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Singular Projective Varieties and Quantization

Martin Schlichenmaier

Abstract. By the quantization condition eompact quantizable Kähler mani-
folds can be embedded into projective spaee. In this way they become projee-
tive varieties. The quantum Hilbert space of the Berezin- Toeplitz quantization
(and of the geometrie quantization) is the projeetive coordinate ring of the
embedded manifold. This allows for generalization to the case of singular vari-
eties. The set-up is explained in the first part of the contribution. The second
part of the eontribution is of tutorial nature. Necessary notions, eoneepts, and
results ofalgebraic geometry appearing in this. approach to quantization are
explained. In particular, the notions of projective varieties, embeddings, sin-
gularities, and quotients appearing in geometrie invariant theory are recalled.
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Introduction
Compact Kähler manifolds which are quantizable, Le. which admit a holomorphic
line bundle with curvature form equal to the Kähl~r form (a so called quantum line
bundle) are projective algebraic manifolds. This means that with the help of the
global holomorphic sections of a suitable tensor power of the quantum line bundle
they can be embedded into a projective space of certain dimension. Submanifolds of
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2 M. Schlichenmaier

the projective space are always projective varieties, Le. can be given as zero sets of
finitely many homogeneous polynomials. As will be explained in this contribution
the basic objects in the set-up of Berezin- Toeplitz (or equivalently geometric)
quantization of quantizable compact Kähler manifolds can be completely described
inside this algebraic-geometric context. For example the quantum Hilbert space
will be essentially the projective coordinate ring of the variety.

By definition Kähler manifolds are nonsingular hence the varieties obtained
are nonsingular . But from the point of view of varieties the singular ones are on
equal footing. Hence one might expect that it is possible to find a direct way
towards quantization of singular spaces by exploiting the theory of varieties.

In this contribution I do not present a solution for the quantization of singu-
lar spaces. I will only explain the above mentioned path from compact quantizable
Kähler manifolds to projective varieties. The quantization procedure I am consid-
ering is the Berezin- Toeplitz quantization, resp. the Berezin- Toeplitz deformation
quantization. This quantization procedure is adapted to the complex structure
which is a requirement for the fact that it can be formulated in terms of complex
algebraic geometry. I recall the results on this quantization scheme in Section 1.

The rest of the contribution is considered to be tutorial. There is nothing new
there, and everything is well-known for researchers working in algebraic geometry.
But I hope that the collection of concepts and results will be useful for researcher
in quantization. Some concepts used elsewhere in this volume are explained. In
Section 2 and in Section 3 basic concepts of algebraic geometry are introduced.
First projective varieties are defined. Compactified moduli spaces are candidates
for projective varieties. The projective (homogeneous) coordinate ring is discussed.
It will turn out to be the quantum Hilbert space of the theory. It incorporates the
vector space of global holomorphic sections of all tensor power of the quantum
line bundle at once. On this quantum Hilbert space the total Berezin- Toeplitz
quantization operator operates. It is used to show that the quantization scheme
has the correct semi-classical limit and to p~ove the existence of an associated
deformation quantization. As already pointed out, quantizable Kähler manifolds
can be embedded with the help of the very ample quantum line bundle into pro-
jective space (as complex manifolds, not necessarily as Kähler manifolds). Such
embeddings are discussed in detail in Section 2.

Projective varieties are not necessarily smooth, they can have singularities.
After giving some examples of singular varieties in Section 2 (e.g. the singular cubic
curves) singularities are treated in more detail in Section 3. Beside the definition
of a singular point using the rank of the Jacobi matrix of the defining equations
for the variety, a more intrinsic definition in terms of the local ring OV,Cl: of a point
a on the variety V and the Zariski tangent space at the point a is given. In terms
of algebraic properties of the local ring a hierarchy of types of singularities can
be introduced. As special examples normal singularities are discussed. Whereas on
an arbitrary singular variety the set of singular points can have codimension one,
on anormal variety (Le. on. a variety where alllocal rings are normal rings, see
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the definition below) this subset has codimension at least two. The singularities of
moduli spaces are very often normal singularities.

Typieally, moduli spaces are obtained by dividing out a group action on
a nonsingular variety. The main question is whether it is possible to define a
geometrie structure on the orbit space, Le. whether there exists some algebraie
geometrie quotients. The "Geometrie Invariant Theory (GIT)" as developed by
Mumford [13]gives a powerful tool how to deal with such quotients. If one considers
only certain suitable subsets of points of the variety the group is acting on (Le. the
subset of semi-stable, or stable points) one obtains a good quotient (whieh is also
a categorieal quotient), resp. a geometrie quotient. They will carry a compatible
structure of a projective variety, resp. of an open subset of a projective variety.
This will be explained in Section 4. Also there the results on the relation with
the symplectie quotients obtained via moment maps and symplectie reduction due
to Kirwan, Kempf and Ness will be explained. These results are taken from the
appendix to [13], written by Kirwan. Roughly speaking, the geometrie quotient and
the symplectie quotient coincides on the regular points of the symplectic reduction
(see Theorem 4.5 for a precise statement). But in general the singularity structure
will differ. '

1. From quantizable compact Kähler manifolds to projective
varieties

Let (M, w) be a Kähler manifold, Le. M a complex manifold and w a Kähler
form on M. In this contribution I will only consider compact Kähler manifolds. If
nothing else is said compactness is assumed. A further data we need is the tripie
(L, h, V), with a holomorphie line bundle L on M, a hermitian metrie h on L (with
the convention that it is conjugate linear in the first argument) and a connection V
compatible with the metrie on Land the complex structure. With respect to local
holomorphie coordinates of the manifold and with respect to a local holomorphic
frame for the bundle the metrie h can be given as

(1)

where Si is a local representing function for the section Si (i = 1, 2) and h is a
locallydefined real-valued function on M. The compatible connection is uniquely
defined and is given in the local coordinates as V = a+ (a log h) +a. The curvature
of L is defined as the two-form

curvL,v(X, Y) := VxVy - VyVx - V[X,Y] , (2)
where X and Y are vector fields on M. In the local coordinates the curvature can
be expressed as curv L,v = aa log h = -aa log h.

A Kähler manifold (M, w) is called quantizable if there exists such a tripie
(L, h, V) whieh obeys

curVL,v(X, Y) = - iw(X, Y) . (3)
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The condition (3) is called the (pre)quantum condition. The bundle (L, h, \7) is
called a (pre)quantum line bundle. Usually we will drop \7 and sometimes also h
in the notation.

For the following we assume (M, w) to be a quantizable Kähler manifold with
quantum line bundle (L, h, \7).

There is an important observation. If M is a compact Kähler manifold which
is quantizable then from the prequantum condition (3) we obtain for the ehern
form of the line bundle the relation

i w
c(L) := -2 curVL v = - . (4)

1r ' 21r
This implies that L is ci positive line bundle. In the terminology of algebraic geom-
etry it is an ample line bundle, see Definition 2.5 for the definition of ampleness.
By the Kodaira embedding theorem M can be embedded (as algebraic submani-
fold) into projective space pN (C) using a basis of the global holomorphic sections
Si of a suitable tensor power Lmo of the bundle L

z r-+ (so(z): Sl(Z) : ... : SN(Z)) E pN (C) . (5)
These algebraic submanifolds can be described as zero sets of homogeneous poly-
nomials, Le. they are projective varieties. Note that the dimension of the space
rhol(M,Lmo) consisting of the global holomorphic sections of Lmo, can be deter-
mined by the Theorem of Grothendieck-Hirzebruch-Riemann-Roch, see [7]' [15].
By passing to the Kähler form mow and to the assodated quantum line bundle
Lmo we might assume that the sections of our quantum line bundle do already the
embedding (Le that it is already very ample).

So even if we start with an arbitrary Kähler manifold thequantization con-
dition will force the manifold to be an algebraic manifold and we are in the realm
of algebraic geometry. This should be compared with the fact that there are "con-
siderable more" Kähler manifolds than algebraic manifolds.

In Section 2 I will explain what projective varieties are. But first I like to
introduce the quantum operator we are dealing with. We take n = ~wn as
volume form on M. On the space of Coo sections of the bundle L we have the
scalar product

(<p, 'I/J) := IM h(ip, 'I/J) n ,liipli := J(ip, ip) . (6)

Let L2(M, L) be the L2-completion ofthe space of Coo-sections ofthe bundle Land
rhol(M, L) be its (due to compactness of M) finite-dimensional c10sed subspace of
holomorphic sections. Let II: L2(M, L) --+ rhol(M, L) be the projection.

Definition 1.1. For f E Coo(M) the Toeplitz operator TI is defined to be
TI:= II{f.): rhol(M, L) --+ rhol(M, L).

In words: We multiply the holomorphic section with the differentiable func-
tion f. This yields only a differentiable section. To obtain aholomorphic section
again, we project it back to the subspace of global holomorphic sections. From



Singular projective varieties and quantization 5

the point of view of Berezin's approach [2], Tf is the operator with contravariant
symbol f.

The linear map

T: Coo(M) --+ End (rhol (M, L)), f --+ Tf ,
is called the Berezin- Toeplitz quantization. Recall that (Coo (M), ',.{ ., .}) is a Pois-
son algebra. To define the Poisson bracket (Le. a compatible Lie algebra structure)
on Coo(M) we use the Kähler form w as symplectic form and define {f,g} :=
w(Xf, Xg) where Xf is the Hamiltonian vector field assigned to f E Coo(M) given
by w(Xf,.) = df(.). The Berezin-Toeplitz quantization map is neither a Lie algebra
homomorphism nor an associative algebra homomorphism, because in general

Tf Tg = rr (f.) rr (g.) rr # rr (fg.) rr .
Due to the compactness of M this defines a map from the commutative

algebra of functions to a noncommutative finite-dimensional (matrix) algebra. A
lot of information will get lost. To recover this information one should consider
not just the bundle L alone but all its tensor powers Lm for m E No and apply all
the above constructions for every m. In this way one obtains a family of matrix
algebras and maps

Tim) : Coo(M) --+ End(rhol(M, Lm)), f --+ Tim) .

This infinite family should in some sense "approximate" the algebra Coo(M).(See
[3] for adefinition of such an approximation.)

If we group all Tim) together we obtain a map

Coo(M) --+ Il End(rhol(M, Lm)) ~ End(Il rhol(M, Lm)), (7)
mE~ mE~

f M Tj*):= (Tim))mENo . (8)

We will see later on that fImEN rhol(M, Lm) with aslight modification (Le. fI is
replaced by ffi) is the projective coordinate ring ofthe embedded M. The operator
Tj*) is called the total Berezin- Toeplitz operator. It operates on the projective
coordinate ring.

It was shown by Bordemann, Meinrenken and Schlichenmaier [4] that this
quantization scheme has the correct semi-classical behavior and yields an associ-
atedstar product (a deformation quantization). Denote by 1111100 the sup-norm

(m) 'IJTjTn) sll
of f on M and by IITf 11 = SUPSErhol(M,LTn),s,iO Ilsll the operator norm on
rhol(M,Lmr

Theorem 1.2. {Bordemann, Meinrenken, Schlichenmaier} [4]
(a) For every f E Coo (M) there exists C > 0 such that

Ilflloo - C ::; IITim) 11::; Ilflloo (9)
m

In particular, limm-+oo 11Tim) 11 = 11 f 11 00'
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(b) For everyJ,g E COO(M)

11
m i [T(m) T(m)] - T(m) 11

f. ' 9 {f,g}

(c) For every f,g E COO(M)

IITjm)TJm) - Tj~) 11 =

0(2-) .
m

(10)

(11)

(12)

Let me recall the definition of a star product. Let A = COO(M)[[v]] be the
algebra of formal power series in the variable v over the algebra Coo (M). A product
* on Ais called a (formal) star product if it is an associative C[[v]]-linear product
such that

1. AjvA ~ COO(M), Le. f * 9 mod v = f . g,
1

2. -(f*g - g* f) mod v = -i{f,g},
v

where f, 9 E COO(M). We can also write
00

f*g = LVjCj(f,g) ,
j=O

with Cj(f, g) E COO(M). The Cj should be C-bilinear in fand g. The conditions
1. and 2. can be reformulated as

Co(f,g) = f. g, and (13)

(14)

Theorem 1.3. There exists a unique (formal) star product on COO(M)
00

f * 9 := L vjCj(f,g), Cj(f, g) E COO(M),
j=O

in such a way that for f, 9 E Coo (M) and for every N E N we have with suitable
constants KN(f, g) for all m

. N

IITj=lTJm) - :L (~rTb;2',g)II :0; KN(f,g) (~). (15)
O$.j<N

See [16]' [17] and [18].
It has a couple of nice properties, i.e. (i) 1 * f = f * 1 = f, (ii) the selfad-

jointness f * 9 = 9 *1, and (iii) it admits a naturally defined trace (see [18]).
As is shown in [10] the star product is a differential star product, Le. the Cj

are bidifferential operators and it has the property of "separation of variables" [11]
(resp. it is of Wick type [5]). This says that it respects the holomorphic structure.
In more precise terms: if the star product is restricted to open subsets the star
multiplication from the right with local holomorphic functions is pointwise mul-
tiplication, and the star multiplication from the left with local anti-holomorphic
functions is pointwise multiplication.

Let me elose this section with two remarks.
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(16)

Remark. More traditionally one considers the operator Q of geometrie quantization
(with Kähler polarization) de£lned as Q = II 0 P with

P: Coo(M) --t End(r oo(M, L)), IN Pf := -V Xj + iI. id ,
where r00 (M, L) is the space of Coo sections of the bundle Land II is the pro j ection
onto the space of global holomorphic sections. Now Qf E End(rhol(M, L)). Again
one should consider Qjm) for all m E No. For compact Kähler manifolds both
quantization procedures are related via the Thynman relation. It reads as

Q(m) _ .. T(m) _ . (T(m) __ 1 T(m))
f - 1 f - 2~ Af - 1 f 2m Af .

Hence, the Tjm) and the Qjm) have the same asymptotie behavior.

Remark. There is another kind of embedding of the manifold M into projective
space. It is the embedding using the coherent states of Berezin-Rawnsley. This
embedding turns out to be a special case of the embedding considered atthe
beginning of this section where one uses a orthogonal basis of the sections, resp.
(depending on the conventions) the conjugate of it, see [1] for details.

2. Projective varieties

2.1. The definition of a projective variety
Let IK be an algebraieally closed £leId and let us assurne for simplicity that its
characteristie is zero. Without any harm the reader might even assurne IK = C.
The projective space nm. = nm (IK) is given as the space of lines through the origin
in IKn+l, i.e. as the equivalence classes of points in IKn+l \ {O}where two points 0'

and ß are equivalent if::JAE IK\{O}with ß = A.a. The point [0'] in projective space
de£lned by the point 0' = (0'0, ab'" ,an), 0' # ° can be given by its (non-unique)
homogeneous coordinates [0'] = (0'0 : 0'1 : •.. : an)'

Let I E IK[Xo, Xl, ... ,Xn] be a homogeneous polynomial of degree k. As
usual we obtain an associated IK-valued function on IKn+l by assigning to the
point 0' E IKn+l the value 1(0') obtained by "setting" Xi to be ai. Ifß = Aa with
A E IK, A# 0, is anotherpoint in the same equivalence class as 0', then we obtain
I (Aa) = AkI (0'). In partieular, the induced function is only well-de£lned on the
whole projective space if k = 0, Le. I is a constant. But we also see that if 0' is a
zero of I then any other element ß = Aa will be a zero too. Hence the zero-set

Z(I) := {[al E ]pn I 1(0') = o} (17)

is a well-de£lned subset of nm. The Zariski topology is the coarsest topology in
whieh the sets Z(I) are closed subsets for all polynomials I, or equivalently for
which the complements Df = nm \ Z(I) are open sets. Because the zero-sets of
polynomials are also closed in the "usual" topology if the base £leId is C the sets
which are closed (open) in the Zariski topology are closed(open) in the "usual"
topology. The Zariski topology has a number of quite unusual properties. For
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example, it is not separated, Le. two distinct points do not necessarily have disjoint
open neighborhoods. Even more is true: every non-empty Zariski open set U is
automatically dense in pn .

Definition 2.1. (a) A subset W of pn is ealled a (projective) variety if it is the set
of eommon zeros of finitely many homogeneous polynomials h, 12, ... , fm (which
are not neeessarily of the same degree)

W = Z(fl1 12, ... , fm) := ([al E JIDn IIi(a) = 0, i = 1, ... ,m}. (18)

(b) A variety is ealled a linear variety if it ean be given as the zero-set of linear
polynomials.
(e) A variety is ealled irredueible if every deeomposition

W=VIUV2

with varieties VI and V2 implies that

VI ~ V2 or V2 ~ VI .

(19)

(20)

A variety whieh is not irredueible is ealled redueible.
(d) A Zariski open set of a projeetive variety is ealled a quasiprojective (or some-
times just algebraie) variety.

Note that some authors reserve the term variety for irreducible ones.

Definition 2.2. Let V be an irredueible variety, then its dimension dim V is defined
as the maximallength n of ehains of strict subvarieties whieh are irredueible

o ~ va ~ Vi ~ ... ~ Vn-l ~ Vn = V . (21)

For arbitrary varieties the dimension is defined to be the maximum of the dimen-
sions of its irredueible subvarieties.

Subvarieties of dimension 0 are, called points, subvarieties of dimension 1
curves, etc.

Let V be a projective variety Le. V = Z(Ir, 12, , fm)' Take 1= (h, 12, ... fm)
to be the ideal generated by the polynomials Ir, 12, lm, Le.

m

1= {L9ili I gi E 1K[Xo, Xl,'" Xn], i = 1, ... , k} .
i=l

(22)

Obviously V = Z(I). Ideals which can be generated by homogeneous elements
are called homogeneous ideals. Hence, projective varieties can always be given as
zero-sets of homogeneous ideals. The converse is also true. Clearly

Z(I) := {x E JIDn I f(x) = 0, Vf E I} . (23)

is by the homogeneity of the generators a well-defined subset of pn. Because the
polynomial ring is a Noetherian ring, Le. every ideal I can be generated (as ideal
in the sense of (22)) by finitely many elements, e.g. I = (gl1g2,'" ,g8)' we get
Z(I) = Z(gl1 g2, ; .. ,98) and hence Z(I) is a projective variety in the sense of
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Definition 2.1. Any other set of generators of the ideal will define the same zero-
set. Even the ideal is not fixed uniquely by V. As a simple example one might
consider the hyperplane H = Z(I) with I = (Xo). The same variety might be
defined as H = Z(I')) with l' = (xg). But note that I' c I. One might expect
that for a given variety V there is a largest ideal which still defines V. This is
indeed true.

Definition 2.3. Let V be a projective variety, i.e. V = Z(I) for some ideal I. The
vanishing ideal I(V) is defined to be

I(V) := {f E IK[Xo, ... , Xn] I f(x) = 0, Vx E V} . (24)

The subset I(V) is a homogeneous ideal and contains any other defining ideal
I for V. It can completely be described in algebraic terms. For this we define for
any ideal I its radical ideal

Rad(I):= {f E IK[Xo, ... ,Xn] l:3n E N: fn EI} .

If I is homogeneous Rad(I) will again be homogeneous. We obtain

I(Z(I)) = Rad(I) ,

(25)

(26)

with only one exception in the case when Z(I) = 0. Note that 0 corresponds to
two homogeneous radical ideal, the full ring IK[Xo, ... , Xn] and the ideal 10 :=
(Xo, XI, ... ,Xn). Note that the only possible zero of 10 is the point 0 which is not
an element of projective space.

There is another warning necessary. One might think that the dimension r of
a variety is exactly n - k if k is the minimal number of necessary polynomials to
generate its vanishing ideal I. Unfortunately this is not true. The only information
One has is that r ~ n - k, with equality if k = 1. A variety is called a complete
intersection if indeed r = n - k.

Projective varieties are not always manifolds (of course not all manifolds
are projective varieties either). Varieties have not necessarily to be smooth. They
might have singularities. In Section 3 I will deal with singularities in more detail.
Here I would like to show some non-trivial examples of singular varieties. For this I
give a first definition of a singular point. Further definitions will follow in Section 3.

(27)

2h....)aXn
~aXn

alm
aXn

Definition 2.4. Let V = Z(!I, 12, ... , fm) be a projective variety of dimension r in
Jpn with vanishing ideal I(V) generated by the polynomials !I,12, ... , fm. Consider
the m x (n + l)-matrix (the Jacobi matrix)

(

gi~ re
PJi. .2.h.

J(X) = axo aXl

alm alm
axo aXl

A point x on V with
rank J(x) < n - r (28)

I ~~~~~~~~-----------------------------
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o
FIGURE 1. A nondegenerate cubic curve

is ealled a singular point 01 the variety. A point on a variety whieh is not a singular
point is ealled a regular point. 11 V has no singular points it is ealled a non-singular
(or smooth, or regular) variety.

For a variety which is the union of two different subvarieties the points where
the subvarieties meet are always singular points. As a typical example one might
take the variety V = Z(XOX1) in I[D2. Then V = Z(Xo) U Z(X1) and the singular
point is the point (0 : 0: 1) = Z(Xo) n Z(X1). But even irreducible varieties can
have singularities. As an example let me consider the varieties Y in I[D2 defined by
irreducible cubic polynomials. These polynomials can be written (after a suitable
change of coordinates) as

(29)

with certain elements g2, g3 E lK. The variety Z(I) is non-singular if and only if
the coefficients g2 and g3 are such that g~ - 27g~ =I O. One obtains in this way
the elliptie eurves. See the Figure 1. Here the curve is defined over <Cand the real-
valued points are plotted. The elliptic curves correspond to I-dimensional complex
tori, see Section 2.2 below. In the singular cases we obtain two different types of
curves. The first one is the nodal eubie Z(Y2 Z - 4X2(X + Z)), see Figure 2. The
only singular point is the point (0 : 0.: 1). Moving along the curve we pass through
the singular point twice, each time with a different tangent direction. The second
one is the euspidal eubie Z(Y2 Z - 4X3), see Figure 3. Again the point (0 : 0 : 1)
is a singular point. But now there is only one tangent direction at this point.

2.2. Embeddings into Projective Space
Let us now take the complex numbers <Cas base field lK. With the complex topology
JPTt is a compact, n-dimensional complex manifold. A coordinate covering is given
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FIGURE 2. Nodal cubic

by the "affine" sets

FIGURE

3. Cuspidal cubic

(30)

for i = 0,1, ... ,n. Every nonsingular projective variety is closed in the Zariski
topology and hence also in the complex topology and hence a compact submanifold
of lF. An abstract compact complex manifold M is called a projective algebraic
manifold if there exists an injective holomorphic embedding

(31)

such that <I>(M) ~ M as complex manifolds. The Theorem of Chow [7, p.166] says
that in this case <I>(M) is a nonsingular projective variety, i.e. it can be given as
the zero-set of finitely many homogeneous polynomials. This is even true in the
strong sense that every meromorphic function on <I>(M) is a rational function (Le.
it can be expressed as quotient of homogeneous polynomials of the same degree
in (n + 1) variables), every meromorphic differential is a rational differential, and
every holomorphic map between two embedded complex manifolds is an algebraic
map, Le. can be given locally as a set of rational functions without poles.

Let me illustrate this in the case of the above introduced elliptic curves.
Let T = c/r be the one-dimensional complex torus defined as the quotient of C
by the lattice r := {m + nT E C I m,n E Z} for fixed l' E C with rmT > O.
The assodated Weierstraß p-function and its derivative p' are doubly-periodic
meromorphic functions with respect to the lattice r, Le.

p(z + w) = p(z), p'(z + w) = p'(z), for all wEr, z E C .

Hence they are meromorphic functions on T. The function p fulfills the famous
differential equation

(32)
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--~I

g2 := 60 g3 := 140
1L wB'

wEr,w,t:o

(33)

An embedding of the torus into the projective plane is given by

W : T -+ p2, [z] H {(P(Z) : p'(z) : 1), [z] =1= 0
(0 : 1 : 0), [z] = O.

Here [z] = z mod r denotes the point on the torus represented by z E C. If one
compares the differential equation (33) with the polynomial (29) one sees that
W(T) is a cubic curve hence a projective variety (indeed it is nonsingular). Via
W the meromorphic function p corresponds to the rational function X / Z and p'
corresponds to Y/ Z. Note that the field of meromorphic functions on the torus
consists of rational expressions in p and p'. For more details see, [15], p.34 and
p.62 ff.

After this excursion l~t me return to the situation discussed in the Section 1.
Let M be a compact complex manifold and 1r : L -+ M a holomorphic line bundle
(not necessarily a quantum line bundle). Choose a basis of the global holomorphic
sections So, Sb'" , Sn E rhol(M, L). For every point x E M there exists an open
neighborhood U of x such that L can be locally trivialized over U, i.e. that there
is an (holomorphic) bundle map p : Lu := 1r-1(U) ~ U X C. With respect to
this trivialization the section Si can be given by a local holomorphic function
Si : U -+ C defined by P(Si(X)) = (x, Si(X)). The map

U -+ Cn+1, y H <1>(y):= (So(y), Sl(Y),"" sn(Y)) (34)

is a holomorphic map. It depends not only on the basis chosen, but also on the
trivialization. If p' is a different trivialization defined over the open set U where
pis defined (or a subset of it) then p' 0 p-l(x, A) = (X,g(X)A) with a holomorphic
function 9 : U -+ C nowhere vanishing on U. The map <1>' : U -+ cn+l correspond-
ing to p' fulfills <1>'(y) = g(y) . <1>(y).Hence, [ep(y)] := <1>(y)will be well-defined, i.e.
not depend on the trivialization chosen if we assure that <1>(y)=1= o. But <1>(y)= 0 if
and only if s(y) = 0 for all sections S E rhol(M, L). Hence we obtain a well-defined
holomorphic map

ep : M \ {y E M I s(y) = 0, Vs E rhol(M,L)} -+ JP>Tt , (35)

obtained by glueing together the local maps <1>. A change of basis of rhol(M, L) is
giveri by an element of GL(n + 1, C). The images of the two mappings obtained
by the two set of basis elements are related by the corresponding PGL(n + 1, C)
action. Note that if there exists a nontrivial section S (i.e. S 1= 0) then the map
(35) is clefined on a dense open subset of M.

Definition 2.5. (a) A line bundle L is called very ample if the map ep (with respect
to one and hence to all set of basis elements )is an embedding.
(b) A line bundle L is called ample if there exists m E N such that L0m is very
ample.
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It followsthat a compact complex manifold is projective algebraic if it admits
an ample line bundle. The converse is also true. To see this we first study JID7l. Here
we have the tautologicalline bundle whose fiber over the point [z] is the complex
linetrough 0 and the point z E Cn+l. The hyperplane section bundle H is the
dual of the tautological line bundle. Its space of global sections is generated by
the coordinate functions Xo, XI, ... ,Xn, Le. it can be identified with the space of
linear polynomials in (n + 1) variables. All line bundles over JID7l are given as Hm

where this denotes for m > 0 the m-th tensor power of H, for m < 0 the Iml-th
tensor power of the dual bundle of H, and for m = 0 the trivial bundle 0. The
space of global holomorphic sections of Hm can canonically be identified with the
space of homogeneous polynomials of degree m in (n + 1) variables. In particular,
there exists no nontrivial sections for m < o. If <1>: M ---+ JID7l is a holomorphic map
then the pullback <1>*H is a holomorphic line bundle on M. The space of global
sections of <1>*H is generated by the pullback <1>*(Xd = Xi 0 <1>of the global
sections Xi, i = 0,1, ... ,n + 1. If <1>is a holomorphic embedding than <1>*H is a
very ample line bundle. If the pull-backs of the (n + 1) sections Xi stay linearly
independent then <1>is exactly given by the embedding defined via the bundle <1>*H.
If not, then the embedding defined via <1>*H goes into a linear subvariety of JID7l of
lowerdimension, hence in a F for k < n.

Altogether we see that the embeddings of M into projective space correspond
to very ample linebundles over M. Thepair (M, L) where M is a compact .complex
manifold and L is a very ample line bundle is called a polarized projective algebraic
manifold.

Note that the same manifold considered with different L may "look" quite
differently. As a simple example take M = pI and L = H then <1>: pI ---+ pI is the
identity. Now consider L = H2, which gives an embedding into JP>2. Let Xo, Xl be
the basis of the sections of H then X5, XoXI, X? is a basis of H2

• If (ao : al)
are homogeneous coordinates on pI the image of pI in JP>2 is given as

The obtained subvariety is not linear anymore. Nevertheless it is algebraically
isomorph to the linear varietypl.

Let us come back to the quantization condition. Recall that the quantization
condition says that the ehern form of the quantum line bundle L is essentially
the Kähler form. But the Kähler form is a positive form, hence L is a positive line
bundle. Kodairas embedding theorem says that a certain positive tensor power of
L will give an embedding into projective space. Hence L is an ample line bundle.
This implies that quantizable compact Kähler manifolds are always projective
algebraic. In Section 2.3 we will see that the converse is also true.

2.3. The projective coordinate ring
Let V bea projective variety in JID7l and I = I(V) its vanishing ideal (24). Recall
that it is a homogeneous ideal.
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Definition 2.6. The projective (or homogeneous) coordinate ring is the graded ring

lK[V] := lK[Xo, XI, ... Xn]/I(V).

For V = lP", we have I(lP") = (0), hence
lK[IP>n]:= lK[Xo, XI, ... Xn] = E9 HO(wn, Hm)

m~O

(36)

is the full polynornial ring.
Inside lK[V] the whole geometry of the variety V is encoded. For example the

points correspond to maximal homogeneous ideals M ~ I which are not identical
to the ideal (Xo, XI, ... Xn). Note that the only element of lKn+I which is a zero
of all Xi is 0, which is not an element of projective space.

Definition 2.7. The Krull dimension dimR 0/ a ring R is defined to be the maximal
length k 0/ strict chains 0/ prime ideals Pi

Po ~ PI ~ ... ~ Pk ~ R. (37)

Recall that an ideal P is called a prime ideal if from / . g E P it follows
that / E P or 9 E P. Clearly, for prime ideals P we have Rad(P) = P, hence
I(Z(P)) = P. Moreover, the variety Z(P) is always irreducible. Any chain (21)
of irreducible subvarieties of an irreducible variety gives ~ chain ofhomogeneous
prime ideals

lK[Xo, •.. , Xn] ~ I(Vo) ~ I(VI) ~ ... ~ I(Vn) = I(V) . (38)

lying between the vanishing ideal of V and the whole ring. Passing to the quotient,
Le. to the coordinate ring one obtains a chain of prime ideals of the coordinate ring
lK[V]. This works also in the opposite direction with the one exception thatto both
the whole ring lK[V] and to the ideal (Xo, XI, ... ,Xn) mod I(V) corresponds the
empty set. This implies 1

dirn V = dimlK[V] -1 .

Now let <.P : M -+ lP" be the embedding obtained via the quantum line
bundle L, which we assurne already to be very ample. Let 1:= I(Z(<.p(M)) be the
vanishing ideal of <.P(M). We obtain <.p*H = L, i* Xi = Si for i = 0,1, ... ,n for the
sections Si used for the embedding, and <.p*(Hm) = (<.p*H)m = Lm. In particular,
the pull-backs of theglobal sections of Hm generate the space of global sections
of Lm. But in general they will not be a basis. The algebraic relations between
them are exact1y given by the elements of the ideal I. The projective coordinate
ring C[V] can be identified with ffim>o HO(M, Lm).

In Section 1we have defined the Berezin- Toeplitz quantization map

COO(M) -+ End ( II HO(M, Lm)), f t-+ Tj*) = (T}m))mENo . (39)
mENo

1Note. that for homogeneous coordinate rings to determine the Krull dimension it is enough to
consider chains of homogeneous prime ideals.
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Due to the fact that Tj *) respects the grading given by m, it can also be considered
as an element of

and is fixed by this restriction. Hence, Tj*) is an algebraic object operating on an
algebraic vector space which coincides with the coordinate ring. The coordinate
ring should be considered as the quantum Hilbert space. Note that this set-up
makes perfect sense also for singular projective varieties.

Clearly, there is also a metric aspect in the theory. Our line bundle comes with
a hermitian metric. On JIDTtwe have the Fubini-Study Kähler form WFS induced by
the standard metric in Cn+1. This defines a metric on the tautological bundle and
by taking the inverse metric a hermitian metric hFS on the hyperplane section
bundle H. Suitable normalized it turns out that H with hFS is the quantum line
bundle of the Kähler manifold (JIDTt, W F s). If N is a dosed submanifold of JIDTt, i.e.
a nonsingular projective variety and i :N -7 JIDTt is the embedding then the pair
(N, i*WFS) is a Kähler manifold with associated quantum line bundle (i* H, i*hFS).
In particular, nonsingular projective varietiesare always quantizable. But note that
if we start with a fixed Kähler manifold (M, WM) with very ample quantum line
bundle (L, h) and induced embedding q> : M -7 JIDTt then (M, q>*WFS) is again
a quantizable Kähler manifold with quantum line bundle (L ~ q>*H, q>*hFs).
But in general we have for the two Kähler forms defined on the same complex
manifold q>*WFS =I=- WM. We only know that they are cohomologous because they
are representatives of the Chern dass of the same bundle L. The question whether
they coincide as forms has to do with the question whether the embedding is a
Kähler embedding. This is related to Calabi's diastatic funetion, respectively to
Rawnsley's epsilon function. I will not discuss this matter here, but see [1] for a
discussion and references to further results.

Via the metric the projective coordinate ring EBm>O HO(M, Lm) carries also a
metric stnicture. To have a full description of the quantization also in the singular
case the metric should be studied in more detail.

3. Singularities
In the last section a point on a projective variety was called a singular point if the
rank of the matrix (27) is less than expected (see Definition 2.4). In this section I
will give a different characterization of singular points. In particular, it will turn
out, that there exist singularities which are better than others.

Clearly, the definition of a singular point as given in Definition 2.4 is a local
one. Hence it is enough to study the local situation. For the local situation it is
more convenient to consider affine varieties instead of projective varieties. If the
projective space is replaced by an affine space the definitions work accordingly.
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After choosing coordinates the n-dimensional affine space is given as OCn. A sub-
set V of OCn is called an affine variety if there exists finitely many polynomials
ft, 12, ... , Im E OC[XllX2, , Xn] such that

V = Z (ft, 12, , Im) = {a E ocn I li (a) = 0, i = 1, ... ,m} .
If one replaces homogeneous polynomials, .homogeneous ideals, etc. by arbitrary
polynomials, arbitrary ideals, etc, the whole theory develops like in the projective
case. Again, let 1= (fti' .. , Im) be the ideal generated by the above polynomials
then V = Z (I). Vice versa, given a variety V in OCnwe can define its vanishing
ideal

I(V) := {I E OC[X1,X2, ••• , Xn] I I(a) = 0, Va E V} . (40)

With the same definition (25) of the radical ideal we obtain I(Z(I)) = Rad(I).
The affine coordinate ring of the variety V is defined to be

The subset

U(i) := pn \ Z(Xi) = {(ao : al : ... : an) I ai # O}

(41)

(42)

of um is a Zariski open (and hence dense) subset of um. It can be identified with
the affine space OCn via the map

(( )) (ao ai-l ai+l an)
<Pi ao: al:': an 1---7 -, ... ,--,--, ... ,- .

ai ai ai ai
(43)

In this way um is covered by (n + 1) copies of affine n-space, Le. um = Ui=oU(i).
Every projective variety can be covered by affine varieties. Let h(Xo, Xl,' .. ,Xn)
for I = 1, ... , m be defining homogeneous polynomials for the projective variety V.
Fix i with 0 ~ i ~n and let Il(i) be the polynomials in n variables obtained from
the Il by setting the variable Xi to 1. Then V(i) = Z(lii), ... , I;:")) defines an affine
variety. Via the map (43) we can identify V(i) = V nU(i). Again V = Ui=oV(i). In
particular every point of the projective variety lies at least in one of these affine
varieties V(i).

In the following let V be an affine variety. Again the dimension dirn V can be
defined by Definition 2.2. This coincides with the Krull dimension of the coordinate
ring OC[V],Le. dirn V = dirn OC[V]. In the affine case there is no subtraction of 1
necessary, because in this case there is a complete1:1 correspondence between
prime ideals and irreducible subvarieties. Note that if Y is a irreducible projective
variety all covering affine varieties y(i) will be irreducible affine varieties and vice
versa. Additionally we have dirn Y = dirn y(i) for non-empty y(i).

Singular points of affine varieties can be defined according to Definition 2.4
(of course now only n variables will appear, hence we get an m x n matrix) using
generators ft, 12, ... , Im of the vanishing ideal of the variety. If the affine variety
V(i) comes from a projective variety V as described above then x E V correspond-
ing to <P(x) will be a singUlar point of V if and only if <P(x) is a singular point of
V(i).
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l

(49)

where we assume for the last equality V to be irreducible. Henee we ean also define
the singular points to be the points where the dimension of the Zariski tangent
spaee is bigger than the dimension of the (irreducible) variety.

Let me illustrate this in the ease of eubic eurves. In an affine ehart using the
ideal

1= (y2 - 4X(X - a)(X - b)) (47)
with a, b E lKwe obtain the eubic eurves as Z(I). In this normalisation a = (0,0)
lies on the eubic. The eotangent spaee at a is given as

MOtjM~ = (X,Y) modIj(X2,y2,XY) modI. (48)

From the relations given by I we ealculate

y2 = 4abX - 8(a + b)X2 + 4X3 mod I .

Henee
4abX E (X2, y2, XY) mod I . (50)

If a. b =I 0 the element Y will be enough to generate the quotient (48). The tangent
spaee will be one-dimensional and (0,0) will be a nonsingular point. If either a
or b equals 0 the element X will also be neeessary to generate the tangent spaee.
Henee (0,0) will be a singular point.

Given an arbitrary irreducible (projective or affine) variety V then there
exists a stratifieation of the singularity set Sing(V) obtained in the following
manner. Let U = V \ Sing(V) be the Zariski open set of regular points then V \ U
is a closed subvariety. It ean be deeomposed into finitely many irreducible varieties
of dimension less than dim V

V \ U = VI(I) U VP) U ... U VZ(I) .

Again from this eomplement Sing(V \ U) ean be determined. It is a subvariety of
the variety V from higher eodimension. This proeess ean be repeated as long as
there are singularities. Beeause the eodimension strict1y inereases it has to stop
after finitely many steps.

Guided by the algebraic properties of the loeal rings we have an hierarehy
for the types of singularities. If R is a ring without zero divisors then Quot(R) is
the ring whose elements are the fraetions of elements in R with denominator =I O.
Definition 3.3. A ring R (without zero divisors) is ealled a normal ring if the
elements of Quot(R) whieh are solutions of algebraie equations with eoeffieients
from Rand highest eoeffieient 1lie already in R.

It is a classical result (Gauß Lemma) that Z is normal and also that polyno-
mial rings over fields are normal.

Definition 3.4. Let V be an irredueible variety.
(a) A variety is normal at a point a E V if the loeal ring 0V,Ot is normal ..
(b) A variety is ealled normal if it is normal at every point a E V.
(e) A singular point is ealled a normal singular point, and the singularity is ealled
anormal singularity, if the variety is normal at this point.
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A regular local ring is always normal. Hence, regular points are always nor-
mal. If V is anormal variety it follows

codim vSing(V) 2:: 2 . (51)

This says that normal singular varieties are "less singular" than generic singular
varieties. A lot of the singular varieties which appear as moduli spaces are normal.
Normal varieties behave from the point of functions defined on them similar to
nonsingular varieties. For example, if V is a variety of dimension 2:: 2 and x EVa
normal point then every regular function in V \ {x} can be extended to a regular
function on V. Additionally normality is necessary to have a well-behaved theory
of (Weil-)divisors based on codimension 1 irreducible subvarieties.

For every irreducible affine variety V with singularity set Sing(V) there exists
a normal affine variety V and an algebraie morphism 1r : V -+ V such that

1r-1(V \ Sing(V)) ~ V \ Sing(V) . (52)

The variety V is called the normalization of V. It is obtained by a purely algebraie
process, Le. by taking the normal closure of the coordinate ring in its quotient
field. This can be extended to the projective case too.

For algebraie curves normal points are always regular (there is no space for
codimension two subvarieties). Hence the normalization gives already a desingular-
ization. In the case of the above discussed singular cubie curves the normalization
is given by the line (affine, resp. projective).

The question arises whether it might be even possible to find for every pro-
jective variety V with singularity set Sing(V) a nonsingular projective variety Y
which coincides with V outside Sing(V), and is minimal in a certain sense. Such
a Y is called a desingularization and the whole process is called aresolution of
singularities. It was shownby Hironaka [8] (see also [12]) that there exists for
projective varieties over fields of characteristie zero (and this is the case we are
dealing with) aresolution of singularities. More precisely, for every projective va-
riety V there exists a nonsingular projective variety Y and a proper 2 algebraie
map f : Y -+ V such that f is an isomorphism over an open non-empty subset
U ~ V, Le. f-l(U) ~ U.

4. Quotients
In this section let us assurne IK = C for the base field.

4.1. Quotients in algebraic geometry
Moduli spaces of geometrie objects are very often varieties with singularities. Typ-
ieally, they are obtained starting from a smooth variety classifying the objects with
respect to a certain "presentation". To obtain the moduli space one has to "di-
vide out" the different presentations. Usually, one has a group operating on the
presentations and a candidate of the moduli space is given by the quotient set

2the algebraic equivalent of a compact map
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under the group action, the orbit space. Unfortunately, it is not always possible to
endow the quotient set with a compatible structure of a variety again. Even if we
allow the quotient to be an algebraic scheme it will not be possible. In our context
schemes will appear as "varieties with multiplicities". It is quite reasonable that
one should at least incorporate such objects in the theory. E.g. if we have two
lines in the plane meeting at a point and we move one line with the intersection
point fixed, we will nearly always have two lines. There is only one exception, if
the moving line coincides with the fixed one. In this case the configuration con-
sists of one line. But from the deformation point of view we should better count
this specialline twiee, i.e. we should consider it as double line. The language of
schemes deals with such objects and even with much more generaIones. Never-
theless to avoid giving additional definitions I will still work on algebraie varieties
(affine, projective, quasiprojective) in the following. But the reader should keep
in mind that the language of algebraie schemes would be more appropriate for
moduli problems. See [6] for an introduction to this field.

Let X be an algebraie variety and G a reductive algebraic group acting alge-
braieally on X. This means that G is the complexification of a maximal compact
subgroup K of G. Of special importance (and this are the examples that the
reader should keep in mind) are the groups GL(n), SL(n), and PGL(n). As indi-
cated above it is important to study "quotients" of X under actions of the group
G. Mumford has given with his geometrie invariant theory (GIT) [13] the principal
tool to deal with such quotients.

Definition 4.1. A morphism of algebraie varieties f : X -t Y is ealled a good
quotient if

(1) f is surjeetive and G-invariant, i.e. f(gx) = f(x), for all 9 E G and
xEX,

(2) (f*(Ox ))G = Oy,
(3) if V is aG-invariant closed subset of X then f(V) is closed in Y, and if

VI and ~ are G -invariant closed subsets of X then .

VI n V2 = 0 ===} f(Vd n f(V2) = 0 .
In Condition (2) 0x and Oy are the structure sheaves of the varieties X and Y.
They are essentially nothing else as the sheaves of local regular functions on X
and Y respectively. Condition (2) states that the local regular functions on Y can
be given as those local regular functions on X whieh are constant along the fiber
and invariant under G.

A good quotient is a eategorieal quotient in the sense that
(1) f is constant on the orbits of the action,
(2) for every algebraic variety Z with a morphism 9 :X -t Z which is constant

on the orbits of the G-action on X there exist a unique morphism
9 :Y -t Z with 9 = gof.

Definition 4.2~ A morphism of algebraie varieties f : X -t Y is ealled a geometrie
quotient if
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(1) f: X -+ Y is a good quotient,
(2) for every y E Y the fiber f-l(y) consists exactly of one orbit under the

group action.

If any of these quotients exists then they are unique.
For a good quotient there might exists fibers consisting of several orbits

under the group action and these orbits are not necessarily closed (for a geometrie
quotient the orbits are always closed).

If we have a geometrie quotient than the orbit space carries a structure of an
algebraic variety. But this condition is very often to strong to be fulfilled. We have
sometimes to assign several orbits to one geometrie point to obtain a geometrie
structure and to end up (hopefully) with a good quotient. Mumford's concept
of stability will help to dedde what to do. Let X ~ JP!' be a projective algebraie
variety and G a reductive algebraic group embedded into GL(n+ 1) with an action
of G on X given by the standard linear action of GL(n + 1) on the points in JP!'.

Definition 4.3. (1) A point x E X is ealled semi-stable if and only if there ex-
ists a non-constant G-invariant homogeneous polynomial F E C[Xo, ... , Xn] with
F(x) t= o.
(2) A point x E X is called stable if and only if

(a) the dimension of the Orbit O(x) under the G-action equals the dimension
of the group and

(b) there exists a non-constant G-invariant homogeneous polynomial F E
C[XO, ••• 1 Xn] with F(x) t= 0, and the action of G on the zero set Xp :=
{y E X IF(y) = o} is closed, i.e. if for every yo E Xp the orbit O(yo) is
closed.

The set of stable 3 points of X under the above group action G is denoted by X s ,

the set of semi-stable points is denoted. by XSS
• Both are open subset. Clearly,

XS ~ Xss ~ X.
Let me point out that the not ion of stability might depend on the embedding

of the projective variety X into projective space and a corresponding linearization
of the action of G. Recall from Section 2.2 that for an abstract projective variety
X such an embedding is defined by the choiee of a very ample line bundle L on X
and a choiee of basis of its global sections.

Theorem 4.4. Assume that XS is non-empty then there exists a projective algebraic
variety Y and a morphism fss : Xss -+ Y such that

(1) fss is a good quotient of XSS by G,
(1) there exists an open subset U ~ Y such that fs-/(U) = XS

and fs := fsslx8 : Xs -+ U is a geometrie quotient of XS by G.

3 "Stable" in the above introduced sense corresponds to "properly stable" in the definition of
Mumford. Stability in his sense does not require the condition on thedimension of the orbit.
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The good quotient is projective, but the geometrie quotient isas an open
subset of something projective in general only quasi-projective. If we interpret
this in the opposite way, we see that we will need in general also non-stable (but
still semi-stable) points to obtain projective (this means compact in the complex
topology) moduli spaces. Clearly, even if the projective variety we started with
was smooth there is no reason to expect that the quotient will be smooth.

For more details one might consult [13]' or for a more leisurely reading [14].

4.2. The relation with the symplectic quotient
In this subsection I want to quote results on the relation between the quotients
in algebraie geometry and the symplectie quotients .. The results are taken from
Francis Kirwan's appendix to the third edition of Mumford's book on GIT [13]
and are due to Kirwan, Kempf and Ness. More details and references can be found
there.

Let X be a nonsingular projective complex variety in pn, and G a reductive
group acting linearly on X via P : G ---7 GL(~ + 1). If K is any fixed maximal
compact subgroup of G then after a suitable choiee of coordinates the subgroup
K acts unitarily on X, Le. PIK: K ---7 U(n + 1). Let t be the Lie algebra of K, t*
its dual, and J.L : X ---7 t* the standard moment map defined for all a E t by

ti;. p*(a)x
J.L(x)(a):= 21l"i Ilxll . (53)

Here x .E Cn+ 1 \ {O} is any vector of homogeneous coordinates. representing the
element x E X ~ pn and P* : t ---7 u(n + 1) is the tangent map of PIK'

.In this situation the symplectic quotient (or Marsden- Weinstein reduction) is
defined as J.L-l(O)1 K. On the other hand we can define the good quotient (which
is also a categorical quotient) of the semi-stable points XSs by G. By Theorem 4.4
it is a projective variety whiehis commonly also denoted by XIIG. It contains
as open subset. the geometrie quotient XS IG. Immediately the following quest ion
arrises: How are these quotientsrelated?

Theorem 4.5. (a) The point x E X is semi-stable if and only if 0G(x)nJ.L-l(O) -# 0,
i.e. the closure of the orbit of x under G meets J.L-l(O).
(b) J.L-l(O) ~. XSs.
(c) The inclusion under (b) induces a homeomorphism

J.L-l(O)1 K ---7 XIIG . (54)

(d) 1f we denote by J.L-l(O)reg th~ set of the x E' J.L-l(O) for which the tangent map
dJ.Lx of the moment map is surjective, then the homeomorphism under (c) restriets
to a homeomorphism

(55)

Hence we see that as topologieal spaces the symplectie quotient is isomor-
phie to the. good quotient and the subspace of the regular points J.L-

1 (0) reg IK is
isomorphie to the geometrie quotient.



Singular projective varieties and quantization 23

Things get slightly more complieated if we consider also the complex struc-
ture. If Xis a compact Kähler manifold then the symplectic quotient p'-l(O)reg/ K
carries a structure of a complex Kähler manifold away from the singularities. But
X S / G carries also a complex structure from the geometrie quotient construction.
These two structures coincide on the sub set where the symplectie quotient has no
singularities. Hence if p,-1 (O)reg/ K is a Kähler manifold the complex structure
coincides with the complex structure of the geometrie quotient. But there exists
examples (e.g. given by Kirwan [13, p.159]) where the geometrie quotie~t has no
singularities but the symplectie quotient has singularities in the sense that the
Kähler structure coming from the reduction process is singular at certain points.
Further examples of the relation between the structure of the singularities of the
two typeof quotients are given in the contribution of J. Huebschmann [9] to this
volume.
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