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continuous function by spline functions with free knots.
Gur approach can be sketched as follows: By using the Gauß transform with arbitrary positive
real parameter t, we map the set of splines under consideration onto a function space, which
is arbitrarily elose to the spline set, but satisfies the local Haar condition and also possesses
other nice structural properties. This enables us to give necessary and sufficient conditions for
best approximations (in terms of alternants) and, under some assumptions, even fuH charac-
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Best Approximation by Free Knot Splines

1. Introduction

3

In approximating continuous functions by polynomial spline functions of order m one may
expect to gain better accuracies and a faster convergence to zero of the error function by using
free knots which are permitted to possess variable multiplicities, fixing the total number of
mulitiplicities by n. Gf course, one has to deal then with non-linear approximation problems.

In the literature, there exist several direct approaches to this problem, see M. Adam [1] or
G. Nürnberger [18] for a survey. In this paper, we propose a new approach, which is based on
the fact that each spline set can be mapped bijectively on a set of functions with a Haar-like
structure, by using the so-called Gauß transform. In some previous publications (Meinardus
[13,14], Walz [22]) this approach was applied to best approximation with fixed knot splines
resp. to Schoenberg's problem for a single B-spline. In the present paper, we use it to obtain
necessary and sufficient conditions and - under some mild assumptions - characterizations of
best uniform approximations. We also give a criterion for detecting those functions which
possess a best approximation with single knots only, a situation which is easier to handle.
Moreover, since the Gauß transform can be easily evaluated, we also present the results of some
numerical tests.

The main idea of our approach is as follows: We use the Gauß transform with parameter
t > 0 cf. [11]' to map a given set of free knot splines onto a non-linear function set, which
ean be shown to satisfy the loeal Haar eondition and also possesses some other niee struetural
properties. Therefore, we ean use general results of nonlinear Approximation Theory to obtain
neeessary and suffieient eonditions for best approximations, whieh in many eases also eoineide
and therefore yield a full eharacterization of the best approximation. Sinee, for t -7 0, the Gauß
transform of a spEne funetion eonverges uniformly to this spEne, we obtain, by extrapolating
the best approximations in the Gauß transformed spaee baek to t = 0, spEne approximations
with free knots, which are very dose to the best ones.

The organization of the paper is as follows: In the rest of this introduction we give an exaet
definition of spline sets with free knots, and determine the tangential spaee of this set. In
seetion 2 we investigate the Gauß transform, when applied to a set of free knot splines. In
particular we prove that it satisfies the loeal Haar eondition, and give abound for the number
of zeros that the differenee of two Gauß transforms ean have. These results are used in section
3 to obtain the desired neeessary and suffieient eriteria for best approximation, and also a de la
VaHee Poussin type result. A very attractive situation oeeurs in the case of splines with single
knots, eonsidered in seetion 4. Here it is possible to give a fuH eharaeterization of the best
approximation (in terms of alternants), and to prove their uniqueness. Moreover, we give a
eriterion which shows that a large dass of functions possesses a best approximation with single
knots. Finally, in seetion 5 we diseuss the results of some numerical tests.
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Let now mEIN, m 2: 2, and nEIN be given natural numbers. For given TEIN, T :S n,
we denote by

Sm,n,r(~, Al = Sm,n,r (~~

the vector space of all polynomial spline functions s : IR ---+ IR of order m with knots ~v, v =
1,2, ... , T, satisfying

~I < ~2 < ... < ~r (1)

and having the respective multiplicities Av E IN, v = 1,2, ... , T, with

r

It is weIl known and easy to prove that

dirn Sm,n,r(~, A) = m + n.

Furthermore the truncated power basis of Sm,n,r(~, A) is given by the functions

1 m-I ( t )m-I ( t )m-2 ( t )m-),,, 1 2, x, ... , x , x - f."v + ' X - f."v + , ... , x - f."v + ' V = , , ... ,T

(2)

(3)

i.e. this vector space consists of allreal functions s on IR, which have areal representation

m-I r ),,,

s(x) = L aILxIL +L L bv,x:(x - ~vr~-x:
IL=O v=Ix:=l

Here, the truncated power function (x)~, k E INo, is defined by

(4)

if kEIN, and by

(x)~ = 0
for x :S 0,
for x > 0,

for x < 0,
for x = 0,
for x > O.

In some instances we will later restrict the vector spaces Sm,n,r(~, A) to areal interval
I = [a, bJ. In those cases we always assurne that the knots belong to the interior of I.

The union over all ~1,~2'''''~Tl satisfying (1), with fixed multiplicities AI,A2, ... ,Ar ac-
cording to (2) shall be denoted by

Mm,n,r(A) = U Sm,n,r(C A).
e

(5)
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The highest flexibility occurs if we consider the set

n

Srn,n = U U Mrn,n,r(,\),
r=l A

Al + ... +Ar=n

5

(6)

which usually is called the polynomial spline set with free knots of order m and of total
multiplicity n.

We will develop a theory of best uniform approximation with respect to the set j\,.frn,n,r()')
and thus to Srn,n' Let us first consider the tangential space of Mrn,n,r(A) at a point
s E Mrn,n,r(A), for fixed rand fixed multiplicities Al, A2, ... , Ar. This tangential space
Trn,n,r(A; s) is defined as spanned by the partial derivatives of s with respect to the m + n + r
parameters

aJ-L ; p, = 0,1, ,m - 1,

bV,K; K, = 1,2, , Av; v = 1,2, ... , r.

~v; v = 1,2, , r.

Hence we have to assume differentiability w.r.t. these parameters, which means that all the
multiplicities satisfy

Av ::; m - 2; v = 1,2, ... , r.

Under this assumption we get

as-- = xJ-L. P, = 0,1, ... ,m - 1,
aaJ-L '

as ()rn-K \ 1 2-- = x - ~v + ; K, = 1,2, ... , Av; V = , , ... ,r,
8bv,K .

a Av

a S = L(m - ",)bV,K(X - ~vr~,-K-l; V = 1,2, ... , r.
~v K=l

It follows that the tangential space Trn,n,r(A; s) is spanned by the functions

xJ-L; P, = 0, 1, , m - 1,

(x-~V)'~.-K; ",=1,2, ,Av; v=1,2, ... ,r,

bV,Av (x - ~v )~-Av-l; V = 1,2, , r.

(7)

Let the defect brn,n,r(A; s) of s be defined as the number of coefficients bV,Av with value zero.

Theorem 1. The tangential space Trn,n,r(A; s) ofthe spline set Mrn,n,r(A) at the point s is
given by the spline space

Tm,n,r(.~; s) = Sm,n,r (ii ~2
A*2
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where, for v= 1,2, ... ,r
if bl/,A", =f. 0,
if bl/,A", = 0,

where bl/,A", is the coefHcient of (x - ~I/ r~-A", in the truncated power representation (4) of s .
We have

dirn Trn,n,r(\ s) = m + n + r - orn,n,r(A; s).

Proof. We only have to compute the dimension of the spline space

(8)

Sm,n,r (1; ~2
A*2

o

Remark. 1£we skip the assumption AI/ :S m -2, i.e. if we permit the knots to have multiplicity
AI/ = m - 1, we get a spaceof possibly discontinuous functions. We will still call this spline
space a tangential space. The reason will be clear in the next section.

Remark. It seems to be interesting to ask for the number Prn,n of subsets Mrn,n,r(A) in the
set Srn,n' This number is equal to the number of the so-called compositions of n, i.e. the
number of representations

with AI/ E IN, where the arrangement of the parts AI/ is essential, and where each part
satisfies AI/ :S m - 1 (cp.P.A. Mac Mahon [10,11], M.-H. Ostmann [19]' G.E. Andrews [2]). By
elementary considerations it turns out that Pm,n is the coefficient of zn in the power series of

1 00

---------- = 1+ '""'"Prn,nzn .1 - z - Z2 - •.• - zrn-1 ~
n=l

Its radius of convergence will be denoted by _1_. Here a2 = 1 and 1 < arn < 2 with
Qm.

lim arn = 2. It is (cp. N. Basu [3]) for m > 2:
rn-+oo

Prn,n = (arn - ~a~+rn-1 (1 + 0(1)) for n -4 00.
2a~ 1 - m
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2. The Gauß Transform

7

Let H be the vector space of all real and Riemann integrable functions h: IR -+ IR, which
obey for some real number " a growth restriction

h(x) = O(lxl') for lxi -+ 00.

For h E Hand a parameter t > 0 the function

+=
1 J (-r-x) 2

u(x;t)= v7ri h(T)e--t-. dT
-=

(9)

(10)

is called the Gauß transform of h. Because of the restriction (6) it is dear that, for t > 0, the
function u belongs to the dass C=(JR) W.r.t. the variable x.

We first apply the Gauß transform to some special functions.

Lemma 2. For J-l E INo let uJ-L be the Gauß transiorm oi the power iunction

Then

Proof. We have by definition

+=
= ~ J (x + Vtv)"e-V' dv

-=

Because of the formula

(11)

for odd A

for A = 20", 0" E INo,

the assertion follows easily.

The second dass of functions consists of the truncated power functions for kEIN.

o
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Lemma 3. (cp. [13},[14})For k E INo let Wk(X; t) be the Gauß transform of the truncated
power function (x)~. Then the following assertions are valid:
1. For x ~ 0 we have

(12)

2. For x :::;0 we have

where
th/2 (k + 1) _",2IR1,2(X; t)1 :::; 2.j7ff -2- e-t •

3. For all x E IR and t > 0 the recursion formula

is valid for k E INo. In particular

(13)

(14)

(15)

(16)

and

4. It is

for k E INo.

Proof. By definition we have

8
-Wk+l(X; t) = (k + 1) . Wk(X; t)
8x

(17)

(18)

For x :::;0 we get
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which proves (13) and (14). For x ~ 0 we write

9

-00 -00

which yields (12). To prove (15), we use integration by parts to evaluate

This gives

00

2 J (-r-",) 2+ rk+I(r - x)e--t- dr
t(k + 1)v:rrt

o
2

t(k + 1) (Wk+2(X; t) - XWk+I(X; t)),

and so (15) is proved. FinaIly, relation (18) is either proved by explicitly differentiating
Wk+I(X; t) and using (15), or it can be deduced from Walz [22]' where it was proved that
differentiation and Gauß transformation can be interchanged. 0

For arbitrary but fixed t > 0 and r E {I, ... ,n}, we denote by Gm,n,r = Gm,n,r(A) the
set of Gauß transforms of the spline set Mm,n,r(A), i.e., Gm,n,r consists of all functions which
can be written in the form

m-I r AI'

g(x; t) = L aj.Luj.L(x; t) +L L bl/,kWm-k(X - ~I/; t) .
j.L=O l/=lk=l

The defect of 9 is defined in analogy to that of a spline function.

(19)

Remark. It is also tempting to use the B-spline basis instead of the truncated power basis
of the spline space, for the theoretical investigations as weIl as for the practical computations:
The partial derivative of a B-spline w.r.t. the knots is well-known (see e.g. [20]), and also the
recursion formula for the Gauß transform of a B-spline has already be found [13, 14]. However,
it turned out that the non-dependency of a specific spline function on a knot, in other words,
the defect of this function, comes out much more c1early when using the truncated power basis.

The following theorem gives some insight into the structure of Gm,n,r' In particular it says
that the set Gm,n,r satisfies the local Haar condition (Statement 1).
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Theorem 4. Let 9 denote some arbitrary iunction irom Grn,n,r with deiect 8rn,n,r (A, g) .
Then the iollowing statements hold true:
1. The tangential space T(g) oi 9 is a Haar space oi dimension

d(g) := m + n + r - 8rn,n,r(A, g)

on IR.
2. For each iunction 9 E Grn,n,Tl 9 =f. g, the difference iunction 9 - 9 can have at most
m + 2n - 8rn,n,r (A, g) - 1 zeros in IR.

Proof. The proof is based on the following auxiliary

Claim. Consider, for arbitrary r, the spline space Srn,n,r(~, A) with fixed knots. Then the
Gauß transform of each s E Srn,n,r(~, A) has at most

m+n-1

zeros in IR.

Proof of Claim. Since Srn,n,r(~, A) is a weak Haar space, the statement could be deduced
from a general result due to Jones & Karlovitz [7]. However, in this concrete situation we want
to give a short self-contained proo£. So, consider an arbitrary 9 E Grn,n,r

rn-I r .All

g(x; t) = L aj.Luj.L(x; t) +LL bv,kWn-k(X - ~v; t),
j.L=O v=lk=1

and assurne that 9 has at least m + n zeros in IR. Then gern) has at least n zeros, due to
Rolle's theorem (here and below, we consider derivatives w.r.t to x).
Obviously, u~rri) (x; t) == 0 for J-L = 0, ... , m - 1, due to (11). Consider for arbitrary lJ and k
the function W~rn~k(X - ~v;t). From (18), it is easy to see that

and so, using (16),

with polynomials Pk-I,v and Pk-I,v of degree k - 1. It follows that

r .All

gern)(x; t) = e- xt
2 L L bv,k Pk_I,V(x)e~.x
v=lk=1
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with polynomials qv of degree Av - 1. Thus g(m) is a nonzero multiple of a generalized
exponential sum, whichean have at most

r

L(Av - 1+ 1) - 1= n - 1
1.1=1

zeros. This eontradiets the assumption and proves the auxiliary claim.

Now statement 1 follows immediately from Theorem 1 in eonnection with our auxiliary claim.
Sinee both 9 and 9 are elements of Gm,n,r they are images of two spline funetions of order
m, say sand s. Obviously, the differenee function s - s is a spline of order m with at most
2n - om,n,r(A, s) knots, and so also statement 2 follows from the auxiliary claim. 0

Remark. Statement 2 of Theorem 4 ean be sharpened in several direetions, for example, if not
all knots of 9 and 9 are different. This ean be seen as follows: Let {(I,"" (l} be the set of
eommon knots of 9 and g, and denote their multiplieities as knots of 9 and 9 by Aj resp.
).j, j = 1, ... ,l . Then the same proof as above shows that 9 - 9 ean have at most

m + 2n - 8m,n,r(A,g) -1- p

zeros, where
l

P :=Lmin{Aj,).j} ~ l.
j=l

3.Criteria for Best Approximation by .Gm n,
We now use the results of the previous seetion, in partieular Theorem 4, to obtain neeessary

and suffieient eonditions for best approximations.

Theorem 5. Let / E C(a, b] be given. Consider the following statements for 9 E Gm,n,r :
(a) The error function (/ - g) has an alternant of length

m + 2n - 8m,n,r(>" g) + 1 .

(b) 9 is a best approximation of / .
(e) The error function (/ - g) has an alternant of length

m + n + r - 8m,n,r(A, g) + 1 .

Then (a) => (b) => (e).
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Proof. The basis for this result was built in Theorem 4, such that we now can use standard
techniques from nonlinear approximation theory, see e.g. Meinardus [12].

To prove the implication (a) :::} (b), assurne that there is a better approximation of f,
say g. Then (f - g) - (f - g)= 9 - 9 has at least m + 2n - orn,n,r()'" g) zeros, which is
a contradiction to statement 2 of Theorem 4. The implication (b):::} (c) follows immediately
from the fact that the set Grn,n,r satisfies the so-called local Haar condition, as proved in
Theorem 4, statement 1. D

As an immediate implication of Theorem 5, we obtain

Corollary 6. Jf 9 has only single knots (i.e. if r = n), then 9 is a best approximation of f
if and only if the error function (f - g) has an alternant of length

m + 2n - orn,n,n(,>"', g) + 1 .

The following de la Vallee Poussin type result gives us lower and (trivial) upper bounds for
the minimal deviation of f from Grn,n,Tl denoted as PGm,n,r (f) .

Theorem 7. For f E C[a, b] and 9 E Grn,n,r, let there exist m + 2n - orn,n,rC\, g) + 1 points
{Zj} C [a, b], such that
1. (f - g)(Zj) i= 0 for j = 1, ... ,m + 2n - orn,n,r()..,g) + 1
and
2. sgn (f - g)(Zj) = -sgn (f - g)(Zj+1), for j = 1, ... ,m + 2n - Orn,n,r(> ..,g).
Then

. min ( )I(f - g)(zj)1 :::;PGm,n,r(f) :::; Ilf - gll[a,b]'
1~J~m+2n-8m,n,r A,g +1

Proof. It follows from our assumptions in connection with Theorem 4 that there is no function
g E Grn,n,Tl such that

Therefore the result follows from the nonlinear Kolmogoroff criterion (cf. Meinardus [12]' The-
orem 85). D

4. Particular Results für Single Knüts
We had already seen in Corollary 6 that in the case r = n a full characterization of the best

approximation by the length of the alternant is possible. In this section we want to consider
the case r = n in some more detail. The basis for our results is the following
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Theorem 8. If r = n then the set Gm,n,r has the loeal and the global Haar property, i.e.,
for eaeh 9 E Gm,n,n
1. the tangential spaee T(g) is a Haar spaee of dimension

d(g) = m + 2n - om,n,n ()\, g)

on IR, and
2. for eaeh funetion 9 E Gm,n,n, 9 =I- g, the differenee funetion 9 - 9 ean have at most

m + 2n - om,n,n(>", g) - 1

zeros in IR.

Proof. This result follows immediately. from Theorem 4. o
By applying the non-linear theory developed in [12,17], we get as an immediate consequence

of Theorem 8 the following characterization and uniqueness result.

Theorem 9. Let 1E C[a, b]. Then the following statements hold.
1. Tbe funetion 1 can have at most one best approximation from Gm,n,n'
2. A funetion g* E Gm,n,n is the best approximation of 1, if and only if the difference function
(1- g*) has an alternant of lengtb

m + 2n + 1- om,n,n(>", g) .

In the same manner, also the de la Vallee Poussin type result given in Theorem 7 can be
reformulated.

Now, the question may arise for which functions 'j the existence of a best approximation
with single knots can be expected. Extending an idea due to Handscomb [5] (see also [6]), we
can proof the following criterion. For the fomulation of this result, it is appropriate to consider
approximation of the Gauß transform of 1, say F(.; t), instead of 1 itself.

Theorem 10. Consider 1E C[a, b] such that 1Cm-2) exists and is strictly convex in (a, b) .
By F(x; t), we denote the Gauß transform of 1.
Tben each best approximation g* E Gm,n,r of F has n distinet knots.
More 0ver, the error function (g* - F) has an alternant of exact length m + 2n + 1, and the
endpoints a and b of the interval belong to the alternant.

Proof. For convenience, the proof is split up into several claims. We assurne troughout that
t > 0 is arbitrary but fixed.

Claim 1. Let 9 be an arbitrary Gauß transformed spline oforder m with exactly r inner
knots, i.e., gE Gm,n,r' Then (g-F)(x;t) has at most m+2r+1 extreme points, this number
being attained only if a and b belong to the set of extrema.
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Proof of Claim 1. Let 9 be the Gauß transform of the spline s E Srn,n,r with knots ~l, ... , ~r .

Then s(rn-2) is a (possibly discontinuous) piecewise linear function, and- (s(rn-2) - j(rn-2») has
at most (2r + 2) sign changes in [a, b]. Since theGauß transform is variation-diminishing,
(g(rn-2) _ F(rn-2)) has at most (2r + 2) zeros in [a, b] . It follows that (g' - F') has at most
(2r+ m - 1) zeros, andtherefore (g - F) has at most (2r + m - 1) extrema in (a, b) . This
proves Claim 1.

Claim 2. 1£ g* E Grn,n,r is a best approximation of F, then n = r + 8rn,n,r CA; g) .

Proof of Claim 2. According to Corollary 6 , the error function (g* - F) has at least
m + n + T- 8rn,n,r(A;g) + 1 alternating extreme points,and so Claim 1 implies

m + n + r - 8rn,n,r(A,g) + 1 :S 2r +m+ 1,

hence
n - 8rn,n,r(A, g) :S r.

On the other hand, the inequality

8rn,n,r (>.., g) :S n - r

is obvious.
A combination of (21) and (22) now implies

n:S r + 8rn,n,r(A, g) :S n ,

which completes the proof of Claim 2.

(20)

(21)

(22)

(23)

Claim 3. The error function (g* - F) (with g* as in Claim 2) has an alternant of exact
length m + 2r + 1, and a and b belong to the alternant.

Proof of Claim 3. 1£ g* is a best approximation Corollary 6 in combination with Claim 2
implies that (g* - F) has an alternant of length

m + n + r - 8rn,n,r(A, g) + 1= m + 2r + 1 (24)

at least. On the other hand, the number of extreme points is also bounded from above by this
number, due to Claim 1. This proves Claim 3.

Claim 4. r = n .

Proof of Claim 4. Assume r < n. Then we may insert one additional knot ~r+l = b - E

with E > 0 sufficiently small. Since b is an element of the alternant, it is possible to choose a
polynomial PE' such that g, defined as

_ {g*(X;t)
g(x; t) :=

PE(X;t)

a:Sx:Sb-E
b-E:SX:Sb

has the same error norm asg* . This contradicts the unicity proved in Theorem 9. D
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Remark. The assumptions of Theorem 10 are in particular satisfied for the function f(x) = xm,
l.e. for the monospline problem, see e.g. Braess [4]. (Note that

for all t, due to Lemma 2).

Moreover, it is known (see e.g. Schumaker [20]) that the error in free knot spline approxima-
tion behaves asymptotically like that in segmented approximation by piecewise polynomials of
degree m - 1 , which itself is known to be of order n-m, see Meinardus [15]. Thus, altogether
we can prove that

P (xm) - p (xm) - 0 (n-m)Grn,n,n - 8771,n,n - for n -+ 00.

At the moment we are looking at the monospline problem in some more detail; the corresponding
results will be published in a forthcoming paper.

In rational best approximation, it is well-known that anomalies occur in square blocks (cf.
Meinardus [12]). In the present case, a triangular structure appears:

Lemma 11. Assume that the best approximation 9 E Gm,n,r of f E G[a, b] is of exact order
m and possesses n distinct knots, i.e., r = n, and set Gm,n := Gm,n,n .
Jf the error function (f - g) has an alternant of exact length

m+ 2n+ 1+ k

with k E lNo, then 9 is the best approximation of f w.r. t. the spaces

for all I-t, LI E lNo with I-t + LI :S k and no others.

Praaf. Due to our assumptions, the defect of 9 w.r.t. the set Grn+J.L,n+v equals LI. It follows
Corollary 6 that 9 is the best approximation of f from this set if and only if the error function
(f - g) has an alternant of length

m + I-t + 2(n + LI) - LI + 1= m + 2n + I-t + LI + 1 .

This 0bviously is the case if and only if I-t + LI :S k .
Moreover, if either I-t < 0 or LI < 0, then 9 is no element of the set Gm+J.L,n+v' This proves
Lemma 11. D
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We briefly discuss an example for this effect:
Consider the function

f(x) := 21xl ~ 1 .

16

On [-1,1], this function has an alternant of length 3, and so the function go == 0, considered
as an element of the set 61,°' is the best approximation of f; it meets the assumptions of
Lemma 11 with m = 1, n = 0, and k = 1. Consequently, go is also the best approximation
of f w.r.t. the sets G2,0 and G1,1, the minimal deviation being 1 in aU cases.

However, if theWalsh type tableau would have a rectangular structure, then go would also
be the best approximationfrom G2,1 . Butthis is not true, since fitself is a linear spline with
one knot, and thus the spaces G2,1 can get arbitrarily dose to f (for t -1- 0 ).

In view of these phenomena, we introduce the following definition, which is weIl known e.g.
in rational best approximation: A function f is called (m, n) -normal, if the defect of its best
approximation from Gm,n,n is zero. It is easy to see that a function is (m, n) -normal if and
only if its minimal deviation satisfies

PCm,n,n(J) < PGm,n-l,n-l(J)

Moreover, we have seen a sufficient normality criterion in Theorem 10.

5. Numerical Examples
In this section we show the results of some numerical examples. Clearly this is only a small

selection of a large number of numerical tests that was examined.

We observed that the calculations always were very stable, even if the parameter t was
chosen dose to zero. In all examples shown below we have t = 10-7. This means that we
deal with functions that are very dose to the original spline space, but still have a Haar-like
structure.

As a first example, we look at the function f(x) = eX on the interval [0,1]. Since the
exponential function satisfies the assumptions of Theorem 10, we can expect that the error
function of the best free knot approximation always has an alternant of length (m + 2n + 1) .

We compare the error functions of the best approximations for fixed (equidistant) knots
(Figures 1a and 2a), and for free knots (Figures 1b and 2b). In all cases, the alternant is of
length (m + n + 1) for fixed knots, and (m+ 2n + 1) for free knots.
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Error. 2.65116e-005
Knols: 0.333333, 0.666666

17

o

-1e-004

1e-00

Figure la. Approximation of eX : Fixed knots, m = 4, n = 2 .

Error: 1.61615e-00S
Knots: 0.3835, 0.6757

o

-1e-00

Figure lb. Approximation of eX : Free knots, m = 4, n = 2.
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Error: 0.000241809
Knots: 0.25, 0.5, 0.75

Figure 2a. Approximation of eX : Fixed knots, m = 3, n = 3 .
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Error. 0.000192921
Knots: 0.296, 0.5467, 0.7771

Figure 2b. Approximation of eX : Free knots, m = 3, n = 3 .
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Our second example is the square root function, also on the interval [0,1] . Here we have the
effect that the optimal knots are very dose to the left endpoint of the interval, and so apart
of the alternant simply becomes invisible when the values of m or n are larger than 2. We
therefore show the output for the cases m = n = 2 (Figure 3) and m = 1, n = 2 (Figure 4).
Note that in the latter case the error function is indeed continuous (since t is greater than
zero), although with t = 10-7 we are very dose to the spline space of piecewise constants.

1e-001

o

Error: 0.0211634
Knots: 0.0288, 0.2604

-1e-001

1e+00

o

-1e+00

Figure 3. Approximation of vx: Free knots, m = 2, n = 2.

Error: 0.171758
Knots: 0.1195, 0.47891

Figure 4. Approximation of vx: Free knots, m = 1, n = 2 .
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The Runge function
1

fR(X) = 1+ x2

on the interval [-5,5] provides an example for non-normality, since here situations with
Om,n,r = 1 occur. More precisely, we have the

Proposition. For an arbitrary odd number m, denote by gm the best approximation of fR
from Gm,l,l . Then Om,l,l(gm) = 1. Consequently, the error function fR-gm has an alternant
of length m + 2 .

Praaj. Consider the bestpolynomial approximation Pm E IIm of fR on [-5,5] . Then fR -Pm
has an alternant of length (m + 2). Since fR is an even function, the leading coefficient of
Pm vanishes, and so Pm E IIm~1 c Gm,.l,l' Considered as an element of Gm,l,l, Pm has no
"active" knot, and therefore Dm,l,l (Pm) = 1 .

Theorem 5 implies that Pm is the best approximation W.r.t. Gm,l,l iff the error function
has an alternant of length

But this is true, as shown above, and so, setting gm = Pm , the proposition is proved. 0

As an example, Figure 5 shows the error function of the best approximation from GU,I,1

with an alternant of length 13. Note that this was computed by setting n = 1 , and as expected
the coefficient of the truncated power function vanishes.

1e-001

-5

-1e-001

Error: 0.0659207
Knots: 0

Figure 5. Approximation of the Runge function: Free knots, m = 11, n = 1 .
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Finally we want to investigate the dependency of the approximation error on the parame-
ter t. To do this, we computed the best approximations of the exponential function on [0,1] by
the spaces G 4,1 (piecewise cubics with one inner knot) for decreasing values of the parameter t.
Table 1 shows the optimal knots and the corresponding errors for t = 2-i, i = 1, ... ,12 .

i Optimal Knot PG4 1 (eX)
1 0.7736 0.4262 . 10-6

2 0.6491 0.8058 . 10-6

3 0.5875 0.1452 . 10-5

4 0.5576 0.2408 . 10-5

5 0.5437 0.3545 . 10-5

6 0.5376 0.4585 . 10-5

7 0.5348 0.5342 . 10-5

8 0.5335 0.5814 . 10-5

9 0.5329 0.6085 . 10-5

10 0.5325 0.6234 . 10-5

11 0.5324 0.6313 . 10-5

12 0.5323 0.6354 . 10-5

00 0.5322 0.6396 . 10-5

Table 1. Approximation of eX by G4,1 on [0,1] for various values of t = 2-i .

Obviously, in both sequences the deviation from the limit value (for t = 0 resp. i = 00 ) is
roughly halved in each step. This already shows that these values behave asymptotically like t
does. However, based on the fact that the basis functions uJ.L and Wk of the Gauß transformed
space possess an asymptotic expansion for t ~ 0 ,as shown in Lemma 2 and Lemma 3, we
strongly conjecture that this is also true for the other parameters of the best approximation,
i.e., the coefficients of the best approximating function, the optimal knots, and the minimal
deviations.

This is also supported by the numerical results: We applied linear extrapolation (Richardson
extrapolation) to the sequence of errors from above, which improved the results significantly.
Table 2 shows the output of the extrapolation process in the usual triangular Romberg scheme
(cf. [21]). The convergence acceleration effect is obvious.
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.4262 e(-5)
.1185 e(-4)

.8058 e(-5) .2403 e(-4)
.2099 e( -4) .3983 e( -4)

.1452 e(-4) .3785 e(-4) .5401 e( -4)
.3364 e(-4) .5312 e(~4) .6130 e(-4)

.2408 e(-4) .5121 e(-4) .6107 e(-4) .6327 e(-4)
.4682 e( -4)

.5941 e(~4)
.6058 e( -4) .6324 e( -4) .6371 e(-4)

.3545 e(-4) .6317 e( -4) .6370 e( -4)
.5626 e(-4) .6301 e(-4) .6369 e(-4) .6385 e( -4)

.4585 e(-4) .6256 e(-4) .6368 e(-4) .6385 e(-4)
.6098 e(-4) .6364 e(-4) .6385 e( -4) .639.5 e( -4)

.5342 e(-4) .6350 e(-4) .6384 e(-4) .6395 e(-4)
.6287 e(-4) .6383 e(-4) .6395 e(-4) .6396 e( -4)

.5814 e(-4) .6379 e(-4) .6395 e(-4) .6396 e(-4)
.6356 e(-4) .6394 e(-4) .6396 e( -4) .6396 e( -4)

.6085 e(-4) .6392 e(-4) .6396 e(-4) .6396 e(-,4)
.6383 e(-4) .6396 e(-4) .6396 e(-4)

.6234 e(-4) .6395 e(-4) .6396 e(-4)
.6392 e( -4) .6396 e(-4)

.6313 e(-4) .6396 e(-4)
.6395 e(-4)

.6354 e(-4)

Table 2. Extrapolated Errors PG4.1 (eX)
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