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Abstract. Aseries of relatively simple equivalencesto the Col1atz conjecture, con-
cerning the Collatz mapping

{
~ 'for even n,

T( n) = 3ni1 for odd n

are presented. The conjecture reads as folIows: To every n E lN there exists a num-
her m E :IN such that the mth iterate of T, applied to n, has the value 1. The main
topic of this paper consists in investigating a certain linear equation in the space of
special Dirichlet series. The conjecture that this equation possesses a null space of
dimension 1, generated .by the Riemann zeta function, is equivalent to the Collatz
conjecture. A number of analytic properties of the operator, which defines the linear
equation, is given, some of them concern problems of analytic continuation in the
complex domain. A few remarks with respect to generalizations ofthose problems
conclude the paper.
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1.Introduction. Let N be the set of natural nUlnbers. We consider the so-called
Collatz map T : N -+ N, defined by .

r(n) = {
n
2

3n+l
-'-2-

for even n
for odd n

(1)

Already in the first half of the last century, it has been conjectured by L. Collatz
[3],[4] that to every number n E N then exists a number m E N such that for the
iterates

the assertion

1
T= T, k E N

(2)

is valid. Until now it seems that this conjecture has neither been proved nor dispro-
ved. There is a huge literature on this topic, concerning relations to many fields in
mathematics. We hefe refer to the Lecture Notes in Mathematics, no. 1681 by
G. J. Wirsching [10],[11] as a main source.

In this paper we will contribute to such investigations by transforming the problem
toa functional equation for special Dirichlet series.

2.Elementary Equivalences. Let Adenote the set of all bounded sequences

for v E N.

The subset B c A is given by such sequences, for which avE {O, I}.

If a = {av }~=1 we denote by ar the sequence

Theorem 1. The following assertions are equivalent:

(i) The Collatz conjectureis valid;

(ii) The only solutions 0/ the equation

in Aare given by the constant sequences

a = {A}~=l with A,E IR;
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(iii) The equation

possesses only the two solutions in B,

and

Proof. We first assurne the Collatz conjecture to be true. Then we choose any
number n E lN. According to theassumption there is a number m E lN such that
rm(n) = 1. We now consider any solution a of equation (3). It follows

Since n was arbitrary chosen, we get an - 0:1 == A = const for all nE lN. Hence there
are no other solutions of equation (3).
Assuming the Collatz conjecture to be false, then there exists a subset M eC lN,
M i- 0, consisting of all v E lN for which rk(v) i- 1 for all k E lN. We define the
sequence

by

{
1 for v E M

av = 0 for v r/:. M

Since v E M implies r(v) E M, we get also

{
1 for v EM

ar{v) = 0 for v r/:. M

Hence this sequence is a solution ofequation (3). Furthermore it is different from
all the solutions (4), because of 1 f/:. M.
The equivalence of 2.) and 3.) in Theorem 1 is obvious. 0

Instead of sequences one may consider suitable series, e.g.

00

<p(z) =L av<pv(z),
v=1

in some region of the variable z with some convergence properties. Equivalence
theorems concerning the Collatz conjecture can be started by considering functional
equations, e.g.

. <p(z) = <Pr(z),
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where
00

<Pr(Z)=L ar(v)<pv(z).
v=l

This has been performed in several papers [1]' [2], [7], provided <p(z) stands for a
power series around the origin in the complex z-plane.

We turn over now to the special Dirichlet series
I

00

D(s) = Lann-s,
11.=1

which, for bounded coefficients an, converges for all complex variables s with
R( s) > 1. The vector space of all such Dirichlet series will be denote by A. The
associated series

00

Dr(s) = L ar(n)n-s

11.=1

takes, according to (1), the form
00 00

Dr(s) = Lan(2n)-S + La3v+2(2v + l)-S = 2-SD(s) + (TD)(s)
11.=1 v=o

with the operator T :A ~ A, defined by
00

(TD)(s) ~ L a3v+2(2v + 1)-8.
v=o

So we get the
Theorem 2.Let fJ denote the set of Dirichlet series

with eoeffieients av E {O, I} for vE N, and let R(s) > 1.
Then the following assertions are equivalent:

(i) The Collatz eonjeeture is valid;

(ii) The equation

1
D(s) = 1 _ 2-s (TD)(s)

(5)

(6)

possesses in fJ the only non-trivial solution D( s) = (( s), where ({ s) denotes
the Riemann zeta funetion.
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Proof. We proceed analogously to the proof of Theorem 1.

(i) If the Collatz conjectute is valid, then all the coefficients av of a non-trivial
solution D E i3 are equal to 1. This shows D(s) = ((s). .

(ii) Using the same notations as in the proof ofTheorem 1, we see that for the
Dirichlet series

D(s) = 2: v-s
vEM

we get

DT(s) = 2: aT(II)v-s = 2:v-
s = D(s).

IIEM vEM

Therefore

D(s) = DT(s) = 2-SD(s) + (TD)(s),

i.e. the Dirichlet series D( s) yields a solution of equation (6). Since 1 ct M this
series is "different from ((s) and, according to the assumption A1 =I 0, not the
trivial solution.

This proves Theorem 2. 0

In the following section we will give special representations of the operator T.

"3. A Complex representation of T. For real, and a complex function
f: {z EC,Re(z) =,} --+ C we will use the abbreviation

!j(z) dz
(-y)

for the
-y+io:

2~~!j(z) dz,
-y-io:

provided that this limit exists.

Theorem 3.Let, be areal number, , > 1. Then, for D E A,
00

D( s) --:-2: ann-S,
n=l

5



the operator T is represented by the 1>ntegral

1 /'(TD)(s) = -. D(v)F(v~ s)dv,
27Tl .

h'l

wdh

+}

F (v, s) = f- ~ (3n + 2 +w) v-I dw,
. . ~ (2n+l)s

I n=l-2"

R(s) > "

R{s) > R(v).

(7)

(8)

Relnark. The formula (7) is based essentially on the Kroneeker-Cahen-Perron Theo-
reIn (cp.(5),(9]). We wilL howeveL present a detailed proof. To do this we need some
leInmata.
Lelluna 1.Let , E 1It , > O. Then, for :rE 1R, x > 0, we claim the validity of the
form,ula

1 f ,v { 0,.1. 1-' - dl' _. -
27ri. 'LI .' - r

(-y) ,

ifO<x<l (0.)
i/l: = 1 (b)
i/x> 1 (c)

(9)

Thi8 i8 Dirichlet '5 di8continu.o71,s /actoT"'.

Prüof of Lemma 1. For deInonstration we draw the figures la,b

~(~).
I-c.~

R(OI»

T )

""'",
- ~Ill

loo

Fig.la

.., '1\1')
~

.IC

'1<,
"f (1' ~

vA. . ,~" '

Fig.lb

First we assurne 0 < :7: < 1. We eonsicler the rectangle with the corners, - io:,
'"'(+ io'~ p + io:~ p- in (ep fig. la) ~where 0' and p are arbitrary positive numbers
and p > ,. Sinee there are no singularities of the integrand Xt~ in the interior of this
rectangle, the value of the eorresponding integral equals zero, i.e.

1 f :c
v

dv = O.
2Jri. 'I)

Hit
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Here W1 denotes the circumference of the rectangle. So we have
,+ia p-ia p+ia ,+ia

_1_ j XV dv == _1_' j XV dv + _1_ j XV dv + ~ j XV dv.
27fi v 27fi v 27fi v 27fZ V,-ia ,-ia p-ia p+ia

Therefore we may estimate as follows:

2~i7a

:

v dv ::;mr~:m+ a:;.
,-ia

For p -t 00 we get the inequality

for every 0: > O.It follows for 0: -t OC?,

2~i j X: dv = 0,
(,)

if X E (0,1),

i.e. eq.(9a).
Now let x == 1. Using the parameter representation

yields

v == 1+ it, -0: < t < 0:- - ,

Q

,+ia a ,a :y

1 j dv == ~ j {_1_ + _1_, } dt == 2- f dt == 1 j du
27fi V 27f 1 + it ' 1 - it 7f1. 1+ (i )2 7f, 1+ u2 '

"(-ia 0 0 ' 0

which tends to ~ for Cl' -t 00. This proves (9b).
Let"us consider the third case X> 1. This time the rectangle is defined by its corners
1- ia, 1 + iCl', -p + iCl', -p - iCl', (cp. fig.1b). The pole at s == 0 of the integrand
belongs to the interior of our rectangle. The residue equals 1. So we get

1 j XV- - dv == 1
27fiv '

W2

where W2 denotes the circumference of the rectangle. Hence

_1_ ',j+iaXV 1 -jP-ia XV 1 -jP+iaXV 1 'j+ia XV
dv == 1+2''7T"z' 'LI dv+ -. - dv + -. - dv27fi v 11 27fz V 27fz V,~ia ,-ia -p-ia -p+ia
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if x > 1,

and we gain the estimation

I+in:
1 J XV xl ax-P

dv -1 < + --.
27fi v - a7flog(x) 7fP

I-in:

For p -7 00 we arrive at the inequality

1 IJ+in:xv xl
- - dv-1 <---
27fi v - a7f log( x)

I-in:

for every a> o. It follows for a -7 00:

~JXV' dv=l,
27fZ v.

h)
whieh is eq. (ge). Thus the Lemma 1 is proved.

Remark. Using the weH known formula (ef.[8]' eqs. 3.523 resp. 3.527)

o

and

00

I (. ).= J eos(j.Lt) dt= .!!.-e-pa
1 j.L,a. a2 + t2 2a

o

for j.L > 0, a > 0

for j.L > 0, a > 0,
00

I ( ) .=J tsin(j.Lt) dt = ~e-pa
. 2 j.L, a . a2 + t2 2

o
the assertions of Lemma 1 foHow easily from the identity

1 J XV XV-2 . . - dv = -{ 'r1l (Ilog xl, 'r) + 12(llog xl, 'r)},
7fZ v 7f

(I)
provided x > 0 and x.=I= 1.

Lemma 2. Let the Dirichlet series
00

D(s) := I: amm-s
m=l

be absolutely convergent for all sEC with Re( s) ~ 1 > 1. Then, for every
x E lR, x > 0 we get the formula .

*
~JD(v)xv dv = ~ am,
27fz v ~

b) m<x

8
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where

L* "- L {~:ax if x is an integera.- am + ' .' .
m 0 ' if x ~s not an ~nteger

m~x m<x

Proof. According to Lemma 1 we have, for every natural number m,

1 j v d {, 1 if m < x,-'. (!-) ~ =, ~ if m = x,
27rz m v .(-y) , 0 If1n>x,

(11)

Since D( v) is uniformly convergent in compact set, contained in the half plane
R( v) ~ 1 > 1, we get

1 j XV (Xl 1 j (x ) v dv*
-. D(v)- dV=Lam-. - -=Lam
27rZ v 27rz m v

( ) m=l ( ) m<x. 1 1-

o
Proof ofTheorem 3. Let mE lNo.We choose first x = 3n+ ~ and then x = 3n+~'
and apply Lemma 2. It follows

+1.
2

= ~ j D(v) j(3m + 2 +w)V-1dwdv
27rz '

(-y) -t
= a3m+2.

Because of the uniform convergence of the series

~ (3m+2+w)v-l
~ (2m+ 1)8

for R( s) > R( v), we get the following representation ofT:

(Xl

"""" a3m+2 1 j(TD)(s) =6," (2 ) = -. D(v)F(v,s)dv,
O

m + 1 8 27rZ
m= (~ '

where F is defined in (8). This proves Theorem 3.
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4. The kernel function F. In investigating the properties of the Inap Tone has
to study the kernel function F. Hen~ we consider again v as a complex paralneter
and s as the essential complex variable.
The representation of F in eq.(8) by the infinite series showsthat F is a holomorphic
function with respect to the variable s in the half plane R( s) > R( v). We consider
first some analytic continuations of F.
Theorem 4. The kernel function F with fixed parameter v possesses an analytic
continuation with respect to the variable s, to a meromorphic function in the half
plane R( s) > R( v) -1. The only singularity 0/ the continuation in this region consists
in afirst order pole at s = v with residue 3v-1 /2v.

Proof. A short consideration shows that it suffices to prove the assertion for the
function

. ~ (3m+2+w)v-l
<p(v, s) :=~. (2m + 1)5 ' R(s) > R(v),

where wER belongs to the interval [-~, +~]. Obviously <p represents a holomorphic
function of s in the half plane R( s) > R( v). Next we consider, for m ~ 1, the
difference

(3m + 2 + w)v-l

(2m + 1)5

rn

J
rn-I

(3t + 2 +w)v-l dt
(2m + 1)5

1
(3m + 2 + w) v-I _ J (3m - 1 + 3t + w) v-I dt

(2m + 1)5 (2m - 1 + 2t)5
o

1_ J t (3(m + t) - 1+ w) v-I h(m + t) dt
(2(m + t) - 1)5+1

o

with

h(t) = (6(v - 1) - 6s)t - 3(v - 1) + 2s - 2stw.

Here we have used integration by parts. It folIows:

(i) The series

00

converges uniformly in every compact subset of the half plane R( s) > R( v) .:-1
and hence represents a holomorphic function in that region.
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(ii) It is
00

00 . v-I / (3t + 2 + W)v-l
<p(V, S) = L dm(v, s}+ (2 + w) + (2t + 1)8 dt.

m=1 0

We have to investigate the last integral in eq.(12).

One gets

(12)

00

/
(3t +2 +w)v-l dt

(2t+1)8
o

An expansion of the expression

into apower series

00

_ / (3(1+ t) - 1 +w)v-I dt
(2(1 + t) - 1)8

o
3v-I /00 (1 _ I-w )v-l
__ (1 + t)-8+v-l 3(I+t) dt
28

0 (1 - 2(1~t))8

00

3V
-
I
/ dt

2s (1+ t)s-v+l dt + R(v, s)
,0

3v-1 1 -
(. ) +R(v, s).28 s - v

(1~ I-w )v-I3(I+t)
(1 - 2(1~~))8

leads to the result that R( v, s) represents a holomotphic function in the region
R(s) > R(v) - 1.
The assertion concerning the first order pole at s = v is evident. 0

Remark. It may .be of interest to mention the recursion formula

2 1
<p(v, s) =3 <p(V - 1, s - 1)+ (w +"2) <p(v - 1, s) (13)

for R( s) > R( v), which can easily be verified.

Using classical tools we investigate the function <p, defined in (12), in particular

00

<p (-v, s) .. L(3m + 2 + w)-v-I (2m + 1)-S
m=Ü

11
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in the region

G={(v,s)1 Rv>O, Rs>O}.

Eulers integral for the r -funetion,

(15)

00

r(z) = / tz~l e-t dt,
o

yields

Rz> 0,

00 00

(3 2 )-v-1 (2 l)-S 1 /./ xvys-1e-m(3x+2y)-(2+w)x-y dx dm++w m+ =r(v+1)r(s) y.
o 0

(16)

So we get

Theorem 5. The representation

1
<p( -v, s) = r(v + 1) r(s)

holds true for all

0000

/ / XV

o 0

-(2+w)x-y
$-1 e dx dy
y 1- e-3x-2y

(17)

(v,s)EG,

where

G = {(v, s)E C21Rv > 1, Rs > 2}.

Proof. We have just to sum in (16) the geometrie series

00L e-m(3x+2y) .

m=O

o
The integral representation (17) of <p( -v, s) ean be used to gain analytie eontinua-
tion with respeet to s, where v is fixed and, eonversely, with respeet to v, where s
is fixed.
We will not go into details. here. It may be possible, using classical methods due to
Riemann, to get useful estimations of the kernel funetion F (v, s), using the repre-
sentation (17) of <p( ~v, s).
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5.Generalizations. The mapping (ep. (10],p.13)

f: N -t N, {

!l for even n,
f( n)== . 3n2~1 f ddor 0 n,

for n E N is closely eonneeted with the Collatz lnapping T, defined in (l).The
eorresponding kernel funetion F(v, s) (ep.eq.(8)) reads

+t
F(v s) == / ~ (3n + 1+W)v-l dw for R(s) > R(v).

, LJ (2n + 1)8 '
1 n=l-2"

This gives not a big difference to the kernel F (v, s). On the other hand the full
information on the mapping f is contained in the kernel F. But: There are three
known eycles of f,

(1),(5,7,10),(17,25,37,55,82,41,61,91,136,68,34),

whieh gives the reason to conjeeture that the dimension of the null space of the
equation

1 1 / AD(s). - . -. D(v)F(v, s}dv
1- 2-8 27r'l '

(-y)

is 3.
A slightly more general mapping is given by

T: N -t N, r(n) = {
n
2

an+b-2-

for even n,
for odd n,

where a E N, b E_Z and a+b = 0 mod 2 and a+b > 0 holds. Here the eorresponding
kernel funetion F is given by

. +t .
F(v, s)==/ ~ (an + c+W)v-l dw,

LJ (2n + 1)8
1 n=l-2"

where

a+bc---- 2 .

What ean be said an the dimension of the null spaee. of the corresponding linear
equation for the Diriehlet series ? Under whieh assumptions is this dimension
finite? '
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