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Abstract. A series of relatively simple equivalences to the Collatz conjecture, con-
cerning the Collatz mapping i
r(n) = { 3%_1 for even n,
v =22 for odd n

are presented. The conjecture reads as follows: To every n € IN there exists a num-
ber m € N such that the m* iterate of 7, applied to n, has the value 1. The main
topic of this paper consists in investigating a certain linear equation in the space of
special Dirichlet series. The conjecture that this equation possesses a null space of
dimension 1, generated by the Riemann zeta function, is equivalent to the Collatz
conjecture. A number of analytic properties of the operator, which defines the linear
equation, is given, some of them concern problems of analytic continuation in the
complex domain. A few remarks with respect to generalizations of those problems
conclude the paper. :
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1.Introduction. Let IN be the set of n_atural numbers. We consider the so-called
Collatz map 7 : IN — IN, defined by .

T(n):{ L forevenn "

3k
—%t for odd n

Already in the first half of the last century, it has been conjectured by L. Collatz
[3],[4] that to every number n € IN then exists a number m € IN such that for the
iterates : :

=, = r o7k kelN
" the assertion ‘
T (n) =1 (2)

is valid. Until now it seems that this conjecture has neither been proved nor dispro-
ved. There is a huge literature on this topic, concerning relations to many fields in
mathematics. We here refer to the Lecture Notes in Mathematics, no. 1681 by

G. J. Wirsching [10],[11] as a main source. ”

In this paper we will contribute to such investigations by transforming the problem
to a functional equation for special Dirichlet series.

2.Elementary Equivalences. Lef A denote the set of all bounded sequences
a={a}1, a, ER  forvel. |
The subset B C A is given by such sequences, for which a, € {0,1}.
If a = {a,}3, we denote by a, the sequence
ar = {ar(u)}i.;l‘
Theorem 1.The following assertions are equivvalent:

(i) The Collatz conjecture is valid;
(1) The only solutions of the equation
a=a, (3)
in A are given by the constant sequences

Ca={A}2, with MA€ER; | (4)

[S)



(tit) The equation
a=a,
possesses only the two solutions in B,

a={0)2, and a={1}2,

Proof. We first assume the Collatz conjecture to be true. Then we choose any
number n € N. According to the assumption there is a number m € IN such that
7™(n) = 1. We now consider any solution a of equation (3). It follows

Ap = Gr(n) = = * = Grm(n) = 01- |

Since n was arbitrary chosen, we get a, = a; = A = const for all n € IN. Hence there
are no other solutions of equation (3). - o ,

Assuming the Collatz conjecture to be false, then there exists a subset M C NN,

M # @, consisting of all v € IN for which m™(v) # 1 for all k € IN. We define the

sequence
a={a}2,
by
W = { 1 forveM
v 0 forvgM
Since v € M implies 7(v) € M, we get also |

a _J1 forve M
™70 forvg M

Hence this sequence is a solution of equation (3). Furthermore it is different from
all the solutions (4), because of 1 ¢ M.
The equivalence of 2.) and 3.) in Theorem 1 is obvious. O

Instead of sequences one may consider suitable series, e.g.

o(2) =Y apu(2),

in some region of the variable 2 with some convergence properties. Equivalence
theorems concerning the Collatz conjecture can be started by considering functional
equations, e.g. ’

lz) = ¢:(2),



where

Z ar(v)@u

v=1

This has been performed in several papers [1], [2], [7], provided ©(z) stands for a
power series around the origin in the complex z-plane.

We turn over now to the special Dirichlet series

D(s) = Z ann_s’,

which, for bounded coefficients a., converges for all complex variables s with
R(s) > 1. The vector space of all such Dirichlet series will be denote by A. The

associated series

D.(s) = Z armyn °
n=1
takes, according to (1), the form
=3 an(0) + 3 anan(2v + 1) =27°D(s) + (TD)(s)
n=1 v=0

~ ~

with the operator T': A — A, defined by

[e o]

(TD)(s) = Z az,+2(2v +1)7°. | (5)

v=0

So we get the
Theorem 2.Let B denote the set of Dirichlet series

zE ann S;

with coefficients a, € {0,1} for v € N, and let R(s) > 1
Then the following assertions are equivalent:

(i) The Collatz conjecture 1s valid;
(11) The equation

1
1-2-¢

D(s) = (TD)(s) )

possesses in B the only non-trivial solution D(s) = ((s), where ((s) denotes
the Riemann zeta function.




Proof. We proceed analogously to the proot of Theorem 1.

(i) If the Collatz conjecture is valid, then all the coefficients a, of a non-trivial
solution D € B are equal to 1. This shows D(s) = ((s).

(ii)i Usiﬁg the same notations as in the proof of Theorem 1, we see that for the

Dirichlet series :
D(s) = Z v

veM

we get

D,(s) = Z AryV ° = Z v=° = D(s).

vEM . veEM

Therefore
D(s) = D,(s) =27°D(s) + (T D)(s),

i.e. the Dirichlet series D(s) yields a solution of equation (6). Since 1 ¢ M this
series is different from ((s) and, according to the assumption M # 0, not the
trivial solution. '

This proves Theorem 2. ' | O

In the following section we will give special representations of the operator T.

3. A Complex representation of T. For real v and a complex function
f :{z € C,Re(z) =~} = C we will use the abbreviation

[ 1) az

{(7)

for the
yia
Jim [ f(2) dz,
y—ia
provided that this limit exists.
Theorem 3.Let v be a real number, v > 1. Then, for D € A,



the operator T is represented by the integral

(TD)(s) = 5% D(v)F (v, s)dv, R(s) > 7, (7)
()
unth
+1 -
F(v,s) = Z (3”(_;12:1&)}31 : dw, R(s) > R(v). (8)
n=1 -

Remark. The formula (7) is based essentially on the Kronecker-Cahen-Perron Theo-
rem (cp.[5],[9]). We will, however, present a detailed proof. To do this we need some
lemmata.

Lemma 1.Let v € R, v > 0. Then, for x € R, 2 > 0, we clasm the validity of the
formula _ _ .

9—“/— dv = ]5 ifr =1 (b) (9)
ot I, ifx>1 (e

This 1s Dirichlet‘s discontinuous factor.

Proof of Lemma 1. For demonstration we draw the figures la,b
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Fig.la Fig.1b

First we assume 0 < = < 1. We consider the rectangle with the corners v — ia,
~ 4 i, p+ia, p — i (cp fig. 1a), where o and p are arbitrary positive numbers
and p > 7. Since there are no singularities of the integrand 3} in the interior of this
rectangle, the value of the corresponding integral equals zero, i.e.
1 xY
— | — dv =0.

2m f v
W,



Here W, denotes the circﬁmference of the rectangle. So we have

y+io p—ic p+za Yt+ia
1 x? 1 x?
— | = dv= v [ — T dv.
2me v 2mi v
Y—io y—ior p+ia

Therefore we may estimate as follows:

p—ia -

v ¥ p
_]:_1. / .az_. dv < .’l? T + az .
2mi v arlog(s) P

y—ia

For p — 0o we get the inequality

] y+ia

x‘U :EU
— = dv| < ————
2mi _/ v = armlog(l)
; y—ior

for every a > 0. It follows for a — o0,

1
— | — d = if 1
i) v T 0 ne €01,
9%
i.e. eq.(9a).
Now let z = 1. Using the parameter representation
v ="+, —a<t<La,
yields
y+io : 5
1 dv 1 / 1 gt = 1 / / du
2mi v 27 fy—i—zf v =it Ty 1+ u?’
y—ia 0

which tends to 4 for @ — co. This proves (9b).

Let us consider the third case z > 1. This time the reétangle is defined by its corners
v — i, v+ ia, —p + ia, —p — i, (cp. fig.1b). The pole at s = 0 of the integrand

‘belongs to the interior of our rectangle. The residue equals 1. So we get

1 ’U

’y+wr —p—ic ' —ptia y+ic

1 zv 1 v 1 TV
— dv = — d —— — dv + — — d
27 / v= 1+2m v v+27r v +27r / v
y—ix y—ia —p—ia —ptia




and we gain the estimation

y+ia

1 z¥ 7 axr™?
— / — dv-1{ < + .
271 v ~ anlog(z) mp

y—to

For p — 0o we arrive at the inequality

I y+ia v : N
— f T odv-1|<—2
2mi v ar log(z)

y—ia

for every a > O; It follows for o — oo:

A TR
271 U
0% ‘
which is eq. (9¢c). Thus the Lemma 1'is proved. d

Remark. Using the well known formula (cf. [8], eqgs. 3.523 resp. 3.527)

[e o]

. fcos(ut) . om _,
Il(,u,a,) —/m dt—%e K » f0rﬂ>0,a>0
0
and
(. a) -—7t8in("t) dt=—¢  for p>0,a>0
» 2\ K, _ aQ +t2 - 2 /'L 9 9
0 .

the assertions of Lemma 1 follow easily from the identity

1 [z z"
% _v_ dv = ?{’}/Il(llogml ,")/) + IQ(“Og-'L'I 7"}/)}7
()

provided z > 0 and z # 1.

Lemma 2. Let the Dirichlet series
- D(s) = Z amm—°
: m=1

be absolutely convérgent for all s € C with Re(s) >~ > 1. Then, for every
z € R,z > 0 we get the formula ‘

1

271
(7)




where

* . .
Z a Z a % a, f x is an integer
me " 0  if x 1is not an integer

m<z m<z

Proof. According to Lemma 1 we have, for every natural number m,

1 ov du 1 ifm<z,
— -] —= % if m=uz, (11)
271 m v .
e 0 ifm>zx,

Since D(v) is uniformly convergent in compact set, contained in the half plane
R(v) >y >1, we get

2wz/D(U_ dv_zamsz(_) “—Z“m

() () m<e

O

Proof of Theorem 3. Let m € INy. We choose first z = 3n+% and then x = 3n+%
and apply Lemma 2. It follows

1 5\ 3\ dv

ot D(’”){(m*'z‘) ‘(3m+§) by

o) :
+1

v—1
27me(v /(3m+2+w) dwdv
2 B
= A3m+2-

Because of the uniform convergence of the series

i (3m +2 +w)’!
(2m+1)°

- m=0
for R(s) > R(v), we get the following representation of T :

(TD)(s) = 2(2%":‘1)— - 5}_—2 D()F(v,5)dv

G,

where F is defined in (8). This proves Theorem 3. o O




4. The kernel function F. In investigating the properties of the map 7' one has
to study the kernel function F. Here we consider again v as a complex parameter

and s as the essential complex variable.

The representation of F' in eq.(8) by the infinite series shows that F' is a holomorphic

function with respect to the variable s in the half plane R(s) > R(v). We consider

first some analytic continuations of F.. '

Theorem 4. The kernel function F with fized parameter v possesses an analytic
continuation with respect to the variable s, to a meromorphic function in the half

plane R(s) > R(v)—1. The only singularity of the continuation in this region consists
in a first order pole at s = v with residue 3V~ /2.

Proof. A short consideration shows that it suffices to prove the assertion for the

function

2 (Bm 424wt .
mzzjo Gmi1)r R(s) > R(v),

where w € R belongs to the interval [—% +%] Obviously ¢ represents a holomorphic
function of s in the half plane R(s) > R(v). Next we consider, for m > 1, the

difference

m

v—1 v—1
0 (v,5) (3m 42+ w) B / (3t +2 +w) gt
(2m +1)® (2m+1)°
m—1
1 .
_ Bm+24w) ! _/(Sm—1—’;—3t'—|-f.u)”_1 "
B (2m 4+ 1)° (2m — 1+ 2t)®

— 1 (3(m+t)_1+w)v—l v
= - [ G Mt

with
h(t) = (6(v — 1) — 6s)t — 3(v — 1) + 25 — 2stw.
Here we have used integration by parts. It follows:

(i) The series

converges uniformly in every compact subset of the half plane R(s) > R(v)—
and hence represents a holomorphic function in that region.




(ii) It is

o0

>, 3t+‘)+w“1 :

= . + (24w dt. 12
Z_ld (v,8)+ (2+w) +/ CESIE (12)
m= 0

We have to investigate the last integral in eq.(12).

One gets
/ (3t +2+w)v! o /(3(1+t)——1+w)”‘1 it
(2t +1)° B (2(1+1t) —1)°
0 0 : ,
gv-1 3 . (1 _ _11)1)'-1 ‘
= s /(1 + t)—s+v-—l (1 _3(1+1t) )S dt
. 2(1+1)
-3y 1 I
= / 1+t3“+1 dt + R(v,s)
0
3v— l N
= R
An expansion of the expression
(1~ a9)"

RV
)

into a power series

,,Zzo(“rt)

leads to the result that R(v,s) represents a holomorphic function in the region
R(s) > R(v) —

The assertion concerning the first order pole at s = v is evident. O

Remark. It may be of interest to mention the recursion formula
2 1
@(v,s)=§ cp(v—l,s-—l)+(w+§) p(v—1,s) (13)

for R(s) > R(v), which can easily be verified.
Using classical tools we investigate the function ¢, defined in (12), in particular

¢ (—v,s)= Z(3m‘+ 24 w)vH (2m +1)7° | (14.)

m=0

11



in the region
G ={(v,s)| Rv >0, Rs>0}. (15)

Eulers ihtegral for the I' - function,
[(z) = /tz_l et dt, Rz >0,
0
yields

(3m+2+w)—v—1(2m+ 1)—3 U+ 1 F(s //xvys—le—m(3z+2y)—(2+w)x—ydx dy
0 0
(16)

So we get

Theorem 5.7, he represeritatz’on

. 1 00 00 o e-(?-{-w)m—-y Iy B 17
o8 = T T T() [[# v e
0 0

holds true for all

~

(v,s) € G,
where

G ={(v,s) € C*| Rv>1, Rs>2}.

Proof. We have just to sum in (16) the geometric series -

>0

Z e—m(3z+2y) )

m=0
|

The integral representation (17) of ¢(—v, s) can be used to gain analytic continua-
tion with respect to s, where v is fixed and, conversely, with respect to v, where s
is fixed.

We will not go into detalls here. It may be possible, using classical methods due to
Riemann, to get useful estimations of the kernel function F(v,s), using the repre-
sentation (17) of ¢(—v,s).




5.Generalizations. The mapping (cp. [10],p.13)

n

7:IN—= N, %(n):{ﬁ

for even n,

5— for odd n,

for n € IN is closely connected with the Collatz mapping 7, defined in (1).The
corresponding kernel function F'(v,s) (cp.eq.(8)) reads ’

(B3n+1+w)’!

Grgn) o for Bls)> B

F(v,s) =

- —
NE

n=

This gives not a big difference to the kernel F(v,s). On the other hand the full
information on the mapping 7 is contained in the kernel F'. But: There are three
known cycles of 7, ’

- (1),(5,7, 10),(17,25,37,55,82,41,61,91,136,68,34),

which gives the reason to conjecture that the dimension of the null space of the
equation |

1 1 -
Ve T F(v,s)
D(s) 5= i D(v)F(v, s)dv
™

is 3.
A slightly more general mapping is given by

% for even n,

anth for odd n,

% N — N, 7(n) = {

wherea € N,b € Z and a+b = 0 mod 2 and a+b > 0 holds. Here the corresponding

kernel function F is given by

where

What can be said an the dimension of the null space of the corresponding linear
equation for the Dirichlet series ? Under which assumptions is this dimension
finite ? ’

13
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