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Abstract

In this thesis, techniques for Particle Image Velocimetry (PIV) and Particle Tracking Velocime-
try (PTV) are developed that are based on variational methods. The basic idea is not to estimate
displacement vectors locally and individually, but to estimate vector fields as awhole by mini-
mizing a suitable functional defined over the entire image domain (which may be 2Dor 3D and
may also include the temporal dimension). Such functionals typically comprise twoterms: a
data-term measuring how well two images of a sequence match as a function ofthe vector field
to be estimated, and a regularization term that brings prior knowledge into the energy functional.

Our starting point are methods that were originally developed in the field of computer vision
and that we modify for the purpose of PIV. These methods are based on the so-called opti-
cal flow: Optical flow denotes the estimated velocity vector inferred by a relative motion of
camera and image scene and is based on the assumption of gray value conservation (i.e. the total
derivative of the image gray value over time is zero). A regularization term (that demands e.g.
smoothness of the velocity field, or of its divergence and rotation) renders the system mathe-
matically well-posed. Experimental evaluation shows that this type of variational approach is
able to outperform standard cross-correlation methods.

In order to develop a variational method for PTV, we replace the continuous data term of
variational approaches to PIV with a discrete non-differentiable particle matching term. This
raises the problem of minimizing such data terms together with continuous regularization terms.
We accomplish this with an advanced mathematical method, which guarantees convergence to
a local minimum of such a non-convex variational approach to PTV. With this novel variational
approach (there has been no previous work on modeling PTV methods with global variational
approaches), we achieve results for image pairs and sequences in two and three dimensions that
outperform the relaxation methods that are traditionally used for particle tracking.

The key advantage of our variational particle image velocimetry methods, is thechance to
include prior knowledge in a natural way. In the fluid environments that we are considering in
this thesis, it is especially attractive to use priors that can be motivated from aphysical point of
view. Firstly, we present a method that only allows flow fields that satisfy the Stokes equation.
The latter equation includes control variables that allow to control the opticalflow so as to fit the
apparent velocities of particles in a given image pair. Secondly, we present a variational approach
to motion estimation of instationary fluid flows. This approach extends the prior method along
two directions: (i) The full incompressible Navier-Stokes equation is employed in order to obtain
a physically consistent regularization which does not suppress turbulent flow variations. (ii)
Regularization along the time-axis is employed as well, but formulated in a receding horizon
manner contrary to previous approaches to spatio-temporal regularization.

Ground-truth evaluations for simulated turbulent flows demonstrate that the accuracy of both
types of physically plausible regularization compares favorably with advanced cross-correlation
approaches. Furthermore, thedirectestimation of, e.g., pressure or vorticity becomes possible.
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Zusammenfassung

In dieser Arbeit werden Techniken für Particle Image Velocimetry (PIV) und Particle Track-
ing Velocimetry (PTV) entwickelt, die auf Variationsansätzen basieren. Die grundlegende Idee
dabei ist, Bewegungsfelder nicht lokal zu schätzen, sondern global durch die Minimierung eines
geeigneten Energiefunktionals, das im gesamten Bildbereich definiert ist, zu bestimmen. Dieser
Bildbereich kann 2D oder 3D sein und auch die zeitliche Dimension mit einschließen. Solche
Funktionale bestehen typischerweise aus zwei Termen: Der Datenterm misst, wie gut zwei
Bilder eines zu berechnenden Vektorfeldes aufeinander abgebildet werden, und der Regulari-
sierungsterm l̈aßt Vorwissen in das Funktional einfließen.

Den Ausgangspunkt unserer Arbeit stellen Methoden dar, die ursprünglich im Bereich der
Computer Vision entwickelt wurden und die wir für PIV modifizieren. Diese Methoden basieren
auf dem sogenannten optischen Fluss – der geschätzten Geschwindigkeitsverteilung, die sich
durch eine relative Bewegung von Kamera und Szene ergibt. Der optische Fluss basiert darauf,
dass man Grauwerterhaltung annimmt (die Materialableitung des Grauwerts der Bildfunktion
über die Zeit soll null sein). Ein Regularisierungsterm (beispielsweise dieAnnahme, dass das
Vektorfeld oder dessen Divergenz oder Rotation glatt ist) macht das Problem mathematisch gut-
gestellt. Experimentelle Untersuchungen zeigen, dass unser Variationsansatz in der Lage ist,
Standard-Kreuzkorrelationsverfahren zuübertreffen.

Um unsere Variationsansätze auch f̈ur PTV anzupassen, ersetzen wir den kontinuierlichen Da-
tenterm durch einen diskreten, nicht differenzierbaren Matching-Term. Dies f̈uhrt zu der Frage,
wie sich solche Datenterme zusammen mit kontinuierlichen Regularisierungstermen minimieren
lassen. Wir erreichen das Ziel, in dem wir eine fortschrittliche mathematische Methode verwen-
den, die die Konvergenz eines solchen nicht-konvexen Funktionals zu einem lokalen Optimum
garantiert. Mit diesem neuen Ansatz erzielen wir bessere Ergebnisse für Bildpaare und Bildse-
quenzen in zwei und drei Dimensionen als mit relaxationsbasierten Ansätzen, die normalerweise
für solche Aufgabenstellungen verwendet werden.

Der Hauptvorteil von Variationsansätzen f̈ur PIV ist allerdings die M̈oglichkeit, Vorwissen auf
eine naẗurliche Art und Weise einzubringen. Da wir strömungsmechanische Bilder analysieren,
bietet sich naẗurlich vor allem die Verwendung von strömungsphysikalischem Vorwissen an.
Wir verwenden zwei verschiedene Arten von physikalischem Vorwissen: Zun̈achst pr̈asentieren
wir eine Methode, die nur Vektorfelder zulässt, die die Stokes-Gleichung erfüllen. Dazu f̈uhren
wir Kontrollvariablen ein, die den optischen Fluss so kontrollieren, dass erden sich bewegenden
Partikelteilchen folgt. Wir erweitern diese Methode schließlich in zwei Richtungen: Zum einen
verwenden wir die vollsẗandigen Navier-Stokes Gleichungen, um physikalisch konsistent zu
regularisieren und turbulente Geschwindigkeitsschwankungen nicht zuunterdr̈ucken. Zum an-
deren regularisieren wir zusätzlich entlang der Zeitachse, allerdings – im Gegensatz zu früheren
örtlich-zeitlichen Regularisierungstermen – mit einem “receding horizon” Verfahren.

Experimente zeigen, dass beide Arten von physikalisch konsistenter Regularisierung in der
Lage sind, die Genauigkeit von modernen korrelationsbasierten PIV-Verfahren zuübertreffen.
Zus̈atzlich ist einedirekteBestimmung z.B. von Druck oder von Wirbelstärke m̈oglich.
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acknowledged. I want to thank all the co-workers within this priority programme that provided
me with good counsel as well as with expert knowledge about fluid mechanics. Especially, I
am grateful to Rainer Hain and Christian Kähler (TU Braunschweig), Karsten Roetmann and
Jochen Scholz (LLG G̈ottingen), Sebastian Burgmann (RWTH Aachen), Markus Jehle (Univer-
sität Heidelberg) and Torsten Putze (TU Dresden) for making available imagematerial and for
their support and advice.

Close collaboration with the researchers of the EU project “Fluid Image Analysis and De-
scription” helped me decisively with my work. I am especially grateful to Johan Carlier and
Dominique Heitz from Cemagref, and to Etienne Mémin from INRIA Rennes for providing
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4.7. Qúenot Image Pair . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.8. Simple Rotation (Case A). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.9. Simple Rotation (Case A): Error Analysis. . . . . . . . . . . . . . . . . . . . 38
4.10. Simple Rotation (Case B). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.11. Sample VSJ Standard Image. . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.12. Real-World Cylinder Image. . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.13. Synthetic Combustion Image. . . . . . . . . . . . . . . . . . . . . . . . . . . 43
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1. Introduction

1.1. Motivation

There are many technical areas of application where it is necessary to measure flow in liquids.
In a motor, e.g., one may want to measure how well gas inserted through nozzles, disperses in
the cylinder. An even distribution is very important as it guarantees complete combustion and
thus a better performance of the motor.

The shape of the combustion space, the position and placement of the nozzles as well as the
velocity with which the liquid is brought into the experimental space must be selected to effect
a quick introduction of equal distribution.

It is very difficult, however, to compute such complex flow fields in liquids. This is why one
may want to consider methods of image processing: One chooses an experimental setup, thus
modeling the system in which the motion of a liquid is to be measured. Particles are brought
into this liquid (the so-called “seeding”) and the flow is photographed with a high-speed camera.
Then the distance the particles have traveled in the flow is measured. As the time interval is
known, one can deduct the speed of the flow. Good illumination is important so that all the par-
ticles will be visible in each picture recorded by the camera. Furthermore, theinterval between
two consecutive pictures should be as short as possible.

The main advantage of this method is that it is non-intrusive and that instantaneous velocity
fields are obtained. The information may then be used to rate the photographed system and to
enhance it.

Usually, cross-correlation methods are used to analyze the recorded image pairs/sequences.
While these methods will yield good results in most scenarios they are subject tosome funda-
mental limitations (which are often mitigated by certain add-ons and post-processing procedures,
cf. sec.2.2.1). In this thesis, we will show how to incorporate prior knowledge about theflow
in a mathematically sound way by using variational methods.

Experimental evaluation confirms that our type of variational approach is able to outperform
standard cross-correlation methods in the following aspects:

• Resolution: Dense(i.e. one vector per pixel) velocity fields are reconstructed. The size
of the interrogation areas does not limit the resolution.

• Accuracy: Large velocity gradients are admissible. (No assumption of a negligible mo-
tion field variation inside interrogation areas.)

• Spatial context: Prior knowledge about spatial flow structures can be exploited during
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1. Introduction

estimation. Ambiguities are resolved by use of neighborhood information. No need for
post-processing.

1.2. Related Work

As Particle Image Velocimetry (PIV) is an industrially very relevant research topic, there exists
a vast amount of literature on many methods to analyze particle image pairs and sequences.
Furthermore, different commercial software packages for the analysisof PIV image pairs and
sequences are available. Nearly all available methods can be devided into one of the following
three categories:

(i) Cross Correlation Methods Most methods for analyzing PIV data can be seen as exten-
sions to cross-correlation approaches. A complete survey of these methods would be beyond the
scope of this manuscript – a brief review dealing predominantly with the fundamental limitations
of cross-correlation approaches will be given in section2.2.1.

(ii) Particle Tracking Methods While most PIV methods that operate on gray value im-
ages are based on cross-correlation, literature clearly presents more distinct particle tracking
approaches. Most of these PTV approaches have two steps in common: First the individual
particles are extracted from the gray value structure of the image and then the correspondence
problem (as to which particle in the first frame corresponds to which particlein the second
frame) is solved. In sec.2.2.2we will go into different PTV methods.

(iii) Local Optical Flow Methods In the computer vision community, optical flow methods
are much more common than cross-correlation-based approaches. Local approaches for optical
flow estimation were introduced in the early 1980s by Lucas and Kanade [LK81]. In the last
few years these methods (which were originally developed for general motion estimation tasks)
have been successfully applied to PIV scenarios. We will sketch local optical flow methods in
section3.3.

(iv) Variational Optical Flow Methods Variational methods for motion analysis go back to
the early 1980s [HS81] and were originally developed for more general motion estimation tasks
(motion in traffic scenes, robot vision, ...). Since then, there has been a great deal of research on
different methods for the recovery of optical flow in different scenarios (e.g. [BFB94, BB95]).
This also led to the development of variational methods for the analysis of meteorological flows
and fluid flows [WALL97, BHY00, CMP02]. Note that these methods (which we will describe
in sec.4.1.1) were developed for so-called “passive scalar”-scenarios in whichthe image gray
values observe the conservation of mass just as does the fluid density.1 For imagery obtained by
the typical PIV method, these approaches are not adequate. Variationalmethods that are suited
for PIV data have been proposed only very recently [KMS03, CHA+05, YRMS05]. We will
describe these methods in section5.1.

1In this manuscript we concentrate on developing methods for the analysisof particle image pairs and sequences.
At some points (cf. sec.4.1.4, 5.3.3, and5.4.3), however, we will show that our methods are able to outperform
standard cross-correlation methods’ performance for passive scalar image pairs and sequences.
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1.3. Contribution

The approaches that we will present in this thesis can be classified into the categories (ii) and
(iv). In comparison to the above approaches, the main points of our workare:

• We present variational methods for both PIV and PTV scenarios. In bothcases we adapt
the data term in a way to fit the individual structure of PIV imagery.

• We do not only adapt the data term to the individual requirements of PIV databut we also
use the variational framework in order to include physically motivated prior knowledge
into the regularization term.

In this manuscript, we will compare our approaches with the different competing methods
whenever this is possible (sec.4.1.4, 4.2.3, 5.1.4, 5.3.3, 5.4.3). This comparison is performed
in order to give the reader an idea about why which methods yield good/badresults on which
image data. We believe that reliable conclusions about the advantages and disadvantages of the
individual methods are crucial for further development of the individual algorithms.

1.3. Contribution

Our main research interest is to develop new techniques for PIV and PTV based on variational
methods. The basic idea is not to estimate displacement vectors locally and individually, but
to estimate vector fields each as a whole by minimizing a suitable functional definedover the
entire image domain (which may be 2D or 3D and may also include the temporal dimension).
Such functionals typically comprise two terms: a data-term measuring how well two images of
a sequence match as a function of the vector field to be estimated, and a regularization term that
brings physically motivated prior knowledge into the energy functional.

(i) Variational Particle Image Velocimetry [RKNS05, YRMS05, RKNS04] Our start-
ing point are methods that were originally developed in the field of computer vision and that we
modify for the purpose of PIV. These methods are based on the so-calledoptical flow: It denotes
the estimated velocity vector inferred by a relative motion of camera and image scene and is
based on the assumption of gray value conservation (i.e. the total derivative of the image gray
value over time is zero). A regularization term (that demands e.g. smoothnessof the velocity
field or of its divergence and rotation) renders the system mathematically well-posed. Exper-
imental evaluation shows that this type of variational approach is able to outperform standard
cross-correlation methods. In chapter3, we will review the pioneering variational optical flow
approach by Horn&Schunck [HS81] and adapt it in chapter4 to the special requirements of PIV.

(ii) Variational Particle Tracking Velocimetry [RGS05b, RGS05a] Particle Tracking
algorithms are becoming more and more popular as they are capable of yieldinghigher resolu-
tion velocity fields (i.e. one vector for every particle image). Furthermore they can be easily
supported and combined with 3D stereo reconstruction, leading to high-resolution 3D3C vector
fields. We generalize the class of variational approaches (described in(i)) to ParticleTracking
Velocimetry. To this end, we replace thecontinuousdata term of variational approaches to PIV
with a discretenon-differentiable particle matching term from PTV. This raises the problem
of minimizing such data terms together withcontinuousregularization terms. We accomplish
this with an advanced mathematical method, which guarantees convergence toa local minimum
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of such a non-convex variational approach to PTV. With this novel variational approach (there
has been no previous work on modeling PTV methods with global variational approaches), we
achieve results for image pairs and sequences in two and three dimensions that outperform the
relaxation methods that are traditionally used for particle tracking. We describe our variational
particle tracking approach in sec.4.2.

(iii) Physical Priors [RS06b, RS06a, RS06c, RSS06a, RSS06b] The key advantage of
our variational particle image velocimetry methods, is the chance to include priorknowledge in
a natural way. Note that the only prior knowledge that we used in (i) is the smoothness of the
velocity field (and divergence and curl, resp.).

In sec.5.3, we present an approach to motion estimation between image pairs based on optical
flow estimation subject tophysicalconstraints. Admissible flow fields are restricted to vector
fields satisfying the Stokes equation. The latter equation includes control variables that allow to
control the optical flow so as to fit to the apparent velocities of particles in a given image pair.
We show that when the real unknown flow observed through image measurements conforms
to the physical assumption underlying the Stokes equation, the control variables allow for a
physical interpretation in terms of pressure distribution and forces acting on the fluid. Although
this physical interpretation is lost if the assumptions do not hold, our approach still allows for
reliably estimating more general and highly non-rigid flows from image pairs and is able to
outperform cross-correlation-based techniques.

In sec.5.4, we present a variational approach to motion estimation ofinstationaryfluid flows.
This approach extends the prior method along two directions: (i) The full incompressible Navier-
Stokes equation is employed in order to obtain a physically consistent regularization which does
not suppress turbulent flow variations. (ii) Regularization along the time-axis is employed as
well, but formulated in a receding-horizon manner, contrary to previous approaches to spatio-
temporal regularization. This allows for a recursive on-line (non-batch) implementation of our
estimation framework.
Ground-truth evaluations for simulated turbulent flows demonstrate that dueto imposing both
physical consistency and temporal coherency, the accuracy of flow estimation will compare
favorably even with advanced cross-correlation approaches and optical flow approaches based
on higher-order div-curl regularization.

1.4. Organization

Chapter2 gives a short overview of PIV recording techniques and it additionally sketches the
standard methods that are usually applied to analyze PIV imagery. We point out the limitations
of the individual methods, thus motivating the use of variational methods in the subsequent
chapters.

Chapter3 gives an introduction to variational approaches in general and then to variational
approaches for motion estimation. We also go into the discretization of the arisingpartial differ-
ential equations.

In chapter4, we adapt the data term of our prototypical variational approach of chapter 3
to the specific demands of PIV data. This yields on the one hand a variationalapproach for
PIV (sec. 4.1) and a variational approach for particle tracking on the other hand (sec. 4.2).
In the corresponding experimental sections we show comparisons with standard approaches for
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velocity estimation from PIV images.
In chapter5, we address the question of how to adapt the prototypical regularization term

from chapter3 to the specific demands of PIV velocity fields. We collect different possibilities
of minimizing variational motion estimation functionals that incorporate higher order regular-
ization, and show in the experimental section how these improved regularization terms help to
estimate more accurate velocity fields. In sec.5.2, we discuss a possible physical interpreta-
tion of the standard regularization terms introduced in sec.3.4 and5.1.2. We bring forward
the argument that even higher order regularization is physically not reallysound. Consequently,
we turn towards physically more plausible regularizers in sections5.3 and5.4. In sec.5.3, we
use the linearized steady version of the Navier-Stokes equations as a first (simple) physically
plausible regularizer. We show that if the flow is actually governed by this Stokes equation, we
are not only able to estimate reliable velocity distributions but we can also give pressure and
force estimates. Though this interpretation will not be valid if the flow is not governed by the
Stokes equation, we show that we can still estimate very reliable velocity fields.In sec.5.4, we
expand the approach to the analysis of whole image sequences. Instead of the (linearized) Stokes
equation, we use the vorticity transport equation as prior knowledge. Thisequation contains the
full Navier-Stokes equations and is therefore also valid in turbulent scenarios. Furthermore, it
allows the incorporation of temporal coherency in the estimation process.

We conclude in chapter6 by summarizing our work and indicating open problems and possi-
ble extensions.

AppendixA contains the mathematical basis that is needed to discretize and numerically solve
the elliptic systems that we encounter throughout the whole manuscript.

AppendixB forms the extension of appendixA to saddle-point problems that we encounter
in chapter5.

In appendixC, we outline the basic equations of fluid mechanics and introduce some relevant
special cases and simplifications.

In appendixD, we finally sketch the discretization of the vorticity transport equation that we
use as a physically plausible prior in sec.5.4.
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2. Particle Image Velocimetry

This chapter is to serve as a short introduction into what is called “Particle Image Velocimetry”
(PIV). The term includes on the one hand the technical background of fluid image capturing
(with high-speed camera systems) and on the other hand the algorithmic part of (digital) image
sequence analysis. Note that our review is far from being complete – it is rather a collection
of different aspects/techniques which we will come back to in the following chapters. For a
complete overview on PIV, the reader is referred to [RWK01].
In order to understand the very specific nature of captured fluid image sequences, it is crucial to
get an idea of how the images are obtained. Section2.1 sketches the technical background of
the recording process. We start with traditional two-dimensional PIV and subsequently outline
generalizations of these techniques to 3D.

2.1. Recording Techniques

Particle Image Velocimetry is an optical method that is used to measure velocities (and other
derived quantities) in fluids. As fluids are commonly non-textured, there is aneed to add a
texture to the fluid so that fluid motion can be perceived at all. For this purpose, tracer particles
are usually added to the flow. There is a vast literature on tracer particles of different materials
and sizes (for different experimental setups); for a survey we refer to [Mel97].1

2.1.1. Traditional 2D PIV Recording

Figure 2.1.: Typical PIV images when using different tracers.

Whole velocity fields are to be measured by taking two (or more) images of the flows, one
shortly after the other, and calculating the distance the individual particles have traveled within

1Note that there are also different ways to add texture to the fluids. Molecular Tagging Velocimetry (MTV), e.g., is
a specific form of velocimetry in which laser beams “write” structures into the fluid. These structures then move
with the fluid. Accordingly, PIV image evaluation techniques are applicable inthese scenarios as well.
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2. Particle Image Velocimetry

this time. If we assume that the seeded particles have actually followed the motion of the fluid
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Figure 2.2.: System components for PIV

(an assumption that usually holds true if the added tracers are properly chosen), then the velocity
of the fluid can be calculated from the known time difference and the measured displacement.
Note that acceleration information cannot (at least not without adding additional constraints)
be obtained from the analysis of image pairs only. To avoid blurred images when the flow is
fast, laser pulses are used (usually Nd:YAG). As they are only 6-10 ns long, they are capable of
freezing any motion. The use of laser pulses has a second advantage: Only laser light can be
focused (usually using a cylindrical lens) into a light sheet thin enough sothat just the particles
on the one plane are imaged. A special CCD camera has to be used. It must be able to store the
first image fast enough to be ready for the second exposure. Thus, the “dead” time – when the
camera is “blind” between two images – can be reduced to 200 ns [LaV01]. Traditional PIV
camera systems allow the capturing of image pairs only.2

The main advantage of Particle Image Velocimetry (in contrast to other techniques, like hot-
wire anemometry) is that it isnon-intrusive3. This allows the measurement of velocity also in
scenarios where probes would distort the velocity field (e.g. high-speedboundary-layer flows).
In contrast to hot-wire techniques, it is furthermore possible to measure theflow velocity in a
whole cross-section of the fluid in parallel (whole field technique). Huge amounts of flow data
can be obtained in a comparatively short period of time. This allows for a statistical evaluation
of flow field properties over time.

There are, however, also disadvantages: Tracers have to be seeded into the fluid; this seed-
ing is often not possible in real applications (e.g. due to temperature). Furthermore, it is often
problematic to position the tracers in the very locations where the flow is to be measured. Ex-
perimental conditions sometimes forbid the rather sophisticated positioning of thedifferent PIV
components.
Furthermore, the described experimental setup is only capable of yielding 2D velocity fields. If

2Note that this limitation is overcome by some recent (expensive) high-speed camera systems.
3It has been shown that properly chosen tracer particles generally cause only negligible distortion of the velocity

field [Mel97].
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2.2. Standard Evaluation Methods for Fluid Images

a tracer particle leaves the illuminated plane (out-of-plane motion), the particle fades or even
disappears. On the other hand, particles can enter the illuminated plane fromone frame to the
next frame. Both scenarios will lead to motion estimation errors – no matter which algorithm is
used for image analysis. To summarize, only 2D motion (i.e. the 2D projection of a3D motion)
can be captured. This is a decisive drawback, as fluid motion is intrinsically 3D. In the next
section we will see, however, how the principles of PIV can be generalized to 3D.

2.1.2. Generalization to 3D

The most straight-forward method to obtain information about the out-of-plane component is
the use of one or two additional cameras (or alternatively a system of mirrors placed in front of
a single camera). For a review of stereoscopic PIV, we refer to [Pra00] and references therein.
Note that these techniques are capable of yielding all three components (3C) of the velocity.
However, only velocity vectors in a 2D slice are recovered. These typesof stereoscopic tech-
niques are therefore referred to as2D3C. If enough illumination is available, the thickness of
the laser light sheet can be expanded. In this way, velocity information inside a 3D cube can be
obtained (3D3C)[BAP94, Maa92a, Maa92b].
A different family of approaches (dual plane PIV, [RWW+96]) uses a third recording while the
laser light sheet is slightly shifted. On the basis of the relative motion from onelight sheet to the
next, 3D motion can be reconstructed. This technique is expandable to measuring the velocities
in a whole volume as well [Brü95, Brü96] if one uses a scanning light-sheet setup.

2.2. Standard Evaluation Methods for Fluid Images

With the knowledge of how the individual images are captured, we want to turn to the actual
image processing now. The termscross-correlation particle image velocimetry(CC-PIV) and
particle tracking velocimetry(PTV) denote established classes of image processing methods
for extracting the underlying velocity fields in particle images. CC-PIV methodsoperate on
gray-level images, while PTV approaches determine the flow field by tracking individual tracers
[RWK99].

2.2.1. Cross-Correlation PIV

In this section we want to introduce cross-correlation particle image velocimetry (CC-PIV). CC-
PIV has become the best-known and most widely used experimental method for flow estimation.

Let I(x1, x2, t) denote the gray value recorded in the image plane at location(x1, x2)
⊤ and

time t. A basic assumption underlying most approaches to motion estimation (including cross-
correlation PIV approachesandoptical flow approaches) is thatI is conserved, that is the change
of I(x1, x2, ·) at location(x1, x2)

⊤ is due to a movement ofI(x1, x2, t) to the location(x1 +
u1∆t, x2 + u2∆t)

⊤ during a time interval∆t:

I(x1 + u1∆t, x2 + u2∆t, t+ ∆t) = I(x1, x2, t) .

A common approach to estimating(u1, u2)
⊤ at some fixed location(x1, x2)

⊤ on the image grid
(x1, x2)

⊤ = (k1∆x1, k2∆x2)
⊤, k1, k2 ∈ Z, is to assumeu1 andu2 to be constant within a local
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2. Particle Image Velocimetry

spatial areaW (x1, x2) around(x1, x2)
⊤ and to minimize4

∑

k1,k2∈W (x1,x2)

[
I(k1 + u1∆t, k2 + u2∆t, t+ ∆t) − I(k1, k2, t)

]2

as a function ofu1 andu2. Assuming additionally that
∑

k1,k2∈W (x1,x2) I(k1, k2, t)
2 does not

vary with (x1, x2)
⊤5, the minimizing values ofu1, u2 maximize the correlation function

φ(x1, x2) =
∑

k1,k2∈W (x1,x2)

I(k1 + u1∆t, k2 + u2∆t, t+ ∆t) I(k1, k2, t) . (2.1)

For each choice of a shift(x1, x2), the sum of the products of all gray values in a certain neigh-
borhoodW (also calledinterrogation window) produces one cross-correlation valueφ(x1, x2).
Figure2.3 shows how this is performed in practice: A template of the size of the neighbor-
hoodW (here: 4) is extracted fromI(x1, x2, t) and a sample of the size of the search re-
gion is extracted fromI(x1, x2, t + ∆t) (here: 8). The template is linearly shifted around
the search region. For every integer shift (in our toy example, 25 shifts are possible, with
−2 ≤ x1 ≤ 2,−2 ≤ x2 ≤ 2), the corresponding correlation coefficient is computed using
(2.1). This yields a whole cross-correlation plane (as indicated in figure2.4). For those shifts
that align the particles of template and sample, the cross-correlation plane will show a maxi-
mum.
Standard cross-correlation techniques have some fundamental limitations which can, however,
be weakened by certain strategies that we will illuminate in the succeeding sections:

• The process of finding the highest correlation value for every window istime-consuming.
The number of multiplications per correlation value increases in proportion to the inter-
rogation window area. Most cross-correlation PIV approaches avoidthis costly computa-
tion by performing a complex conjugate point-wise multiplication of the two-dimensional
Fourier-transformed sub-images (cf. sec.2.2.1(i)).

• Due to the statistic nature of cross-correlation PIV, there is a trade-off between interro-
gation window size and resolution of the recovered velocity estimates. Largewindows
lead to robust but coarse estimates, small interrogation windows yield higher-resolution
estimates, which are, however, error-prone due to noise. In sec.2.2.1(ii), we will review
some window refinement techniques that are used to recover high-resolution velocity es-
timates.

• The cross-correlation method recovers only linear shifts. Only one displacement estimate
is recovered per interrogation window; the cross-correlation function will peak at the av-
erage linear shift of all particles within the interrogation window. However,this peak will
be less pronounced in regions with a large velocity gradient. Iterative imagedeformation
techniques (cf. sec.2.2.1(iii)) have been suggested by a number of authors.

• Cross-correlation yields only integer value velocity reconstruction. Fractional displace-
ment estimates can be obtained using correlation peak detection and sub-pixel interpola-
tion (sec.2.2.1(iv)).

4Without loss of generality we take∆x = ∆y = 1.
5In fact, modern cross-correlation PIV techniques take into account spatial fluctuations inI by normalizing the

correlation coefficients.
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2.2. Standard Evaluation Methods for Fluid Images

• Motion estimation is carried out regardless of spatial context. As a consequence, prior
knowledge about spatial flow structures is not exploited directly during estimation, and
missing motion estimates in image regions, where a correlation analysis yields no reli-
able estimates, have to be heuristically inferred in a post-processing step (cf. sec. 2.2.1
(v)). Sometimes, physics-based priors (cf. sec.2.2.1(vi)) are used which ensure that the
resulting velocity field satisfies the continuity equation or the Navier-Stokes equation.

Shift: x1=2,x2=1Shift: x1=0,x2=0

x1

x2

Shift: x1=−2,x2=2

Shift: x1=1,x2=−2Shift: x1=−1,x2=−1

−2 −1 0 1 2
−2
−1
0
1
2

Figure 2.3.: Cross-correlation Overview: Formation of the cross-correlation plane (middle). A
4 × 4 template is correlated with a8 × 8 sample. This yields a5 × 5 correlation
plane.

(i) Frequency based Correlation

Most cross-correlation PIV approaches avoid the time-consuming calculations of (2.1) by tak-
ing advantage of the correlation theorem, which states that the cross-correlation of two func-
tions is equivalent to a complex conjugate point-wise multiplication of their two-dimensional
Fourier-transforms. This fact is expressed by the correlation theorem[GW87]. Let I1(x1, x2) =
I(x1, x2, t) andI2(x1, x2) = I(x1, x2, t+ ∆t). Then

φ(x1, x2) ⇔ Î1(ξ, η)Î
∗
2 (ξ, η), (2.2)

whereÎ1 denotes the Fourier transform of the functionI1, andÎ∗2 represents the complex conju-
gate of the Fourier transform of the functionI2. Transforming the image samples to the Fourier
domain, doing the complex-conjugate multiplication (2.2) there and transforming the data back,
reduces the complexity6 of the overall computation fromO(N4) to O(N2logN). Note, how-
ever, that the finite size of the windows (equivalent to the assumption of the data being periodic)
leads to a biasing of the correlation data towards small displacements [RWK01]. This bias can,
in turn, be eased if multi-pass techniques are applied (cf. next section).

6N × N is the size of the two input samples.
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2. Particle Image Velocimetry

Figure 2.4.: Cross-correlation Plane: If the experimental conditions are good, one exposed cor-
relation peak is generated. Peak detection yields the integer offset(−1, 4).

(ii) Multi-Pass Techniques, Iterative Refinement

Figure 2.5.: Multi-Pass Computations: Resulting coarse vector fields are interpolated to the fine
grid.

It has been shown [WDG97] that by offsetting the correlation windows (according to a pre-
viously computed velocity estimate), the number of matched particles increases.Usually, three
multi-pass steps are performed.
The resolution and accuracy of the velocity estimates is further increased by iterative refinement
techniques [SR99]:

• Compute a first cross-correlation between the two images using a large window size (N ×
N ).

• Scan for outliers and replace by interpolation.

12



2.2. Standard Evaluation Methods for Fluid Images

• Halve the size of the interrogation windows (N ×N → N/2 ×N/2). Project the coarse
interrogation result to the new (smaller) windows (cf. fig.2.5). Offset correlation windows
according to this prediction, and perform cross-correlation.

• Repeat items 2 and 3 until the desired resolution is reached.

The choice of the final interrogation window size depends on the particle density. At least 4
particles pairs should be located inside both corresponding interrogation windows.
In contrast to traditional single-pass cross-correlation methods, these multi-pass techniques with
iterative refinement allow for the decoupling of maximum in-plane displacementand interroga-
tion window size. This yields superior results in cases where image density and dynamic range
in displacements are high. Note, however, that the windows themselves arenot deformed by
this method. Therefore, only linear shifts (i.e. all particles in the window are assumed to travel
with the same, constant speed) are taken into account. If this assumption does not hold, the
correlation peak (in every iteration) will be less pronounced.

(iii) Iterative Image Deformation Techniques

Figure 2.6.: Different orders of image deformation:Left: 0th order,Middle: 1st order,Right:
2nd order

Until now we have only considered algorithms that assume a constant displacement within
every correlation window. We have already seen that this assumption yieldsproblems for highly
non-rigid flows that exhibit strong velocity gradients within the interrogation windows. To over-
come these problems many authors have suggested schemes that iteratively deform the interro-
gation windows [HFW93, JJDAF95, TD95]. The corresponding displacement distributions vary
spatially over the interrogation windows. Scarano [Sca02] classifies the different methods as
depending on how many terms of a truncated Taylor series they consider. The Taylor series that
is used to estimate the displacement distribution over the finite interrogation regionis given by

u(x1, x2) =u(x0
1, x

0
2) +

( ∂u

∂x1

)

(x1 − x0
1) +

( ∂u

∂x2

)
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2)

+
1

2

[(∂2u

∂x2
1

)
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2 +
( ∂2u
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W
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2. Particle Image Velocimetry

where(x0
1, x

0
2) denotes the center of the interrogation windowW . Note, that the approach

described in sec.2.2.1(ii) can be classified as azero order displacement predictoras it uses
merelyu(x1, x2) = u(x0

1, x
0
2) for interpolation. Linear (first order) displacement predictors are

the most commonly used window deformation techniques (e.g. [HFW93, JJDAF95]): After a
first cross-correlation sweep, the (piecewise linear) displacement distribution inside the corre-
lation windows is estimated, using a linear interpolation with respect to the interrogation grid
points. Higher-order methods are applied less often, as the number of parameters increases
exponentially with the increase in truncation order.

(iv) Correlation Peak Detection and Sub-Pixel Interpolation

Recall that the result of the cross-correlation evaluation is a correlation plane that (hopefully)
has one single peak at a certain location. However, correlation values only exist for integer
displacements. Nevertheless, it is possible to achieve sub-pixel accuracy by using peak-fitting
functions. This is usually done in the following way: One searches for the highest value in
the correlation plane. Suppose this value is located at the integer coordinates (i, j). Mainly,
three-point estimators are used that use the correlation values at positions(i, j), (i − 1, j),(i +
1, j),(i, j − 1),(i, j + 1) in order to fit the peak. There are three well-known interpolation
functions:Peak Centroid, Parabolic Peak FitandGaussian Peak Fit.

• Peak Centroid: The ratio between first order moment and zeroth order moment is com-
puted. For the x coordinate this yields

x0
1 =

(i− 1)φ(i− 1, j) + iφ(i, j) + (i+ 1)φ(i+ 1, j)

φ(i− 1, j) + φ(i, j) + φ(i+ 1, j)
,

and analogue for thex2 coordinate.

• Parabolic Peak Fit: It is more robust to fit the correlation data to some function. If we
use three points in every direction, this fit function is parabolic:

f(x) = Ax2 +Bx+ C

Straight-forward calculations yield therefore

x0
1 = i+

φ(i− 1, j) − φ(i+ 1, j)

2(φ(i− 1, j) − 2φ(i, j) + φ(i+ 1, j))
,

and the analogue for thex2 coordinate.

• Gaussian Peak Fit: The most widely used peak fit function is the Gaussian function
because the particles themselves can be described very well by Gaussianintensity distri-
butions

f(x) = C exp
−(x0 − x)2

k
.

This leads to the following peak estimator

x0
1 = i+

lnφ(i− 1, j) − lnφ(i+ 1, j)

2(lnφ(i− 1, j) − 2 lnφ(i, j) + lnφ(i+ 1, j))
,

and the analogue for thex2 coordinate.
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2.2. Standard Evaluation Methods for Fluid Images

Note that these interpolation functions are capable of detecting peaks with anaccuracy up to
0.05 pixels. However, it has been found independently by many authors, thatcross-correlation
estimates tend to be biased towards integer displacements. This effect is the stronger, the smaller
the particles get. It is clear that the reason for this effect has to lie in the sub-pixel interpolation
routine, in fact it is due to interpolation effects. For a detailed discussion ofpeak locking, we
refer to [Wes93].

(v) Post Processing: Data Validation

It is clear that cross-correlation PIV does not take into account spatialcontext. Therefore, it
is likely that cross-correlation analysis will lead to wrong displacement estimates for some in-
terrogation windows. Fortunately, these outliers can be easily detected, asthe magnitude and
direction of outlier vectors usually differ considerably from those of the surrounding velocity
estimates (cf. fig.2.7). There is vast literature that describes different techniques for outlier de-

Figure 2.7.: Cross-Correlation analysis yields outliers. These have to be detected and rectified
in a post-processing step.

tection and data interpolation (e.g. [RLK93, Wes94, SBB04, WS05]). Most techniques combine
the following two points:

• Each velocity vector in the image is compared to its neighbors. The velocity vector is
considered an outlier if the absolute difference between its magnitude and theaverage
magnitude of its neighbors is larger than a certain threshold.7 Alternatively, the divergence
is calculated at each position, and the vector is rejected if the local divergence is above a
certain level [SR99].

• In a second step, neighboring velocity vectors are used to fill in the missing data. This is
usually done by some kind of interpolation scheme.

If multi-pass techniques are applied, it is crucial to validate the data aftereverysweep.

7Westerweel [Wes94] has successfully replaced the average by a median.
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2. Particle Image Velocimetry

(vi) Physics-based Priors

Concerning the incorporation of physical constraints for flow estimation through image process-
ing, several interesting approaches have been suggested in the past. Combining PIV and CFD
by using cost functions was proposed in [KYKI98, ONI97, AD05]. They can be understood as
specialpost-processing methods: By correcting cross-correlation velocity estimates so that they
approximately conform to the continuity equation or the whole incompressible Navier-Stokes
equations, outliers are reliably detected and rectified.

More recently, physics-based non-linear dynamic models [OSN00] have been introduced to
PIV. The velocity is again obtained by minimizing a measure which consists of the residues
of the Navier-Stokes equation, the continuity equation, and the differencebetween estimated
and observed image data. The resulting non-linear optimization system is solved, using meth-
ods from evolutionary programming [Mic94]. This procedure is repeated until the difference
between the observed and the estimated image is sufficiently small. This method allows a reli-
able estimation of velocity fields and pressure estimates. One may criticize, however, that little
insight can be gained from the viewpoint of optimization.

Conclusion

We have derived the standard algorithm for cross-correlation particle image velocimetry and
have summarized several extensions. We have seen that the standard algorithm has some lim-
itations that can be eased by iterative schemes and post-processing steps. While the standard
cross-correlation approach is very simple, the whole process becomes extremely complex. If
errors occur within this process, it is often unclear at what step they were caused. Note that the
error rates of up-to-date image processing methods for PIV are far below 1 pixel.8 This means
that the overall error is mainly caused by the peak-fitting function that is used. This continuous
function (e.g. Gaussian) is fitted to the input data (discrete correlation coefficients) to achieve
sub-pixel accuracy. The interaction between cross-correlation and peak-fitting function is very
complex and still topic of vast research (cf. [CK05] and references therein). A second drawback
lies in the fact that cross-correlation PIV relies on very specific input data: particle images of
a certain size. Its application to other kinds of data (e.g. produced by Molecular Tagging Ve-
locimetry) is problematic as correlation relies on the images’ high-frequency components.

Later in this thesis, we will introduce variational motion estimation techniques that provide
intrinsically sub-pixel accuracy (no need for peak-fitting), data validation (with corresponding
validity constraints that can be provided by the user) and dense (i.e. one vector per pixel) velocity
fields. The whole approach can be described as the minimization of one energy functional; there
are no hidden model assumptions. Prior knowledge can be included into the energy functional
in a natural way.

2.2.2. Particle Tracking Velocimetry

In contrast to CC-PIV methods, Particle Tracking Velocimetry (PTV) methods first extract the
individual particle positions and then try to solve acorrespondence problem: particles in one
frame have to find their counterpart in a second frame.

8Depending on image quality and flow field gradients≈ 0.01 − 0.1 pixels
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2.2. Standard Evaluation Methods for Fluid Images

Individual-Particle Detection

In order to track individual particles, these particles first have to be extracted out of the gray-
value structure of the image. Many authors have concentrated on this topic (a comparison of
different particle detection approaches can be found in [OL00]).
There are two main types of particle detection approaches:

• Region Growing Approaches [Maa92b]: First, the whole image plane is scanned for
local intensity maxima. Neighboring points of these germ points are iteratively added to
the individual regions if they are above a certain threshold. Finally, the centroids of the
individual regions are computed.

• Particle Mask Correlation [ ET99, SSKH00]: In order to identify the central positions of
the tracer particles, a Gaussian particle mask is used (typically of size3×3 or 5×5). This
mask is centered on all pixels in the image plane and cross-correlations are performed.
Peaks in the correlation plane indicate particle centers. For sub-pixel accuracy, the same
methods can be used as described in sec.2.2.1(iv).

Correspondence Problem

PTV methods are traditionally either based on nearest-neighbor search withgeometrical con-
straints (using four or more consecutive frames) [KSS89, HC91], or on binary-image cross cor-
relation (two frames) [UYO89], which computes the cross-correlation between regions around
particles in the first and in the second frame. More recent approaches include relaxation meth-
ods that analyze the probability of particle matching [BL96, OL00], and genetic algorithms that
evaluate different pairing schemes based on local morphology conservation or the constraint of
vanishing divergence (for incompressible fluids) [SM98, DHS04].
Basically, all these methods have two assumptions in common:

• Small displacements:While nearest-neighbor search algorithms directly rely on small
displacements from one frame of an image sequence to the next (in proportion to the
particle density), binary-image correlation methods and relaxation methods both search
for possibly corresponding particle images in a certain “tracking range”.

• Smoothness of motion:Nearest-neighbor search algorithms assume that a particle changes
its motion only smoothly during an image sequence. A similar assumption that tacitly un-
derlies binary-image correlation methods is that the particles within a correlationwindow
move with the same speed (if they do not, the correlation peak is less pronounced and the
estimates become less reliable). Finally, using relaxation methods, a matching is consid-
ered probable if the movement of particles in a certain region can be reduced to a simple
translation.

Note that PTV methods are in principle capable of yielding a higher resolution than PIV meth-
ods, as it is not necessary to average over regions in the image (i.e. interrogation windows). This
requires, however, that the particle centroids are detected very accurately. On the other hand,
PTV methods often fail if the overall motion is very large. Some algorithms therefore combine
PIV and PTV (super resolution analysis, cf. [SR01]).
Furthermore, in 3D, PTV can be supported and combined with stereoscopicanalysis and 3D
reconstruction, leading to high-resolution 3D3C vector fields (e.g. [Maa92a, Maa92b]).
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2. Particle Image Velocimetry

Conclusion

We have seen that PTV evaluation consists of two steps: detecting the individual particles and
tracking them from one frame to the next.
Later in this thesis, we will concentrate on thesecondstep: We introduce a variational method
for PTV. We combine a discrete non-differentiable particle matching term with acontinuous reg-
ularization term. The advantage of our approach is that physical constraints can be incorporated
directly.
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3. Standard Variational Methods for
Motion Estimation

This chapter is composed as follows: First we introduce variational approaches in general and
give two short examples as to how this type of method is applied in different scenarios (sec.
3.1). Then we go into variational approaches for motion estimation in particular. We present the
pioneering work of Horn&Schunck and its numerical realization, and underline its advantages
compared to cross-correlation methods.

3.1. Variational Methods in Computer Vision

Many relevant computer vision tasks can be conveniently solved by minimizing some energy
measure. In this section we will give two short examples of how variational methods can be
used to solve typical computer vision problems:

(i) Image smoothing,

(ii) Image segmentation.

A third problem that is typically solved with variational methods is motion estimation. Itwill be
described in detail in sec.3.4. For more details about variational methods for typical computer
vision problems, we refer to [Sch99] and references therein.

(i) Image Smoothing Given is a (noisy) imageI(x1, x2). The task is to denoise the image,
i.e. to smooth it. This can be easily performed by minimizing the energy functional

J(g) =
1

2

∫

Ω
(I − g)2
︸ ︷︷ ︸

Data Term: Matching

+α |∇g|2
︸ ︷︷ ︸

Regularization Term: Smoothness

dx . (3.1)

The functiong that we search should on the one hand be close to the input dataI and on the
other hand it should be smooth. Note thatα is a regularization parameter (0 < α ∈ R) that
controls the degree of smoothness.
(3.1) can be considered as the simplest member of a whole class of computer visionproblems
that consist of two terms: adata termthat measures the consistency with input data (usually
images) and aregularization termthat introduces prior knowledge, usually about smoothness or
regularity.

The termvariational approachbases on the fact that, in order to minimize (3.1), one requires
the first variation of (3.1) to be zero:

∂J(g + ǫg̃)

∂ǫ

∣
∣
∣
ǫ=0

=

∫

Ω
(I − g)g̃ + α∇g⊤∇g̃dx = 0 . (3.2)
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Figure 3.1.:Left: Noisy imageI. Middle: Smoothed imageg (α = 0.5). Right: Smoothed
imageg (α = 5).

Discretization of (3.2) yields a positive definite system that can be solved by some corresponding
(iterative) solver. AppendixA gives details about the discretization process for elliptic systems.

Note that various extensions to the prototypical approach (3.1) have been suggested (e.g.
nonlinear filtering, deconvolution, ...). For a review, we refer to [WS01a].

(ii) Image Segmentation Given is again a gray value imageI(x1, x2). A typical computer
vision problem is to partition the image into multiple regions: Within each region, the individ-
ual gray values should be similar while gray value jumps should only occur atthe curves that
separate the individual partitions.

LetC denote the discontinuity set that serves as an interface (i.e. at the boundary of objects).
Mumford and Shah [MS85, MS88] have proposed the following functional to obtain a segmented
imageg:

J(g, C) = α

∫

Ω
(I − g)2dx+ β

∫

Ω\C
|∇g|2dx+ γ|C| , (3.3)

whereα, β, γ > 0. Note that the first term is minimal if the reconstructed imageg is close to
the image dataI. The second term states thatg should be smooth everywhere except for the
interfaces that separate the individual partitions. Finally, the total edge length |C| should be
small. Note that minimizing this type of energy functional is intricate, and uniqueness of the
minimizer is generally not given. A number of extensions to the prototypical approach (3.3)
have been suggested (e.g. [BCG96, BG96, KLM94, CV01]). A discussion of these methods can
be found, e.g., in [Par06]. Figure3.2 shows the segmentation of the Andromeda Nebula as an
example.1

1The author thanks Christian Gosch for providing the segmented images.
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Figure 3.2.: Segmentation of the Andromeda Nebula. An artificial timet is introduced and an
energy functional related to (3.3) is iteratively minimized. The images denote in-
termediary results att = 1 (curve initialization),t = 100, t = 200, and the final
evolution of the curves att = 300.

3.2. Motion Estimation: The Optical Flow Constraint

Let I(x1, x2, t) denote the gray value recorded at location(x1, x2)
⊤ and timet in the image

plane. Recall the basic assumption underlying most approaches to motion estimation – the
conservation ofI over time.

I(x1 + u1∆t, x2 + u2∆t, t+ ∆t) = I(x1, x2, t) . (3.4)

We have already seen that a common approach to estimating theoptical flow vector(u1, u2)
⊤ at

some fixed location(x1, x2)
⊤ on the image grid(x1, x2)

⊤ = (k1∆x1, k2∆x2)
⊤, k1, k2 ∈ Z, is

to assumeu1 andu2 to be constant within a local spatial areaN(x1, x2) around(x1, x2)
⊤ and

to minimize2

∑

k1,k2∈N(x,y)

[
I(k1 + u1∆t, k2 + u2∆t, t+ ∆t) − I(k1, k2, t)

]2
(3.5)

as a function ofu1 andu2. Assuming additionally that
∑

k1,k2∈N(x1,x2) I(k1, k2, t)
2 does not

vary with (x1, x2)
⊤, the minimizing values ofu1, u2 maximize the correlation function

∑

k1,k2∈N(x1,x2)

I(k1 + u1∆t, k2 + u2∆t, t+ ∆t) I(k1, k2, t) .

The first major difference to variational approaches is that the latter explicitly take into account
smooth changes of the flow(u1, u2)

⊤ at timet as a function ofx1 andx2: u1 = u1(x1, x2), u2 =
u2(x1, x2). A continuously formulated expression analogous to (3.5) then reads:

∫

Ω

[
I(x1 + u1(x1, x2)∆t, x2 + u2(x1, x2)∆t, t+ ∆t) − I(x1, x2, t)

]2
dx. (3.6)

Note that since we do no longer assumeu1 andu2 to be piecewise constant according to a
subdivision of the visible sectionΩ of the image plane into interrogation areas, we integrate
over the entire image domainΩ, observing the Neumann border conditions. From the viewpoint

2Without loss of generality we take∆x1 = ∆x2 = 1.
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of variational analysis and algorithm design, formulation (3.6) is less favorable because the
dependency onu1 andu2 is highly non-convex. A common way around this difficulty is (i) to
further simplify the objective function so as to obtain a mathematically tractable problem, and
(ii) to apply the resulting variational approach to a multi-scale representation of the image data
I (see section4.1.3) so that the following approximation becomes valid:

I(x1+u1∆t, x2 + u2∆t, t+ ∆t)

≈ I(x1, x2, t) + ∂x1
I(x1, x2, t)u1∆t+ ∂x2

I(x1, x2, t)u2∆t+ ∂tI(x1, x2, t)∆t (3.7)

= I(x1, x2, t) + ∇I(x1, x2, t) ·

(
u1

u2

)

∆t+ ∂tI(x1, x2, t)∆t ,

where the spatial and temporal derivatives ofI can be estimated locally using FIR filters.
Inserting this approximation into (3.4) (and dropping the argument(x1, x2, t) for convenience)
yields:

∇I ·

(
u1

u2

)

+ ∂tI = 0 . (3.8)

According to computer vision literature, this is the so-calledBrightness Change Constraint
Equation (BCCE)which, with a differential formulation, merely reflects our basic assumption
(3.4) made in the beginning:

d

dt
I(x1, x2, t) = 0 = ∇I ·

(
ẋ1

ẋ2

)

+ ∂tI .

Using (3.7) and (3.8), the objective function (3.6) becomes:

∫

Ω

[
∇I ·

(
u1

u2

)

+ ∂tI
]2
dx . (3.9)

Note that this objective function now dependsquadraticallyon the twofunctionsu1(x1, x2) and
u2(x1, x2), which is much more convenient from the mathematical point-of-view. So far,the
transition to a continuous setting has led us to the formulation (3.9) which has to be minimized
with respect to arbitrary functionsu1 andu2. Clearly, this problem is not well-posed as yet
becauseanyvector field with components∇I · (u1, u2)

⊤ = −∂tI,∀x1, x2, is a minimizer. This
effect is calledaperture problem: Motion that is perpendicular to the gradient of the energy
function cannot be perceived. To realize this problem, consider the simpleexample of looking at
a white piece of paper that is moving in front of a black background (cf. fig. 3.3). Now consider
observing just the vertical transition between white and black through a porthole: All motions
with equivalent vertical components will appear identical to us.

22



3.3. Local Approaches for Optical Flow Estimation

Figure 3.3.: Aperture Problem: White piece of paper moving in front of a black background.
When considering only the framed part of the image, all motions with equivalent
vertical velocity components will appear identical.

3.3. Local Approaches for Optical Flow Estimation

In the preceding section we have seen in the preceding section that the aperture problem pro-
hibits a direct solution of (3.9) and that we therefore need additional constraints. The simplest
method to overcome this problem is to assume that the velocity field is constant withina certain
neighborhoodN (i.e.,u(x) = u(x0),∀x ∈ N (x0)). We can therefore minimize

J(u) =
∑

x∈N (x0)

Gρ(x− x0)(∇I(x) ·

(
u1

u2

)

+ ∂tI(x))
2 , (3.10)

whereGρ is a Gaussian distribution with varianceρ. It is clear that the minimum of this energy
is at

Gρ ∗

(
(∂x1

I)2 ∂x1
I ∂x2

I
∂x1

I ∂x2
I (∂x2

I)2

)(
u1

u2

)

= −Gρ ∗

(
∂tI ∂x1

I
∂tI ∂x2

I

)

. (3.11)

Note that (3.11) is not necessarily uniquely determinable. In areas where the gray valueis, e.g.,
homogeneous or at image edges there will not be a unique solution. Furthermore, as already seen
in sec.2.2.1, the assumption of a constant velocity inside some neighborhood is often violated.

Note that there is vast research onlocal optical flow methods, which is, however, beyond
the scope of this thesis. For a review on different types of local optical flow approaches and
extensions, we refer to [Jäh97, HGSJ99].

Recently, enhanced brightness change models have been introduced, that exchange the bright-
ness change constraint equation (3.8) by terms that model (physics-based) brightness variation
(cf. [HF01] and references therein). These methods have been successfully applied to fluid im-
agery [SDG02]. The authors show that even 3D information can be extracted out of 2D image
data, provided that the depth information can be related to the brightness model (depth from
diffusion).
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3.4. The Method of Horn&Schunck

Rather than to consider vector fields which are piecewise constant within interrogation areas,
we want to follow the ideas presented in section3.1: We rule out too irregular vector fields by
additionally minimizing the magnitudes of the spatial gradients ofu1 andu2:

J(u1, u2) =

∫

Ω

{[
∇I ·

(
u1

u2

)

+ ∂tI
]2

+ λ
(
|∇u1|

2 + |∇u2|
2
)}

dx , 0 < λ ∈ R . (3.12)

Parameterλ is either a user-parameter or can be determined as a Lagrange multiplier related to
either of the constraints

∫

Ω

[
∇I ·

(
u1

u2

)

+ ∂tI
]2
dx = α ,

∫

Ω

(
|∇u1|

2 + |∇u2|
2
)
dx = β ,

provided either of the variablesα or β is known. The discussion of this interpretation of the
regularization parameter is, however, beyond the scope of this manuscript, and we regardλ as a
user-parameter. A large value forλ leads to a very smooth flow field, whereas the smoothness
decreases for smaller values forλ. At locations with|∇I| ≈ 0 (i.e. untextured regions), no
reliable flow can be estimated from the data term. At these locations, the smoothness term
solves this problem by filling in information from the neighborhood, leading to adense flow
field.

Figure 3.4.: Flight through the Yosemite Valley. A frame from a typical syntheticimage se-
quence that is often used to compare different optical flow based techniques. In the
right image, you see the solution of the simple Horn&Schunck approach as pre-
sented in sec.3.4. The flight through the valley induces a divergent velocity field,
while the clouds move to the right. Note that the rock in the left part of the im-
age (“El Capitan”) is closer to the camera – that is why its optical flow vectorsare
longer.

Figure3.4shows a typical example for the type of image sequences, where variational optical
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flow approaches are usually applied. The Horn&Schunck approach can reconstruct the target
velocity field reasonably well.

3.5. Optimization and Discretization

Under mild conditions with respect to the image sequence dataI it can be shown [Sch91] that the
functional (3.12) is strictly convex. We will use theFinite Element Method (FEM)to discretize
(3.12). For details we refer to [Cia78, Sch99] and appendixA. The unique globally minimizing
vector field

(
u1(x1, x2), u2(x1, x2)

)⊤
is determined by the variational equation

a
(
(u1, u2)

⊤, (ũ1, ũ2)
⊤
)

= b
(
(ũ1, ũ2)

⊤
)
, ∀ũ1, ũ2 , (3.13)

where

a
(
(u1, u2)

⊤, (ũ1, ũ2)
⊤
)

=

∫

Ω

{(
u1

u2

)

· ∇I∇I ·

(
ũ1

ũ2

)

+ λ
(

∇u1 · ∇ũ1 + ∇u2 · ∇ũ2

)}

dx ,

(3.14)

b
(
(ũ1, ũ2)

⊤
)

= −

∫

Ω
∂tI∇I ·

(
ũ1

ũ2

)

dx . (3.15)

The simplest discretization is obtained by choosing a regular triangulation of the image domain
Ω and attaching to each pixel position a piecewise linear basis functionφ(x1, x2) for each func-
tion u1, u2, ũ1, ũ2, as illustrated in figure3.5. Indexing each pixel position(k, l) by 1, 2, . . . , N

Figure 3.5.:Left: Uniform triangulation of the image domainΩ. Right: Basis function
φi(x1, x2) attached to pixel positioni.

we thus have

u1(x1, x2) =
N∑

i=1

ui
1φ

i(x1, x2) ,

and similarly foru2, ũ1, ũ2. Hence, each of the functionsu1, u2, ũ1, ũ2 is represented byN real
variables. To simplify notation, we use the same symbols to denote these vectors: u1, u2, ũ1, ũ2 ∈
R

N . Inserting into (3.13) leads to:

(
u1

u2

)

·A

(
ũ1

ũ2

)

= b ·

(
ũ1

ũ2

)

, ∀ũ1, ũ2 ,
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hence:

A

(
u1

u2

)

= b . (3.16)

The2N × 2N–MatrixA factorizes into

A =

(
A11 A12

A⊤
12 A22

)

,

where by virtue of (3.14):

(A11)k,l = a
(
(φk, 0)⊤, (φl, 0)⊤

)

(A12)k,l = a
(
(φk, 0)⊤, (0, φl)

⊤
)

(A22)k,l = a
(
(0, φk)

⊤, (0, φl)
⊤
)
.

Analogously, the2N–vectorb factorizes intob = (b⊤1 , b
⊤
2 )⊤, where by virtue of (3.15):

(b1)k = b
(
(φk, 0)⊤

)

(b2)k = b
(
(0, φk)

⊤
)
.

The linear system (3.16) is sparse and positive definite. Thusu1, u2 can be conveniently com-
puted by some corresponding iterative solver [Hac93]. For numerical details, we refer to ap-
pendixA.

3.6. Discussion

In view of the limitations of CC-PIV mentioned in section2.2.1, we point out the following
features of the variational approach (3.12):

+ The approach is formulated in terms offunctionsu1 andu2, and hence, by definition,
provides motion estimates

(
u1(x1, x2), u2(x1, x2)

)⊤
atanypoint (x1, x2)

⊤ ∈ Ω ⊂ R
2.

+ Spatial variation ofu1, u2 is merely constrained by aglobal penalty term (i.e. the second
term in (3.12)). Accordingly, the motion field(u1, u2)

⊤ may exhibit spatial variations
of different strengths depending on the evidence provided by the spatio-temporal image
sequence dataI.

+ The approach is intrinsically non-local and allows to incorporate spatial context in a math-
ematically convenient way by means of functionals depending onu1, u2 and correspond-
ing derivatives.

Note, however, that there are some potential drawbacks of the presented prototypical variational
optical flow approach that we will have to analyze in following chapters:

- The image structure of typical PIV images is very special. It is not clear if optical flow
approaches are capable of yielding reliable velocity fields.

- The approach as formulated in (3.12) will only yield reliable velocity estimates if the
apparent motion between the two frames is smaller than 1 pixel. This is mainly due (i)to
the limitations of the FIR filter that we use to compute the spatial and temporal gradients
and (ii) to the fact that we truncated the Taylor series in (3.7).
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3.6. Discussion

- The fact that minimizing (3.12) yields one velocity vector per pixel does not necessarily
mean that these estimates contain additional information about the high frequency compo-
nents of a velocity field. This is questionable because the regularization termparticularly
penalizes the high frequency components of the velocity field.

While we show in chapter4 that the first two problems can be easily overcome by coarse-to-fine
strategies and iterated registration (cf. sec.4.1.3), we will enhance the regularization term in
chapter5 and thoroughly investigate the interesting question of the highest achievable resolution
in sec.5.3.3.
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4. Variational Fluid Motion Estimation:
Data Term

In the preceding chapter, we have given an overview of variational methods for motion esti-
mation. We have seen that these methods typically consist of a data term that measures the
consistency between data and model, and a regularization term that introduces prior knowledge
into the estimation and makes the system well-posed. In principle, the smoothness-term enforces
coherent vector field structures, making corresponding post-processing steps in connection with
local PIV-approaches obsolete.

We want to apply this class of approaches to PIV image pairs and sequences.
The emphasis of this chapter is on the data term, i.e. we will introduce data terms that are
well-suited for the purpose of PIV/PTV. We will introduce two different types of data terms:

• In sec. 4.1 we introduce a data term for particle image velocimetry, i.e. a data term
that operates on gray value images. The starting point of our research isthe optical flow
constraint (cf. sec.3.2). We will adapt it for the purpose of PIV and evaluate it using
synthetic and real PIV image pairs.

• In sec.4.2we introduce a novel variational approach for evaluating PTV image pairsand
sequences in two and three dimensions (i.e. we track individual tracers over time). We
replace the continuous data term of sec.4.1 with a discrete non-differentiable particle
matching term. The experimental evaluation shows that our method competes with three
alternative approaches.

In both cases, we deliberately use the very simple first-order term of Horn&Schunck for reg-
ularization. This is done for simplicity and comparability. In chapter5 we will present regular-
izers that are better suited for the typical velocity distributions present in PIV imagery and that
are physically motivated.

4.1. Methods that Operate on Gray-Value Images

The objective of this section is to adapt a prototypical variational approach for motion estimation
(i.e. the one presented in chapter3) to the purposes of PIV. Note that we will only adapt the data
term; special regularizers that use prior knowledge from fluid mechanicswill be introduced in
chapter5.

In sec. 4.1.1–4.1.3, we will introduce enhancements to the variational framework presented
in chapter3.

Numerical experiments for benchmark image pairs and a comparison with alternative ap-
proaches especially designed for PIV-sequence evaluation will be presented in section4.1.4.

The basic approach of Horn&Schunck has already been described in detail in sec. 3.4. In
the current section, we want to focus on the adaption of Horn&Schunck’s approach to the quite
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4. Variational Fluid Motion Estimation: Data Term

specific gray value structure of PIV images. We will focus on three main aspects that affect the
data term:

• Invalid assumption of gray value conservation: The optical flow constraint bases on
the assumption of gray value conservation over time. This assumption is violatedin case
of changing gray values due to illumination changes. We will adapt the opticalflow con-
straint in section4.1.1.

• Image pair analysis: PIV imagery often consists of image pairs only, while standard
variational approaches for motion estimation operate on whole image sequences. In sec.
4.1.2, we will reformulate the optical flow constraint and make it symmetric. We will
show that this procedure improves the accuracy of optical flow estimation for image pairs.

• Large displacements:Algorithms for PIV evaluation should be able to resolve a large
motion range. To handle large displacements, we will present a coarse-to-fine scheme in
sec.4.1.3.

In section4.1.4, we will finally present numerical experiments for benchmark image pairs and a
comparison with alternative approaches. We conclude in section4.1.5by indicating extensions
of the presented approach within the variational framework.

4.1.1. Going Beyond the Assumption of Gray Value Conservation

There are a number of reasons why the gray value at a certain location willchange from one PIV
frame to the next:

• A particle that was located at a pointx to a timet has traveled to positionx + u at time
t+ ∆t.

• Particles have an out-of-plane velocity component. In case they travel out of the illumi-
nated laser light sheet, their brightness fades; if they travel towards the illuminated plane,
they gain in brightness.

• Problems with illumination: Often, the plane is not uniformly illuminated (e.g. due to
experimental setup, dirt or properties of the expanded laser beam). Besides, the intensity
of the laser beam tends to fluctuate over time.

• Properties of the camera: e.g. noise or quantization errors.

The standard optical flow constraint (3.9) deals with the illumination change introduced by the
transport process (item 1). However, brightness changes due to 3D motion, illumination and
image capturing are not modeled.

Extended Optical Flow Constraint

Let ρ be the density of some fluid andu its velocity. The physical equation of mass conservation
is given with (cf. also sec.C.1)

∂ρ

∂t
+ ∇ · (ρu) = 0 .

If we assume that
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4.1. Methods that Operate on Gray-Value Images

• the image brightnessI is proportional to the fluid densityρ and

• the 2D projection of the continuity equation holds true

we get
dI

dt
+ I ∇ · u = 0 , (4.1)

whereu = (u1, u2)
⊤. Note that in the case of a vanishing divergence ofu, (4.1) is exactly the

optical flow constraint. The extended optical flow constraint has been introduced in [Sch84] and
applied to meteorological and fluid imagery in [WALL97, BHY00].

Integrated Continuity Equation

Corpetti et al. go into the fact that the continuity equation yields a velocity and not a displace-
ment estimate [CMP02, CHA+05]. They assume that the velocity is constant between the two
frames and integrate the continuity equation along the trajectories. This yields the minimization
of

E(d) =

∫

Ω
f(I(x+ d(x), t+ ∆t) exp(∇ · d(x)) − I(x, t))dx , (4.2)

whered is the displacement andf is some penalty function (e.g.L2 norm). (4.2) is linearized
and incorporated into some multi-resolution scheme (cf. sec.4.1.3).

Note that while the extended optical flow constraint is physically motivated, it isnot clear if
the underlying assumptions are valid in PIV imagery. We will go into this question insec.4.1.4.

Modeling Illumination Changes

Recall the basic assumption behind optical flow:

I(x1 + u1∆t, x2 + u2∆t, t+ ∆t) = I(x1, x2, t) .

Let us exchange this term, that assumes that changements of gray value ata certain position in
the image are only due to movement of objects in the image plane by

I(x1 + u1∆t, x2 + u2∆t, t+ ∆t) = I(x1, x2, t) + b(x1, x2, t) ,

whereb(x1, x2, t) is a scalar field that takes into account the above mentioned illumination
changes. Note that the observed illumination changes arise from a multitude ofeffects (cf.
above). We have chosen this very simple (additive) term for modeling illumination/ brightness
changes, as the exact interaction of the different effects is usually notknown and would require
the incorporation of many new parameters.

The revised optical flow constraint therefore reads1

∇I ·

(
u1

u2

)

+ ∂tI = b .

1We take∆t = 1 without loss of generality.
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(x1−u1/2,x2−u2/2)

(x1+u1/2,x2+u2/2)

(x1,x2)

(x1−u1/2,x2−u2/2)

(x1+u1/2,x2+u2/2)

(x1,x2)

Figure 4.1.: Sample displacement field. Note that every displacement vector of position(x1, x2)
starts at(x1 − u1/2, x2 − u2/2) and ends at(x1 + u1/2, x2 + u2/2). We perform
Delaunay triangulation and interpolate the data back to the given grid.

If we expectb(x1, x2) to vary smoothly, we can penalize strong variations ofb(x1, x2) in the
smoothness term of a variational approach:

J(u1, u2, b) =

∫

Ω

{[
∇I·

(
u1

u2

)

+∂tI−b
]2

+λ
(
|∇u1|

2+|∇u2|
2
)
+µ|∇b|2

}

dx , 0 < λ, µ ∈ R .

(4.3)
(4.3) can be perceived as a simplified version of the approach for robust motion estimation under
varying illumination presented in [KMK05].

4.1.2. Symmetric Optical Flow Constraint

Traditional motion estimation tasks (e.g. for robot vision, driver’s assistance systems or movie
encoding) demand the analysis of whole image sequences. Temporal coherency facilitates the
vector field recovery. Temporal derivatives can be estimated by using large temporal filters that
suppress noise.
Due to camera restrictions, PIV imagery usually consists of image pairs only (cf. sec.2.1.1). For
this purpose, let us slightly change the optical flow constraint introduced insec.3.2: Given two
images (i.e. samples(x1, x2) at timest− 1

2 , t+ 1
2 of a continuous 2D+time gray value function

I(x1, x2, t)). We want to compute the displacement(u1(x1, x2), u2(x1, x2))
⊤2 that maps both

images onto each other3:

I(x1 −
1

2
u1, x2 −

1

2
u2, t−

1

2
) = I(x1 +

1

2
u1, x2 +

1

2
u2, t+

1

2
) . (4.4)

Figure 4.1 shows that, by solving (4.4), we find displacement vectors(u1, u2)
⊤ at positions

(x1, x2) that map points that were at position(x1 − u1/2, x2 − u2/2) in image 1 to points at
position(x1 + u1/2, x2 + u2/2) in image 2. Taylor series linearizations of both sides of (4.4)

2We assume thatu1 andu2 are displacements that are constant in the interval[t − 1

2
, t + 1

2
].

3Including the additional brightness function from the preceding section is straight-forward. For perceivability, we
have not included the brightness function in this derivation.
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yield

I(x1, x2, t−
1

2
) −

1

2
u1
∂I(x1, x2, t−

1
2)

∂x1
−

1

2
u2
∂I(x1, x2, t−

1
2)

∂x2

= I(x1, x2, t+
1

2
) +

1

2
u1
∂I(x1, x2, t+ 1

2)

∂x1
+

1

2
u2
∂I(x1, x2, t+ 1

2)

∂x2
.

This yields the well-known brightness constancy equation

0 = I(x1, x2, t+
1

2
) − I(x1, x2, t−

1

2
) +

1

2
u1

(∂I(x1, x2, t−
1
2)

∂x1
+
∂I(x1, x2, t+ 1

2)

∂x1

)

+
1

2
u2

(∂I(x1, x2, t−
1
2)

∂x2
+
∂I(x1, x2, t+ 1

2)

∂x2

)
.

Note that the symmetric version of the brightness constancy constraint equation allows the use
of bothspatial derivatives of image 1 and image 2. This makes the algorithm more robust.
Due to the symmetric nature of the approach, changing the order of the two images solely
changes the sign of the extracted vector field: The resulting vector field does not give the dis-
placements at positions(x1, x2), but at positions(x1 − 1

2u1, x2 − 1
2u2). In highly non-rigid

scenarios, this fact is not negligible. If the resulting velocity field should begiven at a regular
grid, we will have to warp the velocity field and interpolate. This is done by

• building a grid using Delaunay triangulation with the warped pixel positions as vertices
(cf. fig. 4.1), and

• interpolating back on the old regular grid using a simple linear interpolation scheme.

4.1.3. Coarse-to-Fine Motion Estimation

The accuracy of motion estimation critically depends on the magnitude of image motion. In fact,
depending on the spatial image frequency, very large motions may even cause aliasing along the
time frequency axis. For illustration, figure4.2shows a 1D-signal moving to the right at constant
speedu:

I(x, t) = sin
(
ωx(x− ut)

)
.

Due to the Nyquist-condition|ωt| < π (with ωt := ωxu), only motions up to|u| < π/ωx are
correctly represented by samples of the signal.4 Faster motions lead to aliasing. In other words,
for a fixed global velocity, spatial frequencies moving more than half of their period per frame
cause temporal aliasing. In practice, this upper bound has to be lowered because derivatives of
the signal can only be robustly estimated in connection with low-pass filtering.

As a remedy, we first compute a coarse motion field by using only low spatial frequency
components and “undo” the motion, thus roughly stabilizing the position of the image over
time. Then the higher frequency sub-bands are used to estimate optical flowon the warped
sequence. Combining this “optical flow correction” with the previously computed optical flow
yields a refined overall optical flow estimate. This process may be repeatedat finer and finer
spatial scales until the original image resolution is reached [KMW96, Sim93]. A standard
technique for generating multi-scale representations in this context is to construct an image

4Without loss of generality we assume sampling rates∆x = ∆t = 1.
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Figure 4.2.: Moving signalg(x, t) = sin(ωx(x − ut)) as gray value image with different pa-
rametersωx (spatial frequency) andu (velocity). Left: ωx = π/4, u = 1, Middle:
ωx = π/16, u = 1, Right: ωx = π/16, u = 4. Temporal frequency is affected by
both spatial frequencyωw and velocityu.

Figure 4.3.: Image Pyramid: Each level in the pyramid is a sub-sampled versionof the level
below convolved with a Gaussian filter.

pyramid (figure4.3) by recursively applying low-pass filtering and sub-sampling operations.
Note that the images at different scales are represented by different sampling rates. Thus, the
same derivative filters may be used at each scale and we do not have to design multiple derivative
filters, one for each different scale. Let us define the pyramid representation of a generic image
I of sizenx1

× nx2
. Let I0 = I be the”zeroth” level image. This image is essentially the

highest resolution image (the raw image). The image width and height at that level are defined
asn0

x1
= nx1

andn0
x2

= nx2
. The pyramid representation is then built in a recursive fashion:

ComputeI1 from I0, then computeI2 from I1, and so on ... . Letk = 0, 1, 2, ..., L − 1 be a
generic pyramidal level, and letIk be the image at levelk. nk

x1
andnk

x2
denote the width and

the height ofIk. First the low-pass filter[1/4 1/2 1/4]× [1/4 1/2 1/4]⊤ is used for image anti-
aliasing before image sub-sampling. Then a bilinear interpolation performs theadaptation to the
new coarser grid, as every new vertex is located exactly in the middle of four finer vertices (if the
respective image size is even-numbered, cf. figure4.4). This procedure results in a convolution
mask of[1/8 3/8 3/8 1/8] × [1/8 3/8 3/8 1/8]⊤. In the first step the optical flow between the
top level imagesIL−1

1 andIL−1
2 (lowest frequency images) is computed, using the variational
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Level 3

Level 2

Level 1

Level 0

Figure 4.4.: Image Pyramid: Location of the vertices in the respective levels.

approach of equation (4.3). The computed coarse-level flow field must then be projected onto
the next finer pyramid level (L − 2). This flow field estimate is used to warp both images onto
each other. The warped versions (I∗) therefore read

I∗(x1, x2, t
−) := IL−2(x1 −

1

2
u1, x2 −

1

2
u2, t−

1

2
)

I∗(x1, x2, t
+) := IL−2(x1 +

1

2
u1, x2 +

1

2
u2, t+

1

2
) .

Note that, as
(
(x1 ± 1

2u1), (x2 ± 1
2u2)

)
usually does not lie on our regular grid, we have to

interpolate. This is done using second order spline interpolation. Next, we compute a new
and finer flow field between the imagesI∗(x1, x2, t

−) andI∗(x1, x2, t
+). While the expression

to be minimized is analogous to (4.3), we now have to distinguish between the overall veloc-
ity ((u1(x1, x2), u2(x1, x2))

⊤, which should be smooth) and the velocity update ((uup
1 (x1, x2),

uup
2 (x1, x2))

⊤, that is to be measured):

J(u1, u2, b) =

∫

Ω\Ω0

[
∇I ·

(
uup

1

uup
2

)

+ ∂tI − bup
]2
dx+λ

∫

Ω

(
|∇u1|

2 + |∇u2)|
2
)

+ µ|∇b|2dx ,

0 < λ, µ ∈ R .

(4.5)

Note thatΩ0 denotes those boundary regions in the image, where no image derivativescan be
computed due to motion over the image boundaries.
Substituting(uup

1 , uup
2 )⊤ with (u1−u

old
1 , u2−u

old
2 )⊤ (andbup with b−bold), where(uold

1 , uold
2 ) is

just the (projected) result of the preceding estimation step on levelL− 1 (and resp. forbold), the
unique flow field minimizing (4.5) is the refined estimate of the overall flow field. This process is
repeated for each level of the pyramid until the finest pyramid levelk0 has been reached. In the
experimental evaluation section below, we will refer to this approach as Horn&Schunck Multi-
Resolution (H&S R ). So far, we have introduced adyadicpyramid structure which is equivalent
to using low-pass filters with bandwidthsΩ

2L−1 ,
Ω

2L−2 , ...,
Ω
21 ,

Ω
20 combined with sub-sampling.

Now we introduce additional filters that slice the bandwidth into even smaller pieces, e.g.Ω/4,
3/8Ω, Ω/2, 3/4Ω, Ω. In order to implement these extra steps which do not fit into the dyadic
pyramid structure, we apply at each pyramid level pre-filters when estimatingderivatives. Figure
4.5shows the effect on a typical particle image: the lower the cut-off frequency of the pre-filter,
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the more the particles seem to melt down and form a smooth gray value structure. A coarse
motion estimate can reliably be computed using this structure. Then, we update and refine the
motion field in the same way as described in detail for the multi-resolution case (i.e.iterated
registration) using the less low-pass filtered image derivatives. Figure4.6 shows the frequency

Figure 4.5.: A sample particle image in different scale levels.

spectra of the Gaussian filters we apply, for the case of five scale-space levels. In practice, we
use nine scale-space levels and thus nine different filters with cut-off frequencies ofπ2 , 9

16π,
5
8π,1116π, 3

4π, 13
16π, 7

8π, 15
16π, π. An inverse Fourier Transform yields the filter coefficients. Low

pass filtering with cut-off frequencies belowπ/2 is not necessary, since this is what the anti-
aliasing filter of the preceding lower resolution level has already done.
Below, we will refer to this combined approach as Horn&Schunck Multi-Resolution + Multi-
Scale (H&S R+S).

4.1.4. Experimental Evaluation

There are two main concerns for this section: First, we want to validate our approach and show
that our suggested improvements to the simple Horn&Schunck approach (especially symmetric
warping and the additional brightness correction term) do actually improve theaccuracy. Sec-
ond, we report comparisons of the variational approach with three otherapproaches for various
data sets.
Before discussing the results, we first describe the data sets used for the comparison, the alter-
native approaches (besides the variational approach) and corresponding parameter setting and
quantitative error measures.

-3 -2 -1 1 2 3

0.2

0.4

0.6

0.8

1

Figure 4.6.: Gaussian filters with cut-off frequencies ofπ/2, 5/8π, 3/4π, 7/8π, π.
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Figure 4.7.: Qúenot image pair.Left: Synthetic particle image.Right: Exact velocity field (av.
7.58 px/frame)

Data

The experimental evaluation was carried out on the basis of the following data sets:

• Simple Rotation: The target vector field obeys the simple analytical functionu1(x1, x2) =
x2, u2(x1, x2) = −x1. To generate the first set of synthetic images (case A, fig.4.8), we
used the same methods as described in [ONK00a]. Note, however, that there is no out-of-
plane velocity in this example. The image size is256× 256, the velocity field is scaled to
have a maximum displacement of 14.14 pixels (at the four corners). For thesecond pair
of images (case B, fig.4.10), we mimicked local changes in illumination, by adding a
Gaussian-shaped patch to the brightness function of the second image.

• Quénot image pair: This set of artificial benchmark image pairs was introduced in
[QP98] and is available on the Internet. The analyzed velocity field (av. velocity =
7.58 pixels/frame) is taken from a numerical solution, obtained for two-dimensional flow
around a pair of cylinders (figure4.1.3).
We examined ten different test cases being part of the following four classes:

– Perfect: “Perfect” case means that the second image was computer-generated from
the first image and the target flow field.

– Noise N%: Additionally to the “perfect” case, noise was superimposed for all im-
ages.

– Add/Rm N%: The specified percentage of particles was randomly removed and the
same amount of particles was randomly added.

– Mixed N%: In this case all images were corrupted by both types of errors (Noise
N% and Add/Rm N%) simultaneously.

• VSJ: In 1999, the Visualization Society of Japan (VSJ) published standard PIVimages
on their website [ONK00a]. There are eight different computer-generated standard image
pairs. They differ from each other in image features as well as in flow fieldattributes.

Table4.1 lists the parameters of these standard images: the number of particles that are
present in the images, the particle diameter and the standard deviation of the particle
diameter, the average image velocity and the out-of-plane velocity. The average image
velocity defines the particle displacement between two successive images. The target
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velocity field (figure4.11) is scaled in order to achieve a certain average image velocity.
This is equivalent to adapting the temporal sampling rate.

Figure 4.8.: Simple Rotation (case A). Size:257 × 257. Maximum displacement (at the four
corners): 14.14 px
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Figure 4.9.:Left: Displacement error when assumingu1(x1 − 1
2u1, x2 − 1

2u2) = u1(x1, x2)
(and resp. foru2). Mean error: 0.2795 pixels. Note that the errors are large at
positions with large motion.Right: Displacement error after additional vector field
warping step and interpolation. Mean: 0.0146 pixels.

The out-of-plane velocity expresses the three-dimensional effects of the flow field: The
intensity of the particles that move slightly out of the plane fades, and if the particle
completely leaves the plane the gray value of the particle disappears.

Table4.1 shows that some parameters were varied while others were kept constant:For
image pairs 01, 04 and 05, for example, the number of particles is 1,000, 4,000 and 10,000,
while all other parameters are fixed. The image pairs 01, 02 and 03 differ only with respect
to the magnitude of the flow field: the average velocities are 2.5, 7.4 and 22 pixels/frame,
but the flow field structure is the same in all three cases.
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Figure 4.10.: Simple Rotation (case B): Same vector field as in case A, additional brightness
(Gaussian shape) added. Fromleft to right : Gaussian illumination pattern, re-
constructed velocity field when applying Horn&Schunck approach (RMS error =
0.254 px), reconstructed velocity field when applying Horn&Schunck with ad-
ditional brightness change handling term (RMS error = 0.017 px), reconstructed
illumination pattern.

Figure 4.11.: Sample VSJ Standard Image with target velocity field

• Synthetic combustion image pair: Experimental conditions sometimes forbid to seed
a fluid with particles. In some combustion processes, e.g., no particles can bebrought
into the fluid without interfering with the flow itself. Sometimes, however, the flow itself
has a gray value structure that can be tracked. Figure4.12shows a synthetic example of
such a structure. Traditional cross-correlation methods have problems with such data -
they produce pronounced correlation peaks only in the presence of individual particles.
Note that a second difficulty in these cases is, that - due to experimental conditions - there
are local illumination changes from one frame to the next. As we are not considering
physically motivated priors in this section, no care was taken to mimic a realistic velocity
field. The motion that was added to the images is a simple sinusoidal vector field (cf. fig.
4.13) that has a maximum displacement of≈ 2 pixels.

• Real-world images: We also included three real-world image pairs into our data set.
Figure4.12shows a corresponding image from the first test case of a time-resolved PIV
measurement of periodical vortices in the transitional cylinder wake [BLW03, WBL03].
The mean displacement is about 9 pixels/frame and the maximum displacement about 16
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4. Variational Fluid Motion Estimation: Data Term

Image Av. Displace-
ment

Max. Dis-
placement

Av. Out of
Plane Vel.

Number of
Particles

Av. Particle
Diameter d

Std. Deviation
of d

01 7.4 px 15.0 px 0.017 4000 5.0 px 1.4 px
02 22.0 px 45.00 px 0.058 4000 5.0 px 1.4 px
03 2.5 px 5.1 px 0.006 4000 5.0 px 1.4 px
04 7.4 px 15.0 px 0.017 10000 5.0 px 1.4 px
05 7.4 px 15.0 px 0.017 1000 5.0 px 1.4 px
06 7.4 px 15.0 px 0.017 4000 5.0 px 0.0 px
07 7.4 px 15.0 px 0.017 4000 10.0 px 4.0 px
08 7.4 px 15.0 px 0.170 4000 5.0 px 1.4 px

Table 4.1.: Pre-generated VSJ standard images. Variations from the default settings are marked
in bold type.

Figure 4.12.: Real-world image with estimated velocity field (variational approach)

pixels/frame. Figure4.20shows the second real-world test case: freezing in a convection
box filled with water [QP98]. The mean displacement in this case is about 4 pixels/frame
and the maximum about 15 pixels/frame. The third test case (cf. fig.4.19) shows the
wake behind a cylinder (size:512 × 512 pixels, max. displacement≈ 14 pixels) [Bur].
A special camera is used (Weinberger speedcam), whose sensor is divided into sixteen
rectangular segments. The brightness of each segment is automatically adapted, so that a
particle changes its brightness when it travels from one segment into the next.

Approaches and Parameter Settings

The data sets described above were evaluated using the following approaches and parameter
settings:

• Variational approach: The spatial (∇I) and temporal (∂tI) derivatives were estimated
using Derivative of Gaussian filters of size five at every point in the imagedomain. At the
image borders (where the filter mask hangs over the image) the image is mirroredabout its
edge pixel (for smoothing operations) or reflected and inverted (for derivative operations).

In a first series of experiments (H&S R+S), a setup of five resolution levels and nine
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4.1. Methods that Operate on Gray-Value Images

scale space levels on every resolution level was chosen. We set the smoothness parameter
λ to 5 · 10−3. However, we did not employ the additional brightness fitting term. In a
second series of experiments (H&S R+S+B), we added this brightness fitting term, and
setµ = 10. For the VSJ and the real-world image pairs, only H&S R+S+B computations
were performed. The parametersλ, µ were determined experimentally. However, we will
show that, up to a certain point, changes ofλ do not deteriorate results distinctly and that
one can even improve the results by adaptingλ manually. The gray values were scaled in
each case to the interval[0, 1].

• DPIV approach: For comparison we took the error measures of the classical 2D FFT
based digital particle image velocimetry (DPIV) method from [QP98] in the synthetic test
cases. Two different interrogation window sizes were applied:32 × 32 pixel (DPIV 32)
and48 × 48 pixel (DPIV 48). We analyzed the “cylinder wake” real-world image pair
using a hierarchical DPIV approach, with an interrogation window size beginning with
512 × 512 pixels and ending up with64 × 64 pixels, with window-shifting and peak-
height validation (but without substitution or interpolation, as we want to compare the
actually computed values).

• ODP2 approach [Qué92]: We also considered the results of a dynamic programming-
based optical flow technique. This approach transforms the two-dimensional correspon-
dence problem to a sequence of one-dimensional search problems. It has been success-
fully applied to particle image velocimetry in [QP98]. The error measures were taken
from [Qué99].

• KLT approach [ Che03]: We also considered the results of a feature-tracking approach
to motion estimation. The Kanade-Lucas-Tomasi Tracker tracks local areas of sufficient
intensity variation; outliers are erased and a dense motion field is interpolated.

• Integrated Continuity Equation [ CHA+05]: The authors use the integrated continuity
equation (cf. sec.4.1.1) together with a first-order regularization.

Note that the error measures of the competing approaches that we did not implement (i.e., DPIV,
ODP2, KLT, ICE) were taken from the respective publications.

Error Measures

As quantitative error measures we computed the angular error (between correct and computed
motion vectors) as defined in [BFB94] along with its standard deviation as well as the mean
velocity error (L1 norm of the difference between the correct and the computed velocities in
pixels/frame).
For the Qúenot image pair, the error measure was computed for the whole image exceptfor
the inner circular regions corresponding to the cylinders. Since the VSJ standard image pairs
have different average velocities, the relativeL1 norm error (absolute error divided by average
in-plane velocity) was computed in the corresponding series of experimentsfor the sake of
comparability.
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4. Variational Fluid Motion Estimation: Data Term

Numerical Results and Discussion

Simple Rotation Figure4.9 shows our result (using the H&S R+S approach) for case A. In
order to show the need for a back-warping of the resulting velocity field (cf. sec. 4.1.2), we
estimate also the displacement error when assuming thatu1(x1 −

1
2u1, x2 −

1
2u2) = u1(x1, x2)

(and resp. foru2). This decreases the error by one order of magnitude. Figure4.10motivates the
use of an additional brightness correction term. Without the term, a large error can be spotted
at the location where the illumination changes. This error vanishes if we use the additional
brightness correction term. Note that even the illumination pattern is reconstructed.

Quénot Image Pair Table4.2 summarizes the error measures and their standard deviation
(±) 5. Furthermore, typical execution times of the respective algorithms are indicated.

DPIV32 DPIV48 ODP2 KLT H&S R H&S R+S H&S R+S+B
Perfect angle 5.95±13.9 9.35±18.3 1.23±2.24 1.36±3.30 0.57±1.85 0.58 ± 1.92

disp 0.55±0.94 0.87±1.46 0.13±0.10 0.50±0.80 0.58±1.67 0.06±0.09 0.06 ± 0.09
Noise 5% angle 6.49±14.6 9.69±19.0 1.83±3.84 1.82±3.66 0.77±1.95 0.77 ± 1.98

disp 0.61±1.18 0.86±1.49 0.21±0.46 0.30±0.80 0.76±1.88 0.09±0.09 0.08 ± 0.09
Noise 10% angle 8.75±17.9 10.8±20.0 4.01±10.8 2.50±4.22 1.15±2.25 1.12 ± 2.25

disp 0.77±1.57 0.91±1.59 0.53±1.44 0.31±0.60 0.98±2.12 0.13±0.10 0.13 ± 0.10
Noise 20% angle 35.0±35.5 31.0±30.4 6.70±11.8 4.92±5.67 2.16±3.37 2.09 ± 3.28

disp 3.11±4.14 2.06±2.88 0.88±1.58 0.42±0.60 1.93±2.76 0.25±0.19 0.25 ± 0.24
Add/rm 10% angle 5.94±13.5 9.52±18.5 2.61±9.94 1.58±3.53 0.61±1.88 0.62 ± 1.92

disp 0.55±0.93 0.87±1.47 0.34±1.28 0.72±1.86 0.07±0.09 0.07 ± 0.09
Add/rm 20% angle 6.11±14.2 9.77±19.2 1.42±2.54 2.72±4.62 0.77±2.06 0.76 ± 2.09

disp 0.56±0.99 0.88±1.52 0.16±0.12 1.36±2.56 0.09±0.10 0.08 ± 0.10
Mixed 5% angle 6.40±14.4 9.59±19.0 1.77±2.87 1.56±3.39 0.81±1.98 0.80 ± 2.01

disp 0.60±1.12 0.86±1.51 0.20±0.13 0.60±1.67 0.09±0.09 0.09 ± 0.09
Mixed 10% angle 10.2±19.6 11.3±20.8 4.30±11.7 1.99±3.64 1.22±2.33 1.18 ± 2.32

disp 0.91±1.89 0.93±1.66 0.57±1.71 0.98±2.12 0.14±0.10 0.13 ± 0.10
Mixed 20% angle 40.8±34.5 38.3±29.7 6.15±9.01 3.29±4.61 2.41±3.72 2.36 ± 3.73

disp 3.73±4.39 2.49±3.19 0.74±0.52 1.02±1.98 0.31±0.51 0.32 ± 0.58
Time 10 min 10 min 20 min 15 sec 16sec /2sec 2 min / 15 sec 4 min

Table 4.2.: Qúenot Image Pair: Angular error and absolute displacement error. H&S R+Sand
H&S R+S+B give very similar results (see text) and have a clearly better performance
than DPIV and ODP2.

Note that DPIV and KLT yield sparse vector fields, whereas both ODP2 and the variational ap-
proach compute dense vector fields. All of the tested algorithms are rather insensitive to particle
appearance/disappearance. However, they all are (in varying degrees) sensitive to superimposed
noise. In the case of DPIV, extending the interrogation window size increases the robustness
to noise, while decreasing the accuracy at the same time. However, irrespective of the window
size, the performance of DPIV is much worse than the performance of the other approaches.
Comparing H&S R and H&S R+S, we realize that H&S R+S provides much better results in all
the test cases. This had to be expected because temporal aliasing as well as linearization errors
due to eqn. (3.7) are suppressed by additional scale space computations.

H&S R+S+B gives nearly the identical results as H&S R+S. This is clear as the considered
synthetic image pairs do neither contain out-of-plane velocity components, nor do they model
illumination changes.

5Error measures for the three algorithms not implemented by the authors were taken from [QP98], the execution
times from [Che03].
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4.1. Methods that Operate on Gray-Value Images

Figure 4.13.: Synthetic combustion image with target velocity field

Figure4.14shows the results for the “Perfect” test case. One can see that the highest estima-
tion errors are reached at the borders of the two cylinders. The smoothness term penalizes the
discontinuities at these locations and smooths over the discontinuities. The error at regions close
to the left cylinder is the highest because of the high velocity of the fluid. Theoval structures
that can be spotted on the error and vorticity plots are probably due to the CFD grid that the
authors used [Lu96].

The two lower images of figure4.14compare the exact vorticity field and the estimated vor-
ticity field using our approach. With exception of the addressed problem (flow discontinuity at
the left cylinder), the estimated vorticity field resembles the exact vorticity field very well.

H&S R+S and H&S R+S+B provide the best results in all test cases. The error measures of
KLT are consistently better than those of H&S R, but slightly worse than the results of ODP2.
However, it seems to be less noise-sensitive than ODP2, and has the advantage of much faster
execution times than the computationally expensive dynamic programming technique. Note
that ODP2 also seems to be more noise-sensitive than our variational approaches: While the
error of the ODP2 approach is approximately twice as high as the H&S R+S approach’s error
for the “perfect” test case, its accuracy further decreases in the presence of noise: For a noise
level of 20% ODP’s performance is approx. three times worse than our variational method’s
performance, in the mixed 20% case, the factor is approx. four.

When we use a preconditioned conjugate gradient method to solve the H&S system matrices,
the execution time of our algorithm is about 16 sec for H&S R, 2 min for H&S R+S and 4 min for
H&S R+S+B (when choosing a residual error of10−4 as a stopping criterion). Using a multi-grid
approach (cf. sec.A.5) to solve the linear systems, the computation time of H&S R is approx. 2
sec, while the H&S R+S computation takes about 15 sec on an up-to-date computer. Information
about the different multi-grid cycles and stopping criteria can be taken from [BWF+05]. Thus
our approach is as fast as the feature tracker and faster than ODP2. Even real-time operation can
be achieved through parallelization using domain decomposition [KSBW04]. Note, however,
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Figure 4.14.: Results for the Quénot image pair “Perfect”. Estimated flow field with H&S R+S
(top), absolute displacement error (2nd row), exact vorticity field (3rdrow) and
estimated vorticity field (bottom).
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that, while we use a 3 GHz Intel processor, the DPIV and ODP results wereobtained using
much older and slower machines. Quénot mentions in [QP98] a 250 MHz SGI processor and a
200 MHz Intel processor.
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Figure 4.15.: Average relativeL1 error of the different optical flow approaches for the VSJ stan-
dard image pairs 01-08.

VSJ Standard Image Pairs Figure4.15compares the averageL1 errors of all mentioned
optical flow-based approaches. The errors of the H&S R+S+B approach are constantly slightly
smaller than the errors of the H&S R+S approach. A reason is that out-of-plane velocity com-
ponents and image noise were modeled in the generation of the synthetic images.

The average relativeL1 error of the H&S R+S+B computation for image pairs 01 and 04-07
is constantly between1.40 (image pair 04 has a high particle density) and2.79 (image pair 05
has a low particle density). As a consequence, the number of particles seems to be the parameter
of the image that influences most the quality of the flow field estimation.
Throughout the VSJ standard image pairs, the error measures of all considered approaches are
more or less the same: H&S R+S+B tends to exhibit the best performance, followed by H&S
R+S and ICE. ODP2 exhibits a slightly worse performance than the other techniques. The
reason for ICE not being superior to the much simpler optical flow constraint is probably the
lacking connection between image brightness and fluid density. In PIV imagery (contrary to
meteorological images where extremely good results have been achieved using ICE), the fluid
itself is usually untextured (and therefore invisible) and only the individualparticles can be
spotted. The luminance of these particles, however, is not influenced by the surrounding fluid’s
density.

H&S R+S+B gives only insignificantly better results than H&S R+S because the standard
images do not model spatio-temporal illumination changes.

Figure4.16shows that our approach is rather insensitive to changes of the smoothness param-
eterλ. However, if we adapted this parameter manually for every image pair, we could achieve
even better error measures than the ones shown in figure4.15.
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Figure 4.16.: Average relativeL1 error (in %) of H&S R+S+B for the VSJ standard image pairs
01, 05, and 06 for changing smoothness parametersλ (logarithmic ordinate).

Synthetic combustion image pair This image pair makes the need for the additional il-
lumination computation clear. Without the additional brightness correction term, the estimated
velocity field is extremely inaccurate: The absolute L1 error is 0.585 pixel. Withthe term, the
error drops to 0.083 pixels - the estimated velocity field (cf. fig.4.13) resembles the target
velocity field very well.

Figure 4.17.: Combustion image pair: Estimated velocity fields.Left: H&S R+S. Abs. L1 error
= 0.585 pixels.Right: H&S R+S+B. Abs. L1 error = 0.083 pixels.

Results for Real-World Image Pairs Figure4.18shows the results for the first real-world
image pair (“cylinder wake”) computed with the variational approach and DPIV.

One can clearly see that the variational approach resembles the true motion field much better
than the cross-correlation approach. At regions with abruptly changingmotion (i.e. the turbu-
lence emerging behind the cylinder in the middle of the image), the DPIV method is not able
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Figure 4.18.: Cylinder Wake: Results.Left: Dense vector field computed with the variational
approach.Right: Sparse vector field computed with DPIV.

to accurately determine the velocity field. This is mainly due to the limited spatial resolution,
which leads to a violation of the assumption of a constant velocity inside interrogation windows
at these locations. The statistical character of correlation-based processing, however, prohibits
the use of smaller interrogation windows. Furthermore, in regions dominated by out-of-plane
velocities (i.e. at the left border of the image), the cross correlation approach fails as well: Since
no global velocity information is used, the probability of outliers is markedly increased at these
locations, hence a valid flow field cannot be computed.
Figure4.20compares the H&S R+S results of the “freezing” image sequence with the results
that Qúenot achieved with ODP2. Both results resemble the true motion field very well. With
the exception of the borders (where the gray value is constant and therefore no reliable motion
can be estimated) and one spot in the middle of the image (where the velocity is highand varies
locally very strongly), the absoluteL1 difference is persistently smaller than 0.5 pixels. From the
visual impression, however, it is impossible to tell which of the two estimates is moreprecise.

Figure4.19shows the results for the real-world image pair with changing brightness values
from one segment to the next. While H&S R+S fails to recover the true velocity field (due to the
brightness fluctuations from one segment to the next), H&S R+S+B is able to recover it quite
accurately.

4.1.5. Conclusion

We have successfully modified a prototypical variational optical flow estimation approach for
the purpose of Particle Image Velocimetry. The novel approach outperforms the standard cross
correlation methods and computes dense motion fields.

A decisive advantage of the variational approach (4.3) is its potential for further development.
Various extensions of the simple smoothness term in (4.3) are possible, such as spatio-temporal

regularization [WS01b], div-curl-shear regularization [Sch94] or non-quadratic discontinuity-
preserving regularization [WS01a], for instance.
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Figure 4.19.:Top Left: Real-world image pair (cylinder wake). Note the brightness changes
from one segment to the next.Top Right: Due to the changing brightness, H&S
R+S is not able to reconstruct a valid velocity field.Bottom Left: H&S R+S+B
is able to recover the velocity field.Bottom Right: Recovered brightness field
(estimated brightness change from one frame to the next in%). The transitions
between the segments are recovered reasonably well.
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Figure 4.20.: Freezing in a differentially heated cavity.Top row: Particle image and computed
velocity field (H&S R+S).Bottom row: Velocity field computed with ODP2 (left),
comparison of the absolute displacement values of the two solutions (right).
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We believe, however, that the most important advantage of this type of variational method for
PIV is the possibility to includephysically motivatedprior knowledge: The governing equations
of fluid mechanics are PDEs, and our variational framework allows the incorporation of these
PDEs. In chapter5 we will exchange the simple first-order regularization term by higher-order
regularizers and will subsequently incorporate physics-based priorsinto our framework.

4.2. Variational Particle Tracking Velocimetry
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Figure 4.21.: Black circles denote particle positions in the first frame, white circles denote po-
sitions in the second frame.Left: Simple nearest-neighbor search yields mis-
matches.Right: Nearest-neighbor search followed by regularization with smooth-
ness constraint. In the next iteration, T2 will find the correct match.

The objective of this section is to generalize the class of variational approaches to Particle
TrackingVelocimetry. To this end, we have to replace thecontinuousdata term of variational
approaches to PIV, with adiscretenon-differentiable particle matching term for PTV. This raises
the problem of minimizing such data terms together with acontinuousregularization term. We
accomplish this with an advanced mathematical method, which guarantees convergence to a
local minimum of such a non-convex variational approach to PTV.

Figure4.21illustrates the basic behavior of this new type of variational approach to PTV. On
the left, figure4.21 depicts a common situation where particle matching by nearest-neighbor
search fails. The variational PTV-approach presented in this paper is able to avoid, and even to
revise, such erroneous local decision through the smoothness term (figure 4.21, right). A key
advantage in our opinion is that all “rules” guiding the matching of particles are encoded by the
choice of a smoothness term which, in turn, can be related to physical properties of the underly-
ing fluid, like low divergence for example [YRMS05]. The physical constraints are thus incor-
porateddirectly (in contrast to e.g. the indirect incorporation in genetic algorithm approaches,
cf. sec.2.2.2). In the following, we will introduce this novel variational approach to PTV(sec-
tion 4.2.1) and the corresponding optimization procedure (section4.2.2). The investigation of
different smoothness terms in this context is left for future work. Numerical experiments for
benchmark image pairs, a comparison with three alternative approaches, as well as results for
real-world image sequences will be presented in section4.2.3. We conclude in section4.2.4by
indicating various extensions to this prototypical approach within the variational framework.
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4.2.1. General Problem Formulation

Basic Assumptions and Constraints

Let S denote the coordinates of the extracted particles in the first image of an image pair, and
T denote the coordinates of the extracted particles in the second image. Then,we define the
distance of a specific particle with coordinatesSi to T by

dT (Si) := d(Si, T ) = inf
T i∈T

d(Si, T i),

whered(Si, T i) is just the Euclidean distance. Therefore, the target velocity fieldu (whereui

denotes the displacement of particleSi from frame 1 to frame 2) minimizes the accumulated
distance function

D(u) =
M∑

i=1

dT (Si + ui) , (4.6)

whereu = u1, u2, ..., uM , and whereM is the number of extracted particles in image 1.

Unfortunately, minimization of (4.6) is a highly non-convex problem, aseveryother possible
matching minimizes the equation as well. Thelocal minimum is just the “nearest-neighbor” so-
lution. We define a convex attraction potential as an increasing continuous function that attracts
every particle to its closest neighbor:

Elocal(u) =
M∑

i=1

α

2

(
dT (Si + ui)

)2
. (4.7)

Up to this point, the particles are only attracted to their nearest neighbors andthe minimiza-
tion of (4.7) is trivial. This is why we have to make an additional assumption aboutu. The
prototypical assumption that we want to make use of in this paper, is the assumption of smooth-
ness. We indicate in section4.2.4that other assumptions (that include e.g. physical knowledge)
are conceivable.
However, rather than considering vector fields that are close to constant in a small region (the
predominant assumption in PTV), we want to rule out too irregular vector fields by minimizing
the magnitudes of the spatial (and, in case of image sequences, spatio-temporal) gradients ofu:

Eglobal(u) =

∫

Ω

N∑

j=1

|∇uj(s)|
2ds. (4.8)

Please note thatu = (u1, u2, ..., uN )⊤, whereN indicates the dimensionality of the problem

(N is usually 2 or 3). The integration variables is for image pairs in 2Ds =
(
x1, x2

)⊤
, and in

3D s =
(
x1, x2, x3

)⊤
, wherex1, x2 andx3 denote the spatial coordinates within the domainΩ.

For image sequences followss = (x1, x2, t)
⊤ in 2D, ands = (x1, x2, x3, t) in 3D, wherex1,x2

andx3 denote the spatial coordinates, andt the temporal coordinate.
Equations (4.7) and (4.8) can be combined into the variational framework

E(u) = Eloc.(u) + λEglob.(u) =
M∑

i=1

α

2

(
dT (Si + ui)

)2

︸ ︷︷ ︸

data

+λ

∫

Ω

N∑

j=1

|∇uj(s)|
2ds

︸ ︷︷ ︸

regularization

, (4.9)
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whereElocal is called “data term” which incorporateslocal information, andEglobal is theglobal
regularization term. In this work, the so-called smoothness parameterλ ≥ 0 is considered a user
parameter that controls the smoothness of the resulting velocity field. If we chooseλ = 0,
no regularization is performed. The reconstructed velocity field is therefore just the “nearest
neighbor” solution, as thelocally optimal solution for every particle in image 1 is the matching
with its nearest neighbor in image 2.

Outlier Treatment

An important problem in the PTV analysis is raised by the fact, that usually notall the particles
are detected correctly. In 2D it may happen that a particle is visible in the firstframe, but moves
out of the illuminated plane and is therefore not visible, or beneath the threshold, in the second
frame. In 3D, additional problems occur when the 3D reconstruction fails,e.g. due to a very
high particle density. Further problems arise from particle images tending to coalesce.

We can distinguish between two error scenarios:

• A particle is extracted from the second image, but not from the first image: In this case
the proposed algorithm can still estimate a reliable velocity field, as it searchesmatches
for all particles in the first frame.

• A particle is visible only in the first frame but not in the second frame: In this error case,
the nearest-neighbor search (4.11) of the proposed algorithm will necessarily find the
wrong match ineveryiteration (cf. figure4.22). Through the smoothness term of (4.12)
this error is propagated to the neighborhood of the erroneous vector.

Particle was not detected
in the second frame

Figure 4.22.: Black circles denote particle position in the first frame, white circles denote po-
sitions in the second frame. Filled rectangles denote the current estimate. One
particle has not been detected in the second frame. Minimization of (4.11) neces-
sarily leads to the wrong match.

The strategy that we want to take, is to eliminate vectors that contribute a high energy to (4.12).
This is achieved through a threshold: We replace the attraction potential of the data term of
(4.11) by a robust potential - a cut-off potential that cuts off points located beyond an adjustable
threshold. These outliers are not considered in the regularization step ofthe current iteration.
However, theresultof the regularization stepis propagated to the outliers: Linear interpolation
yields the velocity field also at the locations of the outliers, the positions of whichare updated,
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4.2. Variational Particle Tracking Velocimetry

as are the positions of the inliers. The idea is that they may be torn below the threshold in case
they were wrongly detected as outliers.

In order to improve the performance in image regions with high velocity, we start with a low
outlier threshold and then slowly increase this threshold: Thus, in the first iterations, particles in
fast moving regions will tend to be considered outliers, while particles in slowlymoving regions
will tend to be considered inliers. The idea is that, in the course of several iterations with
an attenuating threshold, more and more particles will be considered inliers and the estimated
velocity field in the high-velocity regions can converge to the correct flow field. Extensive
experiments have confirmed this behavior.

4.2.2. Optimization and Discretization

Note that the implicit data constraint defined by equation (4.6) is a non-convex function. Thus,
retrieving a local minimum of (4.9) does not imply having found the global optimum.

We use an auxiliary variable approach that represents a sound mathematicalframework and
guarantees convergence [Coh96]: In a two-stage iterative algorithm, each iteration is composed
of a local deformation followed by a global regularization. To justify this approach we modify
the energyE(u) of (4.9) by introducing an auxiliary variableuaux. The two above steps can then
be interpreted as alternate minimizations with respect to each of the two variables, the variable
of the initial energyu and the auxiliary variableuaux.

A general formulation of the energyEaux following [Coh96] and based on formula (4.9), with
the extra auxiliary variableuaux = u1

aux, u
2
aux, ..., u

M
aux, has the form:

Eaux(u, uaux) =
∑M

i=1

(
1−α

2

(
dS+u(S + ui

aux)
)2

+ α
2

(
dT (S + ui

aux)
)2

)

+λ
∫

Ω

∑N
j=1 |∇uj(s)|

2ds . (4.10)

The first two terms of equation (4.10) exhibit the auxiliary variable’s role as an interpolate
betweenS + u andT . Globally, we can think of the iterative minimization ofEaux as a defor-
mation of the current vector field followed by a regularization. The successive minimization of
Eaux is equal to subsequent minimization of the following two energiesEI andEII , each with
respect to a different variable -EI with respect touaux, andEII with respect tou:
Local deformation:

EI(uaux) =
M∑

i=1

(1 − α

2

(
dS+u(S + ui

aux)
)2

+
α

2

(
dT (S + ui

aux)
)2

)

(4.11)

Global regularization:

EII(u) =

M∑

i=1

(1

2

(
dS+u(S + ui

aux)
)2

)

+ λ

∫

Ω

N∑

j=1

|∇uj(s)|
2ds . (4.12)

The two equations can be subsequently iterated in the given order until convergence is ob-
tained. Equations (4.11) and (4.12) demonstrate how both minimizations are linked by the term
∑M

i=1

(
dS+u(S+ui

aux)
)2

. The minimizinguaux ofEI can be interpreted as a trade-off between
the closeness toS + u and the closeness toT . This gives a good direction of displacement and
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avoids too large deformations of the auxiliary flow fielduaux. The grid generation is performed
using a Delaunay triangulation [Aur91] (cf. fig. 4.23). For technical details about grid generation
and discretization of eqn. (4.12), for 2D and 3D image pairs and image sequences, we refer to
appendixA.3 and [RGS04].

Figure 4.23.: Delaunay triangulation of the area covered by particles froman image plane. Line
intersections denote extracted particle positions.

4.2.3. Experimental Evaluation

In this section, we test the variational PTV approach on synthetical and real 2D and 3D data
sets. For the 2D case, we report comparisons of our variational particletracking approach with
three other approaches. Before discussing the results, we first describe the data sets used for the
comparison, the preprocessing (i.e. particle extraction and 3D reconstruction), the alternative
approaches and their corresponding parameter settings, and the quantitative error measures.

Data

The experimental evaluation was carried out on the basis of the following data sets:

• Synthetic Data: The Visual Society of Japan (VSJ) has published standard images for
particle image velocimetry that are freely available on the Internet [ONK00a]. For 2D
data, we will refer to the test image classified as 301 in the VSJ library. It consists of 10
frames taken in intervals of 0.005 sec; each frame consists of about 4,150particles. It
shows the vertical portion of the impinging jet, with a maximum velocity of 10 pixels/
frame. Figure4.24shows the first image from this series along with the correct motion
field. We will analyze our 3D approach using the test images classified as 331 in the VSJ
library (jet shear flow). Figure4.25shows a plot of its velocity field.
The advantage of the VSJ images is that the underlying motion fields, as well as the
particle coordinates, are available so that the evaluation of different approaches, as well
as that of different parameter constellations, is possible. By basing our computations on
this particle position data, we have to deal with very high particle concentrations (approx.
4,150 particles to be tracked in the 2D case and 3,500 particles in the 3D case). We want to
evaluate the performance of our algorithm in cases of high particle concentrations, as up-
to-date CCD cameras yield increasingly high resolutions, and thus an up-to-date tracking
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system must be capable of managing high particle concentrations.
In order to achieve a more realistic test scenario we will randomly delete particles in order
to emulate typical individual particle extraction errors.

Figure 4.24.: VSJ Standard Image 301.
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Figure 4.25.: 3D velocity field of VSJ Standard Image 331.

• Real-World Data: Figure4.26shows different frames from a visualized air flow. The
used camera is a high-speed camera with 1000 fps. The flow is visualized byStyrofoam
particles or micro balloons. One has to visualize the flow in a way that the mean displace-
ment is approximately 10 px./ frame.
To analyze the 3D capability of our algorithm, we took the “stirred aquarium” sequence
from [Maa92a]. It investigates the water flow in a channel made of glass. The velocity of
the real flow in the glass channel averaged 30-50 cm/s. The camera system, which con-
tains 3 video cameras that operate with 25 fps, was moved continuously in direction of the
flow to optimize the tracking. In order to get the characteristic flow, one has toconsider
the bias of the moved camera system.
For successful processing, a compromise between camera frame rate, exposure time, flow
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velocity and illumination is necessary. Fast particles detected when using a longer expo-
sure time appear as streaks. This means a loss of accuracy and it generates ambiguities.
Longer exposure times also reduce the maximum frame rate. Low frame rates inturn in-
crease errors due to the curvature of the particle paths. High frame ratesare correlated with
short exposure times, which results in dim particles. Especially particles at the boundaries
of the illumination corridor cannot be segmented by an overall threshold.
In order to get sufficient results in terms of a successful tracking, the highest possible
frame rate is required. The more turbulent the flow is, the higher the time resolution has
to be in order to get correct matching outputs. The maximum time delay between two
epochs depends on the feasibility of the temporal matching. The latter in turn depends on
the homogeneity, the turbulence, and the velocity of the flow and, of course, on the perfor-
mance of the matching algorithm and its ability to incorporate spatio-temporal constraints
on homogeneity.

Figure 4.26.: Real-World Image: 4 frames have been superimposed to visualize the overall mo-
tion.

Preprocessing Steps

Individual-Particle Detection In order to track individual particles, these particles first have
to be extracted out of the gray-value structure of the image. Many authorshave concentrated on
this topic (a comparison of different particle detection approaches can befound in [OL00]).
While we omitted the particle detection and 3D reconstruction steps in the synthetic cases by
directly basing the tracking algorithm on the provided 3D coordinates, we used the so-called
particle mask correlation method described in [ET99, SSKH00] in the 2D real-world cases. For
the 3D real-world case, a region-growing approach with a discontinuity parameter that divides
overlapping particles was used [Maa92b].
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3D Reconstruction For 3D PTV, the illuminated scene is usually recorded by a system of
three or more cameras. If the camera calibration is known, then, by use of epipolar geometry,
the particle positions can be described by a set of lines. The particles are situated around the
intersection points of these lines. According to the accuracy of the calibration and the particle
density there will be ambiguities. In some cases it is not possible to resolve them[Maa92a]. As
the presented algorithm is capable of handling outliers (cf. sec.4.2.1), we will, in these cases,
consider allpossibleparticle locations that cannot be ruled out - anticipating that the wrong
candidates will be considered as outliers by the algorithm.

Approaches and Parameter Settings

The data sets described above are evaluated with the use of the following approaches and pa-
rameter settings.

• Variational approach (VAR): The particle coordinates are normalized so that all particles
lie between0 and 1 in all spatial dimensions; the temporal dimension is numbered in
integer steps (t = 1, 2, ..., T ).
For all the test cases we use a smoothness parameter ofλ = 0.1. The parameterα is set
to 0.8. In the first iteration,75% of the particles are considered as outliers and in every
iteration,0.1% particles in addition are considered as inliers. No additional particles are
considered as inliers if the outlier threshold reaches0.01.
The iteration is stopped if no further decrease in energy occurs.

• Four-frame in-line tracking method (FIT) [ HC91, KSS89]: The movement of the
tracer particles is traced frame by frame while the geometrical consistency ofevery possi-
ble particle path is checked. Therefore an iterative procedure of, firstly, the extrapolation
of the particle displacement, and secondly, the search for the nearest neighbor is imple-
mented. As this method asks for four consecutive frames to track the particles, we will
use all of the four frames of the VSJ Standard Images.

• Binary-image cross-correlation method (BCC) [UYO89]: This method is considered
a variation of the standard cross-correlation PIV, in which the correlationfunctions are
computed for each interrogation window which is centered on the first-frameparticles.
An adaptive shifting scheme is used.

• Relaxation method (NRX) [BL96, OL00]: This analysis is based on the probability of
particle matching between the first and second frames, defined for everypossible pair
of particles, including the probability of there being no match. A high probabilityof
matching is assumed if the neighboring particles move similarly.

Error Measures

In this work, we want to concentrate on two error measures:yieldandreliability.

• Yield (EY ) is the measure of the number of correct vectors produced between two images
(n), divided by the total number of particle pairs known to exist between the twoimages
(v):

EY =
n

v
.
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• Reliability (ER) is the measure of the number of correct vectors that were reconstructed
by the tracking method (n), divided by the total number of vectors determined by the
tracking method (d):

ER =
n

d
.

It is apparent that we can influence both error measures by the chosenparameters: If we use a
high outlier threshold, we can expect a good reliability (as only matches that fit the model very
well are considered), whileEY will definitely drop. A lower threshold will lead to an increase
in EY , while decreasing the reliability.

Numerical Results and Discussion

2D Results The first test case is the computation of the velocity field between the frames0
and1 of the VSJ 301 image sequence. After700 iterations the solution presented in figure4.27
(outlier ratio: 3%) is generated.

Figure 4.27.:Left: Estimated velocity field VSJ Image 301.Right: Two likely error constella-
tions: One particle has not been extracted in frame 2, the matching is performed
with a close neighbor of this vanished particle(top). Due to three-dimensionality
of the velocity field, two particles “cross” in the two-dimensional projection. The
two-dimensional variational approach presumes smoothness of the projection and
chooses the wrong match(bottom).

In the test case,4, 042 particles are visible in both images;4, 039 matchings are computed;
3, 894 of which are correct. This corresponds with a yield rate ofEy = 96.34% and a reliability
rate ofER = 95.93%. Figure4.28shows these two error measures through the iteration process.
The average angular error of our estimated vectors is0.24◦, and the root mean squared (RMS)
error is0.0261 px., which suggests that the performance of our approach is much more exact
than that of (cross-correlation based) PIV techniques6. However, these numbers are mislead-

6Multi pass cross correlation (Davis 7.1.1.34), e.g., yields an RMS error of 0.0742 px. for the frames 0 and 1 of the
VSJ 301 image sequence.
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ing: When using highly accurate matching techniques, the overall RMS or angular error will be
largely caused by inaccuracies in particle extraction.

Figure 4.28.: Graph of the two error measures from iteration 1 to 720.

Figure4.30points out our outlier strategy. As explained in sec.4.2.1, we start using a very
low outlier threshold, considering only25% of the particles as inliers. These particles are located
mainly in the left part of the image (top left figure). The velocity is small and the velocity field
is smooth, so that these particles fit the model best. In the course of iterations, more and more
particles are considered as inliers, so that the reconstructed velocity fieldresembles the true ve-
locity field even at locations where the velocity is very high. Beginning with iteration 400, more
and more particles in the lower right part of the image are considered as inliers and find their
correct counterparts (cf. figure4.30). The velocity induced by these correct matchings, in turn,
is propagated through the smoothness constraint to the middle of the image where it raises the
number of correct matches. This is why reliability strongly increases between iterations 450 and
500 (cf. figure4.28).
Figure4.29shows that our approach is rather insensitive to changes of the smoothness parameter
λ. However, asλ goes to zero, the reconstructed velocity field approaches the “nearestneighbor
solution” (cf. sec.4.2.1) and the accuracy drops. In contrast, if we apply a very large smooth-
ness parameter, the algorithm will not be able to deal with spatial and temporalmotion variation,
many particles will be considered as outliers, and the performance will decrease.
Please note that we usedthe sameλ in all our experiments - if we had adapted the parameter
manually for every experiment we could have achieved better results than the ones presented in
this paper. Changes of the parameterα had only very little influence on the resulting matching.

Table4.3compares the results achieved with our variational approach, with the results of the
approaches introduced in sec.4.2.3. In order to guarantee a fair comparison we have not used
the correct particle coordinates provided by the VSJ, but extracted particle positions by using the
particle mask correlation method (cf. sec.4.2.3). Therefore the amount of particles is clearly
lower than in the preceding computations. The variational PTV method finds thelargest amount
of matches while additionally yielding the highest reliability.

59



4. Variational Fluid Motion Estimation: Data Term

Figure 4.29.: Graph of the two error measures for different smoothnessparameters.

Algorithm Frames Estimated Matches Correct Matches Reliability
FIT 0,1,2,3 630 559 88.73%
BCC 0 → 1 860 788 91.62%

0 → 2 863 691 80.07%
NRX 0 → 1 808 788 97.52%

0 → 2 714 680 95.24%
VAR 0 → 1 872 865 99.20%

0 → 2 904 885 97.90%

Table 4.3.: Comparison of four PTV algorithms: Four-frame in-line tracking (FIT ), Binary-
image cross-correlation (BCC), Relaxation (NRX), Variational Approach (VAR ).

2D + Time Results (2D Image Sequences) The next step is the additional exploitation
of temporal smoothness information. Therefore we have to analyze the whole VSJ 301 image
sequence consisting of 10 frames. Figure4.31shows the computed trajectories. Table4.4shows
the parameters we use and the results that we achieve. Furthermore, the results of the analysis
of image pairs only are indicated. In every frame, the computation based on the whole sequence
is at least as good as the image pair result. This had to be expected, as additional information
is available in the sequence case. The reason why only slight improvements are achieved has
already been addressed: We analyze a 2D projection of a 3D velocity field, therefore the smooth-
ness assumption does not necessarily hold at every point in the image. Thisis why we will later
turn to three-dimensional problems.

Figure4.32shows the computed trajectories for the four frames of the 2D real-world image.
Visual comparison of the extracted velocity field and the image pair suggests the assumption
that no wrong match has taken place.

3D Results First we want to compute the 3D velocity field between the frames 0 and 1 of
the VSJ 331 image sequence. The solution that was generated after750 iterations is presented
in figure4.33. In this test case,3, 364 particles are visible in both images and3, 372 matchings
are computed. These matches include all exact matches, and 8 particles thatdo not have a
counterpart in the second image, but are erroneously matched to anotherparticle. As expected,
the 3D results are much better than the 2D results. Computations with volume coordinates of the
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Figure 4.30.: Estimated velocity field after 50(top left), 300(top right) , 500(bottom left) and
720(bottom right) iterations.

VSJ 301 sequence show that we achieve matching rates very close to100% in these test cases
as well.
Please note, however, that in real-world scenarios, errors in 3D imagingand 3D reconstruction
will lead to missing particles or erroneous particle locations. This is why we want to test the
robustness of our algorithm: Table4.5 shows that even an increase in outlier probability does
not deteriorate the results significantly. In these test cases, the indicated percentage of particles
(first column) has been randomly removed fromboth images, to simulate problems in particle
extraction and 3D reconstruction. The second column indicates the number of particles that are
visible in both frames, columns three and four show the two performance measures.

In order to assess the limits of our approach we want to consider only every second image.
The results indicated in Table4.5 show that the error measures are still very good. When con-
sidering only every third image, however, the approach is no longer able todetermine a valid
velocity field. In fact, both yield and reliability drop to0% (i.e. not a single velocity vector is
recovered correctly). The algorithm does not find a starting point, as theoffsets ateveryposition
in the image are so high thatno particle is able to find its counterpart in the first iteration, and
thus the algorithm converges to the wrong minimum. This drawback had to be expected as we
are minimizing a highly non-convex functional (cf. eq.4.11).
Even in this case the perfect matching can be found, if we provide the algorithm with a good
initial guess (e.g. by specifying the overall image velocity, or one single match).
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α = 0.8, λsp = 0.1, λtmp = 10 α = 0.8, λ = 0.1
Frames Image Sequence Image Pairs

Yield Reliability Yield Reliability
00→01 97.72 96.41 96.34% 95.93%
01→02 97.62 96.61 96.83% 95.83%
02→03 97.69 96.45 97.05% 95.81%
03→04 97.64 96.64 96.90% 95.90%
04→05 97.32 96.63 97.05% 96.35%
05→06 97.64 96.70 97.11% 96.18%
06→07 97.28 96.10 92.99% 91.86%
07→08 97.28 96.30 93.11% 92.10%
08→09 96.33 95.24 93.94% 92.87%

Table 4.4.: Error measures for VSJ Standard Image 301.

00 → 01 00 → 02
Removed Par-
ticles

Possible
Matches

Yield Reliability Possible
Matches

Yield Reliability

0% 3, 364 100.00% 99.76% 3, 192 99.97% 99.47%
5% 3, 037 100.00% 99.84% 2, 881 99.86% 99.45%
10% 2, 731 100.00% 99.60% 2, 586 99.38% 99.34%
15% 2, 440 100.00% 99.59% 2, 307 98.22% 99.60%
20% 2, 170 100.00% 99.40% 2, 053 98.30% 99.56%
25% 1, 885 100.00% 99.74% 1, 809 44.83% 44.81%
30% 1, 649 100.00% 99.40% 1, 557 38.79% 39.35%
35% 1, 403 99.93% 99.64% 1, 339 31.14% 31.17%
40% 1, 211 100.00% 99.26% 1, 131 32.98% 33.01%

Table 4.5.: Error measures for VSJ Standard Image 331.

Figure4.34shows the extracted trajectories from the real-world sequence “stirred aquarium”
[Maa92a]. The sequence consists of31 exposures of the whole volume with a three-camera
setup. 1.300-1.400 particles were detected in every image. 3D reconstruction yielded a total
number of28.818 particles from the sequence (i.e.≈ 930 particles / frame). We used the same
parameters we used for the synthetic experiments.22.485 matches were found when using our
variational algorithm (i.e.≈ 750 matches / image pair). The position of each vector is expressed
in the initial camera coordinate system.

4.2.4. Conclusion

We have introduced and successfully evaluated a variational Particle Tracking Velocimetry ap-
proach that combines a discrete matching term and a continuous regularization term. This novel
approach can handle 3D image sequences, and int outperforms standard PTV methods.
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Figure 4.31.: Computed trajectories from sequence VSJ 301. For perceivability, only every tenth
trajectory is plotted.

63



4. Variational Fluid Motion Estimation: Data Term

Figure 4.32.:Left: Computed trajectories from real-world image sequence.Right: Velocity
vectors between frame one and frame four with mean flow component subtracted;
amplified for perceivability.
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Figure 4.33.: Estimated 3D velocity field for sequence VSJ 331. For perceivability, only every
tenth computed trajectory is plotted.

Figure 4.34.: Estimated 3D trajectories for the real-world sequence “stirredaquarium”. Every
third trajectory has been printed.
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4.3. PIV or PTV?

A decisive question that the reader might pose at this point is:

What is the better choice, PIV or PTV?

Besides well-known advantages of PTV

• High Resolution (in comparison with CC-PIV): one velocity vector per particle,

• 3D Capacity: In 3D, PTV can be supported and combined with stereoscopic analysis and
3D reconstruction, leading to high-resolution 3D3C vector fields,

we cannot answer this question satisfactorily: Suppose our variational PTV approach is used
for temporal particle tracking (i.e. tracking from one frame to the next). Then, the main share
of the overall velocity error will be caused by the individual particle extraction algorithm (and,
for 3D PIV, by 3D reconstruction) andnot by failed temporal matching. So, in order to answer
the above question, one would first have to analyze typical error ranges of individual particle
extraction methods. This is, however, out of the scope of this manuscript and thus left for further
research.
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5. Variational Fluid Motion Estimation:
Physics-based Regularization

After we have adapted the data term of typical variational approaches for motion estimation to
the requirements of PIV images in the preceding chapter, we will use the second part of this
thesis to develop regularization terms that are better suited for typical fluid motion than the
simple regularizer introduced in section3.4. First, we review regularizers that were especially
created for fluid image analysis. We will argue in section5.2 that these methods, though they
do yield very reasonable results, lack a sound physical interpretation. Consequently, we will
introduce novel physically motivated regularizers:

• In sec.5.3, we will propose the use of the so-called Stokes equation as prior knowledge
when analyzing PIV image pairs.

• In sec.5.4the full Navier-Stokes equations (in the form of the vorticity transport equation)
will be used as prior knowledge for the analysis of whole PIV sequences.

5.1. Higher-Order Regularization

5.1.1. First Order Div-Curl Regularization

Let us consider a 2D vector fieldu = (u1, u2)
⊤ that is defined inside a domainΩ and is zero at

its boundaries. TheHelmholtz decompositionstates that this vector field can be interpreted as a
superposition of a divergence-free (solenoidal) vector field and a curl-free (irrotational) vector
field:

u = uso + uir , (5.1)

with

div uso =
∂u1

∂x1
+
∂u2

∂x2
= 0

and

curl uir = −
∂u2

∂x1
+
∂u1

∂x2
= 0 .

In case of non-zero boundary conditions, the decomposition comprises alaminar term that is
both divergence- and curl-free:

u = uso + uir + ulam . (5.2)

In the preceding chapter we have used the simple smoothness-term of Horn&Schunck for regu-
larization. Using the Helmholtz decomposition, this smoothness term can be rewritten as

E(u) =

∫

Ω
|∇u1|

2 + |∇u2|
2dx =

∫

Ω
(div u)2 + (curl u)2dx. (5.3)
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if we demand a vanishing velocity field at the image boundaries.1 Expression (5.3) can be
expanded to control divergence and rotation of the velocity fielddirectly and independentlyof
each other

E(u) =

∫

Ω
α(div u)2 + β(curl u)2dx (5.4)

using two different regularization parametersα, β > 0 [Sut93].2 (5.3), however, illustrates also
the main drawback of first-order regularization: The assumption of a smoothvelocity fieldu is
equivalent to the assumption of small divergence and curl components ofu, which is usually
invalid for real-world fluid flow.

Figure 5.1.:Left: Synthetic Fluid Image Pair (both frames superimposed).Middle: Exact ve-
locity field. Right: Estimated velocity field (Horn&Schunck R+S).
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Figure 5.2.:Left: Exact curl of velocity field.Middle: Estimated curl (Horn&Schunck R+S).
Right: L1 Velocity Error: mean 0.056 px. (Horn&Schunck R+S).

1For arbitrary flows (i.e. flows with non-zero boundary values) an additional shear component is introduced and
(5.3) can be rewritten as

E(u) =

Z

Ω

|∇u1|
2 + |∇u2|

2dx =
1

2

Z

Ω

(div u)2 + (curl u)2 + (shru)2dx,

with shru =
p

(∂u1/∂x1 − ∂u2/∂x2)2 + (∂u1/∂x2 + ∂u2/∂x1)2.
Note that the shear-component is often disregarded. This can be justified by either precomputing and subtracting
the flow over the image boundaries or by artificially expanding the domain ofcomputation beyond the image
domain and assuming thatu vanishes at infinity.

2Note that in fluid imagery, the divergence component will usually be muchsmaller than the rotational component,
as the apparent velocity field is the 2D projection of an incompressible fluid.Therefore it will be advantageous
to use a rather large regularization parameterα.
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While the Horn&Schunck reconstruction of a typical velocity field of a fluid (cf. figure 5.1)
appears reasonable, fig.5.2shows that the curl is severely underestimated. This yields errors at
locations within the image, where the curl is large.

5.1.2. Higher Order Div-Curl Regularization

The standard way to attenuate the smoothing properties of the Horn&Schunckregularization
term is the use of higher-order regularization. Due to the observation thatthere are mainly
compact areas within the flow where divergence or curl are large (cf.5.2, left), it makes sense
not to demand smoothness of the velocity components but smoothness of divergence and curl
[AB91, Sut94b, GP96]:

E(u) =

∫

Ω
α|∇div u|2 + β|∇curl u|2dx. (5.5)

While (5.5) tends to preserve divergence and curl, it is rather difficult to implement, as the cor-
responding Euler-Lagrange system consists of two coupled fourth-order PDEs. One possibility
is to mollify the second-order constraint by introducing the auxiliary variables ξ andω, which
can be seen as approximations of the true divergence and curl, resp. [CMP02, CHA+05]:

E(u, ξ, ω) =

∫

Ω
λ(|div u− ξ|2 + |curl u− ω|2) + µ(||∇ξ||2 + ||∇ω||2)dx, (5.6)

whereµ is a positive parameter. Note that (5.6) decouples the fourth-order PDE associated with
(5.5) into a system of second-order PDEs. [CMP02] describes an iterative strategy of minimizing
the optical flow constraint together with the regularizer (5.6). Basically the energy functional
is minimized alternatively with respect tou, ξ andω. Figure5.3shows the gain of this type of
second-order regularization: The meanL1 velocity error decreases, while the curl is much better
reconstructed (cf. fig.5.4).
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Figure 5.3.:Left: Estimated velocity field (second-order regularization).Middle: Velocity Er-
ror (Horn&Schunck R+S): mean 0.056 px.Right: Velocity Error (2nd-order reg.):
mean 0.032 px.

5.1.3. Flow Decomposition Using Potential Functions

Let us come back to the Helmholtz decomposition that we have introduced in sec.5.1.1. It is
well-known that the solenoidal(uso) and the irrotational components(uir) of the velocity field
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Figure 5.4.:Left: Exact curl of velocity field.Middle: Estimated curl (Horn&Schunck R+S).
Right: Estimated curl (2nd-order reg.).

can be expressed as functions of thestream potentialφ and thevelocity potentialψ:

uir = ∇φ = (
∂φ

∂x
,
∂φ

∂y
)⊤,

uso = ∇ψ⊥ = (−
∂ψ

∂y
,
∂ψ

∂x
)⊤.

In many relevant experimental scenarios one is in fact interested in the functionalsφ andψ, and
only secondarily interested in the velocity fieldu. Therefore, it makes sense to rewrite the data
term in terms ofφ andψ [KMS03]3

E(φ, ψ) =

∫

Ω
(I2(x+ ∇φ(x) + ∇ψ⊥(x)) − I1(x))

2dx (5.7)

and separately linearize it for∇ψ⊥ and∇φ. In [KMS03], auxiliary variables are introduced for
the higher-order regularizer

E(φ, ψ, ξ, ω) =

∫

Ω
λ(|div ∇φ− ξ|2 + |curl ∇ψ⊥ − ω|2) + µ(||∇ξ||2 + ||∇ω||2)dx, (5.8)

analogous to (5.6). The sum of energy functionals (5.7) and (5.8) is minimized alternatively
with respect toφ, ψ, ξ andω. It is shown that thedirectestimation of the potential functions (by
minimizing (5.8)) is superior to theirindirect estimation (as proposed in [CMP02]) by integra-
tion along the stream lines.

Discretization of the Euler-Lagrange equations of (5.8) yields biharmonic operators. It is
clear that discretization and numerical solver have to be harmonized in order to be able to prove
convergence. [YRMS05] give a sound mathematical background to the minimization of

E(φ, ψ) =

∫

Ω
(I2(x+ ∇φ(x) + ∇ψ⊥(x)) − I1(x))

2 + λ(||∇div ∇φ||2 + ||∇curl ∇ψ⊥||2)

by applying mimetic finite differences [HS99, HS97b, HS97a]. The corresponding iterative min-
imization is provably convergent (subsequent subspace corrections). The discretization allows
the encoding of the velocity’s boundary values (u∂Ω = ∂nψ); in contrast to the approach pre-
sented in [KMS03], the boundary values therefore do not have to be precomputed and subtracted.

3The authors subtract the velocity field’s laminar component in apre-processing step. Therefore, the Helmholtz
decomposition (5.1) holds.
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The authors also note that – while every admissible flow field can be uniquely decomposed into
its divergent and rotational parts and its boundary values – the traditional higher-order regular-
ization term (5.5) only enforces smoothness of divergence and curl, but does notdirectlyenforce
smoothness of the boundary values. Therefore they add the penalizer

∫

∂Ω
(∂nu)

2dl,

which can be expressed in terms ofφ.

5.1.4. Experimental Evaluation

The aim of this section is to compare first-order regularization and second-order regularization.
Section5.1.2has already shown that higher-order techniques tend to give better results in real-
world fluid flows, as they are much better capable of extracting regions with large divergence or
curl. However, figure5.4indicates that while the curl is extracted much better with higher-order
regularization, the extracted curl is rather noisy, and artifacts are introduced.

First, we describe the data sets used for comparison, then the alternative approaches (and the
corresponding parameter settings) are introduced. Finally, we discuss the results.

Data

The experimental evaluation was carried out on the basis of the following twodata sets:

• VSJ: As in sec.4.1.4, we will use the eight standard image pairs provided by the Visual-
ization Society of Japan. The image parameters can be taken from table4.1.

• Cemagref Synthetic Highly Non-Rigid Image Pair: This highly non-rigid synthetic
PIV image pair was provided by [CH]. The underlying velocity field was computed by a
so-called pseudo-spectral code that solves the vorticity transport equation in Fourier space
and evaluates a sub-grid model for simulating small-scale turbulent effects on the larger
scales of the flow. The image size is256 × 256 pixels. The maximum displacement is
approximately3.5 pixels.

Approaches and Parameter Settings

We compared the following first-order and second-order approaches:

• First-Order Regularization: We use five resolution levels and nine scale space levels
on every resolution level. We set the smoothness parameterλ to 5 · 10−3, but use no
additional brightness fitting term (for H&S R+S). For H&S R+S+B, we added this term
and setµ = 10.

• Higher-Order Regularization: The VSJ image pairs were analyzed in [CHA+05] using
a variational framework combining higher-order regularization and eitherthe optical flow
constraint or the integrated continuity equation. For analyzing the Cemagrefimage pair,
we used the higher-order div-curl approach introduced in [YRMS05] (parameters:λ1 =
0.5, λ2 = 0.05). Both implementations contain a coarse-to-fine framework with iterated
registration.
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Results and Discussion
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Figure 5.5.: Average relativeL1 error of the different optical flow approaches for the VSJ stan-
dard image pairs 01-08.

VSJ Standard Images Let us examine features of both first-order and higher-order regular-
ization by analyzing first the “VSJ standard images” (cf. sec.4.1.4). Look at fig.5.5: The error
measures for image pairs 02 and 03 are most interesting since they clearly exhibit the different
strengths of the approaches:

• The two higher-order regularization approaches give extremely good results for image
pair 02. First-order regularization seems to be inappropriate in this case, as it yields too
smooth velocity estimates in examples with such a high motion range as present in this
image pair.

• For image pair 03 (that has a very low motion range), in turn, first-order regularization
seems to be the better choice. Second-order div-curl regularization seems to introduce
more artifacts than first-order methods. We will come back to this point in section5.4,
where we will introduce a physically motivated regularization term that can beconsidered
a combination of first-order and second-order regularization.

Cemagref Image Pair Figure5.6shows the true velocity field and the vorticity distribution
of the Cemagref image pair. Note that the velocity field is highly non-rigid. Figure5.7compares
the results achieved with first-order and with higher-order regularization. It can be seen clearly
that the Horn&Schunck approach has problems at regions where the vorticity is large. This had
to be expected, as first-order regularization penalizes high vorticities.

In contrast, the main problems of the second-order approach are at locations where the vor-
ticity is not smooth but changing abruptly. These problems had to be expected, as vorticity
variations are penalized by higher-order regularization terms.
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Figure 5.6.: Cemagref Image Pair: Target Velocity and Vorticity
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Figure 5.7.: Cemagref Image Pair: Error Measures.Left: Horn&Schunck R+S, av. err. = 0.0821
px. Right: 2nd-Order Regularization, av. err. = 0.0525 px.
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For further experimental results and comparisons with other techniques werefer to sections
5.3.3and5.4.3.

Note that we have motivated higher order regularization from the simple observation that
there are often compact areas within the flow where divergence or curlare large. Experimental
evaluations of turbulent flows confirmed that second-order div-curlapproaches are capable of
yielding better results than simple first-order methods.

In the next section, we discuss possible physical interpretations of the standard first-order
and higher-order regularizers, and will realize that they lack asoundphysical interpretation.
Consequently, we will introduce regularizers with adirect physical basis in sections5.3 and
5.4.

5.2. Discussion: Physical Interpretation of Standard

Regularization Terms

In this section, we will analyze standard regularization terms from aphysicalpoint-of-view. We
will first analyze the simple first-order regularization term pioneered by Horn&Schunck (cf. sec.
3.4) and then turn our attention towards higher-order regularization (cf. sec. 5.1). For a short
introduction on the governing equations of fluid motion, we refer to appendixC.

First Order Regularization Let us examine the temporal derivative of the kinetic energy of
an incompressible fluid. Using (C.14) and assuming that no external forces are acting on the
fluid (i.e. f = 0), we compute

d

dt
Ekin =

d

dt

1

2

∫

Ω
ρ||u||2dx =

∫

Ω
ρu ·

Du

Dt
dx =

∫

Ω
(−u · ∇p+

1

Re
u · △u)dx .

Becauseu is orthogonal to∇p, we get

d

dt
Ekin =

1

Re

∫

Ω
u · △udx = −

1

Re

∫

Ω
||∇u||2dx .

Therefore, the Horn&Schunck regularization term is just the assumption ofa constant kinetic
energy over time.

One can also describe the Horn&Schunck regularization term as a specialcase of the lin-
earized Navier-Stokes equations: Consider the compressible Navier-Stokes equation (C.7). Drop-
ping the nonlinear and the pressure term, considering the stationary case (i.e. ∂u

∂t = 0) and
assuming that no forces act on the fluid, yields the so-called Navier-Lamé equation

µ∆u+ (λ+ µ)∇(∇ · u) = 0 . (5.9)

Let us consider the special case4, whereµ > 0 andλ = −µ. (5.9) can be simplified to

µ∆u = 0 .

4One can show, however, that this special case is physicallynot plausible: General principles of thermodynamics
state that the inequationsµ ≥ 0, andλ ≥ − 2

3
µ must be valid. For details, we refer to [CC70].
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It is clear that the corresponding energy functional minimization is

inf
u∈V

∫

Ω

1

2
µ|∇u|2dx ,

which is just the well-known Horn&Schunck regularization term.
Note that there are three basic drawbacks of this regularizer:

• We have dropped the non-linear terms of the Navier-Stokes equations. These terms are
dominant in high Reynolds number environments. We can therefore expectthat our regu-
larization term will yield rather high errors in these environments.

• The choice ofλ = −µ cannot be physically motivated.

• The body-force is assumed to be zero. Therefore, we just minimize the error between the
apparent flow field and our model (that does not include forces).

Higher Order Regularization Letting the body-force vanish does not really make sense - in
fact, one should rather be interested in the body force: We should try to find the smallest (in an
L2 sense) body force thatexplainsthe apparent motion.

This can be written as a constrained optimization problem:

inf
f

∫

Ω
|f |2dx

s.t. µ∆u = f ,

which can be easily rewritten as

inf
u

∫

Ω
|µ∆u|2dx . (5.10)

Simple calculations show that (5.10) is just a special case of the second-order regularization term
(5.5), with α = β := µ, andu = 0 at the boundaries.

To summarize, both traditional first-order and second-order regularization can in principle be
explained by formulas from fluid mechanics. However, neither term is able todescribe convec-
tion nor do the terms model pressure. Furthermore, the parameter choiceλ = −µ is not valid
from a physical point of view. In the next section, we will introduce a regularizer that is physi-
cally much more plausible: The Stokes equation is the linearized version of the incompressible
Navier-Stokes equations. In section5.4, we finally use the full (incompressible) Navier-Stokes
equations (in the form of the vorticity transport equation) for physically consistent regulariza-
tion.

5.3. Optical Stokes Flow: An Imaging-Based Control Approach

Let us now study a novel optical flow-based approach toParticle Image Velocimetry (PIV)that
incorporates physical prior knowledge in a more precise and explicit way: All admissible flows
for estimation have to satisfy the Stokes equation. In order to estimate the specific flow of appar-
ent velocities of particles in an image sequence, control variables are included and determined

75



5. Variational Fluid Motion Estimation: Physics-based Regularization

by minimizing a suitable objective function, which relates the flow and the controlvariables
to given image sequence data. We show that our approach not only estimates the flow from a
given PIV image sequence, but it estimates pressure and forces acting on the real fluid as well,
provided the real flow satisfies the Stokes equation, too.

Our approach draws on the general literature on the control of distributed parameter systems
[Lio71]. For specific approaches in connection with fluid dynamics, we refer to [Gun02]. The
application of flow-control techniques to image-motion estimation, as presentedin this work, is,
however, novel.

Concerning the incorporation of physical constraints for flow estimation through image pro-
cessing, we refer to the short summary given in section2.2.1 (vi). We have seen that these
approaches generally use general-purpose methods for optimization (including simulating an-
nealing, and evolutionary and genetic programming). This indicates, that only little insight into
the structure of the problem has been gained (existence, multiplicity and stabilityof solutions,
and related dedicated algorithms). This sharply contrasts with our approach developed below.

The reader may ask: Why we do confine ourselves to Stokes flows, as opposed to flows gov-
erned by the full Navier-Stokes equation? In this connection, we wish to point out that we
consider, for the first time to our knowledge, a quite difficultinverse problem– the joint esti-
mation of a flow along with related physical quantities. This problem is intricate through the
interactionof various components, although each of them individually behaves in a mathemat-
ically simple way. Therefore, to study the computational feasibility and robustness, we have
chosen Stokes flows as a first step. Notwithstanding this restriction, our numerical results turned
out to be competitive with respect to alternative approaches of current research.

In section5.3.1we will present the constrained minimization problem that is being solved
- along with the control approach that is used for optimization. We will illustrate the finite-
element discretization, the applied numerics, and features of a coarse-to-fine implementation
in section5.3.2. Numerical experiments on ground-truth image pairs as well as on real-world
image sequences will be presented in section5.3.3. We conclude in section5.3.4by indicating
extensions within the variational control framework.

5.3.1. Approach

Constrained Variational Optical Flow Estimation

Let us again start with the optical flow constraint
∫

Ω

[
∇I · u+ ∂tI

]2
dx . (5.11)

Problem (5.11) is not well-posed becauseanyvector field with components∇I · u = −∂tI,∀x,
is a minimizer. We have seen in sec.3.4, that the standard approach is to add a variational term
enforcing smoothness of the flow [HS81]

∫

Ω

{

(∇I · u+ ∂tI)
2 + α

(
|∇u1|

2 + |∇u2|
2
)}

dx (5.12)

or (as we have seen in sec.5.1.2) smoothness of its divergence and vorticity [Sut94a]
∫

Ω

{

(∇I · u+ ∂tI)
2 + α

∣
∣∇(∇ · u)

∣
∣2 + β

∣
∣∇(∇× u)

∣
∣2

}

dx . (5.13)
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In this chapter, we investigate an alternative method.
Rather than penalizing the estimated flow with a smoothness term, we require as anadditional

constraint that (5.11) should be minimized, subject to the time-independent5 Stokes system de-
scribing the steady motion of viscous media:







−µ∆u+ ∇p = f in Ω,
∇ · u = 0 in Ω,
u = g on Γ.

(5.14)

Here,p denotes the pressure,µ the dynamic viscosity,f the body force acting on the fluid, and
g the boundary values that are defined onΓ, which denotes the boundary ofΩ.

Our objective is to determine a body forcef and boundary valuesg that yield a velocity field
u which matches the apparent motion (measured by (5.11)) as well as possible. Note, however,
that the minimization of (5.11) subject to (5.14) only enforces vanishing divergence of the flow
u. The diffusion term in (5.14) has no impact becausef andg can be chosen so thatevery
divergence-free velocity field satisfies the Stokes equation. Therefore, we additionally regularize
f andg, rendering the whole system mathematically well-posed. As a result, we finally obtain
the objective functional

J(u, p, f, g) =

∫

Ω

1

2

[
∇I · u+ ∂tI

]2
dx+

∫

Ω\Ω0

α

2
|f |2dx+

∫

Γ

γ

2
|∇Γg|

2dΓ , (5.15)

which is to be minimized subject to (5.14). Ω0 in the second term in (5.15) denotes regions
in the image where we expect large forces to act on the fluid (e.g. interfaces with solids).
Therefore, we exclude body force penalization at these locations.∇Γg denotes the component-
wise directional derivative ofg tangential to the boundary (for thex1 = 0 boundary, e.g.,
∇Γg = (∂g1/∂x2, ∂g2/∂x2)

⊤).
In terms of control theory (e.g. [Gun02]), the approach can be summarized as follows: We

wish to find an optimal state(u, p) and optimal distributed controls(f, g), so that functionalJ
(5.15) is minimized subject tou, p, f , andg satisfying the Stokes system (5.14).

Optimality Conditions

To derive theoptimality systemfor determining optimal solutions to (5.15), (5.14), we transform
the constrained optimization problem into an unconstrained optimization with the Lagrangian
function

L(u, p, f, g, w, r, ξ) = J(u, p, f, g) (5.16a)

−

∫

Ω
w⊤(−µ∆u+ ∇p− f) + r(∇ · u)dx (5.16b)

−

∫

Γ
ξ⊤(u− g)dΓ (5.16c)

5Note that we confine ourselves to the time-independent case as we want toanalyze image pairs only, and therefore
have no additional information about the temporal evolution of the velocity.
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and corresponding multipliersw, r, ξ. The first-order necessary conditions then yield the opti-
mality system, which determines optimal states and controls:







−µ∆u+ ∇p = f in Ω,
∇ · u = 0 in Ω,
u = g on Γ

(5.17a)







µ∆w + ∇r = −(∇I⊤u+ ∂tI)∇I in Ω,
∇ · w = 0 in Ω,
w = 0 on Γ

(5.17b)







w + αf = 0 in Ω\Ω0,
w = 0 in Ω0,

rn− µ∂w
∂n − γ∆Γg = 0 on Γ ,

(5.17c)

where∆Γg is the 1D Laplacian ofg, tangential to the boundary (for thex1 = 0 boundary, e.g.,
∆Γg = (∂2g1/∂x

2
2, ∂

2g2/∂x
2
2)

⊤). Thestate equation(5.17a) results from taking the Ĝateaux
derivative of (5.16) in the direction of the Lagrange multipliers, reproducing the Stokes equation
(5.14). Equation (5.17b) is theadjoint equation. It specifies the first-order necessary conditions
with respect to the state variablesu andp. Note that this equation has the same structure as
(5.17a) with just the variables replaced by the adjoint velocityw and the adjoint pressurer.
Consequently, we can use the same numerical algorithm to solve (5.17a) and (5.17b). The third
system of equations (5.17c) states theoptimality condition, which is the necessary condition
for the gradient of the objective functional with respect to the controls to vanish at the opti-
mum. Next, we state the optimization problem for solving (5.17). Discretization and numerical
solution of subproblems (5.17a) and (5.17b) are detailed in section5.3.2.

Optimization Algorithm

Due to the large number of unknowns in the optimality system (5.17), we decouple the state
system (5.17a) and the adjoint system (5.17b), and apply thegradient methodfor computing
the solution of the optimal control problem. Let us therefore first define thegradients of our
objective functional with respect to the body forcef and with respect to the boundary valuesg:

When we change the distributed controlf to f + ǫf̃ , wheref̃ is arbitrary, this change inf
induces the state to change from (u, p) to (u + ǫuf , p + ǫpf ). The changeuf in the state is
determined by the state system, i.e. we have that







−µ△(u+ ǫuf ) + ∇(p+ ǫpf ) = f + ǫf̃
∇ · (u+ ǫuf ) = 0
(u+ ǫuf ) = g on Γ .

(5.18)

For ǫ→ 0 this leads to the so-called sensitivity equation






−µ△uf + ∇pf = f̃
∇ · uf = 0
uf = 0 on Γ .

(5.19)

This equation says that an infinitesimal change of the control functionf in the “direction” of f̃
induces the infinitesimal change in the “directions” ofuf andpf . Next, let us derive a formula
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for the change in the functionalJ(u, f) of (5.15), effected by an infinitesimal change in the
directionf̃ in the controlf . We will keep track of both the explicit dependence ofJ on f and
the implicit dependence through the state ( u, p):

〈∂fJ, f̃〉 =
∂J(u+ ǫuf , p+ ǫpf , f + ǫf̃)

∂ǫ

∣
∣
∣
ǫ=0

=

∫

Ω

{

(∇I⊤u+ It)∇I
⊤uf + αf⊤f̃

}

dx .

Substitution of the first adjoint equation (5.17b) yields

〈∂fJ, f̃〉 =

∫

Ω

{

− (µ△w + ∇r)⊤uf + αf⊤f̃
}

dx.

Integrating by parts yields

〈∂fJ, f̃〉 =

∫

Ω

{

− µ△u⊤f w + ∇ · ufr + αf⊤f̃dx+

∫

Γ
µ(−u⊤f

∂w

∂n
+ w⊤∂uf

∂n
) + u⊤f rn

}

dΓ.

(5.20)
The boundary integral is zero, asw anduf are zero at the boundaries. Now we can substitute
the sensitivity equation (5.19) into (5.20)

〈∂fJ, f̃〉 =

∫

Ω

{

(f̃ −∇pf )⊤w + αf⊤f̃
}

dx

Again, integration by parts and substitution of the second adjoint equation finally leads to

〈∂fJ, f̃〉 =

∫

Ω

{

w⊤f̃ + αf⊤f̃
}

dx . (5.21)

An analogous derivation yields the gradient ofJ in g-direction:

〈∂gJ, g̃〉 =

∫

Γ

{

− µ
(∂w

∂n

)⊤
g̃ + rn⊤g̃ + γ∇Γg

⊤∇Γg̃
}

dΓ . (5.22)

Now that we have found formulas for the gradients of our objective functional, we can develop
the gradient algorithm:

We start with a velocity fieldu = 0 (or with any other initial value) and solve the adjoint
equation. The gradient of the functional with respect tog andf , respectively (cf. (5.21) and
(5.22)), is

∂fJ = w + αf , (5.23a)

∂gJ = rn− µ
∂w

∂n
− γ∆Γg −

n

|Γ|

∫

Γ
(−µ

∂w

∂n
+ rn− γ∆Γg) · ndΓ; . (5.23b)

Note thatr is determined by the adjoint equation (5.17b) only up to a constant. (5.23b)
chooses this constant so that the update ofg satisfies the compatibility condition

∫

Γ g · ndΓ = 0
(sum of inflow = sum of outflow – must be valid for incompressible fluids). Having updated the
controls, we solve the state equation and proceed to the next iteration. Afterconvergence of the
algorithm, (5.17c) is satisfied, too.

Experiments have shown that using two individual and adaptive step sizesfor f andg, respec-
tively, is computationally both more reliable and efficient. This leads to the algorithm 1 listed
below. Note that the step-size parametersτf andτg are automatically selected by the algorithm.
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Algorithm 1 Gradient Algorithm
1: set initialu = 0
2: choose toleranceǫ
3: τf := 1, τg := 1, f0 := 0, g0 := 0
4: repeat
5: solve (5.17b) for (w,r)
6: fi = fi−1 − τf (αfi−1 + w)
7: solve (5.17a) for u
8: if J(u, fi) ≤ J(u, fi−1) then
9: τf :=τf /2

10: GOTO 6
11: else
12: τf :=3/2τf
13: end if
14: solve (5.17b) for (w,r)
15: gi = gi−1 − τg

[
rn− µ∂w

∂n − γ∆Γg −
n
|Γ|

∫

Γ(−µ∂w
∂n + rn− γ∆Γg)

⊤ndΓ
]

16: solve (5.17a) for u
17: if J(u, gi) ≤ J(u, gi−1) then
18: τg:=τg/2
19: GOTO 15
20: else
21: τg:=3/2τg
22: end if
23: until |J(u, fi, gi) − J(u, fi−1, gi−1)|/|J(u, fi, gi)| < ǫ
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5.3. Optical Stokes Flow: An Imaging-Based Control Approach

Relaxing the Assumption of a Vanishing Divergence

Due to out-of-plane motion (that can hardly be totally avoided), the assumptionof a vanishing
divergence will often not hold in practice. Optical Stokes Flow’s strict enforcement of a vanish-
ing divergence will lead to large errors in the velocity field if the incompressibility assumption
is incorrect.

Let us therefore modify the prior knowledge that we use:







−µ∆u+ ∇p = f in Ω,

∇ · u = −∂u3

∂x3
in Ω,

u = g on Γ ,

(5.24)

whereu3 is the out-of-plane component (component inx3 direction). Note, however, thatu3 is
unknown and cannot be extracted from the algorithm’s 2D input data. Thisis why we need an
additional assumption:d = ∂u3

∂x3
should be small. This leads to the overall optimization problem:

J(u, p, f, g, d) =

∫

Ω

1

2

[
∇I · u+ ∂tI

]2
dx+

∫

Ω\Ω0

α

2
|f |2dx+

∫

Ω

β

2
|d|2dx

∫

Γ

γ

2
|∇Γg|

2dΓ ,

which is to be minimized subject to (5.24). The corresponding optimization algorithm is equiv-
alent to the one presented in sec.5.3.1. The gradient of the additional controld completes
(5.23)

∂dJ = βd+ r.

5.3.2. Discretization and Implementation

Solving the Subproblems

In order to apply algorithm1 to the optimality system (5.17), we have to solve two saddle
point problems corresponding to the state equation (5.17a) and to the adjoint equation (5.17b),
respectively. In this section, we explain how these problems are discretized and numerically
solved.

The unique vector fieldu(x1, x2) solving (5.17a) is determined by the variational system

a(u, ũ) + b(p, ũ) = (f, ũ) , ∀ũ

b(p̃, u) = 0 , ∀p̃
(5.25)

and a similar variational system determines the unique solutionw to (5.17b). Accordingly, we
define for the Stokes problem and for the adjoint problem, respectively,bilinear forms and linear
forms:

aSt(u, ũ) :=

∫

Ω
µ∇u · ∇ũdx aAdj(w, w̃) :=

∫

Ω
−µ∇w · ∇w̃dx (5.26)

bSt(p, ũ) := −

∫

Ω
p∇ · ũdx bAdj(r, w̃) := −

∫

Ω
r∇ · w̃dx (5.27)

and the right hand sides:

(fSt, ũ) :=

∫

Ω
f · ũdx (fAdj , w̃) :=

∫

Ω
−(∇I⊤u+ ∂tI)∇I · w̃dx . (5.28)
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Figure 5.8.: Sketch of 2D Taylor-Hood elements: biquadratic velocity elements(squares) and
bilinear pressure elements (circles).
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Figure 5.9.:Left: Basis functionφ of a bilinear finite element.Right: Basis functionψ of a
biquadratic finite element.

We choose a regular tessellation of the image domainΩ and discretize (5.25) using finite ele-
ments. It is well-known from computational fluid dynamics that standard first-order finite ele-
ment discretizations may result in non-physical pressure oscillations or even in so-called locking
effects, where the zero velocity field is the only one satisfying the incompressibility condition.

Therefore, when solving the Stokes problem, mixed finite elements are traditionally used. An
admissible choice is the so-called Taylor-Hood element based on a square reference element
with nine nodes (fig.5.8). Each component of velocity fields is defined in terms of piecewise
quadratic basis functionsψ located at each node, whereas pressure fields are represented by
linear basis functionsφ attached to each corner node. It can be shown that Taylor-Hood elements
fulfill the so-called Babuska-Brezzi condition [BF91], that is the discretized problem is well-
posed and numerically stable. AppendixB gives more details about saddle point problems and
the mixed finite element method.

Indexing each velocity node (squares of fig.5.8) by 1, 2, ..., N , we obtain

u1(x1, x2) =
N∑

i=1

ui
1ψ

i(x1, x2)
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5.3. Optical Stokes Flow: An Imaging-Based Control Approach

and similarly foru2(x1, x2) and the components ofw, ũ, w̃. By analogy, we obtain for theM
pressure nodes (circles of fig.5.8)

p(x1, x2) =
M∑

i=1

piφi(x, y)

and similarly expressions forp, r, p̃, r̃. Hence, each functionu,w, ũ, w̃ is represented by2N
real variables, and each functionp, r, p̃, r̃ is represented byM real variables. For the sake of
simplicity, we will use the same symbols to denote these vectors. (5.25) then reads

Au · ũ+B⊤p · ũ = f · ũ , ∀ũ

Bu · p̃ = 0 , ∀p̃ .

Hence, we obtain the discretized Stokes system

Au+B⊤p = f

Bu = 0
(5.29)

and a similar system for the adjoint equation. The2N × 2N -Matrix A factorizes into

A =

(
A11 0
0 A22

)

(5.30)

where by virtue of (5.26):

(A11)k,l = a((ψk, 0)⊤, (ψl, 0)⊤)

(A22)k,l = a((0, ψk)
⊤, (0, ψl)

⊤) .

TheM × 2N -Matrix B factorizes into

B =
(
B1 B2

)

where by virtue of (5.27)

(B1)k,l = b(φk, (ψl, 0)⊤)

(B2)k,l = b(φk, (0, ψl)
⊤) .

Finally, the 2N-vectorf factorizes intof = (f⊤1 , f
⊤
2 )⊤ where by virtue of (5.28)

(f1)k = (ψk, 0)

(f2)k = (0, ψk) .

In order to numerically solve the saddle point problem (5.29), we employ the Uzawa algorithm
(cf. appendixB.3).

Note thatA is just the system matrix of the Poisson equation. For 2D problems,A can be split
into two systems (one for every dimension, cf. (5.30)), that can be solved in parallel.
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Coarse-to-fine Approach

Due to the Taylor series linearization inherent in the optical flow constraint, only slow motion
can be accurately computed by minimizing (5.11) (approx. up to 1 pixel between exposures).
This is why we apply our approach to a multi-scale representation of the image data I: We first
compute a coarse motion field by using only low spatial frequency componentsand undo the
motion, thus roughly stabilizing the position of the image over time. Then the higher frequency
sub-bands are used to estimate the optical flow on the warped sequence. Combining this optical
flow correction with the previously computed optical flow yields a refined overall optical flow
estimate. This process is repeated at finer spatial scales until the original image resolution is
reached. For further details about coarse-to-fine optical flow estimationand symmetric image
warping we refer to section4.1.3.

Let u denote the overall velocity that results from our computations,uold the current estimate
of this overall velocity, and∂tIw the temporal derivative computed as difference between the
second image - warped withuold - and the first image. Then (5.11) can be reformulated as

J(u) =

∫

Ω

1

2

(
∇I⊤(u− uold) + ∂tIw

)2
dx .

Note that motion over the image boundaryΓ prevents the computation of the spatial and temporal
gradients of the warped imageIw at specific locations. In order to avoid error-prone filling-in
heuristics (that use gradient information from surrounding areas), wesimply omit the evaluation
of the data term at these particular locations.6 This reformulation does not affect the state system
and the optimality condition. The adjoint system, on the other hand, is transformed into







µ∆w + ∇r = −
(
∇I⊤(u− uold) + ∂tIw

)
∇I in Ω

∇ · w = 0 in Ω
w = 0 on Γ .

We could now - as we did in algorithm1 - start at every resolution level with an initial zero
velocity field. This is a poor initialization, however: We know thatuold is a good approximation
of the true velocity field: Therefore, we solve (5.17a) for (u, p) before the first iteration of every
resolution level, using bilinearily interpolated versions off andg from the preceding level. We
obtain an initial velocityu that both satisfies (5.17a) and is a good approximation of the true
velocity field.

As solving the Optical Stokes Flow problem is computationally rather expensive, an alterna-
tive procedure is to use a simpler (and therefore faster) approach on the coarser pyramid levels
(e.g. Horn&Schunck) and to solve (5.17) only on the highest pyramid level.

5.3.3. Experimental Evaluation

This experimental section is divided into two main parts:

• In sec. 5.3.3 (i) we present synthetic experiments that fulfill the Stokes equation (i.e.
creeping flows). Besides the question of the accuracy of our method, we want to go
further into the question of how meaningful the asserted estimates for pressurep and body
forcef prove to be.

6Note that due to the regularizer, we will still get reliable velocity estimates at these locations.
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Figure 5.10.: Poiseuille Flow: Incompressible Newtonian fluid with constant density and vis-
cosity flows between two parallel plates. This creeping flow satisfies the Stokes
equation.Left: Synthetic PIV image.Right: Target velocity field.

• In sec. 5.3.3 (ii) we show (for synthetic and real-world image pairs) that one can also
achieve good velocity estimates for highly non-rigid flows. In these cases,however, we
cannot expect the body-force and the pressure distribution to contain physically relevant
information.

(i) Stokes Flows

We have selected two flow scenarios for which analytic solutions exist due tosymmetry: we
analyzePoiseuille Flow, which is a viscous flow between two parallel plates, and sectionFlow
in an Annular Gapexamines the viscous flow between two infinitely long cylinders.

Poiseuille Flow We consider an incompressible Newtonian fluid with constant density and
viscosity that flows between two parallel plates (atx2 = 0 andx2 = h) with infinite width. The
x-axis points in the direction of the flow. The velocity distribution for such a system is given by
(e.g. [LL52])

u(x2) = −
1

2µ

∂p

∂x1

(h2

4
− (x2 −

h

2
)2

)
.

This means that we can expect a parabolic velocity profile, with the largest velocity in the middle
between the two plates. For our synthetic experiment, we choseµ = 1, h = 257 px., and
∂p
∂x = −1 ·10−3. This choice yields a maximum velocity of8.256 pixels between two exposures.
Figure5.10shows the synthetic image, and the target velocity field with which the image was
warped in order to get a synthetic image pair. We used the same techniques asdescribed in
[ONK00a] (10.000 particles, 3 px. average particle diameter, 1 px. standard deviation). As the
Poiseuille flow is truly 2D, the third component is zero everywhere. Please note that while in
numerical hydrodynamics one is accustomed to small mesh sizes (s << 1) and small volumes
(V OL ≈ 1), we measure in terms of pixels here. This is why the parameter choice may appear
uncommon.

In a first experiment, we setα = 0.001 andγ = 0.002, and we penalized the body force
everywhere (i.e.Ω0 = ∅). Figure5.11 shows the reconstructed velocity componentu. The
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5. Variational Fluid Motion Estimation: Physics-based Regularization

Figure 5.11.:Left: Optical Stokes Flow is able to reconstruct the parabolic velocity profile ex-
tremely accurately.Right: Using fluid-mechanics priors, even the true pressure
distribution can be reconstructed. Note the linear pressure decrease in flow direc-
tion.

Figure 5.12.: Reconstructed body force. Note that the arrows are scaled in order to be visible. If
we specify regions at which forces are expected to act on the fluid (i.e. solid-fluid
interfaces), even forces that act on the boundary can be reconstructed. Left: f is
penalized everywhere (scaling factor:2000). Right: no penalization off at the
interfaces (scaling factor:50).
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estimated velocity is almost exact (cf. also fig.5.13), its RMS error is≈ 0.0734px.. However,
fig. 5.13 also shows that there are problems at the boundaries of the plates. They are caused
by the forces acting on the fluid. In fact, the locations where forces act on the fluid are just
boundaries of the plates: The pressure-induced force acts orthogonally to the interfaces and is

fx = −pn . (5.31)

The frictional force at the interfaces acts in opposite flow direction and is

fy =
h

2

∂p

∂x
. (5.32)

Figure5.11(left) shows that the algorithm has in fact detected a force at the interfaces that acts
in opposite flow direction. However, the method also detects a (smaller) forcein the middle of
the pipe that acts in flow direction. The reason for this error is quite obvious: In (5.15), we added
constraints on the body force that penalize theL2 norm off . The correct body force, however,
has an extremely highL2 norm at the interfaces. In order to yet compute a reliable body force –
and thus also pressure estimates, as the pressure depends on velocityandbody force – we have
to tell the algorithm at which locations forces are likely to act on the fluid. Then we can exclude
the body force penalization at these locations.

Accordingly, in a second experiment, we switched off body force penalization at the interfaces
of the two parallel plates (atx2 = 0, andx2 = h). The results can be seen in fig.5.12
(right): The reconstructed body force is reasonable, the share that acts in reverse flow direction
is the frictional force (cf. (5.32)) and the part that acts orthogonally to the flow direction is the
pressure-induced force (cf. (5.31)).

Figure5.13shows that also the RMS error has decreased considerably (RMS≈ 0.0212 px).
Note that there are still errors at the ends of the interfaces; the reason for these errors is the
regularization of the boundary valuesg (cf. (5.15)). The smoothness of the boundary values
enforced by (5.15) deviates from reality at these locations.

Figure5.11shows the reconstructed pressure field on the right. Taking a closer lookat the
pressure derivative in flow direction (cf. fig.5.14), we see that the pressure derivative inside the
tube is approx.4 · 10−3, which is the correct reconstruction. We point out that due to the mixed
finite element discretization, the resolution of the pressure field is smaller than the resolution of
the reconstructed velocity. Therefore, the pressure derivative hasto be scaled with the factor 4.

Flow in an Annular Gap Suppose an incompressible Newtonian fluid flows steadily within
the annular gap of two infinitely long cylinders(R1, R2). The outer cylinder is fixed, while the
inner cylinder rotates with angular speedΩ. The velocity distribution for such a setting is given
by (e.g. [LL52])

v(r) =
ΩR2

2

R2
2 −R2

1

r +
ΩR2

1R
2
2

R2
2 −R2

1

1

r
.

The pressure is constant.7 For our synthetic example, we have chosenR1 = 100, R2 = 220,
Ω = 0.1 andµ = 1. This leads to a maximum displacement of 10 pixels between two exposures.
Figure5.15shows the synthetic image as well as the target velocity field. We setα = 0.001,
γ = 0.002, andΩ0 = ∅ in a first experiment.

7This is only true when solving the problem with the Stokes equation. If we had used the Navier-Stokes equations,
the pressure distribution would read∂p

∂r
= σv2

r
.
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Figure 5.13.:Left: If we penalizef everywhere, the mean RMS error is0.0734 pixels. Right:
By specifying the solid-liquid interfaces, the RMS error decreases to0.0212px.
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Figure 5.14.: Profile of the averaged pressure derivative in flow direction. Note that the linear
pressure decrease in flow direction (−4 × 10−3 inside the pipe) is recovered ex-
tremely accurately.
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Figure 5.15.: Creeping Flow between two rotating cylinders.Left: Synthetic PIV image.Right:
Target Velocity field.

Figure5.16shows the reconstructed velocity field. The velocity field looks very reasonable.
Figure5.20, however, shows clearly a large error at the cylinder interfaces, in particular at the
interface of the inner cylinder. This error occurs for the same reason as in the preceding example.
The acting force is very large and punctiform at the inner cylinder interface. This contradicts the
assumptions made in (5.15).

We next chose the same approach as in the preceding section to deal with theproblem, that
is we avoided body force penalization at the boundaries. This leads to very good results. The
average RMS error decreases to0.0079px. (cf. fig.5.20). Fig.5.17, right, shows that the velocity
profile agrees exactly with the analytically computed profile. The tangential and orthogonal
forces at the two cylinder interfaces also correspond very well with the analytically computed
forces. The forces in tangential direction read:

fR1
= −2µ

ΩR2
2

R2
2 −R2

1

,

fR2
= −2µ

ΩR2
1

R2
1 −R2

2

.

The pressure is zero everywhere (cf. fig.5.17, left). There are only minor problems at the
cylinder boundaries due to an increased numerical sensitivity. A reason isthat we deliberately
omitted regularization off at these locations, for the sake of accurate reconstruction.

Noise and Robustness To examine the robustness of our reconstruction approach with re-
spect to image noise, we repeated the annular gap experiment (section5.3.3) but superimposed
white noise with a variance of up to 50% of the grayvalue range.

Figure5.21 shows that the RMS velocity error increases moderately only as a function of
noise variance. This result proves a pronounced robustness of ourapproach. Most remarkable
is the observation that the accuracy of the reconstruction appears to bebeyondwhat can be
extracted from the raw datawithoutany physical prior knowledge.
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Figure 5.16.: From the visual impression, both velocity fields resemble the truemotion ex-
tremely well.Left: Reconstructed velocity field (penalization everywhere)Right:
Reconstructed velocity field (no penalization on boundary).
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Figure 5.17.:Left: Reconstructed pressure distribution (no penalization on boundary):p is zero
almost everywhere, some numerical instabilities at the interfaces.Right: Profile
of the velocity distribution. Note that, if we penalize everywhere, the reconstructed
velocity field is much too smooth.
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Figure 5.18.: Reconstructed body force.Left: Penalization everywhere (force scaled by
10.000). Right: No penalization on interfaces (force scaled by 100). The fric-
tional forces at the cylinder interfaces are extracted correctly.
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Figure 5.19.: Optical Stokes Flow is able to compute the forces that act on the cylinder interfaces.
Left: Tangential and orthogonal forces at the inner cylinder boundary.Right:
Tangential and orthogonal forces at the outer cylinder boundary.
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Figure 5.20.:Left: RMS velocity error (av. 0.310 px.) when penalizing the body force every-
where. Right: RMS velocity error (av. 0.0079 px.) when no penalization on the
cylinder boundaries is performed.
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Figure 5.22.:Top Left: Multi-Pass Cross-Correlation (DaVis), av. err. = 0.1420 px.Top Right:
Horn&Schunck, av. err. = 0.0821 px.Bottom Left: 2nd Order Regularization,
av. err. = 0.0525 px.Bottom Right: Optical Stokes Flow Computation, av. err. =
0.0480 px.

(ii) Navier-Stokes Flows

In the forthcoming examples, the assumption of a Stokes flow is definitely not valid, as these
turbulent flows are mainly governed by the convection term of the Navier-Stokes equations.
Therefore, we cannot expect the pressure or body-force to be physically accurate. However, our
approach can also be used for these high Reynolds numbers. The Stokes equation then merely
serves as a regularization term, and the body-force can be chosen so as to mimic the nonlinear
effects of the convection term.

Cemagref Synthetic Highly Non-Rigid Image Pair This highly non-rigid synthetic PIV
image pair was provided by [CH]. The underlying velocity field was computed by a so-called
pseudo-spectral code that solves the vorticity transport equation in Fourier space, and evaluates
a sub-grid model for simulating small-scale turbulent effects on the larger scales of the flow. The
synthetic image intensity function was generated as in the preceding cases (sec.5.3.3), its size is
256× 256 pixels. The maximum displacement is approximately3.5 pixels. We want to analyze
this image pair using the following approaches:
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Figure 5.23.: Estimated velocity field and its curl.Left: Cross correlation.Right: Optical
Stokes Flow. Note that cross-correlation slightly underestimates the vorticity.

• Multi Pass Cross Correlation [LaV05] : Advanced cross-correlation approach (LaVision
Davis 7.1.1.34). Initial interrogation window size32 × 32, final interrogation window
size8 × 8, and50% overlap manually selected for best performance. In order to inter-
polate the velocity vectors to the fine grid (i.e. one vector per pixel), second-order spline
interpolation is used.

• Horn& Schunck [RKNS05] : First-order regularization, no incompressibility constraint is
imposed (cf. (5.12)). The smoothness parameterλ = 0.005 was manually selected for
best performance.

• 2nd Order Regularization [YRMS05] : The authors use higher-order regularization (cf.
(5.13)) with an additional incompressibility constraint. Instead of mixed finite elements
(that we use), the authors use the so-called mimetic finite differencing scheme. Temporal
coherency is not exploited. Parameters:λ1 = 0.5, λ2 = 0.05, manually selected for best
performance.

• Optical Stokes Flow Computation (this paper): µ = 1, α = 0.001, γ = 0.002 (selected
by hand).

Figure5.22 shows the spatial error distributions for the different algorithms. Note thatall
variational approaches are able to outperform the cross-correlation method. Optical Stokes Flow
computation yields the best results (average RMS error = 0.0484 pixels). Figure5.23compares
the vorticity estimates for the cross-correlation approach and Optical Stokes Flow estimation.

Figure5.24shows how well the individual approaches are capable of recoveringthe different
frequencies of the vorticity. While the spectrum of the Optical Stokes Flow estimate resembles
the true spectrum very well, cross-correlation seems to underestimate higher frequencies. This
had to be expected since cross-correlation relies on the assumption that thevelocity gradient
within an interrogation window is negligible. Even advanced window deformation techniques
cannot fully resolve the high frequencies that are present in the velocityfield.

It is interesting to note that Optical Stokes Flow gives extremely good results even though its
prior knowledge is inadequate. In order to understand this fact, let us first summarize what type
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Figure 5.24.: Energy of the vorticity (for frequencies between0 andΠ/2) of the different al-
gorithms (logarithmic plot). Energy spectrum of Optical Stokes Flow estimate is
closest to the true solution, while cross-correlation underestimates higher frequen-
cies.

of prior knowledge the competing approaches use:

• The cross-correlation approach assumes that the velocity field is piecewise constant. This
assumption is weakened by advanced window-deformation techniques.

• The Horn&Schunck method assumes small velocity gradients.

• Higher-order div curl regularization assumes a smooth vorticity.

This compilation shows that the priors of all analyzed approaches are severely inadequate. It
is clear that Optical Stokes Flow is only the starting point towards physically more and more
plausible regularizers. In section5.4, we will introduce a regularizer that uses thefull Navier-
Stokes equations as prior knowledge.

Highly Non-Rigid Real World Image Pair Figure5.25shows a sample image of the ex-
perimental evaluation of the spreading of a low diffusivity dye in a 2D turbulent flow, forced at
a large scale. In contrast to the preceding examples, no tracer particles were brought into the
fluid but a mixture of fluorescein and water. For more details about the experimental setup, we
refer to [JCT01]. Cross-correlation approaches are not able to extract valid velocity fields for
this type of input data (passive scalar images). Figure5.25 shows, however, that our Optical
Stokes Flow approach is capable of extracting a very reasonable velocitydistribution. We chose
the same parameters as in sec.5.3.3.

Out-of-Plane Motion: Separation Bubble The synthetic image sequence that is shown in
fig. 5.26was generated by means of the software prescribed in [HK05b, HK05a]. Determination
of the particle image displacements is based on the solution of a direct numericalsimulation
(DNS) of a laminar separation bubble.
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Figure 5.25.:Left: Passive Scalar Image (size: 512× 512.) Right: Recovered Velocity Field
using Optical Stokes Flow (µ = 1, α = 0.001, γ = 0.002). Note that cross-
correlation approaches completely fail for this type of image data.

Figure 5.26.:Left: Synthetic image (Separation Bubble, size: 512× 512.) Right: Synthetic
velocity field. Note that the velocity field is three-dimensional. Therefore particles
leave and enter the illuminated image plane. Furthermore, the 2D projection is no
longer divergence-free.
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Figure 5.27.:Left: RMS velocity error of cross-correlation approach (smallest window size16×
16, 50% overlap, mean RMS = 0.0331 px.).Right: RMS velocity error of modified
Optical Stokes Flow (µ = 1, α = 0.001, β = 0.002, mean RMS = 0.0240 px.).

The main problem in this example is the fact that the true velocity field of this sequence is
three-dimensional (maximum out-of-plane velocity: 1 px.8). Because we analyze a 2D projec-
tion, the divergence-free constraint, that is strictly enforced by the Stokes equation, is not valid
(cf. fig. 5.28). This is why we use the modified method of sec.5.3.1 to analyze this image
pair. Figure5.27compares the error of the cross-correlation method with our modified Stokes
equation’s velocity error. While cross-correlation yields an average error of 0.0331 pixel, the ve-
locity field recovered by the modified Stokes approach is more reliable. Its average RMS error
is 0.0240 pixels.

5.3.4. Conclusion

We presented a novel variational flow control approach for PIV that uses the Stokes equation
as prior knowledge. Methods from flow control were used to solve the arising constrained op-
timization problem. The experimental evaluation showed that, as long as we confine ourselves
to flows that are actually governed by the Stokes equation, the proposed algorithm is not only
capable of reliably estimating the velocity fields between image pairs, but it can also extract the
pressure distribution and forces acting on the fluid.

The experiments also showed that our approach is able to outperform other optical-flow-based
methods as well as cross-correlation methods on highly non-rigid (Navier-Stokes) flows. The
reason for this is the high resolution that can be achieved. We have proved that optical flow based
approaches not only yield dense vector fields – with proper regularization (i.e. regularization
that does not penalize velocity gradients) these dense vector fields excel the spatial resolution of
cross-correlation approaches.

We have introduced a slight modification that enables the successful application of our ap-
proach also in (more realistic) scenarios, where the out-of-plane velocityis not negligible.

The most dramatic improvement that Optical Stokes Flow offers is when it comesto the

8We assume that the (imaginary) grid in out-of-plane direction has the sameresolution as the in-plane grid.
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Figure 5.28.: Out-of-plane velocity (Left ) leads to divergence of the 2D projection of the veloc-
ity field (Right). We have to use the modified Optical Stokes Flow approach to
reliably reconstruct the target velocity field.

evaluation of scalar image pairs: Cross-correlation approaches completely fail on these image
pairs, while optical flow- based methods can reliably extract velocity fields.

To summarize, the use of Optical Stokes Flow might be advantageous in the following three
scenarios:

• Stokes flows: If the flow is actually governed by the Stokes equations, notonly the velocity
can be estimated but also pressure and forces that act on the fluid.

• Highly non-rigid flows: The increased spatial resolution that Optical Stokes Flow offers,
permits the estimation of high-resolution velocity fields.

• Scalar Images: While cross-correlation approaches fail for this specific kind of image
data, optical flow approaches give very reasonable velocity estimates.

5.4. Dynamic Motion Estimation with the Vorticity Transport

Equation

Now that we have analyzed a regularizer that is based on the Stokes equation for creeping flows,
we want to consider regularization terms that are better suited for high Reynolds numbers flows.

We present a framework for fluid motion estimation that uses as prior knowledge the fact that
flows have to satisfy the incompressible vorticity transport equation. This equation relates to the
full (incompressible) Navier-Stokes equations and is therefore also validin turbulentscenarios.
Furthermore, rather than considering image pairs, our estimation scheme takes into account
the whole image sequence. As a result, it takes into account previous estimation results so
as to enforce spatio-temporal coherency and regularization,without, however, penalizing flow
structures that are characteristic for instationary turbulent flows. Finally, analogously to the
corresponding concept from control theory, our overall algorithm works in a receding horizon
manner, that is flow velocities can be computed as soon as their respective frames have been
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recorded. In principle, this procedure sets the stage for the real-time extraction of instationary
flow phenomena from particle image sequences.

In section5.4.1, we first present the vorticity transport equation, which embodies the prior
knowledge we use for flow estimation. Then, we motivate and describe our variational approach
and details of the resulting constrained optimization problem. Corresponding numerical issues
are dealt with in section5.4.2. Numerical experiments for evaluating the approach are presented
in section5.4.3. We conclude in section5.4.4.

5.4.1. Approach

The Vorticity Transport Equation

Let u = (u1, u2)
⊤, u = u(x, t), x =

(
x1(t), x2(t)

)⊤
, denote a two-dimensional velocity field.

The incompressible vorticity transport equation is a specific form of the Navier-Stokes equation
for homogeneous flow and can be expressed as follows:

Dω

Dt
=

∂

∂t
ω + u · ∇ω = ν∆ω , ω(x, 0) = ω0 . (5.33)

This equation is known as thevorticity transport equation. It describes the evolution of the
fluid’s vorticity over time. Note that in the absence of external forces actingon the fluid, this
equation describes the flow completely. For a more detailed derivation of the vorticity transport
equation, we refer to appendixC.3.

Variational Model

Let I(x1, x2, t) denote the gray value of an image sequence recorded at locationx = (x1, x2)
⊤

within some rectangular image domainΩ and timet ∈ [0, T ]. We adopt the basic assumption
underlying most approaches to motion estimation, thatI is conserved. Thus, the total (material)
derivative ofI vanishes:

DI

Dt
= u · ∇I + It = 0 . (5.34)

The spatial and temporal derivatives ofI of the optical flow constraint (5.34) are estimated
locally by using FIR filters (cf. sec.4.1).

We have already seen (cf. sec.3.4) that eqn. (5.34) alone cannot be used to reconstruct the
velocity field u, becauseany vector field with componentsu · ∇I = −It at each locationx
satisfies (5.34).
The standard approach is to minimize the squared residual of (5.34) over the entire image do-
main Ω, and to add a variational term that either enforces smoothness of the flow (first-order
regularization) or smoothness of the divergence and vorticity (second-orderregularization). In
sec.5.3, we have made a first attempt at physically plausible vector-field reconstruction by using
the Stokes equation as a regularizer.

We emphasize that all these approaches take only into accountspatialcontext and determine
a vector field for afixedpoint in timet ∈ [0, T ].

Therefore, following the ideas of [SRS06], we attempt to elaborate adynamicrepresentation
of fluid flow. To this end, we solve eqn. (5.33) for the time interval[0, T ] between a subsequent
pair of image frames, whereω0 denotes our current vorticity estimate. As a result, we obtain a
transportedvorticity field ωT := ω(x, T ), which can be regarded as apredictedvorticity, based
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on the assumption that our fluid is governed by the Navier-Stokes equation.The regulariza-
tion term that we employ penalizes derivations from the predicted vorticity values, and forces
incompressibility:

1

2

∫

Ω

{(
u · ∇I + It

)2
+ λ

(
∇× u− ωT

)2
}

dx ,

s.t. ∇ · u = 0 .

We apply Neumann boundary conditions (i.e.∂u/∂n = 0 on ∂Ω). Note that, while the regu-
larization term of (5.35) penalizes deviations between the current vorticity estimateω and the
propagated vorticity estimate of the preceding frameωT , it doesnot enforce smoothness of the
current vorticity. In practice, an implementation of (5.35) therefore leads to increasingly noisy
vorticity estimates. Increasing the parameterν reduces the problem only slightly:ωT becomes
smoother, but smoothness ofω is still not enforced directly.
To overcome this problem, we add a term that mimics the small viscous term (Laplacian) on the
right-hand side of eqn. (5.33). Expressing the new second-order regularization term equivalently
through a first-order regularizer and an additional linear constraint, wefinally obtain:

E =
1

2

∫

Ω

{

(u · ∇I + It

)2
+ λ(ω − ωT )2 + κ|∇ω|2

}

dx ,

s.t. ∇ · u = 0 ,

∇× u = ω .

(5.35)

As we usually do not have a vorticity estimate at the very first frame of an imagesequence, the
overall estimation process is initialized with a vorticity estimateω0 = 0.

The novel vorticity transport regularizer in (5.35), in connection with (5.33), can be perceived
as aspecial second-order div-curl regularizer: Estimated flows from a given image sequence
have vanishing divergence and a curl field (vorticity) that should be smooth and as close as
possible to the transported vorticity.

5.4.2. Discretization and Optimization

Discretization of the Vorticity Transport Equation

We solve the time-dependent vorticity transport equation (5.33) with a second-order conservative
finite difference algorithm. The method is upwind and two-dimensional, in that thenumerical
fluxes are obtained by solving the characteristic forms at cell edges (i.e. edges between adjacent
pixels), and all fluxes are evaluated and differenced at the same time. Thefinite difference
method that we employ is the Fromm-Van-Leer scheme [PC05].

The basic idea is to satisfy Godunov’s theorem in a “natural” way. Roughlyspeaking, Go-
dunov’s theorem says that all methods of accuracy greater than orderone will produce spuri-
ous oscillations in the vicinity of large gradients, while being second-order accurate in regions
where the solution is smooth. Accordingly, Fromm-Van-Leer’s scheme detects discontinuities
and adapts its behavior, so that the high-order accuracy of Fromm’s scheme is preserved for
smooth parts of the solution, while spurious oscillations are avoided through first-order accu-
racy at detected discontinuities. For further details, we refer to appendixC and [PC05].
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Figure 5.29.: Sketch of 2D Taylor-Hood elements: biquadratic velocity elements (squares) and
bilinear pressure elements (circles).

Variational Approach

For every image pair (two consecutive frames of the image sequence), wehave to solve optimiza-
tion problem (5.35) which comprises a convex functional and two linear constraint equations.
We transform this constrained optimization problem into a saddle-point problem. Accordingly,
the unique vector fieldu(x) minimizing (5.35), along with the vorticityω and multipliersp, q,
are determined by the variational system

a
(
(u, ω)⊤, (ũ, ω̃)⊤

)
+ b

(
(p, q)⊤, (ũ, ω̃)⊤

)
=

(
(f, g)⊤, (ũ, ω̃)⊤

)
, ∀ũ, ω̃

b
(
(p̃, q̃)⊤, (u, ω)⊤

)
= 0 , ∀p̃, q̃ .

(5.36)

The bilinear and linear forms read:

a
(
(u, ω)⊤, (ũ, ω̃)⊤

)
:=

∫

Ω

{

u · ∇I∇I · ũ+ λωω̃ + κ∇ω · ∇ω̃
}

dx , (5.37)

b
(
(p, q)⊤, (ũ, ω̃)⊤

)
:= −

∫

Ω

{

p∇ · ũ+ q(∇× ũ− ω̃)
}

dx .

The right-hand side reads:

(
(f, g)⊤, (ũ, ω̃)⊤

)
:=

∫

Ω

{

− It∇I · ũ+ λ ωT ω̃
}

dx .

We choose a regular tessellation of the image domainΩ and discretize (5.36) using finite ele-
ments. It is well-known from computational fluid dynamics (cf. Stokes equation) that standard
first-order finite element discretizations of saddle-point problems may result in instabilities or
even in so-called locking effects, where the zero velocity field is the only one satisfying the
incompressibility condition.

Therefore, when solving saddle-point problems, mixed finite elements are traditionally used
[BF91]. An admissible choice is the so-called Taylor-Hood element based on a square reference
element with nine nodes (fig.5.29). Each component of the velocity field is defined in terms
of piecewise quadratic basis functionsψi located at each node (the solid squares in fig.5.29),
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Figure 5.30.:Left: Basis functionφ of a bilinear finite element.Right: Basis functionψ of a
biquadratic finite element.

whereas the Lagrange multipliersp andq and the vorticityω are represented by linear basis
functionsφi attached to each corner node (indicated by circles in fig.5.29). It can be shown
that Taylor-Hood elements fulfill the so-called Babuska-Brezzi condition[BF91], making the
discretized problem well-posed. AppendixB goes further into saddle-point problems and their
discretization with mixed finite elements.

Indexing the velocity nodes (squares in fig.5.29) by 1, 2, ..., N , we obtain

u1(x) =
N∑

i=1

ui
1ψ

i(x)

and similarly foru2(x) and the components of̃u. By analogy, we obtain for theM Lagrange
multiplier nodes (circles in fig.5.29)

p(x) =
M∑

i=1

piφi(x)

and similarly expressions forq, ω, p̃, q̃, ω̃. Hence, each functionu, ũ is represented by2N real
variables, and each functionp, q, ω, p̃, q̃, ω̃ is represented byM real variables. For the sake of
simplicity, we will use the same symbols to denote the corresponding vectors. The discretized
system (5.36) then reads

A(u, ω)⊤ · (ũ, ω̃)⊤ +B⊤(p, q)⊤ · (ũ, ω̃)⊤ = (f, g)⊤ · (ũ, ω̃)⊤ , ∀ũ, ω̃

B(u, ω)⊤ · (p̃, q̃)⊤ = 0 , ∀p̃, q̃ .

Because these equations have to be satisfied forarbitrary ũ, p̃, q̃, ω̃, we finally obtain:

A

(
u

ω

)

+B⊤

(
p

q

)

=

(
f

g

)

B

(
u

ω

)

= 0

(5.38)

In order to numerically solve the saddle-point problem (5.38), we want to employ the Uzawa
algorithm (cf., e.g. [Bra97]). However, this requires A to be positive definite which is not the
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case here, because the relationsu andω definingA in (5.37) are mutually independent, andu is
only involved through a degenerate quadratic form. This problem can be removed by

• including a penalty term related to the divergence constraint into our Lagrange multiplier
formulation to obtain an Augmented Lagrangian formulation [FG83], and by

• splitting the vorticity matching term into two equivalent terms, one containing∇×u, and
the other one containingω.

This yields the following modification of the bilinear form (5.37):

ap

(
(u, ω)⊤, (ũ, ω̃)⊤

)
:=

∫

Ω

{

u · ∇I∇I · ũ+
λ

2

(
ωω̃ + (∇× u)(∇× ũ)

)

+ µ(∇ · u)(∇ · ũ) + κ∇ω · ∇ω̃
}

dx .

(5.39)

We point out that this modification is done for numerical reasons only. It does not change the
optimization problem (5.35). Matrix Ap resulting from the discretization of (5.39) is positive
definite and, becauseu andω do not explicitly depend on each other, can be split into two
systems:

• The system containingu is the linear system with a simple first-order div-curl regulariza-
tion (cf., e.g. [Sut93], and (5.4)).

• The system containingω corresponds to a simple first-order quadratic functional.

BecauseAp is invertible and well-conditioned, we solve the first equation of the system (5.38),
with A replaced byAp, for the unknown(u, ω)⊤

(
u

ω

)

= A−1
p

[(
f

g

)

−B⊤

(
p

q

)]

,

and insert the result into the second equation:

BA−1
p

[(
f

g

)

−B⊤

(
p

q

)]

= 0 .

This problem only involves the adjoint variablesp, q:

(BA−1
p B⊤)

(
p

q

)

= BA−1
p

(
f

g

)

. (5.40)

The matrix(BA−1
p B⊤) is symmetric and positive definite. Therefore, we apply the conjugate

gradient iteration to (5.40). This requires a single matrix inversion in every iteration step. For
computational efficiency, this is accomplished using multi-grid iteration (cf. [Hac93]).

Weakening the Assumption of a Vanishing Divergence

Due to out-of-plane motion (that can hardly be totally avoided), the assumptionof a vanishing
divergence will usually not hold in practice.
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Let us therefore weaken the assumption and minimize

E =
1

2

∫

Ω

{

(u · ∇I + It)
2 + λ(ω − ωT )2 + κ|∇ω|2 + µ|d|2

}

dx ,

s.t. ∇ · u = d ,

∇× u = ω ,

where the 2D divergenced (which is assumed to be small) does actually correspond to the
derivative of the out-of-plane component ofu in out-of- plane direction (i.e.d = ∂u3/∂z). Note
that we do not change the vorticity tranport equation itself – we still assume that the 2D vorticity
transport equation is able to give a good approximation for the transport process. Therefore,
(5.41) should only be used to analyze 2D projections of incompressible fluids.

5.4.3. Experimental Evaluation

This experimental section is divided into three parts:

• Firstly, we present numerical results on ground-truth fluid image sequences (2D flows)
obtained with our approach, in comparison with cross-correlation and optical flow with
first-order and with higher-order regularization.

• Secondly, we show numerical results for a synthetic flow where the out-of-plane compo-
nent is not negligible (3D flow). We perform the analysis with the method introduced in
sec.5.4.2.

• Thirdly, we show results for a real-world 2D image sequence.

Synthetic 2D Flows

This section shows numerical results on ground-truth fluid-image sequences obtained with our
approach, in comparison with cross-correlation and optical flow with first-order regularization
and higher-order regularization.

The synthetic PIV image sequence that we used for testing was provided by[CH]. The under-
lying velocity field was computed by a so-called pseudo-spectral code thatsolves the vorticity
transport equation in Fourier space, and evaluates a sub-grid model for simulating small-scale
turbulent effects on the larger scales of the flow. These latter effects, of course, arenotknown in
practice, nor was anything related to these effects used while evaluating our approach.

In order to simulate the intensity function of real PIV images, the computed velocityfields
are used to transport collections of (images of) particles that are typically used for the seeding of
flows, so as to make them visible. The scheme resembles the one described in [ONK00a]. We
used the first 100 frames of the synthesized PIV image sequence and compared the following
three approaches:

• Multi-Pass Cross-Correlation [LaV05]: Advanced cross-correlation approach (LaVision
Davis 7.1.1.34). Initial interrogation window size32×32, final interrogation window size
8×8, and50% overlap, manually selected for best performance. In order to interpolatethe
velocity vectors to the fine grid (i.e. one vector per pixel), second order spline interpolation
is used.
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Figure 5.31.:Left: 100th frame of the synthetic image sequence with ground truth velocity field.
Right: Estimated velocity field for the 100th frame. The background intensity
shows the absolute RMS error (brighter = larger error), which is about0.055 px. on
average (cf. fig.5.32).

• Horn&Schunck (cf. sec.3.4): First-order regularization; temporal coherency is not ex-
ploited; no incompressibility constraint is imposed. The smoothness parameterλ = 0.005
was manually selected for best performance.

• 2nd Order Regularization (cf. sec.5.1.2): The authors used higher-order regularization
with an additional incompressibility constraint. Instead of mixed finite elements (that
we used), the authors used the so-called mimetic finite differencing scheme. Temporal
coherency is not exploited. Parameters:λ1 = 0.5, λ2 = 0.05, manually selected for best
performance.

• Optical Stokes Flow (cf. sec.5.3): Optical flow approach that incorporates physical prior
knowledge. Admissible flow fields are restricted to vector fields satisfying theStokes
equation. Parameters:µ = 1, α = 0.001, γ = 0.002, manually selected for best perfor-
mance. Temporal coherency is not exploited.

• Vorticity Transport Approach (this section):As described above, higher-order regulariza-
tion is used, the incompressibility constraint is imposed, and temporal coherency is ex-
ploited in an on-line manner. Parametersλ = 0.005, µ = 0.0025, ν = 1, κ = 0.0005. As
for the other approaches, we selected the regularization parametersλ, µ, κ by hand. Note
that the viscosity coefficientν is not a free user parameter but characterizes the physical
nature of the fluid flow.

Figure 5.32 compares the errors of all five approaches over time. The multi-pass cross-
correlation approach’s estimate has the highest RMS error. This is due to the very high velocity
frequencies that are present in the image data and that cannot be recovered by correlation. First-
order regularization yields a higher error than second-order regularization, which is much more
accurate. The quality of the estimation can further be improved by applying Optical Stokes
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Figure 5.32.: Average absolute RMS error (in pixels) for frames 1-100,using five different meth-
ods. Cross-correlation gives the worst results for this highly non-rigidimage pair.
First-order regularization performs worse than second-order regularization, while
Optical Stokes Flow is slightly better than second-order regularization. All these
four error curves are constant because temporal coherency is notexploited. The
approach based on vorticity transport starts with a rather low accuracy (assump-
tion of ω = 0, which is not valid) but then becomes significantly more accu-
rate than the other techniques due to the physically consistent regularizationover
time. This novel spatio-temporal regularization is achieved with an on-line com-
putational scheme and fixed storage requirements, irrespective of the length of the
image sequence. The decay of the error curve within the first 10 frames clearly
displays the usage of this implicitly encoded “memory”.
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Figure 5.33.:Left: True vorticity of frame 100.Right: Estimated vorticityω for frame 100. For
the first frame, the estimation process was initialized withω = 0, corresponding
to “nothing is known in advance”. The result on the right shows that not only the
vorticity transport equation has been successfully adapted to the observed image
sequence, but that it improves the accuracy of flow estimation in terms ofu, too
(cf. fig. 5.32). As a consequence, flowderivativescan be estimated fairly accurate,
as shown in the right panel. Such quantitative information is very important in
connection with imaging-based experimental fluid mechanics.

Flow. The errors of all these four approaches stay constant over time because each subsequent
image pair is independently evaluated, and temporal coherency is ignored.

For the first frame, the approach presented in this section, utilizing the vorticity transport
equation, shows worse performance than the other optical-flow-based algorithms. During the
subsequent period of time, however, the error of the vorticity transportapproach decreases con-
siderably, because not only higher-order regularization is used, buttemporal coherency is suc-
cessfully exploited as well.

We emphasize that temporal coherency doesnot mean smoothness. Rather, the flow exhibits
high spatio-temporal gradients as turbulent fluids do. Temporal coherency relates to a physically
consistent transport mechanism interacting with flow estimation from an image sequence. Due
to the on-line computational scheme, fixed computational resources are needed no matter how
long the image sequence is. The decay of the error curve over severalframes in figure5.32
shows, however, that the approach is able to memorize the history longer thanjust the previous
frame.

Figure5.31displays the estimated velocity for the 100th frame, along with the respective RMS
errors. The reconstructed velocity field is surprisingly exact, in view of the highly non-rigid
motion we are dealing with. Figure5.33shows that even the vorticity related to flowderivatives
is reconstructed quite well under these difficult conditions. We expect such quantitative data to
be valuable information in connection with imaging-based fluid mechanics.
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Flows with Out-of-plane Velocity Component

In order to assess our approach’s performance when it comes to tackling image sequences with a
high out-of plane component, we analyzed the VSJ image sequence 301 [ONK+00b]: It shows
a 3D jet shear flow with an out-of-plane component of up to4 pixels. 9 Due to the large out-
of-plane velocity component, the assumption of a vanishing divergence does not hold in this
example. This is why we weaken the assumption of a vanishing divergence,as shown in section
5.4.2.

Figure5.34compares the results of our vorticity transport approach with those of an advanced
cross-correlation approach (DaVis). For the evaluation, we chose thefollowing parameters:

• Multi-Pass Cross-Correlation:Initial interrogation window size32 × 32, final interroga-
tion window size16 × 16, and50% overlap, manually selected for best performance.

• Vorticity Transport Approach:λ = 0.01, µ = 0.005, ν = 0.1, κ = 0.005, manually
selected for best performance.

Figure5.34shows the absolute RMS error of both approaches along with the averageabsolute
out-of-plane motion over time. While both error curves are quite similar, the cross-correlation
approach tends to give better results at time instances when the out-of-plane velocity is rather
large (i.e.t ≈ 40, andt ≈ 125), whereas the optical flow results are better when the out-of-plane
component is rather small (i.e.t ≈ 1, andt ≈ 70).

The fact that the brightness of particles that travel out of the illuminated plane will fade, while
particles gain brightness if they travel towards the illuminated plane, is in contradiction with the
optical flow constraint that we use. This problem introduces errors in scenarios where high out-
of-plane velocities are present. We’d like to stress, however, that cross-correlation approaches
have the same problem (as they also assume brightness conservation), it just seems to be slightly
less pronounced.

Real-World 2D Flows

Figure 5.35 shows a sample image of the experimental evaluation of the spreading of a low
diffusivity dye in a 2D turbulent flow, forced at a large scale. The passive scalar is a mixture
of fluorescein and water. For more details about the experimental setup, we refer to [JCT01].
Cross-correlation approaches are not able to extract valid velocity fields for this type of input data
(passive scalar images). Figure5.35shows, however, that our approach that uses the vorticity
transport equation, is capable of extracting a very reasonable velocity distribution. Figure5.36
shows the temporal evolution of individual vortices.

5.4.4. Conclusions

We presented an approach to fluid motion estimation that uses the vorticity transport equation for
physically consistent spatio-temporal regularization. The approach combines variational motion
estimation with higher-order regularization and motion prediction through a transport process.
For motions that conform to our assumption (i.e. fluids that are governed bythe incompressible
2D Navier-Stokes equation), a temporal regularization effect, computed ina recursive manner,

9Note that we assume that the imaginary grid in out-of-plane direction has thesame resolution as the in-plane grid.
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5.4. Dynamic Motion Estimation with the Vorticity Transport Equation
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Figure 5.34.: Average absolute RMS error (in pixels) for frames 1-140 of the VSJ 301 image
sequence, using cross-correlation and novel optical flow technique with spatio-
temporal regularization (with modification of sec.5.4.2). Both approaches have
similar accuracy.
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Figure 5.35.:Left: Sample Real-World Passive Scalar Image (frame 80, size: 512× 512 px.).
Right: Recovered Velocity Field (with color-coded vorticity) with Vorticity Trans-
port Approach.
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5. Variational Fluid Motion Estimation: Physics-based Regularization

x
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Figure 5.36.: Iso-surface plot of the vorticity distribution over time. Blue denotes positive vor-
ticity (ω > 1.5) and red denotes negative vorticity (ω < −1.5).

was demonstrated. In these scenarios, our approach outperforms cross-correlation approaches
as well as advanced variational approaches for optical flow estimation.
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6. Conclusion

6.1. Summary

Let us shortly summarize the important points of this thesis. The main issue of this manuscript
was to introduce a variational framework for the analysis of PIV images andsequences. In
chapter2, we have investigated standard cross-correlation and tracking algorithms. We have
pointed out some limitations of these methods – the most important limitations are:

• The highest reachable resolution of cross-correlation PIV is limited. Due tothe statistic
nature of cross-correlation PIV, there is a tradeoff between interrogation window size and
resolution of the recovered velocity estimates. While large windows lead to robust but
coarse estimates, small windows are able to capture higher frequencies ofthe velocity
fields at the cost of reduced robustness.

• Motion estimation if carried out regardless of spatial context. Prior knowledge about spa-
tial or temporal coherency cannot be exploited directly, but has to be inferred by (heuristic)
post-processing steps.

• Traditional PIV and PTV methods can only be applied to typical PIV imagery. If, e.g.,
a passive scalar field is to be analyzed, traditional cross-correlation ortracking methods
will fail.

These were the main reasons that motivated the use of variational optical flow methods.

Variational Particle Image Velocimetry The mathematical basis of the methods presented
in chapter3 is a continuous variational formulation for globally estimating the optical flow vector
fields over the whole image. Minimizing the respective variational functionals yieldsdense(i.e.
one vector per pixel) velocity fields – there are no interrogation areas whose size might limit
the resolution. The class of approaches had been known in the field of image processing and
computer vision for more than two decades but apparently had not been applied to PIV image
pairs so far. In sec.4.1, we described the first steps of adapting the data term to the quite specific
signal structure of particle image pairs:

• Due to changes in the illumination of PIV setups (that are often unavoidable),the assump-
tion of gray value conservation (the traditional assumption behind optical flow estimation)
is not valid. We adapted the prototypical optical flow constraint so that it tolerates these
illumination changes.

• PIV imagery often consists of only image pairs, while standard variational approaches for
motion estimation operate on whole image sequences. We reformulated the opticalflow
constraint and made it symmetric, and thus improved accuracy of optical flowestimation
between image pairs.
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6. Conclusion

• The typical motion range in PIV imagery is very high. It is crucial for PIV evaluation
algorithms to be able to resolve the full range of motion. To handle large displacements,
we presented a coarse-to-fine scheme.

The experimental evaluation showed that a prototypical variational approach competes in noisy
real-world scenarios with four alternative approaches especially designed for PIV-sequence eval-
uation.

Variational Particle Tracking Velocimetry In sec.4.2, we have expanded the class of vari-
ational methods to the field of particle tracking velocimetry: We introduced a novel variational
approach for evaluating PTV image pairs and sequences in two and three dimensions. We com-
bined a discrete non-differentiable particle matching term with a continuous regularization term.
An advanced mathematical method guaranteed convergence to a local minimum. Our method
has the following features:

• Like most competing approaches, we combine the two assumptionssmall displacements
(from one frame to the next) andsmoothness of motion(i.e. two particles that are neigh-
bors in the first frame are likely to be neighbors in the second frame). In contrast to other
approaches to PTV, we combine the two assumptions in a mathematically sound wayby
minimizing a variational functional.

• We showed that it posed no problem to expand our method to the analysis of even 3D
image sequences (where the assumption of temporal coherency is also included). This
expansion follows directly from expanding the involved functions from 2Dto 3D (or
3D+time). The variational method and the corresponding FEM discretization directly
appoint the equations that have to be solved.

• It is straightforward to replace the simple smoothness term that we used by physically
motivated priors.

The experimental evaluation showed that our variational method competes withthree alternative
approaches.

Variational Motion Estimation with Physics-based Priors In chapter5, we addressed the
question of how to adapt the prototypical regularization term from chapter3 to the quite specific
demands of PIV velocity fields. We collected various possibilities of minimizing variational
motion estimation functionals that incorporate higher order regularization termsto estimate more
accurate velocity fields.

We argued that the physical plausibility of standard higher-order regularization terms is only
very limited. In sec. 5.3, we therefore presented an approach to particle image velocimetry
based on optical flow estimation subject to valid physical constraints. Admissible flow fields
are restricted to vector fields satisfying the Stokes equation. The latter equation includes control
variables that allow to control the optical flow, so as to fit to the apparent velocities of particles
in a given image pair. We showed the following features of this so-calledOptical Stokes Flow
technique:

• When the real unknown flow observed through image measurements conforms to the
physical assumption underlying the Stokes equation, the control variablesallow for a
physical interpretation in terms of pressure distribution and forces acting on the fluid.
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• Although this physical interpretation is lost if the assumptions do not hold, ourapproach
still allows for reliably estimating more general and highly non-rigid flows fromimage
pairs.

• We made the important observation that optical flow estimates (together with a reason-
able regularizer like the Optical Stokes Flow regularizer) are able to outperform cross-
correlation methods in terms of achievable resolution and quality of the extracted velocity
field.

We argued in sec.5.4that Optical Stokes Flow has two main drawbacks:

• The physical plausibility of Optical Stokes Flow is limited to cases of very low Reynolds
numbers (as the approach neglects the convective terms of the Navier-Stokes equations).

• As Optical Stokes Flow uses the time-independent Stokes equation as prior knowledge, it
cannot exploit temporal coherency.

This is why we extended the approach in sec.5.4along two directions:

• The full incompressible Navier-Stokes equation was employed in order to obtain a physi-
cally consistent regularization which does not suppress turbulent flow variations.

• Regularization along the time-axis was employed as well, but formulated in a receding
horizon manner contrary to previous approaches to spatio-temporal regularization. This
allowed for a recursive on-line (non-batch) implementation of our estimation framework.

Ground-truth evaluations for simulated turbulent flows demonstrated that due to imposing
both physical consistency and temporal coherency, the accuracy of flow estimation compares
favorably even with optical flow approaches based on higher-order div-curl regularization and
advanced cross-correlation approaches.

6.2. Open Problems and Further Work

There are a several open problems that we will have to tackle in the future.In this section we
shortly outline these problems and present some ideas about how to solve them.

Automatic Parameter Selection In this manuscript, we tried to introduce as few parame-
ters as possible. The use of regularization parameters for the type of variational approaches that
we use, is, however, nearly without alternative. In principle, the variational approaches can be
rewritten as maximizing an a posteriori probability (with the use of the Bayes formula). How-
ever, the parameters of the individual probability distributions are generally not determinable
– soagain, they would have to be considered as user parameters. Though we haveselected
the best parameter settings by hand in most experiments, we have also accomplished a series
of experiments (e.g. sec.4.1.4, 4.2.3) that shows that a non-optimal parameter choice still
yields good results. We agree, however, that some kind of automatic parameter selection pro-
cess would be desirable. In [HNC+06], the authors go a first step on this way by introducing
a non-dimensional regularization parameter (through dimensional analysisof the optical flow
constraint) and by discussing the influence of the individual scalesluminance, space, andtime.
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6. Conclusion

Individual Particle Detection for PTV We have seen in sec.2.2.2, that PTV methods
actually consist of (at least) two steps that are usually conducted in the following order:

• individual particle detection

• temporal matching of the individual particles

In the case of 3D PTV, the following step is introduced between the two steps above:

• 3D reconstruction trough triangulation

In section4.2we have only dealt with the temporal matching of individual particles. We have
seen in section4.3, however, that, in order to compare PIV and PTV approaches, one hasto
follow all the steps in order to be able to give typical error measures.

A further interesting point is a possible combination of the above mentioned points in one
single optimization approach. Combining spatial matching (3D reconstruction) and temporal
matching might improve the overall performance of the algorithm: The fact thattemporal match-
ing fails is a hint on an erroneous spatial matching. A functional that combines both steps would,
however, be highly non-convex, and it would be hard to find a significant minimum.

Physically Motivated Priors for PTV In section4.2, we have regularized our matching
functional with the simple assumption of a smooth target velocity field. In chapter5 we have
presented regularizers that are much more adequate for fluid scenarios. These regularizers could
easily be adapted for PTV, too. We believe that an adaptation of the spatio-temporal regular-
ization introduced in section5.4 for the purpose of PTV is especially promising: While the
spatio-temporal regularization introduced in sec.4.2 is anEulerianapproach (i.e. one assumes
that the velocity at a fixed point should only vary smoothly over time), the regularizer of section
5.4 is of Lagrangiannature: One regularizes over a moving particle (i.e. with a moving coor-
dinate system). It is clear that a “Lagrangian” regularization has the potential of yielding better
results in turbulent scenarios.

Displacement vs. Velocity In the approaches presented in chapter5, we assumed that ve-
locity and displacement are identical: Note that the optical flow data term givesan estimate of
the velocity. However, if we consider the same data term in a coarse-to-fine or iteratedregis-
tration framework, the output of the iterative energy-minimization process is adisplacement.
In contrast, the regularizers that we have introduced in chapter5 are valid forvelocitiesonly.
We have bypassed addressing this problem, by only considering (in chapter 5) image pairs and
sequences with small movements of the individual particles from one frame to the next. In these
environments, one can use the terms displacement and velocity synonymously.

If one wants to apply physically plausible regularization in image pairs and sequences with
large displacements, a good starting point might be the work of [GM98] and references therein.
In [BMT05], the authors study a large deformation diffeomorphic metric mapping problem.
They propose a variational formulation to estimate an optimal transformation between two im-
ages in the space of smoothvelocityvector fields.
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6.2. Open Problems and Further Work

Optimal Spatio-Temporal Control We have seen that Optical Stokes Flow (cf. sec.5.3) is
an optimal spatial control approach. In section5.4, we have expanded this approach to image
sequence analysis and chose the vorticity transport equation as prior knowledge. Additionally,
we demanded that on-line (non-batch) processing should be possible. At every time instance,
our approach therefore chooses the most plausible velocity field (using the current image data
and the resulting velocity field of the preceding frames).

As the approach uses (at every time instance) only image data from the “present” and the
“past”, this decision will usually not be “a posteriori” optimal: In scenarios inwhich thewhole
image sequence isa priori available, it makes sense to use this knowledge during optimization.

The optimal control approach introduced in sec.5.3 could be expanded to image sequences,
and an optimal solution could be computed in a forward-backward manner (cf. e.g. [BIK02,
Gun02]).

Dangers of using (Physical) Priors In this thesis, we have used variational approaches
for motion estimation because they allow to incorporate prior knowledge into the estimation of
velocity vector fields. The most simple prior knowledge that we have used in chapter4 was the
assumption of a smooth target velocity field. In practical scenarios, problems might start at this
point: Users of cross-correlation approaches can clearly detect from visual inspection (through
the outlier percentage) whether a velocity field is plausible or not. If a cross-correlation approach
fails (e.g. due to bad experimental conditions or a wrong parameter choice)one simply getsnoise
as the output velocity field. With variational approaches, results are somewhat different: If a
variational approach is not able to reconstruct a meaningful velocity field, it will still reconstruct
a vector field that (at least) minimizes the regularization term: Using smoothness as a prior,
the reconstructed vector fieldwill be smooth, and this fact might entrap the user to believe that
the velocity field is reliable. We believe that analyzing the computed overall energy is a good
starting point on the way to a reliable confidence measure.

Further problems occur through the use of physically based prior knowledge: Every piece
of knowledge that is used, will bias the solution. If we, e.g., assume incompressibility of the
fluid, then our algorithm will output a velocity field with zero divergence – independently from
whether the assumption is true or not.

To summarize, one has to be extremely careful about what kind of prior knowledge one
chooses. Before one introduces more and more advanced types of priors, one should discuss
with fluid mechanics engineers and fluid experimentalists, whether these constraints are actually
plausible.

Fluid Priors for Non-Fluid Scenarios An interesting open problem in computer vision is
finding prior knowlege for motion estimation ingeneralimage sequences (e.g. human motion,
traffic scenes, ...). In contrast to fluid imagery, there are no (rather) simple physically plausible
priors available in these scenarios. Therefore, the problem is much more difficult. The use of
fluid priors enables us to model simple physical facts (which are also true for general image
sequences, e.g. inertia) with partial differential equations. A first step inthis direction has been
performed in [SRS06], where the authors model the scene as a fictive fluid that is governed by
the Burgers equation (i.e. the acceleration of ficitive fluid particles is penalized).
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6. Conclusion

From 2D to 3D Note that we have only expanded the PTV approaches to 3D, as yet. All
gray-value-based approaches that we introduced in this thesis are restricted to 2D. Currently,
there has been a lot of research published on experimental PIV methods,that yield volumetric
gray value information. We believe that our variational approaches are especially suitable in
these 3D scenarios:

• We have seen in section3.2, that the optical flow constraint assumes gray value conser-
vation. If particles move in or out of the illuminated plane, the optical flow constraint is
violated and the error rates increase1. If we illuminate the whole volume, a 3D optical
flow constraint is more likely to hold.

• Imposing physical constraints is much more straightforward in 3D than it is in 2D. Both
in sec. 5.3.1and5.4.2, we had to handle out-of-plane motion separately – in 3D, this
unattractive special treatment will become redundant.

• Due to the fact that in 3D experimental setups the resolution is often reduced2, the possi-
bility to include (physically motivated) prior knowledge is tempting.

1Note that this consideration is true foranykind of motion estimation algorithm (including cross-correlation based
methods).

2Scanning PIV allows high resolution in two dimensions, but the sampling rate inthe third dimension is usually
much lower. The resolution of tomographic reconstruction algorithms is in turn limited by the fact that experi-
mental conditions forbid the use of an arbitrary number of cameras.
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A. Elliptic Systems and FEM

This section is to give a short overview on how to handle equations of elliptic type. We first
give a very short introduction into elliptic theory and then we describe how todiscretize these
systems using finite elements. Finally we introduce the numerical methods that we use in this
thesis to solve large systems of equations which emerge from finite element discretization. Note
that our overview is rather algorithmical and far from being complete, for asound mathematical
introduction into elliptic systems and finite elements, we refer to [Cia78, Bra97].

A.1. Elliptic Theory

In this thesis, there are a number of problems (e.g. (3.12),(4.3),(4.12)), that demand minimizing
some energy functional

inf
v∈H

J(v)

whereH is a Hilbert space.
In the following, we assume that the functionalJ(v) can be written as

J(v) =
1

2
a(v, v) − 〈f, v〉,

wherea : H × H → R is a symmetric bilinear form andf : H → R is a linear functional.
In order to evaluate whetherJ(v) has exactly one solution, we first have to introducecontinuity
andH-ellipticity.

Definition 1. A bilinear forma : H ×H → R is continuous if ∃ C <∞ with

|a(u, v)| ≤ C||u|| · ||v||, ∀u, v ∈ H,

whereH is a Hilbert space.

Definition 2. A symmetric continuous bilinear form isH-elliptic , if

a(v, v) ≥ α||v||2, ∀v ∈ H,

with α > 0.

Now we can present the Lax-Milgram theorem for convex sets:

Theorem 3. Lax-Milgram Theorem : V is a closed convex set in a Hilbert spaceH anda :
H ×H → R is an H-elliptic bilinear form. For everyf ∈ H ′, the variational problem

J(v) :=
1

2
a(v, v) − 〈f, v〉 → min

has exactly one solution.
For a proof of the Lax-Milgram theorem for convex sets, we refer to [Bra97].

We have seen that it is sufficient to show that a given symmetric bilinear formis continuous
and H-elliptic. For the approach of Horn&Schunck (cf. (3.12)), this was performed in [Sch91].
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A. Elliptic Systems and FEM

A.2. Ritz-Galerkin Method

The most natural approach of solving elliptic problems lies in the use of finite elements. This
goes back to [Rit08]. The minimum of a functionalJ of some variational approach is not deter-
mined withinH but within some finite dimensional subspaceSh, whereh is the discretization
parameter. Forh→ 0 we expect convergence to the solution of the continuous problem.

Theorem 4. Given the energy functional

J(v) :=
1

2
a(v, v) − 〈f, v〉 → min

Sh

.

J(v) has its minimum inuh ∈ Sh, if

a(uh, ũ) = 〈f, ũ〉 ∀ũ ∈ Sh , (A.1)

wherea(uh, ũ) is again a positive bilinear form.
Proof: For uh, ũ ∈ Sh, ǫ ∈ R:

J(uh + ǫũ) =
1

2
a(uh + ǫũ, uh + ǫũ) − 〈f, uh + ǫũ〉

= J(uh) + ǫ(a(uh, ũ) − 〈f, ũ〉) +
1

2
ǫ2a(ũ, ũ).

(A.2)

If uh fulfills equation (A.1), andǫ = 1:

J(uh + ũ) = J(uh) +
1

2
a(ũ, ũ) > J(uh)

So,uh is a unique minimum.
On the other hand, ifJ has a minimum atuh, the derivative of the functionJ(uh + ǫũ) at ǫ = 0
has to vanish for everỹu ∈ V . According to (A.2), this derivative isa(uh, ũ) − 〈f, ũ〉, (A.1)
follows.

Let {φ1, φ2, ..., φN} be a basis ofSh. Then, (A.1) is equivalent to

a(uh, φi) = 〈f, φi〉, i = 1, 2, ..., N.

With

uh =
N∑

k=1

xkφk

we get the linear system of equations

N∑

j=1

a(φj , φi)xj = 〈f, φi〉, i = 1, 2, ..., N,

which can be rewritten in matrix-vector form

Ax = b (A.3)
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whereAij = a(φj , φi) andbi = 〈f, φi〉. MatrixA is positive definite ifa is an H-elliptic bilinear
form:

x⊤Ax =
∑

i,j

xiAijxj = a(
∑

j

xjφj ,
∑

i

xiφi) = a(uh, uh) ≥ α||uh||
2
m.

A is often called stiffness matrix or system matrix.
This method of solving the positive definite problem (A.1) is called Ritz-Galerkin method. In
the following, we derive some properties of this method before we describefeatures of the actual
FEM implementation (cf. sec.A.3).

Theorem 5. Stability: Independent of the subspaceSh that we choose, the solution of (A.1)
satisfies

||uh||m ≤ α−1||f || .

Proof: Supposeuh is a solution of (A.1). Letv = uh:

α||uh||
2
m ≤ a(uh, uh) = 〈f, uh〉 ≤ ||f ||||uh||m.

Theorem 6. Céa’s Lemma: a is an H-elliptic bilinear form.u anduh be solutions of a varia-
tional problem inH andSh ⊂ H. Then,

||u− uh||m ≤
C

α
inf

vh∈Sh

||u− vh||m.

Proof: (A.1) yields

a(u, v) = 〈f, v〉 ∀v ∈ H

a(uh, v) = 〈f, v〉 ∀v ∈ Sh

AsSh ⊂ H, subtraction yields

a(u− uh, v) = 0 ∀v ∈ Sh. (A.4)

(A.4) is often referred to as Galerkin orthogonality. Withv = vh − uh ∈ Sh (vh ∈ Sh), this
yieldsa(u− uh, vh − uh) = 0, and thus

α||u− uh||
2
m ≤ a(u− uh, u− uh) = a(u− uh, u− vh) + a(u− uh, vh − uh)

≤ C||u− uh||m||u− vh||m.

Céa’s Lemma states that the error of any Galerkin approximation is only a constant factor
(independent ofh) higher than that of the best approximation ofu in V .

A.3. Finite Elements for Elliptic Systems

One usually solves variational problems in so-called “Finite Element Spaces”. The domain
Ω is divided into a finite number of sections (elements) and one considers functions that are
polynomials on these elements.
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A.3.1. Features of FEM Spaces

Features of finite element spaces include:

• Decomposition of the domain: In 2D, the elements are usually triangles or squares; in 3D,
the domain is divided into tetrahedra or cubes.

• Continuity and differentiability properties: Finite elements areCk elements, if they are
contained inCk(Ω). In this section, we will restrict ourselves to the simplest elements:
(bi-) linear elements of classC0(Ω).

• Polynomial degree: In this section, we will restrict ourselves to polynomials of degree 1.
They have the form

u(x, y) := ax+ by + c .

A.3.2. Triangulation

First, one needs an admissible triangulation:

• Non-overlapping elements: The intersection of two elementsTi,Tj should be empty:

Ti ∩ Tj = {}, i, j ∈ {1, ..., t}, i 6= j

• Coverage of the domain: The union of allt triangles is equal to the domain in which the
problem is posed

t⋃

k=1

Tk = Ω .

In this section, we will explain how to perform a finite element discretization on an irregular
triangular grid (cf.4.2.2). The computations on a regular (triangular) grid (cf. e.g. sec.3.5) is
just a specific (simpler) case of this procedure.

A.3.3. Set-up of the System Matrix

The system matrix can be set up elementwise:

a(u, v) =

∫

Ω

∑

k,l

akl∂ku∂lvdx .

This yields

Aij = a(φi, φj) =

∫

Ω

∑

k,l

akl∂kφi∂lφjdx =
∑

T∈T

∫

T

∑

k,l

akl∂kφi∂lφjdx . (A.5)

As we are considering elements with compact support, the sum only has to include those tri-
angles that are contained in the support ofφi andφj .
In the case of an irregular triangulation, we use element-oriented computations: For every el-
ementT ∈ T (whereT is the set of all triangles), we compute the individual share to the
corresponding system matrix entry.
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Figure A.1.: Transformation of an arbitrary triangle into a unit triangle

In order to simplify the occurring integrations of each triangle we transformthe arbitrary trian-
gles into unit triangles. FigureA.1 shows the linear transformation to a local coordinate system.

A general triangle with the verticesP0(x0, y0), P1(x1, y1) andP2(x2, y2) that is numbered
counter-clockwise (cf. fig.A.1) can be transformed bijectively into an isosceles, orthogonal
triangleT0 with an edge length of one:

x = x0 + (x1 − x0)ξ + (x2 − x0)η ,

y = y0 + (y1 − y0)ξ + (y2 − y0)η .
(A.6)

With this substitution of variables, the computation of the integral over the triangleT is trans-
formed into a simple area integral. Thusdxdy is to be replaced by

dxdy = Jdξdη

where

J =

∣
∣
∣
∣
∣

∂x
∂ξ

∂y
∂ξ

∂x
∂η

∂y
∂η

∣
∣
∣
∣
∣
=

∣
∣
∣
∣

1 1 1
P0 P1 P2

∣
∣
∣
∣
= (x1 − x0)(y2 − y0) − (x2 − x0)(y1 − y0)

is the so-called Jacobi determinante.
Integrating some functionu over a general triangle then becomes:

∫

Tgen.

u(x)dx =

∫

Tunit

u(x(ξ, η), y(ξ, η))Jdξdη = J

∫ 1

0

∫ 1−η

0
u(ξ)dξdη .

(A.5) therefore has the following entries:

Ai,j =
∑

T∈T

J

∫ 1

0

∫ 1−η

0

∑

k,l

akl∂kφi∂lφjdξdη .

As we want to uselinear Finite Elements, the representation of the functionsφi in local
coordinates is:

φP0 = 1 − ξ − η ,

φP1 = ξ ,

φP2 = η .
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The connection to global coordinates is given by equation (A.6) and can be written as the matrix
relation





1
x
y



 =

(
1 1 1
P0 P1 P2

)




φP0

φP1

φP2



 .

Given the system matrix, the next step is to solve (A.3). If a is an h-elliptic bilinear form,
we can solve this sparse positive definite system by some iterative solver. In the following two
sections, we will describe two possible solvers that we used for the solvingof our linear systems:
the method of conjugate gradients (sec. (A.4.2)) and the multigrid method (sec. (A.5)).

A.4. Gradient Descent Methods

If one wants a large system of equations with a positive definite system matrix,one uses the fact
that the solution of the equationAx = b is just the minimum of

f(x) =
1

2
x⊤Ax− b⊤x (A.7)

The simplest method that uses this fact is thegeneral gradient approach.

A.4.1. The General Gradient Method

Starting at some initial guessx0, one first computes the negative gradient of the functionf at
that point. For quadratic functions (A.7), this yields

d0 = −∇f(x0) = b−Ax0 .

Then, one computes the minimum off on the line{x0 + td0 : t ≥ 0}. This minimum is at
t = α:

α =
d⊤0 d0

d⊤0 Ad0
.

One therefore has a new estimatex1 = x0 +αd0 and can (again) compute the negative gradient,
and so on. It is clear that this iterative approach yields a series (xk) with f(x0) ≥ f(x1) ≥
f(x2) ≥ .... While it will always yield the global optimum (as long as the system is really
positive definite), the general gradient method tends to converge very slowly for matrices with a
high condition number1.

A.4.2. Conjugate Gradient Method

This method was introduced by Hestenes and Stiefel [HS52]; it decreases the number of itera-
tions (until convergence) considerably.
The conjugate gradient method computes a series of vectorspi which are non-zero and satisfy
(pi)

⊤Apj = 0 for all i 6= j. This property is known as conjugacy. Starting again from an initial

1Unfortunately, all elliptic systems that are presented in this thesis generally have a high condition number.
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x0, the method computes a sequencexk using conjugate vectors as bases. The iterative updates
are

xk+1 = xk + αkpk,

gk+1 = gk + αkAdk,

dk+1 = −gk+1 + βkdk, where

αk =
g⊤k gk

d⊤k Adk
and

βk =
g⊤k+1gk+1

g⊤k gk

Preconditioned Conjugate Gradient Method

In many of our experiments, we use a variation of the classical conjugate gradient method: the
so-calledpreconditionedconjugate gradient method (PCG) [CGO76]. When we use a linear
translationx̂ = B1/2x for a non-singular matrixB, the system becomes

f(x̂) =
1

2
x̂T (B−1/2AB−1/2)x̂− (B−1/2x̂)T b.

Then we apply the classical conjugate gradient method on this preconditioned matrix. The goal
is to choose a matrixB so that the eigenvalues ofB−1/2AB−1/2 are clustered closely to each
other, thus reducing the number of iteration steps. The preconditioned CG algorithm is presented
more precisely in algorithm2. We confine ourselves to the use of the diagonal ofA asB (as
we use multigrid methods (cf. sec.A.5) if real-time performance is demanded). For a review of
more advanced preconditioners, we refer to [Bra97].

Algorithm 2 Preconditioned CG Algorithm

Choosex0. g0 = Ax0 − b, d0 = −h0 = −B−1g0.
For a given toleranceǫ,

WHILE (||gk||/||b|| > ǫ)
xk+1 = xk + αkdk

αk =
g⊤

k
hk

d⊤
k

Adk

gk+1 = gk + αkAdk

hk+1 = B−1 + gk+1

dk+1 = −hk+1 + βkdk

βk =
g⊤

k+1
hk+1

g⊤
k

hk

k = k + 1;
END
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A.5. Multigrid Methods

Multigrid methods are currently among the fastest available methods to solve ellipticPDEs. In
fact, they are the only methods with a complexity ofO(n), wheren is the linear system’s num-
ber of unknowns. Multigrid methods were developed by Brandt [Bra77], and mathematically
substantiated by Hackbusch [Hac85].
The main observation that led to the development of multigrid methods is the fact that standard
solvers aresmoothing operators: If we consider the errore (approximate solutioñx of x in (A.3)
minus true solution), we see that it consists mainly of low frequency components, while high
frequency components are eliminated. It takes many additional iterations to eliminate the low
frequency components as well.
This section is just to give an algorithmical introduction to multigrid methods – for a sound
mathematical analysis, we refer to [Hac85, Hac93] and for a more detailed algorithmical in-
troduction, we refer to [PTVF92]. The section is divided into three parts: Firstly, we sketch
the standardGauss-Seidelmethod, that is used as a smoother. Secondly, we outline how the
so-calledcoarse-grid correctionis performed. Finally, we summarize and illustrate thefull
multigrid algorithm.

A.5.1. Gauss-Seidel Method

If we order the mesh points from1 toN , the Gauss-Seidel updating scheme is

xi = −
(
∑N

j=1,j 6=iAijxj − fi)

Aii
, i = 1, ..., N .

Note that the new values ofx are used as soon as they become available. A simple enhancement
of the traditional Gauss-Seidel Method is theRed-Black Gauss-Seidel Method: The individual
entries of the system matrix are “colored” in a checkerboard fashion. One makes one sweep to
update the red nodes and then a second sweep to update the black nodes.

A.5.2. Coarse-Grid Correction

We start with an initial estimate of̃xh and compute the so-calleddefect:

dh = Ahx̃h − fh, (A.8)

whereh denotes the mesh size of some uniform grid. SinceAh is linear, the defect satisfies

Aheh = −dh, (A.9)

whereeh is the difference between estimatedx̃h and truexh. Let us nowcoarsify the defect
onto a grid with mesh size2h:

d2h = Rdh,

whereR is a restriction operator. As we use conforming finite elements, this operator isdirectly
given. For details we refer to [Bra97]. Then, we can solve (A.9) for the error (correction)e; this
operation, however, is performed on the coarse grid:

A2he2h = −d2h . (A.10)
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Finally, we interpolate2 the errore2h onto the finer grideh:

eh = Pe2h

and update the approximatioñxh:
x̃new

h = x̃h + eh . (A.11)

It is clear that this procedure (in contrast to the Gauss-Seidel method fromthe last section)
can reduce low-frequency errors. High-frequency errors, on the other hand, do not even have
a representation on the fine grid and therefore won’t be reduced. It therefore makes sense to
combine the ideas of coarse-grid correction and Gauss-Seidel relaxation in the way described in
algorithm3:

Algorithm 3 Two-Grid Iteration

1. Pre-Smoothing: Performn Gauss-Seidel sweeps (starting with some initial value) on
grid h. This yieldsx̃h for eq.A.8.

2. Coarse-grid correction: Executing above algorithm (A.8) - (A.11) yieldsxnew
h .

3. Post-Smoothing:Performm Gauss-Seidel sweeps starting withxnew
h .

A.5.3. Full Multigrid Algorithm

There are two additional ideas that yield the full multigrid algorithm:

1. Instead of solving (A.10) exactly on grid level2h, we use even coarser grids and recur-
sively apply the two-grid algorithm3. Usually, one does not need more thanγ = 2
iterations of algorithm3. FigureA.2 shows the details.

2. Additionally, we do not start with some initial guess, but with the exact solution given at
the coarsest possible grid level (where the whole problem size is, e.g., only 3 × 3). This
coarse solution is interpolated to the next grid level

xh = Px2h. (A.12)

Instead of theV orW cycles as seen in figureA.2, this yields to a series of increasingly
tall N ’s (cf. fig. A.3).

2Again, the projection operatorP is directly given if we use finite elements.
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Figure A.2.: Multigrid algorithm with4 grid levels. S means smoothing (relaxation), E denotes
exact computation (on the coarsest level only), diagonal lines to the bottom(\)
denote restriction operators, diagonal lines to the top (/) note prolongation.Top:
γ = 1. Bottom: γ = 2.
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Figure A.3.: Multigrid algorithm with4 grid levels. The symbol� means that a coarse-grid
solution has to be prolongated with (A.12).
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We have seen in this thesis, that imposing additional constraints (like, e.g., incompressibility)
yields quadratic problems with linear constraints (cf. e.g.(5.25),(5.36)):

J(u) =
1

2
a(u, u) − 〈f, u〉

s.t.b(u, µ) = 〈g, µ〉 ∀µ ∈M
(B.1)

that can be classified assaddle point problems. This chapter is to sketch basic mathematical
properties of saddle-point problems (sec.B.1), features of the corresponding discretization with
mixed finite elements (sec.B.2), and finally the solution of the discretized system using the
so-called Uzawa algorithm (sec.B.3).

B.1. Saddle-Point Problems

The corresponding Lagrange functional to problem (B.1) is

L(u, λ) := J(u) + (b(u, λ) − 〈g, λ〉).

BecauseL(u, λ) is a quadratic form in(u, λ), this yields

a(u, v) + b(v, λ) = 〈f, v〉, ∀v ∈ X

b(u, µ) = 〈g, µ〉, ∀µ ∈M,
(B.2)

with the saddle point property

L(u, µ) ≤ L(u, λ) ≤ L(v, λ), ∀(v, µ) ∈ X ×M

for every(u, λ) that solves (B.2).
X andM denote Hilbert spaces andX ′, M ′ the corresponding dual spaces.a : X ×X → R,
andb : X ×M → R be continuous bilinear forms. The problem of finding(u, λ) ∈ X ×M
with (B.2) defines the linear mapping

L : X ×M → X ′ ×M ′

(u, λ) → (f, g) .

Let us rewrite (B.2) as an operator equation. To do so we have to assign mappings to the
bilinear formsa(u, v), b(u, µ), andb(v, λ):

A : X → X ′, 〈Au, v〉 = a(u, v), ∀v ∈ X

B : X →M ′, 〈Bu, µ〉 = b(u, µ), ∀µ ∈M

B⊤ : X → X ′, 〈B⊤λ, v〉 = b(v, λ) ∀v ∈ X ,
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and (B.2) can be rewritten as

Au+B⊤λ = f,

Bu = g.
(B.3)

Furthermore, we define the following spaces

V (g) := {v ∈ X; b(v, µ) = 〈g, µ〉, ∀µ ∈M},

V := {v ∈ X; b(v, µ) = 0, ∀µ ∈M}.
(B.4)

Due to continuity ofb, V is a closed subspace ofX.

Theorem 7. The saddle-point problem (B.3) has a unique solution(u, λ) ∈ X ×M , if

1. the bilinear form a is V-elliptic (withV according to (B.4)):

a(v, v) ≥ α||v||2, ∀v ∈ V ,

and

2. the bilinear form b fulfills the so-calledinf-sup(or Babǔska-Brezzi) condition

inf
µ∈M

sup
v∈X

b(v, µ)

||v||||µ||
≥ β > 0 .

For a proof of theorem7, we refer to [BF91].

B.2. Mixed FEM

Analogous to sec.A.2-A.3 for elliptic problems, we want to find an adequate discretization for
saddle point problems. Again, we choose finite dimensional subspacesXh ⊂ X, andMh ⊂M .
The discretized version of (B.2) is

a(uh, v) + b(v, λh) = 〈f, v〉 ∀v ∈ Xh

b(uh, µ) = 〈g, µ〉 ∀µ ∈Mh.
(B.5)

We try to find(uh, λh) ∈ Xh ×Mh that fulfill (B.5). This type of approach is calledmixed finite
element method.
Analogous to (B.4), we define

Vh := {v ∈ Xh; b(v, µ) = 0, ∀µ ∈Mh}.

Note that the fact thatXh ⊂ X does not necessarily mean thatVh ⊂ V . Therefore,a is not
necessarilyVh-elliptic.

Definition 8. A family of finite element spacesXh,Mh fulfills the Babǔska-Brezzi condition if
there existα > 0 andβ > 0 (independent ofh) with the following properties:

1. The bilinear forma is Vh elliptic

a(vh, vh) ≥ α||vh||
2, ∀vh ∈ Vh
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Figure B.1.: Sketch of 2D Taylor-Hood elements: Center position of linear elements for func-
tions inMh coincide with the triangle vertices (circles). Quadratic elements for
functions inXh are defined also on intermediate positions (squares).

2. The so-called Brezzi condition is fulfilled:

sup
v∈Xh

b(v, λh)

||v||
≥ β||λh||, ∀λh ∈Mh .

Theorem 9. Xh,Mh fulfill the Babǔska-Brezzi condition. Then

||u− uh|| + ||λ− λh|| ≥ c{ inf
vh∈Xh

||u− vh|| + inf
µh∈Mh

||λ− µh||}.

For a proof, we refer to [Bra97].
To summarize, the spacesXh andMh must be harmonized. A family of elements that is often
used for Stokes (and Stokes-like) systems is the so-calledTaylor Hood element:
For discretizing functions of the spaceXh, we use polynomials of degree2. If, e.g., linear
triangles are used, this yields the interpolation function

u(x1, x2) := ax2
1 + bx2

2 + cx1x2 + dx1 + ex2 + f .

For functions of the spaceMh, polynomials of degree1 are used:

p(x1, x2) := ax1 + bx2 + c .

FigureB.1 shows the arrangement of the individual basis functions. For discretizing the Stokes
equation (5.17a), its adjoint (5.17b), and the vorticity transport regularizer (5.35) we use a slight
modification of the standard Taylor-Hood elements. Instead of a triangular mesh, we employ a
regular quadratic mesh and define bilinear (for functions inMh), and biquadratic (for functions
in Xh) finite elements. A proof that these Taylor-Hood elements fulfill the Babuška-Brezzi
condition can be found in [Ver84, GR86].

B.3. Uzawa Algorithm

Discretization of the saddle-point problem (B.5) in some appropriate finite element space yields
the following linear system of equations:
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Au+B⊤λ = f ,

Bu = 0 ,
(B.6)

whereA ∈ R
n×n, B ∈ R

m×n, u, f ∈ R
n, λ, g ∈ R

m. The saddle point problems that we
consider in this thesis contain a submatrixA that is positive definite. One can therefore solve
the first equation of the system (B.6) for the unknownu:

u = A−1(f −B⊤p)

and insert the result in the second equation

BA−1(f −B⊤p) = 0 .

This gives a system which only incorporates the pressure

(BA−1BT )p = BA−1f . (B.7)

The matrix(BA−1B⊤) is symmetric and positive definite. Therefore, we apply the conjugate
gradient algorithm (cf. sec.A.4.2) to (B.7). This requires a single matrix inversion in every
iteration step. For computational efficiency, this is accomplished using a multigridscheme (cf.
sec.A.5). Algorithm 4 details the overall process.

Algorithm 4 Uzawa Algorithm

1: p0 ∈ R,Au1 = f −B⊤p0. Setd1 = −q1 = Bu1.
2: repeat
3: pk = B⊤dk

4: Approx.hk = A−1pk using multigrid
5: αk = d⊤k dk/(p

⊤
k hk)

6: pk = pk−1 − αkdk

7: uk+1 = uk + αkhk

8: qk+1 = −Buk+1

9: βk = q⊤k+1qk+1/(q
⊤
k qk)

10: dk+1 = −qk+1 + βkdk

11: until ||qk+1|| < ǫ

130
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In this section we develop the fundamental equations of fluid mechanics. Notethat we just give a
short overview about the equations that we will need in chapter5. For a more complete coverage
of the topic, we refer to [CM93] and [And95]. SectionC.1 deals with the equations that arise
from the simplest assumptions. We will show that this description is not able to describe all
flow effects and therefore introduce the full Navier-Stokes equations insectionC.2. In section
C.3, we derive a special form of the Navier-Stokes equations – the vorticity transport equation,
which we use in sec.5.4 as a physically motivated prior. After introducing and motivating
the dimensionless Reynolds number in sec.C.4, we finally present the linearized form of the
Navier-Stokes equations, the so-called Stokes equation, in sec.C.5. This equation is used as a
prior in sec.5.3.

C.1. Euler’s Equation (Inviscid Flow)

We consider the flow of a fluid within a certain volumeΩ using an Eulerian description with
u(x, t) representing the velocity of the fluid atx at timet.

The derivation of Euler’s equation is based on three basic conservationlaws:

(i) conservation of mass

(ii) conservation of momentum

(iii) energy conservation.

We will introduce these conservation laws in the following sections.

C.1.1. Conservation of Mass

Let ρ(x, t) denote the density (i.e. mass of the fluid particles per unit of volume) of a fluid at
(x, t). LetW be a fixed subregion ofΩ with boundary∂W . The total massm of the fluid inW
at timet is given by

m(W, t) =

∫

W

ρ(x, t) dV

wheredV is the volume element.
The rate of change of mass inW is

d

dt
m(W, t) =

d

dt

∫

W

ρ(x, t) dV (C.1)

=

∫

W

∂ρ

∂t
(x, t) dV . (C.2)
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The mass of fluid at timet passing out through the boundary∂W per unit of time is given by
the surface integral ofρu · n over∂W , wheren is the unit outward normal, defined at points of
∂W . Therefore, the rate of increase of mass inW equals the rate at which mass is crossing∂W
in the inward direction. This observation gives rise to theintegral form of the conservation law
of mass:

∫

W

∂ρ

∂t
(x, t)dV = −

∫

∂W
ρu · ndA . (C.3)

Using the divergence theorem
∫

W

∂ρ

∂t
(x, t)dV = −

∫

W
∇ · (ρu)dV

we can rewrite (C.3), obtaining thedifferential form of the law of conservation of mass, also
known as thecontinuity equation:

∫

W

∂ρ

∂t
+ ∇ · (ρu) = 0 .

C.1.2. Conservation of Momentum

The velocity field is given by

u(x(t), t) =
dx

dt
(t) .

The accelerationa of a fluid particle is therefore

a(t) =
d2

dt2
x(t) =

d

dt
u(x(t)) .

Using the chain rule, this is equal to

a(t) =
∂u

∂t
+ (u · ∇)u.

For the derivation of Euler’s equation, the fluid is considered anideal fluid. This means that for
any motion of the fluid, there is a functionp(x, t) (pressure) with the following property: IfS is
a surface in the fluid with a unit normaln, the force of stress (b) exerted across the surfaceS per
unit area atx ∈ S at timet is

b = p(x, t)n .

This means that the force acts orthogonally to the surfaceS, i.e. there are no tangential forces.
Therefore, the concept of ideal fluids excludes many interesting real phenomena (a rotation can
neither be started nor stopped)1.
If W is a region in the fluid at a particular instant of timet, the total force exerted on the fluid
insideW by means of stress on its boundary is

S∂W = −

∫

∂W
pndA.

1This is why we will introduce the full Navier-Stokes equations, that are ableto explain phenomena like this, in sec.
C.2.
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If e is any fixed vector in space, the divergence theorem gives

e · S∂W = −

∫

∂W
pe · ndA = −

∫

W
∇ · (pe)dV = −

∫

W
(∇p) · edV.

Therefore,

S∂W = −

∫

W
∇pdV.

If f(x,t) denotes the given body force per unit mass, the total body force is

F =

∫

W
ρfdV.

By Newton’s Second Law (force = mass· acceleration), thedifferential form of the law of bal-
ance of momentum for inviscid flowsarises:

ρ
Du

Dt
= −∇p+ ρf. (C.4)

C.1.3. Energy Conservation

In the 2D case we have four (unknown) functions:u = (u1, u2)
⊤, ρ andp. Up to this point we

have only deduced three equations. Therefore, one more equation is needed to specify the fluid
motion completely.2

This fourth equation origins from the conservation of energy. The total energy is composed of
the kinetic energy (visible) and the internal energy (invisible). We will confine ourselves to flows
where all energy is kinetic. It can be shown (e.g. [CM93]) that this restriction is equivalent to
the assumption of incompressibility: Thus, the fourth equation that completes Euler’s equation
is

∇ · u = 0 .

For other types of energy equations (e.g. for isentropic fluids), we refer to [CM93].

C.2. Navier-Stokes Equation (Viscous Flow)

After the analysis ofidealfluids in the preceding section, we want to concentrate on the analysis
of more general fluids:viscous flow. The continuity equation (conservation of mass) and energy
conservation do not change, only the conservation of momentum is affected.
Now we have to take into accountshear stressesandnormal stresses. The shear stressτxy is
related to the time rate of change of the shearing deformation of the fluid element, whereas the
normal stressτxx, is related to the time rate of change of volume of the fluid element. As a
result, both shear and normal stresses depend on velocity gradients in theflow.
Let us only consider thesurfaceforces inx direction. These are:

• Net pressure p:
(
p− (p+

∂p

∂x1
dx1)

)
dx2 ,

2In 3D, we have a similar problem: four equations and five unknown functions.
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Figure C.1.:Left: shear stressRight: normal stress

• Net normal stress:
(
(τx1x1

+
∂τx1x1

∂x1
dx1) − τx1x1

)
dx2 ,

• Net shear stress (shear towardsx2 direction):

(
(τx2x1

+
∂τx2x1

∂x2
dx2) − τx2x1

)
dx1 .

Here,dx1 anddx2 denote the size of the 2D fluid elements in the specific dimensions. Adding
all these surface force terms and the body force term yields the total forceFx+1 in x1 direction:

Fx1
=

(
−

∂p

∂x1
+
∂τx1x1

∂x1
+
∂τx2x1

∂x2

)
dx1dx2 + ρfx1

dx1dx2

Therefore, we obtain for thex1 component of the momentum equation for a viscous fluid

ρ
Du1

Dt
= −

∂p

∂x1
+
∂τx1x1

∂x1
+
∂τx2x1

∂x2
+ ρfx1

, (C.5)

and for thex2 direction analogously

ρ
Du2

Dt
= −

∂p

∂x2
+
∂τx1x2

∂x1
+
∂τx2x2

∂x2
+ ρfx2

. (C.6)

Equations (C.5) and(C.6) are the Navier-Stokes equations that describe general viscous fluids.
Newton states that shear stress in a fluid is proportional to the time rate of strain, i.e., veloc-

ity gradients. Such fluids are calledNewtonianfluids. The following equations hold true for
Newtonian fluids3:

τx1x1
= λ(∇ · u) + 2µ

∂u1

∂x1
,

τx2x2
= λ(∇ · u) + 2µ

∂u2

∂x2
,

τx1x2
= τx2x1

= µ
(∂u2

∂x1
+
∂u1

∂x2

)
,

3Nearly all fluids are Newtonian fluids – exception: blood flow.
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whereµ is the molecular viscosity coefficient andλ is the second viscosity coefficient.

Substitution of these equations into (C.5) and (C.6) and rewriting the equations as one vector
equation yields

ρ
Du

Dt
= −∇p+ (λ+ µ)∇(∇ · u) + µ∆u+ ρf . (C.7)

Equation (C.4) can therefore be replaced by eq. (C.7) in the viscous case.
In the incompressible case (ρ = ρ0 = const.), the continuity equation becomes

∇ · u = 0 (C.8)

and thus, the Navier-Stokes equations can be simplified to

ρ
Du

Dt
= −∇p+ µ∆u+ ρf . (C.9)

Equations (C.8) and (C.9) are self-contained; there are three equations for the three dependent
variablesu1,u2 andp.

C.3. The Vorticity Transport Equation

Let u = (u1, u2)
⊤, u = u(x, t), x = (x1(t), x2(t)), denote a two-dimensional velocity field.

We have seen that, in the incompressible case, the momentum equation of the Navier-Stokes
equations becomes

∂u

∂t
+ (u · ∇)u = −∇p′ + ν∆u , (C.10)

whereν is the coefficient of kinematic viscosity andp′ = p/ρ0. When we apply∇×4 to the
Navier-Stokes equations we get

∇×
∂u

∂t
+ ∇× (u · ∇)u = −∇×∇p′ + ν∇× ∆u. (C.11)

Recalling that we are considering incompressible fluids (i.e.∇ · u = 0), we can simplify
(C.11) and have

∂

∂t
(∇× u) + (u · ∇)(∇× u) = ν∆(∇× u). (C.12)

Settingω = ∇× u, (C.12) becomes

Dω

Dt
=

∂

∂t
ω + u · ∇ω = ν∆ω .

This equation is known as the (incompressible) vorticity transport equation.Together with the
boundary condition att = 0 : ω(x, 0) = ω0, it describes the evolution of vorticity over
time. Note that, in the absence of external forces that act on the fluid and together with the
incompressibility condition (C.8) , this equation is capable of completely describing the flow.

4In the forthcoming sections, we will consider 2D flows only. We thereforedefine∇× u = ∂u2

∂x1

− ∂u1

∂x2

.
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C.4. The Reynolds Number

In this section, we discuss some scaling properties of the Navier-Stokes equations. We will
introduce the famous Reynolds number that measures the effect of viscosity on the flow.

For some given problem, letU be acharacteristic velocity,L be acharacteristic lengthandT
be acharacteristic time. The choice of these numbers is more or less arbitrary: The characteristic
velocity is usually the fluid velocity at “infinity”, while the characteristic length is determined
by the experimental setup (e.g. in the flow around a cylinder, it is usually the diameter of the
cylinder). Note that the choice ofU andL determines the choice ofT (T = L/U ). Let us
measure the spatial coordinateu, the velocityx and timet as fractions of the quantitiesU ,L and
T :

x′ = x/L, u′ = u/U, , t′ = t/T,

wherex′, u′ andt′ are dimensionless numbers. Then, the (incompressible) Navier-Stokes equa-
tions (C.10) can easily be rewritten as:

∂u′

∂t′
+ (u′ · ∇′)u′ = −∇p′ +

ν

LU
∆′u′,

∇′ · u′ = 0,
(C.13)

wherep′ = p/(ρ0U
2). (C.13) are the Navier-Stokes equations in dimensionless numbers. The

Reynolds numberRe is just

Re =
LU

ν
.

C.5. Linearization: Stokes Equation

Let us revisit the dimensionless Navier-Stokes equations that we have introduced in the last
section5:

∂u

∂t
+ (u · ∇)u = −∇p′ +

1

Re
∆u+ f . (C.14)

This equation is built up by the

diffusionterm:
1

Re
∆u

and the
convectiveterm: (u · ∇)u .

To summarize:u is convected subject to pressure forces and body forcesf , and, at the same
time, it diffuses. In specific cases where we know that the Reynolds number is small (i.e. slow
velocity, large viscosity, or small bodies) thediffusionterm will be the dominant term in (C.14).
In these cases, we can neglect the non-linear term in (C.14) and still get a good approximation
to the solution of the Navier-Stokes equations:

∂u

∂t
= −∇p′ +

1

Re
∆u+ f . (C.15)

5For the sake of readability, we have simplified the variable names.
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Equation (C.15) is called unsteady Stokes equation. If we additionally assume stationarity of the
flow, we get

−
1

Re
∆u+ ∇p′ = f .

This equation is called steady Stokes equation, and we use it as physically motivated prior knowl-
edge in section5.3.
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D. Discretization of the Vorticity Transport
Equation

This section shows our discretization of the vorticity transport equation

∂ω

∂t
+ (u · ∇)ω = ν∆ω. (D.1)

The vorticity transport equation (D.1) is a parabolic equation, whose hyperbolic part is the ad-
vection equation

∂ω

∂t
+ (u · ∇)ω = 0

and whose elliptic part is the diffusion equation

∂ω

∂t
= ν∆ω.

In the following we will use a Crank-Nicholson second order temporal differencing scheme
for solving the diffusion part, and a second order Fromm-van Leer scheme for solving the ad-
vection part of equation (D.1).

The domainΩ is divided into cells. The vorticityω is defined in the centers of the individual
cells: ωn

ij is the vorticity atx1 = i, x2 = j, andt = n. Furthermore, we will need to define
quantities on the cell boundaries:ωn

i+1/2,j denotes, e.g., the vorticity on the boundary between
cells(i, j) and(i+ 1, j).

D.1. Crank-Nicholson Scheme

Let us now discretize (D.1). We combine an explicit Fromm-van Leer scheme and an implicit
Crank-Nicholson scheme:

ωn+1
i,j − ωn

i,j

∆t
= −(u · ∇)ω

n+ 1

2

i,j +
ν

2
∆(ωn + ωn+1)i,j (D.2)

In order to be independent of time stept = n+1 (i.e. we want to define an explicit scheme), we
define a time stept = n+ 1/2 for the advective part. For the diffusion part, on the contrary, we
will use an implicit scheme – therefore, we are allowed to defineω at the time stept = n+ 1.

In order to compute the unknownωn+1
i,j , we rewrite (D.2) as

(

−
∆t

2
ν∆

)

ωn+1
i,j = ωn

i,j − ∆t(u · ∇)ω
n+ 1

2

i,j +
∆t

2
ν∆ωn

i,j . (D.3)

After discretization, this yields the following system of equations:

Lω = b
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with

L =

(

−
∆t

2
ν∆

)

.

The right-hand-side of equation (D.3) is therefore

b = ωn
i,j − ∆t(u · ∇)ω

n+ 1

2

i,j +
∆t

2
ν∆ωn

i,j (D.4)

that can be conveniently solved by some corresponding elliptic solver (cf.appendixA). The
operatorL is discretized using standard finite differences:

(Lω)i,j = (1 + 4∆tν)ωi,j − ∆tν (ωi+1,j + ωi−1,j + ωi,j+1 + ωi,j−1) .

The following sections will concentrate on the discretization of (D.4) using a Fromm-van Leer
scheme.

D.2. Fromm Scheme

u2, i, j+1/2

u2, i, j−1/2

u1, i+1/2, j1, i−1/2, ju

ωi,j

i, j+1/2

i, j−1/2

i−1/2, j i,j i+1/2, jω

ω

ωω

ω

Figure D.1.: Finite Differences using Fromm Scheme.Left: Velocity componentsu1 andu2 on
the cell edges.Right: Vorticity ω on the cell edges.

When discretizing (D.4), the main problem is the discretization of(u · ∇)ω
n+1/2
i,j . As we are

considering theincompressiblevorticity transport equation, it is clear that

(u · ∇)ω = ∇ · (uω).

Using standard upwind-schemes for finite differences,∇ · (uω) can be discretized as

∇ · (uω)
n+ 1

2

i,j = u1,i+ 1

2
,jω

n+ 1

2

i+ 1

2
,j
− u1,i− 1

2
,jω

n+ 1

2

i− 1

2
,j

+ u
n+ 1

2

2,i,j+ 1

2

ωi,j+ 1

2

− u2,i,j− 1

2

ω
n+ 1

2

i,j− 1

2

.

The question remains, how to compute the vorticities at the four cell boundaries. We will only

derive the formula for estimating the vorticityω
n+ 1

2

i+ 1

2
,j

, the derivation of the other three vorticities

is analogous. A linearized Taylor series for this right edge yields the following approximation:

ω
n+ 1

2

i+ 1

2
,j

≈ ωn
i,j +

1

2
∆x

∂ω

∂x
+

1

2
∆t

∂ω

∂t
. (D.5)
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For ∂ω
∂t , we can substitute our initial partial differential equation (D.1) and obtain

ω
n+ 1

2

i+ 1

2
,j

= ωn
i,j +

1

2

∂ω

∂x1
+

1

2
∆t

(

−u1
∂ω

∂x1
− ω

∂u1

∂x1
−
∂(u2ω)

∂x2

)

= ωn
i,j +

1

2
(1 − u1∆t)

∂ω

∂x1
−

1

2
∆t ω

∂u1

∂x1
−

1

2
∆t

∂(u2ω)

∂x2
. (D.6)

The discretization of this equation is:

ω
n+ 1

2

i+ 1

2
,j

= ωn
i,j +

1

2

(

1 − u1,i+ 1

2
,j∆t

)

∆V L
x1
ωi,j −

1

2
∆t ωn

i,j

(

u1,i+ 1

2
,j − u1,i− 1

2
,j

)

−
1

2
∆t

(

u2,i,j+ 1

2

ωupwind

i,j+ 1

2

− u2,i,j− 1

2

ωupwind

i,j− 1

2

)

(D.7)

where∆V L
x1

is the so-called van Leer slope, that will be defined in the next section. Theterm

that introduces theu2 component (∂(u2ω)
∂x2

) is discretized using anupwind scheme: We think
of the direction of information transfer as flowing from the upstream to downstream locations.
Thus, to evaluate some quantity at a certain point, we only need information from the upstream
region. Forωupwind

i,j+ 1

2

this yields, e.g.,

ωupwind

i,j+ 1

2

=

{

ωn
i,j if u2,i,j+ 1

2

> 0

ωn
i,j+1 if u2,i,j+ 1

2

< 0
.

D.3. The van Leer Slope

The Fromm Scheme introduced in the preceding section is second-order accurate (we do not
only have values forω at the cell centers, but also values at the cell boundaries). However,if
there are discontinuities in the flow, Fromm’s second-order scheme will lead tooscillations that
yield instabilities (cf. e.g. [Hir84]). A possibility to overcome this problem (but still retain
higher-order accuracy) is the strategy to use Fromm’s Scheme in smooth regions, but go back to
first-order accuracy in regions where discontinuities are detected. Thiscan be done by defining
the so-called van Leer slope (cf. (D.7)):

∆V L
x1
ωi,j =

{
sign(ωi+1,j − ωi−1,j)min{slopex1

} if ϕx1,i,j > 0
0 if ϕx1,i,j < 0

(D.8)

where

ϕx,i,j = (ωi+1,j − ωi,j)(ωi,j − ωi−1,j) (D.9)

and

slopex1
= {2|ωi,j − ωi−1,j |,

1

2
|ωi+1,j − ωi−1,j |, 2|ωi,j − ωi+1,j |}.

∆V L
x2

can be computed analogously.
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