Parameter Detéctio_n of T’hin Films »
From Their X-Ray Reflectivity
by Support Vector Machines -

' D. Strau8, G. Steidl, and U: Welzel

262/01
- April 2001




Parameter Detect1on of Thm F1lms From The1r X— Ray
Reﬂect1v1ty by Support Vector Machlnes

" Daniel Strauﬁ' a‘nd’.Gabriele Steidl_‘..
: Faculéy. of Mtathgmatlcs and Udo Welzel T
omputer science o Ma.x Planck Institute for Metals Resea.rch -
University of Mannheim "D-70174 Stutteart
* D-68131 Mannheim . &
; Germany : G Germany:-
v - -stuttgart.
- strauss@keynumerics.com ‘,Ne wel@m mpl-stubigar mpg de

steidl@math.uni-mannheim.de

Abstract .

Reflectivity measurements are used i in thin film investigations for determmmg the densn;y' S
and the thickness of layered structures and the roughness of external and internal surfaces.
From the. mathematlcal point of view the deduction of these parameters-from a measured . .
reflectivity curve represents an inverse problém. At present curve ﬁttlng procedureés, based ™
to a large extent on expert knowledge are commonly used in practlce These techmques* ‘
suffer from a low degreg of automation. e o
- In this'paper we present a new approach to the evaluation of reﬂect1v1ty measuréments - -
using support vector machines. For the estimation of the different thin film parameters we -
provide sparse approx1mat10ns of vector-valued functions, where we work in paralléel'on the
same data sets.. Our support vector machines were trained by simulated reflectivity curves. . -
generated by the optical matrix method. The solution of the- correspondmg quadratxc"b"”f?'-""
' programming problem makes use of the S VMTorch algorithm. : L
' We present numerical 1nvest1gat10ns to assess the performance of our method usmg models R
- of practical relevance It is concluded that the: approx1mat10n by support vector machmes "'
*;frepresents:'a ‘very promising tool.in X-ray reﬁect1v1ty investigations and’ seems a.lso to be
i T8, much broader range of parameter detectlon problems in. X—ray analys1s

1991 Mathematzcs Sub]ect C’lasszﬁcatzon 49N10 49N45 41A63 41A30 . RN
Ke ey words and phrases. Support vector machines, reproducmg kernel Hrlbert spaces rad1al-

S .’,. ba,sxs functrons, X—ray reﬂectometry, optlcal matnx method R e ‘

_— c1rcu1ts d1ffus1on barrlers or antlcorrosmn coatmgs antlreﬂectlon coatmg‘

IR 1 Introductlon B L
. Thm ﬁlms appear in various ﬁelds of technology such as conductor lme matenals in 1ntegrated* o
J’"ln optics, s and
. "magnetooptlc storages “Three 1mportant parameters for charactenzmg thin films . are the
_ density, the thickness, and the roughness of the surface. The reﬂectometry, i.e.; the utlhzatlon’; SR
“of the X-ray reﬂect1v1ty curve obtained at grazing 1ncrdences is an established non—destructlve "
"method for. determining these parameters which is widely used in practical environments. -’
-Tl'llS method involves two types of reflectivity curves. One curve is measured by hardware, -

. see Flgure 1, mainly build on the basis of conventional, powder diffractometers. and the other

.

~one is sunulated by a physmal model using a set of assumed model parameters
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' Figure 1: ‘Setupvfor X-ray reflectivity measurements_;,

- Up to now, the measured and the simulated curves are fitted in an interactive trial and error
- procedure of changing the model parameters and comparing the concurrence of the curves,
- see [20]. This procedure is mamly based on expert knowledge and suffers in general from a
low degree of automation. : ; 7
" In this paper we present a new approach to the evaluatlon of. reﬂect1v1ty measurements. by
means of Support Vector Machines (SVMs). SVMs were recently introduced by Vapnik [22]
" in statistical learning theory and have found wide applications in machine learning tasks such - .
. as regression, classification and novelty detection.  In contrast to other multivariate approxr—
mation schemes such as feed forward backpropagation networks (FFBNs) the quadratic pro-
. '(,grammmg (QP) problem raised in the SVM approach guarantees a global solution. Moreover
- it'leads in general to a sparse approximation of the unknown function. : : .
Based on SVMs the inverse problem of thin film parameter deductxon is solved by the sparse v
' .approx1mat1on of a vector—valued function ‘mapping the reflectivity - curve directly onto the B
parameter set. Our SVMs work in parallel on the same data. The major advantage of our:.
‘method is that it offers the possibility for an automation of the’ evaluatlon of reﬂect1v1ty
curves. Expert intervention is only involved for determlmng a few parameters for. the ralsed_'.' "
QP problems For routine applications, we have only a limited number of poss1ble sample '
_ ,y';constltutrons whxch have to be analyzed. Thus, the QP problems must be:solved only once
- for a part1cular specimen constltutlon and the results can be stored for subsequen
N _The training set’ for*our SVMsyrs ‘rov1ded by simulated reﬂect1v1ty curves ‘using ‘the- ptzcal
“ Matriz Method- (OMM) includi e effect of surface roughness: Thus, we are
. from measured dataﬁand can'gene te a'large set of training associations. This resul :
; :QP problems For ‘the ‘solution of t hese problems we apply the recently developed S VM Torch
- algorithm [3, 4] which is based on several previous papers [15; 17, 6, 8]." .
- In part1cular, we 1nvest1gate a three-layer and four—layer model based on practlcal samples
- We show that our method prov1des a good approx1mat10n of the underlymg mappmg

fTh1s paper is orgamzed as follows In Sectlon 2 we mtroduce the OMM wh1ch w111 prov1de
our trammg set ‘of assoc1at10ns - Section 3 deals Wlth the SVM approach: with respect to our
o settmg “In Sect1on 4 we present some numerlcal 1nvest1gat10ns showmg the performance of L
‘our sches Conclusmns of the- aper are gwen m Sectlo‘ SO S A

2 The Opt1cal Matrlx Method

L The. OMM is an estabhshed techmque to model the reﬂectlvrty of thm ﬁlms The method' }

‘ goes back to K1ess1g [9] who 1nvest1gated the dlspersmn of X-rays of different wavelength in
S thm nickel films and showed that X-rays can be treated similar to the. reflection of visible
. hght It was generahzed by Parratt [16] who extended the results of Kles31g for multrlayer :
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» 'packages In the followmg We mtroduce the OMM W1th a further extensron by 1nclud1ng the
- surface roughness according to Névot and Croce [14, 23] :
~ Let us consider the reflection of X—ra.ys at an interface of two media first.: This can be descrlbed
. by the model of a planar electromagnetlc wave hlttmg an 1deal 1nterface (mathematlcal pla.ne)
© See Flgure 2. ' : o : el :

medium 2"

o -Figure 2: Refraction of a planar electromagnetic wave at an interface be.tween two uniform

‘homogeneous. media (o-polarization) where k;: wave vector, Ej: electric field vector, Bj;

- magnetic field vector, n;: refractive index of medium j, v;: angle between interface and wave
vector k ( §=1,2). The reflected vectors with their corresponding angles are prime marked.

Crossmg the 1nterface between the medra, the X—rays are refracted accordlng to. Snell s law

COS ’)’1 ’ n2

COS’)’Z . 1 V

- ‘where n; denotes the refmctwe indez of medrum y and 7J the angle between the 1nterface and

the wave vector k; (j = 1,2). : B
, For electromagnetlc radiation belongmg to the X—ra.y range, the refractlve 1ndex n'in matter.: s
CIs smaller tha.n 1 and can be expressed as ... .- v- ‘

Here ) and ﬁ a.re the dzsperswe correctzon a.nd the absorptwe correctzon, respectwely Typrcal._-
' va.lues are § =~ = 10 =5 and ﬁ ~ 10 s These correctlons are proportronal to: the mass den31ty p'
- of the medmm ~ o g Y co 2 S

If the angle. Y2 becomes Z€ro, then the beam is totally reﬂected and med1um 2 beha.ves like = -

a perfect mirror. The correspondmg a.ngle 71 is called the ¢ritical angle - Yc and we have that

€08V = T2 /n1 See ‘also the upper picture of Flgure 4. -If we consider the transmon from .-

vacuum (n; = 1) to matter (ng < 1)-and ‘neglect the a.bsorptwe correction:f3, then we obtain -
~ by (2) that cosy. =~ 1 — ¥2/2=1—4,, ie. ) Ve R V/202. Thus, given ., we can determme the
refractrve index of the medmm and the mass: density, respectlvely :

The 1nten31t1es of reflected and refracted electromagnetlc waves at an 1deal mterface are de- . 5

- scrlbedfby the Fresnel equatzons in classical electrodynamlcs, of. 7], At grazing | mcrdencef:""
:}:"’(sma,ll gle: ,
IEE denotes .the"a.fnphtude of the’ electr1c ﬁeld the Fresnel reﬁectzon coeﬁ‘lczent TF ‘and the o
- transmzsswn coeﬁ‘lczent tp are glven by : : e . =

o I ' rp = = 71 2 o . o 3) -
. I : L -E1 T +72 B

Eym +ye

1) the’ polarlzatlon plays no: role and' we.can: turn to a scalar c0n51dera.t10n -




- roughness oj.of the mterface between consecutwe layers j'and j+ 1; see Figure 3.. Note,that '
T we: 1ncluded the ‘surface / interface roughness whlch is; in

' they interfere and modulate the reﬂect1v1ty vof the multllayer package as a function of the.

. the miedia. -
;f";_Gwen the above : e mu
“can be calculated by the OMM: - R

Layer 1 Ty Py : < .
- (vacuum) ' ' 1 B
‘ r — - 0,
. Layer 2 Ty Ty Py ' <A *
1 , . v. c 2 '
3 ' — o |
) N . s N 1 - .
Layer j - e
: — - : g,
o . o E!
e - . SR J-1
Layer J1. - T 7}_1 1 Py o < ~ -
Layer J ' . J
L \ Ty By Py . P
: ,(su‘bstrate) ; TS

. Flgure 3: Mult1layer consmtmg of J layers E (j = 1 2 2+ J) repreSents_the amplitUde of - | o
" electrlcal ﬁeld in- the m1ddle of layer i ST

' The reﬂecthty v 1s ﬁnally deﬁned as squared ratxo of the reﬂected and 1nc1dent ﬁeld amph-' D
" tudes, i.e., v = r%. Note, that with this definition it-also holds that v .= I’ /I1, where I’ e
represents the reﬁected and I, the incident intensity. o o
A main application of the X-ray reflectometry is the characterlzatmn of multrlayer packages L
on substrate In the following, we consider a multilayer package consisting of J layers Here o
“the first layer represents the vacuum and ‘the last layer is the ‘substrate. These layers are -~
* characterized by -t thelr refractive index n,, therr thzckness‘ 'rJ, the1r mass-density pi and by the'_.

_ hort; the standard deviation from
. the mean helght ofa rough surface: As descrlbed we have a transm1ssmn and reﬂectlon of the‘ '
incident beam above some angle . at an. 1nterface Smce ‘the reflected beams’ are coherent,

_ mcrdence angle v'= 71 ina characteristic manner See [23] for detalled treatments
; Agarn we have by Snell’s relatron (1) that

cos'yj ny.
o cosq n;j

50 that the- angles 'y] are determlned by the 1ncrdence angle and by thevrefractlve 1nd1ces of |

,layers' '-the'reﬁecti'vjty'i)("y ﬂ f'the.w

Leét ko denote the absolute value of the vacuum’ wave vector Then the relat1on between the"*f :
- amplitudes EJ, E’ and EJ+1, EJ 41 in the dedle of the ]—th and (_7 +. 1)—th layer respectlvely,'v

reads . - | Ut - wtin B -A
; )zR(““)(%H ) R o 5)
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where the entries of the franeition matrix R(j,5+1) are given by [23] ,

. . . . . k N . . .
~R(J,J+_l) % +;Yz+1 — k80 —7j+1)2¢f§+1 e—l#(’fmﬂjﬂﬁﬂ) 5
J

L R(J,J-*-l) ‘712'YZ+1 e—-k2(7;+'h+1) Ti+1 e~ i T =v+1Ti) |
A2

. ‘R§m+1) 27 +1 e~lk2(w+%+1) Ti+1 gl ! (VJTJ—7J+1TJ+1)
, —-’—-’———71

.R(N"'l) Z.Lg:"l.ml e~ 33—+ 0y, i (7jfjfl-7j+1’rj+_1)_

- The first factors on the right—hand side of the above e'quations. stem from the Fresnel equatiens

(3), (4). The exponential terms in the middle represent the damping due to the interface

roughness The last terms carry the shifts in phase, dependmg on the thlckness of the layer.
They. mainly describe the interference of the rays reflected at the various interfaces. The

substrate is considered as infinitely tthk e e, E 7 equals z€ro. Now successive apphcatlon of

(5) ylelds for the amphtudes in the vacuum -

| El"“'_ (12) (2'3)..“.“_1’” E; K -

»Fmally, the reﬂect1v1ty of the whole mult1layer package can be obtalned by
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Flgure 4 An exemplary reﬂect1v1ty curve for J 4 s1mulated by the OMM

Flgure 4 shows the reﬂectrvrty v= 1/( (7 €. [0° 3°]) simulated by the bove OMM for a ﬁxed

multllayer package- consisting of vacuum, molybdenum, silicon oxide, silicon substrate, i.e.,
~J = 4. Note that there is no abrupt cross—over from total reflection to transition. This'is due
to the absorptmn Whlch smears an abrupt change Thus an angle Ye can ‘hardly be deﬁned .

L




. . of fluorescence spectra and Wern and Ringeisen [25] used them for the evaluatlon of resxdual ;
~ “strain/stress gradrents from X—ray diffraction data.’ However, thése networks suff .fro“

= , "_""In contrast: to FFBNs the SVM" complex1ty depends on the data There are only a few pa-- -

lin presence of strong absorpt1on Wlthout absorpt1on, the reﬂect1v1ty would be 1 below a
- critical angle y.. Mare information about the morphologlcal ana1y31s of reﬁect1v1ty curves can -
. be found in [11]. NN : S : ‘

3 "‘Th‘e Supp'ort Vector "Machine 'App'roa:ch‘ e

- In this sectron we 1ntroduce the SVM approach with respect to our- problem For a more SR
* detailed treatment of SVMs we tefer to standard literature on this topic, e.g., [22] .

As in the previous section we consider a multilayer package consisting of J layers We are
interested in determining the thickness 7;, the mass, density p; and the roughness. o; (j. =

- 2,...,J—1) from the reﬂectw1ty v™ = v™ () measured for different incidence angles. 7 €[0,x].

Note that we have indeed only J — 2 layers of interest since the parameters of vacuum and

' 'substrate are known. Let L = 3(J — 2). Set T = (7‘2,.. . ,frJ_l)T', p= (pz, . yps-1)T and

N (0‘2, .. O’J 1)T For Yk = K'k ( 0 N ) let ™ : ( (’)‘0) (’)’N 1))T.

Up to now the following time consummg mteractwe trial and error techmque was mamly used

~to solve the above problem Choose T p and o and compute 7 IRL - RN

v=v(r,p0 ) (T, oo ONRT (8

‘by the OMM. Compare v and um frvisa?” good” approx1mat10n of the measured vector Sl
vm than associate the parameters T, p and o with the multilayer package, otherwise select :

' other parameters and repeat the procedure Unfortunately, this techmque istoa large extent,--

" based on expert knowledge since ﬁttlng algorithms can only be used for a reﬁnement of the )

_curve: fitting [20]. Thus, thlS technlque suffers from a low degree of automation- and can be

t1me consuming. : : : A

In the following, we propose an approach by SVMs whlch seems to: be superlor to other possrble AP

automation methods e.g., FFBNs [19], for-our ‘purposes. FFBNs were already used-to- solve - -

- inverse problems in X-ray analysis, e.g:, Long et ‘al. [13] apphed FFBNs for the 1dent1ﬁcat1on o

“.major, drawbacks they can be trapped 1nto local mlmma durlng learmng and the1 architecture
" must be determined empiricall; LI

rameters to’ adjust. Tralmng a SVM requires the’ solutlon of a QP problem which ‘yields’ a
' global solutlon Furthermore, training a SVM does. not depend dlrectly on the d1mensronahty :
of the input space In general, SVMs provrde a sparse approx1mat10n of the. unknown func- PR
" tion so that we can efficiently evaluate the approximate function. ‘Due to the flexible kernel
i 'substltutlon a variety of approx1matlon schemes can be 1mplemented by SVMS )
o Assume that we are g1ven a set of M assoc1a1\:10ns e : S

K%Mewxwv'

v‘ where .p’ = (‘rz,p,,a',) and vi = (V('Yl:Pz) Note that we.can’ prov1de a_“- o

large number of associations by using the OMM.’ We are 1nterested ina, functlon FiRVSRE 0
5o that F(v;) approximates p; (i-=1,...,M), ie, we want to ‘approximate the i mverse ofv .
..in.(8). We intend to determine the functlons Fl (= 1, L) of the vector—valued functlon' S
- F simultaneously. - o
. To av01d multundlces we ﬁx l e {1 ;LY in the follOwing and set " 'y o

) = F®), u=pis




Our SVM 1ntroductlon follows mainly the lmes of Wahba [24] E »
Let K (-, -) be a positive definite function on R¥ xR and let Hx denote the reproducmg kernel S
Hilbert space (RKHS) with reproducing kernel K. For 'more 1nformat10n on RKHS see [1]. -
- ‘Suppose that we are given a set of tra,mmg data (uz, yz) (=1, M) Set f = (f1, e ,fM)T .
.~ »where f; = f(v;): SR : ' -
©. "We are- interested in ﬁndmg a functron f j)\ of the form h + d (h € Hx,d E R) WthhA N
‘minimizes - :

_-A_ZV;(yi‘—fz-?)+§||h||%{,{., RN O
: vl'here S '
L Vo) =max{o,fal~ ¢}

" denotes Vapmk’s e—insensitive loss functwn [22] By the Representer Theorem [10 24] the
minimizer of (9) can be ertten in the form : :

ZCJ (v VJ +d . T .(10)'.'

- so that |
“ f=Kc+de] DR s o (11)

- Here K = (K(v,,v]))M c = (ci,.-. ,'cM) and e denotes the vector with M entrles 1

1,j=1’
Usmg thlS notatlon we are looking for ceE lRM a.nd d € R mlnlmlzmg

A/\ ZV(@I; fz c

zlj/

} ThlSlS equi"val_enﬁ to the followmg constramt»_jopt_lmr_zatron problem e

5

~ min )\(e u+e u )+;cTKc’
cduu. ) _ .2_.‘ i i

S subject to

o . u 2 O,Yu'* >0,
o ' 'y Kc —‘d'e S eetu,
—y+Kc+de\ 5 ee+‘u*.

| The dual problem w1th Lagrange multlpllers o a , ,6 ﬂ*,_‘A

Hed ot a_',b o

. max
v . c,d,u,u"‘ 1a1a. 7ﬁ76‘

7'L.(c‘,'fld,.u,u*,la,a*,ﬂ,ﬂ*)‘ = AeTu +-,_'eT,u.)‘ 3 TKc—ﬂTu ﬂ*T o e |
o - —aT(,ee‘—l—u+y,+7Kc+de)—_¥ *T(ee+u +y —-Kc—de)




: »i_su,bject'»to T ‘ T
ST 8L 8L 8L 8L . - R
'3?—0, 5{;—(—0, Fie 75 =05 'a—d-O,’ - (13)
| — . ~a>0a>0,@>0ﬂ>0
NoWO;%zK Ka+Ka 1mphes that '

c—a a*

‘ Further, by aL O and daL,. = 0 it follows B = e — a and ,B = -)\‘e - a*, respecl;ively.'

Fmally, a 7= 0 can be rewrltten as eT(a o *) = 0. Then the above‘optimization problem
: becomes ‘ ~ o o A
glgx —%(a a )TK(a - o*) — eeT(a + ) + yTl(a.—' o*) , (14) o
subject to | . - |
el (a - . a*) =0,

0<aa <)\e

- This QP problem is usua.lly solved in SVM hterature It requires resources of order M 2, Thus
it can be very challenging for standard QP—routmes if M becomes large. On the other: hand R L
_ the set of training associations should be large to prov1de a dense samphng of the unknown-_ o
function. Recently, the so—called 'SVMTorch algorithm has been 1ntroduced by Collobert and
Bengio (3, 4] for solving large scale problems. Based on an idea in [15] in every iteration step‘ :
“of SVM Torch a small subset of variables is selected as Workmg set and. the. QP problem is” ,
solved with respect to this working set.. If the working set consists only of ‘two ‘variables;’ thev

¢ partial QP problems can be solved analytically. Working sets of two variables Were also used_; v
~ for classification tasks in the so—called Sequentlal Minimal ‘Optimization [17] and for regression .

. in'[6]. These Workmg sets often imply a faster: convergence of the QP algonthm than Iarger '

- sets [4]. The decision rule for the choice of the workmg set goes back to [26] and was used
. in [8] for classification problems Furthermore, a shrinking phase is-used to exclude varlables
:';-V'that are stuck to 0 or A for a. longer phase of 1teratlons so that these var1ables will proba.bly
ll_"not change anymore _These varlables can be removed from the Optrmrzatlon problem S
- that-a more eﬁiment overall opt1mrzat10n is obtained. If To- shnnkmg is used the: convergence
*of the SVMTorch algonthm was. proved in [2] for a work1ng set of s1ze two and for an a.rbrtrary .
- working set in [12] under some restrictions. S . = Fel ,

. “Once we have computed «@ and a*, we obta.m the function

ZK u‘v_,, | J)+d oo l o | (15)
' The support vectors are ‘those K (¢, uJ) for Wthh oz, —af # 0 1e smce a_,, 2y =0(G=
,-'1‘»1‘;‘.».' M), those for Wthh oz] >0 or a > 0 Only the summand ' in cludin Support"
:vectors do. ot vanish.' .7 '

" With respect to the computatlon of the constant d we not1ce the followmg The Kuhn—-Tucker‘ R

‘condltrons in (12) are satlsﬁed by N B S R e e o

| k+%—w+hl

of (e +up +ye — fr) .=
(X =
O a:)u;“= :

-

oo o o




o obtain

& '}Thus ‘we' have for O < ozz < A that u.z = 0 and consequently that fz = y, —é. By (15) we._

ZKV‘HVJ )'l"d yz_€> )
- . ‘ ' M |
~which 1mphes d yz —€— Z K(uz,vj)(a, - aj)

=1 o o o
- 4 ‘Nu‘merical 'InVestigation

In this section we present some numerical inveStigations for assessing the performance of our -

SVM approach.:: First of all, we emphasxze that the constitution of the specimen to be analyzed A

is known a priori. Thus, we know the bulk values of the- ‘mass densities. The thickness and =

~ roughness depend on the production process and lower and upper limits are also known such ’

- that the physical domain of admrss1ble parameters can be bounded prlor the mvestlgatron o
In other words, for a given specimen the ranges of F (=1,. ,L) are bounded. intervals.

I = [ay, by], where a;,b; € R Of course, tight bounds. lead to a problem that is much easier -

' '_to treat. A specimen independent approximation seems to be 1nfeasrb1e smce the range of L

physically admissible values becomes too large. : T T
The accuracy -of approximation can be slacked by the 1nsen51t1v1ty € for the 1nd1v1dual pa.ram— e

eter since a perfect match between the physxcal specimen parameters and the ones “deduced -
" from the OMM simulation can not be achieved in practice due to measurement inaccuraciés . -
© and drscrepanc1es from theoretical model assumptions.. Unfortunately, such eﬁ'ects are not -
given quantitatively so far and recent results on the choice of ¢, e.g:, based’ on noise models" o

- [18], cannot be apphed here Therefore, the 1nsens1t1v1ty can only be estlmated by expert
experience. - : : '

-~ With respect to our (1deal) synthetlc data we choose a very large constant X whxch approx1—' '
B :mates 1nﬁnrty In this way, we obtaln a vector—valued functlon F w1th elements Fl e + d;

- gof Smola and Scholkopf [21] to use Gaussian’ kernels ie., K (x y) = e 7“" y”2 if there
i "only exists a general smoothness. assumptron about the mappmg However Gauss1an kernels

- involve the Euchdean dlstance between the morphological features of two’ distinct curves." ‘Due " L

:to the charactenstm cross—over from total reflection to penetration: in reﬂectlvrty curves, this °.
d1stance measure is highly sensitive to morphologlcal dissimilarities near the critical a.ngle On

“the other hand drssrmllarrtles for larger 1nc1dent a.ngles do nearly not influence the evaluatlon o
~ although they are’ not- necessarlly of minor 1mportance For. we1ght1ng the morph logical

features more" balanced e Work w1th \/_ v, i.e., w1th the Fresnel reﬂectlon coefﬁc1ent F (3)
mstead of the reﬂect1v1ty ence the kernel evaluatlon becomes :

: "K‘(y',,]) -72;?’ 01(\/_ m)

-

" The constant s is a free parameter and must be determmed empmcally Here we make use’. -

of the fact that small values of s lead to a fast convergence of the algorithm but result i inan -~

ovetfitting. Cristianini et al. [5] used this fact for dynamically adapting s during SVM learn- .. ..

1ng for cla551ﬁcat10n tasks We begm with small values and then successrvely mcrease s until




a-,_satisfactOry, result 1s 6btained on a test set separated from the learning set'cf 'associatl‘o'n :

- ”For our 1nvest1gat10n let us. first consider a model with J =3 layers consrstmg ofa molybde— e

- num film between vacuum and silicon substrate with p3 = 2. 2g/cm and o3 = TA. We use a’

o ,'dependency of the thm film parameters ‘on the correspondmg reﬂect1v1ty curve s1mulated by -

" training set of M = 5000 associations {(v;,p;) € RN.x'R®:i=1,... ,M} provrded b‘ _'OMM e
. »'-'Slmulatrons v; with k. = 2, N = 1000, and uniformly dlstrlbuted random numbers as dmodel,-’..
-, parameters p;; € I; (I = 1,...,L). The resulting QP problems are solved. by employmg ‘the ",

"+ §VMTorch method sketched in the previous section with a working set of size two. Note that .
ﬂshrlnkrng can significantly speed up the calculation. The price we have te. pay is the uncer-
tainty whether the algonthm converges to the desired solution or not. Therefore, if shrmkmg-

is used the results should be controlled on the training set. In our numerical experlments 1t»

is controlled that shrinking- does not affect the results, i.e., the error on the training set is -
within the predeﬁned €; bound. : .
- For assessing the generalization performance of our scheme’ and the quahty of our approx1-v '
mation:we use an independent test set {(¥;,p;) € RY x R®: i = Thof T = - 10000
associations generated with uniformly distributed random numbers p2 | € Il as model param_ .
‘eters and the corresponding OMM simulations ©;, where again k = 2 and N = 1000 Let us
1ntroduce the followrng error. notatron with respect tog P

nzl = ma.x{(] lFl(Vt) pzll E[} (Z= 1);-'- yT)" ’

with mean -

-and maximum.

s e (g}
. . . o 1_1 . E X .
o The results as. well as the a pr10r1 given 1nterval .'Z,'l, the msensrt1v1ty €, and the number of -
support vectors (NSV) are given in Table 1. For the density, the mterval is given by as::

'0.7bulk and bz bulk As notlceable 7 is small and also 7 'is ‘within tolerable bounds w1th‘ o
’ v'."_respect to-the range b —.ay. Thus we have 1ndeed found- a function F Wthh reﬂects well the' e

~ the OMM. N ote, that there i is great variance in the NSVs which indicates how the complex1ty g
- of the SVMs is individually adapted to the particular mappmgs F(I=1,...,L). Especially, ‘
. the mass density of the first film can be represented by a simple model due to 1ts direct relation

- to the cross-over from total reﬁectlon to penetratlon 1.e.; the most srgnlﬁcant morphologmal :
‘feature of the . curve. ' -

parameter, a’ ~l71 ‘q. I STD | NSV »
rgA) | so2 | 7s4 |50 | 007 028 641 782 ,
U [g/em®) | 714 [ 102 01| 8 10-5 -5 1074 [ 0.007 |- 245 e

N ) ,-»10’0" 02 0067 012 122 801 <

| Table 1 Results for an 1ndependent random test set of T —'10000 reﬂect1v1ty curves for a -
model with J =3 layers. Here the mean 7, is given with the standard devratron (STD) Note, .~ -
that thlckness and roughness is glven in Angstrom where 1A=10"10 . c
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}___-“'i‘ the measured and mmulatedcurves oﬁ'er a hlgh degree of concurrence

gy the trammg and test set, respectively, which allow us to compare the results To be more-

“A spec1men consnstmg of the layers descrxbed above was also 1nvest1gated by usmg the Slemens
..D506 X-ray diffractometer equ1pped with a knife edge for reﬂect1v1ty measurements The .
~ 'setup is shown schemat1ca.lly in Figure 1.- : : : :
. The resultmg reﬂect1v1ty curve (™) is shown in Fxgure 5 by -the. scattered pomts Here we :

plotted 'r( ) = /(™) since this information is evaluated by the SVMs with Gaussran kernel
due ta (16) The evaluation of our computed functlon F for thrs curve yields - BT

F(u(m>) (631A 8. 60g/cm 7. 89A)

‘-measured curve

simulated curve

4- Fresnel reflection ~T -

T T T T T L T T

04 - 06 08 - 10 12 . 14 16 .18 - 20 ..

incident a.ngle ~ [degrees]'

;Figure '5 Companson of a mea,sured reﬂect1v1ty curve and correspondmg OMM 31mulat1on .
‘u smg the map F : v , B .

Substltutmg thrs results m the OMM the solid curve in Flgure 5 is obtamed As notxceable, §

' -VLet us now consrder a model wrth J=14 la.yers consxstmg of a metastable solutxon'o oxygen;ln
' molybdenum (second layer) and asilicon oxide film (third layer) between vacuum and silicon
substrate with pg = 2. 32g/cm and 04 = IOA For 1nstance, such layers. are -used for. rea,hzmg
diffusion barrlers Here we stick to the very same settmgs described above for generatmg

precise, we have a training set of M = 5000, associations {(vs,p4) € RN xRS:i=1,..., M}
provided by OMM simulations v; with k =2, N = 1000, and. uniformly. dlstnbuted random
" numbers’as model para.meters pit €L (I —\l ..+ L) and a correspondmg 1ndependent test .
i oset {(DPi) € RV x RO Zi=1,...sT} of T ‘\'7-10000 associations. For'the’density we have .
gam that a;:= 0. Thulk. and b= bulk (1= 2,3):The othier intervals correspondmg to this, B
pemmen are given in Table 2 with the results of the analys1s Here ‘our method offers. nearly
the same performance : as for the 31mp1er system analyzed before.. One. exceptlon is'73 which :
_ yields a relatlvely large maxlmal error.. However, the mean error is even here within tolerable
bounds. As before,. we have found a function F which reflects the dependency , o
v Note that we have a low contrast of the silicon oxide layer with respect to thesilicon substrate, _
i.e.] the difference of the electron densmes is. Iow For this reason, the reﬂect1v1ty curve is -
relatlvely 1nsensrt1ve to the parameters of the s1hcon ox1de layer, leadmg to an 1ncreased

W

11"




Cm. o STD | m NSV

@Al | s0]120] 1 |60 o001 | o038 4
s [A] | 400 [ 600 | 5 .| 171 - 4.08 | 39.00 2267-»
. p2[g/em®] | 6 |8580086 |11-107° 20-107° 0.01 | .22 -
.. palg/em®] | 1542200022 |11-107% 26-107%| 0.04 | 581
oAl 10 [100] 02| 0028 006 ,0;79 fus2
co3[A] | 0 |100] 02 0.058 011 | Ll4- 1950

Table 2: Results for an 1ndependent random test set of T = 10000 reﬁect1v1ty curves. for a
-model with J =4 layers : S S

complexity, i.e., a larger NSVs of the underlymg mapplngs for the third layer as compared E
- to the second layer .
5. Conclusions

: vWe presented 3 new SVM based approach for detectlng the parameters of thin ﬁlms from‘t 3
their reflectivity curves. To be. independent from measured data we employed the the optical

’ matrix method for the generatmn of training associations. We investigated a three—layer anda
four-layer model. Our method with 5000 training associations exhibited a good approx1matxon» K

~ of the underlying mapping for a large test set of 10000 simulated ' curves in both ¢ cases..
We conclude that parameter detection of thin films by SVMs represents a new and very_
promising scheme which- approaches-the problem by multivariate’ sparse approxxmatlon Our

- method offers the poss1b1hty for an automation of the evaluatlon of reﬂect1v1ty curves..An. .
. a.ppl1cat10n of this method for, a. broader range of parameter detection problems in X-ray o
_ analys1s seems to- be posmble However, our approa.ch is novel to the field of reﬂectometry

~from its statement and cannot: be founded on"any. results obtamed before Therefore, someé

' ‘--’»A{‘constants given here- by heurlst1cs are ﬁrst attempts and can, of coutse, not be seen as optimal” .

T in general Although we also have successfully analyzed measured data, more 1nvest1gat10ns L

are needed to evaluate whether our method offers the same performance in measurement
practlce ‘We also hope that. further mterdrsc1p11nary research will illuminate some relatlons ,
of the’ physmal behaviours and the multlvarlate mappmgs such tha.t we can 1ncorporate more Co
a pr10r1 knowledge m our task : : '

ot
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