all following flits
are also blocked.

Figure 1.15 Design space of  interconnection 
network switching methods

Routing. The routing describes the method to find the way over several hops from source to
destination. It can be classified into deterministic and adaptive routing. In deterministic
routing the route is pre-calculated and not changed during transmission. Adaptive routing
allows to change the path from source to destination if the need arises. Reasons to change
the route can be faults, blockings or congestions.
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Two typical examples for routing techniques are source path routing and table-based
routing. Source path routing is a deterministic routing where each hop of the route is
included as routing string in the header of the packet. Each hop from source to destination
consumes one entry of the routing string. This leads to very low switching latencies because
no complex calculations are necessary. Using table-based routing only the destination
identifier is included in the packet header. On each hop this identifier is used to index a table
where the next output link is stored. This technique can be both deterministic and adaptive,
but the required table lookup leads to higher switching latencies compared to source path
routing.

Figure 1.16 Design space of  interconnection 
network routing methods

Flow Control. In an IN flow control is required to ensure that the next hop has sufficient
buffer space to store an incoming packet. The unit under flow control (flit) is then granted
transmission or not. A flit can be a complete packet or only a part of it. The latter is in
particular true for wormhole switched networks, where the buffers are kept very small and
can only store a part of the packet. The simplest method to implement flow control is a
stop/continue scheme. If the buffer space falls below a certain limit a stop is signalled back.
The transmission can only continue if the buffer space rises above another limit and a
continue is signalled. The limits must take into account that signalling back takes a certain
amount of time. In this time the previous hop is still sending packets.

In the credit-based flow control scheme the sending hop has a certain number of credits,
which matches the number of flits that can be stored at the next hop. Transmission is only
possible if enough credits are available. The credit number is decreased with each
transmission. If the receiving hop can free some of it’s buffers by forwarding the stored flits
to the next hops, it sends credits back for these freed buffers. Then the amount of credits at
the sending hop increases again and matches the number of buffer space at the receiving
node. The credit-based flow control scheme is independent of the propagation delay for
signalling and the sending hop has precise information about available buffers at the
receiving hop.
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Fault Tolerance. In particular for a network which consists of a large number of distributed
components fault tolerance is inevitable. Otherwise a single failure of one of the
components can disable the complete network. Fault tolerance has many aspects, but at
least few should be mentioned. Fundamental for a high speed interconnect are reliable
transmissions, guaranteeing that a packet once injected reaches it’s destination within finite
time. Otherwise the messaging layer must guarantee the delivery, which requires to store a
copy until it is ensured that the packet has reached it’s destination. To ensure reliable
transmission on link level, typically a Cyclic Redundancy Check (CRC) is included in the
tail of the packet. Using this it can be checked if the packet was altered during transmission.
Such failures are detected and solved by retransmission at link level.

Reliable transmission at link level is not sufficient to guarantee fault tolerance for the
complete network. Furthermore it must be possible to tolerate failures of links, switches,
nodes or any component involved in the network. A complete fault tolerance is obviously
not possible, considering the case that the source or destination node breaks down. But
toleration the fault of intermediate nodes, links or switches is desirable. This can be
achieved in networks with alternate routes to the destination by adaptive routing. Adaptive
routing allows to modify the route of a packet during transmission. This imposes several
other problems, for instance regarding in-order delivery of packets. Further details about
adaptive routing techniques can be found in [17].

1.2.2 Performance metrics

The two key metrics typically used to describe the performance of an interconnection
network is the peak bandwidth and start-up latency. The peak bandwidth is the achievable
throughput measured in bytes per second over one link. Usually the bandwidth increases
with the packet size, because then the impact of overhead per packet is diminished. The
start-up latency is the shortest time to send a packet from a user-level to user-level,
including at least one hop. The start-up latency is typically achieved with the smallest
possible packet sizes.

Using these two metrics only a basic performance analysis of the IN is possible, hence
various other metrics do exist. For instance the n/2 number describes the required packet
size to achieve half of the peak bandwidth. The bisection bandwidth metric cuts the network
into two equal parts and accumulates the bandwidth of all links passing the border.

1.2.3 Examples

Implementations of interconnection networks can be classified by their interface to the
host system. Either the used interface is a special solution or standardized (see figure 1.17).
Specialized interfaces allow a much closer coupling of computing resources and network
which results in higher performance. But their usage is restricted to custom systems. It is
not possible to use such an IN with commodity parts.

INs based on standardized interfaces primary target an unrestricted use. Here the I/O
interface is standardized (for instance PCI [19] or PCI-Express [20][21]) which allows to
use this IN in every commodity system which provides such extension slots. But the
standardized I/O interfaces also limit the coupling between network and computing
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resource [22]. This looser coupling reduces the achievable performance for these networks.
This is also substantiated by the last TOP500 list (November 2006) [1], showing that the 4
fastest supercomputers are based on special solutions.

Figure 1.17 Design space of  interfaces of  
interconnection network

Examples for INs based on special solutions are the Transputer [23], iWarp [24], IBM’s
Blue Gene [25][26][27] or almost any Cray supercomputer like the XD1 [28]. Compared to
INs based on standardized I/O interfaces these special solutions are rather seldom. The
specialized interface usually leads to the fact that these INs are not only networks but
complete systems.

In contradiction to this an IN based on a standardized interface is usually only a
network, which is combined with the computing resources. Examples for commercial high
performance INs are Quadrics’s QsNet2 [29][30], Infiniband [31] (with implementations
from Mellanox [32] or Voltaire [33]), InfiniPath [34][35] by QLogic (formerly PathScale),
Myrinet [36] by Myricom [37] or 10Gig Ethernet. Examples for research INs from
academia are the ATOLL network [38][39] or DimmNet [40].
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1.3  N E T W O R K  I N T E R F A C E  A R C H I T E C T U R E

This sub-chapter provides an overview of the most important properties of network
interfaces. A network interface is typically a high performance device and especially in
distributed systems a potential bottleneck limiting the overall performance.

A recent trend is to off-load more and more functionality from the CPU to the device,
resulting in more complex hardware structures. This is in particular true when the O/S is
bypassed for user level access. But the reduced CPU load levels this additional complexity
and the system’s overall performance benefits from the off-loading.

1.3.1 Network interface locat ions

In [41] a comprehensive overview of possible locations for Network Interfaces (NI) is
provided. Regarding performance a close coupling between CPU and NI is desirable, but
this also limits the use. In figure 1.18 the various possible locations for NIs are depicted.

Figure 1.18 Network Interface (NI)  locat ions
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An integration of the NI into the CPU is the best solution for highest performance and
close coupling between computation and communication. The more intermediate
components are in between the NI and the CPU, the looser the coupling gets. Each
intermediate module increases the access costs and latency.

The drawback of locations with closer coupling is that the interfaces to adjacent
modules are likely not standardized or even unpublished, that a complete redesign of the
housing module is required and that the NI is constrained to this special system. The most
unconstrained location for an NI is the I/O sub-system, where standardized I/O interfaces
allow a wide use. But in particular the I/O bridge introduces significant latency and prevents
cache coherent devices.

1.3.2 User-Level  Communicat ion

If O/S involvement is required for communication the latency increases remarkable.
Not only because of the system calls, furthermore the message is typically copied from
user-level into system-level. In figure 1.19 the overview of communication with O/S
involvement is depicted.

Figure 1.19 Non User-Level  Communicat ion

The advantages of this approach are that the O/S can supervise the accesses from user
processes to the device and ensure that no hardware modules are disabled due to prohibited
use. Furthermore the O/S can multiplex the access from several processes to one device in a
time-sliced manner. This allows to use one resource by multiple clients.

But the disadvantages lead to the development of User-Level Communication [42].
Here the O/S is not involved for all accesses beside configuration and management. The
latter ones require certain privileges which are usually only granted to trusted processes
from system-level. But these configuration and management accesses are not or very
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seldom required during normal operation. All other accesses bypass the O/S and no
overhead due to system calls arises here. The user process can directly access the device. 

The O/S can now no longer supervise the user process, hence this functionality must be
shifted from O/S level to device level. This increases the complexity of the device.
Furthermore only one process can open the device for access, simultaneous access from
multiple processes is not possible because now the multiplexing functionality of the O/S is
missing.

Figure 1.20 User-Level  Communicat ion

In order to allow simultaneous access from multiple processes the multiplexing
functionality can also be shifted to device level. One of the goals of this work here is to
develop sophisticated and efficient methods for multiple simultaneous accesses.

1.3.3 I/O interface

One of the most important limitations of an I/O device is the I/O interconnect. Access to
the main system is only possible using this I/O interface. A typical I/O protocol differs from
the main system protocol, hence intermediate bridges are required for protocol conversion.
These bridges introduce additional latency for all accesses. Furthermore an I/O protocol is
usually neither cache coherent nor providing support for virtual addresses.

All these limitations of the I/O interface result in a looser coupling of device and main
system, in particular the CPU(s) and the main memory.

In spite of all these facts and disadvantages above, the I/O sub-system is typically the
only available standardized interface in a system. For an unconstrained use of the device in
various systems the I/O location is still the best solution. But in particular an NI as a high
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performance device with large performance requirements from the applications can benefit
a lot from closer coupling to the main system.
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1.4  T H E  A T O L L  N E T W O R K

The ATomic Low Latency (ATOLL) interconnection network was developed by the
Computer Architecture Group of the University of Mannheim as a research project. The
results of the ATOLL project are summarized in a performance evaluation [39], including in
particular the achieved latency and bandwidth.

The success of ATOLL lead to a new research project, of which the work presented here
is part of. The insights gained with ATOLL resulted in some ideas for improvements, which
are combined with new ideas and presented here. In order to provide a basic understanding
of ATOLL’s functionality it is now shortly presented.

1.4.1 Introduct ion

ATOLL is a complete network on a chip. This chip is connected over PCI-X to the host
system. It provides four links towards the network side and four network interfaces towards
the host side. These elements are connected using an 8x8 fully-pipelined synchronous
crossbar. Figure 1.21 shows the top-level block diagram of an ATOLL card in a computing
node.

Figure 1.21 ATOLL top-level  block diagram

Each of the four host ports provides an independent network device for the host system.
PCI-X is used as interface towards host side. The architecture and design decisions for the
host ports will be analysed in the next section in more detail. The network ports convert the
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data format of the host ports (64bit wide) to the ATOLL network protocol (8bit with one
control bit). Control characters are added and the packet is divided into frames. The CRC is
calculated for outgoing packets. The crossbar connects the network ports to the link ports.
Eight input ports (InPort) can be switched without blocking to eight output ports (OutPort).
The link ports contain buffers to store flits of packets. For packets coming in from the
network side the CRC is checked. Retransmission of faulty flits ensures faultless
transmissions. Based on the fill level of the buffers flow control characters are sent out.
Flow control is based on a Stop/Continue scheme.

1.4.2 Topology and rout ing

In a typical ATOLL network all nodes are equipped with one ATOLL NIC card1, which
results in a node degree of four. Hence direct topologies with a dimension of two are most
suitable, for instance a 2D mesh or 2D torus (shown in Figure 1.22). Another example
topology is a 4D Hypercube. Each node in a graph represents a host system equipped with
an ATOLL NIC. There are no centralized switching resources in the network, instead the
required switching resources are distributed over all nodes. One advantage of distributed
switching is the scalability. The network can be scaled by just adding more nodes to the
network. Each node already houses the required switching capability. Scaling topologies
with dedicated switches requires additional switches.

Figure 1.22 ATOLL example topologies

Because the network diameter raises with network size, a major aspect regarding the
scalability of the system is the hop latency. The hop latency is the time required to forward
a packet. The packet comes in over a link port and is switched by the crossbar to come out

1. It is possible to have more than one card per node, then one of the four links is used to connect the 
cards. The node degree increments accordingly and allows topologies with higher dimensions to 
be built up.
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of another link port. The time also includes the routing interpretation and arbitration of an
OutPort of the crossbar. ATOLL achieves a hop latency of 30 cycles, which is about 90ns
for the maximal operation frequency of 330 MHz. This low latency is mainly achieved by
applying source-path routing and an optimized crossbar design with a fall-through latency
of only 3 cycles. Most of the remaining cycles of the hop latency are used for synchroni-
zation between the different clock domains.

The ATOLL network uses source-path routing instead of table-based routing for several
reasons. The most important one is already mentioned, the impact on hop latency. The pre-
calculated route simplifies the design of the router, no table look-ups are necessary.
Additionally no memory for data structures is required, while for larger networks the
routing tables can become a significant size and typically result in a high demand for on-
device memory.

In the ATOLL network the ports of the crossbar are serially numbered from 0 to 7. Ports
0 to 3 are connected to the four host ports and the ports 4 to 7 to the four link ports. A
routing string consists of a series of routing characters. Each character contains a port
number and a parity bit. Each hop the first character is consumed for interpretation and
removed from the routing string. The routing string shrinks with each hop. Upon arrival in a
host port the remaining route is discarded. A parity bit per character is used instead of a
CRC protection, so no re-calculation of the CRC is required. Advanced techniques like
multicast or adaptive routing are not possible. Software layers are responsible to perform
these tasks.

1.4.3 Impact  of  dis tr ibuted integrated switches

In opposition to many other networks, the ATOLL network integrates the switch into
the NIC. This close coupling allows manifold control, service and management functions
[43]. Management layers can directly access the crossbar over status and control registers,
while centralized switches can only be managed using packets sent over the network from a
controlling host to the switch. In the case here, the notification of events from switch to
management layer and resulting actions can be performed much faster.

Figure 1.23 Necessary deadlock condit ion for  
ATOLL

One resulting service is the deadlock recovery scheme of ATOLL. The arbitration logic
of each crossbar is able to detect a certain deadlock condition which is necessary for a

Deadlock condition for InPort i and j (i!=j) and OutPort o

dl_cond(o)=req(i,o) & gnt(i,o) & stop(i,o) & req(j,o)

req(i,o) = request from InPort i to OutPort o

gnt(i,o) = grant from OutPort o to InPort i

stop(i,o) = stop from OutPort o to InPort i
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deadlock. Figure 1.23 shows this condition. Basically a deadlock can only occur if one
InPort is requesting an OutPort and another InPort has been granted this OutPort and the
flow control has stopped this connection. Only when this condition becomes true this switch
can be part of one or more deadlocks. Without this condition it is guaranteed that this switch
is not part of any deadlock.

If a deadlock condition is detected a counter loaded with a pre-selectable value starts
counting down. As soon as it equals zero an interrupt is thrown to notify the management
process of the host system. This process can either communicate over an auxiliary network
(like Ethernet) with other involved nodes to check if there is really a deadlock, or skip this
step and immediately retrieve the packet from the network. In the first optional step the
protocol ensures that there is really a deadlock, and furthermore that only one packet is
retrieved from this deadlock, which is sufficient. This deadlock notification and recovery
scheme is only feasible with a very short reaction time after detecting the deadlock
condition. Otherwise deadlocks result in congestion and generally raise the deadlock
possibility, decreasing the network’s overall performance.

Figure 1.24 Simple deadlock example for  a  2D 
mesh

Figure 1.24 shows a simple deadlock situation for a mesh topology. Four nodes are here
directly involved in the deadlock circle. In each node one OutPort is granted and stopped by
flow control, and another InPort requests the same OutPort. A snapshot of the crossbar
switching is shown on the right. To solve the deadlock, it is sufficient that one packet of
participating in the deadlock is retrieved from the network. The packet can be retrieved
from the network by overwriting the current request and re-directing the packet to the host
port associated with the management process (in this example: 0). Then all three remaining
packets can proceed. The retrieved packet can be immediately re-injected. If more than one

InPort 0

In this example: i=7, j=6, o=5

i

j

o

OutPort 0

InPort 5

InPort 6

InPort 7

OutPort 5

OutPort 6

OutPort 7
request & grant

request, no grant
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packet, e.g. all packets, are removed from the network the deadlock is also solved, but with
higher overhead. To not split up a packet into fragments only packets without grants are
retrieved.

Especially fault-tolerance services benefit from the close coupling between switch and
management software. Beside deadlock recovery services the other main eventualities - link
and node failure - can be recovered. In the case of a node failure data loss cannot be
avoided, so an additional end-to-end acknowledge protocol is required to recover from this
failure.

1.4.4 Network interface

Each ATOLL card not only houses one interface to the host side, instead four replicated
host ports are available. Each host port can be mapped by an user process for direct access
using User-Level Communication. With the four replicated ports ATOLL is perfectly suited
for SMP nodes with multiple CPUs (up to four). On each of the CPUs one process can be
running and accessing ATOLL.

The communication function offered by ATOLL is a Send/Receive scheme, requiring to
copy the payload into dedicated buffers on both the source and target side. Two methods are
available, the most appropriate is dependent of the payload size.

The processes can inject packets using several Programmed I/O (PIO) writes to special
registers which are part of each host port. The host port combines the data provided with the
write accesses into a packet. Packet reception is based on PIO reads. This method is only
suitable for small messages (for instance up to 512 byte).

For larger messages a Direct Memory Access (DMA) scheme is available, which is
based on a set of data structures in main memory. To send a packet, a send descriptor is
generated describing the packet. This descriptor is stored in a descriptor queue. The payload
is only included as a reference in the descriptor. It is stored in a send data region. On the
receive side two similar working data structures are used, again located in main memory.
The receiving host port stores the payload in the receive data region and generates a receive
descriptor where the packet is described.

Because only main memory is used to store the data structures, on-device memory is
not required. This reduces the total costs of an ATOLL card significantly.

1.4.5 Fault  tolerance

Fault tolerance in the context of an interconnection network like ATOLL means that the
transfer of packets is reliable regarding several conditions:

1. A packet sent over the network is not altered, it reaches it’s destination 
unmodified. In other terms, the sender can discard the payload after send-
ing the packet out.

2. Once injected into the network, it is ensured that the packet reaches it’s 
destination within finite time.
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This leads to the following requirements for the ATOLL network. Faults based on
transmission errors, dead- and livelocks, link faults and node faults must be either avoided
or tolerated by appropriate hardware or software support.

To preserve performance and retain cost-optimization certain trade-offs are made. For
instance, transmissions on-chip and over the peripheral interconnect are expected to be safe.
If the source or target of a transmission is no longer available the transfer can apparently not
be ensured. Hence this case is not covered by ATOLL’s fault tolerance.

To avoid transmission errors, each flit is protected with a CRC. A CRC failure results in
a re-transmission of the faulty flit. Livelocks can only occur when adaptive routing is
applied, which is not the case for the ATOLL network.

The deadlock handling is explained in detail in section 1.4.3 on page 25. It is based on a
deadlock recovery scheme, capitalizing the integrated crossbar for a close coupling of
switch resource and management process. Another possibility is to choose a routing-
topology combination which is deadlock-free. Then deadlocks are avoided.

Livelocks only occur when adaptive routing is applied, which is not the case here.
Hence this fault case must not be considered.

An in-depth explanation of the handling of link and node faults can be found in [43]. In
a condensed form they are based on a link detection and additionally a software
acknowledge protocol for the node failure case. One of the insights gained during the
ATOLL project is that hardware support for end-to-end acknowledges significantly reduces
the software overhead. Hence this is one of the goals of the work here.
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1.5  I M P R O V E M E N T  P R O P O S A L S

In order to summarize the introduction and to show what requirements for a next-
generation high-performance network interface architecture exist, this sub-chapter provides
an overview of the key facts shown above. This starts with the lessons learned during the
ATOLL project, continues with required communication functions and finally leads to the
network interface architecture itself. Finally, the goals of this work are shortly summarized.

1.5.1 Lessons learned from ATOLL

The biggest and important insight from the ATOLL project is that a direct network is an
excellent solution. It’s distributed switching resources are scalable and provide redundant
paths which increase the fault tolerance.

ATOLL allows User-Level Communication for up to four processes by replicating it’s
Host Ports. Processes communicate to the device using queues in main memory which
reduces the required on-device memory to a minimum. These queues are very efficient and
reduce the overall costs of an ATOLL card. User-Level Communication is inevitable for
low latency message passing. Missing is support for more than four processes. Furthermore
the replication results in a partitioning of the resources, preventing a dynamic utilization of
resources.

Regarding communication operations an RMA scheme is missing. Furthermore the
available set of operations can be made more versatile in order to optimize certain
operations for different message sizes. The PIO mode of ATOLL is not optimal, further
improvements should significantly reduce the start-up latency.

Regarding fault tolerance hardware end-to-end acknowledge support is missing, which
is currently achieved in software layers. Including this in hardware would further reduce
software overhead.

Last, if software layers rely on a sequence number this must currently be included in the
message tag. This limits the available tag size for user applications. Hence the idea is to
introduce a dedicated API-tag besides the user tag.

1.5.2 Sophist icated communicat ion methods

A larger set of communication operations is already slightly touched. To concrete this
idea, not only two communication methods (for instance based on PIO and DMA) should be
supported. In particular support for fine grain communication is missing. For this a lowest
latency communication method is required, whose small overhead allows to efficiently
transfer even smallest data structures. Beside this, for (almost) each message size highly
optimized operations should be supported.

Furthermore the extensions of MPI2 should be supported, which is in particular true for
the RMA operations. The window scheme of MPI-2 can be improved by a more generic



C H A P T E R  1 Introduction30
one. This leads to the development of the idea to combine synchronization and
communication for RMA operations, which otherwise cannot provide synchronization.
RMA operations also benefit a lot from support for virtual addressing in the network
interface, hence a suitable mechanism is desirable.

It should be possible to ensure the ordered delivery of messages, which reduces the
required overhead in software messaging layers. Because not all applications require this, it
should be selectable.

Summarized, various communication functions should be supported, each optimized
for certain circumstances. This set is comparable to the manifold instruction set of modern
Complex Instruction Set Computer (CISC) architectures.

1.5.3 Network interface archi tecture

Improving the network interface architecture is the major goal of this work. In
particular in multi process environments the architecture should support unrestricted and
dynamic utilization of it’s resources. Only then the parallelism offered by such a system can
be efficiently exploited. The exploitation also requires simultaneous access from multiple
user processes to the network interface, which is achieved by the virtualization. The
virtualization must allow access from user-level and without O/S involvement. The
virtualization is also suitable for VM environments with it’s concurrently running O/S
guests.

For a virtualized device a large amount of data structures is required. The most cost
efficient memory resource of a system is the main memory, hence it is desired to use this for
the data structures. This allows a most scalable and cost efficient design.

A memory-less design results in a large amount of accesses to main memory. Caching
structures can diminish this effect. But the efficiency of all accesses over the I/O interface
must be kept in mind, which is in particular true for the simultaneous accesses from user
process to device. Theses ones must be highly sophisticated to use the limited I/O resource
as efficiently as possible.

1.5.4 Goal  summary

Communication Instruction Set. Development of a set of communication and synchroni-
zation instructions providing support for all kinds of communication. Targeted is a message
passing system with explicit communication and synchronization. The communication set
includes ultra low latency communication (fine grain communication), RMA with window
protection and sophisticated send/receive functions optimized for different message sizes.
The in-order delivery should be possible but due to resulting performance restrictions
selectable.

Network Interface Architecture. Development of a dedicated and specialized architecture
for a high-speed network interface. The architecture should be suitable for as many
purposes as possible and support the communication instruction set above in an optimal
way. Other key features are a memory-less design in combination with an on-device
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memory hierarchy and support for fine grain communication by ultra low latency message
passing. Generally spoken, the goal is to combine the versatile usability of Ethernet with the
performance of high speed interconnection networks.

Utilization of Resources. Unrestricted use of the hardware resources for the process
clients. This implies a high utilization of the hardware resources independent of the process
client count. One process should be able to use all available resources, while a large number
of simultaneously accessing processes share the resources uniformly.

Virtualization. The developed architecture should be suitable for simple system
architectures with only one CPU, as well as high performance cluster nodes with several
multi-core and possibly multi-threaded CPUs. The recently emerging virtualization of
complete computing systems using Virtual Machines should be backed by the virtualization
of the network interface in hardware. The Virtual Machine Monitor should be bypassed for
all time critical operations. Uncritical operations like management functions can include the
Virtual Machine Monitor. Optimally, from the architecture’s point of view it should be
independent if there are several operating systems running or only one and to which O/S a
process belongs. Summarized, the architecture should allow multiple processes to
simultaneously access the device without the involvement of any software layer.
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CHAPTER 2
 C O M M U N I C A T I O N  

A N D  
S Y N C H R O N I Z A T I O N
This chapter starts with an introduction to the basic communication and synchroni-
zation schemes, followed by a classification in order to allow an improved understanding.
The advantages and drawbacks of in-order and out-of-order delivery are analyzed. 

This is followed by the integration of the network interface architecture in the intercon-
nection network, showing the requirements and constraints for this work. This new inter-
connection network is a new research project based on the ATOLL network.

After these introductions the work flow for the supported communication schemes is
analyzed. This leads to the development of several types of functional units, which process
the steps required for communication and synchronization. Due to the distributed work
processing, the functional units are located both on the source and the destination node.

Finally a set of communication methods is developed. For all payload sizes
sophisticated methods exist to transfer the data from source to destination. Beside
traditional Send/Receive schemes, RMA operations are also supported. A method to
combine RMA operations with synchronization is shown.

The insights gained in this chapter allow a comprehensive understanding of the
requirements for the network interface architecture, which is developed in the next chapter.
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2.1  I N T R O D U C T I O N

Goal of this chapter is to provide a short introduction in communication and synchroni-
zation schemes, including their requirements. The in-order and out-of-order delivery is
examined together with the impact of acknowledges.

2.1.1 Messages and packets

From an application’s point of view the communication and synchronization is based on
the transfer of messages between source and destination. A message is composed of it’s
payload and a tag to identify it’s content. Applications rely on the help of libraries and APIs
to send and receive messages or perform more sophisticated operations.

From an network’s point of view, a message can be segmented into multiple packets
due to maximum transfer units. Beside the message tag, the network (or API) requires more
information about the packet. This includes the source identification, a destination
identification or a route to the destination, sequence numbers and a packet type.

The work here starts with the API level, hence in the following the term packet is used
for all elements transferred in the network. If messages are segmented into multiple packets
or not is not relevant for the work here. This is subject to upper higher software instances.

2.1.2 Classif icat ion of  Communicat ion and Synchronizat ion

Communication can be classified based on two schemes. The first classification takes
into account the number of communication partners involved in the communication. The
result is a classification into one-, two- or n-sided communication. N-sided communication
only applies for collective operations, which are beyond the scope of this work. As
communication partners only user processes are considered. Thus if at the destination only
the network device is part of a communication and not the user process, this is considered as
one-sided communication.

The second classification is based on the number of copies required for packet
transmission. This only includes copies made by software processes. Hardware copies are
not considered here. Due to the limitation to up to two communication partners, the
communication can be classified into zero-, one- and two copy schemes. Table 2.1 classifies
the communication methods into these two schemes.

Synchronization only applies if more than one side is involved in the communication.
Hence synchronization is limited to the two-sided and collective communication. A typical
example for a multiple-sided synchronization is a barrier. Because collective
communication is not covered here, this case is not further considered. Handshake protocols
based on two-sided communication can be used for synchronization.

Unmodified one-sided communication is not suitable for synchronization, because the
destination (process) of the operation is not involved in the communication. Synchroni-
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zation can be included in one-sided communication by notifying the destination of an RMA
operation.

2.1.3 Two-sided communicat ion methods

These methods include both the source and the destination actively in the
communication. To be more concrete, the user process on the source node and on the
destination node are involved in the communication.

The typical communication scheme here is based on Send and Receive. The source
process sends a packet out and the destination receives the packet. Send/Receive methods
can be separated into blocking and non-blocking operations.

A non-blocking send operation only inserts a send request in a work queue and
immediately returns, independent of the current transmission status. The status of the send
must be checked later. Dependent on the implementation, a blocking send either returns
when the packet has left the source buffer, arrived at the destination buffer or at the
destination process.

A blocking receive only returns if a new packet is present. If no packet is present, it
waits until one arrives before passing control back to the calling process. A non-blocking
receive returns immediately, independent if in the specified buffer a new packet is stored or
not. Again, a later check must be done to know the status of a non-blocking receive.

Furthermore a Send/Receive scheme can be synchronous or asynchronous.
Asynchronous schemes immediately send out the packet without ensuring that enough
buffer space is available at the destination. In opposite, synchronous schemes rely on
handshake protocols prior to the data transfer to ensure this. Smaller payloads are typically

Table 2.1: Classification of Communication

Required 
copies two-sided communication one-sided communication

two-copy

Traditional Send/Receive scheme, 
where the payload is copied into 
dedicated buffers on both source 
and destination side.

Basically not used. Some designs 
implement RMA operations based 
on the help of the O/S. But this pre-
vents User-Level Communication.

one-copy

A Send/Receive scheme, where one 
copy can be omitted. This applies 
for instance when a posted receive is 
used.

zero-copy
Send/Receive scheme, where the 
payload is directly fetched from and 
written to user space.

An RMA Put or Get operation, 
where the payload is directly 
fetched from and written to user 
space.
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transferred using asynchronous schemes, while larger ones rely on synchronous
transmission.

2.1.4 One-sided communicat ion methods

One-sided communication methods only require the source to participate actively in the
communication. Typical RMA operations are one-sided, because they read or write a
remote memory location without the involvement of the user process at the destination.

RMA operations access directly user memory regions described by Virtual Addresses
(VA). Network interfaces located behind an I/O interface cannot use VA, only Physical
Addresses (PA).

Several solutions exist to overcome this situation. In [44] a survey of these methods is
presented. Some methods are based on handshake protocols prior to the RMA operation to
pin down the referenced memory regions and translate the addresses [45]. Only after this
handshake the RMA operation can take place, using the previously calculated PAs. The
most sophisticated method uses an on-device Translation Look-aside Buffer (TLB) [46] to
translate VAs into PAs. This reduces the overhead by eliminating the handshake protocol.

A special case is a remote atomic operations. Here an atomic operation is initiated at the
source on a remote address. These operations rely on support for atomic operations of the
I/O interface. Otherwise the target address is not locked and simultaneously the remote
CPU can access this location. This may result in unwanted behavior. A possible solution to
overcome this situation is to use only remote atomic operations on shared locations, even if
this location is local. Then all accesses to the semaphore are performed by the network
interface, which can ensure that no atomic operations execute simultaneously.

2.1.5 Acknowledges

An end-to-end acknowledge is usually required to inform the source that a packet has
reached it’s destination. This can optionally even include that the user application at the
destination has received the payload.

Even for reliable interconnects, severe failures (for instance of a complete node) can
result in data loss. In theses cases end-to-end acknowledges are required for reliable
transmission of data.

The acknowledge scheme used here is an end-to-end acknowledge. It does not include
involvement of the user application at the destination, it is only ensured that the packet has
correctly arrived in the destination packet buffer. The use of the acknowledge is selectable
to support different requirements for fault tolerance.

2.1.6 In-order and out-of-order del ivery

Some applications require in-order delivery of messages, other not. If an application
relies on in-order delivery and the network cannot ensure this, the incoming packets must be
reordered in messaging layers to deliver the messages in-order to the applications. This can
result in additional buffering delays.
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There are several reasons that packets which are injected in-order arrive out-of-order at
their destination [17]. Adaptive routing allows each packet to take another route to the
destination. Consecutive packets can then use separate routes to the target and ordering
constraints inside a switch element no longer apply. Some methods combine adaptive
routing with in-order delivery, but this introduces a certain overhead [47]. Another reason
are virtual channels or lanes. Even for deterministic routing this allows consecutive packets
to overtake each other, because the arbiter in the switch element might not recognize the
order of the packets waiting for a grant.

Without in-order delivery guaranteed by the network, the packets must include
sequence numbers. Only then the destination is able to re-sort the incoming packets. But the
reassemble overhead at destination degrades the overall performance.

If messages are segmented into multiple packets, the ordering of these packets is also
important. For out-of-order delivery of packets it is then not sufficient to check for the last
packet in a series, because other packets might still be outstanding. Furthermore the
incoming packets must be reassembled to provide the message correctly to the application.

If the network (including the network interface) ensures the in-order delivery, several
advantages and drawbacks result. Reordering in software layers is not required. For
messages segmented into multiple packets it is sufficient to wait for the arrival of the last
packet. The ordering ensures that the other packets have already arrived and no reassembly
must be done. The drawbacks are that adaptive routing is not possible. Furthermore if all
packets are processed in order, the parallelism is reduced. This can be improved by the
introduction of an ordering key. This key limits the ordering to certain cases, for instance
only if the packets have the same destination. If applications do not require in-order
delivery but the network ensures this, the ordering overhead is unnecessary.

The other case to be considered is if the network delivers out-of-order but the
application rely on in-order delivery. Then software layers must re-sort the incoming
packets. For messages segmented into multiple packets each packet must be checked at the
destination, before the message can be reassembled. On the other hand, adaptive routing is
possible and ordering constraints decreasing the network’s overall performance are
removed. An increased exploitation of parallelism is possible because no packet ordering
constraints exist. Last, no hardware support for ordering is required.

Due to unpredictable requirements of applications regarding ordering, support for both
in order and out-of-order delivery must be included in the network interface architecture.
Applications can then choose if they want their messages to be delivered in-order or not.
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2.2  I N T E G R A T I O N  I N T O  T H E  
I N T E R C O N N E C T I O N  N E T W O R K

The network interface architecture developed with results of this work will be used in
an interconnection network optimized for cluster environments. A short introduction into
the basic functionality of this IN is required for a comprehensive understanding of the
requirements and constraints for the network interface architecture and the supported
communication and synchronization functionality.

This sub-chapter shortly introduces this IN. Focus is set on the interface to the network,
while the detailed functionality of the other components of the network, like switches, fault
tolerance or link protocol is omitted.

2.2.1 Overview

The new IN is based on the previous research project ATOLL (see sub-chapter “1.4 The
ATOLL Network” on page 23). Again it is a direct network, integrating the switch into the
network interface. The network interface provides 6 links towards the network. This allows
to build up three-dimensional mesh- or torus-based topologies.

Figure 2.1 Top-level  block diagram of the 
Interconnection Network
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This work completely focuses on the development of a suitable architecture for the Host
Port (HP). The HP is the interface between network and host system, responsible for the
injection and retrieval of packets. It is connected with up to four Network Ports (NP)
towards the crossbar of the network interface.

The integrated crossbar in each network interface builds up the required switching
resources for this direct network. The crossbars are interconnected with six links, allowing
any kind of topology up to a node degree of six. The two other modules connected to the
crossbar are the Multicast Port (MP) and the High Availability Port (HAP). The task of the
MP is to replicate multicast packets and thereby building up a multicast tree. The HAP is
responsible to retrieve faulty packets from the network, ensuring fault tolerance.

The links together with the crossbar are considered reliable, i.e. it is guaranteed that an
injected packet will reach it’s destination. This is ensured by a reliable link transmission
based on a link-level acknowledge protocol and a credit-based flow control.

The network can be configured to keep the ordering of packets by including a hash
value of the destination in each packet’s header. This forces the arbiter of each crossbar to
forward incoming packets only in order. The links always transmit packets in order, hence
no special scheme is required here.

2.2.2 Routing

A source-path routing scheme is used for this interconnect. Each packet contains a
routing string. Upon each hop from source to destination the crossbar arbiter interprets the
first element of the routing string. Here the direction (or link port number) for the next hop
is directly included. Table lookups are not necessary.

Figure 2.2 Routing space
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scheme each element contains beside the direction also the number of hops for this
direction.

Source-path routing requires the source of a packet to provide the routing string. A
routing space is used to store all the pre-calculated routing strings. For each destination the
corresponding routing string can be determined using an offset (routing offset) into this
table together with a length information (routing length). These two parameters are included
in the communication operation. The use of routing offset and length also allows to vary the
length of each routing entry. The variable entry size also lead to the name routing space and
not routing table.

If the packet has to be transmitted both from source to destination and vice versa1, the
routing string is composed of two parts, a forward and a return path. The two parts are
separated using a special routing element. Hence a routing lookup is only once necessary
for packet transmission, even if it has to be transmitted back again.

2.2.3 Packets

Beside the routing information the packets consist of a command frame and the
payload. The command frame is used to distinguish different communication operations
and contains parameters for the communication. This includes the source identification,
packet tag, sequence number, a remote address for RMA operations or acknowledge
requests.

Figure 2.3 Packet  format

In a packet the routing frame is always first, because this part must be interpreted by the
intermediate hops. At the destination the command frame is required prior to the payload to
identify the communication operation. Hence the payload is always last.

1. For instance an RMA Get operation includes a request packet sent to the destination, and a 
response packet containing the result sent back to the source (split-phase transaction). Another 
example is an end-to-end acknowledge scheme.
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While the routing string is an entry in the pre-calculated routing space and the payload
is provided by the user application, the command frame must be generated by the Host Port.

2.2.4 Host  Port

The communication and synchronization mechanisms together with the network
interface architecture developed in this work is integrated in the Host Port. It is the interface
between application and network.

A communication set is developed in this chapter supporting both one- and two-sided
communication schemes. A large set of communication operations is available, allowing to
choose the most suitable operation for a payload size.

The network interface architecture is the main topic of the next chapter. Here
architectures are analyzed in order to find a suitable one which exploits any available
parallelism. Dedicated hardware modules are developed to perform the communication
operations. One key component of this architecture is the virtualization of the Host Port,
allowing almost any number of applications (or processes in general) to access the Host
Port simultaneously. While in ATOLL several replicated Host Ports are necessary to allow
simultaneous access from several processes the device, the virtualization supports almost
any number of processes. Now one single Host Port is sufficient, which resources can be
dynamically shared by all accessing processes without any partitioning.

The following work is not restricted to be used in the context of this interconnect. Due
to this, the term Host Port is avoided and (network) device used instead. This also
represents the process’s view of the Host Port.
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2.3  C O M M U N I C A T I O N  A R C H I T E C T U R E

In this sub-chapter the work flows for different communication schemes are analyzed,
resulting in a communication architecture including several types of functional units on the
origin and target node. Circular buffers are proposed as most suitable data structure for the
queues between processes and device. Different notification methods for circular buffers
are analyzed and for the different use cases the most appropriate are shown.

2.3.1 Work f low

Each communication operation1 is initiated by an origin node. The destination or
communication partner is called target node. The origin is always actively involved in a
communication because here an application starts a communication. If a two-sided
communication takes place the target participates also actively. But for a one-sided
communication the target is only passively involved, because actions of the user application
are not required. At the target the operation can be completely processed without
involvement of user-level software layers.

Figure 2.4 Two-staged work f low

In the simplest case the work flow is only two-staged (see figure 2.4). Here an operation
is initiated by the origin node, hence called Initiator. The operation is sent over the network
to the target node using the forward path. At the target it is completed. In the two-staged
case the target is called Completer.

An optional acknowledge can inform the origin of the completion of the operation. The
acknowledge is a positive in the case of a successful performed operation. If the operation

1. The last part of this sub-chapter will show that a communication operation like a Send, Receive, 
Put or Get operation is better described as a communication instruction. This improves the under-
standing from the hardware’s point of view. But for now the name ‘communication operation’ is 
kept.

Origin
Node

Target
Node

Initiator Completer

forward path
e.g. Send operation

(optional) return path
e.g. acknowledge

Network



2.3  Communication Architecture 43
has failed at the target a negative acknowledge is sent back. The acknowledge uses the
return path back to the origin.

One-sided communication can require a response in the work flow. This leads to a
three-staged work flow (see figure 2.5). The three-staged work flow is never used for two-
sided communication. For a three-staged work flow the operation is initiated at the origin
and sent using the forward path to the target where a response is generated. Here the target
acts as a Responder. The response is sent back over the network using the return path. The
return path is not optional in the three-staged work flow. The origin then completes the
operation. In the case here it acts both as an Initiator and a Completer.

The processing of all non-cumulative operations is always bounded to the origin and
target node. The origin is always the Initiator of an operation. The target is either the
Completer or the Responder. If the target acts as a Responder, always the Origin will
finalize the operation as a Completer.

Figure 2.5 Three-staged work f low

In a three-staged work flow an acknowledge is unnecessary, because a response is
already included in the work flow. The response informs the Initiator of the result of the
processing at the target node.

The approach of separating the work flows in a two-staged and a three-staged helps to
classify all supported operations. All two-sided operations use the two-staged work flow.
Because an RMA Put operation does not require a response it is also two-staged. Only the
RMA operations requiring a result, e.g. all kinds of Get operations, are three-staged.

2.3.2 Funct ional  uni t  types

The work is processed by Functional Units (FU) which are located both on the origin
and the target node. Corresponding to the nodes acting as Initiator, Responder or Completer,
the units can be separated into three types. The requester unit is always part of an Initiator.
It generates a request packet which is sent over the network to the target. Here either a
responder unit or a completer unit receives the packet, depending on the type of work. Both
unit types interpret the incoming request. The responder unit answers with a response sent
back over the network, while the completer unit finalizes the work. Incoming responses are
also processed by completer units, which is the case for the three-staged work flow. For the
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two-staged work flow the completer unit can optionally send an acknowledge back to the
origin. Responses and thus responder units are only required for one-sided communication.

Figure 2.4 show in detail the two-staged work flow. On the origin node a process POrigin
initiates the work by issuing a work request to the requester unit. The requester unit
processes the desired work. This results in a request packet sent out to the target node. All
the information from the origin that is required to process the work request at the target side
is included in this packet. With this packet, the receiving completer unit can further process
the work. After finishing it, the completer unit delivers the work results to the
corresponding process on the target (PTarget). Optionally an acknowledge can be sent back
to the origin node to inform POrigin that the work was successfully completed. In the case of
a failure during the processing on the target side the acknowledge notifies the origin of the
unsuccessful processing.

Figure 2.6 Functional  unit  types in the two-
staged work f low

The processing of the two-staged work flow is extended to the three-staged in figure
2.5. This work flow always includes a response. In detail, the process POrigin on the origin
node initiates the work. The requester unit sends out a response which is received at the
target side by a responder unit. With the information contained in the request packet and the
local configuration this unit processes it’s part of the work. At the end the response unit
sends back a response packet containing the result of it’s work. Optionally it can notify the
process PTarget that an RMA operation1 was processed. The response packet sent back is
received at the origin node by a completer unit. Here the work is finally finished. At the end
the completer unit delivers the result of the work to the process.

1. Note that the three-staged work flow only applies for some RMA operations. For RMA operations 
user-level processes are not involved in the processing.
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Figure 2.7 Functional  unit  types in the three-
staged work f low

2.3.3 Send/Receive communicat ion scheme

The supported Send/Receive scheme is a two-sided communication. Both origin and
target actively participate in the communication. The origin by explicitly sending a message
and the target by receiving the message. This allows to use this communication scheme also
for synchronization. But communication without synchronization is also possible.

The Send/Receive scheme is a two-copy scheme. The payload is temporally stored in
dedicated buffers on both origin and target side. This allows the network interface device to
directly access the buffers using physical addresses. The drawback is that the additional
copies introduce overhead. This scheme is most suitable for smaller messages. For large
bulk transfers zero-copy schemes like RMA perform better.

The work flow for the Send/Receive scheme can be seen in figure 2.6. The work
initialization matches the issue of a send request by POrigin to the requester unit. The request
packet sent over the network contains the payload of the message. The completer unit on the
target node receives the packet and interprets the packet header. It recognizes the packet as a
request for a send operation. It finds free buffer space to store the payload. After that it
notifies the target process of a received message. This also includes a description where the
received data can be found together with informations about sender, message tag and size.

The Send/Receive scheme is asynchronous, no handshake protocol prior to the payload
transfer takes place. If no buffer is free at the target to store the packet, it will block in the
network. Depending on the application’s requirements, upper software layers can easily
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implement a synchronous Send/Receive by first sending a short message notifying the
target of a large data transfer. The target checks for an appropriate buffer and sends back a
message. Only then the message with the large bulk of data is injected.

Fast operations. A Send operation can be initiated in several ways. Either the payload is
included in the work request or the work request contains a reference to another data
structure where the payload is located. The second solution introduces additional overhead
because another data structure must be accessed. So it is only desirable if the payload does
not fit in the limited size of a work request. Similar constraints apply for message receiving.
If the payload can be included in the notification the lowest overhead is required. If not
other data structures must be used and the notification includes a reference where to find the
payload.

If the payload can be included in the work request or the notification, the operation is a
fast operation. This distinguishes it from normal operations. The payload size determines
the use of normal or fast operations.

If the network interface’s location is in the I/O subsystem the costs for an additional
memory access can be quite high and the use of fast operations significantly increase the
overall performance. It is desirable to store as much payload in the work requests and
notifications. Otherwise an unnecessary large work request or notification also wastes
resources if their payload section is not enough utilized.

Notification. The receiving process can either poll for changes on the appropriate data
structure for the notifications or register itself for an interrupt-based notification. The first
method is time consuming and increases the load of the CPU. But it has the lowest
notification latency and also allows User-Level Communication. The interrupt-based
method cannot be combined with User-Level Communication because O/S involvement is
required to process the interrupt. But using interrupts the CPU load is minimal and the
process can even be scheduled away in favor of other processes. If the process is not waiting
for this message, it can also check for new messages at any point of time later. This might
be the case if the process is busy with calculations.

Posted Receives. The payload is stored in dedicated data structures accessible both from
network device and user-level process. This leads to a two-copy communication scheme. A
one-copy communication can be implemented using posted receives to directly receive the
payload in user-level data structures. These are only accessible using virtual addresses and
introduce a lot of overhead. A one-copy communication scheme is already implemented
using RMA operations, hence it is not supported for Send/Receive communication.

Using posted receives the user application has to register available buffers prior to a
message reception. The completer unit consumes buffers by storing the payload in them. A
posted receive renders the copy from receive buffer to the target process’s data structures
unnecessary. But the previous registration of buffers imposes several problems. A message
must fit in a buffer, otherwise it cannot be stored. Hence the target process should know
which message will be received next. If no message identification takes place another
incoming message might use this buffer. The posted receive scheme requires a deep
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analysis of it’s advantages in the specific application. Generally, it is supported in the
communication architecture here but considered optional. An RMA operation might be a
more suitable replacement for it.

2.3.4 Remote Memory Access  (RMA) communicat ion scheme

The RMA scheme is a one-sided and zero-copy communication scheme. The payload
will be fetched from and written to user-level space using virtual addresses. Only the origin
has to actively participate in the communication, the target can be passive. Because of this
synchronization takes not place. Additional methods are required to allow synchronizing
RMA operations.

The major advantage of zero copy is that the buffer to be sent over the network is not
copied by processes, reducing the total overhead. To be more concrete, no process has to
copy the payload in dedicated buffers. While a typical one- or two-copy scheme requires
dedicated buffer to temporally store the payload, here it is directly read out from and written
back to the user process’s memory region.

The network interface as a peripheral device must be able to access the user process’s
memory region. With an RMA operation the process provides a reference to the payload.
This reference is based on virtual addresses. Hence the device must be capable to translate
virtual to physical addresses in order to fetch and write back the payload.

Memory Windows. 

Memory windows [8] describe a certain region in user address space and are used in the
RMA scheme for several purposes. Using windows, not the complete address space of a
process is accessible by remote processes. Furthermore the windows are used to
synchronize accesses and ensure mutual exclusion of multiple writers. Last, windows can
be exclusively assigned to one or a group of remote processes.

The first item is achieved by specifying in each RMA operation the window on the
target side. The window is described by a start VA, a length and read/write rights. All RMA
operations must specify a window hence the remote access is limited to these regions.
Furthermore the read/write rights must match the RMA operation.

Windows can be temporally locked to accomplish the second item. A locked window
can only be accessed by the process who owns the lock. All other accesses are rejected,
including accesses on a local window. Hence each RMA operation must additionally
specify a local window. Only then both local and remote accesses are prevented to a locked
window, and mutual exclusion is ensured. Otherwise race conditions may occur resulting in
unwanted behavior.

Last, each windows can be assigned a capability [48]. Only processes with the matching
capability are granted access to this window. Using this scheme a policy can be set up
limiting the access to this window to a group of processes. Exclusive windows can either be
implemented using capabilities or permanently locking.
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Put operation. The work flow of a Put operation is two-staged and can be seen in figure
2.6. It starts with the origin process issuing a work request to the requester unit, including a
window and a reference to memory. It is checked that the window is not locked by another
RMA operation, which might currently be using this window. The requester unit directly
fetches the payload using virtual addresses translated to physical ones. The payload together
with the target window and address is included in a request packet sent out to the completer
unit on the target node. Here the target window is checked. Only if it is not locked the
payload is written back to memory, again using virtual to physical address translation.
Optionally an acknowledge is sent back informing the origin process about the success of
the operation.

Get Operation. While the Put operation is two-staged, the Get operation always includes a
response. The resulting three-staged work flow can be seen in figure 2.7. It starts with the
origin process issuing a Get operation to the requester unit. It includes a remote or target
window and reference to be fetched and a local or origin window and reference where the
data is stored. The requester unit sends out a request contain all this information. On the
target node the responder unit checks the target window for locking and matching
capability. The data is fetched from memory using virtual addresses translated to physical
ones. The data is returned in a response packet including the origin reference. On the origin
node the completer unit checks the origin window and writes the received payload data
directly into the memory buffer described by the virtual address.

Fast operations. Comparable to the fast operations for the Send/Receive scheme, here it is
also possible to avoid references by including the payload directly in the operation. For a
fast Put the work request does not contain a local reference, instead the payload. For a fast
Get the remote data read is included as immediate value in the notification.

This approach avoids local window checks, address translations and memory accesses.
But the usage is limited due to the restricted size of a payload included in a work request or
notification1.

Atomic operations. Another kind of fast operation are atomic operations. Examples for
atomic operations are fetch-and-add or compare-and-swap. They cannot be interrupted to
ensure mutual exclusion while a data location is changed. They are implemented similar to
the fast operations by including a remote reference, a compare or modify value and a place
holder for the returned data. The use of atomic operations is dependant on support of the I/O
interface on the target node. Otherwise, local processes on the target node may change the
data location while an atomic operation is performed by the network device. If this is not
possible all atomic operations, both local and remote, must be performed using the network
device.

Synchronizing RMA operations. Because RMA operations are based on a one-sided
communication scheme, the target can be passive. In other terms a target process is not

1. In sub-chapter “4.2.3 Communication instruction descriptors” on page 149 the operations are 
specified in detail together with the resulting supported payload size.
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involved in the communication. Because it is sometimes desirable to combine the zero-copy
scheme of RMA with the synchronization of two-sided scheme like Send/Receive, it is
optionally possible to notify the target process of an RMA operation. The target process is
still not actively involved, only a notification is created informing it of a remote Put or Get
operation.

Some existing systems poll on a data location for changes in order to get notified of an
RMA operation. Usually the last data word within a region is used for this, assuming that
the I/O sub-system writes back the data in-order. This is highly dependant on the system’s
architecture and implementation and hence not always true. A synchronizing RMA
operation improves this method significantly and is independent of the underlying system.

Virtual addresses. For an I/O network interface it is not possible to access main memory
using virtual addresses (VA). Only physical addresses (PA) are supported. Because RMA
operations rely on the use of VA, the VAs must be translated into PAs. This is typically
performed by the Memory Management Unit (MMU) of the CPU. If a device wants to
translate an address, it must call the O/S for support. There the address is translated and
returned. Furthermore the corresponding pages are pinned to prevent swapping. The device
can now access the region using the PAs. Upon completion of the access it allows the O/S to
remove the pinning of the pages.

An improvement of this expensive scheme is an on-device Translation Look-aside
Buffer (TLB). It stores the most recent address translations. The pinning of pages can be
improved by including a coherency scheme in the O/S [49], that checks the on-device TLB
if the page to be swapped out is currently used. If the corresponding translation entry is not
used it can be removed and the page is swapped out. In best case this allows the network
device to use VAs without any involvement of the O/S. The worst case where the TLB
contains no matching translations is not improved, but for the average case the overhead
required for address translations is diminished1.

2.3.5 Circular buffers

Queues in main memory are required for work requests. If the payload of a send
operation is not included directly in the work request but instead by a reference, the referred
data structure is also organized as a queue. The same applies for the receive operation,
where the received payload is stored in a receive queue. RMA operations are a zero-copy
scheme where no dedicated buffer is required.

So several queues are required in this design. Queues in main memory are typically not
implemented as First-In First-Out data structures. The overhead to shift all entries one step
is much too high. Instead circular buffers are used. The start and the end address of the
queue inside this circular buffer is described using pointers (see figure 2.8). Inserting new
queue elements result in incrementing the end pointer, while the removal of entries
increments the start pointer. So the first enqueued entry is always consumed first and the
ordering in the queue is guaranteed.

1. This is also substantiated by recent developments [50], in which memory translations and TLBs 
are also possible within the I/O sub-system.
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The location of a queue is described with the lower and upper bound. Alternatively
instead of the upper bound the length of the queue can be used. The start and end pointer
must not be incremented beyond the upper bound. If the upper bound is exceeded, they are
re-set to the lower bound, resulting in a circular buffer.

Figure 2.8 Circular  buffer

Entries of a queue are inserted by the producer. The consumer of queue entries reads
out and removes these entries. The start and end pointer can also be interpreted as read and
write pointers. The consumer always increases the read pointer (by reading out entries),
while the producer increases the write pointer (by writing in entries). A consumer never
modifies the read pointer and vice versa, hence no mutual exclusion is required. The
naming scheme of read and write pointer is more intuitive, hence this is used in the
following.

Notification of changes. Several cases require notification when a queue is used. Either the
producer is waiting for a queue entry to become free or the consumer is waiting because the
queue is empty. In these cases both must be notified of a change in the queue so they can
continue their work.

The design space in figure 2.9 shows that notification can either be based on interrupts
or on polling. Interrupts require O/S support and prevent User-Level Communication.
Polling is very time-consuming and increases the CPU load. While interrupt based schemes
are well known and for User-Level Communication not suitable, the polling based scheme
is now examined in detail.

The first approach is to poll on the read or write pointer for changes. A change of a
pointer notifies the counterpart of a new or removed entry. The checks for an empty and full
queue are also performed with the use of these pointers. Hence both producer and consumer
must have access to both pointers.
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If this is not wanted due to certain restrictions, for instance if the access costs to the
appropriate pointer are too high, the alternative is to use a part of a queue entry as valid
identifier. For instance all non-zero values indicate a valid entry, and all invalid entries have
their valid field set to zero. For this approach the queue processing must be in-order,
otherwise multiple entries must be checked for changes.

Figure 2.9 Design space of  notif icat ions

The valid field is always located at the end of an entry, because this is written last.
Typical modern computing systems do not guarantee a write access to take place in one
cycle, hence the write access can be split up in several parts. If the part of the entry
containing the valid field is already written but the remaining part is still missing, the
counterpart is already notified. Corrupt data is transferred, resulting in unwanted behavior.
Hence the usage of valid fields requires that the entry size must be fixed. Only then the
exact location of the valid field is known by both the producer and the consumer.

If a valid field is used the producer or consumer only requires access to the write
respectively read pointer. Prior to an enqueue of a new entry the producer checks if the entry
referenced by the write pointer is invalid. Only then the entry can be enqueued. Comparable
the consumer checks the entry referenced by the read. Only if it is valid it can be consumed.
Both the insert and remove operation require also to toggle the valid field.

A complete different approach requiring hardware support is based on an additional tag
beside each data word. This tag indicates if the corresponding data word is valid or not. For
instance the Itanium architecture implements such a tag, here called Not a Thing (NAT) bit
[51]. The use of such a tag is restricted to the specialized architecture, which is not desirable
here.

2.3.6 Communicat ion context  and data s tructures  of  a  process

The communication context of a process includes it’s complete configuration required
to process work. The configuration describes all used queues and data structures, including
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base pointers and length (or lower and upper bound) and read/write pointers for the queues.
Beside this a control field can enable or disable the work processing and a status field
include information about the current state.

The routing space is shared among all processes, hence no information about the
location of this region is required in the context. This decision is made in order to reduce the
size of the context. In addition dedicated routing spaces for each context would require
much more space, because a route to one destination must be stored in the space of each
process using this route. For a shared space the route is only stored once.

In the following the required data structures for the Send/Receive and RMA
communication scheme are shown. The data structures are derived from the analyzed work
flow in sub-chapter “2.3.3 Send/Receive communication scheme” on page 45 and “2.3.4
Remote Memory Access (RMA) communication scheme” on page 47.

Both schemes require at least two queues, one from process to device and the other vice
versa. The first is a Work Queue (WQ) containing work requests to be processed, the second
is a Notification Queue (NQ).

Both queues are implemented as circular buffers with fixed size entries. Read/write
pointers are used to control them. Due to the location of the network interface in an I/O sub-
system the WQ requires a special notification scheme which is introduced in sub-chapter
“3.4 Virtualization” on page 107. The NQ supports notification based on a valid field. If
polling is not required the process can register itself to an interrupt notification scheme.

Send/Receive communication scheme. This scheme requires a dedicated buffer for
sending (Send Data Region, SDR) and another dedicated buffer for receiving (Receive Data
Region, RDR). Data in these buffers is referenced by the work requests respectively the
notifications.

Both regions are implemented as circular buffers. They are controlled using read/write
pointers. For them no notification is required because they are always referenced by entries
in the WQ respectively NQ. These queues already include a notification scheme.

Each context has it’s own SDR and RDR. Hence in each context a reference to the start
of the SDR and the RDR is included, together with their lengths. If the space available for a
context is limited the length of all SDRs and RDRs can be equal, allowing to remove the
length informations from the context.

RMA scheme. This zero-copy scheme does not require dedicated buffers. Instead the
normal working address space of the process is used. Work requests and notifications
include references to virtual addresses of the process’s address space.

The windows are implemented using a Window Descriptor Table (WDT) [48]. This
table is indexed by a Window Identification (Win-ID). Each entry in the table is a descriptor,
where the window is described using base address, length, access rights, capability and a
locked field. Each context has it’s exclusive WDT hence the context must include a
reference to the start and the length of the WDT. Comparable to the SDR/RDR length,
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insufficient context space can lead to store the length of the WDT centrally. Then the WDTs
of all context must have the same size.

2.3.7 Interface between process  and network interface

The main interface between process and network interface is in one direction the work
queue for issuing. In the other direction the notification queue return the result of issued
work and other informations about ongoing work or the status of the network interface.

For both queues each entry is a descriptor. Figure 2.10 shows the design space of
descriptors. In this communication architecture all types of descriptors shown in the figure
are used. Fast operations (see sub-chapter “2.3.3 Send/Receive communication scheme” on
page 45) use immediate values in descriptors, while normal operations typically rely on
including references to other data structures. While the RMA scheme uses virtual addresses,
the references used in the Send/Receive are physical addresses.

Figure 2.10 Design space of  descriptors

The size of a descriptor is dependant on the number of parameters. But it should be
based on the granularity of cache lines, because they are the smallest unit under control of
the cache coherency protocol. If one cache line contains several descriptors, false sharing
may occur. This results in multiple transfers of single descriptor, because the corresponding
cache line of this descriptor is invalidated and updates upon each change of another
descriptor in this cache line.

Hence a descriptor should consists of one single cache line. If a single cache line is not
sufficient multiple padded cache lines must be used. The same applies for nearly all
elements in the data structures of the communication architecture, in particular the context
and the window descriptors. Only the buffers for payloads can be excluded from this
constraint, because of their variable size.
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2.3.8 Communicat ion instruct ions and operat ions

An instruction can be seen as a set of operations. For instance an instruction is issued by
a process to a CPU, where this instruction is performed using micro-coded operations. Each
operation performs only a part of the work.

Comparable to this, all operations of the Send/Receive and RMA schemes are called
communication instruction in the following. The next sub-chapter “2.4 Communication
Instructions” on page 56 provides the specification of the complete communication
instruction set. To process a communication instruction several operations are required.

For instance an RMA Put instruction starts with the issue operation. Here the work
request is passed to the network interface, where the processing starts. For a non-blocking
issue operation a later check for completion is required. This can be a status query or a
waiting for the appropriate notification entry. If this notification entry is present, the process
consumes it. The device must be informed of the consumed entry by a pointer update
operation.

The set of operations required to process the available communication instructions are
now introduced and explained. Not all operations apply for user processes, some are
restricted to be used only by privileged processes. But the complete set of operations must
be supported by the network interface architecture.

Issue operation. The issue operation is the enqueuing of a new work request in the work
queue including the notification of the device. Every communication instruction starts with
an issue operation. The issue operation is non-blocking. If the process wants to synchronize
to the completion of the instruction, it can either rely on an interrupt-based notification or
poll continuously on the notification queue.

A non-blocking issue operation allows independent work flows on the main CPU and
the device. Work request issued to the device take typically much more time to be processed
than CPU instructions. The CPU can perform outstanding tasks instead of waiting for the
work to be completed. This may not be desirable for small work requests. Then a blocking
status query operation following the issue operation allows to block until completion.

Status query and control operation. The status query operation reads out the current state
of the network interface context. It is not part of a typical work flow for a communication
instruction but available for user processes. In contradiction the status control operation is
typically restricted to privileged processes, which are considered reliable and hence do not
disable any required hardware modules.

Pointer update operation. A pointer update operation is required to notify the producer of
a queue of a removed entry and vice versa the consumer of a new entry. Hence this
operation only applies for queue-based data structures which use a read/write pointer
notification scheme. In the communication architecture here, in particular the notification
queue read pointer must be updated by the process using this operation.
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Cache operations. Special operations are required to control the on-device cache structures
and the TLB. The caches are not participating in the system’s cache coherency protocol due
to the limitations of the I/O interface, hence the consistency and coherency must be ensured
manually. The TLB contains the most recent address translations. Support for inserting new
translations or removing outdated ones is required. Because both the caches and the TLB
must be kept manually consistent, the following operations both apply for the caches and
the TLB.

Depending on the update policy, several operations are required. Inevitable is the cache
flush operation invalidating the complete cache and a cache insert operation for new
entries. For a write-invalidate cache policy basically only the cache flush operation is
required. A cache remove operation avoid to invalidate the complete cache, instead only
one element is removed. A large number of further operations are possible, which can be
found with a detailed description in [52]. For instance, bulk update of multiple entries likely
improves the overall performance if a typical RMA packet transfer exceeds the size of one
page.
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2.4  C O M M U N I C A T I O N  I N S T R U C T I O N S

In the previous sub-chapter the work flows for the Send/Receive and RMA
communication scheme are explained (see “2.3.3 Send/Receive communication scheme” on
page 45 and “2.3.4 Remote Memory Access (RMA) communication scheme” on page 47).
Still missing is a detailed description of each available communication instruction in these
schemes.

The separation into multi-staged work flows allows to execute different commands in
each stage. The first command of a work flow is contained in the communication
instruction, issued by a process to the requester. The requester injects a packet into the
network with a command for the next stage, which is either a responder or a completer. A
responder answers with a packet including a command for the completer. The completer is
always the final stage of the work processing (except for the optional acknowledge). It
generates a notification queue entry containing a command which informs the local process
(which can be both origin or target) of the result of the work.

2.4.1 Commands for  Requester

The origin process initiates the communication by issuing an instruction to the
requester. The instruction issue also triggers the requester to start the work processing.
When the requester finishes it’s part of the work, it sends out a request packet over the
network. The instruction determines if the work is two- or three-staged. For a two-staged
work flow the destination is a completer, for the three-staged a responder. Figure 2.11
shows the work flow for the requester.

Figure 2.11 Work f low for  Requester

Hence the requester receives instructions from application processes. The command
section of the instruction determines the type of work to be processed. In Table 2.2 the
supported commands are listed, together with a short description.

Requester unit

Origin

POrigin

request packet

initiate work
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Table 2.2: Commands for Requester

Command Description

Send
Part of the two-sided communication scheme. Payload is located 
in dedicated buffers, and the instruction includes a reference. 
Size of the payload is only limited by the buffer size.

Fast_Send
Similar to Send instruction, but the payload is included in the 
instruction as an immediate value. Hence the size of the payload 
is restricted.

Put
Part of the one-sided communication scheme. Payload is 
directly fetched from user space and at the target written into 
user space. Payload size is only limited by the used windows.

Fast_Put Similar to Put instruction, but the payload is included as an 
immediate value in the instruction, hence it’s size is limited.

Misaligned_Put
Similar to Fast_Put instruction, but only parts of the immediate 
value are marked valid using a byte enable. This allows to over-
write only parts of a data word at the target.

Get
Part of the one-sided communication scheme. Payload is fetched 
directly from the target’s user space and stored at the origin into 
user space. Payload size is only limited by the used windows.

Fast_Get
Similar to Get instruction fetching the payload directly from the 
target’s user space. But here at the origin the payload is included 
as immediate value in the notification.

Misaligned_Get Counterpart for Misaligned_Put instruction. Because data is 
only read and not written, this instruction is optional.

Fetch_And_Add

Atomic operation and part of the one-sided communication 
scheme. The instruction includes a target address and an addend. 
The addend is added to the data located at the target address and 
the result is both stored and returned. All payload is included as 
immediate value.

Compare_And_Swap

Comparable to Fetch_And_Add, but here instead of an addend a 
compare and swap value is included. Only if the compare value 
matches to the target address, the swap value is stored instead of 
the original value.



C H A P T E R  2 Communication and Synchronization58
2.4.2 Commands generated by Requester

Depending on the instruction issued to the requester, it sends out a packet to either a
responder or a completer. The commands generated by the requester are equal to those in
Table 2.2. Using them the target can decide whether the incoming packet is processed by a
responder or completer.

If no acknowledge is requested for this instruction, the requester immediately informs
the origin process that the instruction is completed. This is done by inserting a new entry in
the process’s notification queue.

If the instruction includes an acknowledge, the completer on the target node sends back
an acknowledge, which is received by the completer on the origin node. The origin
completer then inserts a notification queue entry.

2.4.3 Flow for  Requester

In the following the requester part of the work flow is explained in detail. It starts with
triggering the requester of a new entry in the work queue. Dependent on the instruction,
some steps can be skipped.

1. Work request descriptor load
2. Routing fetch
3. Routing output to network
4. Command frame generation
5. Command frame output to network
6. Window descriptor load

6-a. This implies a short check if the window is locked.
6-b. For a locked window the processing is aborted, the descriptor 

is marked erroneous and written back as a notification.
7. Repeat for each page of the payload:

7-a. Translate page offset
7-b. Fetch data for this page
7-c. Output data to network

8. Mark descriptor completed and write-back as a notification

The packet injected to the network is composed of the routing, the command frame and
optionally the payload. It is send through the network to the target. Here it is either
processed by a responder or a requester.

Table 2.3: Notification Commands generated by Requester

Command Description

Notifiy_Complete Notifies the origin process that the instruction is processed.
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2.4.4 Commands for  Responder

A responder only receives commands by a requester, but not all requester commands
are processed by the responder. In figure 2.12 the work flow is depicted and the following
table shows the command set for the responder.

Figure 2.12 Work f low for  Responder

2.4.5 Commands generated by Responder

Commands generated by a responder always target a completer. To distinguish the
packets from requester and completer, additional commands are required. These commands
are based on the incoming commands in Table 2.4, but mark this packet as a response.

Table 2.4: Commands for Responder

Command Description

Get Fetch payload directly from user-level space and return it in 
a response packet.Fast_Get

Misaligned_Get Equals the Get command. The byte enable mask can be 
applied either on the target or on the origin node.

Fetch_And_Add Perform the requested atomic operation and return the 
result in a response packet.Compare_And_Swap

Responder unit

Target
request packet

response packet
PTargetoptional

information
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The responder can optionally notify the corresponding target process of a performed
RMA instruction. This is done by inserting a new notification queue entry in the process’s
notification queue.

2.4.6 Flow for  Responder

In the following the responder part of the work flow is explained in detail. It starts with
an incoming packet from the requester. The last two steps are optional and only required for
the notification of the passive target process.

1. Window descriptor load
2. Window check

2-a. If the window check fails, the processing is aborted. A nega-
tive acknowledgement is sent back to inform the origin of the 
failure. Furthermore a notification descriptor is generated 
informing the target of a failed RMA operation.

3. Reverse routing output to network
4. Command frame generation with response command
5. Command frame output to network
6. Repeat for each page of the payload:

6-a. Translate address for each page
6-b. Fetch data for this page
6-c. Output data

Table 2.5: Packet Commands generated by Responder

Command Description

Get_Response This is the answer for a Get instruction, including 
the payload fetches from the target address.Fast_Get_Response

Misaligned_Get_Response Similar to Get_Response, but parts of the payload 
can be selected using a byte enable.

Fetch_And_Add_Response Includes the result of the atomic operation per-
formed at the target.Compare_And_Swap_Response

Table 2.6: Notification Commands generated by Responder

Command Description

Notifiy_RMA Notifies the target process that an RMA was performed.
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7. Notification descriptor generation
8. Notification descriptor store

The outgoing packet is composed of routing, command section and payload. The next
step in the work flow is always a completer.

2.4.7 Commands for  Completer

The completer is either located on the origin or the target node. It processes packets
coming in from a requester or a responder. Except the optional acknowledge, a completer is
always the final stage of a work flow. Here ends the processing of the payload.

If an acknowledge is requested, the target completer sends back an acknowledge to the
origin completer. The origin completer then generates an appropriate notification queue
entry. For the three-staged work flow acknowledges are not required.

Figure 2.13 Work f low for  target  completer

Figure 2.14 Work f low for  origin completer

 The following table shows the commands for the completer, derived from the
commands generated by the requester and the responder. Additionally, the acknowledge is
included as a command generated by a completer.

Completer unit

Target
request packet

optional acknowledge PTargetdeliver
work result

Completer unit

Origin
response packet

POrigin deliver
work result

acknowledge packet
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2.4.8 Commands generated by Completer

The completer generates notification queue entries which include a command. The
completion of all operations listed in Table 2.7 is notified to the corresponding process. The
appropriate entry then contains the same command, allowing to identify the completed
instruction.

Additionally, for a two-staged work flow a (target) completer can send back an
acknowledge. The command for an acknowledge packet is shown in Table 2.8.

The origin completer receiving an acknowledge packet generates a notification queue
entry. The only available command is already shown in Table 2.3.

Table 2.7: Commands for Completer

Command Description

Send Store the payload in dedicated buffers.

Fast_Send Generate a notification including the payload as 
immediate value.

Put
Store the payload directly in user space buffers.

Fast_Put

Misaligned_Put
Similar to Put instruction, but only the parts of the 
payload enabled by a mask are stored in user space 
buffers.

Get_Response Store the payload directly in user space buffers.

Fast_Get_Response

Generate a notification including the payload as 
immediate value.

Misaligned_Get_Response

Fetch_And_Add_Response

Compare_And_Swap_Response

Table 2.8: Packet Commands generated by Completer

Command Description

Acknowledge Acknowledge packet sent back from target to origin.
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2.4.9 Flow for  Completer

In the following the completer part of the work flow is explained in detail. It starts with
an incoming packet. As long as no acknowledge is required the completer is the final stage
of the work processing.

1. Window descriptor load
2. Window check

2-a. If the window check fails, the processing is aborted. If the cur-
rent node is the target a negative acknowledgement is sent 
back to inform the origin of the failure. Furthermore a notifi-
cation descriptor is generated informing the local system (ori-
gin or target) of a failed RMA operation.

3. Optional acknowledge generation and returning:
3-a. Reverse routing output to network
3-b. Command frame generation with acknowledge command
3-c. Command frame output to network

4. Repeat for each page of the payload:
4-a. Translate address for each page
4-b. Fetch data for this page
4-c. Output data

5. Notification descriptor generation
6. Notification descriptor store
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CHAPTER 3
 N E T W O R K  

I N T E R F A C E  
A R C H I T E C T U R E
As cluster nodes become more and more parallel [53], efficient and simultaneous
access to the network device from multiple processes becomes even more important. The
architecture of a network interface (or a device in general) should provide support for a
large number of processes accessing directly the device using User-Level Communication.
Another goal is a high utilization of the hardware resources independent of the number of
processes. 

An efficient interface to the device is the key for a scalable architecture. The interface
is a bottleneck, which is in particular true when the number of client processes
simultaneously accessing the device is scaled. An optimized access scheme allows to share
this interface among a larger number of processes. Only then parallelism is available to be
exploited by the network interface architecture.

This chapter starts with a short introduction into the most important working principles
and techniques for network interfaces and devices in modern computing systems. This will
form a basis for the following sub-chapters, where these existent techniques together with
new ones are used to develop a most suitable architecture for a network interface. Most of
the results are not limited to network interfaces, other kinds of devices may also benefit of
them.

In the following Chapter 4 ”Specification and Evaluation” the results of this chapter
are collected and combined with those from Chapter 2 ”Communication and Synchroni-
zation”. The proposed top-level architecture of the network interface is presented and
allows a comprehensive view of this development and it’s integration into the system.
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3.1  I N T R O D U C T I O N

This sub-chapter will shortly introduce common methods and techniques used in
modern computing systems. It focusses on Network Interfaces and their integration into the
whole system. This background is essential for an in-depth understanding of the following
sub-chapters.

3.1.1 Device access  methods

Inevitable for devices in modern computing systems is to allow access from several
processes to a single device. Due to the required separation this can be either performed by
the operating system or directly in hardware. Hardware solutions allow to bypass the O/S
and avoid costly system calls. Figure 3.1 shows the design space diagram for device access
methods. These methods are now explained in detail.

Figure 3.1 Design space of  device access 
methods

Traditionally, the access to peripheral devices is multiplexed by O/S to support more
than one process (Kernel-level multiplexing, Figure 3.2a). Here the O/S can supervise the
client processes regarding correctness of the operations. But the required system calls
introduce additional overhead which leads to performance degradation. The logic
complexity of the device can be kept quite low because the O/S can overtake a lot of
required actions. Typically, those devices do not off-load tasks from the CPU.

A solution to avoid the performance degradation is the principle of User-Level
Communication [42] (Figure 3.2b). By address space mapping of I/O pages into user-level a
process directly opens the device for exclusive usage. Overhead due to system calls is
completely avoided, but the O/S can no longer supervise the processes. The task of
supervision has to be done by the device itself and off-loads (CPU-offloading) tasks from
the CPU. This increases the amount of required logic for the device and so the complexity
of hardware. Another disadvantage is that only one process can open the device at a time.

device access

kernel-level User-level device context
multiplexing communication switchingreplication
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Techniques to support multiple processes together with User-Level Communication are
device replication (Figure 3.2c) and context switching (Figure 3.2d). Due to the supported
User-Level Communication both techniques perform off-loading of supervision tasks and
lower the load of the CPU.

Figure 3.2 Overview of device access methods

Device replication [39] can be achieved by replicating the appropriate hardware
modules. From the user process point of view, each replicated hardware module looks like
an independent device. Due to the replication of the hardware the supported number of
processes is fixed. This solution does not scale: every new interface requires a complete
new hardware module. The scalability is limited by the on-chip network which has to
connect all modules to the I/O interface. Another constraint is the required area of the
design. Additionally this method is not very efficient because unassigned modules cannot
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be used to improve the performance by distributing the work of one process over several
modules.

Context switching supports several processes accessing the device, too. Each access is
followed by a device context switch. In a device context, process specific configuration
informations are stored. The context switch is typically supervised by an on-device
processor. This processor recognizes the calling process and configures the appropriate
hardware modules. Normally the switching takes place in a time-sliced manner. The
utilization of the resources and support for the exploitation of parallelism is dependent of
the architecture of the embedded processor. A combination of device replication with this
approach leads to a processor with several (communication) cores. Then a limited number
of concurrent running threads is supported.

Context switching is the most promising. The concepts of context switching developed
for CPUs is adapted to devices. In a CPU, the O/S is responsible to organize the scheduling
of the user processes. For a device the counterpart can be a processor, but dedicated
hardware modules are also possible and offer a better exploitation of the available
parallelism. The usage of contexts allows a scalable design if the size of a context is kept
small and the overhead for context switches is very small. Then this method allows the
device to store the information of a large number of processes. If one process accesses the
device, a free module is configured for this process using the context informations and the
work is processed.

Table 3.1: Summarization of device access methods

Kernel-level 
multiplexing

User-Level 
Communication

Device 
replication

Context 
switching

Supported number 
of clients

unrestricted
+

1
-

limited
0

unrestricted1

+

1. Under certain circumstances, see accompanying text for requirements. Beside this, every hard-
ware introduces limitation, but they can be set so high that they are in the end not effective.

User-Level Com-
munication

no
-

yes
+

yes
+

yes
+

CPU off-loading no
-

yes
+

yes
+

yes
+

Dynamic resource 
utilization

O/S level 
scheduling
0

no

-

no

-

yes

+

Logic complexity low
+

moderate
0

moderate
0

high
-
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Table 3.1 summarizes the properties of the different access methods and rates their
advantages and disadvantages. The most promising approach to fulfill the goals of this work
is context switching.

3.1.2 Data transfer  methods

 Two different approaches are possible to transport data from and to the device. In the
PIO mode the CPU reads and writes all data from and to the device using the PIO mode.
The device itself is not accessing main memory. In the DMA mode the CPU specifies the
location of data structures in main memory. The device directly accesses the main memory
and fetches the data. This unloads the CPU from this task.

Figure 3.3 Design space of  data t ransfer  methods

The PIO mode is used for register-based interfaces [18]. Various versions exist, but all
are based on composing a message in registers, either specialized processor registers or
device registers. One register (set) is dedicated for message sending and one for message
reception. The disadvantage of this approach is a large overhead for the processor, wasting
computing resources while serving as a DMA engine. CPU-offloading is not possible.
Because the sequence of message composition and retrieval may not be interrupted by other
processes some additional problems arise.

1. The scheduler of the system may not switch the running process during 
such a sequence. Either such a sequence is uninterruptible or a single 
atomic operation is used.

2. It must be ensured that a sequence is always completed within finite time, 
otherwise the resources are blocked.

3. The desired support for simultaneously accessing processes leads again to 
the problem of the mutual exclusion during the sequences. This may also 
result in scalability problems.

4. The work can only be processed in order.

A solution to avoid the problems above is a descriptor-based interface [18]. It is based
on the DMA mode. In a descriptor a message is described regarding destination, tag, other
header information and payload. For larger data structures with variant sizes (like the
payload) usually only a reference is included (using pointers), but for smaller payloads

data transfer

Register-based Descriptor-based
interface interface

PIO mode DMA mode
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immediate values are also possible. These descriptors can be pre-assembled by the
processor and issued in one block to the device. 

3.1.3 Work requests  and not i f icat ions

A work request of any kind can be described by a descriptor. Such a work request may
contain a message to be sent, status query, pointer updates or anything else that is required.
Work requests are sent from a process to the device. In the other direction the information is
usually passed using notifications. Notifications may contain information of received
messages, frequent status or pointer updates. For notifications are also descriptors used. To
recognize a new notification, a process can either poll continuously on a known memory
location for changes, or it registers itself to an interrupt notification scheme. Then the
device generates an interrupt for every new notification.

A work request can also be treated as an instruction which leads to a procedure call
processed by the device. It has many similarities to an instruction of a CISC architecture,
including complex commands with immediate or in-direct data values. The device-level
procedure call unloads the CPU from processing this task. The procedure call starts with
issuing a work request to the device. Then the device processes this work. An asynchronous
check for completion is performed later and the CPU is informed that the procedure call is
finished.

Each work request requires a certain latency to be processed. Due to the work
granularity the required time to process a work request is much larger than the processing
time of a CPU instruction. By performing other tasks (e.g. computation tasks) this latency
can be hidden. To allow efficient latency hiding support for several outstanding work
requests is inevitable. It must be possible to issue one (or preferable more) work requests to
the device. During the accumulated time to process them the CPU can perform other tasks
instead of waiting for the work completion. In other terms support for several outstanding
work requests allows to decouple the CPU and device processing. A queue-based interface
is a solution for this problem. Work requests are enqueued by the process and dequeued by
the device. The queue can be located either in main memory or in on-device memory,
dependent on the requirements and constraints. For the opposite direction from device to
process the same applies, but here the device enqueues notifications and the processes
dequeue them.

3.1.4 Simultaneous device access

Computer system are getting more and more parallel due to several reasons (see figure
3.4). The processor architecture improves more and more by techniques like multi-
threading or core replication [54][55]. One physical processor can run several processes or
threads simultaneously. Typical modern systems house not only one but several processors.
Applications tend to be more and more divided into threads. An optimal and efficient
exploitation of the available parallelism is essential for a performant system. While the
current processor designs already take this requirement into account, the peripheral devices
and the I/O interfaces still provide no adequate support for this.
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One of the goals of this work is to support multiple processes accessing the device
simultaneously. All these processes issue their work request concurrently to the device. The
interface to the device will be the limiting factor of the design, because it has to be shared
among all processes. Furthermore the interface is used for all main memory accesses from
the device.

Figure 3.4 Multiple processes accessing a device

3.1.5 On-device memory

Each modern CPU has a memory hierarchy, from the registers over the different cache
levels to the main memory (see figure 3.5). The demand paging principle can also be
included in this hierarchy, extending it to mass storage devices. The memory hierarchy has
proven to be very efficient for cost-performance optimization. Starting with the registers as
most performant but also most expensive, a hierarchy component’s size increases while it’s
cost decreases. The last component, the mass storage devices, have the lowest performance
but also the lowest costs per bit.

Some parts are visible to user-level processes, others not. The registers have to be
loaded explicitly while all cache components are transparent and reduce access costs to
underlying components automatically. A cache coherency protocol ensures the correctness
of all cache entries. For a user-level process the swapping of pages to mass storage devices
is also not visible. The O/S with the help of the MMU takes care of this. The working set of
a process contains all referenced resources within a given time interval. Typically a working
set is bounded because applications likely work on limited resources, at least within small
time intervals. This is the reason for the excellent performance gain of caches. A cache
stores copies of the most recently used resources and reduces the access costs.
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Figure 3.5 Memory hierarchy of  a  system

From a device’s point of view there are two kinds of memories: on-device memory and
main memory. Compared to main memory the on-device memory is more expensive and
more limited regarding size. To reduce the overall costs of a design, a goal must be to
reduce the amount of on-device memory. A design without on-device memory at all is also
called memory-less design [56]. Here all data structures are stored in main memory.

Figure 3.6 Design space of  memory for  devices

The largest drawback of main memory usage for a device are the access costs and a
missing cache coherency. By not taking part in the coherency scheme is device is not
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informed of any changes in main memory. The access costs can be limited by applying a
memory hierarchy to the device design, resulting in on-device cache structures. Comparable
to CPU processes, each device thread has a working set which allows the use of cache
structures. For caches much less on-device memory is required and the caches reduce the
average memory access costs. But the non-coherent interface requires additional
complexity to ensure coherency and consistency of the on-device caches.

In spite of this a memory-less design with on-device caches is the most scalable
solution, when more memory is required. The bad performance of main memory accesses is
improved by the caches.

Although the architecture would benefit from a coherent interface, one design goal is a
non-coherent interface. Otherwise the design would be limited to seldom available systems
with coherent interfaces.

3.1.6 Virtual  Machine environments

Modern computing systems are powerful enough to host not only one operating system,
it is feasible to run several operating systems on a single physical platform. This leads to a
resurgence of Virtual Machines (VM), a technique that is well known for a long time but
was always limited to specialized high-performance mainframes and servers with dedicated
support for virtualization [16]. The virtualization of a complete system, including
processors, memory and I/O, makes it possible to run several operating systems on one
physical machine.

There are several reasons for virtualization. Utilization, reliability and maintainability
increase for VM environments. For different O/S requirements it is easy to share a
virtualized server with different types of O/S running on it. Each O/S can be chosen
dependant on the user’s requirements. Failures or intrusions in one O/S instance are isolated
and cannot affect other instances. O/S upgrades are easily possible and minimize downtime.
Regarding the workload management there are also several advantages: the various
workloads in heterogeneous environments can be consolidated onto one virtualized
machine. Another feature is the workload migration, which allows to shift a workload from
one virtualized server to another. This can be achieved by encapsulating the state of a guest.
Workload isolation allows to separate applications. If several applications share one O/S
(one physical machine) they can be isolated by virtualizing the server and assigning each
application it’s own O/S, again providing increased isolation.

Virtual Machine Monitors. On a non-virtualized platform one single O/S has direct
control over all physical resources, they are used exclusively by this O/S. For a VM
environment a new software layer is introduced, the Virtual Machine Monitor (VMM) or
Hypervisor. The VMM is located on top of the operating systems. The operating systems
are now guests of the VMM and each guest runs in a domain. No longer an O/S controls the
physical resources, instead the VMM multiplexes the accesses from all guests to the
physical resources. No O/S can directly access any physical resource. The set of virtualized
resources provided by the VMM for one guest is called VM.
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Resources can be virtualized by a VMM in different ways. One approach is the
partitioning of resources. Here the resource is divided into subsets. Each subset can be
assigned to another guest. This is only possible for resources that can be split. A typical
example is the physical memory. In a typical VM environment, the total amount of memory
is divided into subsets of equal size. Each guest gets only one subset. Resources that are non
divisible are typically shared in a time-sliced manner between the competing guests.
Examples for this are the CPUs, and I/O devices like network interfaces, storage controllers
or any other peripheral device. The VMM schedules the guests in a round-robin fashion (or
any other suitable) to the shared resources. Each guest gets only one time slice to use the
resources, after this they are scheduled away in favour of other guests.

Very important for VM environments is that a VMM ensures isolation between guests.
No guest may interfere with another guest. This separation must cover performance,
security and safety. Only then the isolation can ensure that no guest affects the performance
of other guests and that no guest can alter or use resources of other guests. Beside these
requirements it is essential for the system’s overall performance that the overhead of the
VMM is as small as possible.

Figure 3.7 Protect ion scheme for  non-vir tual ized 
environments

The general idea of VM environments is a new layer, the VMM, which is located on top
of all guest systems. The VMM layer must be protected from all underlying layers.
Specialized servers and mainframes already include support for this, but the typical x86
architecture has no built-in virtualization support. The x86 architecture only provides four
privilege levels (encoded with 2 bits). Level 0 is used for most-privileged layers, level 3 for
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least-privileged. The levels are also called rings. Privileged instructions can only execute in
certain privileged rings. The ring based protection scheme ensures in non-virtualized
systems that applications have less rights than the O/S and that the O/S is thus able to
supervise the applications. Most O/S today only use two rings: ring 0 for the O/S and ring 3
for applications.1 Figure 3.7 shows the ring protection scheme for a non-virtualized
environment.

The challenge is to insert the VMM layer on top of the O/S, which runs already in the
most-privileged ring. The x86 architecture provides no support for this situation. Several
software techniques offer a solution for this problem: the full virtualization, the paravirtual-
ization [57] and virtualization in O/S level. A completely different approach is to add
hardware support for virtualization to the x86 architecture. Figure 3.8 shows the design
space of these techniques.

Figure 3.8 Design space of  vir tual  machine 
environments

Full virtualization on x86 architectures. Full virtualization allows the hosting of
unmodified operating systems. The challenge is that O/S already use the most-privileged
ring 0 and the x86 architecture does not provide any hardware support. For a correct
behavior certain instructions must be handled by the VMM and not by the O/S. A solution
for this problem is to dynamically rewrite the code. This binary translation technique inserts
traps where instructions must be handled by the VMM and not by any other underlying
layer. This introduces a significant amount of overhead and is not an optimal solution.

Paravirtualization. The paravirtualization approach [57] avoids dynamic re-coding of
instructions and does not require architectural hardware support. Here the virtualization is
achieved by shifting the O/S from ring 0 to ring 1. Hence the paravirtualization is also
called ring deprivileging. This allows the VMM to be executed in ring 0. However, this

1. The last well-known O/S for the x86 architecture that made use of ring 1 and 2 was OS/2.
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approach requires modifications to the guest O/S to execute them in ring 1. Applications
can still run without modifications because the Application Binary Interface (ABI) of the
O/S is not changed.

Figure 3.9 shows the modified ring protection scheme. To improve the further reading,
the depicting is changed from rings to layers. The O/S is now executed in ring 1 while the
VMM can operate in the most-privileged ring 0.

Figure 3.9 Protect ion scheme for  para-vir tual ized 
environments

Virtualization in O/S level. If all guest systems are of the same O/S type (e.g. Linux) then
virtualization can be achieved completely in O/S level. All modern O/S are designed to
isolate and secure different application to prevent them from interaction. These principles
are extended and allow applications to be run in guest environments. Applications as guests
view their environment as a stand-alone system. While the paravirtualization and full
virtualization approach run multiple kernels, the approach here executes only one kernel.
The single-kernel approach introduces a much smaller overhead, but as already mentioned
it only allows guest systems of the same type.

Full virtualization with architecture extensions. Hardware support for virtualization
extends the x86 architecture by adding two new forms of CPU operation: the root operation
and the non-root operation [58]. Both operations support all four protection rings. Guest
O/S and their applications can occupy all four rings. Instructions executed in non-root
operation mode are deprivileged compared to the root operation mode. Hence the VMM is
supposed to be executed in root operation mode while a guest runs in non-root mode. The
transition from non-root to root mode is called VM exit and the opposite way VM entry. A
control structure manages VM entries and exits in non-root operation mode. In this structure
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the causes for VM exits can be specified, like privileged instructions or events. This allows
to implement several virtualization techniques.

The most important benefit of hardware virtualization support is that paravirtualization
or dynamic translation techniques are no longer required. Each O/S can be run on a VM
without any modification, neither static or dynamic ones. The VMM can execute in a
separate operation mode. Figure 3.10 shows the protection scheme for a virtualized
environment with hardware support. Here an example guest O/S which occupies only ring 0
and 3 of the non-root mode, but all four rings can be used by a guest O/S.

Figure 3.10 Protect ion scheme for  a  vir tual ized 
environment with hardware support

Examples. There are several VMMs available which use different techniques to virtualize a
physical machine. Representatives for the paravirtualization approach are e.g. Xen [59] or
Denali [60]. Examples for the full virtualization without hardware support are e.g.
VMware’s ESX Server [61][62]. The OpenVZ project is an open-source representative of the
O/S level virtualization technique [63]. The commercial product Virtuozzo for Linux is
based on OpenVZ. Hardware virtualization techniques are e.g. AMD’s Pacifica Technology
[64][50] or Intel’s Virtualization Technology [58] (formerly known as Vanderpool
Technology).

3.1.7 Virtual ized devices

According to [59], “virtual devices are elegant and simple to access”. This is true as
long as the access to the virtual devices involves the VMM. In this case the data between
guest and VMM is transferred using asynchronous I/O rings and an event mechanism
replaces the hardware interrupts. The VMM schedules the accesses from all guests to the
device. This introduces an additional amount of management overhead. User-Level
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Communication is only possible for non-virtual devices which can only be used exclusively
by one guest. Device sharing combined with User-Level Communication is not possible.

Typical approaches target to virtualize a common Ethernet controller so that all guests
can access it. For Xen the approach is documented in [65]. Here the device driver runs in a
Isolated Driver Domain (IDD) or in other terms a driver-specific VM (see figure 3.12).
Driver faults are then limited to this VM and cannot effect other ones. The performance
regarding bandwidth is acceptable: the driver achieves 100% for transmit and about 70%
for receive compared to an unmodified Linux implementation. Several techniques are
proposed in [66] to improve the receive performance. In [67] the approach to virtualize
devices for VMware Workstation is documented. The approach is similar, special drivers
multiplex the accesses from guests to the device. The required process context switches lead
to a degraded performance, increasing latency and CPU utilization.

Figure 3.11 Design space of  vir tual ized devices

Several approaches already target to virtualize a device with the VMM bypassed and
not included in the communication between guest user-level or guest kernel-level processes
and the device. For this approach hardware support is required and the bypassed VMM
reduces the overhead for device accesses. In the following two solutions are presented
together with the results regarding performance. The performance increase shows the
benefit of off-loading virtualization complexity into hardware and bypassing any software
layer from a guest’s user-level process to the virtualized device.

VIA and Infiniband. The Virtual Channel Interface (VIA) [68] already specifies a kind of
virtualization. Here the interface between processes and the device are Queue Pairs (QP).
The VIA specification states that up to 216 queue pairs per device are possible. Under
certain conditions QPs are limited to single destinations, but in general one QP is sufficient
for a process to communicate. So this specification enables up to 216 processes to use the
device. Beside the number of QPs no methods regarding implementation are specified, and
no hardware was implemented supporting this large number of QPs. Successor of VIA is

Virtualized Devices

VMM based VMM bypass

driver part of 
VMM

driver part of
IDD

guest O/S bypassguest O/S based



3.1  Introduction 79
Infiniband [31]. IB also specifies up to 216 QPs. For IB there are hardware implementations
supporting this large number of QPs. The implementation details are again not specified,
and the methods developed by the manufacturers like Mellanox or Voltaire [32][33] are not
published.

The development of a VMM-bypass I/O technique for Infiniband adapters shows the
potential of virtualized devices [69][70]. This approach relies on the large number of QPs
offered by this Infiniband adapter. Such a virtualized device allows direct access from
several guest systems, including kernel- and user-level processes. The design is based on
the idea of paravirtualization, but here the hardware interfaces of existing devices are not
preserved. Instead guest modules are used to handle the privileged accesses to the device.
These guest modules are part of the guest O/S. A backend module in the VMM provides the
access for different guest modules. For non-privileged accesses the guest application can
then directly access the device (see figure 3.12). The bypassed VMM allows User-Level
Communication and this results in almost no performance degradation regarding bandwidth
and latency.

Figure 3.12 Device access in VM environments

Virtualized Ethernet network interface. Another approach to off-load the virtualization
functionality to hardware is a device based on the Intel IXP2400 network processor with
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core can hold 8 contexts. The communication cores serve as Ethernet network interfaces.
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directly without VMM involvement (see figure 3.12). The results compare latency and
bandwidth with and without the self-virtualization technique. The latency is approximately
cut in half and the bandwidth increases about 50%, too. This shows again the impact of off-
loading virtualization complexity from VMM to hardware.

The virtualized Ethernet device developed in [71] is called self-virtualizing device. This
term is most suitable to describe the desired functionality. For a self-virtualizing device no
VMM support is necessary to allow access from multiple guests to the device, the VMM
can be bypassed. Instead the device offers several replicated ports to the host system. For
the host, these ports are devices.

The goal of the device replication presented here matched exactly the functionality of a
self-virtualizing device. The only but major difference to the development in [71] is that for
the device virtualization User-Level Communication is an essential goal.
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3.2  A R C H I T E C T U R E

One of the goals of this work is to develop an network interface architecture that
supports simultaneous access by a large number of user-level processes. This leads to a
virtualization of the device by offering a large number of ports towards the host side. Each
port presents the illusion of a complete exclusive device for a process. Only the device
driver is aware of the virtualized device. The large number of simultaneously accessing
processes lead to a high degree of Thread Level Parallelism. Several work requests issued
by one process increase the amount of Instruction Level Parallelism. Both kinds of
parallelism should be perfectly exploited by the underlying hardware architecture without
limiting it to one of them.

The architecture is one of the key elements of the complete design. Comparable to
modern processor architectures, it must be chosen carefully with all possible circumstances
in mind. Goal is to find an architecture fulfilling all goals and still providing an excellent
performance for all use cases. In the following the requirements for this architecture are
shown, derived from previous considerations and the goals of sub-chapter “1.5.4 Goal
summary” on page 30:

• Support for simultaneous accesses
• Exploit the available parallelism
• High and unconstrained utilization of resources, independent of number 

of processes
• Support for Virtual Machine Environments, bypassing VMM layers
• Access method based on fast context switching
• Queue-based interface with descriptors for work requests and notifica-

tions.
• Mem-less design with on-device cache structures

In order to find and develop a most suitable architecture, the first sub-chapter will
present a recapitulation of modern processor architectures. The kinds of parallelism are
introduced together with parallel architectures that try to exploit as much of the offered
parallelism. The most suitable architecture found is then used as framework to develop a
network interface.

3.2.1 Modern processor archi tectures

One of the most important goals of modern processor architectures is to raise the
number of Instructions Per Cycle (IPC). This number tells how many instructions retire per
cycle. It is an indicator how many instructions can be processed in parallel and
simultaneously by an architecture. The recent architecture developments try to boost
performance by raising this number. With a higher IPC number an architecture can exploit
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more available parallelism of a workload. There are different kinds of parallelism and some
architectures are limited to certain kinds of parallelism.

A classical von-Neumann architecture can only exploit less than one IPC, because
several sequential steps are required to perform an instruction [72]. The minimal steps are
instruction fetch, fetch of operands, instruction interpretation and instruction execution. The
IPC can be improved by the introduction of pipeline stages. Here the different steps of an
instruction are processed in parallel in a pipelined manner. This leads to a peak IPC of one.
An IPC of one includes no parallelism. To exploit parallelism and further raise the IPC
number, more sophisticated techniques have to be analyzed. But prior to this, the different
kinds of parallelism are shortly introduced.

Parallelism can be separated into two main classes. The classes are Instruction Level
Parallelism (ILP) and Thread Level Parallelism (TLP). ILP is also known as Fine Grain
Parallelism, while TLP is known as Coarse Grain Parallelism. TLP occurs when several
processes (or threads) issue instructions to a resource. These instructions have no data
dependencies, because they belong to different processes. Hence TLP is typically only
limited by the number of run-ready processes. While TLP is the parallelism of several
processes, ILP is the amount of parallelism comprised in one process (or thread). Here the
parallelism is typically bounded by data dependencies. Only instructions which are
independent of each other and have no data dependencies can be processed in parallel.
Otherwise hazards might occur which lead to misbehavior.

The superscalar architecture extends a pipelined design by including several (possibly
different) Functional Units (FUs) which can process instructions independently. A
superscalar architecture allows the dynamic scheduling of instructions, which is performed
at run time. ILP can be exploited and allows to raise the IPC above one. The IPC is limited
by the available amount of ILP and the number of FUs. TLP cannot be exploited with this
design, because only one process can use the resources. Several processes are executed in a
time-sliced manner. A superscalar architecture has several prerequisites. It must be possible
to fetch, dispatch and issue enough instructions to utilize the FUs. The same applies for
instruction completion. The instructions must be analyzed in run-time for dependencies. A
scoreboard can be used to find dependencies and stall instructions which are dependent of
prior instructions. Independent instructions are processed out of order.

Essential for the exploitation of parallelism, independent of ILP or TLP type, is the
possibility to issue several instructions per cycle. A popular visualization of scheduling for
such multi-issue architectures is shown in Figure 3.13 on page 84. Each issue slot
represents the possibility to issue an instruction per cycle. The instructions to be issued in
parallel can be either detected and scheduled dynamically in run-time or statically by the
compiler. In the past the dynamic scheduling has proved to be more successful due to it’s
flexibility1, hence the following will focus on this. For completeness, a typical
representative of static scheduling is the Very Long Instruction Word (VLIW) architecture.
Here an instruction word is composed by several independent instructions. The compiler

1. For instance it is very difficult to foresee the circumstances of the instruction processing. Cache 
effects and code branches are two of the main reasons why dynamic scheduling typically performs 
better.
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has to find suitable instructions. Typically limitations do exist regarding the instruction
types which can be processed in parallel. One of the most popular VLIW architectures of
today is the Intel Itanium family [73][74][75][76]. The Itanium relies on an excellent
speculative execution support to increase the number of parallel executable instructions.

As mentioned before, ILP is very limited due to dependencies inside the single
instruction stream. TLP is less restricted and exists in an increasing number of applications.
A multi-programmed workload may consist of several independent programs. Another
example is a parallel program, which is divided into several processes or threads. Because
superscalar architectures can only exploit the limited ILP, other approaches are required to
exploit the TLP.

A representative to exploit TLP is the Multi-Threaded Architecture (MTA) [77]. An
MTA can hold several contexts of multiple threads in register sets. The primary goal of
MTAs is to hide the latency of operations. The multiple register sets allow the MTA to
switch to another thread if a long-latency operation occurs. MTAs can be classified in
coarse grain and fine grain multi-threading. For the first the time required to switch a
context is about 4-6 cycles, which is too long to hide the latencies of brand mispredictions
and on-chip cache misses. Fine grain MTAs achieve a context switching latency of one
cycle by using sophisticated hardware modules. MTAs can also make use of multiple FUs
to exploit ILP. The difference between a superscalar and a multi-threaded architecture is
that the first requires O/S support to switch between processes. The latter can hold several
thread contexts and switch autonomously between them. O/S involvement results in
switching times in the range of microseconds.

A recently on the consumer market emerging architecture is Chip Multi-Processing
(CMP) [78], also known as multi-core processors. Here a complete superscalar architecture
forms a building block or core. These cores are replicated on die. A single die now contains
several superscalar cores which are seen by the O/S as multiple processors, comparable to
SMP. ILP is explored by the superscalar architecture of each core, while TLP is exploited
by the replicated cores. The replication has the advantage to re-use modules, which does not
increase the design complexity.

An approach resulting in the combination of superscalar and multi-threaded
architectures is Simultaneous Multi-Threading (SMT) [79]. Like MTAs it allows to hold
several thread contexts to switch efficiently between them. But while MTAs and CMPs
partition the available resources between the threads, SMT does not. All resources are
shared, including register file, caches and FUs. This dynamic resource sharing outperforms
the static resource partitioning by increasing the utilization of the resources.

For a closer analysis of the different properties of the presented architectures, the
partitioning of the issue slots [80] of the different FUs is analyzed. Issue slots represent an
available resource to process an instruction. The number of issue slots is typically equal to
the number of FUs. The following figure compares the four architectures introduced above
by their issue slot partitioning. In the example in Figure 3.13 it is assumed that there are 4
FUs. So 4 issue slots are available per time slot, each represented by a square. Empty
squares indicate that this issue slot is not used. Otherwise the color of the filled square
shows the thread which occupies this issue slot.
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For an improved comprehension of Figure 3.13 two properties have to be introduced,
the horizontal and vertical waste. The horizontal waste is the number of unused slots per
cycle. The vertical waste is the consecutive order of unused slots. Horizontal waste is
typically a result of resource (or issue slot) partitioning. Only one thread can occupy the
issue slots in one time cycle. Time partitioning results in vertical waste. Such a temporally
partitioning assigns the slots of each time cycle to another thread.

Figure 3.13 Issue slot  ut i l izat ion

In Figure 3.13 is can be seen that all kinds of partitioning result in lower utilization.
Partitioning is indicated by the dashed lines. The superscalar architecture suffers from a
large horizontal and vertical waste by limiting all issue slots for a large number of
consecutive time cycles to a single thread. Only ILP can be exploited. ILP is limited by
instruction dependencies and this results in a large horizontal and vertical waste. Not shown
in this figure is the switching to another thread. Thread switching for the superscalar
architecture is extremely expensive. O/S is involved and the amount of required cycles
cannot be visualized in this analysis. Compared to the superscalar architecture the MTA
reduces the partitioning. The temporally partitioning is no longer based on blocks of time
cycles. The threads are switched every time cycle, hence a lot of TLP is exploited. In this
example the first issue slot is always occupied and the vertical waste is significantly
reduced. Because MTAs allow no resource partitioning all issue slots of a time slot have to
be occupied by the same process. If the amount of ILP is not sufficient, not all issue slots
can be occupied which results in horizontal waste. The different approach of the CMP
architecture reduces the horizontal waste by it’s replicated cores. ILP is exploited by the
underlying superscalar architecture of the cores and the TLP by the replicated cores. Again
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there is resource and temporally partitioning which leads to unnecessary restrictions. The
costs for thread switching are comparable to the superscalar architecture and involve O/S
traps. In contrast to these architectures the SMT architecture does not partition resources at
all. It allows the dynamic scheduling of threads to different resources. The impact of the
removed partitioning can be seen in the figure. Each time slot threads can occupy different
resources which leads to a very high resource utilization. Both ILP and TLP is exploited
without restrictions.

All architectures expect SMT unnecessarily differentiate between ILP and TLP. The
temporally and resource partitioning restricts the exploitation of the parallelism, resulting in
sub-optimal resource utilization. Only SMT removes all partitioning and does not
differentiate between ILP and TLP. The result is the highest resource utilization. The
disadvantage of SMT are very high design costs. All resources have to be tagged to identify
the corresponding thread. Replication of modules to reduce design costs is very limited. The
thread competition for resources might also result in unwanted contention and interference.
In [80] several software techniques are shown to limit these effects.

The architecture of the SUN Niagara [81] processor combines the advantages of the
SMT and the CMP architecture. The architecture is called Chip Multi-Threading (CMT)
[82][83]. The cores of this processor are no longer only superscalar, instead they are based
on the SMT architecture. Four threads can concurrently run on each core. The processor
houses up to eight cores in total, in total a 32-way threaded architecture. The successor
Niagara-2 will house 64 threads in total and remove some of the restrictions of Niagara-1.
The idea behind CMT is quite straight-ahead. SMT has the excellent advantage of
unrestricted instruction issue from different threads. Scaling an SMT architecture is difficult
due to the high design costs and the tagging of all resources. Because ILP is typically
limited it is also not essential for the utilization. Each SMT core of a CMT architecture can
exploit the ILP of the workload. The TLP is exploited by the replicated cores. On the one
hand this introduces partitioning again, but the ILP characteristics limit the negative effects.
Scaling the design is easier because the cores can be used as building blocks.

3.2.2 Basic  archi tecture

The result of the previous analysis of modern processor architecture showed that the
SMT architecture supports both ILP and TLP. It perfectly fits to the situation when only one
process is using the device with several simultaneous instructions, as well as several
processes simultaneously using the device with one or more instructions. Furthermore it
does not differentiate ILP and TLP. So the SMT architecture is proposed as the optimal
architecture for a virtualized peripheral device. Other research of network processor
architectures show similar results, but the work focuses on handling IP traffic [84].

If the final implementation of this design shows that there are still unused resources in
terms of silicon area, it might be considered to replicate the SMT architecture. This
replication of modules is similar to CMP and leads to an CMT architecture. Care has to be
taken on the on-chip network connecting the modules and on the cache design. The caches
can be shared among all modules or replicated together with the modules, which leads to
exclusive use.
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The alternative to a custom SMT architecture with application-specific FUs is a device
based on a commodity network processor. Typical network processors offer FUs specialized
for networking application and are configured using microcode. A lot of networking
processors are available, but they do not offer enough parallelism to fully exploit all
available parallelism without limitations. Additionally a complete application-specific
design result in an increased performance so the decision is made in favour of a custom
design.

Functional units. The FUs are one of the key components in this architecture. They
process the work requests of the processes. Comparable to the communication and synchro-
nization work flow in sub-chapter “2.3.1 Work flow” on page 42 there are three types of
FUs:

1. Requester unit: Work requests from processes running on this node (ori-
gin) are dispatched to requester units. A requester unit sends out requests 
to remote nodes (target). The type of a request determines if it is pro-
cessed by a responder unit or a completer unit at the target.

2. Responder unit: A responder unit responds to a request coming in from 
the network side. A response is always sent back to the origin of the 
request. A response is processed at the origin by a completer unit.

3. Completer unit: A completer unit is the final stage of a work request, 
independent if requests or responses are coming in. For both cases the 
work is completed and no further action between target and origin takes 
place1.

Figure 3.14 FU scheduling for  a  
Requester/Completer  scheme
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From the architecture’s point of view the most important difference between these three
types of FUs is the scheduling. The scheduler of the requester units distributes the work
requests of processes. The scheduler of the responder and completer units only dispatches
requests and responds coming in from the network side. In the following all FU types
process instructions. For the requester an instruction is a work request, for the two other an
incoming packet. Beside the source of the instruction the remaining properties are identical.

Figure 3.14 depicts the work flow for a Requester/Completer scheme. On the local node
(origin node) the work request is dispatched as an instruction to a FU. The FU generates a
packet which is sent over the network to the remote node (target node). The command
section of the packet is interpreted as an instruction and again dispatched to a FU. Here the
work is finalized and a notification is generated to inform the target process.

The work flow including a Responder is shown in figure 3.15. Compared to the
Requester/Completer the same steps are performed, but now the origin process is the final
stage. The Responder receives a packet from the Requester, interprets the command section
as an instruction, dispatches the work to an FU where a response packet is generated. This is
sent back to the origin node.

Figure 3.15 FU scheduling for  a  
Requester/Responder/Completer  
scheme
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also reduces the design costs because modules can be re-used by replication. Specific FUs
are also limited to one kind of communication. This partitioning of FUs results in a reduced
scheduling flexibility.

A pipelined design of the FUs has several advantages. The partitioning into pipeline
stages reduces design complexity, similar to the divide-and-conquer approach. The
throughput is increased because several instructions can be processed in parallel: while one
instruction is in a later stage, the next instruction can already be prepared in the previous
stages. A naturally approach to divide a module into pipeline stages is a functional
decomposition. By doing this all three FU types are pipelined to increase the throughput.

3.2.3 Context

The SMT architecture requires a multi-threaded design. A multi-threaded design holds
several contexts. On this note a hardware thread is a loaded context. A SMT architecture
allows multiple loaded contexts and thereby parallel processing. The hardware does not
differentiate between software processes and software threads. If the application is threaded
it must also ensure thread-safety.

The configuration set of a hardware thread is completely stored in one context. If an FU
is scheduled to process work for a process, a fast context switch for only this FU occurs and
configures it for this specific thread. This way each FU can process work from different
processes. The analysis in sub-chapter “3.1.1 Device access methods” on page 66 also
showed that context switching is most promising. The fine granularity of the small sized
contexts also allows to easily store them in main memory and fetch them only if needed. A
cache can store the most frequently used contexts to reduce the average penalty for context
switches. This is inline with the decision for a mem-less design with on-device caches as a
most cost-effective solution, which was shown in sub-chapter “3.1.5 On-device memory”
on page 71.

In a context all informations required to process the work of a process must be stored.
This includes capabilities, a status word and all informations about the data structures of
this process. A data structure is described with it’s location (either main memory or on-
device memory), offset and length. If a read/write pointer scheme is used to identify valid
entries it must also be part of the context.

For an efficient implementation the context should fit into one or more cache lines. The
size of a cache line is 64 byte for almost all modern processors. A cache line is the smallest
unit for coherency and therefore the smallest unit which can be accessed. A context should
fill this structure as efficiently as possible.

3.2.4 Memory hierarchy

The decision for a mem-less design (see “3.1.5 On-device memory” on page 71) also
includes to store all data structures in main memory. Pinned and contiguous memory
regions must be used for these data structures. A device as well as a user-level process can
directly access the structures without O/S involvement. To ensure security a process is not
allowed to access any data structure except it’s own, which is in particular true for the data
structure containing the contexts.
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Caches are used to reduce the average access costs to the data structures in main
memory. Replacement strategies are required due to the limited size of a cache. Using a
sophisticated replacement strategy the hit rate of a cache is increased by keeping the most
recently accessed entries in the cache. The same strategies as used in modern processor
architectures are also suitable here.

The device can only access physical addresses, virtual addresses are not possible. This
occurs when processing work requests with RMA operations. One possibility is to perform
the address translation by the device driver. The device can notify the device driver using an
interrupt to translate a virtual address into a physical one. This must be done for every
single page, because the virtual address space is not contiguous in physical. The resulting
overhead is not desirable, but it can be diminished. Comparable to modern processor
architectures, an on-device TLB is used to store the most recently used address translations.
For a CPU it reduces the amount of system calls for translations, here the amount of driver
calls.

3.2.5 Functional  units

The FUs can be classified into three types. The requester unit processes work requests
from processes and sends out requests to remote nodes. The type of a request determines if
it is processed by a responder unit or a completer unit at the target. A responder unit
responds to a request coming in from the network side. The response is always sent back to
the origin of the request, where it is processed by a completer unit. Hence a completer unit
processes both requests and responses coming in from the network. It is the final processing
stage where the work is completed and no further action between target and origin takes
place.

Requester unit. In sub-chapter “2.4.1 Commands for Requester” on page 56 the
commands are listed which have to be processed by a requester unit. The following steps
are required in a request unit to process an instruction. These are basically the same steps as
in sub-chapter “2.4.3 Flow for Requester” on page 58, but two steps are added. One for the
context switch at the beginning and one to write-back the modified context. The procedure
starts with the scheduler issuing a context identifier to the FU. This selects a context where
all further informations are stored. The next instruction to be processed is identified using
pointers stored in the context.

1. Context load
2. Descriptor load
3. Routing fetch
4. Routing output to network
5. Command frame generation
6. Command frame output to network
7. Window descriptor load

7-a. This implies a short check if the window is locked.
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7-b. For a locked window the processing is aborted, the descriptor 
is marked erroneous and together with the context written-
back.

8. Repeat for each page of the payload:
8-a. Translate page offset
8-b. Fetch data for this page
8-c. Output data

9. Mark descriptor completed and write-back
10. Context write-back

Some of the steps above can be processed in parallel which is desirable to reduce
processing latency. Furthermore not all steps are required for all instructions. An RMA
operation uses all the steps above but for a Send operation the window fetch and address
translation can be skipped. Generally, the RMA Put and Get operations are the most
complex ones. They are considered for the pipeline structures. The other operations can also
be processed, but for them certain stages are skipped. This is also inline with the design goal
of one general purpose request unit. The pipeline structure of a requester unit is shown in
figure 3.16.
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Figure 3.16 Pipel ine s tructure of  a  requester  unit

Responder unit. The command set for a responder and a requester is identical (see sub-
chapter “2.4.4 Commands for Responder” on page 59). But for a responder the instructions
come from the network side, for a requester they are issued by processes on the same node.
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Figure 3.17 Pipeline structure of  a  responder unit

The required steps for a responder are shown in sub-chapter “2.4.6 Flow for
Responder” on page 60, but again two stages are added for context load and context write-
back. It starts with a packet coming in from the network which is scheduled by to a FU. The
command frame of the packet contains informations about target context, window and
requested data. Then the response FU starts with:

C
on

te
xt

C
ac

he Context
Load

CMD Frame
Generation

CMD Frame
Output

Reverse Routing
Output

Context
Write back

Payload
Data
Fetch

Payload
Address

Translation

Window
Check

I/O
 s

ys
te

m

Payload
Data

Output

W
in

do
w

C
ac

he
TL

B

request packet
Functional Unit

Window
Descriptor

Load

Notification
Descriptor
Generation

Notification
Descriptor

Store

N
et

w
or

k

data flow
control flow
I/O and network accesses

C
on

te
xt

C
ac

he



3.2  Architecture 93
1. Context load
2. Window descriptor load
3. Window check

3-a. If the window check fails, the processing is aborted. A nega-
tive acknowledgement is sent back to inform the origin of the 
failure. Furthermore a notification descriptor is generated 
informing the target of a failed RMA operation.

4. Reverse routing output to network
5. Command frame generation with response command
6. Command frame output to network
7. Repeat for each page of the payload:

7-a. Translate address for each page
7-b. Fetch data for this page
7-c. Output data for this page

8. Notification descriptor generation
9. Notification descriptor store
10. Context write-back

An analysis of possible overlapping steps leads to the pipelined design of a responder
unit like shown in figure 3.17.

Completer unit. Like shown in sub-chapter “2.4.7 Commands for Completer” on page 61
the completer processes commands generated by requester and responder units, coming in
as packets from the network side. Again a scheduler assigns packets to a free unit, where the
work is finalized. Only an optional acknowledge is inserted again into the network.

The steps from “2.4.9 Flow for Completer” on page 63 are combined with stages for
context load and write-back, and in figure 3.18 the resulting pipeline structure is shown.

1. Context load
2. Window descriptor load
3. Window check

3-a. If the window check fails, the processing is aborted. If the cur-
rent node is the target a negative acknowledgement is sent 
back to inform the origin of the failure. Furthermore a notifi-
cation descriptor is generated informing the local system (ori-
gin or target) of a failed RMA operation.

4. Optional acknowledge generation and returning:
4-a. Reverse routing output to network
4-b. Command frame generation with acknowledge command
4-c. Command frame output to network

5. Repeat for each page of the payload:
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5-a. Translate address for each page
5-b. Receive data for this page
5-c. Store data for this page

6. Notification descriptor generation
7. Notification descriptor store
8. Context write-back

Figure 3.18 Pipeline structure of  a  completer  unit
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3.2.6 Scoreboard

In sub-chapter “2.1.6 In-order and out-of-order delivery” on page 36 the requirements
for in order and out-of-order processing of work requests are analyzed. The decision is to
support both. While out-of-order processing requires nothing because all dependencies are
removed, in order processing requires hardware support. The ordering module can be
disabled to allow out-of-order processing.

Figure 3.19 Scoreboard

Scoreboard. The problem has many similarities to modern processor architecture, where
the dependencies of instructions processed in parallel must be solved. A scoreboard [46] is a
solution for this problem. It keeps track of occupied FUs and ensures that dispatched work
does not violate the ordering requirements.

If the combination of context, destination and type of several work requests is equal,
then ordering is required. This combination is also referred to as ordering key. Only work
requests with equal keys must be considered to ensure ordering.

The architecture presented here can hold a different context in each pipeline stage of it’s
FUs. The scoreboard must supervise all of them. For each pipeline stage of each FU the key
is tracked in the scoreboard. The key is inserted upon the dispatch of the work to an FU and
advances with each pipeline stage. After completion of the work the key is removed from
the scoreboard. Figure 3.19 shows a scoreboard with a key inserted, advancing and finally
removed.

A new work request can only be scheduled if it does not violate the ordering. Thus only
when no matching key is present in the scoreboard the work can be processed. An
optimization leads to issuing a work request with a dependency to the same FU as the
matching work is using. Inside an FU no out-of-order execution takes place, hence the
second work cannot overtake the first one and the ordering is ensured. This allows to keep
the context for this FU and also to schedule the work before the previous is completed.
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Figure 3.20 Single issue scheduling with ordering 
control  using scoreboard

Figure 3.20 shows the scheduling if a scoreboard is used to ensure ordering. The issue
queue is filled with work requests. The next to be issued is work request #0, while work
request #3 is the last one inserted. The scoreboard controls the scheduling of the work
requests to the FUs by providing restrictions regarding issue. Either work requests can be
issued without restrictions or a matching work request is currently being processed in one of
the FUs. Then an identification of this FU (for instance, the unique number) is provided by
the scoreboard. Using this scheme, work requests with ordering dependencies are scheduled
to the same FU.

The complexity of a scoreboard is dependant on the number of FUs and their pipeline
stages. To limit the complexity either the number of FUs or the pipeline depth must be
reduced. Each pipeline stage of each FU requires an entry in the scoreboard. In the example
above, the 2 FUs with each 4 pipeline stages result in a scoreboard with 8 entries.

Reservation Stations. Another approach from modern processor architectures to detect
hazards and solve dependencies and conflicts is to use reservation stations [46]. A
reservation station is located in front of each FU. Instructions are issued to free reservation
stations. Here the work request is waiting for it’s resources to become available (in other
terms the dependencies are solved).

The goal of a scoreboard and a reservation station for a modern processor is similar. But
while the scoreboard is a suitable solution to ensure ordering of work in the architecture
here, a reservation station cannot fulfill the requirements. The reservation station working
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principle is based on solving data dependencies, which inherently ensures the correct
ordering of instructions. Here no data dependencies are given, hence this method cannot be
applied.

But another ability of reservation stations is the reduction of Head-of-Line (HOL)
blocking. For a modern processor instructions can be issue to free reservation stations
without dependencies. There they wait until all conflicts are solved. The unrestricted issue
does not result in blocking of instructions with dependencies in the schedule queue, instead
they are immediately issued to appropriate FUs (i.e. to the reservation station of the FU).

The separation of instruction issuing and dependency solving allows to distribute the
previously centralized queue to each FU. This can also be applied to the architecture here by
introducing wait queues in front of the FUs. But the ordering conflicts must be solved
before the issue to the wait queues. Two work requests under ordering control (identified by
their ordering keys) must be scheduled to the same FU, otherwise the ordering cannot be
guaranteed.

In the example in figure 3.20 a reservation station (not drawn) in front of the FUs
allows to perform the issue operation also with the FU occupied. Otherwise the work
request is blocked at the head of the issue queue, preventing to dispatch other work
requests.

While the approach in figure 3.20 shows a single-issue approach, a multi-issue
approach is more sophisticated (see design space in figure 3.21). For a multi-issue approach
not only one work request can be issued per time slot, instead multiple ones. This increases
the scoreboard complexity because in addition all issue candidates per time slot must be
checked for ordering constraints in parallel. The advantage is a reduced HOL blocking,
because one blocked issue queue entry does not block the complete queue any longer. Only
if as many entries as issue slots are available are blocked, no further issue is possible and the
queue blocks again.

Both the single-issue and the multi-issue can be combined with the distributed wait
queues derived from the reservation stations. For the single-issue it reduces the HOL
blocking significantly. Another approach for single-issue is the use of a look-ahead
scheduling. If here the first queue entry blocks, the next is considered for scheduling. This
can be repeated and results in a certain look-ahead depth. Comparable to multi-issue, all the
following work requests in the queue must be included in the ordering check. This results in
a similar complexity of the scoreboard, hence the multi-issue approach is favored because
of it’s fever restrictions.
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Figure 3.21 Design space of  work request  issue

While the multi-issue scheme with a single queue does not suffer from single source
HOL blocking, the combination with the wait queues diminishes the HOL blocking even
more. For unconstrained exploitation the available parallelism, the multi-issue approach
with distributed wait queues is favored.
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3.3  Q U E U E  D E S I G N

Queues are used to decouple the processing of the main CPU and the device. In sub-
chapter “3.1.2 Data transfer methods” on page 69 it is shown that the DMA mode off-loads
the CPU from the work of transferring data from and to the device. The DMA mode is most
efficient when a descriptor-based interface between process and device is used. A work
request to be processed is specified by a descriptor (see sub-chapter “3.1.3 Work requests
and notifications” on page 70). Queues as interface between processes and device allow
several outstanding work requests and hence decouple CPU-level and device-level
processing. A major design decision is if the queues are located on the device or in main
memory (see sub-chapter “3.1.5 On-device memory” on page 71). 

Previous considerations and the goals of sub-chapter “1.5.4 Goal summary” on
page 30 show that the queue design must include also support for simultaneous accesses. A
single queue with multiple producers requires synchronization among them to ensure
correct behavior. An efficient solution for the multiple producer problem is inevitable for a
scalable solution when the number of producers is scaled.

3.3.1 On-device queues

The solution to allow several outstanding work requests is to introduce queues as
interface from CPU to device. For each direction there is at least one queue. The work
queue contains the work requests and the notification queue status information, for instance
information about the completion of work requests. The queues are organized as First-in
First-out (FIFO) data structures. Hence the work requests are typically issued in order.
Advanced techniques like reservation stations or out of order issue can reduce the HOL
blocking and allow multiple instruction issue. An out of order issue does not necessarily
leads to out of order execution. A scoreboard (see sub-chapter “3.2.6 Scoreboard” on
page 95) can ensure in-order work processing, without such a control unit the superscalar
FUs process their work independently and hence out of order.

A fixed size of a queue entry together with the FIFO structure allows a very simple and
highly efficient queue management. Entries of variable size introduce additional overhead
in the queue management with leads to more complex logic. If several sizes of entries are
needed, the queue design should choose the largest one as granularity. The drawback is a
waste of queue space, but the advantage of a more efficient queue management prevails in
this case.

Using queues it is possible to have several outstanding work requests. Now the CPU
can issue a bunch of work, knowing that the accumulated latency to process all of them is
large enough to perform another task. Then the latency of the work requests can be hided.
The check for completion can also be done more infrequently.

In general a queue’s structure is not dependant of it’s direction, so in the following the
work queue is described. Everything also applies for the notification queue with it’s inverse
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direction. For the work queue the CPU or a process is the producer and the device is the
consumer, and vice versa for the notification queue.

The work to be processed by the device is described by a descriptor. In the case of
many parameters a descriptor-based interface has the advantage that the work request can
be composed prior to issuing it to the device. A descriptor contains all required information
to process a work request, either directly or by referring to other data structures. Typical
elements of a descriptor are command fields, sequence numbers, immediate values or
pointers referring to blocks of memory. If the data associated with a work request does not
fit in a descriptor it is stored in a separate data region, known by both producer and
consumer. A pointer to the data and the data length are stored in the descriptor to identify
the associated payload within the data region. The consumer uses this information to fetch
the data and processes the work request.

The location of the queues is a major design decision. The first approach is to treat the
queue-based approach similar to the register-based approach. This means that there are still
registers on the device for work request issue and completion. But behind these registers are
queues to store the appropriate requests. This requires on-device memory, implemented
either as dynamic or static RAM. But the device sees all accesses to the registers and is
informed about the insertion or removal of queue entries. A single write is sufficient to
insert a new work request. A read can be used to consume an entry of the notification queue.
By counting the outstanding work requests the CPU is also informed about the number of
free entries. No check for available space in a queue is required prior to an issue operation.
The complete scheme for a simple on-device queue design is shown in Figure 3.22.

Figure 3.22 On-device queue design

On-device queues are very limited in size. On-device memory is expensive compared to
the main memory of the system. Some techniques exist to off-load queue entries into main
memory but this introduces significant overhead. To off-load on-device queues each queue
entry has to be transmitted in total three time over the I/O interface. This increases the
traffic on this bottleneck significantly. Additionally queue off-loading introduces a lot of
organization overhead due to the different storage places.
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3.3.2 Off-device queues

Main memory has a much better price/performance ratio than on device memory and is
hence typically also much larger in size. The costs to access main memory from a device are
higher compared to on-device memory structures. Another drawback is that the I/O
bottleneck has to be used to access main memory. But the design gets more cost effective
and it is possible to implement larger queues. Beside the price/performance ratio of main
memory another advantage is the flexibility. Typically main memory can easily be
expanded if the need arises. Furthermore it is possible to configure the amount of memory
reserved for the queues, at least statically during boot time. Sophisticated systems can even
allow to add or remove queue memory. Hence main memory is an alternative to on-device
memory.

Several problems immediately arise when moving the queues from on-device memory
to main memory. First, the device is not informed anymore about the insertion or removal of
entries. A write cycle from CPU to main memory is not visible to a peripheral device.
Cache coherency is a solution for this problem, but the device architecture presented here
should not be limited to cache coherent I/O interconnects (see sub-chapter “3.1.5 On-device
memory” on page 71). The device has to be explicitly informed upon every modification of
queue entries. This can be as easy as writing a doorbell register [68]. For each queue there is
a dedicated doorbell so the device immediately knows which queue is addressed.

The second problem is the addressing method. Peripheral devices can only access main
memory using physical addresses, while a user-level process of the CPU can only use
virtual addresses. Furthermore a contiguous VA region is not required to be contiguous in
the PA space. An address translation is required for every used page to ensure correctness.
This is possible but prevents linear accesses from device to memory. While contiguous VA
regions are not contiguous in PA space, it is possible to ensure that contiguous PA regions
are also contiguous in VA space. This approach requires only an address translation for the
first page. The appropriate address together with the length of the region allows linear
accesses for both the CPU and the device.

Next problem is the demand paging principle, which allows physical pages to be
swapped out. Then the VA is still valid but does not have an corresponding PA anymore. At
the PA location can be a different page which has just been swapped in. The device itself is
not notified of this change. The solution is to prevent all pages of the memory region from
being swapped out by pinning them in main memory. Then they are no longer replacement
candidates for pages to be swapped.

To summarize the above, the best approach to implement queues in main memory is to
use pinned and contiguous memory regions.

In main memory a queue is typically not organized as a FIFO structure. The overhead to
shift entries is much too high. Instead an organization as a circular or ring buffer has proven
to be very efficient. Then read and write pointers both for the producer and the consumer
clearly indicate the current state of the queue, and the entries are still consumed in order. An
upper bound of the queue prevents the pointers from an overflow. Instead they wrap around
in this case. The producer compares the read and write pointer to check the queue is not full.
Only then it can insert a new entry and the write pointer is incremented. The consumer also
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compares read and write pointer to check that the queue is not empty. Only then an entry of
the queue can be consumed and the read pointer is incremented to mark this queue entry as
free. The write pointer is only updated by the consumer and the read pointer only by the
consumer. The producer and the consumer must have access to both pointers. But one
pointer is never modified by both, therefore no synchronization is required.

Figure 3.23 Efficient  pointer  scheme for  circular  
buffers

The complete pointer scheme is explained in detail in Figure 3.23. It has the advantage
of a very low overhead. The full and empty condition can easily be calculated, as the
increment of a read or write pointer. Because the modulo operation is quite expensive1 to be
implemented in hardware an upper-/lower-bound calculation is proposed for the consumer.
Then only an add operation followed by a larger-than comparison is needed. For the
producer running on the CPU a modulo operation is uncritical.

1. To be more concrete, a modulo operation on the base of 2 is very easy to implement in hardware. 
But all other bases result in complex and expensive hardware logic. To not limit queue sizes to 
powers of 2, other solutions are analyzed.
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Regarding the location of these pointers it is most effective to store both of them in
device registers instead in main memory. The most important advantage is that the device is
automatically notified of write pointer changes. If the write pointer is stored in main
memory, another device register access would be required for the notification of the change.
Polling a main memory location for a change is also not an efficient solution because a lot
of I/O bandwidth is wasted. So at least one register access is required and this can be
combined with the write pointer update. The producer can hold a copy of the write pointer
and only has to write updates of the pointer to the device. Read operations can be avoided.
Regarding the read pointer the producer has to fetch it from the device. A lazy pointer
scheme is possible, reducing the update frequency of the read pointer copy. For instance, it
is possible to update the read pointer copy only when the full condition of the circular buffer
occurs (based on the comparison of the current write pointer with an out-dated read pointer
copy). An updated read pointer might show that the circular buffer actually is not full.

Figure 3.24 Main memory queue design

Figure 3.24 summarizes the complete architecture for off-device queues stored in main
memory. All four memory regions (work queue, notification queue and their data areas) are
pinned contiguous memory regions. The VAs and PAs of their lower and upper bounds are
known to the producer (user-level process on the CPU) respectively the consumer (device).
The read and write pointers are stored in device registers. The CPU holds copies of these
pointers. Copies of pointers modified by the device are frequently updated by the CPU.
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Pointers modified by the CPU are written back to the device registers so the device is
notified of the change.

One data area shown is assigned to the work queue. A work queue entry (work request)
contains pointers to the data area where it’s associated payload can be found. The other data
area is assigned to the notification queue and works identical. The organization of these data
areas should be dependant on the organization of the work/notification queue. These are
organized as circular buffers. If the data areas are not organized in this way fragmentation
may occur, because in-order processing of queue entries can result in out-of-order
processing of buffer in the data area. Fragmentation introduces overhead to find contiguous
buffer space. If consecutive entries in the queues refer to the data areas in order, the
processing of the queues will also consume buffers in the data areas in order.

The CPU polls on the nq_wp and wq_rp pointer to recognize new or removed entries.
This polling has only to take place if the CPU cannot continue it’s work because the work
queue is full or the notification queue is empty. Thus only when it has to wait for a time-
critical event to occur. For a wait situation which is not time-critical, for instance when the
application is multi-threaded and only one thread waits for completion, a notification using
interrupts is more suitable. Then no CPU time is consumed for polling and the higher
latency of interrupts compared to polling is not important. As a trade-off between these two
solutions, a lazy pointer scheme can reduce the amount of accesses to the device registers.

To summarize the above, queues in main memory are an excellent alternative to on-
device queues. They have a much better scalability and are more cost-effective than on-
device queues. But they have the disadvantage of higher access costs. Instead of one copy
onto the device the data is first copied from normal user memory into a dedicated memory
region which has to be pinned and contiguous. Then they are copied from this intermediate
location onto the device for processing which introduces one additional copy. Another
disadvantage that is less important but has to be mentioned is that off-device queues require
memory-pinned pages. This reduces the amount of available victim pages for swapping.
Furthermore the amount of memory available for applications is reduced. So designs with
off-device queues have lower production costs, but part of these cost re-emerge when the
complete system is set up. But the costs in total are still less compared to designs with on-
device queues.

3.3.3 Support  for  mult iple  producers

Like explained in sub-chapter “3.1.4 Simultaneous device access” on page 70 the
computing nodes are getting more and more parallel and simultaneous access to NIs is
inevitable. One of the goals of this work (see sub-chapter “1.5.4 Goal summary” on
page 30) is to allow a large number of user-level processes to access a NI simultaneously. In
the scope of queues these processes are producers, hence supporting only one queue is not
sufficient. The optimal solution is to assign each process it’s own queue. For the queuing
systems above all data structures like queues and pointers are always accessed by only one
writer. Either the producer writes and the consumers reads (queue entries and write pointer)
or vice versa (read pointer). The multiple-writer problem is completely avoided, hence no
synchronization mechanisms are required.
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Basically there are two solutions for the problem of multiple producers. One possibility
is the usage of one centralized queue which is shared among all producers. The producers
have to synchronize using mutual exclusion to ensure correctness. Otherwise a queue entry
might be written by several producers and only the last write is stored in the queue. The
alternative to a centralized shared queue are distributed queues. Each of the distributed
queues is assigned to one producer and is used exclusively. No mutual exclusion is required
anymore.

In the sub-chapter “3.3.1 On-device queues” on page 99 it is shown that on-device
queues are very limited regarding scalability. The available memory for queues cannot be
easily or even dynamically increased. This scalability problem is the major reason why on-
device queues are not a suitable solution when the amount of producers is increased.
Techniques like queue off-loading into main memory do exist but they introduce a lot of
additional overhead. The excellent scalability of off-device queues advises them to be used
as building block for multiple producers. In Figure 3.24 on page 103 the queue set in main
memory is shown for one producer. For multiple producers this queue set has to be
replicated for each producer. If the host’s O/S supports adding of pinned and contiguous
main memory regions during normal operation, these queue sets can be dynamically added
or removed.

Changes in queues have to result in triggering the device. The device is not implicitly
notified of a data value change in main memory, so usually a doorbell functionality is used.
For a single producer a doorbell and a read/writer pointer comparison is sufficient because
only one queue must be considered. A non-scalable solution for multiple producers is to
simply replicate the pointer register set. Each producer is assigned to a dedicated register
set. Basically, this is the approach of device replication. In “3.2 Architecture” on page 81 a
detailed description of a suitable architecture for multiple producers is shown, and a
scalable solution for the doorbell signalling is presented in “3.4 Virtualization” on
page 107.

3.3.4 Allocat ing memory for  queues

The possibility to obtain physical contiguous and pinned memory region depends on the
operating system. Here the Linux O/S in it’s current version1 will be examined as an
example. In other O/S other methods may be available but an in-depth analysis of several
O/S is beyond the scope of this work.

Basically there are two possibilities in Linux to obtain such regions. The first method is
to pass a boot argument to the to booted kernel. The boot argument “mem=x” will force the
kernel to use the given amount of memory, independent if it is more or less than installed
[86]. If more is specified the system will crash sooner or later. If less is specified a part of
the memory is unused. The kernel uses the higher part of memory, hence the unused region
is located before the kernel memory. This region is not used by the memory management,
thus it won’t be swapped out and no pinning is required. Nevertheless it is possible to map
this region or parts of it into user-level space. The mapping into user-level space is linear.

1. At the time of writing, the Linux kernel version 2.6 is widely used. The latest stable version of the 
Linux kernel is 2.6.19.2 [85].
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So the region is contiguous in both physical and virtual address space. Major drawback is
that the amount of memory reserved for this has to be fixed at boot time. A later expansion
is not possible. An advantage is that any amount of memory can be reserved in this way.

The second possibility is to use the kernel function “kmalloc” or “__get_free_pages” to
obtain a physical contiguous memory region [87]. The physical memory of the system is
only available in page-sized chunks. To allow allocation of memory regions which exceed
the size of a page, the kernel uses a special technique. Memory objects are sorted by their
size into pool sets. Allocation requests are passed into the pool that holds large enough
objects. More details can be found in [87]. But important is that the kernel can only allocate
objects of certain fixed sizes. Hence it is possible that more memory is returned than
requested, up to twice as much. Furthermore the maximum size of objects is limited by the
set of pools principle. It depends on the kernel configuration, but usual is a limitation of
2MB. According to [87] completely portable code should not use more than 128kB. Last, it
may happen that no chunk of the requested size is available due to memory fragmentation.
It increases with system run time, so it’s most likely to succeed directly after system boot.
The following code fragment gives an example how to allocate a physical contiguous
memory region:

#include <linux/slab.h>
void * kmalloc(size_t size, int flags);

struct struct_type *s;
s = kmalloc(sizeof (struct struct_type), GFP_KERNEL);
if (!s) /* requested amount of memory not available */
    return -ENOMEM;
/* do something with the physical contiguous memory region */
kfree(s);   /* free memory region */

The main difference between “kmalloc” or “__get_free_pages” is that the size for the
second is limited to whole pages (to be more concrete, the page count must be a power of
2), for the first one any size is possible (at least 32 or 64 bytes, depending on the page size
of the system’s architecture).

The contiguous memory region has still to be pinned down to prevent it from being
swapped out. This is done by the function “SetPageReserved”, which has to be called for
every page of the region. To allow the device to access this region the PA must be known.
The function “virt_to_page” returns the physical start address. The length of the region is
equal in VA and PA space. Last, the region is mapped into user space. There is no need that
the device knows the VA and vice versa.

Physical contiguous memory is either allocated on demand or one large region exists
which is not used by the memory management of the operating system. In the second case
the device driver has to manage the available memory and allocate the different queues
inside it. For the first case it is preferable to have as small chunks as possible, i.e. by
allocating every queue independently.
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3.4  V I R T U A L I Z A T I O N

The device virtualization method is proposed to overcome the restrictions of traditional
devices and to improve the overall performance of sophisticated specialized devices,
allowing a large amount of processes/threads to access a device simultaneously using User-
Level Communication. The architecture proposed here is enabled by context switching. This
method allows a large amount of processes/threads to access a device simultaneously. A
virtualized device provides several virtual ports. Each process accessing a virtualized
device is assigned to such a virtual port. A port is identified by a unique Virtual Port
Identifier (VPID).

The goal of the virtualization is to allow a large and nearly unlimited number of user-
level processes to access a device simultaneously to issue work requests. Multiplexing in
O/S level is unwanted because this will increase the latency remarkable due to the required
overhead for system calls. The processes should be able to directly access a device without
any multiplexing intermediate software layer.

The device architecture proposed in “3.2 Architecture” on page 81 allows to exploit
both ILP and TLP. The number of FUs limits the amount of parallelism that can be
exploited. If more processes issue work requests than FUs are available the FUs are
scheduled between the competing processes in a fair scheme. In this case the work requests
are stalled and kept the in the queues until an FU becomes idle.

If several processes are accessing one resource it must be ensured that the processes
cannot interact with each other. The separation can be improved by transparency. A
transparent virtualization is not visible to a process. Each process sees an exclusive device
for it’s own. It has no information about other processes. The safety of the system increases
and prevents interaction, either due to harmful intention or programming errors. Another
important requirement is the identification of a process towards the device. The device must
be able to identify a process in a safe way, which means that a process must not be able to
fake it’s identification.

Each process is assigned a context storing all required informations to process work
requests. This includes informations about the queues for this process, access rights and
process-dependent configuration. The right context is found using the process identifi-
cation. For each work request the assigned FU will switch to the appropriate context of the
origin process.

3.4.1 Processing overview

In general a process accesses a device because it has work to be processed. The work is
described using work requests. The device processes the work request and returns the result
back to the process using a notification. A notification can be as small as an information that
the work is finished. Additionally a notification can also contain a result of the work. In
“3.1.2 Data transfer methods” on page 69 queues are proposed for work requests and
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notifications, which allow to decouple the CPU-level and device-level processing. The
separation into CPU-level and device-level processing has some similarities to the
Decoupled Access/Execute Architecture described in [88].

This can be seen as a non-blocking device-level procedure call. A process issues a work
request (or an instruction) to the device to be processed. Immediately after issuing the
process can perform other tasks. The device is triggered with the issue and starts processing
the work request (CPU off-loading). After finishing the work the process is informed. Either
the process waits for the notification, or it is still performing other tasks and will check for
completion later. With the check for completion it synchronizes with the device-level
processing.

A work request is not necessarily only processed by the local device. In a networking
environment the device is the network interface. For instance an RMA work request is at
least partly processed at the target, which is a remote node in the network. Hence device-
level procedure calls can be further separated into local device-level procedure calls and
remote device-level procedure calls.

Figure 3.25 Work f low for  a  vir tual ized device

To allow an unconstrained scheduling of the work request of any process to the several
FUs, a work request can be dispatched to any FU. In the case that only one process accesses
the device it can occupy all FUs. If several processes issue work, the FUs are shared among
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them. If more work requests are outstanding than FUs are available the FUs are scheduled
in a time-sliced manner.

Figure 3.25 shows an overview of the work flow for a virtualized device. Processes
create work requests in the main memory queue and then issue them to the device. There the
issue requests are collected and dispatched to the FUs. Each issue contains a process
identification to switch the context of an FU and thereby configuring it for the correct set of
queues. Only for the first step (here work request issue) the calling process must be
identified. Then this information is stored through the complete work processing. Once an
FU is configured for a context the remaining steps can be performed. The FU processes the
work request, probably fetches additional data from other queues in the set and finally
creates a new notification entry to notify the process of the completed work request. The
notification queue entry can optionally contain the work results, either as immediate value
or by referring to a special notification data area.

The example shows a device with four FUs. Each FU has five work stages: one for
fetching the work request (including the context switch of this FU), one to fetch the optional
work data, one for processing the work, one to write back the optional notification data and
the last to insert a notification into the appropriate queue. Here three processes issue work to
the device (only two are shown). Each process has it’s own set of queues in main memory,
but the central trigger queue with issue requests is shared. The FUs are dynamically shared
between the processes.

Only for work packet 1 of P0 the flow of the work is shown to maintain readability. In
this example the flow for this work packet includes 10 steps:

1. Process P0 generates the work request and places the associated data into 
the work data area.

2. Process P0 triggers the device which inserts an issue request into the cen-
tral trigger queue.

3. This issue request is scheduled to an available and suitable FU (here FU1) 
by the scheduling/dispatching unit of the device. If the work must be pro-
cessed in order, this unit also takes care that the dependencies are solved 
before processing.

4. FU1 switches it’s context to P0. Now the location and status of Process P1 
queues are known and the FU can fetch the work request.

5. The work request includes information about an optional payload. In this 
case the FU fetches the payload from the work data area. Otherwise this 
step is skipped.

6. The FU has all required data and processes the work packet.
7. After finishing processing the FU writes back the results of the work 

packet. This is optional but used in this example case. The notification 
data area are will contain this result.

8. The FU’s last step is to insert a notification entry in the notification queue. 
If the process P0 is polling on the queue waiting for a change it is immedi-
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ately notified, hence this step must be the FU’s last one. Otherwise race 
conditions may occur.

9. Process P0 is notified of a change in it’s notification queue, either due to 
polling or by an interrupt. In both cases it fetches the entry and checks the 
result of the work packet.

10. In this case the result contains additional payload in the notification data 
area, so the process retrieves the data.

For a complete understanding of the work flow, the status of the other work packets is
as follows:

• Work packet 1 of P2: Currently processing in FU2
• Work packet 1 of P1: Processing in FU4 completed, currently inserting a 

notification queue entry.
• Work packet 2 of P0: Complete processing finished, but entries in work 

request and notification queue are still present.
• Work packet 3 of P0: Dispatched to FU3, currently context switch-

ing/work request fetching takes place.

3.4.2 Recognizing processes

The most important requirement regarding device virtualization is that a virtual device
has to distinguish between accesses from different processes. Thus all accesses must be
tagged with the VPID to allow the device to recognize the different processes. The device
stores the information relevant to one VPID in a context. A context contains in particular all
informations about the interface between process and device (e.g. queue offset, read and
write pointers), the current state of the virtual port, configuration informations and
permissions. Fast context switches occur between operations of different processes,
configuring the execution unit for this specific user process. No multiplexing kernel-level
processes or IPC are required.

The design space in figure 3.26 shows that processes can be directly or indirectly
identified. Using A direct process identifier the CPU explicitly tags the access to the device
with an unique identifier. The identifier must be inserted by the CPU in a secure way. In
particular this must prevent the process from modifying or inserting wrong identifiers. Only
then the desired separation and security among the processes can be ensured. Using a
trusted process to insert this identifier as data value into an access is not possible because
this would prevent User-Level Communication.

An indirect process identifier can be realized using address space. Then a set of pages
in the peripheral address space is provided. Each page of this set can be mapped by one
user-level process. The address associated with each page of the set is used to identify the
process. By read/write operations on these mapped pages the processes communicate
directly with the device, comparable to User-Level-Communication. The address associated
with the operation is used to distinguish the different calling processes. Because the MMU
manages the address translations a process cannot modify the address of an access to the
device and the security and separation is guaranteed.
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An indirect process identifier is the most efficient way to signal an unique identifier to
the device when using standard processors. The direct method requires modifications to a
CPU which is not desirable for a general usable device virtualization. Because of this the
device virtualization relies on indirect process identification. Figure 3.27 shows the
mapping of device I/O space into the address space of user-level processes.

Figure 3.26 Design space of  process identif icat ion

In the address space of the device one page is used for management purposes and
should only be mapped by trusted processes. A set of pages is available to be mapped by
user processes. Each page of the set is called Triggerpage. Because all work queues are
located in main memory these pages are only used for triggering the device, which leads to
the naming. Each Triggerpage can be mapped by only one process. But one process can
map more than one Triggerpage to separate it’s accesses.

The device driver manages the virtualization page set. Each time a process opens the
device, one of these pages is mapped into the address space of the process. The device
driver takes care that no other process can map this page. The device management is
accessible over a separate page which is not part of the virtualization. This management
page is mapped by the device driver or a privileged process to perform device
configuration, status query and management functions. Normal processes access the device
only over the virtualization page set.

The virtualization is transparent to a process, so it only sees a device for its own
exclusive usage. The transparency has also a security aspect. It prevents processes to
interact with other processes. Independent if the interaction is due to programming errors or
due to harmful intention, the processes are completely separated. Because of the paging
principle of modern architectures, transparency can only be implemented using pages.
Every process accesses the device using pages, and the MMU prevents the processes from
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accessing data or control structures of other processes. Further, the complete mechanism
does not involve other kernel- or user-level processes, enabling User-Level Communication
without additional overhead for security. It is also usable in VM environments where with
this technique the VMM can be bypassed and is no longer involved in device accesses.

Figure 3.27 Access over mapped pages

3.4.3 Queue design

In “3.3.3 Support for multiple producers” on page 104 it is shown that replicated
dedicated queues in main memory are an excellent solution for multiple processes accessing
the device. For each process a set of queues is created which are only used by this process.
Access from several processes (as producer/consumer) to one queue is not allowed. These
dedicated queues avoid synchronization, which is inevitable for shared queues.

The targeted NI here is a peripheral device with a non-cache coherent link to the
system. Because of the non-coherent link the device is not informed about data changes in
main memory. The architecture is not ought to be limited to coherent interfaces, so another
solution must be found to solve this problem. Having the device polling on the queues for
changes wastes valuable I/O bandwidth. Additionally, this solution does not scale with the
number of processes because more and more queues must be checked. The check if a
change occurred also requires to store a compare value which requires a storage place,
preferable on the device. Again, this limits the scalability.

The most efficient solution is to let the processes notify the device of the change. An
on-device queue can store the trigger information of the different processes. Several
problems arise with this approach of a shared central trigger queue:
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1. The on-device queue is shared between all processes which insert their 
trigger information. For a shared queue the multiple writer problem arises 
again and synchronization by mutual exclusion is required to avoid race 
conditions.

2. Because on-device space is limited due to the decision for a memory-less 
architecture and as much different triggers as possible fit into the queue, 
one trigger entry should be kept as small as possible.

3. Because the queue is limited in size, a trigger operation might fail. Then 
the process must be informed to retry.

4. The trigger operations consume limited I/O bandwidth. The trigger pay-
load should be as small as possible to reduce the required bandwidth.

Figure 3.28 Interface to a  shared central  t r igger 
queue

In Figure 3.28 the complete process queue set for a virtualized device is shown. This
follows the approach presented in Figure 3.24 on page 103. Several processes are running
on the system, either on one or several CPUs. Each process accessing the device has an
exclusive queue set in main memory, consisting of work, payload and notification queues.
To recognize a change in one of the queues in main memory, the processes have to
explicitly notify or trigger the device. These trigger informations are stored in the central
trigger queue to be processed by the device.

3.4.4 Triggering operat ion

A virtualized device must be informed of new work queue entries by inserting the VPID
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steps, the check for available space in the queue and the insertion of a new queue element.
Multiple producers are enqueuing entries and the two steps are part of a critical region. An
enqueue operation must not be interrupted. Figure 3.29 shows an overview of the design
space.

Figure 3.29 Design space of  t r igger  operat ions

Several solutions exist to ensure correctness in critical regions. The first is based on
mutual exclusion. A semaphore can ensure that only one enqueue operation is performed at
a point in time, no operation can take place simultaneously. The usage of a semaphore leads
to synchronization among the producers and the overhead is quite high.

An atomic operation with a Read-Modify-Write (RMW) scheme is another solution. An
atomic operation is uninterruptible and implicitly prevents simultaneous accesses to the
same location. The read part of the RMW operation is the check for available space and the
write part is the insertion of the VPID. RMW operations or atomic operations in general are
usually not allowed in the I/O address space. A limitation to seldom available interfaces
supporting them is unwanted. Both solutions, the atomic operation and mutual exclusion
also prevent several outstanding operations, because in both schemes the enqueue
operations are serialized.

A completely different and new approach is to include flow control in the trigger
operation. The flow control contains information about the success of the operation. If the
queue is full the operation fails and the flow control returns an error to the producer. The
producer has to try again to insert his VPID. If the queue is not full the flow control informs
the producer of the enqueued VPID. In other terms support is required for failed
instructions. The advantage of this approach is that less overhead is required. Furthermore,
if several operations are outstanding one of them can be favoured.
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Challenging with this approach is that no instruction set of modern processor
architectures has support for failed instructions or flow control. Only the read (or load)
instruction includes an answer in it’s processing. So this instruction deserves a closer
analysis.

Read instruction. The parameter of a read instruction is the address to be read. The result
of a read instruction returns the value read. To use it as an enqueue operation the VPID must
be included as a parameter. The result can contain the information of success or failure of
the enqueuing. A read instruction contains only one step and is hence atomic by default. If
the VPID can be included in the read address the read instruction is very suitable for the
enqueue operation. But the producers are untrusted and so the VPID must be included in the
address in a secure way, preventing a producer from falsifying or modifying the VPID.

A process can only be prevented from modifying an address with the help of the MMU.
The MMU converts the virtual addresses into physical ones (figure 3.30). The address
translation only changes page information, the lower part of the address remains
unchanged. Thus the VPID cannot be included in the page offset, instead the page address
must be used. Typically a VPID is limited in size1, which allows to use a part of the page
address to contain the VPID.

Figure 3.30 Semantic of  Triggerpage addresses

The producer is a process and hence uses VAs. The device only sees the corresponding
PA. A part of the PA is used to include the VPID. With the help of the PA the device can
identify the producer. A process has no knowledge about the corresponding PA and for the
producer the VA contains no information about even it’s own VPID. The included VPID is
completely transparent to the producer which further increases the safety.

Thus the lower part (page offset) is not modified by the MMU and can be used as a
command or tag section. By using different page offsets a producer can signal different

1. For instance a VPID with a size of 16bit allows to differentiate up to 65536 processes. This 
amount is expected to be large enough to provide support for almost any type of application.
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commands to the device as well as providing hints about the type of the work to be
processed.

The device observes a read operation to a physical address. It converts the address of
the read operation to a VPID/command pair. This pair is stored in the central work queue.
The producer is informed if the issued instruction is enqueued or if it is abandoned because
missing queue space. This information is returned as result of the read operation. If the
instruction is accepted, the device returns True as result of the read access. Otherwise False
is returned. Of course more sophisticated return results are possible. For instance, this
additional information can be a proposed wait time if the queue is full, or the currently free
entries or any useful status information of the device.

For the MMU the approach using read instructions is a normal address translation
without modifications. The TLB can still be used. It stores the most used address
translations and reduces the average translation time. If the TLB does not contains the
appropriate entry a page table walk must be done by the MMU.

Applying an access granularity of 64bit, 512 different read addresses are possible,
allowing the read operation to be tagged with 512 different commands (see figure 3.30).
This allows not only to issue work requests to the device, other operations are also possible.

Conditional Store Buffer. Each trigger operations results in a inserting a new entry in the
trigger queue. The storage in the trigger queue is dependant on several conditions, so the
queue is also called Conditional Store Buffer (CSB) [89]. An insertion into this CSB is
conditional regarding available space, access rights and other restrictions. The capability of
the device to accept or reject instructions can be used e.g. for priorization of instructions. It
stores the trigger informations, which are:

• VPID: used to identify the calling process
• Command: used to specify the command to be processed in more detail. 

This information might be redundant with the information stored in the 
corresponding work request, which is stored in a queue in main memory. 
The scheduler behind the queue uses this command tag to ensure the 
optional ordering.

The new trigger method is very efficient because it is only a read operation. Compared
to mutual exclusion or atomic operations no additional overhead is introduced. It fulfils all
requirements to issue instructions to the central work queue of a virtualized device. The
number of processes issuing VCIs is not limited by this mechanism. Only the available I/O
address space is an upper bound for the process count. If the I/O interconnect supports split-
phase transactions, this mechanism is even improved. Several issue operations can be
outstanding, and the device is able to favour certain issue operations.

Figure 3.31 shows the procedure to trigger a virtualized device in detail. A user-level
process has mapped a Triggerpage. The trigger operation includes the following steps:
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1. To trigger it performs a read operation to a certain address inside the Trig-
gerpage, associated with the wanted command (for instance work request 
issue).

2. The MMU of the host system converts the VA of the read operation to a 
PA.

3. The device sees a read operation to a PA.
4. From the PA it can extract the VPID and the command.
5. The device validates the VPID/CMD pair, checks for available space in 

the CSB and performs secondary checks including access rights, prioriza-
tion or more sophisticated features.

6. If all checks have passed successfully the VPID/CMD pair is inserted into 
the CSB

7. The process is notified of the successful trigger operation by returning 
True.
If one of the checks fail, a non-True value is returned. This value can 
optionally include informations about the reason. In this case the process 
will sooner or later re-try the trigger operation.

8. To process a command the VPID/CMD pair is dequeued, scheduled to an 
appropriate FU and there processed.

Figure 3.31 Issue operat ion using the Triggerpage
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3.4.5 Virtual  Machine Environments

Because no software overhead is required for the device virtualization, Virtual Machine
environments and the device virtualization perfectly fit together.

VMMs like Xen allow multiple operating systems (guests) to execute concurrently on
commodity x86 hardware. Each guest system runs in another domain. The VMM is part of
the privileged domain 0 where also one guest system is running. The VMM virtualizes the
underlying hardware, e.g. CPU, memory and devices. Devices are typically shared in a
time-sliced manner [90] between several guest systems by redirecting all I/O traffic to the
VMM, which is responsible to schedule the accesses. Another possibility is the exclusive
use of a device by only one guest system.

Figure 3.32 Device vir tual izat ion in a  Virtual  
Machine environment

Virtual Machine environments can benefit a lot from device virtualization. The device
virtualization allows every guest operating system to open any number of virtual ports of
the device. Processes from different guest systems can concurrently and directly access the
device without scheduling by the VMM. The VMM is only responsible to manage the
device. For instance open operations from the guest operating system are handled by the
VMM, which returns a page to be mapped. The VMM takes care that no one other maps the
same page. From now on, the process (independent from which guest system, if kernel- or
user-level) can directly access the device using this page as a Triggerpage. The device itself
is responsible for the scheduling of work requests from the different processes. From the
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device’s point of view it is completely irrelevant if these processes are part of one or
different guest systems.

Figure 3.32 shows a typical situation in a Virtual Machine environment where a device
is virtualized using the methods presented here. The device provides one management page
and replicated Triggerpages. All Triggerpages in the physical address space map to the
same hardware resource. Configuration and management of the device is done by the
VMM, which is running in domain 0. If a process wants to open the device it maps a
Triggerpage. All access to the device is done over this Triggerpage. A process can also map
several Triggerpages. The device recognizes the accessing processes by the address of the
Triggerpage. The operations are enqueued in the CSB and scheduled to free functional
units.

There are no restrictions regarding the domain of a process or the total number of
domains. The devices provides a number of Triggerpages. All Triggerpages can be mapped
into one domain or each into another domain. The device recognizes the processes only
over the VPID, which is a result of the process’s Triggerpage address.
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3.5  T H E  U L T R A  A R C H I T E C T U R E

The architecture developed in the previous chapters targets an unconstrained use. It
exploits any available parallelism and the communication set is composed of various
operations for different purposes. The virtualization allows almost any number of processes
to access the device simultaneously. The hardware resources can be dynamically scheduled
among the competing processes.

What is not achieved yet is support for a lowest latency communication scheme. The
virtualized device architecture relies on contexts and on work request issue using the
Triggerpage. This is an excellent approach to use the limiting I/O interface very efficiently,
but at least one memory access is required to inject a packet into the network. This memory
access fetches the work request from the process’s work queue in main memory. Caching
effects or references to other data structures may increase the number of required memory
accesses.

While this is necessary for a scalable architecture and furthermore not a problem for
normal message passing applications, dedicated support for fine grain communication is
still missing. To meet the goals of this work (see sub-chapter “1.5.4 Goal summary” on
page 30) now a low-latency communication method is presented.

The low-latency communication method presented here is called Ultra Low Latency
Transmission (ULTRA). It allows a shift from coarse-grained to fine-grained
communication and the system becomes closer coupled. Instead of collecting many small
data structures into large bulk messages, small elements can be sent out independently.
Active messages [91] (which are sent out to trigger certain operations) are an application
where ULTRA fits perfectly. Also fine-grained Global Address Space (GAS) applications
can be improved a lot, rendering software assistance unnecessary [92].

If the latency of a message transfer is examined in more detail, it can be seen that the
main component originates from the I/O interface [93]. The remaining parts like network
device and switch fall-through latencies are much smaller. For instance the fall-through
latency for an ATOLL switch is about 90ns [39], while a PCI I/O cycle requires about
500ns. Hence the work presented here focusses on an optimized use of the I/O interface.
Goal is to develop a message injection and retrieval scheme which requires as few I/O
cycles as possible, and the inevitable ones must be highly efficient. Only then the latency
can be reduced to the minimum. Fine-grained communication schemes do not require high
payloads, so it is for instance sufficient to support message sizes up to the size of a cache
line.

Comparable to a modern CISC architecture with it’s manifold instruction set, the
send/receive operation offered by ULTRA is only one in a communication instruction set.
Compilers or (communication) libraries are responsible for choosing the most appropriate
instruction or communication method. ULTRA’s focus is to reduce the communication
latency to it’s minimum. If constraints are introduced, they can be tolerated because other
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communication functions from the set can be used in this case. Compared to the previous
work this is a complete different approach to inject and retrieve packets from the network.

Figure 3.33 Integrat ion of  ULTRA in the network 
interface architecture

Figure 3.33 shows an overview of the network interface. The previous work, in
particular the multi-threaded context-based architecture, the memory-less scalable queue
design and the virtualization are combined in the Host Port. ULTRA is a separate module
beside the Host Port. Both modules can directly be accessed by processes and share the
access to the network. If an incoming packet requires to be handled by ULTRA, the
scheduler in the Host Port recognizes that this incoming packets is for ULTRA. Then it is
not forwarded to one of the Host Port’s FUs but to the ULTRA module.

3.5.1 Related work

There are several other approaches trying to reduce the latency of a message transfer.
Basically they differ regarding the location of the network interface (see sub-chapter “1.3.1
Network interface locations” on page 19) and if specialized or standardized interfaces are
used (see sub-chapter “1.3.3 I/O interface” on page 21).

Some systems integrate the communication modules into the main processor, which is
certainly the best approach to minimize latency. But the use is restricted to the used
processor type. Examples for such systems are the Transputer [23] or the iWarp [24]. In
both systems data is sent out by writing to special registers, and data is received by reading
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special registers. This approach requires a new processor design or the modification of an
existing one, which is not the goal of this work.

A different approach is DimmNet-1 [40], which is based on a network interface
plugged into a DIMM socket of the mainboard. These sockets allow much faster accesses
than I/O sockets, but the use is again very restricted: DIMM devices cannot signal any
events to the processor or invalidate cache lines to enforce a re-read.

An example for a specialized solution is the RapidArray fabric used in the XD1 system
from Cray [28]. It’s use is limited to this system. Few details are known, but the network
interface embeds processors to off-load network functions. Memory copies are used to
transfer small messages onto the NIC. A special solution is not targeted with ULTRA,
instead it should be usable in widely available systems and not be limited to a certain
special system type.

Examples for systems plugged into standard I/O interfaces are Quadric’s STEN unit,
InfiniPath by QLogic (formerly PathScale) [35] or the research project ATOLL [38]. While
the exact functionality of the commercial solutions is best to our knowledge not published,
the ATOLL approach is well documented.

ATOLL provides two mechanism for message transfer, the PIO and the DMA mode
[38]. Because of the overhead to initiate a DMA transfer this mode is most suitable for large
messages. Small messages (for instance with a size below 512 Bytes) are optimally
transferred using the PIO mode. PIO means the processor copies data word for word into
the NIC. The number of I/O cycles required to inject a message is the main component of
the total latency. For ATOLL, several PIO writes to different registers are required, bursts
are not possible. The ATOLL approach can still be significantly improved and the basic
principle of it’s PIO mode is used here.

3.5.2 Basic  archi tecture

Focus of the development is to reduce the required I/O cycles to inject and retrieve
packets to it’s minimum. For a peripheral device the minimum number of I/O cycles
required for packet sending and receiving is respectively one. Only with one cycle
minimum latencies are achievable. The communication function offered by ULTRA is
designed to be only a part of a complete communication set. Other communication
functions are available if ULTRA cannot be used. The use of ULTRA is restricted, for
instance regarding packet size and the number of destinations.

The basic idea of ULTRA is to separate the packet into a variable (dynamic) and static
part. The static part is stored in the ULTRA unit by configuration. The variable part is
provided with each access cycle. For minimal latencies only one cycle can be used, but a
single burst cycle allows to include multiple data words.

A packet is composed of the following components: type, route, tag and payload1. The
payload is considered variable, because the overhead required for re-configuration upon

1. The error correction is calculated and checked by the hardware modules and hence not required to 
be provided by the user process.
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each change would render the advantages of this approach unnecessary. Similar applies for
the tag, which usually contains a sequence number. But the type is obviously fixed because
only ULTRA packets are supported by the modules here. The route is also considered static.
The resulting limitation of an ULTRA unit to one destination can be overcome by
replication. In particular for source-path routing including the routing string in each access
is definitely not an option1.

To achieve lowest latencies User-Level Communication [42] is inevitable, otherwise the
required system calls would dramatically increase the latency of a packet. To support
multiple processes using ULTRA with User-Level Communication, several ports are
offered to the host side. Each port can be used by a different process to access ULTRA.

ULTRA is a part of the complete network interface architecture. Here also applies the
separation into Initiator and Completer respectively origin and target node. On the sending
origin node an ULTRA requester unit resides and on the receiving or target node an ULTRA
completer unit. ULTRA does not require a responder unit. Figure 3.34 shows an overview
of the communication scheme. The ULTRA path starts with the origin process initiating a
packet transfer, continues with the requester and completer unit and ends with the target
process receiving the packet. In particular the part from origin process to requester unit and
from completer unit to target process are highly optimized regarding latency.

Figure 3.34 Packet  t ransfers  using the ULTRA 
communicat ion scheme

Constraints. The intend of ULTRA is not to introduce a second network in parallel to the
existing one, instead only one is used for both normal and ULTRA packets. This implies
that the same packet format is used.

If an acknowledge of an ULTRA packet transfer is requested the existing acknowledge
transport mechanism is used. The existing mechanism is suitable because acknowledging a

1. Porting ULTRA to an interconnect which uses table-based routing may result in including the des-
tination identifier in each access cycle.
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successful completion is not part of the time-critical ULTRA path. In addition, software
layers can rely on a single notification queue where all informations are gathered.

An open design issue is if ULTRA packets must be in order with other packets. The
optional ordering scheme used here (see sub-chapter “2.1.6 In-order and out-of-order
delivery” on page 36) requires that packets with the same source, destination and
communication type are kept in order. ULTRA is a two-sided communication scheme and
hence part of the Send/Receive communication set. Only using the Triggerpage the in-order
delivery of ULTRA instructions together with other Send instructions can be ensured. For
an in-order delivery they must be issued over the Triggerpage. Then the work requests are
kept in main memory. This renders the advantages of ULTRA compared to a Fast Send
instruction unnecessary. Hence ULTRA instructions are only kept in-order among
themselves.

Pre-configured ports. The basic idea is to use pre-configured ports for packet injection and
retrieval. The configuration of a port includes as many parameters as possible. Only
frequently changed parameters are not included in the configuration. They are passed to
ULTRA as dynamic data, while the configuration is considered static1.

 At least one access to the requester unit is required to trigger the packet injection. The
payload as a frequently changing parameter of the packet can be combined with this access.
Otherwise every time the payload changes a re-configuration of an ULTRA port would be
required, which would outweigh the advantages of pre-configuration. The tag is used to
store packet sequence numbers (which changes with every packet), so it is also considered
to be a dynamic parameter. This results in only including the source identification and the
routing information in the pre-initialization of a requester unit. To inject a packet a single
burst write passes the tags and the payload to the requester unit. The payload size is
automatically recognized using the start address of the burst write. It is stored together with
the tag and the source identification in the packet header.

Comparable to the pre-initialization of the requester unit shown above, for the
completer unit a pre-completion is applied. This only includes the source of a packet. The
completer unit is configured to receive only packets from one source. Then only the tag and
payload must be stored in buffers while the source of the packet is static and thus known.
This approach is in-line with the definition of an ULTRA path from origin to target.

The number of available destinations per requester unit is limited by the pre-
initialization to one. The same applies for the completer unit, but regarding the source. To
allow multiple destinations and sources with an ULTRA unit, replicated ports are available
to support multiple destinations and sources. The port replication is achieved using
contexts. A process maps one requester port for every destination it uses, respectively one
completer unit for every source. Because User-Level Communication is applied one port
can only be used by one process.

1. The configuration can only be changed by a privileged software instance. It cannot be part of a 
typical operation, because the required system call results in a large amount of overhead. The typ-
ical operation must be completely performed in user-level.
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To support bidirectional communication always pairs of requester and completer units
are implemented. Each port of a unit has an unique ULTRA Port Identification (UPID)
number. The UPID is comparable to the VPID introduced in sub-chapter “3.4 Virtual-
ization” on page 107. Each packet has an Origin UPID (OUPID) to identify it’s source and
a Target UPID (TUPID) to determine the destination.

Figure 3.35 Basic functional i ty of  an ULTRA 
requester  unit

So the requester unit provides a set of ports to support both multiple destinations and
multiple accessing processes. The hardware module itself is not replicated, instead the
access to a certain port results in a fast context-switch. This configures the unit for this
process. Figure 3.35 depicts the basic functionality of a requester unit.

Figure 3.36 Basic functional i ty of  an ULTRA 
completer  unit

While the requester unit has to recognize the used port for an access from host side, the
completer unit must identify the target port of an incoming packet. The port is described by
the TUPID, which has to be part of the packet header. Then the packet can be stored in the
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appropriate buffer and fetched by the target process. The basic functionality is shown in
figure 3.36.

Limitations. The pre-initialization and pre-completion presented above result in some
limitations regarding the packet transfer. Each requester port is limited to a single
destination and each completer port to a single source. To allow multiple sources and
destinations ports are introduced. Nevertheless the total amount of available destinations
and sources is restricted, in particular when the ports are shared by several processes.

Another limitation is the supported packet size. An ULTRA packet is temporally stored
in the requester unit. The used on-device memory structure is limited and results in a
maximum packet length.

Because the routing string is also stored in a requester unit as part of the pre-
initialization the routing length is also restricted. Sophisticated run-length encodings of the
routing string can diminish the limitation of available destinations. Applying table-based
routing schemes even overcomes this limitation.

3.5.3 Address  space mapping

The ULTRA ports have to be accessed from user-level to allow User-Level
Communication. Compared to sub-chapter “3.4 Virtualization” on page 107 separation and
security must be ensured because several applications can access ULTRA over the
replicated ports. This is achieved using the paging principle and mapping of I/O space into
user-level.

ULTRA presents a set of pages to the host. One page is privileged and used for
management and configuration purposes. Furthermore the set consists of one page for each
requester port and one for each completer port. The requester and completer pages are used
by user-level processes to inject and retrieve ULTRA packets. Figure 3.37 shows an
overview of ULTRA’s address space. One process can map several pages to obtain multiple
OUPIDs respectively TUPIDs. Each OUPID is configured for one destination, while each
TUPID is assigned to one source.
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Figure 3.37 ULTRA address space overview

Figure 3.38 shows the address interpretation when user pages are accessed. The MMU
only translates the upper part of the address while the page offset is kept. Comparable to
sub-chapter “3.4 Virtualization” on page 107 the upper part is used for identification of the
process while the page offset contains the command. The identification is secure because
processes cannot change the page number. In contradiction the page offset is available for a
process to include more information about the operation to be performed.

The ID field represents the UPID which is accessed (up to 11 bits, dependant on the
number of ports implemented) and with the mode field (1 bit) user- or driver-level access
can be separated. While in user mode only packet injection and retrieval (including pointer
updates) is possible, the driver mode is used for the (pre-) configuration of the appropriate
unit.
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Figure 3.38 Interpretat ion of  ULTRA addresses

3.5.4 Packet  inject ion

The prerequisite for packet injection is a pre-initialized requester port. For each access
from user process the requester unit is then configured using the appropriate port context.
With the access the process only provides the packet tags together with the payload data and
size. Figure 3.39 shows the command coding for the requester unit. The addresses are
aligned to 64 bit, hence the lowest three bits cannot be used.

For each packet the notification method for the completion of the operation can be
selected. This is achieved with the three bits. The IRQ bit results in an interrupt for
notification, here polling is not required. This is the preferable method if the completion is
not time critical. If the notification is based on polling, the NOTIFY bit is set. Polling is used
for time critical completion, but the CPU load increases. With the ACK bit an acknowledge
is requested. Then the target node will send back an acknowledge containing the result of
the packet transfer and the completion notification includes that the packet has arrived at it’s
destination. Otherwise the notification only includes a successful injection of the packet
into the network.

 

Figure 3.39 ULTRA requester  unit  command 
coding

Beside the notification selection it is also possible to read out the status of the
appropriate requester port. The only status information required by a user-level process is
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the current read pointer of the packet buffer. A new packet is only accepted if enough buffer
space is available. Hence the most recent read pointer can be fetched by the process setting
the RP bit to one and performing a read operation. This is the only read operation supported
for user-level access on the requester unit, all other are writes.

Figure 3.40 ULTRA requester  unit  access

Payload size detection. Beside the payload data and the tag the process must also include
the payload size in the access. But this additional data can be avoided. The first approach
uses a single burst access starting with a fixed address. The first data word of the burst is
interpreted as tag, the remaining ones as payload. The requester unit detects the burst and
sets the size accordingly. But burst accesses cannot be always ensured, because the host
system can split one burst cycle into several smaller cycles. Beside this, if the burst
accidentally uses too high addresses, the IRQ bit is set which results in unwanted behavior.

The solution for this is not to use a fixed start address for the burst. Instead a fixed end
address is used, resulting in a variable start address. Then the start address varies with the
desired payload size. Bursts are not required to recognize the packet length and the IRQ bit
cannot be accidentally overwritten.

Figure 3.40 shows an example packet send access. The start address is always chosen in
a way that the last word of the payload is written to the fixed end address. Using the start
address the requester unit immediately knows the packet length and can decide if it fits in
the buffer. An access to the fixed end address terminates the send operation. In the example
above the packet length is 6 words (each word 64 bit).
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Figure 3.41 ULTRA packet  inject ion

Work flow. Figure 3.41 provides a complete overview of the packet injection procedure. It
starts with a process accessing the mapped page to write the packet’s tags and payload to the
ULTRA requester unit. The used address defines the length of the packet and the selected
notification scheme.

1. Process writes to mapped page.
2. The MMU translates the VA into a PA. Only the page number is changed, 

now containing the port identification. The lower page offset containing 
the command is unchanged.

3. The requester unit sees a write access to one of it’s ports.
4. The UPID of the port is calculated out of the address and the appropriate 

context is selected.
5. With the pointers stored in the context it is checked if the space in the 

packet queue is sufficient to store the packet.
5-a. If space is missing the write access is ignored and a notifica-

tion generated informing the process of the failure.
6. Enough space results in enqueuing the packet.
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7. This context is scheduled to inject packets. The route is fetched from the 
context table and the tags and payload from the packet queue. The packet 
is assembled and injected into the network.

8. The Host Port’s notification unit is used to inform the process. A 
VPID/command pair is issued to the Host Port, which completes this 
operation for the requester unit.

9. A notification for this VPID is generated. The command includes the tag 
and that this notification origins to the ULTRA requester port. The 
included tag allows to identify the packet.

Beside the access in order to inject packets the process can also read a certain address of
the mapped page to obtain informations about the status of it’s requester port. Currently this
is only used to obtain the fill level of the port’s packet queue.

Figure 3.42 ULTRA requester  unit

Requester unit. While figure 3.41 provides an overview of the complete packet injection
procedure, in figure 3.42 the requester port is depicted in detail. Basically it consists of a
PIO completion unit, a context table, a packet queue and a packet injection scheduler.

The packet queue is divided into slices. The slice of each port can vary in size. This
allows to assign the complete queue to one port if no other is used. For each number of used
ports the queue can be optimally utilized. The assignment of slices to ports is a privileged
operation and only possible for the management process. For each port a separate data
structure which is not shown contains the lower and upper bounds in the packet queue.

The context table is indexed with the UPID of the port. For each UPID a corresponding
VPID for the origin and the TUPID is stored. The origin VPID is used for the notification
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on the origin node. The TUPID is required to identify the destination port on the target
node. The route to the target node is also part of a context. Last, one read and one write
pointer are used to identify occupied and free areas in the appropriate slice of the packet
queue.

The PIO completion unit determines the UPID, selects the context and performs the
check for sufficient queue space. If it is passed successful it enqueues the packet in the
port’s packet queue slice. Last it triggers the packet injection scheduler of an outstanding
packet to be processed.

The packet injection includes a scheduler to select a context to be processed. The read
and write pointer of this context show if there is outstanding work for this context. If yes, a
new packet is generated, starting with fetching the route from the context. The packet is
completed with the tags and the payloads from the packet queue slice and finally injected
into the network. The read pointer is updated to mark this packet as consumed.

Not shown is the last step, the notification of the process. For this the notification unit
of the Host Port is used to reduce the overall complexity. Furthermore the process can rely
on a single notification scheme and does not have to check several sources. The packet
scheduler sends the corresponding origin VPID together with the tag and a command to the
notification unit of the Host Port. There a notification queue entry is enqueued in the
VPID’s queue. If selected, an interrupt is generated to inform the process.

3.5.5 Packet  retr ieval

To retrieve an ULTRA packet from the completer unit two different methods are
possible. Either the packet is stored within the completer unit and the target process fetches
it using a PIO burst read, or the completer unit writes the packets into a data structure in
main memory. Then the target process can fetch the packet from main memory. For both
methods the I/O interface is used. The more interesting issue for the completer unit is the
target process notification of new packets. Interrupts require involvement of the O/S which
introduces a large amount of overhead. The other possibility is polling. The target process
can either poll on a device register or on a main memory location for changes. A change
notifies it of a new packet. The polling on device registers wastes I/O bandwidth so main
memory polling seems to be the better choice. Both methods are implemented in the
completer unit, but the following explanation and analysis focusses on the main memory
queue implementation and polling scheme.

Comparable to the packet injection, the prerequisite for the packet retrieval is the pre-
completion of a completer unit. The pre-completion includes to configure a port for a
certain source (or origin process). The origin is identified by it’s OUPID. Only incoming
packets with this OUPID are accepted, others are discarded. The source is now known for
all packet retrieved from the completer unit. Only the tags and the payload have to be stored
in queues. For queues in main memory furthermore the base address and the length of the
queue must be stored in the context of the port.

While a packet retrieval from an on-device queue automatically notifies the completer
unit of a consumed packet, an access to a main memory queue is not seen by the completer
unit. Here the process must explicitly inform the device of consumed entries by updating
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it’s read pointer. The read pointer together with a write pointer is used to identify free and
occupied areas in the queue.

 

Figure 3.43 ULTRA completer  unit  command 
coding

The read pointer is updated using a memory-mapped page. The target process writes the
new read pointer to a certain address. The read pointer update is the only supported user-
level command and shown in figure 3.43.

Main memory queue. For the receive queue of a completer port a pinned contiguous main
memory region is used. This region is divided into slices of equal size. Each slice can store
one packet. The size of a slice limits the packet size, but this is already limited by the
requester unit. Hence the slice size is set according to the requester part. Beside the packet
tag and payload, a slice contains a status word. This status word includes a valid identifier
and the packet size. The source of the packet is known due to the pre-completion of the
completer unit.

The partitioning allows the target process to poll on the status word of a slice for
changes. The next slice that will become valid is known because they are written in order. If
now an entry becomes valid the status word changes to a non-zero value. Packets are
written into the queue using single burst cycles. The status word is located at the end of a
slice and hence written last. This ensures that the notification only happens if the packet is
already stored.

The partitioning has the disadvantage of wasting memory space if packets not fully
utilize the slices. But the possibility to poll a memory location instead of a device register
outweighs this. Furthermore, the write pointer for this queue must only be known by the
completer unit. The target process does not need access to it, because valid entries are
marked by the status word in each slice.
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Figure 3.44 Part i t ioning of  the ULTRA receive 
queue

Work flow. The work flow for the packet retrieval is depicted in figure 3.45. It starts with a
packet coming in from the network side.

The detailed procedure to retrieve a packet is composed of the following steps.

1. The packet is retrieved from the network.
2. The TUPID is determined using the packet header. It is used to select the 

appropriate context.
3. The context contains the matching OUPID for this port and the queue sta-

tus, described by the read and write pointer. The packet is checked if is 
comes from this OUPID. The queue pointers show if a receive queue 
entry is free to store the packet.

4. Only if both checks are successful, the packet is passed to the store unit.
5. Using the queue base address and the write pointer the packet is stored in 

main memory. The write pointer is updated and written back to the con-
text.

6. If requested an acknowledge about the successful processing is sent back 
to the origin. For this the acknowledge unit of the Host Port is used. The 
acknowledge includes the origin VPID to identify the corresponding noti-
fication queue at the origin side and the packet tag as identification.
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7. The process is continuously polling on the status word of the next free 
queue slice. As soon as the status word of the queue slice is modified by 
the store unit, the process is notified of the new entry. It interprets the sta-
tus word to obtain the packet length.

8. The packet is fetched from the receive queue. The process has to over-
write the status word with zeros in order to recognize a change for the 
next time this slice is used.

9. The process writes an updated receive queue read pointer back to the 
device.

10. The MMU of the CPU converts the VA into a PA. The PA now contains as 
page number the UPID of the ULRA port.

11. The completer unit sees the write access to the address of one of it’s ports. 
The appropriate context is updated with the new read pointer, marking the 
queue slice(s) as consumed.
For the steps 9 to 11 a lazy pointer update scheme is possible reducing the 
update frequency.

Figure 3.45 ULTRA packet  retr ieval
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The store unit can optionally notify the target process using an interrupt. This includes
involvement of the ULTRA driver and the required O/S trap is not desirable regarding
latency. The interrupt notification should only be used to avoid polling.

The polling on a main memory location has several advantages compared to device
register polling. First, the valuable I/O bandwidth is not wasted. In addition, the main
memory region containing the receive queue is under control of the cache coherency
protocol. The cache coherency ensures that the process only accesses the main memory if
there was a change. The main memory is only accessed if the first read of the status word
results in a cache miss. The data read is also stored in the processor’s cache. The next times
the status word is read only the cache is accessed, until the main memory location is
changed by the completer unit. Then the write-invalidate policy of the cache coherency
protocol invalidates the cache copy and the following read results again in a cache miss.
Now the main memory location is read, returning the most recent value of the status word.
The cache coherency protocol thus minimizes the main memory accesses required for
polling.

An even more sophisticated method is possible using a write-update cache policy
instead of the write-invalidate policy applied above. Here the cache line is not invalidated,
instead it is updated with the most recent status word. But the cache policy is part of the
CPU cache coherency protocol and cannot be influenced by ULTRA.

3.5.6 Ini t ial izat ion of  ULTRA paths

Beside the user-level access for packet injection and retrieval by applications, ULTRA
units are also accessed by privileged software instances, e.g. drivers or trusted processes.

The privileged accesses are separated from the user accesses by different page
addresses. One bit decides if the access address is in user or driver mode (see figure 3.38).

An ULTRA path or connection is established by configuring a requester unit at the
origin and a completer unit at the target appropriately. This is also referenced as pre-
initialization and pre-completion of ULTRA and can be performed only in driver mode. The
driver mode is also used for the partitioning of the packet queue in the requester unit and the
configuration of the completer’s receive queue (queue base address, length, read and write
pointer). The driver is also responsible to keep track of assigned ports, preventing access
from multiple processes to one port.

To initialize an ULTRA path and pre-initialize a requester port and a completer port the
protocol shown in figure 3.46 is used. The protocol always starts at the target side and
consists of six steps. If any of these steps failed an ULTRA path cannot be established due
to missing resources.

1. On the target node an unused and available completer port is assigned. 
The TUPID of this port is stored. The completer port is still not enabled.

2. An initialization request is sent to the origin node including the TUPID.
3. Upon the arrival of the request at the origin node one unused and available 

requester port is opened. The requester port is configured to send packets 
only to the given TUPID, but not yet enabled.
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3-a. If no port is available a failure is sent back to the target node, 
where the already opened completer port is freed.

4. An initialization response is sent back to the target node, including the 
OUPID of the opened requester port.

5. On the target node the completer port is configured to accept only packets 
from the received OUPID and then enabled.

6. The target node signals initialization complete to the origin node.
7. The origin node enables the requester port.

The ULTRA path is now initialized and user-level access is possible to send and receive
packets.

Figure 3.46 Ini t ial izat ion of  an ULTRA path
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CHAPTER 4
 S P E C I F I C A T I O N  

A N D  
E V A L U A T I O N
This chapter starts with a detailed specification of the design developed in the previous
chapters. In particular, the communication instruction set developed in Chapter 2
”Communication and Synchronization” and the network interface architecture (also named
Host Port) from Chapter 3 ”Network Interface Architecture” is specified.

After the specification follows an evaluation. An FPGA-based board with a PCI
interface is used for prototyping. The first tests with this board soon showed that it’s
resources are too limited. Because a suitable FPGA board fulfilling all needs was not
available, the decision was made to develop a custom one. The developed HTX-Board is
introduced in sub-chapter “4.4.1 HTX-Board” on page 168.

The evaluation itself covers two components and starts with the Triggerpage. It is the
building block for the virtualization of the network interface and deserves an evaluation.
When the Triggerpage was tested the HTX-Board was not yet available, thus the PCI-based
FPGA board is used here. But this shows in particular that even an old I/O interface is
sufficient for the Triggerpage. Nevertheless the virtualization will benefit a lot from a more
sophisticated and better performing modern I/O interface. After this follows a performance
evaluation of the ULTRA unit together with a first real-world measurement1.

1. The implementation details of ULTRA on the HTX-Board exceeds the scope of this work. The 
first measurement is only provided to show the performance achievable with the ULTRA architec-
ture.
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4.1  S P E C I F I C A T I O N  O F  D A T A  S T R U C T U R E S

In this sub-chapter all required data structures for the supported one- and two-sided
communication scheme are collected. A context is defined as basis for the virtualization of
the Host Port.

In figure 4.1 an overview of all data structures used for the implementation is shown.
All data structures are located in physical contiguous and pinned memory regions. 

Figure 4.1 Data Structure Overview
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Some of the data structures are protected from user access, other can be accessed by
user processes. This also applies for the global configuration registers. The location of the
context table and the routing space is protected from user access. Other configuration
registers like those containing data structure sizes or the Host Port ID are accessible from
user space.

Like already explained in sub-chapter “2.3.7 Interface between process and network
interface” on page 53, the size of all descriptors, table and queue entries is based on the
granularity of a cache line. For the x86 architecture the size of a cache line is 64 byte.

4.1.1 Context  Table

The Context Table (CT) is protected from user space access. For each VPID a context is
stored in this table. The table is indexed using the VPID. A loaded context configures the
appropriate hardware module for this VPID. Hence references to all other data structures
are included a context. The only exception is the routing space, which is shared by all
processes. Figure 4.2 shows an entry in detail.

Figure 4.2 Context  of  a  VPID

In order to save space in the context, the length of the data structures in a set is equal for
all VPIDs. This allows to use global configuration registers to store the size of these
regions.
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activate this context. For unused contexts this bit is not set, preventing accidental accesses
to this VPID. Beside this, the Posted Receive scheme can be enabled and additionally
configured for physical or virtual addresses (see sub-chapter “4.1.7 Posted Receive Queue”
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“4.1.6 Window Descriptor Table” on page 142).
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4.1.2 Routing Space

The Routing Space (RS) is not directly accessible from user level. In communication
instructions a reference to the routing space is included, describing a specific routing string
which precedes the packet. Beside these references no pointers are required to control the
routing space. A description of the routing functionality can be found in sub-chapter “2.2.2
Routing” on page 39.

4.1.3 Work Queue

Each VPID has it’s own Work Queue (WQ). The base address of the WQ is stored in the
context. All WQs have the same size, configured by a global configuration register.

A work queue entry is a communication instruction. These are specified in detail in the
sub-chapter “4.2 Specification of Communication Instructions” on page 145.

New work queue entries are signaled to the Host Port using the Triggerpage (see sub-
chapter “4.2.7 Triggerpage” on page 161). Hence no write pointer is required by the
hardware modules. Upon signalling the WQ read pointer stored in the context allows them
to fetch the next entry.

4.1.4 Send Data Region

The Send Data Region (SDR) is also part of the set replicated for each user process. The
base address is stored in the context while it’s size is globally defined.

A controlling pointer scheme is not required, because this region is only referenced by
communication instructions. They contain all required informations to find the
corresponding payload in this region. The completion notification of an instruction tells the
user process that the referenced payload area in the SDR can be free again.

4.1.5 Receive Data Region

The Receive Data Region (RDR) is the counterpart to the SDR. Here the payload for
incoming packets based on Send/Receive is stored. This region is controlled by a read/write
pointer scheme. The write pointer is updated by the Host Port, while the user process
updates the read pointer. This pointer scheme allows the hardware modules to easily find
free space in this region.

The read and write pointers are stored in the context. Their size of 24 bit together with a
granularity of 64 bit allows an RDR size of 128MB. The write pointer is used internally in
the Host Port and additionally included in notifications of received packets.

The user process has to frequently update the read pointer to mark payloads in the RDR
as consumed.

4.1.6 Window Descriptor  Table

The Window Descriptor Table (WDT) is also replicated for each user process. The base
address is stored in the context and it’s size is globally defined. The windows are used to
protect the user space for RMA. Windows can be opened for exclusively one remote
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process, a group of processes or all. Furthermore a window can be temporally locked to
ensure mutual exclusion. All this is achieved using a rights flag (or capability) [48] in the
window descriptor. The RMA instruction must include a Window Identification (Win-ID)
and the matching capability to be processed.

The window descriptor is shown in figure 4.3. It consists of a window start address
(virtual address), the length, the rights flag and two pointers to the previous and next
window in a set.

If a set of windows is opened on the same user space region, the previous and next
pointer are used to form a linked list. This allows software layers to easily walk through all
window descriptors, for instance in the case that all windows except one must be locked.

Figure 4.3 Window Descriptor
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which specify regions in user space to be used. The payload is directly written into user
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Port). The PRD shown in figure 4.4.
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Figure 4.4 Posted Receive Descriptor  (PRD)

Future developments based on this work may result in more sophisticated PRDs, for
instance matching the origin or the tag of an incoming packet.

4.1.8 Notif icat ion Queue
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Host Port and consumed by the user process. Each context has it’s own NQ, hence the offset
of this queue is stored in the context. The size is globally defined in a configuration register.

The context also contains the read and write pointers for this queue. The user process as
a consumer increments the read pointer, while the Host Port updates the write pointer. Each
entry in the queue additionally includes a valid identifier, allowing the user process to poll
on the next queue entry to become valid.

The entries of this queue are notification descriptors. They are explained in detail
starting with sub-chapter “4.2.4 Overview of notification descriptors” on page 154.
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4.2  S P E C I F I C A T I O N  O F  C O M M U N I C A T I O N  
I N S T R U C T I O N S

Communication instructions are passed from user processes to the Host Port in order to
process work. The WQ is used to store these instructions as work request entries. The Host
Port processes these instructions and signals their completion back to the user process using
notifications. Notifications are entries in the NQ.

This sub-chapter starts with the specification of the supported communication
instruction set, followed by the notifications. After this, the use of the Triggerpage is shown,
including it’s layout and the supported operations (for instance instruction issue or pointer
update).

4.2.1 Overview of  communicat ion instruct ions

Only instructions for the Host Port are passed using descriptors. This sub-chapter
includes these communication instructions. These instructions are issued using the
Triggerpage. The instructions for the ULTRA unit require a special send and receive
scheme and are not part of this sub-chapter.

Figure 4.5 Virtual  Communicat ion Instruct ion 
(VCI) descriptor

The communication instructions are passed from the process to the Host Port. They are
stored as descriptors in work queues located in main memory. The virtualization of the Host
Port leads to naming these instructions Virtual Communication Instructions (VCI).

fixed part
variable part

CMD routing routing offsetlength

target
VPID API tag

user tag

variable use

variable use

variable use

variable use

variable use

063 31
bit position

0

7



C H A P T E R  4 Specification and Evaluation146
The size of a VCI is fixed and matches the size of a cache line (64 bytes) for the x86
architecture (see also sub-chapter “2.3.7 Interface between process and network interface”
on page 53). Figure 4.5 shows that a VCI consists of a fixed part and a variable part. The
fixed part is the same for all VCI types, while the use of the variable part is dependent on
the type.

The fixed part of a VCI contains the command (CMD) field, the routing information
and the packet tags. In the processing of a VCI the command must be interpreted first,
hence it is located at the beginning.

The next entries contain the routing information. The routing offset and routing length
are used to fetch the appropriate routing string from the routing space (see sub-chapter
“2.2.2 Routing” on page 39). The fetched routing string is extended to include the target
VPID as last element1.

From the point of view of an API or application, the routing handle to determine the
desired destination is composed of the routing offset, routing length and target VPID.

The next entry in the VCI descriptor are the packet tags. Two tags are available to
describe the packet. The normal user tag with a size of 64 bit can be used by applications.
The API tag is dedicated for middle-ware software layers or APIs. In this tag additional
packet informations like sequence numbers can be stored.

4.2.2 Command coding

The first entry of a VCI descriptor contains the command. In the following figure 4.6
the command coding overview is shown. The command is separated into three parts: the
error code, the command group and the (sub-)command including the parameters.

Figure 4.6 Command coding overview

Error Code. In a VCI descriptor the error code is always set to zero. After processing this
VCI a Notification Queue Entry (NQE) is generated to inform the process of the
completion. This notification queue entry contains a copy of the command provided with

1. The target VPID could alternatively be included in the routing space instead of the VCI. But this 
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the VCI, but the error code is then used to include information about success or failure. The
error codes are described in detail in the sub-chapter “4.2.6 Notification error codes” on
page 160.

Command Group. The Host Port is only a part of the interconnection network introduced
in sub-chapter “2.2 Integration into the Interconnection Network” on page 38. Depending
on the corresponding module, the command group allows to differentiate the commands.
This work here only covers commands for the Host Port and the ULTRA unit. The other
communication functions are a multicast and a barrier, additionally in the future others
might be developed. The coding of the command group is shown in figure 4.7.

Not all commands are issued using the Triggerpage, but for all commands are entries in
the same notification queue generated. Because of this the commands are strictly separated
into different groups.

Figure 4.7 Command group

Command. The last part contains the command itself. If the command requires parameters,
they are included in the command coding. The applied scheme is shown in figure 4.8. If
applicable the parameters are always located at the same bit position.

Figure 4.8 Command coding scheme
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The resulting coding of commands is shown in Table 4.1. The three most right columns
show for which data structures the appropriate table row applies. The work queue only
includes VCI commands. The next column shows the commands possible in the command
frame of a packet, and the third column shows available commands for the notification
queue.

Table 4.1: Command Coding 1 2

1. x: Don’t care value
2. grey: main CMD, green ‘x’: don’t care, yellow: request/response pair, red ‘L’: length of the 

immediate value, blue ‘A’: Acknowledge required or not (1=Acknowledge, 0=no Acknowledge.)

Bit Position

Command Additional Notes

Applies for

7 6 5 4 3 2 1 0 VCI CMD 
Frame NQ

0 0 0 1 A L L L FAST_SEND
LLL: # Direct Data 
Words

X X X

0 0 1 0 A x L L FAST_PUT
LL: # Direct Data 
Words

X X X

0 0 1 1 x
0

L L
FAST_GET

LL: # Direct Data 
Words

X X X

1 FAST_GET_RESPONSE X

0 1 0 0 A x 0 0 MISALIGNED_PUT X X X

0 1 1 0 x
0

1 0
FAA Fetch-And-Add 

Atomic Operation

X X X

1 FAA_RESPONSE X

0 1 1 1 x
0

1 1
CAS Compare-And-Swap 

Atomic Operation

X X X

1 CAS_RESPONSE X

1 0 0 1 A x x x SEND X X X

1 0 1 0 A x x x PUT X X X

1 0 1 1 x
0 x x GET X X X

1 x x GET_RESPONSE X

0 0 0 0 0 0 0 0 NQE_INVALID Invalid NQEs X

1 1 1 1

0 0 0 0 NOTIFY_CC
Notification of Com-
mand Completion

X

0 0 0 1 NOTIFY_RMA Notification of RMA X

0 0 1 0 NOTIFY_FAST_RECV
Notification of 
FAST_RECEIVE

X

0 0 1 1 NOTIFY_RECV
Notification of 
RECEIVE

X

1 1 1 1 1 1 1 1 ACK Acknowledge X
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4.2.3 Communicat ion instruct ion descriptors

The fixed part of a VCI descriptor is the same for all types of communication
instructions, while the variable part is dependent on the type. In the Table 4.1 already
provides a list of available communication instructions (marked with VCI column set). The
descriptor formats for these VCIs are now explained in detail.

Send. The Send instruction requires the payload to be stored in a dedicated buffer. Hence
the descriptor for this instruction includes a reference to the payload, specifying it’s exact
location and length. The lower and upper bound for this buffer are stored in the VPID
context.

Figure 4.9 Send VCI descriptor

The size of the payload is only limited by the size of the buffer. The buffer sizes on
origin and target side must be considered.

This two-sided communication method involves both the origin and the target in the
communication. The target decides which receive scheme is most appropriate. The origin
cannot influence this.

Fast Send. A Fast Send instruction includes the payload as immediate value in the
descriptor, rather than referring to other data structures. This saves one additional memory
access compared to the Send instruction. But the size of the payload is limited by the
available space in the descriptor. The command coding includes the length of the payload.
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Figure 4.10 Fast  Send VCI descriptor

Figure 4.10 shows that up to 5 words of each 64 bit can be transferred using a Fast Send
operation.

This two-sided communication method involves both the origin and the target in the
communication. Again the target decides which receive scheme is most appropriate.

Put and Get. At the origin side the Put instruction directly fetches the payload from user
space. No dedicated buffers are required. At the target side the payload is directly written
back into user space without the involvement of the target process. A Get instruction is
similar but reads the payload from the target and writes it back at the origin. These two
instructions only differ by the direction of the data transfer.

To protect the user space memory regions from unwanted access and to allow mutual
exclusion, windows are used on both the origin and target side. The location of the payload
is relative to the window offset. A Put or Get instruction includes an origin and target
window identifier (Win-ID), an origin and target address for the payload and the payload
size. While the origin window is only checked if it is locked, the access to the target
window must be verified with a capability (which is basically a key).

The size of the payload is only limited by the size of the window. The window sizes on
origin and target side must be considered.

This one-sided communication method involves only the origin actively in the
communication. The target process can optionally register itself to be notified of an access,
but it does not participate in the data transfer.
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Figure 4.11 Put/Get  VCI descriptor

Fast Put and Fast Get. Instead of including a reference to fetch the payload from user
space, the Fast Put instruction includes the payload as an immediate value. This saves one
memory access. At the target the payload is written into user space. Because no origin
window must be provided the origin Win-ID is omitted. The length of the payload is
included in the command coding for this instruction.

Similar applies for the Fast Get instruction. The payload is fetched at the target from
user space. Back at the origin the data is not written into user space, instead it is included in
the notification queue entry which informs the origin process of the completion.

Figure 4.12 shows that the space in the descriptor is sufficient for up to three data words
as payload.

This one-sided communication method involves again only the origin actively in the
communication. The target process can optionally register itself to be notified of an access,
but it does not participate in the data transfer.
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Figure 4.12 Fast  Put/Fast  Get  VCI descriptor

Misaligned Put. While all previous instructions always transfer data based on the
granularity of 64 bits, the misaligned instruction here include a Byte Enable (BE) entry. The
BE allows to mask the payload word. The granularity of the BE is 8 bits. For a word size of
64 bit the resulting size of the BE entry is 8 bit. Each bit of the BE enables or disables one
byte of the data word.

Figure 4.13 Misaligned Put  VCI descriptor
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This instruction only has to be used if upper software layers are based on a data word
granularity smaller than 64 bit. To allow remote put operation without overwriting
unwanted parts of the destination, this instruction must be used.

While a Misaligned Put is inevitable for correct behavior of the above mentioned
software layers, the Misaligned Get can be omitted. For a Get the data is only read. If only
parts of the payload word are requested, the origin process can easily extract them from the
delivered payload.

The target process can still optionally register itself to be notified of an access, but it
does not participate in the data transfer. Only the origin actively participates in the
communication.

Fetch and Add. The Fetch and Add instruction is the first of two supported atomic
operations. The target address is read, added with the addend included in the instruction and
written back. This result is also returned and included in the NQE.

If the I/O interface of the target node supports atomic operations, they should be used.
Otherwise the method described in sub-chapter “2.3.4 Remote Memory Access (RMA)
communication scheme” on page 47 can be used to overcome this limitation.

Figure 4.14 Fetch and Add VCI descriptor

Again only the origin actively participates. The target process can optionally register
itself to be notified.

Compare and Swap. The second atomic operation differs from the previous only by the
atomic read/modify/write scheme. The target address is read and compared to the provided
compare value. Only if they are equal the swap value is written to the target address. Then
the swap value is returned as result, otherwise the original value.
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Figure 4.15 Compare and Swap VCI descriptor

4.2.4 Overview of  not i f icat ion descriptors

Notification descriptors are entries in the NQ. NQEs contain a command, which allows
the receiving process to recognize which event has happened. The coding is already shown
in Table 4.1.

Figure 4.16 Notif icat ion descriptor
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The size of an NQE is again one cache line (64 bytes). It can be separated into a fixed
and a variable part. The fixed part only contains the CMD entry. Parts of the CMD are used
as error code. Figure 4.16 shows the descriptor for an NQE.

The CMD is located at the end of the descriptor. This allows the process to poll on this
location for a change, instead of polling on the write pointer of this queue. Then during
normal operation the process does not need to access the write pointer.

4.2.5 Notif icat ion descriptors

Now follows a description of all notification queue entries. Their command coding is
already shown in Table 4.1. Each NQE is based on Figure 4.16.

There are several reasons why an event is notified to a process. Either a communication
instruction is completed, a remote access occurred, a packet was received or the status of
the corresponding context was requested and is now returned in the NQ.

Completion Notification. If a work request is completely processed the origin process is
notified. If the work provides a result, it is included in the notification as an immediate
value or as a reference to another data structure. If the work cannot be processed due to
certain errors, these errors are also included. Figure 4.17 shows the descriptor format when
no immediate values are included and figure 4.18 the descriptor format with included
immediate values.

Figure 4.17 Complet ion notif icat ion descriptor  
without  immediate values
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handle is replaced with the target ID. This target identification consists of the unique target
node identification (Host Port ID, 32 bit) and the target VPID (16 bit). This allows to
identify the counterpart for this operation.

Beside this, a snapshot of the most recent pointer values is included. Only the pointers
controlled by the Host Port (WQ ReadPtr and RDR WritePtr) are necessary. This snapshot is
only used as optimization, reducing the number of status requests issued by the process.

Figure 4.18 Complet ion notif icat ion descriptor  
with immediate values

Some RMA instructions like Fast Get and atomic operations include the result as
immediate value. The corresponding descriptor is shown in figure 4.18. In the size field the
number of valid payload words is given, and the payload words contain the immediate data.

Remote Access Notification. A passive target of an RMA instruction can register itself to
be notified when such an RMA takes place. This allows to use RMA instructions also for
synchronization.

Figure 4.19 shows the descriptor layout. It contains the counterpart identification
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identification (target Win-ID) and the address and the size of the access.
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because this information is only meaningful for the origin process.
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Figure 4.19 Remote access notif icat ion descriptor

Receive Notification. The receiving of packets takes place automatically. The target Host
Port receives packets up to a size of 5 words as Fast Receive. Depending on the
configuration of the Host Port, larger packets are either stored in the RDR or received as
Posted Receives and stored directly in user space.

Figure 4.20 Receive notif icat ion descriptor
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the appropriate buffer and notifies the target process that a new packet is available. This is
done by inserting an NQE in the queue.

Figure 4.20 shows the Receive descriptor. It includes the origin of the packet (origin
ID), the size (it is limited by the corresponding Send instruction) and the tags (user and API
tag). This time the pointer snapshot is not only for optimization, because the process
requires the updated RDR write pointer to know the exact location of the payload within
this buffer.

Fast Receive Notification. If the payload size of an incoming packet is 5 words or less it
fits as immediate value in the notification descriptor. The pointer snapshot is omitted in this
kind of notification in order to store more payload data.

Figure 4.21 Fast  Receive notif icat ion descriptor

Posted Receive Notification. The Host Port can either be configured to receive packets
using the dedicated buffer (RDR) or to use Posted Receives. The first case is already
explained in figure 4.20.
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Figure 4.22 Posted Receive notif icat ion descriptor

Status Notification. The process can request a status snapshot containing the pointers of
the data structures. The update of a process controlled pointer also results in such a
notification. The generated notification descriptor always contains all pointers of this
context, both these controlled by the process and by the Host Port.

Figure 4.23 Status notif icat ion descriptor
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4.2.6 Notif icat ion error codes

The command field in the notification descriptors above contains also the error code for
the corresponding instruction. The following table shows the coding of these errors. A
detailed description can be found in [4].

Table 4.2: Notification Error Codes

No. Code Name Description

0 00000 ERR_NOERR Obviously no error occurred

1 00001 ERR_CMD_INV Invalid command

2 00010 ERR_OVPID_INV Invalid origin VPID

3 00011 ERR_ROUTE_INV Route exceeding upper bound / routing length=0

4 00100 ERR_OWINID_INV
Invalid origin Win-ID (disabled or exceeding upper 
bound)

5 00101 ERR_OWINID Segmentation fault on origin Win-ID

6 00110 ERR_OOFFSET Misaligned origin offset

7 00111 ERR_OLENGTH Misaligned origin length

8 01000 ERR_TVPID_INV Invalid target VPID

9 01001 ERR_TWINID_INV
Invalid target Win-ID (disabled or exceeding upper 
bound)

10 01010 ERR_TWINID_CAPA Invalid target Win-ID capability

11 01011 ERR_TWINID Segmentation fault on target Win-ID

12 01100 ERR_TOFFSET Misaligned target offset

13 01101 ERR_TLENGTH Misaligned target length

14 01110 ERR_ROUTE_BROKEN
Destination tag does not match or destination cannot be 
reached

15 01111 ERR_POSTED_PA Posted Receive: PA not allowed

16 10000 ERR_POSTED_PA_INV Posted Receive: Invalid PA, offset or length not aligned

17 10001 ERR_POSTED_TRUNC Posted Receive: Message truncated
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4.2.7 Triggerpage

The Triggerpage is a new method developed in this work which allows multiple
producers to enqueue elements in a central shared queue. Each access to the Triggerpage
includes flow control which informs the producer of the result of the enqueue operation.
Hence prior checking for available space is not required, because the producer is informed
of insufficient space by the returned result of the operation. For the application here the
Triggerpage is used for all accesses from (user) processes to the virtualized device except
ULTRA.

A user process needs to access the Host Port for several reasons, but all are related to
issuing instructions. Hence several issue commands are available for a Triggerpage access.

The enqueuing of new VCIs in the WQ must be signalled. The consumption of NQEs
and payloads retrieved from the RDR require to update the corresponding pointer stored in
the context. If the Posted Receive scheme is used, the process must provide new PRDs
describing regions in user space to store incoming packets. The insertion of new PRDs is
also signalled by pointer updates to the Host Port. The context is not directly accessible by
the process, all accesses are secured using the Triggerpage.

Triggerpage layout. In the last chapter the Triggerpage is introduced. A Triggerpage
access is always a read, never a write. Figure 3.30 on page 115 already shows that the
address of a read access to the Triggerpage is used to encode parameters. Figure 4.24 now
shows the address layout in detail. The lowest three bits cannot be used due to an alignment
to 64 bit units.

Figure 4.24 Triggerpage address Layout
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Triggerpage Issue Commands. Using the issue command several operations can be
specified. The following table provides an overview of the available operations for the
Triggerpage.

The first operation (Issue VCI) issues a given number of new VCIs to the Host Port.
These VCI have previously been inserted in the WQ and now the Host Port is notified of
these new entries. The Host Port may decide not to accept all VCIs, for instance when the
CSB behind does not provide enough free entries. The return value always contains the
number of accepted VCIs.

Using the next operation (Request Pointer Snapshot) the process can get a snapshot of
the pointer set stored in the context. No parameter is used here.

The next two operations (Increment NQ RP and Increment RDR RP) are used to update
the appropriate read pointers by incrementing them. The parameter is used to provide the
number of units, which are added to the current read pointer.

The last operation is used to signal Barrier Reached to the Host Port. The exact
functionality of the implemented barrier is beyond the scope of this work. Because several
barriers are available, the parameter encodes an identification of the barrier.

The result of the operations above is returned in the read answer. Figure 4.25 shows the
return value.

Table 4.3: Triggerpage Issue Command Overview

Issue Command Coding Parameter Description

Issue VCI 0000 Count Issue count numbers of VCIs

Request Pointer 
Snapshot

0001 Request an NQE with current pointer/sta-
tus set

Increment NQ RP 0010 Count Increment NQ read pointer by count units

Increment RDR RP 0011 Count Increment RDR read pointer by count 
units

Barrier Reached 0100 barrier_id Notify that barrier with ID barrier_id is 
reached
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Figure 4.25 Triggerpage return value

The following table describes the possible return values. A detailed specification of the
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4.3  S P E C I F I C A T I O N  O F  T H E  H O S T  P O R T  
A R C H I T E C T U R E

The insights gained and developed in Chapter 2 ”Communication and Synchroni-
zation” and Chapter 3 ”Network Interface Architecture” here are now combined to form
the final network interface. The architecture is combined with the queue design, the
virtualization technology and the ULTRA unit to support all communication and synchroni-
zation requirements of typical cluster applications.

Focus is set on a complete view of the architecture. The details of modules, building
blocks, data structures and working principles are explained in the appropriate sub-chapters
before.

Figure 4.26 Host  Port  top-level  block diagram

In figure 4.26 the top-level block diagram of the Host Port is depicted together with the
integration into the network interface. The Host Port basically consists of three parts. Each
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part houses the appropriate function unit types, derived from separating the work flow into
stages (see sub-chapter “2.3 Communication Architecture” on page 42).

The exact implementation of the ULTRA unit is not covered in this work. A detailed
description with a large design space exploration can be found in [94].

Not shown in this figure are the used caches. Caches to hold copies of frequently used
contexts, windows and routing strings and a TLB for address translations are integrated in
the final architecture. The TLB as the most complex unit is developed in [52], including a
sophisticated control unit and an implementation for a Field Programmable Gate Array
(FPGA) and an Application Specific Integrated Circuit (ASIC) technology. The required
Ternary Content Addressable Memory (TCAM) for the TLB is developed in [95].

4.3.1 Requester  Part

The Requester Part is shown in detail in figure 4.27 and contains the requester units and
other modules required to inject request packets. The Triggerpage with the CSB is also
included in this part. A VCI fetch unit stores the VCIs in a queue. From this queue the VCIs
are issued to FUs using a scheduling unit, which keeps track of occupied FUs. The
scheduling unit with the help of a scoreboard is also responsible to ensure the optional in-
order delivery of packets.

Figure 4.27 Host  Port  Requester  Part
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Notifications can be generated when a VCI is completely processed. The notification
unit is located in the Completer Part, hence the request to generate a notification is
forwarded there.

4.3.2 Completer  Part

The Completer Part (see figure 4.28) includes the completer units and a scheduling unit
to ensure in-order delivery. If incoming packets are not addressed to a completer unit, the
scheduler forwards them to the Responder Part or the ULTRA Completer. The notification
unit is also located here. If an incoming packet requests an acknowledge, the acknowledge
unit generates an appropriate packet which is sent back to the origin.

Figure 4.28 Host  Port  Completer  Part
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Figure 4.29 Host  Port  Responder Part
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4.4  E V A L U A T I O N

Two key components of this work are evaluated, in order to prove that they behave
correctly and performant. An evaluation of the complete design developed in this work is
much too complex to be covered here.

The first component is the Triggerpage. The test will show that the Triggerpage allows
simultaneous access from multiple user-level processes to the device and prove the correct
functionality. A performance evaluation shows that the latency of a Triggerpage access is
dominated by the included PCI read access, while the latency part caused by the
Triggerpage is minimal.

The second component to be evaluated is the ULTRA unit. A performance evaluation is
provided with first real world measurements. The achieved latency is compared to
commercial available interconnects, which shows ULTRA’s excellent performance
regarding latency.

The environment used for evaluation is FPGA-based. The FPGA device is a Xilinx
Virtex2 and connected to the host using a PCI interface. The PCI interface is capable of 33
and 66 MHz as operating speed. The host runs under Linux 2.6 and houses two Intel Xeon
CPUs. This prototyping station soon showed it’s limitations and the decision was made to
develop are more suitable one, aggregating a high-performance FPGA with a
HyperTransport connection to the system.

This HTX-Board is introduced in the next sub-chapter. Then follows the evaluation of
the Triggerpage, which is done using the PCI-based FPGA board. After this the ULTRA
unit is evaluated. The implementation of ULTRA on the HTX-Board is currently in
progress. Because of this the implementation is not part of the work presented here, only a
short outlook of the performance achieved is provided.

4.4.1 HTX-Board

The HyperTransport (HT) technology [96][97][98] is a point-to-point link interconnect
designed for chip-to-chip or board-to-board communication. This technology provides high
bandwidth together with very low latencies, making this technology suitable for almost any
application from embedded systems over PCs to high-performance computing systems.
Nearly the complete CPU portfolio of AMD already integrates at least one HT link
[99][100]. One of the most important recent developments in the HT context is the
introduction of the HTX connector [101][102]. In a very short time period the HTX
technology was accepted by industry and lead to the launch of new main boards from
different vendors. The first add-in card designed for HTX is InfiniPath by PathScale [35],
meantime several others are available. Still missing is a rapid prototyping station, which is
mandatory for fast developments of HTX devices. The HTX-Board presented here is
exactly designed for this purpose. It’s main component is a high-performance FPGA, which
is closely coupled to the main CPU over the HTX connector. The HyperTransport
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Consortium [103] already included the HTX-Board as a Reference Design in their portfolio,
which shows the demand for such a HyperTransport-based prototyping engine.

The HTX-Board is an unique design, integrating an FPGA suitable for rapid
prototyping and an HT connection to the system. The HT connection replaces the traditional
I/O interface for peripheral devices (for instance PCI or PCI-Express). Now the device is
directly connected to the system interface and intermediate bridges for protocol conversion
are no longer required. This close coupling result in very low latencies for accesses from
CPU to device.

Figure 4.30 Block Diagram of the HTX-Board

The other key component of the HTX-Board is the FPGA, which is connected to the
various components like communication devices, dynamic and flash memory or for
auxiliary functions. A Xilinx Virtex4-FX [104][105] was chosen because it already contains
CPU cores and a large number of high speed serial transceivers. Other features like support
for dynamic reconfiguration, differential I/O with up to 1GHz or the embedded Ethernet
MAC cores are not mandatory, but fit very well in the architecture of the design and are not
left unused.

The FPGA is directly connected to the HTX interface with differential links. This
connection is 16bit wide in each direction. Wider HT connection are not supported over
HTX connectors. The complete power supply is also provided by the HTX connector, no
external power is required.

Beside the HTX interface, the most important feature are the Small Form Factor
Pluggable (SFP) Transceivers. Six of these SFPs are placed on the board, connected to the
high speed serial links of the FPGA. These links can run speeds from 622 Mbit/s up to 6.25
GBit/s. One advantage of SFP is that the transceivers are pluggable. By exchanging the
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transceivers every kind of transmission is possible, electrical or optical over various
connector types. Running all SFP transceivers at full speed, the bidirectional bandwidth is
60 GBit/s1. All six transceivers are accessible at the front panel of the board. The intend is
to build up direct interconnection networks with a 3D-topology, for instance tori or meshes
(or any other topology with a node degree [106] of not more than six).

The embedded CPU cores of the FPGA use a data width of 32bit, which is sufficient for
the targeted applications. For unconstrained usage of the CPU cores, additional memory is
required on the device. Furthermore, flash memory and an Ethernet interface is useful for
loading the bootstrap of the CPU cores. Thus the FPGA is connected to auxiliary
components like a DDR2-SDRAM, a flash memory and an Ethernet device. Regarding the
data width of the DDR2-SDRAM interface it is optimal to match the data width of the CPU
core, which is 32bit. Because the highest data width of available DDR2 devices is 16bit,
two of them are placed on the board to match the data width.

The top-level block diagram is shown in figure 4.30 with all important components,
mainly the FPGA, the HTX connector and the SFP array. These components are already
shortly introduced. A deeper explanation can be found in [107].

Figure 4.31 Photo of  the HTX-Board

In figure 4.31 a photo of the HTX-Board is shown. The FPGA and the HTX interface
can easily be recognized.

The HTX-Board in combination with the HT-Core [108] shows the impact of the close
coupling to the system and the absence of intermediate bridges. First measurements results

1. Assuming an 8b/10b code and all six transceivers running at 6.25GBit/s.
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are presented in [109]. The latency of a read access starts with 320 ns for a 4 byte transfer.
In this configuration the HT-Core is only running with 100 MHz and a data width of 8 bit,
hence there this latency can still be optimized in the future. Currently a 16 bit wide HT-Core
running with 200 MHz is under development, which will further reduce the latency
significantly. An ASIC implementation of the HT-Core can achieve even higher operation
frequencies.

4.4.2 Triggerpage evaluat ion

The Triggerpage is a new method to efficiently issue new work requests to a virtualized
device. It’s use is not limited to network interface. Any high-performance device that is
capable of User-Level Communication and virtualized in hardware can benefit from the
Triggerpage.

The only hard limit for the number of processes simultaneously accessing the device is
the available address space for an device. The tests here use a PCI peripheral device, which
address space is limited by the PCI specification [19] to 256MB or 216 4kByte pages. Hence
up to 216 processes can concurrently open and access the device.

In order to test and evaluate the Triggerpage it is implemented using an FPGA
technology [94]. Because of the limited resources in the FPGA the Triggerpage could only
be implemented with a PCI interface running at 33MHz (PCI33).

In the first test one user process performs 1000 operations on the Triggerpage. The
measurement shows that one single operation is performed in 630ns (see Table 4.5). This
value is compared to the latency of a normal read of an on-device register which is 630ns
for PCI33. This comparison obviously shows that the latency of a Triggerpage operation is
completely dominated by the included PCI read access.

The next test creates multiple threads which all access the Triggerpage. The number of
threads and the number of operations per thread are varied (see Table 4.5). The
measurements show the average latency of 1000 iterations.

Both cases performed successfully and showed that the Triggerpage allows a large
number of processes to simultaneously access the device. But the considerable latency
increase deserves a closer evaluation.

Table 4.5: Triggerpage Performance Evaluation

number of simultaneously 
accessing threads

number of operations 
per thread

average latency 
per operation

1 1000 630 ns

8 8 107 us

64 8 1513 us
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The non-linear increase of latency per operation in Table 4.5 is most likely caused by
the thread management system which is part of the O/S. The Triggerpage cannot influence
this. This is also proved by the first measurement, where the latency increases linearly (with
a factor of one) with the number of operations performed.

To conclude the test of the Triggerpage, it is shown that the Triggerpage allows a large
number of user processes to simultaneously access the device. The operations are
performed and interpreted correctly. Regarding the performance evaluation, a host system
capable of more simultaneously running processes is required together with a more
performant I/O subsystem. Additionally an FPGA with more resources is needed for an in-
depth evaluation. Only then possible performance limitations of the Triggerpage can be
unveiled.

4.4.3 ULTRA evaluat ion

The other evaluation performed within the scope of this work is a performance analysis
of the ULTRA unit. The goal of ULTRA is to allow communication between user-level
processes with lowest latencies possible. In order to achieve this goal, the message injection
and retrieval scheme requires only a minimum number of I/O cycles. This is made possible
by pre-configuration of the requester and completer units. Then the static part of a message
is already stored in the device. Only the message tag and payload must be transferred using
a single burst access on each side.

For the evaluation basic PCI-66 measurements are combined with simulation results.
The resulting end-to-end latency between two nodes (including the crossbar and cabling) is
only 1198ns. In [94] a break-down of this latency is provided, showing it’s components in
detail. In summary, the major part of the latency origins to the I/O interface. To inject the
message one PCI burst write is required, which costs 471 ns. The message is received using
a queue located in main memory and the required access from device costs 260 ns. The
latency of the ULTRA requester unit is 13 clock cycles, the ULTRA completer requires 21
clock cycles. Applying a clock speed of 100 MHz (which is more than feasible for an FPGA
technology) the resulting accumulated latency is 250ns. Applying a typical operating
frequency for an ASIC technology like 500MHz, the latency of the two units is reduced to
50 ns.

Only few cluster interconnects achieve such low latencies. The following interconnects
have been bench marked during the tutorial of the International Supercomputer Conference
(ISC) 2005. Only commercial products are included here. For comparison, the start-up
latency of Gigabit Ethernet is 37.45 us. Myrinet reaches 2.78 us (based on PCI-X),
Mellanox’s Infiniband based on PCI-Express 2.76 us and Quadric’s QsNet2 based on PCI-X
1.71 us. A interconnect which is not based on PCI or PCI-Express is InfiniPath by
PathScale. It is connected towards the host using the HyperTransport technology. The
resulting latency is as low as 1.35 us, and shows again the impact when replacing a
traditional I/O interface. These values were measured within the scope of the tutorial and all
companies agreed to publish the results [110]. For comparison, ATOLL achieves a latency
of 3.4 us [39].
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This analysis together with the results of the tutorial show the possible impact when
replacing the PCI(-Express) I/O interface with a high performant one. An implementation
on the HTX-Board connected over HyperTransport to the host is currently in progress. First
basic measurements show that the performance increase is tremendous, resulting in
latencies around 750 ns [109] for a packet transfer.
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CHAPTER 5
 I N S T R U C T I O N  S E T  

E X T E N S I O N  F O R  
C O P R O C E S S I N G
In the previous chapters several new techniques have been developed, specified and
evaluated to improve the overall performance of network interfaces. In particular the
virtualization is not limited to be used only for network interfaces. It is a generic approach
which allows to virtualize almost any high-performance device. The ULTRA architecture
targets lowest latency packet transfers and is currently limited by the I/O interface.

Both the virtualization and the ULTRA architecture can be improved by a closer
coupling between CPU and device. The virtualization is based on a large set of pages for
process identification and a read operation for triggering. Both methods are work arounds to
overcome the limitations of I/O interfaces. This also applies for the sophisticated queue
synchronization schemes used for ULTRA, where the synchronization overhead is reduced
as much as possible.

A modified protocol between CPU and device can significantly improve the
performance of the two applications above. This results in not only modifying the CPU,
additionally all involved intermediate components and protocols require changes. A direct
connection between CPU and device limits this number of changes and allows a close
coupling.

One of the most recent developments is a resurgence of interest in coprocessing. This is
substantiated by the AMD’s Torrenza project and the use of Graphic Processing Units
(GPUs) for acceleration. This development started when both virtualization and ULTRA
methods were already developed and evaluated. Because especially the virtualization can be
used also for coprocessors, the work here is extended in order to show how an instruction
set extension can improve coprocessing.

A close coupling between coprocessor and CPU is required for a most efficient
acceleration. This can be achieved by special coprocessing instructions. Dedicated
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coprocessing instructions allow to most efficiently use the limiting interconnect. Using
them the typical load and store operations can be extended for a more sophisticated use.
This instruction set extension is comparable to many previous extensions, for instance the
MMX instructions. Special coprocessing instructions are also in line with the working
principle of modern Complex Instruction Set Computers (CISC).

The goal is to limit the required changes for the CPU to the instruction set.
Modifications of the architecture, for instance the register file, functional units or internal
organization are not desired because then a re-design of the hardware is required. An
instruction set extension should be possible by only modifying the micro code of the CPU.
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5.1  I N T R O D U C T I O N  T O  C O P R O C E S S I N G

In [111] a definition of coprocessing is provided, stating that coprocessors cannot be
used alone and they cannot handle regular instructions or I/O operations. While this is in
particular true, some deeper explanations might provide more insights. The central unit of a
computing system is always the CPU. A Coprocessor (COP) is always dependent on work
issued by the CPU.

The goal of coprocessing is the efficient acceleration of specific tasks. A CPU, which is
designed for unconstrained and general purpose use, is capable to process almost every
task. A COP is a specialized and optimized resources for a specific task, and this task can be
processed by a COP much more efficiently and faster than by a CPU. Hence coprocessing
always implies CPU off-loading by delegation work from the CPU to the COP.

Typical example applications for coprocessing include (but are not limited to) storage
and network, media acceleration (e.g. GPUs), security processing, scientific computing or
financial data processing.

Coprocessing can be distinguished in Traditional Coprocessing and Modern
Coprocessing. Both kinds are now introduced and their main difference is shown.

5.1.1 Tradi t ional  coprocessing

In the traditional coprocessing the COP is directly connected to the CPU over a
dedicated and specialized interface (see figure 5.1). Beside the exclusive connection to the
CPU, it can directly access the main memory to fetch and store data.

Figure 5.1 Tradit ional  coprocessing
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Special coprocessing instructions are available in the CPU’s instruction set. If a COP is
present in the system they are forwarded to the COP. If no COP is present an exception is
raised. If possible the CPU performs the task by emulation which is obviously much slower.
If this is not possible, the application is terminated. These special instructions and the
dedicated interface allow a very close coupling.

Examples for such COPs are floating point accelerators, vector processors, digital
signal processors and media accelerators. Over the time, the most important COPs were
directly integrated into the CPU. For instance, the floating point instructions are again a
typical representative.

5.1.2 Modern coprocessing

Modern coprocessing differs from traditional coprocessing by the changed location of
the COP. The COP is no longer connected over a dedicated and specialized interface to the
CPU. Instead a standardized interconnect is used, depending on the location either a
standard system or peripheral interconnect. Today a typical location for a COP is the
peripheral sub-system (see figure 5.2).

The COP no longer has exclusive access to the main memory and specialized
instructions in the CPU’s instruction set are not available. Compared to traditional
coprocessing the CPU and the COP are much less coupled.

Figure 5.2 Modern coprocessing with peripheral  
COP
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controllers, GPUs or any other sophisticated high performance device which adopts tasks
from the CPU.

The most recent trends in modern coprocessing are FPGA- and GPU-based COPs. The
ability of reconfiguration respectively programming is used to perform application specific
tasks. The COP is once programmed with a certain algorithm, and the CPU can accelerate
appropriate work using the COP.

A current trend to standardize the interface between CPU and COP is AMD’s Torrenza
initiative. The goal of this initiative is to set up a common basis for developing COPs. The
development of application specific COPs is then simplified by relying on this common
basis.

5.1.3 Locat ions of  modern coprocessors

The most important difference for a modern coprocessor is it’s location within the
system. Either it is located in the peripheral sub-system (see figure 5.2) and connected over
a standardized technology like PCI, PCI-X or PCI-Express to the rest of the system. This
approach suffers from the absence of cache coherency, an intermediate bridge which is
required for protocol conversion and the resulting high access costs from CPU to COP and
from COP to main memory. Nevertheless the standardized interface allows a broad use of
the COP.

Figure 5.3 Modern Coprocessing with direct ly 
connected COP
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To overcome the limitations introduced by the intermediate bridge a COP can also be
connected directly to the system interconnect (see figure 5.3). Then protocol conversions
are no longer required and the access costs are dramatically reduced. A direct connection
allows a much closer coupling due to the reduced overhead for accesses. The drawback is
that most system interconnect protocols are either not published or the main board provides
no connection for a COP. A recent development is the HTX expansion connector, which
provides a standardized interface and allows a direct connection to the system interconnect.

The configuration shown in figure 5.3 is not limited to four way CPU systems. For a
dual CPU configuration, CPU 2 and 3 can be left away together with their memories. If the
CPU 0 as boot master provides enough links for a direct connection of both the COP and the
I/O bridge, even a single CPU configuration is possible.

A similar approach is to use a multi-processor system and replace one CPU (except the
boot master) with a COP. For the configuration shown in figure 5.3 this even allows to
attach memory directly to the COP. The drawback here are non-standardized and frequently
changing CPU sockets, or again unpublished system protocols.

5.1.4 Examples  of  modern coprocessors

Now some typical representatives of modern processors are shown, starting with COPs
located in the peripheral sub-system. ClearSpeed’s Accelerator Board “Advance” [112] is a
typical accelerator connected over PCI-X to the main system. The goal is hardware
acceleration of software algorithms. 

The RCHTX high performance computing board from Celoxica [113] targets the same
application, but this accelerator uses an HTX connector to the system. This is one of the
coprocessors which are directly connected to the system, but are designed as expansion
card. While ClearSpeed’s board is based on ASICs, the accelerator from Celoxica is based
on an FPGA by Xilinx, allowing FPGA-based co-acceleration of software algorithms.

Typical examples for COPs replacing a CPU are the Reconfigurable Processor Unit
RPU100 or RPU110 by DRC Computing [114] and the XD1000 FPGA Coprocessor Module
by XtremeData [115]. Both fit in an AMD Opteron compatible CPU socket (Socket 940)
and are based on FPGAs. While DRC Computing’s unit houses a Xilinx Virtex device, the
module by XtremeData uses an Altera Stratix FPGA.

One of the most recent trends is to use GPUs for coprocessing. A modern GPU houses a
large amount of computing power which can also be used for application specific
acceleration. The first example is the ATI Stream Computing (by AMD) which is based on
ATI Graphics Cards [116]. The other example is NVidia’s Compute Unified Device
Architecture (CUDA), which is based on NVidia GPUs with up to 128 cores [117].
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5.2  I N T E R F A C E  F R O M  C P U  T O  
C O P R O C E S S O R

A coprocessor directly connected to the main system interconnect provides the best
performance. Additionally the direct connection does not require any intermediate bridges
and it is possible for the COP to participate in the cache coherency protocol. Such a location
is most suitable for the proposed instruction set extension. Beside the instruction set only
the protocol of the system interconnect must be slightly modified. Then the changes can be
limited to the main processor’s micro code, a small extension of the protocol and the
coprocessor itself.

A location of the coprocessor in the I/O subsystem not only provides less performance,
it also results in much more changes. In addition to above a custom I/O bridge and a
changed I/O protocol is required. Hence the first solution with a direct connection is
targeted for the proposed extension here.

The HT technology is a suitable interface. The HTX-Board introduced in sub-chapter
“4.4.1 HTX-Board” on page 168 is perfectly suited to act as a coprocessor for a first test of
the extensions proposed here. It can easily be reconfigured to execute the new instructions.

5.2.1 General  requirements

A typical environment for a coprocessor is a multi-processor computing system. Each
CPU additionally consists of several cores (see figure 5.4). It is expected that the recent
multi-core trend continues which will lead to even more cores per CPU. Other techniques
like multi-threaded architectures or VM environments additionally increase the parallelism.

The coprocessor is a highly specialized component of the system and typically only
available once. The coprocessor can be virtualized to grant all processes user-level access.
The architecture proposed for the device virtualization is also most suitable here. The SMT
approach allows to exploit any amount of parallelism without restricting the utilization by
partitioning the resources.

Each CPU has an instruction pointer, which leads to an autonomous instruction stream.
The CPU as a master issues work requests to the coprocessor (which is the slave). The
instruction stream of the coprocessor is dependant on the work issued by the CPUs, hence
no instruction pointer is present.

One of the most important requirements when issuing work to a coprocessor,
independently if it is for off-loading or acceleration purposes, is a highly efficient interface.
Only then the required overhead for work issue and wait for work completion is low enough
to allow a fine grain work issue. A highly efficient interface is also the key component for a
scalable design, when the number of processes simultaneously accessing the COP is scaled.

Both work issue and wait for work completion are the only two synchronization points
when processing work on a COP. The work issue must be non-blocking to allow
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independent work flows. Then the CPU can continue processing other tasks, while the COP
executes the issued work. The wait can either be blocking if the CPU cannot continue with
other tasks, or non-blocking if this is only a check for completion and other tasks are
outstanding.

Figure 5.4 Typical  environment for  a  vir tual ized 
coprocessor
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The address space of the Triggerpages is configurable but static. For a large number of
processes it has a remarkable size. The large number of pages may also lead to TLB misses.
The access to a virtualized device is only efficient if the TLB of the CPU contains the
appropriate address translation entry. Otherwise the MMU is involved in the translation
which results in a large amount of overhead required for a page table walk.

Furthermore the required read operation does not allow to include any immediate data
in the issue access. This is currently solved by referring to a separate work queue. For each
trigger operation the device has to fetch the instruction from this queue. This memory
reference results in additional overhead. If the instruction is included in the issue operation
as an immediate value the additional memory access is unnecessary and the overhead
reduced.

Proposed extension. The solution to improve the two problems above is a store operation
which is tagged with a process identifier. This identifier must be included in a secure way in
the access, preventing it to be modified or faked by a user level process. Only then the
access is safe and the separation of different processes is guaranteed.

Using the tag the virtualized coprocessor can recognize the calling process. A set of
pages in the I/O space is no longer required. The work request previously stored in separate
work queues can now be included as payload in the tagged store. This saves one memory
access which is otherwise required to fetch the work request. The central trigger queue turns
into a work queue.

For a shared queue the multiple writer problem remains. Several processes are
simultaneously accessing the queue to insert entries. Mutual exclusion is required to ensure
correct behavior. The cycle of checking for available space and enqueue of the entry may
not be interrupted.

This can be achieved efficiently by a tagged conditional store, where the condition is a
free queue entry. Only if this is true the new entry is inserted into the queue. The tag is still
used to identify the calling process in a secure way to the coprocessor. This instruction must
include a response which return value informs the calling process of the success or failure
of the instruction.

5.2.3 Analysis  of  ULTRA

The goal of ULTRA is to allow fine grain communication and synchronization between
processes on different nodes. The approach is to initiate a communication by writing to a
special address, and to receive the transmitted data by reading a special address. In the
previous chapters ULTRA is developed to be part of an I/O device. While this approach
does not imposes any restrictions to inject a packet, the packet retrieval is only possible with
a status word indicating if the data is already valid. If not, following accesses to the address
are required to poll until the data becomes valid.

Requirements. ULTRA can be improved by a more sophisticated receive scheme. If the
load operation takes into account if the data at the target address is valid or not, the calling
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thread can be blocked. Only if the data becomes valid the process can continue to execute
on the CPU. This makes polling obsolete and reduces the CPU load.

A multi-threaded architecture even improves this scheme. The blocking is then only
thread-blocking, not CPU-blocking. If one thread is blocked due to a missing resource (load
to an invalid address), a fast context switch occurs and another run-ready thread is allowed
to execute on the CPU. As soon as the data becomes valid, the blocked thread is re-
scheduled as run-ready. This thread scheduling allows to hide the receive latency. Because
modern CPUs based on HT are typically not multi-threaded and such an architectural
change is far beyond the intend of this chapter the following analysis focusses on load
operations including a valid identifier.

Proposed extension. The proposed extension is a tagged load, comparable to the previous
tagged store. Now the response not only contains the data, additionally the tag is used as
valid identifier. The process can interpret this tag to know if the read value is valid or not.
Dependent on this it either retries the tagged load or continues processing.

For a Multi-Threaded Architecture (MTA) with support for fast context switches the tag
can also be used to determine if the context has to be switched or not. It is most likely that
an invalid load will be retried, which results in polling. The wasted CPU time can be used
more efficiently if another thread is run-ready.

The proposed tagged load is used as a kind of wait for completion. Only if the work is
finished the data becomes valid, which allows the process to continue it’s execution using
this data. Similar to ULTRA, the tagged load is also suitable as wait for completion
operation for the virtualization, rendering the valid identifier used in the notification
descriptors unnecessary.

The tagged load can also be used as issue operation for the virtualization based on a
shared trigger queue. A secure tag allows the identification of the process, and the response
informs the process of the success or failure of the issue operation. In opposition to the
tagged store the work request cannot be included as immediate value. But while the tagged
store alone is not suitable for a shared queue, the tagged load is sufficient.
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5.3  P R O P O S E D  I N S T R U C T I O N  S E T  E X T E N S I O N

The two applications in the previous sub-chapter show the various possible use for
tagged instructions. It also leads to the result that support for secure and user accessible tags
is required. A generic approach will take both kinds of tags into account.

This sub-chapter examines the proposed new instructions in more detail. Because the
focus of this chapter is to extend the instruction set and not to modify the architecture of the
CPU, the proposals for architectural modifications (like thread switching upon blocking)
are no longer analyzed. The goal is to allow an efficient coprocessor interface using small
modifications of the instruction set, preferable those who are possible to implement using
micro code patches. Modifications to the coprocessor are not crucial, because they are
typically based on custom designs.

To summarize the last sub-chapter, tagged instructions can be used to improve the
virtualization and the ULTRA architecture. In particular, support for tagged store and
tagged load instructions is required. A tagged conditional store provides most efficient
support for the virtualization, including all required accesses to issue new work requests in a
single instruction.

5.3.1 Tagged s tore instruct ions

The tagged store (see figure 5.5) is proposed to overcome the required set of pages in
the I/O space required for virtualization. The tag of the store is used to identify the process
towards the virtualized coprocessor. This identification must be secure, hence only
privileged instances are able to modify it.

Figure 5.5 Instruct ion set  extension:  Tagged 
Store
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instruction. The value of this register is used as tag for each tagged instruction the user
process performs.

A generic approach leads to two kinds of tagged store instructions. One where the tag is
protected like proposed above and another one where the user process can modify the tag
for each tagged instruction. For the second user tagged store any register can be used as tag.

5.3.2 Tagged load instruct ions

The tagged load (see figure 5.6) is used to replace the dedicated valid identifiers stored
with data values. This is achieved by tagging the returned value. Dependent on the tag a
status bit of the CPU is set. After the tagged load the process executes a conditional branch,
in order to repeat the procedure if necessary. This ensures that the execution is only
continued if the data is valid.

Figure 5.6 Instruct ion set  extension:  Tagged Load

The response tag is not accessed directly by a user process. It is set by the coprocessor
and the process only uses the tag indirectly over a status bit. Beside the response the request
part of a load can also be tagged. Comparable to the tagged store this can be used to allow
the coprocessor to identify the calling process. In this case, the tag must be secured from
user access, using the same approach as already described for the tagged store. The two tags
from request and response are strictly separated and do not directly influence each other.

In the two example applications here (Virtualization and ULTRA), there is no need for a
user-accessible request tag. Although it is proposed to include, both for completeness and a
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The tagged conditional store (see figure 5.7) instruction is the most sophisticated in the
proposed extension. The trigger operation for the virtualization can be completely
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Furthermore the conditional store includes a response to the process. This is used to inform
the process if the condition is met or not, or in other terms if the store was executed or not.

The condition check and the store may not be interrupted by other stores. This mutual
exclusion is required for all shared data structures, where multiple writers access a shared
location. Otherwise correct behavior cannot be ensured.

Figure 5.7 Instruct ion set  extension:  Tagged 
condit ional  s tore

Comparable to the tagged store, the instruction here is again tagged in a secure way to
allow process identification. Beside the address and the data to be stored it furthermore
includes a condition. This condition can be of almost any type, for instance a check if a bit
is set or not.
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CHAPTER 6
 C O N C L U S I O N  

A N D  
O U T L O O K
The major goal of this work is to improve the architecture of network interfaces. The
motivation is manifold.

The computer architecture and in particular the processor architecture is steadily
improved and the parallelism offered by the host system increases. At the moment of
writing, mobile computing with dual-core processors is pervasive. Quad-core server
processors are announced by the leading manufacturers or already available. A current
processor design combining multi-core with multi-threading techniques allows to run up to
32 threads in parallel. Most recent research projects show processors with up to 80 cores,
indicating the multi-core trend will continue on. Another recent development is a
resurgence of interest in Virtual Machine environments, which in addition increase the
parallelism of the system by hosting multiple O/S on one physical machine.

If such a system is a node of a parallel distributed computing system, the performance
of communication and synchronization is essential. Only if the amount of overhead for
communication and synchronization is minimal, a close coupling of the nodes is possible. A
close coupling is also inevitable for fine grain communication. In addition, a close coupling
is the key for a scalable system, with a performance increase analog to the size of the
parallel system.

Communication and synchronization functionality is provided by the network interface.
While a computing node exploits an increasing amount of parallelism, a network interface
is typically only available once in a node. In a distributed system the exploited parallelism is
offered as communication and synchronization work to the network interface. With the
increasing parallelism of the computing node, parallel, unconstrained and simultaneous
access to the network interface becomes inevitable.



C H A P T E R  6 Conclusion and Outlook190
Virtualization. Support for simultaneous access is achieved by device virtualization using
the Triggerpage, which is the one of the key contributions developed in this work. It allows
unconstrained access from almost any number of processes1 to the device using User-Level
Communication. In particular the I/O interface is used very efficiently, which otherwise
turns into a limiting bottleneck.

The Triggerpage with it’s issue operation is the interface for all accesses from user
process to the network interface. By a single load instruction (seen by the device as a read
cycle) any user process can issue new work requests to the device. This highly efficient
issue operation uses addresses as immediate values, and in the other direction the read
response for flow control. With this issue operation, central shared queues can be accessed
simultaneously by any number of user processes. This innovation is the enabling key of
unrestricted simultaneous access to devices and it’s high efficiency is inevitable for a
scalable virtualization.

The Triggerpage also ensures security and separation among the accessing processes.
User processes are considered to be insecure, but no process is able to interfere with other
ones, preventing both failures due to erroneous or harmful software. Furthermore each
accessing process sees an exclusive device for it’s own. The complete virtualization
technique is completely transparent to a process, increasing the safety of the design.

The virtualization relies on a set of data structures in main memory. No additional on-
device memory is needed, reducing the overall costs of the device. Furthermore the main
memory as most cost-efficient memory resource is most suitable when the number of
processes is scaled. This data structure set is also one of the enabling techniques for scalable
virtualization.

The complete virtualization does not require any modification of the I/O interface. This
allows to use this technique with any available I/O interface. In particular PCI, PCI-X, PCI-
Express and HyperTransport are analyzed, but any modern I/O system should be suitable.

The Triggerpage with the issue operation as key component of the virtualization are
implemented and evaluated. The results substantiate the expected efficiency and
performance, showing that an instruction issue over the Triggerpage does not last longer
than a normal read cycle on the I/O interface.

Architecture. The virtualization above is only a part of the network interface, and offers a
large amount of parallelism to the execution units. For maximum performance the network
interface architecture must be able to exploit as much of the offered parallelism as possible.
The virtualization allows a large number of processes to issue work simultaneously, hence
the offered parallelism includes beside instruction level parallelism also thread level
parallelism. A suitable architecture for an unconstraint exploitation of both types of
parallelism is developed, based on the insights gained by an analysis of modern processor

1. The specification provided in chapter four allows up to 216 processes, expecting this large number 
to be sufficient for almost all applications. The virtualization method itself is not restricting this 
number, currently only the PCI specification limits it to 216.
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architectures. It has many similarities with Simultaneous Multi-Threading, removing any
partitioning of the superscalar functional units.

The absence of partitioning not only exploits any parallelism without restrictions, it
also allows a dynamic use of the available resources, which leads to a high utilization of the
superscalar functional units. In particular all resources can be occupied with work of a
single process. In the case of several competing processes the resources are shared equally.

To fulfill the special requirements of network interfaces, the architecture includes
support for in-order work processing. This is achieved by supervising the superscalar
functional units with a scoreboard, ensuring that work requests with dependencies are not
processed in parallel. A potential increase of issue queue blocking is solved by a multi-issue
technique in combination with distributed wait queues. These wait queues are derived from
reservation stations, which are well-known in modern processor architecture.

The device virtualization and the architecture are not limited to network interfaces. Any
high performance device can benefit a lot from these techniques. 

Communication and synchronization. The network interface architecture is combined
with a set of communication and synchronization instructions. This set is composed by
several sophisticated communication methods, each optimized for a certain range of
message sizes. Goal is to minimize the communication latency by reducing the overhead.
Dependant on the message size, the most suitable communication method is chosen. This
manifold set is comparable to the instruction set of a modern CISC architecture.

The set includes communication methods based on Send/Receive and RMA schemes.
For both, several different instructions are available. The architecture includes an TLB to
optimally support RMA with virtual addresses. Furthermore well-known RMA operations
are extended by including support for synchronization, which otherwise is not possible for
one-sided communication. Memory windows are used to protect the user address space
from unwanted access, and to ensure possibly required mutual exclusion.

All the communication and synchronization instructions in this set are issued to the
network interface using the Triggerpage, allowing an unrestricted use.

ULTRA. The costs of virtualization are minimal but not negligible. To provide support for
fine grain communication an additional communication method called ULTRA is
developed. The goal of ULTRA is to achieve lowest latency communication, which is the
key for fine grain communication. Efficient transfer of small data structures is only possible
with minimal overhead, which in particular requires a low latency.

ULTRA is based on a highly efficient packet injection and retrieval scheme. A pre-
initialization and pre-completion of packets is used to minimize the overhead for each
packet. One single write cycle is sufficient to inject a packet into the network. Similar to
this, the packet retrieval is also based on a single I/O cycle.

The major part of the overall latency is introduced by the I/O interface. The efficient
injection and retrieval scheme minimizes the corresponding latency component, resulting in
an unmatched latency1. With a first prototype a latency below one microsecond is achieved.
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The restrictions of this prototype still leave room for improvements, thus even lower
latencies are possible with ULTRA.

Coprocessing. The recent interest in coprocessing lead to an analysis if the virtualization
technique is also applicable for coprocessors. It can be used without constraints, but the
analysis pointed out a method to even improve the coprocessor virtualization.

In particular the resources required by the Triggerpage can be reduced by the
introduction of an instruction set extension. This extension includes tagged load and store
instructions and in particular a tagged conditional store. The last one allows to reduce the
requirements regarding address space of the Triggerpage to the minimum. Unconstrained
simultaneous access to the coprocessor is still possible. These tagged instructions are tightly
coupling the coprocessor to the main processor, and especially fine grain communication
benefits also a lot from this.

Summary. The methods and techniques developed in this work tried to fulfill several
conflictive goals, mainly support for simultaneous access and fine grain communication.

The first one lead to the virtualization technique in combination with an architecture
suitable to exploit the available parallelism without restrictions. The key component for the
scalable and efficient virtualization is a trigger operation, also referred to as issue operation
or as doorbell. It is issued by the CPU as a single load instruction and seen by the device as
a read cycle, combining security, atomicity and flow control. This new and unique method
is the main contribution of this work to the research community.

The goal to support fine grain communication lead to the development of ULTRA, a
message passing method with minimal overhead. These two developments in combination
achieve the given goals. The instruction set extension to improve coprocessing takes into
account the insights gained during these developments. It is proposed to overcome the
existing limitations, and both developments can be even improved using these specialized
instructions.

Outlook. The network interface architecture including virtualization will be used in the
future in a next generation system area interconnect, which is a research project of the
Computer Architecture Group at the University of Mannheim. Furthermore the
virtualization will be implemented on the HTX-Board to test and verify it in an
HyperTransport environment. The virtualization should benefit a lot from the close
coupling to main processor and memory. Beside this, the development and implementation
of the on-device TLB is pushed, together with the other caching structures. Similar
developments of I/O MMUs and I/O TLBs from industry show the relevance of this topic.

A modified successor of ULTRA is used in a collaboration with Sun Microsystems.
First results are very promising, but the work is not finished yet. Beside this, an analysis of

1. This is based on a preliminary measurement, which is compared to public available measurement 
results of other interconnects based on standardized I/O interfaces. Interconnects based on special-
ized I/O interfaces can easily achieve lower latencies, but their use is significantly restricted.
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the impact of ULTRA in combination with the proposed instruction set extension for
coprocessing is also planned.

In particular this instruction set extension will be further analyzed and developed. The
HTX-Board is perfectly suited as a prototype coprocessor for this case. A close
collaboration between AMD and the Computer Architecture Group already exists, and a
first discussion showed significant interest. The plans for the future sound very promising
and hopefully the proposal here will be used to improve coprocessing.
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