Variational Fluid Motion Estimation
with Physical Priors

Inauguraldissertation
zur Erlangung des akademischen Grades
eines Doktors der Naturwissenschaften
der Universi&t Mannheim

vorgelegt von

Dipl. Inf.
Paul Ruhnau

aus Neustadt a.d. WeinstralRe

Mannheim, 2006



Dekan: Professor Dr. Matthias Krause, UnivertsMannheim
Referent: Professor Dr. Christoph Sénn Universitit Mannheim
Korreferent: Professor Dr. Berndldne, Universit Heidelberg

Tag der niindlichen Piafung: 31. Mai 2007



Abstract

In this thesis, techniques for Particle Image Velocimetry (P1V) and Partieekimg Velocime-
try (PTV) are developed that are based on variational methods. Theithes is not to estimate
displacement vectors locally and individually, but to estimate vector fieldsxdsobe by mini-
mizing a suitable functional defined over the entire image domain (which may loe 2D and
may also include the temporal dimension). Such functionals typically compris¢etwis: a
data-term measuring how well two images of a sequence match as a functimnwvefctor field
to be estimated, and a regularization term that brings prior knowledge inta¢ngysfunctional.

Our starting point are methods that were originally developed in the fieldropater vision
and that we modify for the purpose of PIV. These methods are basedewsothalled opti-
cal flow: Optical flow denotes the estimated velocity vector inferred by divelanotion of
camera and image scene and is based on the assumption of gray valugatmrsé.e. the total
derivative of the image gray value over time is zero). A regularization ténmat emands e.g.
smoothness of the velocity field, or of its divergence and rotation) reritiersystem mathe-
matically well-posed. Experimental evaluation shows that this type of varidtaguaoach is
able to outperform standard cross-correlation methods.

In order to develop a variational method for PTV, we replace the contgdata term of
variational approaches to PIV with a discrete non-differentiable partictetnmay term. This
raises the problem of minimizing such data terms together with continuous regtitamizerms.
We accomplish this with an advanced mathematical method, which guaranteesgemte to
a local minimum of such a non-convex variational approach to PTV. With thislrvariational
approach (there has been no previous work on modeling PTV methods wiihl glriational
approaches), we achieve results for image pairs and sequences imdwoee dimensions that
outperform the relaxation methods that are traditionally used for particliitigac

The key advantage of our variational particle image velocimetry methods, shdree to
include prior knowledge in a natural way. In the fluid environments thatneeansidering in
this thesis, it is especially attractive to use priors that can be motivated fadwisical point of
view. Firstly, we present a method that only allows flow fields that satisfy tbkeS equation.
The latter equation includes control variables that allow to control the offfiieako as to fit the
apparent velocities of particles in a given image pair. Secondly, wergrasariational approach
to motion estimation of instationary fluid flows. This approach extends the pritthrati@long
two directions: (i) The fullincompressible Navier-Stokes equation is emgloyerder to obtain
a physically consistent regularization which does not suppress tutlfldenvariations. (i)
Regularization along the time-axis is employed as well, but formulated in a rechdiizon
manner contrary to previous approaches to spatio-temporal regulanizatio

Ground-truth evaluations for simulated turbulent flows demonstrate thattieszy of both
types of physically plausible regularization compares favorably with agbaoross-correlation
approaches. Furthermore, ttlieect estimation of, e.g., pressure or vorticity becomes possible.






Zusammenfassung

In dieser Arbeit werden Technikeiirf Particle Image Velocimetry (PIV) und Particle Track-
ing Velocimetry (PTV) entwickelt, die auf Variationsasen basieren. Die grundlegende ldee
dabei ist, Bewegungsfelder nicht lokal zu &tten, sondern global durch die Minimierung eines
geeigneten Energiefunktionals, das im gesamten Bildbereich definient s¢stimmen. Dieser
Bildbereich kann 2D oder 3D sein und auch die zeitliche Dimension mit einsehlieBolche
Funktionale bestehen typischerweise aus zwei Termen: Der Datenterm) wisgut zwei
Bilder eines zu berechnenden Vektorfeldes aufeinander abgebi&tden; und der Regulari-
sierungstermdf3t Vorwissen in das Funktional einflie3en.

Den Ausgangspunkt unserer Arbeit stellen Methoden dar, dieiuingfich im Bereich der
Computer Vision entwickelt wurden und die wirfPI1V modifizieren. Diese Methoden basieren
auf dem sogenannten optischen Fluss — der gastEn Geschwindigkeitsverteilung, die sich
durch eine relative Bewegung von Kamera und Szene ergibt. Der optdohs basiert darauf,
dass man Grauwerterhaltung annimmt (die Materialableitung des GrauweiBsldfanktion
Uber die Zeit soll null sein). Ein Regularisierungsterm (beispielsweis@udimhme, dass das
Vektorfeld oder dessen Divergenz oder Rotation glatt ist) macht désdPnanathematisch gut-
gestellt. Experimentelle Untersuchungen zeigen, dass unser Variasatsam der Lage ist,
Standard-Kreuzkorrelationsverfahrenisertreffen.

Um unsere Variationsaatze auchiir PTV anzupassen, ersetzen wir den kontinuierlichen Da-
tenterm durch einen diskreten, nicht differenzierbaren Matchingy.TBies ihrt zu der Frage,
wie sich solche Datenterme zusammen mit kontinuierlichen Regularisierungsterimienieren
lassen. Wir erreichen das Ziel, in dem wir eine fortschrittliche mathematisctieobe verwen-
den, die die Konvergenz eines solchen nicht-konvexen Funktionalimemédokalen Optimum
garantiert. Mit diesem neuen Ansatz erzielen wir bessere ErgebfiisBddpaare und Bildse-
guenzen in zwei und drei Dimensionen als mit relaxationsbasierteit2aers, die normalerweise
fur solche Aufgabenstellungen verwendet werden.

Der Hauptvorteil von Variationsaatzen tir P1V ist allerdings die Mglichkeit, Vorwissen auf
eine nailrliche Art und Weise einzubringen. Da wir&mnungsmechanische Bilder analysieren,
bietet sich nairlich vor allem die Verwendung von stmungsphysikalischem Vorwissen an.
Wir verwenden zwei verschiedene Arten von physikalischem Vorwisdenachst pasentieren
wir eine Methode, die nur Vektorfelder Adst, die die Stokes-Gleichungi@tén. Dazu tihren
wir Kontrollvariablen ein, die den optischen Fluss so kontrollieren, daderesich bewegenden
Partikelteilchen folgt. Wir erweitern diese Methode schlief3lich in zwei Riclenangum einen
verwenden wir die vollgindigen Navier-Stokes Gleichungen, um physikalisch konsistent zu
regularisieren und turbulente Geschwindigkeitsschwankungen nialmiteudiicken. Zum an-
deren regularisieren wir zatlich entlang der Zeitachse, allerdings — im Gegensatzihefen
ortlich-zeitlichen Regularisierungstermen — mit einem “receding horizorfatieen.

Experimente zeigen, dass beide Arten von physikalisch konsistentetaRsmguung in der
Lage sind, die Genauigkeit von modernen korrelationsbasierten RfghWen zulbertreffen.
Zusatzlich ist einadirekteBestimmung z.B. von Druck oder von Wirbeiske noglich.
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1. Introduction

1.1. Motivation

There are many technical areas of application where it is necessary somdmw in liquids.

In a motor, e.g., one may want to measure how well gas inserted througlkesiodizperses in
the cylinder. An even distribution is very important as it guarantees competbuwstion and
thus a better performance of the motor.

The shape of the combustion space, the position and placement of thesrazzlell as the
velocity with which the liquid is brought into the experimental space must betedlén effect
a quick introduction of equal distribution.

It is very difficult, however, to compute such complex flow fields in liquidsisTis why one
may want to consider methods of image processing: One chooses aimexyal setup, thus
modeling the system in which the motion of a liquid is to be measured. Particlescarghibr
into this liquid (the so-called “seeding”) and the flow is photographed with la-Bjmeed camera.
Then the distance the particles have traveled in the flow is measured. As the tiamealiis
known, one can deduct the speed of the flow. Good illumination is importanasalttthe par-
ticles will be visible in each picture recorded by the camera. Furthermor@tdreal between
two consecutive pictures should be as short as possible.

The main advantage of this method is that it is non-intrusive and that instantmelocity
fields are obtained. The information may then be used to rate the photodrsygtem and to
enhance it.

Usually, cross-correlation methods are used to analyze the recorded paaig/sequences.
While these methods will yield good results in most scenarios they are subgati® funda-
mental limitations (which are often mitigated by certain add-ons and post-jginggsocedures,
cf. sec.2.2.7). In this thesis, we will show how to incorporate prior knowledge aboufltve
in a mathematically sound way by using variational methods.

Experimental evaluation confirms that our type of variational approadblésta outperform
standard cross-correlation methods in the following aspects:

e Resolution: Dense(i.e. one vector per pixel) velocity fields are reconstructed. The size
of the interrogation areas does not limit the resolution.

e Accuracy: Large velocity gradients are admissible. (No assumption of a negligible mo-
tion field variation inside interrogation areas.)

e Spatial context: Prior knowledge about spatial flow structures can be exploited during
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estimation. Ambiguities are resolved by use of neighborhood information. €d for
post-processing.

1.2. Related Work

As Particle Image Velocimetry (P1V) is an industrially very relevant redetpic, there exists
a vast amount of literature on many methods to analyze particle image paireguehses.
Furthermore, different commercial software packages for the analfy§ltv image pairs and
sequences are available. Nearly all available methods can be devidediéntd e following

three categories:

(i) Cross Correlation Methods Most methods for analyzing PIV data can be seen as exten-
sions to cross-correlation approaches. A complete survey of thesedaatbald be beyond the
scope of this manuscript — a brief review dealing predominantly with the fuedégal limitations

of cross-correlation approaches will be given in secidhl

(ii) Particle Tracking Methods While most PIV methods that operate on gray value im-
ages are based on cross-correlation, literature clearly presents rstnetdarticle tracking
approaches. Most of these PTV approaches have two steps in commnsinth& individual
particles are extracted from the gray value structure of the image and theortiespondence
problem (as to which particle in the first frame corresponds to which paitictbe second
frame) is solved. In se@.2.2we will go into different PTV methods.

(iii) Local Optical Flow Methods Inthe computer vision community, optical flow methods
are much more common than cross-correlation-based approachesappzaches for optical
flow estimation were introduced in the early 1980s by Lucas and Karnad&l]. In the last
few years these methods (which were originally developed for genetamestimation tasks)
have been successfully applied to PIV scenarios. We will sketch lotalabfiow methods in
section3.3,

(iv) Variational Optical Flow Methods Variational methods for motion analysis go back to
the early 1980sH S81] and were originally developed for more general motion estimation tasks
(motion in traffic scenes, robot vision, ...). Since then, there has beeatdgal of research on
different methods for the recovery of optical flow in different scamfe.g. BFB94, BB99)).
This also led to the development of variational methods for the analysis of raktgical flows
and fluid flows JVALL97, BHY00, CMP0Z. Note that these methods (which we will describe
in sec.4.1.7) were developed for so-called “passive scalar’-scenarios in whielimage gray
values observe the conservation of mass just as does the fluid deRsitymagery obtained by
the typical PIV method, these approaches are not adequate. Variatiettadds that are suited
for PIV data have been proposed only very recentliyl503, CHAT05, YRMS05. We will
describe these methods in sectto.

1In this manuscript we concentrate on developing methods for the anafysisticle image pairs and sequences.
At some points (cf. sect.1.4 5.3.3 and5.4.3, however, we will show that our methods are able to outperform
standard cross-correlation methods’ performance for passiarsmage pairs and sequences.



1.3. Contribution

The approaches that we will present in this thesis can be classified intatdgodes (ii) and
(iv). In comparison to the above approaches, the main points of ouraverk

e We present variational methods for both PIV and PTV scenarios. Indashs we adapt
the data term in a way to fit the individual structure of PIV imagery.

e We do not only adapt the data term to the individual requirements of PIVdatae also
use the variational framework in order to include physically motivated prionwkedge
into the regularization term.

In this manuscript, we will compare our approaches with the different congpenethods
whenever this is possible (se¢.1.4 4.2.3 5.1.4 5.3.3 5.4.3. This comparison is performed
in order to give the reader an idea about why which methods yield goodésatts on which
image data. We believe that reliable conclusions about the advantagesathehdtages of the
individual methods are crucial for further development of the individlgorithms.

1.3. Contribution

Our main research interest is to develop new techniques for PIV and B3&tlon variational
methods. The basic idea is not to estimate displacement vectors locally aniduadliy but
to estimate vector fields each as a whole by minimizing a suitable functional defieedhe
entire image domain (which may be 2D or 3D and may also include the temporal édmens
Such functionals typically comprise two terms: a data-term measuring how welhtages of
a sequence match as a function of the vector field to be estimated, and aize¢jolaterm that
brings physically motivated prior knowledge into the energy functional.

(i) Variational Particle Image Velocimetry [RKNS05, YRMS05, RKNS04]  Our start-
ing point are methods that were originally developed in the field of computenésnd that we
modify for the purpose of PIV. These methods are based on the so-optiedl flow It denotes
the estimated velocity vector inferred by a relative motion of camera and image snd is
based on the assumption of gray value conservation (i.e. the total dexightihe image gray
value over time is zero). A regularization term (that demands e.g. smootbhtss velocity
field or of its divergence and rotation) renders the system mathematicallypwosdld. Exper-
imental evaluation shows that this type of variational approach is able tortartpestandard
cross-correlation methods. In chap8iwe will review the pioneering variational optical flow
approach by Horn&Schuncki5871] and adapt it in chaptetto the special requirements of PIV.

(ii) Variational Particle Tracking Velocimetry [RGS05b, RGS05a] Particle Tracking
algorithms are becoming more and more popular as they are capable of yieigley resolu-
tion velocity fields (i.e. one vector for every particle image). Furthermorg taa be easily
supported and combined with 3D stereo reconstruction, leading to hightiea®8D3C vector
fields. We generalize the class of variational approaches (descril§gyltim Particle Tracking
Velocimetry. To this end, we replace thentinuougdata term of variational approaches to PIV
with a discretenon-differentiable particle matching term from PTV. This raises the problem
of minimizing such data terms together witbntinuousregularization terms. We accomplish
this with an advanced mathematical method, which guarantees convergeriogabminimum
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of such a non-convex variational approach to PTV. With this novel tranal approach (there
has been no previous work on modeling PTV methods with global variatippabaches), we
achieve results for image pairs and sequences in two and three dimensibastgerform the

relaxation methods that are traditionally used for particle tracking. We ibesour variational

particle tracking approach in set.2.

(iii) Physical Priors [RS06b, RS06a, RS06¢, RSS06a, RSS06b] The key advantage of
our variational particle image velocimetry methods, is the chance to includekpigardedge in
a natural way. Note that the only prior knowledge that we used in (i) is th@gmess of the
velocity field (and divergence and curl, resp.).

In sec.5.3, we present an approach to motion estimation between image pairs basditah op
flow estimation subject tphysicalconstraints. Admissible flow fields are restricted to vector
fields satisfying the Stokes equation. The latter equation includes contiables that allow to
control the optical flow so as to fit to the apparent velocities of particles imemgmage pair.
We show that when the real unknown flow observed through image nesasats conforms
to the physical assumption underlying the Stokes equation, the controblesriallow for a
physical interpretation in terms of pressure distribution and forces aatitigeofluid. Although
this physical interpretation is lost if the assumptions do not hold, our apprstdl allows for
reliably estimating more general and highly non-rigid flows from image paidgsigmble to
outperform cross-correlation-based techniques.

In sec.5.4, we present a variational approach to motion estimatiangsationaryfluid flows.
This approach extends the prior method along two directions: (i) The fuhipcessible Navier-
Stokes equation is employed in order to obtain a physically consistent riegtitam which does
not suppress turbulent flow variations. (ii) Regularization along the tingeisdemployed as
well, but formulated in a receding-horizon manner, contrary to previppsoaches to spatio-
temporal regularization. This allows for a recursive on-line (hon-hamplementation of our
estimation framework.

Ground-truth evaluations for simulated turbulent flows demonstrate thatodugosing both
physical consistency and temporal coherency, the accuracy of #tmation will compare
favorably even with advanced cross-correlation approaches aitalojiow approaches based
on higher-order div-curl regularization.

1.4. Organization

Chapter2 gives a short overview of PIV recording techniques and it addition&iches the
standard methods that are usually applied to analyze PIV imagery. We poithidimitations
of the individual methods, thus motivating the use of variational methods inubseguent
chapters.

Chapter3 gives an introduction to variational approaches in general and therritdioaal
approaches for motion estimation. We also go into the discretization of the guenitigl differ-
ential equations.

In chapter4, we adapt the data term of our prototypical variational approach giteh&
to the specific demands of PIV data. This yields on the one hand a variatippedach for
PIV (sec. 4.1) and a variational approach for particle tracking on the other hand &e&x
In the corresponding experimental sections we show comparisons witlastibapproaches for
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velocity estimation from PIV images.

In chapter5, we address the question of how to adapt the prototypical regularization ter
from chapter3 to the specific demands of PIV velocity fields. We collect different possilslitie
of minimizing variational motion estimation functionals that incorporate higherrowtpuilar-
ization, and show in the experimental section how these improved regulamizatios help to
estimate more accurate velocity fields. In s&c2, we discuss a possible physical interpreta-
tion of the standard regularization terms introduced in s&d.and5.1.2 We bring forward
the argument that even higher order regularization is physically not igaliyd. Consequently,
we turn towards physically more plausible regularizers in sectioBand5.4. In sec.5.3 we
use the linearized steady version of the Navier-Stokes equations ast (gifirgle) physically
plausible regularizer. We show that if the flow is actually governed by thikeStequation, we
are not only able to estimate reliable velocity distributions but we can also gagsyre and
force estimates. Though this interpretation will not be valid if the flow is noeguwed by the
Stokes equation, we show that we can still estimate very reliable velocity fleldec.5.4, we
expand the approach to the analysis of whole image sequences. Indteaflioearized) Stokes
eqguation, we use the vorticity transport equation as prior knowledge eggtion contains the
full Navier-Stokes equations and is therefore also valid in turbulentesmen Furthermore, it
allows the incorporation of temporal coherency in the estimation process.

We conclude in chapted by summarizing our work and indicating open problems and possi-
ble extensions.

AppendixA contains the mathematical basis that is needed to discretize and numerically solve
the elliptic systems that we encounter throughout the whole manuscript.

AppendixB forms the extension of appendixto saddle-point problems that we encounter
in chapterb.

In appendixC, we outline the basic equations of fluid mechanics and introduce some relevan
special cases and simplifications.

In appendixD, we finally sketch the discretization of the vorticity transport equation that we
use as a physically plausible prior in séc4.
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2. Particle Image Velocimetry

This chapter is to serve as a short introduction into what is called “Particlgdidelocimetry”
(PIV). The term includes on the one hand the technical backgroundidfifhage capturing
(with high-speed camera systems) and on the other hand the algorithmid (digital) image
sequence analysis. Note that our review is far from being complete — ithisrra collection
of different aspects/techniques which we will come back to in the followiraptdrs. For a
complete overview on PV, the reader is referredo\[K01].

In order to understand the very specific nature of captured fluid imagegees, it is crucial to
get an idea of how the images are obtained. Se@iarsketches the technical background of
the recording process. We start with traditional two-dimensional PIV abhdexjuently outline
generalizations of these techniques to 3D.

2.1. Recording Techniques

Particle Image Velocimetry is an optical method that is used to measure velocitgesteer

derived quantities) in fluids. As fluids are commonly non-textured, therenisea to add a
texture to the fluid so that fluid motion can be perceived at all. For this perp@ser particles
are usually added to the flow. There is a vast literature on tracer partiaigfeoent materials
and sizes (for different experimental setups); for a survey we tefé/e/97].*

2.1.1. Traditional 2D PIV Recording

Figure 2.1.: Typical PIV images when using different tracers.

Whole velocity fields are to be measured by taking two (or more) images of ths, ftme
shortly after the other, and calculating the distance the individual partialesthaveled within

INote that there are also different ways to add texture to the fluids. MoteEatging Velocimetry (MTV), e.g., is
a specific form of velocimetry in which laser beams “write” structures inéoflilid. These structures then move
with the fluid. Accordingly, PIV image evaluation techniques are applicabledise scenarios as well.
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this time. If we assume that the seeded particles have actually followed the mbtianftuid

/&
Camera

Figure 2.2.: System components for PIV

(an assumption that usually holds true if the added tracers are propesgrohthen the velocity
of the fluid can be calculated from the known time difference and the mehdisglacement.
Note that acceleration information cannot (at least not without addingi@aal constraints)
be obtained from the analysis of image pairs only. To avoid blurred images thte flow is
fast, laser pulses are used (usually Nd:YAG). As they are only 6-10ngs fbey are capable of
freezing any motion. The use of laser pulses has a second advantalgdasgr light can be
focused (usually using a cylindrical lens) into a light sheet thin enoudghatqust the particles
on the one plane are imaged. A special CCD camera has to be used. Ilteraldéeio store the
first image fast enough to be ready for the second exposure. Tleuslg¢hd” time — when the
camera is “blind” between two images — can be reduced to 20085/ ([1]. Traditional PIV
camera systems allow the capturing of image pairs dnly.

The main advantage of Particle Image Velocimetry (in contrast to other te@witike hot-
wire anemometry) is that it ison-intrusivé. This allows the measurement of velocity also in
scenarios where probes would distort the velocity field (e.g. high-dpe@ddary-layer flows).
In contrast to hot-wire techniques, it is furthermore possible to measufftheelocity in a
whole cross-section of the fluid in paralleltfole field technigye Huge amounts of flow data
can be obtained in a comparatively short period of time. This allows for atitatievaluation
of flow field properties over time.

There are, however, also disadvantages: Tracers have to balsetdthe fluid; this seed-
ing is often not possible in real applications (e.g. due to temperature). Fudhe it is often
problematic to position the tracers in the very locations where the flow is to beunsea<Ex-
perimental conditions sometimes forbid the rather sophisticated positioning différent P1V
components.

Furthermore, the described experimental setup is only capable of yielDingl2city fields. If

2Note that this limitation is overcome by some recent (expensive) highdspmmera systems.

3 . S . . .
It has been shown that properly chosen tracer particles generalig cenly negligible distortion of the velocity
field [Mel97].
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a tracer particle leaves the illuminated plane (out-of-plane motion), the pawités for even
disappears. On the other hand, particles can enter the illuminated planerieframe to the
next frame. Both scenarios will lead to motion estimation errors — no matter wigichitm is
used for image analysis. To summarize, only 2D motion (i.e. the 2D projectioBDfraotion)
can be captured. This is a decisive drawback, as fluid motion is intrinsicAllyrBthe next
section we will see, however, how the principles of PIV can be genedai@aD.

2.1.2. Generalization to 3D

The most straight-forward method to obtain information about the out-okeptamponent is
the use of one or two additional cameras (or alternatively a system of mplaced in front of
a single camera). For a review of stereoscopic PIV, we refePta((] and references therein.
Note that these techniques are capable of yielding all three componentsf(8@ velocity.
However, only velocity vectors in a 2D slice are recovered. These wypstereoscopic tech-
niques are therefore referred to 283C. If enough illumination is available, the thickness of
the laser light sheet can be expanded. In this way, velocity informatioreias8D cube can be
obtained (3D3C}EAP94, Maa92z Maa92ij.

A different family of approachesl(ial plane PIV [RW\W " 96]) uses a third recording while the
laser light sheet is slightly shifted. On the basis of the relative motion frontiginesheet to the
next, 3D motion can be reconstructed. This technique is expandable tonngdke velocities
in a whole volume as wellHru95 Bri9q if one uses a scanning light-sheet setup.

2.2. Standard Evaluation Methods for Fluid Images

With the knowledge of how the individual images are captured, we want toteuthe actual
image processing now. The terra®ss-correlation particle image velocimet(¢€C-PIV) and
particle tracking velocimetryf{PTV) denote established classes of image processing methods
for extracting the underlying velocity fields in particle images. CC-PIV metlamsate on
gray-level images, while PTV approaches determine the flow field by trqakdividual tracers
[RWK99].

2.2.1. Cross-Correlation PIV

In this section we want to introduce cross-correlation particle image velogiife@-PIV). CC-
PI1V has become the best-known and most widely used experimental mettilmivfestimation.

Let I(x1,29,t) denote the gray value recorded in the image plane at locétion:,) " and
time ¢t. A basic assumption underlying most approaches to motion estimation (includisg ¢
correlation PIV approachesdoptical flow approaches) is thais conserved, that is the change
of I(xy1, x2,-) at location(x1,z2) " is due to a movement df(z1, z2,t) to the location(z; +
u1 At, 29 + us At) T during a time intervalt:

I(z1 + u1 At, o + uoAt, t + At) = I(:cl,:cg,t) .

A common approach to estimatiiig; , u2) " at some fixed locatiofwy, 7z) " on the image grid
(z1,29) " = (k1Azy, keAxo) T, ki, ko € Z, is to assume, andu, to be constant within a local
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spatial aredV (z7, 73) around(z1,73) | and to minimizé

ST [k +w At By + upAt o+ At) — Ik, ko, 1))
k1,ko €W (71,72)

as a function ofu; anduy. Assuming additionally thazk1 ko €W (77,73) I(ky1, ko, t)? does not
vary with (z1,73) ' °, the minimizing values ofi;, us maximize the correlation function

P(x1,20) = S I(kr +u At ky + upAt t+ At) I(ky, koyt) . (2.1)
k1,ke €W (Z1,73)

For each choice of a shift:1, z2), the sum of the products of all gray values in a certain neigh-
borhoodWW (also callednterrogation window produces one cross-correlation valbie:, x2).
Figure 2.3 shows how this is performed in practice: A template of the size of the neighbor-
hood W (here: 4) is extracted from/(z1, z2,t) and a sample of the size of the search re-
gion is extracted from/ (z1,x2,t + At) (here: 8). The template is linearly shifted around
the search region. For every integer shift (in our toy example, 25 shiftpassible, with
-2 < x < 2,-2 < xy < 2), the corresponding correlation coefficient is computed using
(2.2). This yields a whole cross-correlation plane (as indicated in figufe For those shifts
that align the particles of template and sample, the cross-correlation plandnovill & maxi-
mum.

Standard cross-correlation techniques have some fundamental limitatigsts agim, however,

be weakened by certain strategies that we will illuminate in the succeedingrsectio

e The process of finding the highest correlation value for every winddimis-consuming.
The number of multiplications per correlation value increases in proportioretotér-
rogation window area. Most cross-correlation PIV approaches dvisdostly computa-
tion by performing a complex conjugate point-wise multiplication of the two-dimeasion
Fourier-transformed sub-images (cf. sB2.1(i)).

¢ Due to the statistic nature of cross-correlation PIV, there is a trade-tffele@ interro-
gation window size and resolution of the recovered velocity estimates. kargws
lead to robust but coarse estimates, small interrogation windows yield higbaution
estimates, which are, however, error-prone due to noise. Ii2s2d.(ii), we will review
some window refinement techniques that are used to recover highiiesolalocity es-
timates.

e The cross-correlation method recovers only linear shifts. Only one dsplant estimate
is recovered per interrogation window; the cross-correlation functitippeak at the av-
erage linear shift of all particles within the interrogation window. Howethas, peak will
be less pronounced in regions with a large velocity gradient. Iterative ichefgemation
techniques (cf. se@.2.1(iii)) have been suggested by a number of authors.

e Cross-correlation yields only integer value velocity reconstruction. tierza displace-
ment estimates can be obtained using correlation peak detection and skibtpix®la-
tion (sec.2.2.1(iv)).

“Without loss of generality we takAz = Ay = 1.
5In fact, modern cross-correlation PIV techniques take into accowttasfiluctuations in/ by normalizing the
correlation coefficients.

10
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e Motion estimation is carried out regardless of spatial context. As a coeseguprior
knowledge about spatial flow structures is not exploited directly duritigpason, and
missing motion estimates in image regions, where a correlation analysis yield§-no re
able estimates, have to be heuristically inferred in a post-processing stegg¢c2.2.1
(v)). Sometimes, physics-based priors (cf. s&€.1(vi)) are used which ensure that the
resulting velocity field satisfies the continuity equation or the Navier-Stokesteaq.

Shift: x1=-2,x2=2 Shift: x1=0,x2=0 Shift: x1=2,x2=1
Shift: x1=-1,x2=-1 Shift: x1=1,x2=-2

2

1 \

> 0
_1 T
-2
-2-10 1 2

x1

Figure 2.3.: Cross-correlation Overview: Formation of the cross-lativa plane (middle). A
4 x 4 template is correlated with & x 8 sample. This yields & x 5 correlation
plane.

(i) Frequency based Correlation

Most cross-correlation PIV approaches avoid the time-consuming ctdmdaof 2.1) by tak-
ing advantage of the correlation theorem, which states that the cros$atiom of two func-
tions is equivalent to a complex conjugate point-wise multiplication of their two-dsinaal
Fourier-transforms. This fact is expressed by the correlation theptam37]. Let I1(x1, z2) =
I(.’El, x9, t) andIQ(xl, 562) = I(SEl, xo,t + At) Then

d(z1,22) & L1(E,n) I3 (& m), (2.2)

wherel; denotes the Fourier transform of the functitmandfék represents the complex conju-
gate of the Fourier transform of the functidn Transforming the image samples to the Fourier
domain, doing the complex-conjugate multiplicati@n?j there and transforming the data back,
reduces the complexityof the overall computation fror®(N*) to O(N2%logN). Note, how-
ever, that the finite size of the windows (equivalent to the assumption ofthebeing periodic)
leads to a biasing of the correlation data towards small displacenm@nts(1]. This bias can,

in turn, be eased if multi-pass techniques are applied (cf. next section).

5N x N is the size of the two input samples.

11
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correlation value

Figure 2.4.: Cross-correlation Plane: If the experimental conditionsare, gpne exposed cor-
relation peak is generated. Peak detection yields the integer offset).

(ii) Multi-Pass Techniques, Iterative Refinement

Figure 2.5.: Multi-Pass Computations: Resulting coarse vector fields arpatatrd to the fine
grid.

It has been shown/JDG97] that by offsetting the correlation windows (according to a pre-
viously computed velocity estimate), the number of matched particles incredseslly, three

multi-pass steps are performed.
The resolution and accuracy of the velocity estimates is further incregstatdttive refinement

techniques$R99:

e Compute a first cross-correlation between the two images using a largemsmd(V x
N).

e Scan for outliers and replace by interpolation.

12
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e Halve the size of the interrogation window¥ (x N — N/2 x N/2). Project the coarse
interrogation result to the new (smaller) windows (cf. figh). Offset correlation windows
according to this prediction, and perform cross-correlation.

e Repeat items 2 and 3 until the desired resolution is reached.

The choice of the final interrogation window size depends on the particisitgie At least 4

particles pairs should be located inside both corresponding interrogaiticiows.

In contrast to traditional single-pass cross-correlation methods, thdgeoass techniques with
iterative refinement allow for the decoupling of maximum in-plane displacearm@hinterroga-
tion window size. This yields superior results in cases where image dendityyaamic range
in displacements are high. Note, however, that the windows themselvestdeformed by

this method. Therefore, only linear shifts (i.e. all particles in the window aenasd to travel
with the same, constant speed) are taken into account. If this assumpti@matoleold, the

correlation peak (in every iteration) will be less pronounced.

(iii) Iterative Image Deformation Techniques

Figure 2.6.: Different orders of image deformatidreft: Oth order,Middle: 1st orderRight:
2nd order

Until now we have only considered algorithms that assume a constant @isgat within
every correlation window. We have already seen that this assumption pieldiems for highly
non-rigid flows that exhibit strong velocity gradients within the interrogatiardaws. To over-
come these problems many authors have suggested schemes that iterafwetyttie interro-
gation windows [HF\W93, JIDAF95 TD95]. The corresponding displacement distributions vary
spatially over the interrogation windows. Scaraf@§0} classifies the different methods as
depending on how many terms of a truncated Taylor series they consigefnaylor series that
is used to estimate the displacement distribution over the finite interrogation isgiven by

ou

o, ) =u(a ) + () o = o) + (5) (a2 = a9)

(G2 + () ==+ (55 =]

+ O(IE - CL‘0)3

. 1 1 1 1
with z; € [27 — s ) + 5W] andz, € [29 — sV 9 + 5W] ,

13
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where (2{, 29) denotes the center of the interrogation wind&# Note, that the approach
described in sec2.2.1(ii) can be classified as zero order displacement predictass it uses
merelyu(xq, z2) = u(29, 29) for interpolation. Linearfirst order) displacement predictors are
the most commonly used window deformation techniques (&lG\V\93 JIDAF9Y): After a
first cross-correlation sweep, the (piecewise linear) displacemeribdifin inside the corre-
lation windows is estimated, using a linear interpolation with respect to the in&iwoaggrid
points. Higher-order methods are applied less often, as the numberashet@rs increases
exponentially with the increase in truncation order.

(iv) Correlation Peak Detection and Sub-Pixel Interpolation

Recall that the result of the cross-correlation evaluation is a correlal@oe phat (hopefully)
has one single peak at a certain location. However, correlation valugsxist for integer
displacements. Nevertheless, it is possible to achieve sub-pixel agdwyrarsing peak-fitting
functions. This is usually done in the following way: One searches for ifjieekt value in
the correlation plane. Suppose this value is located at the integer coosdihgte Mainly,
three-point estimators are used that use the correlation values at pogitipng: — 1,7),(i +
1,79),(4,7 — 1),(i,7 + 1) in order to fit the peak. There are three well-known interpolation
functions:Peak CentroidParabolic Peak FiandGaussian Peak Fit

e Peak Centroid: The ratio between first order moment and zeroth order moment is com-
puted. For the x coordinate this yields

0 _ (=16 —1,5) +i6(i,5) + (i + 1)l + 1)
! o(i — 1,5) + ¢(i,§) + ¢(i + 1,5) ’

and analogue for the, coordinate.

e Parabolic Peak Fit: It is more robust to fit the correlation data to some function. If we
use three points in every direction, this fit function is parabolic:

f(z) = Az’ + Bz + C
Straight-forward calculations yield therefore

¢(i—1,5) —oi+1,j)
2(¢(i — L,j) = 2¢(i,§) + o(i +1,5))

and the analogue for the, coordinate.

) =i+

e Gaussian Peak Fit: The most widely used peak fit function is the Gaussian function
because the particles themselves can be described very well by Gangsiesity distri-
butions

(0 2
o) = Cexp — 00
This leads to the following peak estimator

and the analogue for the, coordinate.

0_.
.1'1—2‘1’2
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Note that these interpolation functions are capable of detecting peaks witbcaracy up to
0.05 pixels. However, it has been found independently by many authors;ritsg-correlation
estimates tend to be biased towards integer displacements. This effect istigestthe smaller
the particles get. It is clear that the reason for this effect has to lie in thpigabinterpolation

routine, in fact it is due to interpolation effects. For a detailed discussigeak locking, we

refer to [Wes93.

(v) Post Processing: Data Validation

It is clear that cross-correlation PIV does not take into account spatidaext. Therefore, it
is likely that cross-correlation analysis will lead to wrong displacement estiniatesome in-
terrogation windows. Fortunately, these outliers can be easily detectdtk asagnitude and
direction of outlier vectors usually differ considerably from those of thveainding velocity
estimates (cf. fig2.7). There is vast literature that describes different techniques for nddie
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Figure 2.7.: Cross-Correlation analysis yields outliers. These have tetbeteld and rectified

in a post-processing step.

tection and data interpolation (e.@rI[K93, Wes94 SBB04 \WS04). Most techniques combine

the following two points:

e Each velocity vector in the image is compared to its neighbors. The velocityniscto
considered an outlier if the absolute difference between its magnitude aravdhege
magnitude of its neighbors is larger than a certain threshdliernatively, the divergence
is calculated at each position, and the vector is rejected if the local divexds above a

certain level ER99.

¢ In a second step, neighboring velocity vectors are used to fill in the misatag @his is

usually done by some kind of interpolation scheme.

If multi-pass techniques are applied, it is crucial to validate the dataefegysweep.

"Westerweel [Ves94 has successfully replaced the average by a median.
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(vi) Physics-based Priors

Concerning the incorporation of physical constraints for flow estimatiautiit image process-
ing, several interesting approaches have been suggested in the pagiinitg PIV and CFD
by using cost functions was proposed ifif[K198, ONI97, ADO5]. They can be understood as
specialpostprocessing methods: By correcting cross-correlation velocity estimatbasthey
approximately conform to the continuity equation or the whole incompressibleiNgtokes
equations, outliers are reliably detected and rectified.

More recently, physics-based non-linear dynamic modeis0( have been introduced to
PIV. The velocity is again obtained by minimizing a measure which consists ofe#idues
of the Navier-Stokes equation, the continuity equation, and the differlesivecen estimated
and observed image data. The resulting non-linear optimization system igl,sosieg meth-
ods from evolutionary programming/jc94]. This procedure is repeated until the difference
between the observed and the estimated image is sufficiently small. This methosl alteli
able estimation of velocity fields and pressure estimates. One may criticizeydmwet little
insight can be gained from the viewpoint of optimization.

Conclusion

We have derived the standard algorithm for cross-correlation particlgeins@locimetry and
have summarized several extensions. We have seen that the standattiralpas some lim-
itations that can be eased by iterative schemes and post-processing\Wtafesthe standard
cross-correlation approach is very simple, the whole process becotnesely complex. If
errors occur within this process, it is often unclear at what step theg earsed. Note that the
error rates of up-to-date image processing methods for PIV are fawlghixel 2 This means
that the overall error is mainly caused by the peak-fitting function that . UB&s continuous
function (e.g. Gaussian) is fitted to the input data (discrete correlatioficerfs) to achieve
sub-pixel accuracy. The interaction between cross-correlation eaklitting function is very
complex and still topic of vast research (cf:{{05] and references therein). A second drawback
lies in the fact that cross-correlation PIV relies on very specific inptd:dgarticle images of
a certain size. Its application to other kinds of data (e.g. produced by Maletagging Ve-
locimetry) is problematic as correlation relies on the images’ high-frequenyponents.

Later in this thesis, we will introduce variational motion estimation techniques tbaide
intrinsically sub-pixel accuracy (no need for peak-fitting), data validga@ith corresponding
validity constraints that can be provided by the user) and dense (i.eeotw per pixel) velocity
fields. The whole approach can be described as the minimization of orgyduectional; there
are no hidden model assumptions. Prior knowledge can be included intoghgydunctional
in a natural way.

2.2.2. Particle Tracking Velocimetry

In contrast to CC-PIV methods, Particle Tracking Velocimetry (PTV) methasdsdktract the
individual particle positions and then try to solvearrespondence problenparticles in one
frame have to find their counterpart in a second frame.

8Depending on image quality and flow field gradiest®.01 — 0.1 pixels

16



2.2. Standard Evaluation Methods for Fluid Images

Individual-Particle Detection

In order to track individual particles, these particles first have to beebed out of the gray-
value structure of the image. Many authors have concentrated on this &gopimparison of
different particle detection approaches can be foun@in’[]).
There are two main types of particle detection approaches:

e Region Growing Approaches [Vlaa92h]: First, the whole image plane is scanned for
local intensity maxima. Neighboring points of these germ points are iteratidelgdato
the individual regions if they are above a certain threshold. Finally, theads of the
individual regions are computed.

e Particle Mask Correlation [ET99, SSKHO(: In order to identify the central positions of
the tracer particles, a Gaussian particle mask is used (typically a3 siBeor 5 x 5). This
mask is centered on all pixels in the image plane and cross-correlationsréwenged.
Peaks in the correlation plane indicate particle centers. For sub-pixaleayethe same
methods can be used as described in 86t 1(iv).

Correspondence Problem

PTV methods are traditionally either based on nearest-neighbor searchemithetrical con-
straints (using four or more consecutive frameés}£389 HC91], or on binary-image cross cor-
relation (two frames)YO89], which computes the cross-correlation between regions around
particles in the first and in the second frame. More recent approactiederelaxation meth-
ods that analyze the probability of particle matchifg $6, OL00], and genetic algorithms that
evaluate different pairing schemes based on local morphology catigerer the constraint of
vanishing divergence (for incompressible fluids)[98 DHS04.

Basically, all these methods have two assumptions in common:

e Small displacements: While nearest-neighbor search algorithms directly rely on small
displacements from one frame of an image sequence to the next (in proptrttbe
particle density), binary-image correlation methods and relaxation methddséarch
for possibly corresponding particle images in a certain “tracking range”.

e Smoothness of motionNearest-neighbor search algorithms assume that a particle changes
its motion only smoothly during an image sequence. A similar assumption that tacitly un-
derlies binary-image correlation methods is that the particles within a correlgitaiow
move with the same speed (if they do not, the correlation peak is less pratband the
estimates become less reliable). Finally, using relaxation methods, a matchingid-con
ered probable if the movement of particles in a certain region can be rktlueesimple
translation.

Note that PTV methods are in principle capable of yielding a higher resoluteonRiV meth-
ods, as itis not necessary to average over regions in the image (i.eogaton windows). This
requires, however, that the particle centroids are detected veryadelgurOn the other hand,
PTV methods often fail if the overall motion is very large. Some algorithms toerefombine
PIV and PTV 6uper resolution analysisf. [SROT).

Furthermore, in 3D, PTV can be supported and combined with stereosmoglgsis and 3D
reconstruction, leading to high-resolution 3D3C vector fields (é/g.2P25 Maa92h).
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2. Patrticle Image Velocimetry

Conclusion

We have seen that PTV evaluation consists of two steps: detecting the iralipiarticles and
tracking them from one frame to the next.

Later in this thesis, we will concentrate on thecondstep: We introduce a variational method
for PTV. We combine a discrete non-differentiable particle matching term vatminuous reg-
ularization term. The advantage of our approach is that physical coristcan be incorporated
directly.
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3. Standard Variational Methods for
Motion Estimation

This chapter is composed as follows: First we introduce variational appes in general and
give two short examples as to how this type of method is applied in differemasios (sec.
3.1). Then we go into variational approaches for motion estimation in particukipidsent the
pioneering work of Horn&Schunck and its numerical realization, and uinmgeits advantages
compared to cross-correlation methods.

3.1. Variational Methods in Computer Vision

Many relevant computer vision tasks can be conveniently solved by minimipimg £nergy
measure. In this section we will give two short examples of how variation#thads can be
used to solve typical computer vision problems:

() Image smoothing,
(i) Image segmentation.

A third problem that is typically solved with variational methods is motion estimatiosillibe
described in detail in se@.4. For more details about variational methods for typical computer
vision problems, we refer ta[ch99 and references therein.

(i) Image Smoothing Given is a (noisy) imagé(z1, z2). The task is to denoise the image,
i.e. to smooth it. This can be easily performed by minimizing the energy functional

1
J(g) = / (I —g)? +a Vgl|? dzr . (3.2)
Data Term: Matching Regularization Term: Smoothness

The functiong that we search should on the one hand be close to the inpuf gatd on the
other hand it should be smooth. Note tlhats a regularization parametedl & « € R) that
controls the degree of smoothness.
(3.2) can be considered as the simplest member of a whole class of computerprisidems
that consist of two terms: data termthat measures the consistency with input data (usually
images) and aegularization ternthat introduces prior knowledge, usually about smoothness or
regularity.

The termvariational approactbases on the fact that, in order to minimi2elj, one requires
the first variation of .1) to be zero:

0J (g + €g)
Oe

= / (I—¢)§+aVg Vide=0. (3.2)
€= Q
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3. Standard Variational Methods for Motion Estimation

Figure 3.1.Left: Noisy imagel. Middle: Smoothed imagg (o« = 0.5). Right: Smoothed
imageg (« = 5).

Discretization of 8.2) yields a positive definite system that can be solved by some corresgondin
(iterative) solver. Appendi®X gives details about the discretization process for elliptic systems.
Note that various extensions to the prototypical appro&ch) have been suggested (e.g.

nonlinear filtering, deconvolution, ...). For a review, we refertG014.

(ii) Image Segmentation Given is again a gray value imadér;, z2). A typical computer
vision problem is to partition the image into multiple regions: Within each region, theidgad
ual gray values should be similar while gray value jumps should only ocdheaturves that
separate the individual partitions.

Let C' denote the discontinuity set that serves as an interface (i.e. at the opohdajects).
Mumford and Shah\|S85 MS8d have proposed the following functional to obtain a segmented
imageg:

J(9,C) =a/Q(I—g)zdijﬂ/Q\C!Vg!2dx+7\C!, (3.3)

wherea, 3, > 0. Note that the first term is minimal if the reconstructed image close to

the image datd. The second term states thashould be smooth everywhere except for the
interfaces that separate the individual partitions. Finally, the total edgghlé@| should be
small. Note that minimizing this type of energy functional is intricate, and unicgseeaethe
minimizer is generally not given. A number of extensions to the prototypigaicgeh 8.3
have been suggested (e.5JG9G BG96 KLM94, CVV01]). A discussion of these methods can
be found, e.qg., infar0§. Figure 3.2 shows the segmentation of the Andromeda Nebula as an
examplet

The author thanks Christian Gosch for providing the segmented images.
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3.2. Motion Estimation: The Optical Flow Constraint

Figure 3.2.: Segmentation of the Andromeda Nebula. An artificial tinseintroduced and an
energy functional related t&(3) is iteratively minimized. The images denote in-
termediary results at = 1 (curve initialization),t = 100, ¢ = 200, and the final
evolution of the curves &t= 300.

3.2. Motion Estimation: The Optical Flow Constraint

Let I(x1,z2,t) denote the gray value recorded at locat{en, zo) " and timet in the image
plane. Recall the basic assumption underlying most approaches to motiontiestimdhe
conservation of over time.

I(l‘1 + w1 At, xo + us At t + At) = I(x1,x2, t) . (3.4)

We have already seen that a common approach to estimatiogtical flow vector(uy, us) " at
some fixed locationizy, z3) " on the image gridzy, z2) " = (kyAzy, koAxo) ', ky, ko € Z, iS
to assume:; andus to be constant within a local spatial arddzt, 73) around(zt, 73) ' and
to minimizée

Z [I(k‘l + u1 At, ko +UQAt,t+At) — I(kjl,k’g,tﬂg (35)
k1,k2 EN(E,@)

as a function ofu; andu;. Assuming additionally tha}_, . ey 7z I(k1,ks,t)? does not
vary with (77, @)T, the minimizing values ofi, u, maximize the correlation function

Z I(ky + ui At kg + ugAt, t + At) I(ky, ko, t) .
k1,k2€N (71,732)

The first major difference to variational approaches is that the latter @kpteke into account
smooth changes of the flofa;, ug)T attimet as a function of; andzs: u; = ui(x1, x2), ug =
uz(x1,x2). A continuously formulated expression analogous3té)(then reads:

/ [I(xl + uy(z1, 22) At, 29 + ug (w1, v2) At t + At) — I(21, 22, t)}Qdaj. (3.6)
Q

Note that since we do no longer assumeand us, t0 be piecewise constant according to a
subdivision of the visible sectiof? of the image plane into interrogation areas, we integrate
over the entire image domaip, observing the Neumann border conditions. From the viewpoint

2Without loss of generality we takAz; = Axzy = 1.
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3. Standard Variational Methods for Motion Estimation

of variational analysis and algorithm design, formulati@®6) is less favorable because the
dependency om; andus is highly non-convex. A common way around this difficulty is (i) to
further simplify the objective function so as to obtain a mathematically tractabl#emne and
(i) to apply the resulting variational approach to a multi-scale representdtibie amage data
I (see sectiord.1.3 so that the following approximation becomes valid:

I(xl—i—ulAt, To + us At t + At)

~ I(Il, 9, t) + 8x1](x1, xTo, t)ulAt + 8352](331, xIo, t)UQAt -+ 8tI(:z1, o, t)At (37)

= I(x1,x9,t) + VI(x1,29,1) - (Zl> At + O (21, x9,t) AL,
2
where the spatial and temporal derivatived @an be estimated locally using FIR filters.
Inserting this approximation int@(4) (and dropping the argumeft;, x2, t) for convenience)
yields:

VI- <“1> +OI=0. (3.8)
U2

According to computer vision literature, this is the so-calBightness Change Constraint
Equation (BCCE)which, with a differential formulation, merely reflects our basic assumption
(3.4 made in the beginning:

d L i
£[($1,$2,t) =0=VI- <$2> +8tI .

Using (3.7) and @.9), the objective function3.6) becomes:

/Q [VI- <Z;> + oI dx . (3.9)

Note that this objective function now depergisadraticallyon the twofunctionsu; (x;, x2) and
us(x1, z2), which is much more convenient from the mathematical point-of-view. SdHar,
transition to a continuous setting has led us to the formulaBa) (hich has to be minimized
with respect to arbitrary functions; andus. Clearly, this problem is not well-posed as yet
becausanyvector field with component§' [ - (U17U2)T = —0I,Vx1, 29, 1S a minimizer. This
effect is calledaperture problem Motion that is perpendicular to the gradient of the energy
function cannot be perceived. To realize this problem, consider the sexaleple of looking at

a white piece of paper that is moving in front of a black background @f3fi3). Now consider
observing just the vertical transition between white and black throughthgder All motions
with equivalent vertical components will appear identical to us.
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3.3. Local Approaches for Optical Flow Estimation

Figure 3.3.: Aperture Problem: White piece of paper moving in front of akbteckground.
When considering only the framed part of the image, all motions with equivalen
vertical velocity components will appear identical.

3.3. Local Approaches for Optical Flow Estimation

In the preceding section we have seen in the preceding section that ttierepeoblem pro-
hibits a direct solution 0f3.9) and that we therefore need additional constraints. The simplest
method to overcome this problem is to assume that the velocity field is constant avitbntain
neighborhoodV (i.e.,u(z) = u(xg), Vz € N (x()). We can therefore minimize

)= X Gylo—an)(vi)- (1)

) + 01 (x))?, (3.10)
z€N (z0)

U2

whereG, is a Gaussian distribution with varianpelt is clear that the minimum of this energy

is at
(8301[)2 8T1[ 67;2[ Uy _ af[ am[
Gy * (axlf Oy 1 (312[)2 uy) Gy * 00 D,,1) (3.11)

Note that 8.11) is not necessarily uniquely determinable. In areas where the grayisakig.,
homogeneous or atimage edges there will not be a unique solution. Footigeias already seen
in sec.2.2.], the assumption of a constant velocity inside some neighborhood is often gliolate

Note that there is vast research local optical flow methods, which is, however, beyond
the scope of this thesis. For a review on different types of local optioal &ipproaches and
extensions, we refer tafh97, ).

Recently, enhanced brightness change models have been introdatectctimnge the bright-
ness change constraint equati@mg| by terms that model (physics-based) brightness variation
(cf. [ ] and references therein). These methods have been successpliédap fluid im-
agery | ]. The authors show that even 3D information can be extracted out of 2Beima
data, provided that the depth information can be related to the brightness (degéh from
diffusion.
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3. Standard Variational Methods for Motion Estimation

3.4. The Method of Horn&Schunck

Rather than to consider vector fields which are piecewise constant withimoigétion areas,
we want to follow the ideas presented in sectioft We rule out too irregular vector fields by
additionally minimizing the magnitudes of the spatial gradients,;cdindus:

J(u1,us) :/Q{[w- (Z;) +8t1]2+)\(]Vu1]2—|—]Vu2|2)}dm, 0<AeR. (3.12)

Parameten is either a user-parameter or can be determined as a Lagrange multiplied telate

either of the constraints
/ [VI- (“1) + o) de =«
Q u2

/Q (|Vu1|2 + |Vuz|2)dm =7,

provided either of the variables or 5 is known. The discussion of this interpretation of the
regularization parameter is, however, beyond the scope of this martyaadpwve regard as a
user-parameter. A large value farleads to a very smooth flow field, whereas the smoothness
decreases for smaller values for At locations with|VI| ~ 0 (i.e. untextured regions), no
reliable flow can be estimated from the data term. At these locations, the sme®tiena
solves this problem by filling in information from the neighborhood, leading tterase flow
field.
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Figure 3.4.: Flight through the Yosemite Valley. A frame from a typical synthiei@ge se-
guence that is often used to compare different optical flow based termitn the
right image, you see the solution of the simple Horn&Schunck approacheas pr
sented in sec3.4. The flight through the valley induces a divergent velocity field,
while the clouds move to the right. Note that the rock in the left part of the im-
age (“El Capitan”) is closer to the camera — that is why its optical flow veetm@s
longer.

Figure3.4shows a typical example for the type of image sequences, where variattical
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3.5. Optimization and Discretization

flow approaches are usually applied. The Horn&Schunck approathecanstruct the target
velocity field reasonably well.

3.5. Optimization and Discretization

Under mild conditions with respect to the image sequenceldatan be shown$ch9] that the

functional 3.12 is strictly convex. We will use theinite Element Method (FEMp discretize

(3.12. For details we refer toJia78 Sch99 and appendi. The unique globally minimizing
. T . . .. .

vector fleld(ul(ml, x9), uz(x1, :cQ)) is determined by the variational equation

a((ur,ug) ", (G, G2) ") = b((ia,@2) "), Vi, o (3.13)
where
a(uy, u2) 7, (i, i) T) = / { (Z;) VIVI- (Z;) + /\(Vul Vir + Vg - vaz) }dx :
Q
(3.14)
N (@
b((1,12) ") = /Q(?tIVI (112) de . (3.15)

The simplest discretization is obtained by choosing a regular triangulatioe ahtige domain
2 and attaching to each pixel position a piecewise linear basis fungtion z2) for each func-
tion uy, ug, 41, U2, as illustrated in figur8.5. Indexing each pixel positiofk,/) by 1,2,..., N

Figure 3.5.Left: Uniform triangulation of the image domaifi. Right: Basis function
¢i(x1, x2) attached to pixel position

we thus have

N
ur(1, w2) = Y uj¢'(z1,72)
i=1

and similarly forus, @1, tia. Hence, each of the functions, us, i1, i iS represented by real
variables. To simplify notation, we use the same symbols to denote these vegters 1, iy €
RY. Inserting into 8.13 leads to:

25



3. Standard Variational Methods for Motion Estimation

hence:

A (“1> —b. (3.16)

where by virtue of 8.14):

(A1)t = a((¢%,0) T, (41,0)T)
(A12)is = a((¢%,0) ", (0,81) ")
(Ag2)iy = a((0,¢x) ", (0,8) ")

Analogously, the N-vectorb factorizes intch = (b] , b5 ) ", where by virtue of 8.15):

(b1) = b((¢k,0)"
(b2)r = b((0, %) ") -

The linear system3(16) is sparse and positive definite. Thug us can be conveniently com-
puted by some corresponding iterative solien¢93. For numerical details, we refer to ap-
pendixA.

3.6. Discussion

In view of the limitations of CC-PIV mentioned in secti@?2.1, we point out the following
features of the variational approach1?:

+ The approach is formulated in terms foinctionsu; andws, and hence, by definition,
provides motion estimatgs:; (z1, z2), U2($1,$2))T atanypoint (z,z2)" € Q C R2.

+ Spatial variation ofiq, us is merely constrained by@obal penalty term (i.e. the second
term in 3.12). Accordingly, the motion fieldu,us)" may exhibit spatial variations
of different strengths depending on the evidence provided by the geatiporal image
sequence dath

+ The approach is intrinsically non-local and allows to incorporate spatiégbin a math-
ematically convenient way by means of functionals depending;on, and correspond-
ing derivatives.

Note, however, that there are some potential drawbacks of the préseatetypical variational
optical flow approach that we will have to analyze in following chapters:

- The image structure of typical PIV images is very special. It is not cleartitalpflow
approaches are capable of yielding reliable velocity fields.

- The approach as formulated .12 will only yield reliable velocity estimates if the
apparent motion between the two frames is smaller than 1 pixel. This is mainly dae (i)
the limitations of the FIR filter that we use to compute the spatial and temporal gradie
and (ii) to the fact that we truncated the Taylor series3if)(
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3.6. Discussion

- The fact that minimizing3.12) yields one velocity vector per pixel does not necessarily
mean that these estimates contain additional information about the high foyaqumnpo-
nents of a velocity field. This is questionable because the regularizatiorpseticularly
penalizes the high frequency components of the velocity field.

While we show in chaptet that the first two problems can be easily overcome by coarse-to-fine
strategies and iterated registration (cf. sécl.3, we will enhance the regularization term in

chapters and thoroughly investigate the interesting question of the highest achieeablation
in sec.5.3.3

27



3. Standard Variational Methods for Motion Estimation
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4. Variational Fluid Motion Estimation:
Data Term

In the preceding chapter, we have given an overview of variationaladstfor motion esti-
mation. We have seen that these methods typically consist of a data term ttratresethe
consistency between data and model, and a regularization term that irgsquhimr knowledge
into the estimation and makes the system well-posed. In principle, the smoetamasanforces
coherent vector field structures, making corresponding post-@iocesteps in connection with
local PIV-approaches obsolete.

We want to apply this class of approaches to PIV image pairs and seguence
The emphasis of this chapter is on the data term, i.e. we will introduce data terirex¢ha
well-suited for the purpose of PIV/PTV. We will introduce two differentégmf data terms:

e In sec. 4.1 we introduce a data term for particle image velocimetry, i.e. a data term
that operates on gray value images. The starting point of our reseahehaptical flow
constraint (cf. sec3.2). We will adapt it for the purpose of PIV and evaluate it using
synthetic and real PIV image pairs.

e In sec.4.2we introduce a novel variational approach for evaluating PTV image aads
sequences in two and three dimensions (i.e. we track individual tracergime). We
replace the continuous data term of secl with a discrete non-differentiable particle
matching term. The experimental evaluation shows that our method competesreih th
alternative approaches.

In both cases, we deliberately use the very simple first-order term of&Smimunck for reg-
ularization. This is done for simplicity and comparability. In chagteve will present regular-
izers that are better suited for the typical velocity distributions presentMrirRagery and that
are physically motivated.

4.1. Methods that Operate on Gray-Value Images

The objective of this section is to adapt a prototypical variational apprimenotion estimation
(i.e. the one presented in chapBto the purposes of PIV. Note that we will only adapt the data
term; special regularizers that use prior knowledge from fluid mechaviicbe introduced in
chapterb.

In sec.4.1.124.1.3 we will introduce enhancements to the variational framework presented
in chapter3.

Numerical experiments for benchmark image pairs and a comparison withagiterap-
proaches especially designed for PIV-sequence evaluation will Bemed in sectiod.1.4

The basic approach of Horn&Schunck has already been describexidih id sec.3.4. In
the current section, we want to focus on the adaption of Horn&Schsiraglgroach to the quite
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4. Variational Fluid Motion Estimation: Data Term

specific gray value structure of PIV images. We will focus on three maiacsphat affect the
data term:

¢ Invalid assumption of gray value conservation: The optical flow constraint bases on
the assumption of gray value conservation over time. This assumption is violatage
of changing gray values due to illumination changes. We will adapt the ofitigaton-
straint in sectiont.1.1

e Image pair analysis: PIV imagery often consists of image pairs only, while standard
variational approaches for motion estimation operate on whole image segudncec.
4.1.2 we will reformulate the optical flow constraint and make it symmetric. We will
show that this procedure improves the accuracy of optical flow estimatiomé&ye pairs.

e Large displacements: Algorithms for PIV evaluation should be able to resolve a large
motion range. To handle large displacements, we will present a coafsetecheme in
sec.4.1.3

In sectiord.1.4 we will finally present numerical experiments for benchmark image paitsan
comparison with alternative approaches. We conclude in seétioBby indicating extensions
of the presented approach within the variational framework.

4.1.1. Going Beyond the Assumption of Gray Value Conservation

There are a number of reasons why the gray value at a certain locatiamaiilge from one PIV
frame to the next:

e A particle that was located at a pointto a timet has traveled to positiom + u at time
t+ At.

e Particles have an out-of-plane velocity component. In case they travef the illumi-
nated laser light sheet, their brightness fades; if they travel towards therikited plane,
they gain in brightness.

e Problems with illumination: Often, the plane is not uniformly illuminated (e.g. due to
experimental setup, dirt or properties of the expanded laser beamjleBethe intensity
of the laser beam tends to fluctuate over time.

e Properties of the camera: e.g. noise or quantization errors.

The standard optical flow constrair®.) deals with the illumination change introduced by the
transport process (item 1). However, brightness changes due to 8bnmitlumination and
image capturing are not modeled.

Extended Optical Flow Constraint

Let p be the density of some fluid andits velocity. The physical equation of mass conservation
is given with (cf. also sedC.1)
dp
— - =0.
5 TV (ou)
If we assume that

30



4.1. Methods that Operate on Gray-Value Images

¢ the image brightneskis proportional to the fluid density and
¢ the 2D projection of the continuity equation holds true

we get

dl
— +1IV-u=0 4.1
IV u=0, (4.2)

whereu = (u1,us) . Note that in the case of a vanishing divergence,of¢.1) is exactly the
optical flow constraint. The extended optical flow constraint has beasdimted in 5ch84 and
applied to meteorological and fluid imagery WALL97, BHYO0O].

Integrated Continuity Equation

Corpetti et al. go into the fact that the continuity equation yields a velocity ahd displace-
ment estimate VP02 CHA " 05]. They assume that the velocity is constant between the two
frames and integrate the continuity equation along the trajectories. This yieldsnimization

of

E(d) = /Qf(I(:E +d(x),t + At)exp(V - d(x)) — I(x,t))dx , (4.2)

whered is the displacement anflis some penalty function (e.d.. norm). @.2) is linearized
and incorporated into some multi-resolution scheme (cf. 44c3.

Note that while the extended optical flow constraint is physically motivated nivtislear if
the underlying assumptions are valid in PIV imagery. We will go into this questisadrt.1.4
Modeling lllumination Changes

Recall the basic assumption behind optical flow:

I(l‘l + ur At, o + us At t + At) = I(:L’l, x9, t) .
Let us exchange this term, that assumes that changements of gray valoertgin position in
the image are only due to movement of objects in the image plane by

I(x1 + w1 Atz + ueAt, t + At) = I(x1, o, t) + b(z1, 22, 1) ,

whereb(x1,x2,t) is a scalar field that takes into account the above mentioned illumination
changes. Note that the observed illumination changes arise from a multitueféects (cf.
above). We have chosen this very simple (additive) term for modeling illumimatiaghtness
changes, as the exact interaction of the different effects is usualknoatn and would require

the incorporation of many new parameters.

The revised optical flow constraint therefore réads

I <“1> +oI=b.
u2

We takeAt = 1 without loss of generality.
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4. Variational Fluid Motion Estimation: Data Term

(x1+ul/2,x2+u2/2) (x1+ul/2,x2+u2/2)

(x1, (x1,

) / LA\ /
(x1-ul/2,x2-u2/ (x1-ul/2X2<u2

Figure 4.1.: Sample displacement field. Note that every displacement véptsition (z1, x2)
starts at(zq — w1 /2, x2 — ug/2) and ends atxr; + u1 /2, x2 + uz/2). We perform
Delaunay triangulation and interpolate the data back to the given grid.

If we expectb(z,z2) to vary smoothly, we can penalize strong variation$(af;, x2) in the
smoothness term of a variational approach:

J(uy,ug,b) = / {[w. <Z;> +at1—b]2+A(|Vu1|2+qu2|2)+u|Vb|2}dx ., 0<X\peR.
Q

(4.3)
(4.3) can be perceived as a simplified version of the approach for robugimestimation under
varying illumination presented iri] ]

4.1.2. Symmetric Optical Flow Constraint

Traditional motion estimation tasks (e.g. for robot vision, driver's assistagstems or movie
encoding) demand the analysis of whole image sequences. Temporedrmohéacilitates the
vector field recovery. Temporal derivatives can be estimated by usigg temporal filters that
Suppress noise.

Due to camera restrictions, PIV imagery usually consists of image pairs dnge2.1.7). For
this purpose, let us slightly change the optical flow constraint introducsedr.2 Given two
images (i.e. samplgs;, x2) at timest — % t+ % of a continuous 2D+time gray value function
I(x1,29,t)). We want to compute the displacemént (x1, z2), uz(z1, 2)) ' ? that maps both
images onto each othér

1 1 1 1 1 1
I($1 — §’LL1,$2 — Q’UQ,t — 5) = I($1 + §U1,$2 + §U2,t + 5) . (44)
Figure 4.1 shows that, by solving4(4), we find displacement vecto(s,u»)' at positions
(21, z2) that map points that were at position; — uq/2, z2 — ug/2) in image 1 to points at
position(z; + u1/2, 2 + uz/2) in image 2. Taylor series linearizations of both sides4of(

°We assume that; andu are displacements that are constant in the intdtval 1, ¢ + 1].
3Including the additional brightness function from the preceding sectiamagigybt-forward. For perceivability, we
have not included the brightness function in this derivation.
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4.1. Methods that Operate on Gray-Value Images

yield

1 1 8[(%1,.%’2,15—%) 1 8[(351,1;2,15—%)

I A -
(1,22, = 5) = oz, 912 D2
1. 1 OI(wy,mo,t+3) 1 Ol(zy,z9,t+3)
—7J ¢ - - ) ) 2 - ) ) 2 )
(1,22, + 2) + 5 U1 1 + 5 U2 B

This yields the well-known brightness constancy equation

1.1 0I(x1,z9,t— 3) +8I(x1,x2,t+%)

1
0=1 t+-)—1 t—— —
($1,$2, +2) ($17$27 2)+2U1( a.’Ifl 6%1 )
1 1
n EUQ(OI(xl,a:Q,t — 5) n 8I(x1,x2,t+ 5)) .
2 8372 8552

Note that the symmetric version of the brightness constancy constrairti@yabows the use
of bothspatial derivatives of image 1 and image 2. This makes the algorithm morstrobu
Due to the symmetric nature of the approach, changing the order of the twesnsadely
changes the sign of the extracted vector field: The resulting vector fielsl wiat give the dis-
placements at positions, ), but at positiongz; — fu1,z2 — $us). In highly non-rigid
scenarios, this fact is not negligible. If the resulting velocity field shouldizen at a regular
grid, we will have to warp the velocity field and interpolate. This is done by

e building a grid using Delaunay triangulation with the warped pixel positionsdices
(cf. fig. 4.1), and

e interpolating back on the old regular grid using a simple linear interpolationsehe

4.1.3. Coarse-to-Fine Motion Estimation

The accuracy of motion estimation critically depends on the magnitude of image miotiawt,
depending on the spatial image frequency, very large motions may eves alfasing along the
time frequency axis. For illustration, figude2 shows a 1D-signal moving to the right at constant
speedu:

I(z,t) = sin (wy(z — ut)).

Due to the Nyquist-conditiofw;| < 7 (with w; := w,u), only motions up tqu| < 7/w, are
correctly represented by samples of the signgaster motions lead to aliasing. In other words,
for a fixed global velocity, spatial frequencies moving more than half of ffexiod per frame
cause temporal aliasing. In practice, this upper bound has to be lowecadde derivatives of
the signal can only be robustly estimated in connection with low-pass filtering.

As a remedy, we first compute a coarse motion field by using only low spatigliéncy
components and “undo” the motion, thus roughly stabilizing the position of theemagr
time. Then the higher frequency sub-bands are used to estimate opticarflthe warped
sequence. Combining this “optical flow correction” with the previously caieghoptical flow
yields a refined overall optical flow estimate. This process may be repetfawr and finer
spatial scales until the original image resolution is reach&d/\[V96, Sim93J. A standard
technique for generating multi-scale representations in this context is tdrucinan image

“Without loss of generality we assume sampling ratas= At = 1.
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4. Variational Fluid Motion Estimation: Data Term

Figure 4.2.: Moving signaf(x,t) = sin(w,(x — ut)) as gray value image with different pa-
rametersv, (spatial frequency) and (velocity). Left: w, = n/4, v = 1, Middle:
wy = /16, u = 1, Right: w, = /16, u = 4. Temporal frequency is affected by
both spatial frequency,, and velocityu.

W

N

Figure 4.3.: Image Pyramid: Each level in the pyramid is a sub-sampled varsibe level
below convolved with a Gaussian filter.

pyramid (figure4.3) by recursively applying low-pass filtering and sub-sampling operations
Note that the images at different scales are represented by diffenmpling rates. Thus, the
same derivative filters may be used at each scale and we do not haggio mhltiple derivative
filters, one for each different scale. Let us define the pyramid reptaton of a generic image

I of sizeny, x ng,. Let I = I be the” zero'"” level image. This image is essentially the
highest resolution image (the raw image). The image width and height at teaakevdefined
asn) = ng, andnl = n,,. The pyramid representation is then built in a recursive fashion:
Computel! from I°, then computd? from I', andsoon ... . Lek = 0,1,2,...,.L — 1 be a
generic pyramidal level, and It be the image at levél. n% andn’, denote the width and
the height off*. First the low-pass filtefl /4 1/2 1/4] x [1/41/2 1/4]" is used for image anti-
aliasing before image sub-sampling. Then a bilinear interpolation perfornasiépeation to the
new coarser grid, as every new vertex is located exactly in the middle ofifieu vertices (if the
respective image size is even-numbered, cf. figude This procedure results in a convolution
mask of[1/8 3/8 3/8 1/8] x [1/8 3/8 3/8 1/8]T. In the first step the optical flow between the
top level images[lL*1 andIQL*1 (lowest frequency images) is computed, using the variational
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Figure 4.4.: Image Pyramid: Location of the vertices in the respective levels.

approach of equationt(3). The computed coarse-level flow field must then be projected onto
the next finer pyramid levell{ — 2). This flow field estimate is used to warp both images onto
each other. The warped versiorg)therefore read

1 1 1
I*(z1,20,t7) := IL72(QS‘1 — 5UL, %2 — §u2,t — 5)
* + L—2 1 1 1
I'(zy,20,t7) =1 (m1+§u1,x2+§u2,t+§).

Note that, as((z1 £ Ju1), (22 & Jus)) usually does not lie on our regular grid, we have to
interpolate. This is done using second order spline interpolation. Nextompute a new
and finer flow field between the imagés(z1, z2,¢~) and*(z1, z2,t™). While the expression
to be minimized is analogous td.@), we now have to distinguish between the overall veloc-
ity ((u1(z1,72), u2(21,22)) ", which should be smooth) and the velocity updd@t€X(z1, z2),

uy” (v1,72)) ", that is to be measured):

up
J(u1,ug,b) = /\ [VI- (“1 ) + O — b7 da;—i—)\/ (IVur|? + |Vuo)[?) + p|Vb|*dz
Q\Qo Ug Q

O<A\puelR.
(4.5)

Note that2, denotes those boundary regions in the image, where no image deriivée
computed due to motion over the image boundaries.

Substituting(u{?, us?) T with (ug —u$'d, ug—ug'd) " (@andb™? with b—b°'?), where(us, ug'd) is

just the (projected) result of the preceding estimation step on Ievel (and resp. fob?'¢), the
unique flow field minimizing4.5) is the refined estimate of the overall flow field. This process is
repeated for each level of the pyramid until the finest pyramid leVélas been reached. In the
experimental evaluation section below, we will refer to this approach as&8wohunck Multi-
Resolution H&S R). So far, we have introduceddyadicpyramid structure which is equivalent
to using low-pass filters with bandwidthg’, 5%, ..., 51, 5 combined with sub-sampling.
Now we introduce additional filters that slice the bandwidth into even smalleegiecyg /4,
3/8Q, /2, 3/4Q2, Q. In order to implement these extra steps which do not fit into the dyadic
pyramid structure, we apply at each pyramid level pre-filters when estinggimngtives. Figure
4.5shows the effect on a typical particle image: the lower the cut-off frequehthe pre-filter,
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4. Variational Fluid Motion Estimation: Data Term

the more the particles seem to melt down and form a smooth gray value struétw@arse
motion estimate can reliably be computed using this structure. Then, we updatefiae the
motion field in the same way as described in detail for the multi-resolution casetérated
registration) using the less low-pass filtered image derivatives. Figarghows the frequency

SRR Ay
. e N

Figure 4.5.: A sample particle image in different scale levels.

spectra of the Gaussian filters we apply, for the case of five scale-$pags. In practice, we
use nine scale-space levels and thus nine different filters with cutesftiémcies ofzi, %ﬂ',
Smaem, 3w, B, Im, 12w, m. Aninverse Fourier Transform yields the filter coefficients. Low
pass filtering with cut-off frequencies below'2 is not necessary, since this is what the anti-
aliasing filter of the preceding lower resolution level has already done.

Below, we will refer to this combined approach as Horn&Schunck Multi-Regm + Multi-

Scale H&S R+S).

4.1.4. Experimental Evaluation

There are two main concerns for this section: First, we want to validateppnoach and show
that our suggested improvements to the simple Horn&Schunck approadti@lspsymmetric
warping and the additional brightness correction term) do actually improvacitigacy. Sec-
ond, we report comparisons of the variational approach with three afipgoaches for various
data sets.

Before discussing the results, we first describe the data sets usee fartiparison, the alter-
native approaches (besides the variational approach) and comcesg parameter setting and
guantitative error measures.

Figure 4.6.: Gaussian filters with cut-off frequenciesrg®, 5/8x, 3 /4w, 7/8m, .
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[
e
.

Figure 4.7.: Qénot image pairLeft: Synthetic particle imageRight: Exact velocity field (av.
7.58 px/frame)

Data
The experimental evaluation was carried out on the basis of the followiagsdés:

e Simple Rotation: The target vector field obeys the simple analytical functipfx, x2) =
x9, ug(x1,x9) = —x1. To generate the first set of synthetic images (case A4fig), we
used the same methods as describedinl{004. Note, however, that there is no out-of-
plane velocity in this example. The image siz€3§ x 256, the velocity field is scaled to
have a maximum displacement of 14.14 pixels (at the four corners). Fgetuand pair
of images (case B, fig4.10, we mimicked local changes in illumination, by adding a
Gaussian-shaped patch to the brightness function of the second image.

e Quénot image pair: This set of artificial benchmark image pairs was introduced in
[OP9] and is available on the Internet. The analyzed velocity field (av. velocity =
7.58 pixels/frame) is taken from a numerical solution, obtained for two-diinealsflow
around a pair of cylinders (figure1.3.

We examined ten different test cases being part of the following fousetas

— Perfect: “Perfect” case means that the second image was computer-generated fro
the first image and the target flow field.

— Noise N%: Additionally to the “perfect” case, noise was superimposed for all im-
ages.

— Add/Rm N%: The specified percentage of particles was randomly removed and the
same amount of particles was randomly added.

— Mixed N%: In this case all images were corrupted by both types of errors (Noise
N% and Add/Rm N%) simultaneously.

e VSJ: In 1999, the Visualization Society of Japan (VSJ) published standardri®dges
on their website DNK0O04. There are eight different computer-generated standard image
pairs. They differ from each other in image features as well as in flowdilibutes.

Table4.1 lists the parameters of these standard images: the number of particles that are
present in the images, the particle diameter and the standard deviation ofrtiicée pa
diameter, the average image velocity and the out-of-plane velocity. Thageénage
velocity defines the particle displacement between two successive imadpestarget
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4. Variational Fluid Motion Estimation: Data Term

velocity field (figure4.11) is scaled in order to achieve a certain average image velocity.
This is equivalent to adapting the temporal sampling rate.

Figure 4.8.: Simple Rotation (case A). SizZ&7 x 257. Maximum displacement (at the four
corners): 14.14 px

.

Figure 4.9.Left: Displacement error when assuming(z1 — ju1,z2 — su2) = u1(z1, z2)
(and resp. forug). Mean error: 0.2795 pixels. Note that the errors are large at
positions with large motionRight: Displacement error after additional vector field
warping step and interpolation. Mean: 0.0146 pixels.

The out-of-plane velocity expresses the three-dimensional effect dfcil field: The
intensity of the particles that move slightly out of the plane fades, and if thiclear
completely leaves the plane the gray value of the particle disappears.

Table4.1 shows that some parameters were varied while others were kept corstant:
image pairs 01, 04 and 05, for example, the number of particles is 1,000,ah0A.0,000,
while all other parameters are fixed. The image pairs 01, 02 and 03 diffewith respect
to the magnitude of the flow field: the average velocities are 2.5, 7.4 and 28/pixme,
but the flow field structure is the same in all three cases.
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Figure 4.10.: Simple Rotation (case B): Same vector field as in case A, adtibioglatness
(Gaussian shape) added. Frdaft to right: Gaussian illumination pattern, re-
constructed velocity field when applying Horn&Schunck approach (RM& e
0.254 px), reconstructed velocity field when applying Horn&Schunck with a
ditional brightness change handling term (RMS error = 0.017 px), staacted
illumination pattern.
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Figure 4.11.: Sample VSJ Standard Image with target velocity field

e Synthetic combustion image pair: Experimental conditions sometimes forbid to seed
a fluid with particles. In some combustion processes, e.g., no particles danought
into the fluid without interfering with the flow itself. Sometimes, however, the flowlfits
has a gray value structure that can be tracked. Figurgshows a synthetic example of
such a structure. Traditional cross-correlation methods have problé@msweh data -
they produce pronounced correlation peaks only in the presenceioidunal particles.
Note that a second difficulty in these cases is, that - due to experimenthfioos - there
are local illumination changes from one frame to the next. As we are notdewimg
physically motivated priors in this section, no care was taken to mimic a realisticityelo
field. The motion that was added to the images is a simple sinusoidal vector fielig)(cf
4.13 that has a maximum displacementof2 pixels.

e Real-world images: We also included three real-world image pairs into our data set.
Figure4.12shows a corresponding image from the first test case of a time-resdVed P
measurement of periodical vortices in the transitional cylinder wake/\[03, ].

The mean displacement is about 9 pixels/frame and the maximum displacemeani@bo
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Image Av. Displace- Max. Dis- Aw Out of  Number of Av. Particle  Std. Deviation
ment placement Plane Vel. Particles Diameter d of d

01 7.4 px 15.0 px 0.017 4000 5.0 px 1.4 px

02 22.0 px 45.00 px 0.058 4000 5.0 px 1.4 px

03 2.5 px 5.1 px 0.006 4000 5.0 px 1.4 px

04 7.4 px 15.0 px 0.017 10000 5.0 px 1.4 px

05 7.4 px 15.0 px 0.017 1000 5.0 px 1.4 px

06 7.4 px 15.0 px 0.017 4000 5.0 px 0.0 px

07 7.4 px 15.0 px 0.017 4000 10.0 px 4.0 px

08 7.4 px 15.0 px 0.170 4000 5.0 px 1.4 px

Table 4.1.: Pre-generated VSJ standard images. Variations from thétdeftings are marked
in bold type.
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Figure 4.12.: Real-world image with estimated velocity field (variational appijoac

pixels/frame. Figuré.20shows the second real-world test case: freezing in a convection
box filled with water [ ]. The mean displacement in this case is about 4 pixels/frame
and the maximum about 15 pixels/frame. The third test case (cf. 4fig9d shows the
wake behind a cylinder (sizéi12 x 512 pixels, max. displacement 14 pixels) Bur].

A special camera is used (Weinberger speedcam), whose sensoideddivto sixteen
rectangular segments. The brightness of each segment is automaticatythdapthat a
particle changes its brightness when it travels from one segment into the nex

Approaches and Parameter Settings

The data sets described above were evaluated using the following eppsoand parameter
settings:

e Variational approach: The spatial ¥ /) and temporal @, /) derivatives were estimated

40

using Derivative of Gaussian filters of size five at every point in the intageain. At the
image borders (where the filter mask hangs over the image) the image is mabareidts
edge pixel (for smoothing operations) or reflected and inverted (foratere operations).

In a first series of experiment$1&S R+S), a setup of five resolution levels and nine
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scale space levels on every resolution level was chosen. We set ththaggsparameter
Ato5-1073. However, we did not employ the additional brightness fitting term. In a
second series of experimentd&S R+S+B), we added this brightness fitting term, and
sety = 10. For the VSJ and the real-world image pairs, only H&S R+S+B computations
were performed. The parameters: were determined experimentally. However, we will
show that, up to a certain point, changes\afo not deteriorate results distinctly and that
one can even improve the results by adapfinganually. The gray values were scaled in
each case to the intervgl, 1].

e DPIV approach: For comparison we took the error measures of the classical 2D FFT
based digital particle image velocimetry (DPIV) method frari’P{ in the synthetic test
cases. Two different interrogation window sizes were applidx 32 pixel (DPIV 32)
and48 x 48 pixel (DPIV 48). We analyzed the “cylinder wake” real-world image pair
using a hierarchical DPIV approach, with an interrogation window sizénbégy with
512 x 512 pixels and ending up witlé4 x 64 pixels, with window-shifting and peak-
height validation (but without substitution or interpolation, as we want to coentiee
actually computed values).

e ODP2 approach [Que97: We also considered the results of a dynamic programming-
based optical flow technique. This approach transforms the two-dimethsiomespon-
dence problem to a sequence of one-dimensional search problenas beln success-
fully applied to particle image velocimetry inQP9g. The error measures were taken
from [Que9q.

e KLT approach [ Che03: We also considered the results of a feature-tracking approach
to motion estimation. The Kanade-Lucas-Tomasi Tracker tracks loca afeaufficient
intensity variation; outliers are erased and a dense motion field is interpolated.

e Integrated Continuity Equation [ CHA "05]: The authors use the integrated continuity
equation (cf. sec4.1.]) together with a first-order regularization.

Note that the error measures of the competing approaches that we did texniemp (i.e., DPIV,
ODP2, KLT, ICE) were taken from the respective publications.

Error Measures

As quantitative error measures we computed the angular error (betwaectcand computed
motion vectors) as defined inBFB94 along with its standard deviation as well as the mean
velocity error (L; norm of the difference between the correct and the computed velocities in
pixels/frame).

For the Q&not image pair, the error measure was computed for the whole image éscept
the inner circular regions corresponding to the cylinders. Since the M8dard image pairs
have different average velocities, the relativenorm error (absolute error divided by average
in-plane velocity) was computed in the corresponding series of experirfantse sake of
comparability.
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Numerical Results and Discussion

Simple Rotation Figure4.9shows our result (using the H&S R+S approach) for case A. In
order to show the need for a back-warping of the resulting velocity fidldgec. 4.1.9, we
estimate also the displacement error when assumingiiiat — 2wy, zo — fus) = ui (21, 22)
(and resp. foiy). This decreases the error by one order of magnitude. Figifanotivates the
use of an additional brightness correction term. Without the term, a largea@m be spotted

at the location where the illumination changes. This error vanishes if we esadititional
brightness correction term. Note that even the illumination pattern is reconsitructe

Quénot Image Pair Table4.2 summarizes the error measures and their standard deviation
(&) °. Furthermore, typical execution times of the respective algorithms are iadica

[ DPIV32 DPIV48 ODP2 KLT H&S R H&S R+S H&S R+S+B
Perfect angle 5.95+13.9 9.354+18.3 1.23+2.24 1.364+3.30 0.57+1.85 0.58 +1.92
disp F 0.55+£0.94 0.87+1.46 0.13+0.10 0.50+0.80 0.58+1.67 0.064+0.09 0.06 & 0.09
Noise 5% angle 6.49+14.6 9.694+19.0 1.83+3.84 1.82+3.66 0.77£1.95 0.77£1.98
disp| 0.614+1.18 0.86+1.49 0.214+0.46 0.30+£0.80 0.764+1.88 0.09+0.09 0.08 +0.09
Noise 10% angle8.75+17.9 10.84+20.0 4.01+10.8 2.50+4.22 1.15+£2.25 1.12+2.25
disp| 0.77+1.57 091+1.59 0.53+1.44 0.31+£0.60 0.984+2.12 0.13+0.10 0.134+0.10
Noise 20% angle35.0+35.5 31.0+30.4 6.70+11.8 4.92+5.67 2.16£3.37 2.09+£3.28
disp | 3.114+4.14 2.06+2.88 0.884+1.58 0.42+0.60 1.934+2.76 0.254+0.19 0.254+0.24
Add/rm 10% angle 5.94+13.5  9.524+18.5 2.61+9.94 1.584+3.53 0.614+1.88 0.62+1.92
disp | 0.554+0.93 0.87+£1.47 0.344+1.28 0.72+1.86 0.07+£0.09 0.07 £ 0.09
Add/rm 20% angle 6.11+14.2  9.77+19.2 1.42+2.54 2.724+4.62 0.774+2.06 0.76 £+ 2.09
disp | 0.564+0.99 0.88+1.52 0.164+0.12 1.364+2.56 0.094+0.10 0.08 +0.10
Mixed 5% angle 6.40+14.4 9.594+19.0 1.77+2.87 1.56+3.39 0.81£1.98 0.80+£2.01
disp | 0.60+1.12 0.86+1.51 0.20+0.13 0.60+1.67 0.0940.09 0.09 4 0.09
Mixed 10% angle 10.2+19.6 11.34+20.8 4.30+11.7 1.99+3.64 1.224+2.33 1.18 +2.32
disp| 0.914+1.89 0.93+1.66 0.57+1.71 0.98+2.12 0.144+0.10 0.13£0.10
Mixed 20% angle 40.8+34.5 38.34+29.7 6.15+9.01 3.29+4.61 241+3.72 2.36+3.73
disp | 3.734+£4.39 2.49+3.19 0.7440.52 1.024£1.98 0.31£0.51 0.32+£0.58
Time 10 min 10 min 20 min 15 sec 16sec/2sec 2 min/15 sec 4 min

Table 4.2.: Qénot Image Pair: Angular error and absolute displacement error. H&SaR#tS
H&S R+S+B give very similar results (see text) and have a clearly bettenpesihce
than DPIV and ODP2.

Note that DPIV and KLT yield sparse vector fields, whereas both ODB Zewvariational ap-
proach compute dense vector fields. All of the tested algorithms are radle@isitive to particle
appearance/disappearance. However, they all are (in varyingeggensitive to superimposed
noise. In the case of DPIV, extending the interrogation window size isegethe robustness
to noise, while decreasing the accuracy at the same time. However, atigspd the window
size, the performance of DPIV is much worse than the performance oftiee approaches.
Comparing H&S R and H&S R+S, we realize that H&S R+S provides much betidtsés all
the test cases. This had to be expected because temporal aliasing aslimetidzation errors
due to eqn.3.7) are suppressed by additional scale space computations.

H&S R+S+B gives nearly the identical results as H&S R+S. This is clear asotsdered
synthetic image pairs do neither contain out-of-plane velocity componentsionibey model
illumination changes.

SError measures for the three algorithms not implemented by the autlepestaken from (

DP9g, the execution
times from { ]
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Figure 4.13.: Synthetic combustion image with target velocity field

Figure4.14shows the results for the “Perfect” test case. One can see that thestaghiena-
tion errors are reached at the borders of the two cylinders. The snesstherm penalizes the
discontinuities at these locations and smooths over the discontinuities. Bhataegions close
to the left cylinder is the highest because of the high velocity of the fluid. oMaé structures
that can be spotted on the error and vorticity plots are probably due to theg@é that the
authors used [u96].

The two lower images of figuré.14compare the exact vorticity field and the estimated vor-
ticity field using our approach. With exception of the addressed problem ¢fiscontinuity at
the left cylinder), the estimated vorticity field resembles the exact vorticity fietg well.

H&S R+S and H&S R+S+B provide the best results in all test cases. Thersaasures of
KLT are consistently better than those of H&S R, but slightly worse than thatsesf ODP2.
However, it seems to be less noise-sensitive than ODP2, and has timtaadvaf much faster
execution times than the computationally expensive dynamic programming teehnidpte
that ODP2 also seems to be more noise-sensitive than our variationabepeso While the
error of the ODP2 approach is approximately twice as high as the H&S R+®ahps error
for the “perfect” test case, its accuracy further decreases in ttsempee of noise: For a noise
level of 20% ODP’s performance is approx. three times worse than eiatieaal method’s
performance, in the mixed 20% case, the factor is approx. four.

When we use a preconditioned conjugate gradient method to solve the H&®aystrices,
the execution time of our algorithm is about 16 sec for H&S R, 2 min for H&S R-+&amin for
H&S R+S+B (when choosing a residual errorl6f-* as a stopping criterion). Using a multi-grid
approach (cf. sed\.5) to solve the linear systems, the computation time of H&S R is approx. 2
sec, while the H&S R+S computation takes about 15 sec on an up-to-dateteonipiormation
about the different multi-grid cycles and stopping criteria can be taken feo/V/F"05]. Thus
our approach is as fast as the feature tracker and faster than OR&2rdal-time operation can
be achieved through parallelization using domain decompositia®[\V04]. Note, however,
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Figure 4.14.: Results for the @uot image pair “Perfect”. Estimated flow field with H&S R+S
(top), absolute displacement error (2nd row), exact vorticity field (8w and

estimated vorticity field (bottom).
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that, while we use a 3 GHz Intel processor, the DPIV and ODP results etagned using
much older and slower machines. &wt mentions inQP9g a 250 MHz SGI processor and a
200 MHz Intel processor.

10

L
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P s R:s+B

I CE First Oder

Figure 4.15.: Average relativie, error of the different optical flow approaches for the VSJ stan-
dard image pairs 01-08.

VSJ Standard Image Pairs Figure4.15compares the averadge errors of all mentioned
optical flow-based approaches. The errors of the H&S R+S+B appra@ constantly slightly
smaller than the errors of the H&S R+S approach. A reason is that outié-pelocity com-
ponents and image noise were modeled in the generation of the synthetic images.

The average relativé, error of the H&S R+S+B computation for image pairs 01 and 04-07
is constantly betweein.40 (image pair 04 has a high particle density) @itd (image pair 05
has a low particle density). As a consequence, the number of partictas s@be the parameter
of the image that influences most the quality of the flow field estimation.

Throughout the VSJ standard image pairs, the error measures of sitleced approaches are
more or less the same: H&S R+S+B tends to exhibit the best performanceyddlioy H&S
R+S and ICE. ODP2 exhibits a slightly worse performance than the othemi¢ges. The
reason for ICE not being superior to the much simpler optical flow constijrobably the
lacking connection between image brightness and fluid density. In PIV imdgentrary to
meteorological images where extremely good results have been achiévgd@is), the fluid
itself is usually untextured (and therefore invisible) and only the indivighzaticles can be
spotted. The luminance of these particles, however, is not influencee lspttounding fluid's
density.

H&S R+S+B gives only insignificantly better results than H&S R+S becausetdmelard
images do not model spatio-temporal illumination changes.

Figure4.16shows that our approach is rather insensitive to changes of the smestraram-
eter\. However, if we adapted this parameter manually for every image pair, we aolieve
even better error measures than the ones shown in figlite
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Figure 4.16.: Average relative; error (in %) of H&S R+S+B for the VSJ standard image pairs

01, 05, and 06 for changing smoothness paramet@garithmic ordinate).

This image pair makes the need for the additional il-

Synthetic combustion image pair

lumination computation clear. Without the additional brightness correction teerestimated

velocity field is extremely inaccurate: The absolute L1 error is 0.585 pixel. ivaherm

error drops to 0.083 pixels
velocity field very well.

the

- the estimated velocity field (cf. figl3 resembles the target

Figure 4.17.: Combustion image pair: Estimated velocity fidlé$t: H&S R+S. Abs. L1 error

0.585 pixelsRight: H&S R+S+B. Abs. L1 error = 0.083 pixels.

Figure4.18shows the results for the first real-world

Results for Real-World Image Pairs

image pair (“cylinder wake") computed with the variational approach ank/DP

One can clearly see that the variational approach resembles the true meltiandich better

than the cross-correlation approach. At regions with abruptly chamgwtgn (i.e. the turbu-
lence emerging behind the cylinder in the middle of the image), the DPIV method &bie
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Figure 4.18.: Cylinder Wake: Resultkeft: Dense vector field computed with the variational
approachRight: Sparse vector field computed with DPIV.

to accurately determine the velocity field. This is mainly due to the limited spatial tesglu
which leads to a violation of the assumption of a constant velocity inside intéiwogaindows
at these locations. The statistical character of correlation-basedspiogehowever, prohibits
the use of smaller interrogation windows. Furthermore, in regions domingtedtkof-plane
velocities (i.e. at the left border of the image), the cross correlation apptails as well: Since
no global velocity information is used, the probability of outliers is markedlygased at these
locations, hence a valid flow field cannot be computed.
Figure4.20 compares the H&S R+S results of the “freezing” image sequence with thiksresu
that Quenot achieved with ODP2. Both results resemble the true motion field very wéh. W
the exception of the borders (where the gray value is constant andoiieen® reliable motion
can be estimated) and one spot in the middle of the image (where the velocity etiglaries
locally very strongly), the absolutle, difference is persistently smaller than 0.5 pixels. From the
visual impression, however, it is impossible to tell which of the two estimates is pnecse.
Figure4.19shows the results for the real-world image pair with changing brightnesessalu
from one segment to the next. While H&S R+S fails to recover the true velodity(flee to the
brightness fluctuations from one segment to the next), H&S R+S+B is abledwearit quite

accurately.

4.1.5. Conclusion

We have successfully modified a prototypical variational optical flow estimatpproach for
the purpose of Particle Image Velocimetry. The novel approach outpesftihe standard cross
correlation methods and computes dense motion fields.
A decisive advantage of the variational approatB)(is its potential for further development.
Various extensions of the simple smoothness term.ip) &re possible, such as spatio-temporal
regularization {VS014, div-curl-shear regularization5ch94 or non-quadratic discontinuity-
preserving regularization/JS014, for instance.
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world image pair (cylinder wake). Note the brightness changes

is able to recover the velocity fieldBottom Right: Recovered brightness field
(estimated brightness change from one frame to the neXt)inThe transitions

from one segment to the nexitop Right: Due to the changing brightness, H&S
between the segments are recovered reasonably well.

R+S is not able to reconstruct a valid velocity fieBottom Left: H&S R+S+B

Figure 4.19.: Top Left: Real
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p row: Particle image and computed

Figure 4.20.: Freezing in a differentially heated cavilyg

velocity field (H&S R+S) Bottom row: Velocity field computed with ODP2 (left),

comparison of the absolute displacement values of the two solutions (right).
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We believe, however, that the most important advantage of this type ofisgagamethod for
PIV is the possibility to includ@hysically motivategrior knowledge: The governing equations
of fluid mechanics are PDEs, and our variational framework allows thepocation of these
PDEs. In chapteb we will exchange the simple first-order regularization term by higherrorde
regularizers and will subsequently incorporate physics-based jmtoreur framework.

4.2. Variational Particle Tracking Velocimetry

T1 ./Th/,y sb
regularization ke
/g_\ TZ.%' 56
TIS.‘E/_' S3

Figure 4.21.: Black circles denote particle positions in the first frame, whitéesidenote po-
sitions in the second framelLeft: Simple nearest-neighbor search yields mis-
matchesRight: Nearest-neighbor search followed by regularization with smooth-
ness constraint. In the next iteration, T2 will find the correct match.

The objective of this section is to generalize the class of variational agipesao Particle
Tracking Velocimetry. To this end, we have to replace tmntinuousdata term of variational
approaches to PIV, withdiscretenon-differentiable particle matching term for PTV. This raises
the problem of minimizing such data terms together wittoatinuousregularization term. We
accomplish this with an advanced mathematical method, which guaranteesgemesto a
local minimum of such a non-convex variational approach to PTV.

Figure4.21illustrates the basic behavior of this new type of variational approach to ®mV
the left, figure4.21 depicts a common situation where particle matching by nearest-neighbor
search fails. The variational PTV-approach presented in this papbleiscavoid, and even to
revise, such erroneous local decision through the smoothness teure #ig1, right). A key
advantage in our opinion is that all “rules” guiding the matching of particleeacoded by the
choice of a smoothness term which, in turn, can be related to physicantiespof the underly-
ing fluid, like low divergence for example/[ ]. The physical constraints are thus incor-
porateddirectly (in contrast to e.g. the indirect incorporation in genetic algorithm appesach
cf. sec.2.2.2. In the following, we will introduce this novel variational approach to P(B¥c-
tion 4.2.1) and the corresponding optimization procedure (secti@. The investigation of
different smoothness terms in this context is left for future work. Numkexperiments for
benchmark image pairs, a comparison with three alternative approashes]las results for
real-world image sequences will be presented in seetidr® We conclude in sectiof.2.4by
indicating various extensions to this prototypical approach within the varatfamework.
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4.2.1. General Problem Formulation
Basic Assumptions and Constraints

Let S denote the coordinates of the extracted particles in the first image of an imagearnu
T denote the coordinates of the extracted particles in the second image. ideefine the
distance of a specific particle with coordinatésto 7" by

drp(S") :=d(S",T) = Tmf d(S', T,
whered(S?, T") is just the Euclidean distance. Therefore, the target velocity figldherew’
denotes the displacement of partidé from frame 1 to frame 2) minimizes the accumulated
distance function

M . .
= Z dp(S*+u'), (4.6)

whereu = u',u?, ..., u, and wherée\/ is the number of extracted particles in image 1.

Unfortunately, minimization of4.6) is a highly non-convex problem, aseryother possible
matching minimizes the equation as well. Tlheal minimum is just the “nearest-neighbor” so-
lution. We define a convex attraction potential as an increasing continuocisdio that attracts
every particle to its closest neighbor:

(dr(S* +ui))?. 4.7)

| R

Elocal (u) =

=1

Up to this point, the particles are only attracted to their nearest neighbothamnanimiza-
tion of (4.7) is trivial. This is why we have to make an additional assumption abouthe
prototypical assumption that we want to make use of in this paper, is the assumismooth-
ness We indicate in sectior.2.4that other assumptions (that include e.g. physical knowledge)
are conceivable.
However, rather than considering vector fields that are close to comstarsmall region (the
predominant assumption in PTV), we want to rule out too irregular vectioisflay minimizing
the magnitudes of the spatial (and, in case of image sequences, spatioa@mizalients of:

Egrobar (u / Z|Vu] )|2ds. (4.8)

Please note that = (uy,us,...,uy) ', whereN indicates the dimensionality of the problem
(V is usually 2 or 3). The integration variabdas for image pairs in 2B = (ZEl,ZL'Q)T, and in
3Ds = (951, o, :Zig)T, wherez, 22 andxs denote the spatial coordinates within the donfain
For image sequences follows= (x1,z2,t)" in 2D, ands = (x1, z2, 23,t) in 3D, wherez;,zo
andzs denote the spatial coordinates, drttie temporal coordinate.

Equations 4.7) and @.8) can be combined into the variational framework

E(u) = Eloc. ( ) + )‘Eglob Z% dT s + u +/\/ Z \Vuj ’ ds, (4.9)

=1

data regularization
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4. Variational Fluid Motion Estimation: Data Term

whereE),.; is called “data term” which incorporatéscal information, and® ;s is theglobal
regularization term. In this work, the so-called smoothness pararhete is considered a user
parameter that controls the smoothness of the resulting velocity field. If aeseh = 0,

no regularization is performed. The reconstructed velocity field is thexrgfst the “nearest
neighbor” solution, as thiecally optimal solution for every particle in image 1 is the matching
with its nearest neighbor in image 2.

Outlier Treatment

An important problem in the PTV analysis is raised by the fact, that usuallglhtite particles
are detected correctly. In 2D it may happen that a particle is visible in thérfirae, but moves
out of the illuminated plane and is therefore not visible, or beneath the tiidesh the second
frame. In 3D, additional problems occur when the 3D reconstruction fifs, due to a very
high particle density. Further problems arise from particle images tendingtesoe.

We can distinguish between two error scenarios:

e A patrticle is extracted from the second image, but not from the first imagthis case
the proposed algorithm can still estimate a reliable velocity field, as it seantdtehies
for all particles in the first frame.

e A particle is visible only in the first frame but not in the second frame: In thisrerase,
the nearest-neighbor searchi1) of the proposed algorithm will necessarily find the
wrong match ineveryiteration (cf. figure4.22). Through the smoothness term df12
this error is propagated to the neighborhood of the erroneous vector.

Particle was not detecte
in the second frame

Figure 4.22.: Black circles denote particle position in the first frame, whitéesirdenote po-
sitions in the second frame. Filled rectangles denote the current estimate. One
particle has not been detected in the second frame. Minimizatiof bf)(neces-
sarily leads to the wrong match.

The strategy that we want to take, is to eliminate vectors that contribute a hegiyen @.12).
This is achieved through a threshold: We replace the attraction potentia¢ afatia term of
(4.17) by a robust potential - a cut-off potential that cuts off points locatedbéyan adjustable
threshold. These outliers are not considered in the regularization stie@ odirrent iteration.
However, thaesultof the regularization steis propagated to the outliers: Linear interpolation
yields the velocity field also at the locations of the outliers, the positions of warehupdated,
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4.2. Variational Particle Tracking Velocimetry

as are the positions of the inliers. The idea is that they may be torn below tisbdldén case
they were wrongly detected as outliers.

In order to improve the performance in image regions with high velocity, wewsttr a low
outlier threshold and then slowly increase this threshold: Thus, in the firatides, particles in
fast moving regions will tend to be considered outliers, while particles in slovalying regions
will tend to be considered inliers. The idea is that, in the course of severatidtes with
an attenuating threshold, more and more particles will be considered inligrnhamrstimated
velocity field in the high-velocity regions can converge to the correct flehd .fi Extensive
experiments have confirmed this behavior.

4.2.2. Optimization and Discretization

Note that the implicit data constraint defined by equati®i)(is a non-convex function. Thus,
retrieving a local minimum of4.9) does not imply having found the global optimum.

We use an auxiliary variable approach that represents a sound matheifnatie@hork and
guarantees convergencedh9q: In a two-stage iterative algorithm, each iteration is composed
of a local deformation followed by a global regularization. To justify thisrapph we modify
the energy (u) of (4.9) by introducing an auxiliary variable,,.... The two above steps can then
be interpreted as alternate minimizations with respect to each of the two varidiglesriable
of the initial energyu and the auxiliary variable,,...

A general formulation of the enerdy,..... following [Coh9q and based on formula(9), with
the extra auxiliary variable,,, = v} ., u2, ., ...,u} | has the form:

aux’) aux? " aux?

Bz (U, Uguz) = 22]\11 (kTa(dS-HL(S + uZux))Q + %(dT(S + ufzuz))2>
A fo o0 [Vu;(s)[2ds . (4.10)

The first two terms of equatiort(10) exhibit the auxiliary variable’s role as an interpolate
betweenS + v andT'. Globally, we can think of the iterative minimization &f,,,, as a defor-
mation of the current vector field followed by a regularization. The ssbeesninimization of
E.. is equal to subsequent minimization of the following two energiegnd E;;, each with
respect to a different variableFs; with respect tQiq..., andE;; with respect tau:

Local deformation:

M
1— A A
Br(taws) = Y (5 (dssu(S + ) + S (dr(S +uhe))’)  (4.11)
=1
Global regularization:
M 1 ‘ ) N
Eir(w) = (5 (s a8 + u))?) +2 /Q S [Vuy(s)]ds (4.12)
i=1 j=1

The two equations can be subsequently iterated in the given order uniiérgemce is ob-

tained. Equations4(11) and @.12 demonstrate how both minimizations are linked by the term
S M (dsu(S+ui,,))*. The minimizingu,,. of E; can be interpreted as a trade-off between
the closeness t8 + « and the closeness 6. This gives a good direction of displacement and
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avoids too large deformations of the auxiliary flow field,... The grid generation is performed
using a Delaunay triangulation[ir91] (cf. fig. 4.23. For technical details about grid generation
and discretization of eqn4(12), for 2D and 3D image pairs and image sequences, we refer to
appendixA.3 and | 1.

Figure 4.23.: Delaunay triangulation of the area covered by particlesdroimage plane. Line
intersections denote extracted particle positions.

4.2.3. Experimental Evaluation

In this section, we test the variational PTV approach on synthetical ai®beand 3D data
sets. For the 2D case, we report comparisons of our variational particking approach with
three other approaches. Before discussing the results, we firsitdetbe data sets used for the
comparison, the preprocessing (i.e. particle extraction and 3D recotisiry the alternative
approaches and their corresponding parameter settings, and the dqiuerdgitar measures.

Data

The experimental evaluation was carried out on the basis of the followiagsdts:

e Synthetic Data: The Visual Society of Japan (VSJ) has published standard images for
particle image velocimetry that are freely available on the Internét{004. For 2D
data, we will refer to the test image classified as 301 in the VSJ library. #istsmof 10
frames taken in intervals of 0.005 sec; each frame consists of about gatt€les. It
shows the vertical portion of the impinging jet, with a maximum velocity of 10 pixels/
frame. Figure4.24 shows the first image from this series along with the correct motion
field. We will analyze our 3D approach using the test images classifiedlais 83 VSJ
library (jet shear flow). Figuréd.25shows a plot of its velocity field.

The advantage of the VSJ images is that the underlying motion fields, as wek as th
particle coordinates, are available so that the evaluation of differembagipes, as well
as that of different parameter constellations, is possible. By basingooyputations on
this particle position data, we have to deal with very high particle concentsaamprox.
4,150 patrticles to be tracked in the 2D case and 3,500 particles in the 3D\d&seant to
evaluate the performance of our algorithm in cases of high particle coatiens, as up-
to-date CCD cameras yield increasingly high resolutions, and thus andggedracking
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system must be capable of managing high particle concentrations.
In order to achieve a more realistic test scenario we will randomly deletelpariticorder
to emulate typical individual particle extraction errors.
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Figure 4.24.: VSJ Standard Image 301.

Figure 4.25.: 3D velocity field of VSJ Standard Image 331.

e Real-World Data: Figure4.26 shows different frames from a visualized air flow. The
used camera is a high-speed camera with 1000 fps. The flow is visualiZétytmfoam
particles or micro balloons. One has to visualize the flow in a way that the megdadatis
ment is approximately 10 px./ frame.

To analyze the 3D capability of our algorithm, we took the “stirred aquariumueece
from [ ]. It investigates the water flow in a channel made of glass. The velocity of
the real flow in the glass channel averaged 30-50 cm/s. The camermsygi&h con-
tains 3 video cameras that operate with 25 fps, was moved continuously itiahretthe

flow to optimize the tracking. In order to get the characteristic flow, one haersider

the bias of the moved camera system.

For successful processing, a compromise between camera framepaisy e time, flow
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velocity and illumination is necessary. Fast particles detected when usinger lexpo-
sure time appear as streaks. This means a loss of accuracy and ittgeendiguities.
Longer exposure times also reduce the maximum frame rate. Low frame rates in-
crease errors due to the curvature of the particle paths. High frameratesrrelated with
short exposure times, which results in dim particles. Especially particles botimdaries
of the illumination corridor cannot be segmented by an overall threshold.

In order to get sufficient results in terms of a successful tracking, itfieebt possible
frame rate is required. The more turbulent the flow is, the higher the time tiesohas
to be in order to get correct matching outputs. The maximum time delay between two
epochs depends on the feasibility of the temporal matching. The latter in tpemdg on
the homogeneity, the turbulence, and the velocity of the flow and, of caumgbe perfor-
mance of the matching algorithm and its ability to incorporate spatio-tempordtains
on homogeneity.

Figure 4.26.: Real-World Image: 4 frames have been superimposed ttizesihe overall mo-
tion.

Preprocessing Steps

Individual-Particle Detection In order to track individual particles, these patrticles first have
to be extracted out of the gray-value structure of the image. Many authwesconcentrated on
this topic (a comparison of different particle detection approaches ctoubd in | ).

While we omitted the particle detection and 3D reconstruction steps in the syntasés by
directly basing the tracking algorithm on the provided 3D coordinates, wd thee so-called
particle mask correlation method describedtri 9, ] in the 2D real-world cases. For
the 3D real-world case, a region-growing approach with a discontinuignpeter that divides
overlapping particles was useid § ]
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3D Reconstruction For 3D PTV, the illuminated scene is usually recorded by a system of
three or more cameras. If the camera calibration is known, then, by ugepola geometry,

the particle positions can be described by a set of lines. The particleguated around the
intersection points of these lines. According to the accuracy of the calibratid the particle
density there will be ambiguities. In some cases it is not possible to resolvd ilien¥23. As

the presented algorithm is capable of handling outliers (cf. 46tl), we will, in these cases,
consider allpossibleparticle locations that cannot be ruled out - anticipating that the wrong
candidates will be considered as outliers by the algorithm.

Approaches and Parameter Settings

The data sets described above are evaluated with the use of the follovgrapepes and pa-
rameter settings.

e Variational approach (VAR): The particle coordinates are normalized so that all particles
lie between0 and 1 in all spatial dimensions; the temporal dimension is numbered in
integer stepst(=1,2,..., 7).

For all the test cases we use a smoothness parameterdi.1. The paramete is set

to 0.8. In the first iteration;75% of the particles are considered as outliers and in every
iteration,0.1% particles in addition are considered as inliers. No additional particles are
considered as inliers if the outlier threshold readhés.

The iteration is stopped if no further decrease in energy occurs.

e Four-frame in-line tracking method (FIT) [ HC91, KSS89: The movement of the
tracer particles is traced frame by frame while the geometrical consisteregf possi-
ble particle path is checked. Therefore an iterative procedure dfyfitse extrapolation
of the particle displacement, and secondly, the search for the neaigishoeis imple-
mented. As this method asks for four consecutive frames to track the psruatewill
use all of the four frames of the VSJ Standard Images.

¢ Binary-image cross-correlation method (BCC) [JYO89]: This method is considered
a variation of the standard cross-correlation PIV, in which the correldtiootions are
computed for each interrogation window which is centered on the first-fizarticles.
An adaptive shifting scheme is used.

e Relaxation method (NRX) [BL96, OL00]: This analysis is based on the probability of
particle matching between the first and second frames, defined for pussjble pair
of particles, including the probability of there being no match. A high probalualty
matching is assumed if the neighboring particles move similarly.

Error Measures
In this work, we want to concentrate on two error measuwyidd andreliability .

¢ Yield (Ey) is the measure of the number of correct vectors produced between tgesma
(n), divided by the total number of particle pairs known to exist between themages
(v):
Ey =

n
v
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¢ Reliability (E'r) is the measure of the number of correct vectors that were reconstructe
by the tracking methodn(), divided by the total number of vectors determined by the
tracking methodd):

It is apparent that we can influence both error measures by the chassmeters: If we use a
high outlier threshold, we can expect a good reliability (as only matches thia¢ fimodel very
well are considered), whil&y- will definitely drop. A lower threshold will lead to an increase
in By, while decreasing the reliability.

Numerical Results and Discussion

2D Results The first test case is the computation of the velocity field between the frames
and1 of the VSJ 301 image sequence. Afi@0 iterations the solution presented in figyr&7
(outlier ratio: 3%) is generated.

\‘ URIT N
b x:ﬂ atw\g\:&\

Figure 4.27.1Left: Estimated velocity field VSJ Image 30Right: Two likely error constella-
tions: One particle has not been extracted in frame 2, the matching is pedforme
with a close neighbor of this vanished partiep). Due to three-dimensionality
of the velocity field, two particles “cross” in the two-dimensional projectione T
two-dimensional variational approach presumes smoothness of thetjmmojecd
chooses the wrong mat¢hottom).

In the test caset, 042 particles are visible in both images$;039 matchings are computed;
3,894 of which are correct. This corresponds with a yield rat&pf= 96.34% and a reliability
rate of Er = 95.93%. Figure4.28shows these two error measures through the iteration process.
The average angular error of our estimated vecto#s2i$°, and the root mean squared (RMS)
error is0.0261 px., which suggests that the performance of our approach is much mace ex
than that of (cross-correlation based) PIV technicfueslowever, these numbers are mislead-

SMulti pass cross correlation (Davis 7.1.1.34), e.g., yields an RMS ef 0.0742 px. for the frames 0 and 1 of the
VSJ 301 image sequence.
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4.2. Variational Particle Tracking Velocimetry

ing: When using highly accurate matching techniques, the overall RMSgoiarerror will be
largely caused by inaccuracies in particle extraction.
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Figure 4.28.: Graph of the two error measures from iteration 1 to 720.

Figure4.30points out our outlier strategy. As explained in sé2.1, we start using a very
low outlier threshold, considering on®s% of the particles as inliers. These particles are located
mainly in the left part of the image (top left figure). The velocity is small and #ieaity field
is smooth, so that these patrticles fit the model best. In the course of iteratioresand more
particles are considered as inliers, so that the reconstructed velocityefsglohbles the true ve-
locity field even at locations where the velocity is very high. Beginning with ti@nad00, more
and more particles in the lower right part of the image are considered as iafidrfind their
correct counterparts (cf. figure30. The velocity induced by these correct matchings, in turn,
is propagated through the smoothness constraint to the middle of the imageitutaéses the
number of correct matches. This is why reliability strongly increases betiteations 450 and
500 (cf. figure4.28).

Figure4.29shows that our approach is rather insensitive to changes of the sms®frarameter

A. However, as\ goes to zero, the reconstructed velocity field approaches the “neaighbor
solution” (cf. sec.4.2.1) and the accuracy drops. In contrast, if we apply a very large smooth-
ness parameter, the algorithm will not be able to deal with spatial and tenmpatiah variation,
many particles will be considered as outliers, and the performance wikaser

Please note that we usélie same\ in all our experiments - if we had adapted the parameter
manually for every experiment we could have achieved better results tham#éis presented in
this paper. Changes of the parametdrad only very little influence on the resulting matching.

Table4.3 compares the results achieved with our variational approach, with thigsrethe
approaches introduced in se€2.3 In order to guarantee a fair comparison we have not used
the correct particle coordinates provided by the VSJ, but extractéidlpgrositions by using the
particle mask correlation method (cf. set2.3. Therefore the amount of particles is clearly
lower than in the preceding computations. The variational PTV method findartiest amount
of matches while additionally yielding the highest reliability.
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Figure 4.29.: Graph of the two error measures for different smootlpazasmeters.
Algorithm Frames Estimated Matches Correct Matches Reliability
FIT 0,1,2,3 630 559 88.73%
BCC 0—1 860 788 91.62%
0— 2 863 691 80.07%
NRX 0—1 808 788 97.52%
0— 2 714 680 95.24%
VAR 0—1 872 865 99.20%
0—2 904 885 97.90%

Table 4.3.: Comparison of four PTV algorithms: Four-frame in-line trackiflJ }, Binary-
image cross-correlatioBCC), Relaxation NRX), Variational ApproachVAR).

2D + Time Results (2D Image Sequences) The next step is the additional exploitation
of temporal smoothness information. Therefore we have to analyze the WBJd 301 image
sequence consisting of 10 frames. Figdir&lshows the computed trajectories. Tabléshows
the parameters we use and the results that we achieve. Furthermoresulte oEthe analysis
of image pairs only are indicated. In every frame, the computation base@ avhtlie sequence
is at least as good as the image pair result. This had to be expected, ashatldifarmation
is available in the sequence case. The reason why only slight improvemergshéeved has
already been addressed: We analyze a 2D projection of a 3D velocitytfietéfore the smooth-
ness assumption does not necessarily hold at every point in the imagés Whig we will later
turn to three-dimensional problems.

Figure4.32shows the computed trajectories for the four frames of the 2D real-worldemag
Visual comparison of the extracted velocity field and the image pair suggestsgumption
that no wrong match has taken place.

3D Results First we want to compute the 3D velocity field between the frames 0 and 1 of
the VSJ 331 image sequence. The solution that was generate@ftéerations is presented

in figure4.33 In this test cases, 364 particles are visible in both images aBd72 matchings

are computed. These matches include all exact matches, and 8 particlée thatt have a
counterpart in the second image, but are erroneously matched to apattiele. As expected,

the 3D results are much better than the 2D results. Computations with voluménadeshf the
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Figure 4.30.: Estimated velocity field after &0p left), 300(top right) , 500(bottom left) and
720(bottom right) iterations.

VSJ 301 sequence show that we achieve matching rates very cl®8@%oin these test cases
as well.
Please note, however, that in real-world scenarios, errors in 3D imagith@D reconstruction
will lead to missing particles or erroneous patrticle locations. This is why we teatest the
robustness of our algorithm: Tabfe5 shows that even an increase in outlier probability does
not deteriorate the results significantly. In these test cases, the indietahiage of particles
(first column) has been randomly removed frbothimages, to simulate problems in particle
extraction and 3D reconstruction. The second column indicates the nuirieatioles that are
visible in both frames, columns three and four show the two performance rasasu

In order to assess the limits of our approach we want to consider only sgeond image.
The results indicated in Table5 show that the error measures are still very good. When con-
sidering only every third image, however, the approach is no longer aldetésmine a valid
velocity field. In fact, both yield and reliability drop @ (i.e. not a single velocity vector is
recovered correctly). The algorithm does not find a starting point, asffibets aeveryposition
in the image are so high thab particle is able to find its counterpart in the first iteration, and
thus the algorithm converges to the wrong minimum. This drawback had to leetexjpas we
are minimizing a highly non-convex functional (cf. ef11).
Even in this case the perfect matching can be found, if we provide theithlgowith a good
initial guess (e.g. by specifying the overall image velocity, or one single match
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4. Variational Fluid Motion Estimation: Data Term

o= 0.8, Asp = 0.1, Agynp = 10 a=0.8X1=0.1
Frames Image Sequence Image Pairs
Yield Reliability Yield Reliability

00—01 97.72 96.41 96.34% 95.93%
01—02 97.62 96.61 96.83% 95.83%
02—03 97.69 96.45 97.05% 95.81%
03—04 97.64 96.64 96.90% 95.90%
04—05 97.32 96.63 97.05% 96.35%
05—06 97.64 96.70 97.11% 96.18%
06—07 97.28 96.10 92.99% 91.86%
07—08 97.28 96.30 93.11% 92.10%
08—09 96.33 95.24 93.94% 92.87%

Table 4.4.: Error measures for VSJ Standard Image 301.

00 — 01 00 — 02

Removed Par-|| Possible Yield Reliability Possible Yield Reliability
ticles Matches Matches

0% 3,364 100.00% 99.76% 3,192 99.97% 99.47%
5% 3,037 100.00% 99.84% 2,881 99.86% 99.45%
10% 2,731 100.00% 99.60% 2,586 99.38% 99.34%
15% 2,440 100.00% 99.59% 2,307 98.22% 99.60%
20% 2,170 100.00% 99.40% 2,053 98.30% 99.56%
25% 1,885 100.00% 99.74% 1,809 44.83% 44.81%
30% 1,649 100.00% 99.40% 1,557 38.79% 39.35%
35% 1,403 99.93% 99.64% 1,339 31.14% 31.17%
40% 1,211 100.00% 99.26% 1,131 32.98% 33.01%

Table 4.5.: Error measures for VSJ Standard Image 331.

Figure4.34shows the extracted trajectories from the real-world sequence “stiguesdiam”
[ }. The sequence consists 8f exposures of the whole volume with a three-camera
setup. 1.300-1.400 particles were detected in every image. 3D reconstruction yielded a total
number 0f28.818 particles from the sequence (i=.930 particles / frame). We used the same
parameters we used for the synthetic experime2itsi85 matches were found when using our
variational algorithm (i.ex~ 750 matches / image pair). The position of each vector is expressed
in the initial camera coordinate system.

4.2.4. Conclusion

We have introduced and successfully evaluated a variational Partickifigavelocimetry ap-
proach that combines a discrete matching term and a continuous regularteatio This novel
approach can handle 3D image sequences, and int outperforms dgt&Tdamethods.
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Figure 4.32.1 eft: Computed trajectories from real-world image sequenReght: Velocity
vectors between frame one and frame four with mean flow component cialokra
amplified for perceivability.
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Figure 4.33.: Estimated 3D velocity field for sequence VSJ 331. For palukiy, only every
tenth computed trajectory is plotted.

Figure 4.34.: Estimated 3D trajectories for the real-world sequence “stiqadrium”. Every
third trajectory has been printed.
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4. Variational Fluid Motion Estimation: Data Term

4.3. PIV or PTV?

A decisive question that the reader might pose at this point is:
What is the better choice, PIV or PTV?
Besides well-known advantages of PTV
e High Resolution (in comparison with CC-PIV): one velocity vector per particle,

e 3D Capacity: In 3D, PTV can be supported and combined with stereoscopic analysis and
3D reconstruction, leading to high-resolution 3D3C vector fields,

we cannot answer this question satisfactorily: Suppose our variatidnalapproach is used
for temporal particle tracking (i.e. tracking from one frame to the next).nTtiee main share
of the overall velocity error will be caused by the individual particle esttoan algorithm (and,
for 3D PIV, by 3D reconstruction) anabot by failed temporal matching. So, in order to answer
the above question, one would first have to analyze typical error sapig@dividual particle
extraction methods. This is, however, out of the scope of this manusodyhas left for further
research.

66



5. Variational Fluid Motion Estimation:
Physics-based Regularization

After we have adapted the data term of typical variational approachesdtion estimation to
the requirements of PIV images in the preceding chapter, we will use thadsgeot of this
thesis to develop regularization terms that are better suited for typical fluid mibtaon the
simple regularizer introduced in secti@. First, we review regularizers that were especially
created for fluid image analysis. We will argue in sectioathat these methods, though they
do yield very reasonable results, lack a sound physical interpretationsequently, we will
introduce novel physically motivated regularizers:

e In sec.5.3 we will propose the use of the so-called Stokes equation as prior kngavied
when analyzing PIV image pairs.

¢ Insec.5.4the full Navier-Stokes equations (in the form of the vorticity transporagiqn)
will be used as prior knowledge for the analysis of whole PIV sequences

5.1. Higher-Order Regularization

5.1.1. First Order Div-Curl Regularization

Let us consider a 2D vector fietld= (u;,u)' that is defined inside a domahand is zero at

its boundaries. Thelelmholtz decompositicstates that this vector field can be interpreted as a
superposition of a divergence-freso({enoida) vector field and a curl-frearfotational) vector
field:

U= Uso + Uir (5.1)
with 5 5
dimso:%+a%z:0
and ou ou
curl u; = —a—ijra—x;:O.

In case of non-zero boundary conditions, the decomposition comprisesiar term that is
both divergence- and curl-free:
U = Uso + Ujr + Ulam - (5.2)

In the preceding chapter we have used the simple smoothness-term &f$tbiumck for regu-
larization. Using the Helmholtz decomposition, this smoothness term can be revastte

E(u) = /Q Vi |? + |Vug|*de = /Q(div u)? 4 (curl u)?dz. (5.3)

67



5. Variational Fluid Motion Estimation: Physics-based Regularization

if we demand a vanishing velocity field at the image bounddrigsxpression %.3) can be
expanded to control divergence and rotation of the velocity figkelctly andindependentiyof
each other

E(u) = /Qoz(div u)? + Bleurl u)?dx (5.4)

using two different regularization parameterss > 0 [ 1.2 (5.9), however, illustrates also
the main drawback of first-order regularization: The assumption of a snvethity fieldu is
equivalent to the assumption of small divergence and curl componemtsvdiich is usually
invalid for real-world fluid flow.

Figure 5.1.Left: Synthetic Fluid Image Pair (both frames superimposédijidie: Exact ve-
locity field. Right: Estimated velocity field (Horn&Schunck R+S).
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Figure 5.2..Left: Exact curl of velocity field.Middle: Estimated curl (Horn&Schunck R+S).
Right: L, Velocity Error: mean 0.056 px. (Horn&Schunck R+S).
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For arbitrary flows (i.e. flows with non-zero boundary values) aritahl shear component is introduced and
(5.3 can be rewritten as
1

B(u) = / Vs + Vo d = / (div w)? + (curl w)? + (shru)®dz,
Q Q

with shru = \/(8u1/8x1 — Ouz/0x2)? + (Ou1/0x2 + Ouz /Ox1)2.
Note that the shear-component is often disregarded. This can be gub§ifither precomputing and subtracting
the flow over the image boundaries or by artificially expanding the domagowiputation beyond the image
domain and assuming thatvanishes at infinity.

2Note that in fluid imagery, the divergence component will usually be nsucdler than the rotational component,
as the apparent velocity field is the 2D projection of an incompressible fliridrefore it will be advantageous
to use a rather large regularization parameter
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5.1. Higher-Order Regularization

While the Horn&Schunck reconstruction of a typical velocity field of a fluifl gure 5.1)
appears reasonable, fig.2 shows that the curl is severely underestimated. This yields errors at
locations within the image, where the curl is large.

5.1.2. Higher Order Div-Curl Regularization

The standard way to attenuate the smoothing properties of the Horn&Schempalarization

term is the use of higher-order regularization. Due to the observatiorthbed are mainly
compact areas within the flow where divergence or curl are larges(&fleft), it makes sense
not to demand smoothness of the velocity components but smoothnessrgedise and curl

[ : , I:
E(u) = / a|Vdiv ul? + g|Veurl u*dx. (5.5)
Q

While (5.5) tends to preserve divergence and curl, it is rather difficult to implemseriheacor-
responding Euler-Lagrange system consists of two coupled foudér-®DEs. One possibility
is to mollify the second-order constraint by introducing the auxiliary var@ablendw, which
can be seen as approximations of the true divergence and curl, t@¢pOp, ]:

E(u,§,w) = /Q/\(Idiv u &+ leurlu — wf?) + u(||VE|1? + | Vw]|*)da, (5.6)

wherey is a positive parameter. Note th&t€) decouples the fourth-order PDE associated with
(5.5) into a system of second-order PDES)N P07 describes an iterative strategy of minimizing
the optical flow constraint together with the regularizei6). Basically the energy functional
is minimized alternatively with respect ig ¢ andw. Figure5.3 shows the gain of this type of
second-order regularization: The méeanvelocity error decreases, while the curl is much better
reconstructed (cf. figs.4).

Figure 5.3..Left: Estimated velocity field (second-order regularizatiadjddle: Velocity Er-
ror (Horn&Schunck R+S): mean 0.056 pRRight: Velocity Error (2nd-order reg.):
mean 0.032 px.

5.1.3. Flow Decomposition Using Potential Functions

Let us come back to the Helmholtz decomposition that we have introduced i det. It is
well-known that the solenoidat.s,) and the irrotational components;,.) of the velocity field
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Figure 5.4..Left: Exact curl of velocity field.Middle: Estimated curl (Horn&Schunck R+S).
Right: Estimated curl (2nd-order reg.).

can be expressed as functions of stieam potential and thevelocity potentiak):

o, 09 09 1

uzr—VQS_(axaay) )
ol OY 0

Uso = VI = ( —ay,—aag) .

In many relevant experimental scenarios one is in fact interested in tbeédnals¢ and, and
only secondarily interested in the velocity field Therefore, it makes sense to rewrite the data
term in terms ofp andy) [KMS03]3

E(é,4) = /Q (I(x + V() + Vi (2) — Li(z))%dz (5.7)

and separately linearize it f&f) - andV¢. In [KMS03], auxiliary variables are introduced for
the higher-order regularizer

E(¢,¢7§7w)Z/Q/\(\diVV¢—€I2+!CUf| VYt —wf?) + (| VEIP + ||V [*)dz, (5.8)

analogous toq.6). The sum of energy functional%.() and £.8) is minimized alternatively
with respect tap, ¥, £ andw. It is shown that thelirect estimation of the potential functions (by
minimizing (5.9)) is superior to theiindirect estimation (as proposed i [1P07) by integra-
tion along the stream lines.

Discretization of the Euler-Lagrange equations 8] yields biharmonic operators. 1t is
clear that discretization and numerical solver have to be harmonized intordle able to prove
convergence.\[RMS05 give a sound mathematical background to the minimization of

E(6,4) = /Q (B + Vo) + Vot (2)) — I (2))? + A(|[Vdiv V|2 + | [Veurl Vit [2)

by applying mimetic finite difference$599 HS97h HS974. The corresponding iterative min-
imization is provably convergent (subsequent subspace correctidhe)discretization allows

the encoding of the velocity’s boundary valuegd§ = 9,1); in contrast to the approach pre-
sented in KM S03], the boundary values therefore do not have to be precomputed bimdated.

3The authors subtract the velocity field’s laminar component jimesprocessing step. Therefore, the Helmholtz
decomposition.1) holds.
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The authors also note that — while every admissible flow field can be unigeebntposed into
its divergent and rotational parts and its boundary values — the traditiagrerhorder regular-
ization term B.5) only enforces smoothness of divergence and curl, but doeineatly enforce
smoothness of the boundary values. Therefore they add the penalizer

/ (Opu)?dl,
o0

which can be expressed in termsgof

5.1.4. Experimental Evaluation

The aim of this section is to compare first-order regularization and semated-regularization.
Section5.1.2has already shown that higher-order techniques tend to give betbdisriesreal-
world fluid flows, as they are much better capable of extracting regions wijh thvergence or
curl. However, figuré.4indicates that while the curl is extracted much better with higher-order
regularization, the extracted curl is rather noisy, and artifacts are inteat

First, we describe the data sets used for comparison, then the alterigieaehes (and the
corresponding parameter settings) are introduced. Finally, we dis@usssthits.

Data
The experimental evaluation was carried out on the basis of the following#&teosets:

e VSJ: As in sec.4.1.4 we will use the eight standard image pairs provided by the Visual-
ization Society of Japan. The image parameters can be taken frondtable

e Cemagref Synthetic Highly Non-Rigid Image Pair: This highly non-rigid synthetic
PIV image pair was provided by_[H]. The underlying velocity field was computed by a
so-called pseudo-spectral code that solves the vorticity transpa@tiequin Fourier space
and evaluates a sub-grid model for simulating small-scale turbulent effedtseedarger
scales of the flow. The image size256 x 256 pixels. The maximum displacement is
approximately3.5 pixels.

Approaches and Parameter Settings
We compared the following first-order and second-order approaches

e First-Order Regularization: We use five resolution levels and nine scale space levels
on every resolution level. We set the smoothness parameter5 - 10~2, but use no
additional brightness fitting term (for H&S R+S). For H&S R+S+B, we addési thrm
and sefu = 10.

e Higher-Order Regularization: The VSJ image pairs were analyzed iri-{A™05] using
a variational framework combining higher-order regularization and eiliesoptical flow
constraint or the integrated continuity equation. For analyzing the Cemauage pair,
we used the higher-order div-curl approach introduced/i@lV1S05 (parameters\; =
0.5, A2 = 0.05). Both implementations contain a coarse-to-fine framework with iterated
registration.
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Results and Discussion
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Figure 5.5.: Average relative; error of the different optical flow approaches for the VSJ stan-
dard image pairs 01-08.

VSJ Standard Images Let us examine features of both first-order and higher-order regular
ization by analyzing first the “VSJ standard images” (cf. get.4). Look at fig.5.5. The error
measures for image pairs 02 and 03 are most interesting since they cldabi the different
strengths of the approaches:

e The two higher-order regularization approaches give extremely gesults for image
pair 02. First-order regularization seems to be inappropriate in this cagteyialds too
smooth velocity estimates in examples with such a high motion range as present in this
image pair.

e For image pair 03 (that has a very low motion range), in turn, first-ordprlagzation
seems to be the better choice. Second-order div-curl regularizatonss® introduce
more artifacts than first-order methods. We will come back to this point in seBtihn
where we will introduce a physically motivated regularization term that caoobsidered
a combination of first-order and second-order regularization.

Cemagref Image Pair Figure5.6 shows the true velocity field and the vorticity distribution
of the Cemagref image pair. Note that the velocity field is highly non-rigid. Ei§utcompares
the results achieved with first-order and with higher-order regularizali@man be seen clearly
that the Horn&Schunck approach has problems at regions where tigtyas large. This had
to be expected, as first-order regularization penalizes high vorticities.

In contrast, the main problems of the second-order approach are @biscerhere the vor-
ticity is not smooth but changing abruptly. These problems had to be expestadrticity
variations are penalized by higher-order regularization terms.
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Figure 5.6.: Cemagref Image Pair: Target Velocity and Vorticity

Figure 5.7.: Cemagref Image Pair: Error Measutest: Horn&Schunck R+S, av. err. =0.0821

Order Regularization, av. err. = 0.0525 px.

px. Right: 2nd
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For further experimental results and comparisons with other techniquesfereo sections
5.3.3and5.4.3

Note that we have motivated higher order regularization from the simplen@ise that
there are often compact areas within the flow where divergence ocauthrge. Experimental
evaluations of turbulent flows confirmed that second-order div-approaches are capable of
yielding better results than simple first-order methods.

In the next section, we discuss possible physical interpretations of theasthfirst-order
and higher-order regularizers, and will realize that they lacdoandphysical interpretation.
Consequently, we will introduce regularizers wittdigect physical basis in sectiors.3 and
5.4

5.2. Discussion: Physical Interpretation of Standard
Regularization Terms

In this section, we will analyze standard regularization terms frghyeicalpoint-of-view. We
will first analyze the simple first-order regularization term pioneered byw&8chunck (cf. sec.
3.4) and then turn our attention towards higher-order regularization (cf. &). For a short
introduction on the governing equations of fluid motion, we refer to appeddix

First Order Regularization Let us examine the temporal derivative of the kinetic energy of
an incompressible fluid. Usindg(14) and assuming that no external forces are acting on the
fluid (i.e. f = 0), we compute

d d 1 Du 1
4, dt?/ﬂpwu . /qu i /Q< w-Vp+ mou Au)de

Because: is orthogonal tdvp, we get

d 1 1
7 e Re/Qu udz Re/QHVUH x

Therefore, the Horn&Schunck regularization term is just the assumptiancohstant kinetic
energy over time.

One can also describe the Horn&Schunck regularization term as a spas&lof the lin-
earized Navier-Stokes equations: Consider the compressible Naviers®tguation.7). Drop-
ping the nonlinear and the pressure term, considering the stationaryi.ceas%%( = 0) and
assuming that no forces act on the fluid, yields the so-called Navie&leuation

pAu+ A+ p)V(V-u)=0. (5.9)
Let us consider the special cdseherey > 0 and\ = — . (5.9) can be simplified to

Ay =0.

“One can show, however, that this special case is physioatlplausible: General principles of thermodynamics
state that the inequatiops> 0, and\ > fg,u must be valid. For details, we refer toC7(].
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5.3. Optical Stokes Flow: An Imaging-Based Control Approach

Itis clear that the corresponding energy functional minimization is

1
inf/u|Vu2dx,
ueV Q2

which is just the well-known Horn&Schunck regularization term.
Note that there are three basic drawbacks of this regularizer:

e We have dropped the non-linear terms of the Navier-Stokes equatiorse Térms are
dominant in high Reynolds number environments. We can therefore ekg¢ciur regu-
larization term will yield rather high errors in these environments.

e The choice of\ = —p cannot be physically motivated.

e The body-force is assumed to be zero. Therefore, we just minimize thebatween the
apparent flow field and our model (that does not include forces).

Higher Order Regularization Letting the body-force vanish does not really make sense - in
fact, one should rather be interested in the body force: We should tryddhiensmallest (in an
L2 sense) body force thakplainsthe apparent motion.

This can be written as a constrained optimization problem:

inf 2dx
. /Q I
St. pAu=f,

which can be easily rewritten as
inf / |\nAul?dz . (5.10)
v o

Simple calculations show th&.(L0 is just a special case of the second-order regularization term
(5.9, with o = 8 := 1, andu = 0 at the boundaries.

To summarize, both traditional first-order and second-order reguii@rzean in principle be
explained by formulas from fluid mechanics. However, neither term is aldledoribe convec-
tion nor do the terms model pressure. Furthermore, the parameter ¢heice . is not valid
from a physical point of view. In the next section, we will introduce autagzer that is physi-
cally much more plausible: The Stokes equation is the linearized version ofciiajmessible
Navier-Stokes equations. In sectibrdl, we finally use the full (incompressible) Navier-Stokes
equations (in the form of the vorticity transport equation) for physicallystsient regulariza-
tion.

5.3. Optical Stokes Flow: An Imaging-Based Control Approach

Let us now study a novel optical flow-based approacRddicle Image Velocimetry (PI\Mhat
incorporates physical prior knowledge in a more precise and explicit Athpdmissible flows
for estimation have to satisfy the Stokes equation. In order to estimate thesflewifof appar-
ent velocities of particles in an image sequence, control variables arel@uchnd determined
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by minimizing a suitable objective function, which relates the flow and the cowtmidbles
to given image sequence data. We show that our approach not only estimatlow from a
given PIV image sequence, but it estimates pressure and forces actihg meal fluid as well,
provided the real flow satisfies the Stokes equation, too.

Our approach draws on the general literature on the control of distilpsteameter systems
[Lio71]. For specific approaches in connection with fluid dynamics, we refeéctm(]. The
application of flow-control techniques to image-motion estimation, as presierttad work, is,
however, novel.

Concerning the incorporation of physical constraints for flow estimatiavutfit image pro-
cessing, we refer to the short summary given in secighl (vi). We have seen that these
approaches generally use general-purpose methods for optimizatitud{irgcsimulating an-
nealing, and evolutionary and genetic programming). This indicates, thalittle insight into
the structure of the problem has been gained (existence, multiplicity and stabiiibjutions,
and related dedicated algorithms). This sharply contrasts with our appdeseloped below.

The reader may ask: Why we do confine ourselves to Stokes flowspasexbto flows gov-
erned by the full Navier-Stokes equation? In this connection, we wish ittt pat that we
consider, for the first time to our knowledge, a quite diffidnlterse problem- the joint esti-
mation of a flow along with related physical quantities. This problem is intricatugir the
interactionof various components, although each of them individually behaves in @math
ically simple way. Therefore, to study the computational feasibility and robestnwe have
chosen Stokes flows as a first step. Notwithstanding this restriction, oaniezal results turned
out to be competitive with respect to alternative approaches of cuasearch.

In section5.3.1we will present the constrained minimization problem that is being solved
- along with the control approach that is used for optimization. We will illustragefithite-
element discretization, the applied numerics, and features of a codfise-implementation
in section5.3.2 Numerical experiments on ground-truth image pairs as well as on re&d-wor
image sequences will be presented in seciiéh3 We conclude in sectiof.3.4by indicating
extensions within the variational control framework.

5.3.1. Approach
Constrained Variational Optical Flow Estimation

Let us again start with the optical flow constraint
/ [VI-u+ 1) de . (5.11)
Q

Problem 6.11) is not well-posed becausayvector field with component§ [ - u = —d,1,Vz,
is a minimizer. We have seen in se€k4, that the standard approach is to add a variational term
enforcing smoothness of the flow £87]

/ {(Vl-u+8tl)2—|—a(\Vu1\2+ \Vu2|2)}dx (5.12)

Q

or (as we have seen in sét1.2 smoothness of its divergence and vorticifyuf944

/ {(w cu+ )+ a|V(V - u)\2 + B|V(V x u)y2}da: . (5.13)
Q
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In this chapter, we investigate an alternative method.

Rather than penalizing the estimated flow with a smoothness term, we requiradditaomal
constraint that%.11) should be minimized, subject to the time-indepenti&@tbkes system de-
scribing the steady motion of viscous media:

—pAu+Vp =f in Q,
V-u =0 in Q, (5.14)
U =g onT.

Here,p denotes the pressure the dynamic viscosityf the body force acting on the fluid, and
g the boundary values that are definedigmhich denotes the boundary Qf

Our objective is to determine a body foréeand boundary valuegthat yield a velocity field
u which matches the apparent motion (measuredhyl)) as well as possible. Note, however,
that the minimization of%.11) subject to $.14) only enforces vanishing divergence of the flow
u. The diffusion term in %.14) has no impact becauséand g can be chosen so thatvery
divergence-free velocity field satisfies the Stokes equation. Theteferadditionally regularize
f andg, rendering the whole system mathematically well-posed. As a result, we firddyno
the objective functional

1
J(u,p,f,g):/ [Vl-u+8tl]2dﬂc+/ a|f|2dx+/”|vf92dr, (5.15)
Q2 Q\Qp 2 r2

Qo

which is to be minimized subject t&(14). g in the second term in5(15 denotes regions
in the image where we expect large forces to act on the fluid (e.g. interfaitk solids).
Therefore, we exclude body force penalization at these locat\dng.denotes the component-
wise directional derivative of tangential to the boundary (for thee = 0 boundary, e.g.,
Vrg = (0g1/0x2,0g2/012) 7).

In terms of control theory (e.g.Jun07), the approach can be summarized as follows: We
wish to find an optimal statéu, p) and optimal distributed controls, ¢), so that functional/
(5.15 is minimized subject ta, p, f, andg satisfying the Stokes systern.(4).

Optimality Conditions

To derive theoptimality systenfor determining optimal solutions t&(15), (5.14), we transform
the constrained optimization problem into an unconstrained optimization with thangign
function

L(u,p, f,g,w,7,&) = J(u,p, f, g) (5.16a)
— / w (—pAu+Vp — f) +r(V-u)de (5.16b)

Q
- / ¢ (u— g)dr (5.16¢)

T

SNote that we confine ourselves to the time-independent case as we \eaalyae image pairs only, and therefore
have no additional information about the temporal evolution of the velocity.
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and corresponding multipliers, r, £. The first-order necessary conditions then yield the opti-
mality system, which determines optimal states and controls:

—puAu+Vp =f in Q,

V-u =0 in Q, (5.17a)
U =g onTl

pAw 4+ Vr = —(VITu+ 0 I)VI in 9,

V-w =0 in Q, (5.17b)
w =0 onT

w+ af =0 in Q\Qo,

w =0 in Qo, (5.17¢c)

rn—y%—yAFg =0 onI,

whereArg is the 1D Laplacian of, tangential to the boundary (for the = 0 boundary, e.g.,
Arg = (0%g1/022%,0%g2/023) 7). Thestate equatior{5.179 results from taking the &eaux
derivative of 6.16) in the direction of the Lagrange multipliers, reproducing the Stokes equation
(5.14). Equation 6.17h is theadjoint equation It specifies the first-order necessary conditions
with respect to the state variablesand p. Note that this equation has the same structure as
(5.173 with just the variables replaced by the adjoint veloaityand the adjoint pressure
Consequently, we can use the same numerical algorithm to soli/ég(and 6.171. The third
system of equations5(179 states theoptimality condition which is the necessary condition
for the gradient of the objective functional with respect to the controlsatush at the opti-
mum. Next, we state the optimization problem for solvibdL{). Discretization and numerical
solution of subproblem$(179 and 6£.170 are detailed in sectioh.3.2

Optimization Algorithm

Due to the large number of unknowns in the optimality systém), we decouple the state
system $.179 and the adjoint systenb(170, and apply thegradient methodor computing
the solution of the optimal control problem. Let us therefore first defingythdients of our
objective functional with respect to the body fortand with respect to the boundary values

When we change the distributed contfoto f + ¢f, wheref is arbitrary, this change i
induces the state to change from p) to (u + euy, p + epy). The change., in the state is
determined by the state system, i.e. we have that

—puA(u+eup) +V(p+epr) = f+ef
=0

V- (u+ euy) (5.18)
(u+ euy) =g onT .
Fore — 0 this leads to the so-called sensitivity equation
—pAup+Vpy = f
V-uy =0 (5.19)
Uy =0 onT

This equation says that an infinitesimal change of the control fungtiorthe “direction” of f
induces the infinitesimal change in the “directions”gfandp;. Next, let us derive a formula
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for the change in the functional(u, f) of (5.19, effected by an infinitesimal change in the
direction f in the controlf. We will keep track of both the explicit dependencejobn f and
the implicit dependence through the state (u, p):

8J(u—|—euf,p+epf,f+ef)

<af<]>f>: Oe

o /Q {(VITU +It)VITuf 4 afo}dx '

Substitution of the first adjoint equatioB.({ 71 yields

(0, f) = /Q { — (pohw + VT)TUf + oszf’}d;U.

Integrating by parts yields

. ~ 0

(0, f) = /Q { — ,uAuJTw + V- upr + of ' fdz + /F u(—u;g:f: + UJT%) + u}rn}df.
(5.20)

The boundary integral is zero, asandu are zero at the boundaries. Now we can substitute

the sensitivity equatiorb(19 into (5.20

03.0) = [ {(F=Vop)Tw+af Fda

Again, integration by parts and substitution of the second adjoint equatgltyfieads to

0.5 = |

Q

{wa+ afo}d:z:. (5.21)

An analogous derivation yields the gradientfoin g-direction:

(9,7, 3) = /F { —u(%)TQ—i—rnTg—i—’ergTVpg}dF. (5.22)

Now that we have found formulas for the gradients of our objectivetional, we can develop
the gradient algorithm:

We start with a velocity field; = 0 (or with any other initial value) and solve the adjoint
equation. The gradient of the functional with respecy tand f, respectively (cf. §.21) and
(5.22), is

o] =w+af, (5.23a)

0 0
OgJ =11 — ,ua—: —~vArg — % /F(—,ua: +rn — yArg) - ndl;. (5.23b)

Note thatr is determined by the adjoint equatiof.17h only up to a constant. 5(23H
chooses this constant so that the updatg sitisfies the compatibility conditiof}. g - ndl’ = 0
(sum of inflow = sum of outflow — must be valid for incompressible fluids). iHgwupdated the
controls, we solve the state equation and proceed to the next iteration céfiezrgence of the
algorithm, 6.179 is satisfied, too.

Experiments have shown that using two individual and adaptive stepfsizéandg, respec-
tively, is computationally both more reliable and efficient. This leads to the algofithsted
below. Note that the step-size parametgrandr, are automatically selected by the algorithm.
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Algorithm 1 Gradient Algorithm

1: setinitialu =0

2: choose tolerance
B 1pi=1,17:=1,fo:=0,g0:=0
4: repeat
5. solve 6.170 for (w,r)
6:  fi=fi-1 —7p(afic1 +w)
7. solve 6.173 foru
8: if J(u, fz) < J(u, fi—l) then
9: T=7pl2
10: GOTO 6
11: else
12: Tr:=3/2r¢
13: endif
14:  solve 6.171 for (w,r)
150 g; = gi—1 — Tg|rn — M% —YArg — fr(_“g% +rn—~yArg) "'ndl]
16: solve 6.173 for u
17: if J(u, ;) < J(u,gi—1) then
18: Ty =Tgl2
19: GOTO 15
20: else
21: T4:=3121,
22: endif

23: until |J(u, fi,9:) — J(u, fi—1, gi—1)|/|J (w, fi, gi)| <€
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Relaxing the Assumption of a Vanishing Divergence

Due to out-of-plane motion (that can hardly be totally avoided), the assumgtiwanishing
divergence will often not hold in practice. Optical Stokes Flow’s striébmement of a vanish-
ing divergence will lead to large errors in the velocity field if the incompréitgissumption
is incorrect.

Let us therefore modify the prior knowledge that we use:

—pAu+Vp =f in Q,
V-u = -2 in Q, (5.24)
U =g onTI R

whereus is the out-of-plane component (component:indirection). Note, however, thai; is
unknown and cannot be extracted from the algorithm’s 2D input data.igkiky we need an
additional assumptioni = a—gg should be small. This leads to the overall optimization problem:

1
J(u,p,f,g,d):/ [Vl-u+8tl]2dx+/ O‘|f|2d:z:+/ ﬁ|d|2dx/71vr92dr,
Q2 o\Qo 2 Q2 r2

which is to be minimized subject t& (24). The corresponding optimization algorithm is equiv-
alent to the one presented in se&.3.1 The gradient of the additional contrdlcompletes

(5.23
OgJ = Bd + .

5.3.2. Discretization and Implementation
Solving the Subproblems

In order to apply algorithni to the optimality system17), we have to solve two saddle
point problems corresponding to the state equatioh7g and to the adjoint equatio®b (171,
respectively. In this section, we explain how these problems are disctetrme numerically
solved.

The unique vector field(x;, z2) solving 6.173 is determined by the variational system

a(u,w) + b(p,u) = (f,u), Vu

5.25
b(pu) =0, Vp (5.25)

and a similar variational system determines the unique solutitm (5.170. Accordingly, we
define for the Stokes problem and for the adjoint problem, respecthibhear forms and linear
forms:

ast(u, ) == /QuVu - Vadz aaqi(w,w) = /Q —pNVw - Vdz (5.26)

bst(p, @) = — /QpV - udx bagj(r, w) := —/QTV - wdx (5.27)

and the right hand sides:

(fsi, i) ::/Qf~ﬂda: (fadgj, D) ::/Q—(VITu—i—(‘)tI)VI~1Dd:v. (5.28)
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Figure 5.8.: Sketch of 2D Taylor-Hood elements: biquadratic velocity elenf{egtares) and
bilinear pressure elements (circles).
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Figure 5.9..Left: Basis functiony of a bilinear finite elementRight: Basis functiorm) of a
biquadratic finite element.

We choose a regular tessellation of the image dorflaand discretizeX.25 using finite ele-
ments. It is well-known from computational fluid dynamics that standarddidgyr finite ele-
ment discretizations may result in non-physical pressure oscillationgorieso-called locking
effects, where the zero velocity field is the only one satisfying the incorsipity condition.

Therefore, when solving the Stokes problem, mixed finite elements are tradlifiosed. An
admissible choice is the so-called Taylor-Hood element based on a sgfemrence element
with nine nodes (fig.5.8). Each component of velocity fields is defined in terms of piecewise
quadratic basis functiong located at each node, whereas pressure fields are represented by
linear basis functions attached to each corner node. It can be shown that Taylor-Hood @emen
fulfill the so-called Babuska-Brezzi conditio®f91], that is the discretized problem is well-
posed and numerically stable. Appendixgives more details about saddle point problems and
the mixed finite element method.

Indexing each velocity node (squares of Bg8) by 1, 2, ..., IV, we obtain

N
ur(zy,w9) = Y ujh (21, 72)
i=1
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and similarly forus(z1, z2) and the components af, @, w. By analogy, we obtain for thé/
pressure nodes (circles of fig.9)

pla1, 2) Zp’qﬁl z,y)

and similarly expressions far, r, p, 7. Hence, each function, w, @, w is represented b N
real variables, and each functignr, p, 7 is represented by/ real variables. For the sake of
simplicity, we will use the same symbols to denote these vectoradd)(then reads

Au - u+BT u=f-u, Ya
0, v;s.

’B:
Il

Hence, we obtain the discretized Stokes system

Au+B'p=
utB =71 (5.29)
Bu =0
and a similar system for the adjoint equation. Pié x 2/N-Matrix A factorizes into
. A11 0
A= ( 0 A22> (5.30)

where by virtue of %.26):

(A11)ks = a((1r,0) ", (41,00 )
(A22)ka = a((0,9x) ", (0,4) 7).

The M x 2N-Matrix B factorizes into
B=(B; B»)

where by virtue of%.27)

Finally, the 2N-vectorf factorizes intof = (f,', f, )T where by virtue of .29

(f1)r = (¢x,0)
(f2)e = (0, %) -
In order to numerically solve the saddle point problén2f), we employ the Uzawa algorithm
(cf. appendixB.3).

Note thatA is just the system matrix of the Poisson equation. For 2D probldrean be split
into two systems (one for every dimension, &.30), that can be solved in parallel.
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Coarse-to-fine Approach

Due to the Taylor series linearization inherent in the optical flow constraihy, slow motion
can be accurately computed by minimizirigy 1) (approx. up to 1 pixel between exposures).
This is why we apply our approach to a multi-scale representation of the imsayé: d&le first
compute a coarse motion field by using only low spatial frequency compoagrdtsindo the
motion, thus roughly stabilizing the position of the image over time. Then the higkguéncy
sub-bands are used to estimate the optical flow on the warped sequenagn®g this optical
flow correction with the previously computed optical flow yields a refinedallzeptical flow
estimate. This process is repeated at finer spatial scales until the origirggd n@solution is
reached. For further details about coarse-to-fine optical flow estimatidrsymmetric image
warping we refer to sectiof.1.3

Let » denote the overall velocity that results from our computatiopg,the current estimate
of this overall velocity, and;I,, the temporal derivative computed as difference between the
second image - warped with,;; - and the firstimage. The® (L1 can be reformulated as

1
J(u) = / 5 (V17 (1 = woua) + O 1)
Q

Note that motion over the image boundarprevents the computation of the spatial and temporal
gradients of the warped imadg, at specific locations. In order to avoid error-prone filling-in
heuristics (that use gradient information from surrounding areas3imay omit the evaluation

of the data term at these particular locatiérikhis reformulation does not affect the state system
and the optimality condition. The adjoint system, on the other hand, is transfontoe

pAw+Vr = —(VI"(u— ugq) + 8:1,) VI in Q
V-w =0 in Q
w =0 onTI.

We could now - as we did in algorithrh - start at every resolution level with an initial zero
velocity field. This is a poor initialization, however: We know thgf,; is a good approximation
of the true velocity field: Therefore, we solve {73 for (u, p) before the first iteration of every
resolution level, using bilinearily interpolated versionsfaindg from the preceding level. We
obtain an initial velocityu that both satisfies5(179 and is a good approximation of the true
velocity field.

As solving the Optical Stokes Flow problem is computationally rather experaivalterna-
tive procedure is to use a simpler (and therefore faster) approacle @odénser pyramid levels
(e.g. Horn&Schunck) and to solve.(7) only on the highest pyramid level.

5.3.3. Experimental Evaluation

This experimental section is divided into two main parts:

e In sec. 5.3.3(i) we present synthetic experiments that fulfill the Stokes equation (i.e.
creeping flows). Besides the question of the accuracy of our method,amé tev go
further into the question of how meaningful the asserted estimates foupe@sand body
force f prove to be.

®Note that due to the regularizer, we will still get reliable velocity estimates aetleations.
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Figure 5.10.: Poiseuille Flow: Incompressible Newtonian fluid with constansitfeand vis-
cosity flows between two parallel plates. This creeping flow satisfies the$tok
equation.Left: Synthetic PIV imageRight: Target velocity field.

e In sec. 5.3.3(ii) we show (for synthetic and real-world image pairs) that one can also
achieve good velocity estimates for highly non-rigid flows. In these chasgever, we
cannot expect the body-force and the pressure distribution to corttgsically relevant
information.

(i) Stokes Flows

We have selected two flow scenarios for which analytic solutions exist degnionetry: we
analyzePoiseuille Flow which is a viscous flow between two parallel plates, and seé&tiow
in an Annular Gapexamines the viscous flow between two infinitely long cylinders.

Poiseuille Flow We consider an incompressible Newtonian fluid with constant density and
viscosity that flows between two parallel platesfat= 0 andzy = h) with infinite width. The
x-axis points in the direction of the flow. The velocity distribution for such d@esyds given by
(e.g. LL52]) Lo .
u(x2) = ———p(z — (29 — 5)2)

This means that we can expect a parabolic velocity profile, with the largkesity in the middle
between the two plates. For our synthetic experiment, we chose 1, h = 257 pz., and
% = —1-1073. This choice yields a maximum velocity 8256 pixels between two exposures.
Figure5.10shows the synthetic image, and the target velocity field with which the image was
warped in order to get a synthetic image pair. We used the same technigdescaibed in
[ONKOO4 (10.000 particles, 3 px. average particle diameter, 1 px. standardtideyiaAs the
Poiseuille flow is truly 2D, the third component is zero everywhere. Pleaigethat while in
numerical hydrodynamics one is accustomed to small mesh sizes (1) and small volumes
(VOL =~ 1), we measure in terms of pixels here. This is why the parameter choice megrapp
uncommon.

In a first experiment, we set = 0.001 andy = 0.002, and we penalized the body force
everywhere (i.eQy = ()). Figure5.11shows the reconstructed velocity componentThe
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Figure 5.11.:Left: Optical Stokes Flow is able to reconstruct the parabolic velocity profile ex-
tremely accuratelyRight: Using fluid-mechanics priors, even the true pressure
distribution can be reconstructed. Note the linear pressure decrease idiréc-
tion.

Figure 5.12.: Reconstructed body force. Note that the arrows arelsnaleder to be visible. If
we specify regions at which forces are expected to act on the fluid (lid-fkad
interfaces), even forces that act on the boundary can be recctestrueft: f is
penalized everywhere (scaling fact@000). Right: no penalization off at the
interfaces (scaling factofi0).
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estimated velocity is almost exact (cf. also fgl3), its RMS error is~ 0.0734px.. However,
fig. 5.13also shows that there are problems at the boundaries of the plates. rEhegused
by the forces acting on the fluid. In fact, the locations where forcesrathe fluid are just
boundaries of the plates: The pressure-induced force acts orthlbgtmthe interfaces and is

fo=-pn. (5.31)
The frictional force at the interfaces acts in opposite flow direction and is
h Op
fy = 258" (5.32)

Figure5.11 (left) shows that the algorithm has in fact detected a force at the interfaatacts

in opposite flow direction. However, the method also detects a (smaller)ifothe middle of

the pipe that acts in flow direction. The reason for this error is quite obvlays.15, we added
constraints on the body force that penalize fhenorm of f. The correct body force, however,
has an extremely highs norm at the interfaces. In order to yet compute a reliable body force —
and thus also pressure estimates, as the pressure depends on eeldbityly force — we have

to tell the algorithm at which locations forces are likely to act on the fluid. Thecan exclude

the body force penalization at these locations.

Accordingly, in a second experiment, we switched off body force peat#diz at the interfaces
of the two parallel plates (at: = 0, andzy = h). The results can be seen in fig.12
(right): The reconstructed body force is reasonable, the sharedisahaeverse flow direction
is the frictional force (cf. %.32) and the part that acts orthogonally to the flow direction is the
pressure-induced force (cb.81)).

Figure5.13shows that also the RMS error has decreased considerably (RM8212 px).
Note that there are still errors at the ends of the interfaces; the reastimese errors is the
regularization of the boundary values(cf. (5.15). The smoothness of the boundary values
enforced by .15 deviates from reality at these locations.

Figure5.11shows the reconstructed pressure field on the right. Taking a closeatdbk
pressure derivative in flow direction (cf. fi§.14), we see that the pressure derivative inside the
tube is approx4 - 103, which is the correct reconstruction. We point out that due to the mixed
finite element discretization, the resolution of the pressure field is smaller thaagdblution of
the reconstructed velocity. Therefore, the pressure derivativiohmesscaled with the factor 4.

Flow in an Annular Gap Suppose an incompressible Newtonian fluid flows steadily within
the annular gap of two infinitely long cylindef#,, R2). The outer cylinder is fixed, while the
inner cylinder rotates with angular spe@d The velocity distribution for such a setting is given
by (e.g. [L52]) ) -
o) = gt

2 — v o — 4T
The pressure is constahtFor our synthetic example, we have chosen= 100, R, = 220,
Q =0.1andp = 1. This leads to a maximum displacement of 10 pixels between two exposures.
Figure5.15shows the synthetic image as well as the target velocity field. We set0.001,
~ = 0.002, andy = 0 in a first experiment.

"This is only true when solving the problem with the Stokes equation. If we bad the Navier-Stokes equations,
the pressure distribution would re%é — ov?

T
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Figure 5.13.1 eft: If we penalizef everywhere, the mean RMS errori$)734 pixels. Right:
By specifying the solid-liquid interfaces, the RMS error decreas@s)ti 2pzx.

i |—est. dpfdx1|_
---ex. dp/dx1

Figure 5.14.: Profile of the averaged pressure derivative in flow tibrecNote that the linear
pressure decrease in flow direction4( x 1073 inside the pipe) is recovered ex-
tremely accurately.
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Figure 5.15.: Creeping Flow between two rotating cylindeedt: Synthetic PIV imageRight:
Target Velocity field.

Figure5.16shows the reconstructed velocity field. The velocity field looks very rezse.
Figure5.20 however, shows clearly a large error at the cylinder interfaces,rircpkar at the
interface of the inner cylinder. This error occurs for the same reasrthe preceding example.
The acting force is very large and punctiform at the inner cylinder interfahis contradicts the
assumptions made i (15).

We next chose the same approach as in the preceding section to deal witblhem, that
is we avoided body force penalization at the boundaries. This leadsyt@ued results. The
average RMS error decrease®10079pz. (cf. fig.5.20. Fig.5.17, right, shows that the velocity
profile agrees exactly with the analytically computed profile. The tangentéloahogonal
forces at the two cylinder interfaces also correspond very well with tla¢yically computed
forces. The forces in tangential direction read:

OR2
= —2p—2
fR1 MR% —R% )
OR?
= 2U—— .
fR2 MR%-R%

The pressure is zero everywhere (cf. figl7, left). There are only minor problems at the
cylinder boundaries due to an increased numerical sensitivity. A reasbatig/e deliberately
omitted regularization of at these locations, for the sake of accurate reconstruction.

Noise and Robustness To examine the robustness of our reconstruction approach with re-
spect to image noise, we repeated the annular gap experiment (Seéti§rbut superimposed
white noise with a variance of up to 50% of the grayvalue range.

Figure5.21 shows that the RMS velocity error increases moderately only as a fundtion o
noise variance. This result proves a pronounced robustness appuwach. Most remarkable
is the observation that the accuracy of the reconstruction appearskieybadwhat can be
extracted from the raw dateithoutany physical prior knowledge.
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tremely well.Left: Reconstructed velocity field (penalization everywh&ht:

Reconstructed velocity field (no penalization on boundary).

Figure 5.16.: From the visual impression

of the velocity distribution. Note that, if we penalize everywhere

velocity field is much too smooth.

Figure 5.17.1 eft: Reconstructed pressure distribution (no penalization on boundaiyxero
almost everywhere
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Figure 5.18.: Reconstructed body forcelLeft: Penalization everywhere (force scaled by
10.000). Right: No penalization on interfaces (force scaled by 100). The fric-
tional forces at the cylinder interfaces are extracted correctly.

---est. orthogonal force | 1 ---est. tangential force |-
ex. orthogonal force

X ex. tangential force
oal —est. tangential force | —est. orthogonal force

--ex. tangential force 0.03- --ex. orthogonal force |-

. \ .
pi2 pi 302pi 2pi pil4 pi 302pi 2pi

Figure 5.19.: Optical Stokes Flow is able to compute the forces that act oylitn#sr interfaces.
Left: Tangential and orthogonal forces at the inner cylinder boundRight:
Tangential and orthogonal forces at the outer cylinder boundary.
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O |

Figure 5.20.Left: RMS velocity error (av. 0.310 px.) when penalizing the body force every
where. Right: RMS velocity error (av. 0.0079 px.) when no penalization on the
cylinder boundaries is performed.
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Figure 5.21.: RMS velocity error (in pixels) when adding different amoohiSaussian noise
(zero mean and variance up to 50%).
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5.3. Optical Stokes Flow: An Imaging-Based Control Approach

Figure 5.22.Top Left: Multi-Pass Cross-Correlation (DaVis), av. err. = 0.1420Top Right:
Horn&Schunck, av. err. = 0.0821 p»Bottom Left: 2nd Order Regularization,
av. err. =0.0525 pxBottom Right: Optical Stokes Flow Computation, av. err. =
0.0480 px.

(ii) Navier-Stokes Flows

In the forthcoming examples, the assumption of a Stokes flow is definitely tidf aa these

turbulent flows are mainly governed by the convection term of the NavakeS equations.
Therefore, we cannot expect the pressure or body-force toymqatily accurate. However, our
approach can also be used for these high Reynolds numbers. The Stplkaion then merely
serves as a regularization term, and the body-force can be chossrnasmanic the nonlinear
effects of the convection term.

Cemagref Synthetic Highly Non-Rigid Image Pair This highly non-rigid synthetic PIV
image pair was provided by_[H]. The underlying velocity field was computed by a so-called
pseudo-spectral code that solves the vorticity transport equation ieFgpace, and evaluates
a sub-grid model for simulating small-scale turbulent effects on the larg&ssof the flow. The
synthetic image intensity function was generated as in the preceding casés3s3), its size is
256 x 256 pixels. The maximum displacement is approximatelypixels. We want to analyze
this image pair using the following approaches:
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Figure 5.23.: Estimated velocity field and its culleft: Cross correlation.Right: Optical
Stokes Flow. Note that cross-correlation slightly underestimates the vorticity.

e Multi Pass Cross Correlationl[a\VV0: Advanced cross-correlation approach (LaVision
Davis 7.1.1.34). Initial interrogation window si&2 x 32, final interrogation window
size8 x 8, and50% overlap manually selected for best performance. In order to inter-
polate the velocity vectors to the fine grid (i.e. one vector per pixel), seoadte spline
interpolation is used.

e Horn& Schunck RKNSO}: First-order regularization, no incompressibility constraint is
imposed (cf. $.12). The smoothness parameter= 0.005 was manually selected for
best performance.

e 2nd Order Regularization \{RMSO}: The authors use higher-order regularization (cf.
(5.13) with an additional incompressibility constraint. Instead of mixed finite elements
(that we use), the authors use the so-called mimetic finite differencing sciiemeoral
coherency is not exploited. Parametexs:= 0.5, A2 = 0.05, manually selected for best
performance.

e Optical Stokes Flow Computation (this paper) = 1, a = 0.001, v = 0.002 (selected
by hand).

Figure5.22 shows the spatial error distributions for the different algorithms. Noteahat
variational approaches are able to outperform the cross-correlatitideOptical Stokes Flow
computation yields the best results (average RMS error = 0.0484 pixaisiyel>.23compares
the vorticity estimates for the cross-correlation approach and Optical Skdée estimation.

Figure5.24shows how well the individual approaches are capable of recoveringdifferent
frequencies of the vorticity. While the spectrum of the Optical Stokes Fltwate resembles
the true spectrum very well, cross-correlation seems to underestimate friggngencies. This
had to be expected since cross-correlation relies on the assumption tivaldbigy gradient
within an interrogation window is negligible. Even advanced window deformagohniques
cannot fully resolve the high frequencies that are present in the vefalidy

It is interesting to note that Optical Stokes Flow gives extremely good reststbough its
prior knowledge is inadequate. In order to understand this fact, letsisfimmarize what type
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-— — Exact Solution
—— Optical Stokes Flow
2. Order Regularization
1. Order Regularization
— — —Cross Correlation

I I I L
Pi/g Pisa 3/8 Pi P2

Figure 5.24.: Energy of the vorticity (for frequencies betw&eandI1/2) of the different al-
gorithms (logarithmic plot). Energy spectrum of Optical Stokes Flow estimate is
closest to the true solution, while cross-correlation underestimates higlheeh-
cies.

of prior knowledge the competing approaches use:

e The cross-correlation approach assumes that the velocity field is piecsovistant. This
assumption is weakened by advanced window-deformation techniques.

e The Horn&Schunck method assumes small velocity gradients.
e Higher-order div curl regularization assumes a smooth vorticity.

This compilation shows that the priors of all analyzed approaches ageedpinadequate. It
is clear that Optical Stokes Flow is only the starting point towards physically mod more
plausible regularizers. In secti@n4, we will introduce a regularizer that uses thdl Navier-
Stokes equations as prior knowledge.

Highly Non-Rigid Real World Image Pair Figure5.25shows a sample image of the ex-
perimental evaluation of the spreading of a low diffusivity dye in a 2D turtuflew, forced at

a large scale. In contrast to the preceding examples, no tracer partetedvought into the
fluid but a mixture of fluorescein and water. For more details about theiexgatal setup, we
refer to | ]. Cross-correlation approaches are not able to extract valid veloeltsffor
this type of input data (passive scalar images). Figudsshows, however, that our Optical
Stokes Flow approach is capable of extracting a very reasonable vel@tiipution. We chose
the same parameters as in se@&.3

Out-of-Plane Motion: Separation Bubble The synthetic image sequence that is shown in
fig. 5.26was generated by means of the software prescribedibhb, ]. Determination

of the particle image displacements is based on the solution of a direct nunsémcdhtion
(DNS) of a laminar separation bubble.
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Figure 5.25.1 eft: Passive Scalar Image (size: 5%2512.) Right: Recovered Velocity Field
using Optical Stokes Flowy( = 1, a = 0.001, v = 0.002). Note that cross-
correlation approaches completely fail for this type of image data.

Figure 5.26.Left: Synthetic image (Separation Bubble, size: 51512.) Right: Synthetic
velocity field. Note that the velocity field is three-dimensional. Thereforégias
leave and enter the illuminated image plane. Furthermore, the 2D projection is no
longer divergence-free.
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Figure 5.27.1Left: RMS velocity error of cross-correlation approach (smallest windowlgize
16, 50% overlap, mean RMS = 0.0331 pxRight: RMS velocity error of modified
Optical Stokes Flowy{ = 1, o = 0.001, 8 = 0.002, mean RMS = 0.0240 px.).

The main problem in this example is the fact that the true velocity field of this seque
three-dimensional (maximum out-of-plane velocity: 1%pxBecause we analyze a 2D projec-
tion, the divergence-free constraint, that is strictly enforced by theeSteguation, is not valid
(cf. fig. 5.28. This is why we use the modified method of set3.1to analyze this image
pair. Figure5.27compares the error of the cross-correlation method with our modified Stokes
equation’s velocity error. While cross-correlation yields an average ef0.0331 pixel, the ve-
locity field recovered by the modified Stokes approach is more reliable. dtage RMS error
is 0.0240 pixels.

5.3.4. Conclusion

We presented a novel variational flow control approach for PIV teasuhe Stokes equation
as prior knowledge. Methods from flow control were used to solve tissngrconstrained op-
timization problem. The experimental evaluation showed that, as long as weeonfiselves
to flows that are actually governed by the Stokes equation, the proplagedhan is not only
capable of reliably estimating the velocity fields between image pairs, but ilsameract the
pressure distribution and forces acting on the fluid.

The experiments also showed that our approach is able to outperfornoptleal-flow-based
methods as well as cross-correlation methods on highly non-rigid (N&wiées) flows. The
reason for this is the high resolution that can be achieved. We havedgtateptical flow based
approaches not only yield dense vector fields — with proper regularizéte regularization
that does not penalize velocity gradients) these dense vector fieldslexspatial resolution of
cross-correlation approaches.

We have introduced a slight modification that enables the successful appliof our ap-
proach also in (more realistic) scenarios, where the out-of-plane velscitt negligible.

The most dramatic improvement that Optical Stokes Flow offers is when it ctong®e

8We assume that the (imaginary) grid in out-of-plane direction has the szsulkition as the in-plane grid.
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Figure 5.28.: Out-of-plane velocity.€ft) leads to divergence of the 2D projection of the veloc-
ity field (Right). We have to use the modified Optical Stokes Flow approach to
reliably reconstruct the target velocity field.

evaluation of scalar image pairs: Cross-correlation approaches colpfigt®n these image
pairs, while optical flow- based methods can reliably extract velocity fields.

To summarize, the use of Optical Stokes Flow might be advantageous in theifgjlthree
scenarios:

o Stokes flows: If the flow is actually governed by the Stokes equationsppthe velocity
can be estimated but also pressure and forces that act on the fluid.

¢ Highly non-rigid flows: The increased spatial resolution that Optical Stékew offers,
permits the estimation of high-resolution velocity fields.

e Scalar Images: While cross-correlation approaches fail for this spé@ifd of image
data, optical flow approaches give very reasonable velocity estimates.

5.4. Dynamic Motion Estimation with the Vorticity Transport
Equation

Now that we have analyzed a regularizer that is based on the Stokdmadaacreeping flows,
we want to consider regularization terms that are better suited for highoRksymumbers flows.

We present a framework for fluid motion estimation that uses as prior knge/libe fact that
flows have to satisfy the incompressible vorticity transport equation. Thistexn relates to the
full (incompressible) Navier-Stokes equations and is therefore alsoiuaiinlbulentscenarios.
Furthermore, rather than considering image pairs, our estimation schenseirttkeccount
the whole image sequence. As a result, it takes into account previous estimegidts so
as to enforce spatio-temporal coherency and regularizatithout however, penalizing flow
structures that are characteristic for instationary turbulent flows. Fjrefiglogously to the
corresponding concept from control theory, our overall algorithonks in a receding horizon
manner, that is flow velocities can be computed as soon as their respeativesfhave been
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recorded. In principle, this procedure sets the stage for the real-timgcgatr of instationary
flow phenomena from particle image sequences.

In section5.4.1, we first present the vorticity transport equation, which embodies the prio
knowledge we use for flow estimation. Then, we motivate and describeadiational approach
and details of the resulting constrained optimization problem. Correspondimgrical issues
are dealt with in sectioB.4.2 Numerical experiments for evaluating the approach are presented
in section5.4.3 We conclude in sectiof.4.4

5.4.1. Approach

The Vorticity Transport Equation

Letu = (u1,u2)", u=u(z,t), z = (21(t), xg(t))T, denote a two-dimensional velocity field.
The incompressible vorticity transport equation is a specific form of theek&tokes equation
for homogeneous flow and can be expressed as follows:

D 0

ﬁzaw—i—u-Vw:VAw, w(x,0) = wp . (5.33)
This equation is known as theorticity transport equation It describes the evolution of the
fluid’s vorticity over time. Note that in the absence of external forces actimthe fluid, this
equation describes the flow completely. For a more detailed derivation obttieity transport

equation, we refer to appendix 3.

Variational Model

Let I(z1,z2,t) denote the gray value of an image sequence recorded at logatiofr, z2) "
within some rectangular image domdhand timet € [0,7]. We adopt the basic assumption
underlying most approaches to motion estimation, fhiatconserved. Thus, the total (material)
derivative of/ vanishes:

%:u-VI+It:0. (5.34)
The spatial and temporal derivatives bfof the optical flow constraint5(34) are estimated
locally by using FIR filters (cf. sect.l).

We have already seen (cf. se&4) that egn. .34 alone cannot be used to reconstruct the
velocity field u, becauseany vector field with components - VI = —1I; at each locatiornr
satisfies §.34).

The standard approach is to minimize the squared residu&l &) (over the entire image do-
main §2, and to add a variational term that either enforces smoothness of thefifistao(der
regularization) or smoothness of the divergence and vortisgggnd-orderegularization). In
sec.5.3 we have made a first attempt at physically plausible vector-field recatistily using
the Stokes equation as a regularizer.

We emphasize that all these approaches take only into acspatialcontext and determine
a vector field for dixedpoint in timet € [0, T7.

Therefore, following the ideas o5 S0§, we attempt to elaboratedynamicrepresentation
of fluid flow. To this end, we solve eqrb @33 for the time interval0, 7] between a subsequent
pair of image frames, whete, denotes our current vorticity estimate. As a result, we obtain a
transportedvorticity field wy := w(x, T), which can be regarded apeedictedvorticity, based
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on the assumption that our fluid is governed by the Navier-Stokes equakioa.regulariza-
tion term that we employ penalizes derivations from the predicted vorticityesaland forces
incompressibility:

1

JE——

st. V.-u=0.

We apply Neumann boundary conditions (i@&:/9n = 0 on 952). Note that, while the regu-
larization term of .35 penalizes deviations between the current vorticity estimasad the
propagated vorticity estimate of the preceding frame it doesnot enforce smoothness of the
current vorticity. In practice, an implementation &5 therefore leads to increasingly noisy
vorticity estimates. Increasing the parameteeduces the problem only slightly:, becomes
smoother, but smoothnesswifs still not enforced directly.

To overcome this problem, we add a term that mimics the small viscous term (lzay)lao the
right-hand side of eqn5(33. Expressing the new second-order regularization term equivalently
through a first-order regularizer and an additional linear constraintinakly obtain:

1 2
E = / {(u-VI-i—It) +/\(w—wT)2+/£|Vw\2}dm,
2 Ja

st. V-u=0, (5.35)

Vxu=uw.

As we usually do not have a vorticity estimate at the very first frame of an imegeence, the
overall estimation process is initialized with a vorticity estimage= 0.

The novel vorticity transport regularizer i6.85), in connection with%.33, can be perceived
as aspecial second-order div-curl regularizeEstimated flows from a given image sequence
have vanishing divergence and a curl field (vorticity) that should beoimand as close as
possible to the transported vorticity.

5.4.2. Discretization and Optimization
Discretization of the Vorticity Transport Equation

We solve the time-dependent vorticity transport equatio®d) with a second-order conservative
finite difference algorithm. The method is upwind and two-dimensional, in thatuheerical
fluxes are obtained by solving the characteristic forms at cell edgesdges®etween adjacent
pixels), and all fluxes are evaluated and differenced at the same time firltieedifference
method that we employ is the Fromm-Van-Leer scherie(3.

The basic idea is to satisfy Godunov’'s theorem in a “natural” way. Rougpdaking, Go-
dunov’'s theorem says that all methods of accuracy greater than andewill produce spuri-
ous oscillations in the vicinity of large gradients, while being second-ordairate in regions
where the solution is smooth. Accordingly, Fromm-Van-Leer’'s scheme tdaedéscontinuities
and adapts its behavior, so that the high-order accuracy of Frommesnscls preserved for
smooth parts of the solution, while spurious oscillations are avoided throtgitofder accu-
racy at detected discontinuities. For further details, we refer to appé&haind [PC0J.
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Figure 5.29.: Sketch of 2D Taylor-Hood elements: biquadratic velocity elesiequares) and
bilinear pressure elements (circles).

Variational Approach

For every image pair (two consecutive frames of the image sequenceawe¢o solve optimiza-
tion problem 6.35 which comprises a convex functional and two linear constraint equations.
We transform this constrained optimization problem into a saddle-point proAecordingly,

the unique vector field(z) minimizing (5.35, along with the vorticityw and multipliersp, g,

are determined by the variational system

a((u,w)", (@,0)") +b((p,0) " (@.0) ") = ((f,9) . (@a)"), Vi,
T - o (5.36)
b((,q) ", (w,w)' ) =0, Vp,q.
The bilinear and linear forms read:
a((u, w) ', (@, JJ)T) = / {u -VIVI -+ Ao+ kVw - V@}dm , (5.37)
Q

b((prg) ", (1,0)7) = —/Q {pv.a+q(v x a—@)}dx.

The right-hand side reads:

((f.9)" (@,0)") = /Q { —LVI-@+\ chD}dx _

We choose a regular tessellation of the image dorflaand discretize.36) using finite ele-
ments. It is well-known from computational fluid dynamics (cf. Stokes egnptitat standard
first-order finite element discretizations of saddle-point problems mayt iesastabilities or
even in so-called locking effects, where the zero velocity field is the ondysatisfying the
incompressibility condition.

Therefore, when solving saddle-point problems, mixed finite elementsaati¢gidnally used
[BF91]. An admissible choice is the so-called Taylor-Hood element based oraaesgpierence
element with nine nodes (fi¢.29. Each component of the velocity field is defined in terms
of piecewise quadratic basis functions located at each node (the solid squares inFig9),
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Figure 5.30.Left: Basis functiong of a bilinear finite elementRight. Basis functiorny of a
biguadratic finite element.

whereas the Lagrange multipliepsand ¢ and the vorticityw are represented by linear basis
functions¢; attached to each corner node (indicated by circles in5fig9. It can be shown
that Taylor-Hood elements fulfill the so-called Babuska-Brezzi condtitio 1], making the
discretized problem well-posed. Appendixgoes further into saddle-point problems and their
discretization with mixed finite elements.

Indexing the velocity nodes (squares in fig29 by 1,2, ..., N, we obtain

N . .
u(z) =) ujy'(z)
i=1

and similarly forus(z) and the components af. By analogy, we obtain for th/ Lagrange
multiplier nodes (circles in figs.29

M

plx) = p'¢'(z)

i=1

and similarly expressions faf, w, p, ¢, 0. Hence, each function, @ is represented b N real
variables, and each functignq, w, p, ¢, @ is represented by/ real variables. For the sake of
simplicity, we will use the same symbols to denote the corresponding vectoesdi3dretized
system §.36) then reads

Alu,w)" - (@,@)" + B (p.g)" - (@,@)" = (f,9)" (@), Vi,o
B(u,w)" - (p,q)" =0,

VD, q .

Because these equations have to be satisfiegrbotrary , p, ¢, @, we finally obtain:
A0+ ()- ()
w q g
B (“) =0
w

In order to numerically solve the saddle-point problénBg), we want to employ the Uzawa
algorithm (cf., e.g. Bra97). However, this requires A to be positive definite which is not the

(5.38)
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case here, because the relatiorendw defining A in (5.37) are mutually independent, amds
only involved through a degenerate quadratic form. This problem caerbeved by

e including a penalty term related to the divergence constraint into our hggnaultiplier
formulation to obtain an Augmented Lagrangian formulatio$3, and by

¢ splitting the vorticity matching term into two equivalent terms, one contailingu, and
the other one containing.

This yields the following modification of the bilinear forrs.G7):

T(a,o)") = U - - i ww U U
ap((u,w) ", (4,) )—/Q{ VIVI-a+ 2( +(V xu)(V x @) 539
+u(V~u)(V~ﬂ)+an-VoD}dm.

We point out that this modification is done for numerical reasons only. dt sdmt change the
optimization problem&%.35. Matrix A, resulting from the discretization 0639 is positive
definite and, because andw do not explicitly depend on each other, can be split into two
systems:

e The system containing is the linear system with a simple first-order div-curl regulariza-
tion (cf., e.g. But93, and 6.4)).

e The system containing corresponds to a simple first-order quadratic functional.

Becaused,, is invertible and well-conditioned, we solve the first equation of the syste&®)(
with A replaced byA,, for the unknown(u, w) "

(£)=416) -G

and insert the result into the second equation:

wi[() ()] -»

This problem only involves the adjoint variables;:
(BA;lBT)<p) — BA;l(f > . (5.40)
q g

The matrix(BA;lBT) is symmetric and positive definite. Therefore, we apply the conjugate
gradient iteration to5.40. This requires a single matrix inversion in every iteration step. For
computational efficiency, this is accomplished using multi-grid iteration (&cpP3).

Weakening the Assumption of a Vanishing Divergence

Due to out-of-plane motion (that can hardly be totally avoided), the assumgtiwanishing
divergence will usually not hold in practice.
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Let us therefore weaken the assumption and minimize

1
B= 2/ {(w- VI + 1)+ Mw = wr)? + &IVel? + uld] fda
Q

s.t. V-u=d,

VXu=uw,

where the 2D divergenceé (which is assumed to be small) does actually correspond to the
derivative of the out-of-plane componentoin out-of- plane direction (i.ed = dus/0z). Note

that we do not change the vorticity tranport equation itself — we still assurhththaD vorticity
transport equation is able to give a good approximation for the transpmregs. Therefore,
(5.41) should only be used to analyze 2D projections of incompressible fluids.

5.4.3. Experimental Evaluation

This experimental section is divided into three parts:

e Firstly, we present numerical results on ground-truth fluid image segsg@® flows)
obtained with our approach, in comparison with cross-correlation andabfiioev with
first-order and with higher-order regularization.

e Secondly, we show numerical results for a synthetic flow where the eplaoe compo-
nent is not negligible (3D flow). We perform the analysis with the method intred in
sec.5.4.2

e Thirdly, we show results for a real-world 2D image sequence.

Synthetic 2D Flows

This section shows numerical results on ground-truth fluid-image segsi@ftained with our
approach, in comparison with cross-correlation and optical flow with dirdér regularization
and higher-order regularization.

The synthetic PIV image sequence that we used for testing was providéd-hyThe under-
lying velocity field was computed by a so-called pseudo-spectral codedhats the vorticity
transport equation in Fourier space, and evaluates a sub-grid mod#ialating small-scale
turbulent effects on the larger scales of the flow. These latter effdatsucse, ar@ot known in
practice, nor was anything related to these effects used while evaluatiagwach.

In order to simulate the intensity function of real PIV images, the computed velieits
are used to transport collections of (images of) particles that are typicatyfor the seeding of
flows, so as to make them visible. The scheme resembles the one describédind. We
used the first 100 frames of the synthesized PIV image sequence andreahtipe following
three approaches:

e Multi-Pass Cross-Correlationl]a\/0: Advanced cross-correlation approach (LaVision
Davis 7.1.1.34). Initial interrogation window si3e x 32, final interrogation window size
8 x 8, and50% overlap, manually selected for best performance. In order to intergbkate
velocity vectors to the fine grid (i.e. one vector per pixel), second opdigesinterpolation
is used.
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5.4. Dynamic Motion Estimation with the Vorticity Transport Equation
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Figure 5.31.1 eft: 100th frame of the synthetic image sequence with ground truth velocity field.
Right. Estimated velocity field for the 100th frame. The background intensity
shows the absolute RMS error (brighter = larger error), which is ab08b6 px. on
average (cf. figs.32).

e Horn&Schunck (cf. sec3.4): First-order regularization; temporal coherency is not ex-
ploited; no incompressibility constraint is imposed. The smoothness paramnetéro0s
was manually selected for best performance.

e 2nd Order Regularization (cf. se&.1.2: The authors used higher-order regularization
with an additional incompressibility constraint. Instead of mixed finite elements (tha
we used), the authors used the so-called mimetic finite differencing schesneporal
coherency is not exploited. Parametexs:= 0.5, A» = 0.05, manually selected for best
performance.

e Optical Stokes Flow (cf. seé.3): Optical flow approach that incorporates physical prior
knowledge. Admissible flow fields are restricted to vector fields satisfyingStb&es
equation. Parametergs: = 1, « = 0.001, v = 0.002, manually selected for best perfor-
mance. Temporal coherency is not exploited.

e \orticity Transport Approach (this sectionks described above, higher-order regulariza-
tion is used, the incompressibility constraint is imposed, and temporal cayeigeax-
ploited in an on-line manner. Parametars- 0.005, i = 0.0025, v = 1, kK = 0.0005. As
for the other approaches, we selected the regularization parameters by hand. Note
that the viscosity coefficient is not a free user parameter but characterizes the physical
nature of the fluid flow.

Figure 5.32 compares the errors of all five approaches over time. The multi-pass- cros
correlation approach’s estimate has the highest RMS error. This is due vemnhigh velocity
frequencies that are present in the image data and that cannot beregtby correlation. First-
order regularization yields a higher error than second-order régaiin, which is much more
accurate. The quality of the estimation can further be improved by applyinigaD|$tokes
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Figure 5.32.: Average absolute RMS error (in pixels) for frames 1168 five different meth-
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ods. Cross-correlation gives the worst results for this highly non-ngabe pair.
First-order regularization performs worse than second-order négatian, while
Optical Stokes Flow is slightly better than second-order regularization. adleh
four error curves are constant because temporal coherency expiaited. The
approach based on vorticity transport starts with a rather low accuaasyrp-
tion of w = 0, which is not valid) but then becomes significantly more accu-
rate than the other techniques due to the physically consistent regulariaation
time. This novel spatio-temporal regularization is achieved with an on-line com-
putational scheme and fixed storage requirements, irrespective of ik trihe
image sequence. The decay of the error curve within the first 10 fralmadyc
displays the usage of this implicitly encoded “memory”.
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Figure 5.33.1eft: True vorticity of frame 100Right: Estimated vorticityv for frame 100. For
the first frame, the estimation process was initialized witk= 0, corresponding
to “nothing is known in advance”. The result on the right shows that niyt ithe
vorticity transport equation has been successfully adapted to the eldsemage
sequence, but that it improves the accuracy of flow estimation in termstob
(cf. fig. 5.32. As a consequence, flogkerivativescan be estimated fairly accurate,
as shown in the right panel. Such quantitative information is very important in
connection with imaging-based experimental fluid mechanics.

Flow. The errors of all these four approaches stay constant over tigaibe each subsequent
image pair is independently evaluated, and temporal coherency is ignored.

For the first frame, the approach presented in this section, utilizing the ityoittiansport
equation, shows worse performance than the other optical-flow-bégadtlans. During the
subsequent period of time, however, the error of the vorticity trangppmoach decreases con-
siderably, because not only higher-order regularization is usedelngoral coherency is suc-
cessfully exploited as well.

We emphasize that temporal coherency dugsnean smoothness. Rather, the flow exhibits
high spatio-temporal gradients as turbulent fluids do. Temporal coherelates to a physically
consistent transport mechanism interacting with flow estimation from an imagersee. Due
to the on-line computational scheme, fixed computational resources atedhee matter how
long the image sequence is. The decay of the error curve over séaras in figure5.32
shows, however, that the approach is able to memorize the history longgush#me previous
frame.

Figure5.31displays the estimated velocity for the 100th frame, along with the respectig RM
errors. The reconstructed velocity field is surprisingly exact, in view efttighly non-rigid
motion we are dealing with. Figufe33shows that even the vorticity related to flaerivatives
is reconstructed quite well under these difficult conditions. We expett guantitative data to
be valuable information in connection with imaging-based fluid mechanics.
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5. Variational Fluid Motion Estimation: Physics-based Regularization

Flows with Out-of-plane Velocity Component

In order to assess our approach’s performance when it comes to tpicklige sequences with a
high out-of plane component, we analyzed the VSJ image sequenc®3061 POH: It shows
a 3D jet shear flow with an out-of-plane component of ug fixels. ° Due to the large out-
of-plane velocity component, the assumption of a vanishing divergene® mat hold in this
example. This is why we weaken the assumption of a vanishing divergamsbown in section
5.4.2

Figure5.34compares the results of our vorticity transport approach with those ahamaed
cross-correlation approach (DaVis). For the evaluation, we chodeltbeing parameters:

e Multi-Pass Cross-Correlationtnitial interrogation window siz&2 x 32, final interroga-
tion window sizel6 x 16, and50% overlap, manually selected for best performance.

e \orticity Transport Approach:A = 0.01, p = 0.005, v = 0.1, k = 0.005, manually
selected for best performance.

Figure5.34shows the absolute RMS error of both approaches along with the avadnaghkite
out-of-plane motion over time. While both error curves are quite similar, thesezorrelation
approach tends to give better results at time instances when the out-efyalacity is rather
large (i.e.t ~ 40, andt =~ 125), whereas the optical flow results are better when the out-of-plane
component is rather small (i.e~ 1, andt ~ 70).

The fact that the brightness of particles that travel out of the illuminate@pléhfade, while
particles gain brightness if they travel towards the illuminated plane, is in cbciicn with the
optical flow constraint that we use. This problem introduces errorseinass where high out-
of-plane velocities are present. We'd like to stress, however, thas-caselation approaches
have the same problem (as they also assume brightness conservatishyggejms to be slightly
less pronounced.

Real-World 2D Flows

Figure 5.35 shows a sample image of the experimental evaluation of the spreading of a low
diffusivity dye in a 2D turbulent flow, forced at a large scale. The passcalar is a mixture

of fluorescein and water. For more details about the experimental se¢uggfer to [CTO1.
Cross-correlation approaches are not able to extract valid velocitg fithis type of input data
(passive scalar images). Figuse35shows, however, that our approach that uses the vorticity
transport equation, is capable of extracting a very reasonable veldgiitjpdtion. Figure5.36
shows the temporal evolution of individual vortices.

5.4.4. Conclusions

We presented an approach to fluid motion estimation that uses the vorticitydraegpation for

physically consistent spatio-temporal regularization. The approachinesariational motion
estimation with higher-order regularization and motion prediction through apgoshprocess.
For motions that conform to our assumption (i.e. fluids that are governétetigcompressible
2D Navier-Stokes equation), a temporal regularization effect, computaddoursive manner,

®Note that we assume that the imaginary grid in out-of-plane direction hasthe resolution as the in-plane grid.
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Figure 5.34.: Average absolute RMS error (in pixels) for frames 1-¥48e0VSJ 301 image
sequence, using cross-correlation and novel optical flow technidghespatio-
temporal regularization (with modification of se6.4.2. Both approaches have
similar accuracy.

Figure 5.35.1L eft: Sample Real-World Passive Scalar Image (frame 80, size:x5822 px.).
Right: Recovered Velocity Field (with color-coded vorticity) with Vorticity Trans-
port Approach.
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5. Variational Fluid Motion Estimation: Physics-based Regularization

Figure 5.36.: Iso-surface plot of the vorticity distribution over time. Blueades positive vor-
ticity (w > 1.5) and red denotes negative vorticity & —1.5).

was demonstrated. In these scenarios, our approach outperforssscompelation approaches
as well as advanced variational approaches for optical flow estimation.
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6. Conclusion

6.1. Summary

Let us shortly summarize the important points of this thesis. The main issue of thissorgt

was to introduce a variational framework for the analysis of PIV imagessandences. In
chapter2, we have investigated standard cross-correlation and tracking algorithifashave

pointed out some limitations of these methods — the most important limitations are:

e The highest reachable resolution of cross-correlation PIV is limited. Dtieetgtatistic
nature of cross-correlation PIV, there is a tradeoff between inteticvgaindow size and
resolution of the recovered velocity estimates. While large windows lead testrdioit
coarse estimates, small windows are able to capture higher frequendies \elocity
fields at the cost of reduced robustness.

e Motion estimation if carried out regardless of spatial context. Prior knaydedbout spa-
tial or temporal coherency cannot be exploited directly, but has to beédfby (heuristic)
post-processing steps.

e Traditional PIV and PTV methods can only be applied to typical PIV imagdtye.d.,
a passive scalar field is to be analyzed, traditional cross-correlatibaaking methods
will fail.

These were the main reasons that motivated the use of variational opticahfithods.

Variational Particle Image Velocimetry The mathematical basis of the methods presented
in chapte3 is a continuous variational formulation for globally estimating the optical floworec
fields over the whole image. Minimizing the respective variational functiorialdgdensegi.e.

one vector per pixel) velocity fields — there are no interrogation areasevbiae might limit

the resolution. The class of approaches had been known in the field o ipragessing and
computer vision for more than two decades but apparently had not bekada PIV image
pairs so far. In sect.1, we described the first steps of adapting the data term to the quite specific
signal structure of particle image pairs:

e Due to changes in the illumination of PIV setups (that are often unavoid#ixedssump-
tion of gray value conservation (the traditional assumption behind optigakftimation)
is not valid. We adapted the prototypical optical flow constraint so that itatde these
illumination changes.

e PIVimagery often consists of only image pairs, while standard variatioqabaphes for
motion estimation operate on whole image sequences. We reformulated the figtical
constraint and made it symmetric, and thus improved accuracy of opticaéfibmation
between image pairs.
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6. Conclusion

e The typical motion range in PIV imagery is very high. It is crucial for P\akenation
algorithms to be able to resolve the full range of motion. To handle large despkds,
we presented a coarse-to-fine scheme.

The experimental evaluation showed that a prototypical variational apprmompetes in noisy
real-world scenarios with four alternative approaches especiallyrteigr PIV-sequence eval-
uation.

Variational Particle Tracking Velocimetry Insec.4.2, we have expanded the class of vari-
ational methods to the field of particle tracking velocimetry: We introduced elrnaviational
approach for evaluating PTV image pairs and sequences in two and thmeesibns. We com-
bined a discrete non-differentiable particle matching term with a continugusarézation term.
An advanced mathematical method guaranteed convergence to a local mininnmmeod
has the following features:

e Like most competing approaches, we combine the two assumgsinal displacements
(from one frame to the next) armmoothness of motigine. two particles that are neigh-
bors in the first frame are likely to be neighbors in the second frame).nmasi to other
approaches to PTV, we combine the two assumptions in a mathematically soury way
minimizing a variational functional.

e We showed that it posed no problem to expand our method to the analysisrof3®
image sequences (where the assumption of temporal coherency is alsted)cld his
expansion follows directly from expanding the involved functions from taC8D (or
3D+time). The variational method and the corresponding FEM discretizatientlg
appoint the equations that have to be solved.

e It is straightforward to replace the simple smoothness term that we usedybically
motivated priors.

The experimental evaluation showed that our variational method competabireitalternative
approaches.

Variational Motion Estimation with Physics-based Priors In chaptel5, we addressed the
guestion of how to adapt the prototypical regularization term from ch&itethe quite specific
demands of PIV velocity fields. We collected various possibilities of minimizingatianal
motion estimation functionals that incorporate higher order regularization terasémate more
accurate velocity fields.

We argued that the physical plausibility of standard higher-order regaten terms is only
very limited. In sec.5.3 we therefore presented an approach to particle image velocimetry
based on optical flow estimation subject to valid physical constraints. Adnedtolv fields
are restricted to vector fields satisfying the Stokes equation. The lattef@yumecludes control
variables that allow to control the optical flow, so as to fit to the appardatities of particles
in a given image pair. We showed the following features of this so-c@ieiical Stokes Flow
technique:

e When the real unknown flow observed through image measurementsrimsnto the
physical assumption underlying the Stokes equation, the control varialhb®s for a
physical interpretation in terms of pressure distribution and forces aatitigeofluid.
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¢ Although this physical interpretation is lost if the assumptions do not holdapproach
still allows for reliably estimating more general and highly non-rigid flows friomage
pairs.

e We made the important observation that optical flow estimates (together witls@nrea
able regularizer like the Optical Stokes Flow regularizer) are able to datpercross-
correlation methods in terms of achievable resolution and quality of the exirasitecity
field.

We argued in sec.4 that Optical Stokes Flow has two main drawbacks:

e The physical plausibility of Optical Stokes Flow is limited to cases of very lowRé&ls
numbers (as the approach neglects the convective terms of the Nawes $tjuations).

e As Optical Stokes Flow uses the time-independent Stokes equation asrmwlekige, it
cannot exploit temporal coherency.

This is why we extended the approach in sed.along two directions:

e The full incompressible Navier-Stokes equation was employed in ordetainadphysi-
cally consistent regularization which does not suppress turbulent Hoations.

¢ Regularization along the time-axis was employed as well, but formulated in dimgce
horizon manner contrary to previous approaches to spatio-tempor#niagtion. This
allowed for a recursive on-line (non-batch) implementation of our estimateondwork.

Ground-truth evaluations for simulated turbulent flows demonstrated tleatadimposing
both physical consistency and temporal coherency, the accuraogwoffitimation compares
favorably even with optical flow approaches based on higher-oigesudl regularization and
advanced cross-correlation approaches.

6.2. Open Problems and Further Work

There are a several open problems that we will have to tackle in the fututkis section we
shortly outline these problems and present some ideas about how to saive the

Automatic Parameter Selection In this manuscript, we tried to introduce as few parame-
ters as possible. The use of regularization parameters for the typdatfomal approaches that
we use, is, however, nearly without alternative. In principle, the variatiapproaches can be
rewritten as maximizing an a posteriori probability (with the use of the Bayesuia). How-
ever, the parameters of the individual probability distributions are giyerat determinable

— soagain they would have to be considered as user parameters. Though weadiaveed
the best parameter settings by hand in most experiments, we have also k&ltedha series
of experiments (e.g. sec4.1.4 4.2.3 that shows that a non-optimal parameter choice still
yields good results. We agree, however, that some kind of automatic pgarasetection pro-
cess would be desirable. IaI[lC"0€], the authors go a first step on this way by introducing
a non-dimensional regularization parameter (through dimensional anafyie optical flow
constraint) and by discussing the influence of the individual sdatemance space andtime.
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6. Conclusion

Individual Particle Detection for PTV We have seen in se2.2.2 that PTV methods
actually consist of (at least) two steps that are usually conducted in theiiojj@rder:

e individual particle detection
e temporal matching of the individual particles

In the case of 3D PTYV, the following step is introduced between the two skepga
¢ 3D reconstruction trough triangulation

In section4.2we have only dealt with the temporal matching of individual particles. We have
seen in sectiod.3, however, that, in order to compare PIV and PTV approaches, on®ohas
follow all the steps in order to be able to give typical error measures.

A further interesting point is a possible combination of the above mentionedspaione
single optimization approach. Combining spatial matching (3D reconstructimhjesmporal
matching might improve the overall performance of the algorithm: The factehgioral match-
ing fails is a hint on an erroneous spatial matching. A functional that corabioi steps would,
however, be highly non-convex, and it would be hard to find a significammum.

Physically Motivated Priors for PTV In section4.2, we have regularized our matching
functional with the simple assumption of a smooth target velocity field. In ch&pter have
presented regularizers that are much more adequate for fluid scefdrés® regularizers could
easily be adapted for PTV, too. We believe that an adaptation of the spajimital regular-
ization introduced in sectiof.4 for the purpose of PTV is especially promising: While the
spatio-temporal regularization introduced in sé2is anEulerianapproach (i.e. one assumes
that the velocity at a fixed point should only vary smoothly over time), thelageiger of section
5.4is of Lagrangiannature: One regularizes over a moving particle (i.e. with a moving coor-
dinate system). It is clear that a “Lagrangian” regularization has the faitehyielding better
results in turbulent scenarios.

Displacement vs. Velocity Inthe approaches presented in chapteve assumed that ve-
locity and displacement are identical: Note that the optical flow data term givestimate of
the velocity However, if we consider the same data term in a coarse-to-fine or itesged
tration framework, the output of the iterative energy-minimization processdisacement
In contrast, the regularizers that we have introduced in ch&péee valid forvelocitiesonly.
We have bypassed addressing this problem, by only considering (itechjpmage pairs and
sequences with small movements of the individual particles from one frame teit. In these
environments, one can use the terms displacement and velocity synonymously

If one wants to apply physically plausible regularization in image pairs anadesegs with
large displacements, a good starting point might be the workbf§8] and references therein.
In [BMTO5], the authors study a large deformation diffeomorphic metric mapping problem.
They propose a variational formulation to estimate an optimal transformatioreéetiwo im-
ages in the space of smoathlocityvector fields.
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Optimal Spatio-Temporal Control We have seen that Optical Stokes Flow (cf. <e6) is

an optimal spatial control approach. In sect®d, we have expanded this approach to image
sequence analysis and chose the vorticity transport equation as prislekiye. Additionally,
we demanded that on-line (non-batch) processing should be possib&edy time instance,
our approach therefore chooses the most plausible velocity field (ugnouthent image data
and the resulting velocity field of the preceding frames).

As the approach uses (at every time instance) only image data from theetyieand the
“past”, this decision will usually not be “a posteriori” optimal: In scenariosvirich thewhole
image sequence spriori available, it makes sense to use this knowledge during optimization.

The optimal control approach introduced in séc3 could be expanded to image sequences,
and an optimal solution could be computed in a forward-backward manhee.@ [BIKO2,
Gun03).

Dangers of using (Physical) Priors In this thesis, we have used variational approaches
for motion estimation because they allow to incorporate prior knowledge intcsthreation of
velocity vector fields. The most simple prior knowledge that we have usdubipter4 was the
assumption of a smooth target velocity field. In practical scenarios, pnshieight start at this
point: Users of cross-correlation approaches can clearly deteotvisual inspection (through
the outlier percentage) whether a velocity field is plausible or not. If a-@rosglation approach
fails (e.g. due to bad experimental conditions or a wrong parameter clooies)mply getsioise

as the output velocity field. With variational approaches, results are sbhatalifferent: If a
variational approach is not able to reconstruct a meaningful velocity fieldll still reconstruct

a vector field that (at least) minimizes the regularization term: Using smootheespm@or,

the reconstructed vector fieldll be smooth, and this fact might entrap the user to believe that
the velocity field is reliable. We believe that analyzing the computed overaigglie a good
starting point on the way to a reliable confidence measure.

Further problems occur through the use of physically based prior kdgeieEvery piece
of knowledge that is used, will bias the solution. If we, e.g., assume incasipilty of the
fluid, then our algorithm will output a velocity field with zero divergence —eipeindently from
whether the assumption is true or not.

To summarize, one has to be extremely careful about what kind of priowlkdge one
chooses. Before one introduces more and more advanced typesrsf prie should discuss
with fluid mechanics engineers and fluid experimentalists, whether theseaintssare actually
plausible.

Fluid Priors for Non-Fluid Scenarios An interesting open problem in computer vision is
finding prior knowlege for motion estimation generalimage sequences (e.g. human motion,
traffic scenes, ...). In contrast to fluid imagery, there are no (rather)esipmysically plausible
priors available in these scenarios. Therefore, the problem is much rifficald The use of

fluid priors enables us to model simple physical facts (which are also trugefteral image
sequences, e.g. inertia) with partial differential equations. A first stémsrdirection has been
performed in ERS0§, where the authors model the scene as a fictive fluid that is governed by
the Burgers equation (i.e. the acceleration of ficitive fluid particles is patwliz
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6. Conclusion

From 2D to 3D Note that we have only expanded the PTV approaches to 3D, as yet. All
gray-value-based approaches that we introduced in this thesis #ieteesto 2D. Currently,
there has been a lot of research published on experimental PIV methatlgield volumetric
gray value information. We believe that our variational approachessmecally suitable in
these 3D scenarios:

e We have seen in sectidh?2, that the optical flow constraint assumes gray value conser-
vation. If particles move in or out of the illuminated plane, the optical flow cairstis
violated and the error rates increaséf we illuminate the whole volume, a 3D optical
flow constraint is more likely to hold.

e Imposing physical constraints is much more straightforward in 3D than it is irB2Eh
in sec. 5.3.1and5.4.2 we had to handle out-of-plane motion separately — in 3D, this
unattractive special treatment will become redundant.

e Due to the fact that in 3D experimental setups the resolution is often redutesipossi-
bility to include (physically motivated) prior knowledge is tempting.

!Note that this consideration is true fanykind of motion estimation algorithm (including cross-correlation based
methods).

2Scanning PIV allows high resolution in two dimensions, but the sampling rateeithird dimension is usually
much lower. The resolution of tomographic reconstruction algorithms isrinlimited by the fact that experi-
mental conditions forbid the use of an arbitrary number of cameras.
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A. Elliptic Systems and FEM

This section is to give a short overview on how to handle equations of elligti. tyVe first
give a very short introduction into elliptic theory and then we describe hatistretize these
systems using finite elements. Finally we introduce the numerical methods thaevie this
thesis to solve large systems of equations which emerge from finite elemenetidisiion. Note
that our overview is rather algorithmical and far from being complete, mend mathematical
introduction into elliptic systems and finite elements, we refefte.[§ Bra97).

A.1. Elliptic Theory

In this thesis, there are a number of problems (8d.4,(4.3),(4.12), that demand minimizing
some energy functional

g, )

whereH is a Hilbert space.
In the following, we assume that the functionglv) can be written as

T(w) = galv,v) = (f,0),

wherea : H x H — R is a symmetric bilinear form and : H — R is a linear functional.
In order to evaluate whethei(v) has exactly one solution, we first have to introdaoatinuity
andH-ellipticity.

Definition 1. A bilinear forma : H x H — R is continuousif 3 C' < oo with
|a(u, v)| < Cllul| - [[l], Vu,v € H,
whereH is a Hilbert space.
Definition 2. A symmetric continuous bilinear formliselliptic , if
a(v,v) > al|v||?, Vv € H,
with o > 0.
Now we can present the Lax-Milgram theorem for convex sets:
Theorem 3. Lax-Milgram Theorem: V is a closed convex set in a Hilbert spatleanda :
H x H — R is an H-elliptic bilinear form. For every € H’, the variational problem

1 .
J(v) = ia(v,v) —{f,v) — min
has exactly one solution.

For a proof of the Lax-Milgram theorem for convex sets, we refeete.97].

We have seen that it is sufficient to show that a given symmetric bilinearifoomntinuous
and H-elliptic. For the approach of Horn&Schunck (&.12), this was performed ingch91].
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A.2. Ritz-Galerkin Method

The most natural approach of solving elliptic problems lies in the use of finiteeglts. This
goes back toffit08]. The minimum of a functionall of some variational approach is not deter-
mined within H but within some finite dimensional subspagg whererh is the discretization
parameter. Foh — 0 we expect convergence to the solution of the continuous problem.

Theorem 4. Given the energy functional
1 .
J(v) = ia(v,v) —(f,v) — min.

J(v) has its minimum im;, € Sy, if
aup, @) = (f,u) Va € S , (A.1)
wherea(up, @) is again a positive bilinear form.

Proof: For uy, 1 € Sy, € € R:

1
J(up, + eu) = §a(uh + e, up + eu) — (f, up + eu) "2

= J(up) + e(a(up,a) — (f,a)) + %62(1(1], w).

If uy, fulfills equation A.1), ande = 1:
1
J(up +a) = J(up) + 5&(&,71) > J(up)

So,uy, is a unique minimum.

On the other hand, iff has a minimum at,, the derivative of the functiof(uy, + ei) ate = 0
has to vanish for every € V. According to A.2), this derivative isa(up, 4) — (f, @), (A.1)
follows.

Let {¢1, ¢, ..., on } be a basis ob},. Then, @A.1) is equivalent to
alup, ¢;) = (f, ¢i), i =1,2, ..., N.
With
N
up =y oy
k=1

we get the linear system of equations

N
Za(¢]7¢l)$] = <f’ d)z>7 L= 1)27"')N7
j=1

which can be rewritten in matrix-vector form

Az =b (A.3)
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A.3. Finite Elements for Elliptic Systems

whereA;; = a(¢;, ¢;) andb; = (f, ¢;). Matrix A is positive definite itz is an H-elliptic bilinear
form:

! Az = inAijxj = a(z zjp;, sz@) = alup, up) > of|up)?,.
2 J i

A is often called stiffness matrix or system matrix.

This method of solving the positive definite problefY) is called Ritz-Galerkin method. In

the following, we derive some properties of this method before we dedeadlgres of the actual

FEM implementation (cf. se@.3).

Theorem 5. Stability: Independent of the subspasg that we choose, the solution o4.()
satisfies

[[unllm < a™HI£]] -
Proof: Supposey,, is a solution of A.1). Letv = uy:
alun||y, < alup,un) = (f,un) < ||F1|||unllm.

Theorem 6. Céa’s Lemma: a is an H-elliptic bilinear form.« andw;, be solutions of a varia-
tional problem inH andS;, C H. Then,

C .
llu — up||lm < — inf ||u— vpl|m-
o v €Sy

Proof: (A.1) yields

a(u,v) = (f,v) Yve H
a(up,v) = (f,v) Yv € Sy

AsS; C H, subtraction yields
a(u —up,v) =0 Yo € Sp. (A.4)

(A.4) is often referred to as Galerkin orthogonality. With= v;, — up, € Sy (v, € Sp), this
yieldsa(u — up, vy, — up) = 0, and thus

aHu—uhHEH < a(u — up,u —up) = alu — up,u — vy) + alu — up, vy — up,)

< Cllu — up|ml[uw = vn[|m-
Céa’'s Lemma states that the error of any Galerkin approximation is only a ocorfiatdor
(independent ok) higher than that of the best approximationah V.
A.3. Finite Elements for Elliptic Systems
One usually solves variational problems in so-called “Finite Element SpacHs€ domain

Q is divided into a finite number of sectionsl€mentsand one considers functions that are
polynomials on these elements.
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A. Elliptic Systems and FEM

A.3.1. Features of FEM Spaces
Features of finite element spaces include:

e Decomposition of the domain: In 2D, the elements are usually triangles oresgiraBD,
the domain is divided into tetrahedra or cubes.

e Continuity and differentiability properties: Finite elements éfe elements, if they are
contained inC*(€2). In this section, we will restrict ourselves to the simplest elements:
(bi-) linear elements of clags®((2).

e Polynomial degree: In this section, we will restrict ourselves to polynomiadegree 1.
They have the form
u(z,y) :=ax+by+c.
A.3.2. Triangulation

First, one needs an admissible triangulation:

e Non-overlapping elements: The intersection of two elem&hfs; should be empty:
T; mTj = {}azaj € {17-"7t}7i #J

e Coverage of the domain: The union of alfriangles is equal to the domain in which the
problem is posed
t

In this section, we will explain how to perform a finite element discretizationroirragular
triangular grid (cf.4.2.2. The computations on a regular (triangular) grid (cf. e.g. 88).is
just a specific (simpler) case of this procedure.

A.3.3. Set-up of the System Matrix
The system matrix can be set up elementwise:
a(u,v) = / Zaklakualvdx
@kl
This yields
Ay = alondy) = | Y ootz = 3 / Dadiodesds. (A9
TeT

As we are considering elements with compact support, the sum only has tdearblse tri-
angles that are contained in the supporppénd ¢;.
In the case of an irregular triangulation, we use element-oriented compstakon every el-
ementT € 7 (where7 is the set of all triangles), we compute the individual share to the
corresponding system matrix entry.
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A.3. Finite Elements for Elliptic Systems

‘ X |P1 1
1 PO 1

Figure A.1.: Transformation of an arbitrary triangle into a unit triangle

In order to simplify the occurring integrations of each triangle we transtberarbitrary trian-
gles into unit triangles. Figur@.1 shows the linear transformation to a local coordinate system.

A general triangle with the vertice)(zo, y0), Pi(x1,y1) and Pa(x2,y2) that is numbered
counter-clockwise (cf. fig.A.1) can be transformed bijectively into an isosceles, orthogonal
triangleTy with an edge length of one:

xr =x9+ ($1 — xo)§ + (1’2 — x0)77 ,
y=1yo+ (y1 —y0)&+ (y2 — yo)n -

With this substitution of variables, the computation of the integral over the trighggetrans-
formed into a simple area integral. Thaisdy is to be replaced by

(A.6)

dxdy = Jd&dn
where
o2 g1 1o
J = 2 % =|p P P = (21— 20)(y2 — yo) — (x2 — 0)(y1 — v0)

is the so-called Jacobi determinante.
Integrating some function over a general triangle then becomes:

/T uado = | ulal& )yl ) Tdedy = 7 / 1 / T u©)dedn

(A.5) therefore has the following entries:

1 1-n
| /0 S ariiidrosjddn
k,l

Ter VO
As we want to usdinear Finite Elements, the representation of the functignsn local
coordinates is:
¢po=1-¢&—n,
op1=¢,
¢p2=1.
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A. Elliptic Systems and FEM

The connection to global coordinates is given by equatiofi)(and can be written as the matrix
relation
1

(111 i” 0
v P P P Pl
Yy op2

Given the system matrix, the next step is to solke3]. If « is an h-elliptic bilinear form,
we can solve this sparse positive definite system by some iterative saivtbe following two
sections, we will describe two possible solvers that we used for the satmg linear systems:
the method of conjugate gradients (se%.4(2)) and the multigrid method (secA(5)).

A.4. Gradient Descent Methods

If one wants a large system of equations with a positive definite system nwataxses the fact
that the solution of the equatiofiz = b is just the minimum of

f(z) = %.I'TAZL' —b'x (A.7)

The simplest method that uses this fact isgkaeral gradient approach

A.4.1. The General Gradient Method

Starting at some initial guess), one first computes the negative gradient of the funcfiaat
that point. For quadratic functioné.(7), this yields

d() = —Vf({L’()) =b— Axg .

Then, one computes the minimum ffon the line{zy + tdy : ¢ > 0}. This minimum is at
t= .
dg do
a = .
dg Ady

One therefore has a new estimate= xo + adg and can (again) compute the negative gradient,
and so on. It is clear that this iterative approach yields a serigswith f(zo) > f(x1) >
f(x2) > .... While it will always yield the global optimum (as long as the system is really
positive definite), the general gradient method tends to converge legrly $or matrices with a
high condition numbet.

A.4.2. Conjugate Gradient Method

This method was introduced by Hestenes and Stiéfely]; it decreases the number of itera-
tions (until convergence) considerably.

The conjugate gradient method computes a series of vegtovhich are non-zero and satisfy
(pi) T Apj = 0 forall i # j. This property is known as conjugacy. Starting again from an initial

tunfortunately, all elliptic systems that are presented in this thesis geneaatyhhigh condition number.
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A.4. Gradient Descent Methods

xo, the method computes a sequengausing conjugate vectors as bases. The iterative updates
are

Thyl = Tk + Qppy,
Jk+1 = gk + o Ady,
di+1 = —gk+1 + Brdy, Where

T
9 9k
o = and
BT dl Ady
T
Jr+19k+1
B = S
9 9k

Preconditioned Conjugate Gradient Method

In many of our experiments, we use a variation of the classical conjugatéegt method: the
so-calledpreconditionedconjugate gradient method (PCG)GO76. When we use a linear
translationi: = B'/2z for a non-singular matri3, the system becomes

£(#) = 3@t (B2 ABT)i — (B0,

Then we apply the classical conjugate gradient method on this preconditiceieix. The goal

is to choose a matri®B so that the eigenvalues & '/2AB~1/2 are clustered closely to each
other, thus reducing the number of iteration steps. The preconditionettO@Elam is presented
more precisely in algorithr@. We confine ourselves to the use of the diagonallais B (as
we use multigrid methods (cf. se.5) if real-time performance is demanded). For a review of
more advanced preconditioners, we referioaP 7.

Algorithm 2 Preconditioned CG Algorithm

Choosexg. go = Axg—b,dy = —hy = *B_lgo.
For a given tolerance,

WHILE (|g"||/I[bl| > €)
Thil = Tk + aydy,
g, hk
Ok = dedk
k+1 = gk + o Ady,
b1 = B+ gra
dp+41 :r_hkﬂ + Brdy
. gk+1hk+1
O = "

k=k+1;

END
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A. Elliptic Systems and FEM

A.5. Multigrid Methods

Multigrid methods are currently among the fastest available methods to solve dfipis. In
fact, they are the only methods with a complexity®(fr), wheren is the linear system’s num-
ber of unknowns. Multigrid methods were developed by Braagda] 7], and mathematically
substantiated by HackbuschH{c81.

The main observation that led to the development of multigrid methods is the fastdhdard
solvers arsmoothing operatordf we consider the errar (approximate solutiofi of z in (A.3)
minus true solution), we see that it consists mainly of low frequency compgnehite high
frequency components are eliminated. It takes many additional iterations to akntire low
frequency components as well.

This section is just to give an algorithmical introduction to multigrid methods — foruado
mathematical analysis, we refer te{c85 Hac93 and for a more detailed algorithmical in-
troduction, we refer toHTVF97. The section is divided into three parts: Firstly, we sketch
the standardcauss-Seideinethod, that is used as a smoother. Secondly, we outline how the
so-calledcoarse-grid correctionis performed. Finally, we summarize and illustrate ok
multigrid algorithm

A.5.1. Gauss-Seidel Method

If we order the mesh points frofnto /V, the Gauss-Seidel updating scheme is

(Z;’V:Lj;éi Aijzj — fi)
Ay

Ty = —

L i=1,..,N.

Note that the new values afare used as soon as they become available. A simple enhancement
of the traditional Gauss-Seidel Method is tRed-Black Gauss-Seidel Methothe individual
entries of the system matrix are “colored” in a checkerboard fashioe.takes one sweep to
update the red nodes and then a second sweep to update the black nodes.

A.5.2. Coarse-Grid Correction

We start with an initial estimate af, and compute the so-callefect
dp = ApZp — fh, (A.8)
whereh denotes the mesh size of some uniform grid. SiAges linear, the defect satisfies
Apep, = —dp, (A.9)

whereey, is the difference between estimatég and truex;,. Let us nowcoarsifythe defect
onto a grid with mesh sizeh:
dop, = Rdp,

whereR is a restriction operator. As we use conforming finite elements, this operatioedsly
given. For details we refer t@3[a97. Then, we can solveX.9) for the error (correctiong; this
operation, however, is performed on the coarse grid:

Agpeon = —dap, . (A.10)
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A.5. Multigrid Methods

Finally, we interpolatéthe errorey;, onto the finer gricy,:
en = Peap,

and update the approximatian:
Y =T +ep . (A.11)

It is clear that this procedure (in contrast to the Gauss-Seidel methodtfrerast section)
can reduce low-frequency errors. High-frequency errors, erother hand, do not even have
a representation on the fine grid and therefore won't be reducederkftire makes sense to
combine the ideas of coarse-grid correction and Gauss-Seidel retaiatite way described in
algorithm3:

Algorithm 3 Two-Grid Iteration

1. Pre-Smoothing: Performn Gauss-Seidel sweeps (starting with some initial value) on
grid h. This yieldsz;, for eq.A.8.

2. Coarse-grid correction: Executing above algorithmi\(8) - (A.11) yieldsz;".

3. Post-Smoothing:Performm Gauss-Seidel sweeps starting wit}f*.

A.5.3. Full Multigrid Algorithm

There are two additional ideas that yield the full multigrid algorithm:

1. Instead of solving4.10) exactly on grid leveRh, we use even coarser grids and recur-
sively apply the two-grid algorithn3. Usually, one does not need more than= 2
iterations of algorithn8. FigureA.2 shows the detalils.

2. Additionally, we do not start with some initial guess, but with the exact solutieencat
the coarsest possible grid level (where the whole problem size is, elg.3 on3). This
coarse solution is interpolated to the next grid level

xp = Pxop. (A.12)

Instead of thd” or W cycles as seen in figure.2, this yields to a series of increasingly
tall N's (cf. fig. A.3).

2Again, the projection operatd? is directly given if we use finite elements.
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A. Elliptic Systems and FEM

Figure A.2.: Multigrid algorithm witht grid levels. S means smoothing (relaxation), E denotes
exact computation (on the coarsest level only), diagonal lines to the bgtfom
denote restriction operators, diagonal lines to the f9moéte prolongation.Top:
~v = 1. Bottom: v = 2.

Figure A.3.: Multigrid algorithm with4 grid levels. The symboll means that a coarse-grid
solution has to be prolongated with.(2).
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B. Saddle-Point Problems and Mixed FEM

We have seen in this thesis, that imposing additional constraints (like, e.gnpnessibility)
yields quadratic problems with linear constraints (cf. &.¢9,(5.36):

1
J(u) = ga(u,u) = {f,u) (B.1)

s.t.b(u, u) = (g, ) Vp € M

that can be classified aaddle point problemsThis chapter is to sketch basic mathematical
properties of saddle-point problems (sBcl), features of the corresponding discretization with
mixed finite elements (secB.2), and finally the solution of the discretized system using the
so-called Uzawa algorithm (seB.3).

B.1. Saddle-Point Problems
The corresponding Lagrange functional to problériy is

L(u, A) = T(u) + (b(u, X) — (9, ).
BecauseC(u, ) is a quadratic form irfu, \), this yields

a(u,v) + b(v,\) = (f,v), Yo € X

B.2
b(u, ) = (g, ), YV € M, (8.2

with the saddle point property
Lu, p) < L(u, A) < L(v,A), V(v,p) € X X M

for every(u, \) that solves®.2).
X and M denote Hilbert spaces an’, M’ the corresponding dual spaces: X x X — R,
andb : X x M — R be continuous bilinear forms. The problem of finding \) € X x M
with (B.2) defines the linear mapping
L:XxM— X' xM
(u, A) = (f,9) -
Let us rewrite B.2) as an operator equation. To do so we have to assign mappings to the

bilinear formsa(u, v), b(u, ), andb(v, A):

A X — X', (Au,v) = a(u,v), Vv € X

B:X — M, (Bu,u) =blu,pu), Vue M

B":X = X', (B"A\,v) =b(v,\) Vv e X,
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B. Saddle-Point Problems and Mixed FEM

and B.2) can be rewritten as

Au+ BT =
ut / (B.3)
Bu=g.
Furthermore, we define the following spaces
Vi(g) :={veX;blv,u) ={(g,u), Yu € M},
(9) ==A{v (v, 1) = (g, 1), Vi € M} (B.4)

Vi={veX;blv,n) =0, Vue M}
Due to continuity o, V' is a closed subspace &f.
Theorem 7. The saddle-point problenB(3) has a unique solutiofu, \) € X x M, if
1. the bilinear form a is V-elliptic (witd” according to B.4)):
a(v,v) > al|v||}, Yw eV,
and

2. the bilinear form b fulfills the so-calleif-sup (or Babuska-Brezzj condition

b
inf sup (v, )
neM pex ||v][[|pl]

>06>0.
For a proof of theorend, we refer to BF91].

B.2. Mixed FEM

Analogous to secA.2-A.3 for elliptic problems, we want to find an adequate discretization for
saddle point problems. Again, we choose finite dimensional subspaces X, andM;, C M.
The discretized version oB(2) is

alup,v) +b(v, A\p) = (f,v) Yv € X},
b(un, ) = (g, ) Yo € My,

We try to find(up, \n) € X5, x M}, that fulfill (B.5). This type of approach is calledixed finite
element methad
Analogous to B.4), we define

(B.5)

Vi, i={v € Xp;b(v, ) =0, YV € My}

Note that the fact thak’;, ¢ X does not necessarily mean that ¢ V. Therefore,a is not
necessarily/,-elliptic.

Definition 8. A family of finite element spacé§,, M, fulfills the Bab&ka-Brezzi condition if
there existv > 0 and 3 > 0 (independent ok) with the following properties:

1. The bilinear forma is V}, elliptic

a(vp,vp) > athHz, Yoy, € Vi,
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B.3. Uzawa Algorithm

Figure B.1.: Sketch of 2D Taylor-Hood elements: Center position of lineanezi¢és for func-
tions in M;, coincide with the triangle vertices (circles). Quadratic elements for
functions inX}, are defined also on intermediate positions (squares).

2. The so-called Brezzi condition is fulfilled:

b(U, )\h)
vex, vl

> Bl Anl], VAR € My, .

Theorem 9. X, M, fulfill the Babiska-Brezzi condition. Then

[l = wnll + 1A= Anll = ef inf flu—wnll+ inf A= pun][}
For a proof, we refer tora97).
To summarize, the spacég, andM;, must be harmonized. A family of elements that is often
used for Stokes (and Stokes-like) systems is the so-cadlgldr Hood element
For discretizing functions of the spacg,, we use polynomials of degrex If, e.g., linear
triangles are used, this yields the interpolation function

u(w1,z9) = axi + bas + cr172 + dvy + ey + f .
For functions of the spackf},, polynomials of degreé are used:
p(x1, ) := axy + bro + .

FigureB.1 shows the arrangement of the individual basis functions. For discrgtizenStokes
equation $.173, its adjoint 6.178, and the vorticity transport regularizes.85 we use a slight
modification of the standard Taylor-Hood elements. Instead of a trianguksti,m& employ a
regular quadratic mesh and define bilinear (for functiondfj), and biquadratic (for functions
in X;) finite elements. A proof that these Taylor-Hood elements fulfill the BkatBrezzi
condition can be found inerg4, ]

B.3. Uzawa Algorithm

Discretization of the saddle-point proble.§) in some appropriate finite element space yields
the following linear system of equations:
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Au+B' =T,

B.6
Bu =0, (8.6)

whereA € R™™" B € R™" u,f € R", \,g € R™. The saddle point problems that we
consider in this thesis contain a submat#fxhat is positive definite. One can therefore solve
the first equation of the systerB.6) for the unknowru:

u=A"(f - BTp)
and insert the result in the second equation
BA™Y(f-B'p)=0.
This gives a system which only incorporates the pressure
(BA7'BT)p=BA7'f . (B.7)

The matrix(BA~'BT) is symmetric and positive definite. Therefore, we apply the conjugate
gradient algorithm (cf. secA.4.2) to (B.7). This requires a single matrix inversion in every
iteration step. For computational efficiency, this is accomplished using a muksighigine (cf.
sec.A.5). Algorithm 4 details the overall process.

Algorithm 4 Uzawa Algorithm
1: pg € R, Auq = f — BTp(). Setd|, = —q; = Bu;.
2: repeat
3 pp= BTdk
Approx. hy, = A~ 'p;, using multigrid
o = dj di/ (P} he)
Pk = Pk—1 — Qud,
Upt1 = Ug + aghy
Gry1 = —Bug
Bk = ap 1 0e+1/ (@ )
10:  dpy1 = —Qry1 + Brdy
11 until ||ge+1]] < €

© o N a R
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C. The Equations of Fluid Motion

In this section we develop the fundamental equations of fluid mechanicsthddige just give a
short overview about the equations that we will need in chaptEor a more complete coverage
of the topic, we refer to@M93] and [And95. SectionC.1 deals with the equations that arise
from the simplest assumptions. We will show that this description is not ablestride all
flow effects and therefore introduce the full Navier-Stokes equatiossdtionC.2. In section
C.3, we derive a special form of the Navier-Stokes equations — the vortiaitgport equation,
which we use in sec5.4 as a physically motivated prior. After introducing and motivating
the dimensionless Reynolds number in s€c4, we finally present the linearized form of the
Navier-Stokes equations, the so-called Stokes equation, inCsBcThis equation is used as a
prior in sec.5.3.

C.1. Euler’s Equation (Inviscid Flow)

We consider the flow of a fluid within a certain volurfeusing an Eulerian description with
u(zx, t) representing the velocity of the fluid atat timet.
The derivation of Euler’s equation is based on three basic conserlatsn

(i) conservation of mass
(i) conservation of momentum
(iii) energy conservation.

We will introduce these conservation laws in the following sections.

C.1.1. Conservation of Mass

Let p(z,t) denote the density (i.e. mass of the fluid particles per unit of volume) of a fluid a
(z,t). LetW be a fixed subregion @2 with boundarydW. The total mass: of the fluid inT/
at timet is given by

m(W,1) = / pla,t) dV

w
wheredV is the volume element.
The rate of change of massi is
4 (Wyt) = d/( t) dV (C.1)
T '
w
dp
= /at(:z:,t) av . (C.2)
W
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The mass of fluid at timeépassing out through the boundatf” per unit of time is given by
the surface integral gfu - n overoW, wheren is the unit outward normal, defined at points of
OW . Therefore, the rate of increase of masslinequals the rate at which mass is crossing
in theinward direction. This observation gives rise to timegral form of the conservation law
of mass

dp

E(m, t)dv = —/ pu - ndA . (C.3)
w oW

Using the divergence theorem

@(x,t)dV = —/ V- (pu)dV
w

w Ot
we can rewrite C.3), obtaining thedifferential form of the law of conservation of masdso
known as theontinuity equation
dp

— +V-(pu)=0.
r (pu)

C.1.2. Conservation of Momentum

The velocity field is given by
dx
u(w(t),t) = <2(0) -

The acceleration of a fluid particle is therefore

2
a(t) = %x(t) = %u(w(t)) .

Using the chain rule, this is equal to

a(t) = % + (u- V)u.

For the derivation of Euler’s equation, the fluid is consideredaal fluid This means that for
any motion of the fluid, there is a functigiiz, t) (pressure) with the following property: H is
a surface in the fluid with a unit normal the force of stres®) exerted across the surfaSeer
unit area atc € S attimet is

b=p(x,t)n.

This means that the force acts orthogonally to the surfjdee. there are no tangential forces.
Therefore, the concept of ideal fluids excludes many interesting hesmlgmmena (a rotation can
neither be started nor stoppéd)

If W is a region in the fluid at a particular instant of timehe total force exerted on the fluid
insideW by means of stress on its boundary is

Sow = —/ pndA.
ow

1This is why we will introduce the full Navier-Stokes equations, that aretatéplain phenomena like this, in sec.
c2
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C.2. Navier-Stokes Equation (Viscous Flow)

If e is any fixed vector in space, the divergence theorem gives

e-SaW:—/ pe-ndA:—/ V~(pe)dV:—/(Vp)-edV.
oW w w

Therefore,
Sow = —/ VpdV.
w

If f(x,t) denotes the given body force per unit mass, the total bodyefrc

F= /Wpde.

By Newton’s Second Law (force = masacceleration), thdifferential form of the law of bal-
ance of momentum for inviscid floagses:

u
vy . 4
P i p+of (C.4)

C.1.3. Energy Conservation

In the 2D case we have four (unknown) functions= (u1,u2) ", p andp. Up to this point we
have only deduced three equations. Therefore, one more equaticdischi® specify the fluid
motion completely.
This fourth equation origins from the conservation of energy. The toigy is composed of
the kinetic energy (visible) and the internal energy (invisible). We will canéiurselves to flows
where all energy is kinetic. It can be shown (e.g/)V93]) that this restriction is equivalent to
the assumption of incompressibility: Thus, the fourth equation that completess=guation
is

V-u=0.

For other types of energy equations (e.g. for isentropic fluids), vez tefCM93].

C.2. Navier-Stokes Equation (Viscous Flow)

After the analysis ofdealfluids in the preceding section, we want to concentrate on the analysis
of more general fluidsviscous flow The continuity equation (conservation of mass) and energy
conservation do not change, only the conservation of momentum is affecte

Now we have to take into accoushear stresseandnormal stressesThe shear stress,, is
related to the time rate of change of the shearing deformation of the fluid elentesTteas the
normal stress ., is related to the time rate of change of volume of the fluid element. As a
result, both shear and normal stresses depend on velocity gradientglowthe

Let us only consider thsurfaceforces inx direction. These are:

e Net pressure p:

0
(p - (p + Tidxl))dazg R

2In 3D, we have a similar problem: four equations and five unknowntfoms.
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Figure C.1.Left: shear stresRight: normal stress

e Net normal stress:
0Ty 11y

81‘1

((mel + dxq) — Tx1x1)d$2 )

e Net shear stress (shear towasdsdirection):

OTwgay

8%2

(G d2) = Type, )dy -

Here,dx; anddzs denote the size of the 2D fluid elements in the specific dimensions. Adding
all these surface force terms and the body force term yields the total #ptg in x; direction:

(- Op. n OTy1a, n OTzoz,
8951 8931 8562

Therefore, we obtain for the; component of the momentum equation for a viscous fluid

Fy = )dmldxg + pfz dxidze

Duy Op OTwyzy  OTaozy

and for thex, direction analogously

pDug _ _@ n 0T 29 n OTzozy
Dt Oxa O0xq O0xa

i - (C.6)

Equations C.5) and(C.6) are the Navier-Stokes equations that describe general viscous fluids
Newton states that shear stress in a fluid is proportional to the time rate of staimeloc-

ity gradients. Such fluids are callédewtonianfluids. The following equations hold true for

Newtonian fluids’:

0
Txiz1 — )‘(v : u) + 2/1/87;2 )
8u2
Taoxs = )‘(V : u) + 2'“’87@ 7
6uz (9u1
Txla}g - Tl‘le - ,U’(aixl + 87@) )

3Nearly all fluids are Newtonian fluids — exception: blood flow.
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C.3. The Vorticity Transport Equation

wherey is the molecular viscosity coefficient ands the second viscosity coefficient.

Substitution of these equations int6.6) and (C.6) and rewriting the equations as one vector
equation yields

Du
"Dt

Equation C.4) can therefore be replaced by e@..7) in the viscous case.
In the incompressible case & py = const.), the continuity equation becomes

= -Vp+ A+ p)V(V-u)+pAu+pf . (C.7)

Vou=0 (C.8)

and thus, the Navier-Stokes equations can be simplified to

D
Pt = —Vp+ pAu+ pf . (C.9)
Dt
Equations C.8) and (.9 are self-contained; there are three equations for the three dependen
variablesu,us andp.

C.3. The Vorticity Transport Equation

Letu = (ur,u2)",u = u(x,t),z = (21(t), 22(t)), denote a two-dimensional velocity field.
We have seen that, in the incompressible case, the momentum equation of the $akes
equations becomes

(?;: +(u-V)u=-Vp +vAu, (C.10)
wherev is the coefficient of kinematic viscosity and = p/po. When we applyV x* to the

Navier-Stokes equations we get
ou ,
an+Vx(u-V)u:—Vpr+yV><Au. (C.11)

Recalling that we are considering incompressible fluids (Ve: «» = 0), we can simplify
(C.11) and have

%(qu)—!—(@wV)(qu) =vA(V x u). (C.12)
Settingw = V x u, (C.12 becomes
Dw 0

This equation is known as the (incompressible) vorticity transport equalimgether with the
boundary condition at = 0 : w(z,0) = wy, it describes the evolution of vorticity over
time. Note that, in the absence of external forces that act on the fluid anthéogeth the
incompressibility condition@.8) , this equation is capable of completely describing the flow.

“In the forthcoming sections, we will consider 2D flows only. We thereftafineV x u = g—;‘f - %'
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C.4. The Reynolds Number

In this section, we discuss some scaling properties of the Navier-Stokesiats. We will
introduce the famous Reynolds number that measures the effect ofitysmoshe flow.

For some given problem, 1&f be acharacteristic velocityL be acharacteristic lengttandT
be acharacteristic time The choice of these numbers is more or less arbitrary: The characteristic
velocity is usually the fluid velocity at “infinity”, while the characteristic length &etmined
by the experimental setup (e.g. in the flow around a cylinder, it is usuallyiimeter of the
cylinder). Note that the choice @f and L determines the choice & (T' = L/U). Let us
measure the spatial coordinatethe velocityx and timet as fractions of the quantitiés, . and
T:

¥ =z/L, ' =u/U, A =t/T,

wherez’, v’ andt’ are dimensionless numbers. Then, the (incompressible) Navier-Stakas eq
tions (C.10 can easily be rewritten as:
ou’ , v
- . v/ / — _v / 7A/ /
gr TV Pt (C.13)
V' =0,

wherep’ = p/(poU?). (C.13 are the Navier-Stokes equations in dimensionless numbers. The

Reynolds numbeRe is just
LU
Re = —.

v

C.5. Linearization: Stokes Equation

Let us revisit the dimensionless Navier-Stokes equations that we havduo#® in the last

section®: 5
o Vyu=—vp +

This equation is built up by the

1

moldut (C.14)

diffusionterm: iAu
Re

and the
convectivederm: (u-V)u .

To summarize:u is convected subject to pressure forces and body fofcesd, at the same
time, it diffuses. In specific cases where we know that the Reynolds misbmall (i.e. slow
velocity, large viscosity, or small bodies) tH#fusionterm will be the dominant term irQ(14).

In these cases, we can neglect the non-linear terr@.ib4f and still get a good approximation
to the solution of the Navier-Stokes equations:

ou

_ = — /
5 Vp +

1

Rt f (C.15)

SFor the sake of readability, we have simplified the variable names.
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C.5. Linearization: Stokes Equation

Equation C.15 is called unsteady Stokes equation. If we additionally assume stationarity of th
flow, we get

1
——Au+Vp =f.
Toe ut+Vp =f

This equation is called steady Stokes equation, and we use it as physicalgt@rior knowl-
edge in sectio®.3
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D. Discretization of the Vorticity Transport
Equation

This section shows our discretization of the vorticity transport equation

i + (v V)w =rvAw. (D.1)
ot
The vorticity transport equatiorb(l) is a parabolic equation, whose hyperbolic part is the ad-

vection equation

ow
E—i—(u-V)w-O

and whose elliptic part is the diffusion equation

Ow
ot

In the following we will use a Crank-Nicholson second order temporal @iffeing scheme
for solving the diffusion part, and a second order Fromm-van Leemselier solving the ad-
vection part of equatiory.1).

The domain is divided into cells. The vorticitw is defined in the centers of the individual
cells: w?j is the vorticity atry = i,x22 = j, andt = n. Furthermore, we will need to define
quantities on the cell boundaries;ﬁrl/zj denotes, e.g., the vorticity on the boundary between
cells(i,j) and(i + 1, j).

=vAuw.

D.1. Crank-Nicholson Scheme

Let us now discretizel{.1). We combine an explicit Fromm-van Leer scheme and an implicit
Crank-Nicholson scheme:
n+1 n
L — W 1
i,J ij o n+s
Al = —(u- V)wi,j :
In order to be independent of time step n+ 1 (i.e. we want to define an explicit scheme), we
define a time step=n + 1/2 for the advective part. For the diffusion part, on the contrary, we
will use an implicit scheme — therefore, we are allowed to defir the time step = n + 1.
In order to compute the unkno ]*1 we rewrite D.2) as

+ %A(w" oty (D.2)

At n n ntl At n
( — 21/A> wijl =wj; — At(u- V)w, ; % + ?VAwm-. (D.3)
After discretization, this yields the following system of equations:

Lw=0»b
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D. Discretization of the Vorticity Transport Equation

Lz( —Atl/A>
2

The right-hand-side of equatio® (3) is therefore

with

A
b=wj; — At(u- V) *3 + - VAW, (D.4)

that can be conveniently solved by some corresponding elliptic solverfgendixA). The
operatorL is discretized using standard finite differences:

(Lw)iyj = (1 + 4Atu) Wi — Aty (wi+17j +wi—1,; +wij+1 + wi7j_1) .

The following sections will concentrate on the discretization@#] using a Fromm-van Leer
scheme.

D.2. Fromm Scheme

‘ Us i j+1/2
u, .o u, b
1, i-1/p, ° 1,i+1/2,j
W
L
‘ Us i j-12 @D j-112

Figure D.1.: Finite Differences using Fromm Scheroeft: Velocity components; andus on
the cell edgesRight: Vorticity w on the cell edges.

TL+1/2

When discretizing[.4), the main problem is the discretization (@f - V)w, . As we are

considering thencompressibleorticity transport equation, it is clear that
(u-Vw=V"-(uw).
Using standard upwind-schemes for finite differendésuw) can be discretized as

1 1 1 1
'n,+§ o n+§ + +* 'n,+§
A (uw)m i+ig  Li 1% Uy zg+lwl i+3 u27i:j*%wi,j—%

The question remains, how to compute the vorticities at the four cell bousd&iie will only
derive the formula for estimating the vortic'mg:fj, the derivation of the other three vorticities

),

is analogous. A linearized Taylor series for this right edge yields the foilpapproximation:

oy Lag0 L0
wi+§7j ~ wm-—i— —Azx 8:c+ Atat. (D.5)
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D.3. The van Leer Slope

For 2 i+ We can substitute our initial partial differential equati@ni) and obtain

ntl n 10w A ow Ou;  O(ugw)
A t -
w’*%vﬁ wijty 2011 + T ox waxl Oxo
1 ow 1 Jur 1, O(ugw)
= w! 1 —u At At — — At . D.6
Wi 0 T3 2 ( “ ) 8951 8%’1 2 8.%‘2 ( )
The discretization of this equation is:
n+2 = wn-—|—1<1 u At)AVLw'-—EAtw-"- (u 1 — Uy 1-)
Yirli w19 Lit3. b9 b3 \Thitgd  Thisg
1 ind ind
—5 At <“2,i,j+§w2§$? - uz,i,jféwgq“_u? ) (D.7)

whereAY F is the so-called van Leer slope, that will be defined in the next sectionteTime
that introduces ther, component f(a%’)) is discretized using anpwind scheme: We think
of the direction of information transfer as flowing from the upstream to dtsgam locations.
Thus, to evaluate some quantity at a certain point, we only need informationiie upstream

region. Forw“pwmd this yields, e.g.,
L
wpwind _ | @i 1T U1 >0
i+l T n i
ij+3 wi'ipq If Unijad <0

D.3. The van Leer Slope

The Fromm Scheme introduced in the preceding section is second-omleatgc(we do not
only have values fow at the cell centers, but also values at the cell boundaries). Howgéver,
there are discontinuities in the flow, Fromm’s second-order scheme will leastibations that
yield instabilities (cf. e.g. Hlir84]). A possibility to overcome this problem (but still retain
higher-order accuracy) is the strategy to use Fromm’s Scheme in smoimthg,dgut go back to
first-order accuracy in regions where discontinuities are detectedc@hibe done by defining
the so-called van Leer slope (cD.(7)):

A‘z/lei,j _ { gign(wiﬂ,j — wj—1,;) min{slope,, } :I g:?j i 8 (D.8)
where
Prij = (Wil — wij)(wij — wi1;) (D.9)
and

1
slope,, = {2|w;;j — wi—1,4l, §|wz'+1,j — wi—1,4], 2lwi,j — wit1,4]}

AYL can be computed analogously.
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