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1. Introductioh and Main Results

Most students who begin to learn stochastic integration are primarily interested in Itd’s
stochastic integral of a stochastic process with respect to a Brownian motion. This is due
to the fact that such integrals have an enormous number of applications in many fields,
including the natural sciences, engineering, social sciences, economy, finance, and almost
all branches of mathematics. On the other hand, in most of the common literature on
stochastic integration which focusses on the Itd integral with respect to Brownian motion
the details of a certain argument necessary for the construction of the integral (see below)
are not given or only hinted at. The purpose of the present paper is to provide the beginner
with these details in a rather self-consistent and elementary way.

Consider a standard one—dimensional Brownian motion B = (B, t € R.) on some
probability space (2,4, P), and suppose that we are given a stochastic process X =
(Xi, t € ]R+) with values in the extended reals R. One is interested to construct the It6

integral f X:dB;, 0 < a <b<+o00, of X with respect to B. The assumptions which are
typically made in the literature are that

(i) X is a,dapted to the filtration F = (Fi, t € Ry) generated by the Brownian motion,
and -

(i) X belongs to £L2(Q2 x [a, b], A® B([a,b]), P ® X).

(B([a, b]) stands for the Borel o—algebra over [a, b], and X for the Lebesgue measure.) Then
one tries to construct f: X dBy as the £2(2)-limit of approximations of Riemann-type

ZX (Biesr — Biy), ‘ (1.1)

where the t; define a partition of [a,b], and X™ is a suitable approximation to X. (For
other approaches, aiming at more general stochastic integrals, we refer the interested reader
also to, e.g., [CW 83], [Pr 90], [RY 91}, [WW 90] and the references cited there.)
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The key to all constructions of the It6 integral is, of course, the Itd isometry. The
approximation X™ of X above (in £2(Q x R4)) is usually obtained through a sequence of
steps as follows. First one makes X bounded by “cutting it off” from below and above,

e.g.,
X" :=(XV(-n))An.

Clearly, X™ is still adapted to F. The next step is to make X pathwise continuous. This
is most of the time done by smoothing through an integration procedure like

o
X i=n / &7 ds. (1.2)
t—1/n

(We have not been very careful about what happens for ¢ and a near zero, cf. Section 3
for a more careful discussion.) However, here we meet the problem that the last operation
does in general not preserve the adaptedness of X" to F because it involves uncountable
many values of the time parameter. But then we cannot use the It6 isometry for the sum
in (1.1), and our construction of the Itd integral breaks down. '

One remedy is to assume in addition that X is separable, e.g. [Fr 75], but this is
not done in most of the literature and therefore generates some incompatibility. Another
possibility, which can for example be found in the book by Dynkin [Dy 65], is to make a
slightly stronger measurability assumption than adaptedness, namely, to suppose that X
is progressive with respect to F:

Definition 1 Let X = (X;, t € R,;) be a stochastic process on a probability space
(Q, A, P) which is equipped with a filtration F = (F, t € Ry) of sub-o-algebras Fi of
A. X is called progressively measurable with respect to F or F-progressive, if for every
t € R the restriction of X to 2x [0, ¢] is measurable with respect to the product o-algebra

F: @ B([0,t]).

If the filtration F is understood from the context, we shall also simply say that X
is progressively measurable or just X is progressive. It follows from a fact in elementary
measure theory, that every process X which is progressively measurable with respect to a
filtration F is also adapted to F. In general, the converse is false.

We return to the construction of the Itd integral of X, and assume for the moment
that X is progressive with respect to the filtration F generated by the Brownian motion B.
Then it follows from the “first part” of the theorem of Fubini-Tonelli that X™ as defined
by (1.2) is actually adapted to F. Therefore we can proceed with the construction of the
It6 integral in the usual way: X™ is approximated in L%(2 x R4 ) by a step function with
steps “sticking out into the future”. For this process one defines the Ito integral as in (1.1),
shows for it the Itd isometry and finally takes appropriate limits in L2(Q) to reverse the
approximation steps done above. The details can be found in every book on It6 integration

and are omitted here.

bAs mentioned above, our temporary assumption that X is progressive is stronger
than the commonly made assumption that X is adapted. The essential clue towards the
resolution of this apparent inconsistency is the following theorem of Chung, Doob [CD
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64] and Meyer [Me 66]. Before stating thd_ result, we recall that the process X is called
measurable if the mapping X : 2 x Ry — R is measurable.

Theorem 1 Let X be an R-valued measurable stochastic process adapted to a filtration
F. Then it has a measurable F—progressive modification.

" This theorem has been proved by Ching and Doob in [CD 64] under the additional
assumption that X is separable. In the above form, i.e., without the separability assump-
tion, Theorem 1 is stated in the book [Me 66] by Meyer (which is most of the time quoted
for this result). The argument in [Me 66] has been judged by Karatzas and Shreve “lengthy
and rather demanding” [KS 88, p. 5]. Actually, the proof in [Me 66] has a gap, which has
been fixed in [DM 78]. The proof in [DM 78] makes indeed use of rather heavy machinery:
the Dunford—Pettis compactness theorem and a version of the Eberlein-Smulian theorem.
In [KS 88] then the progressive modification of X is used to construct its Ito—integral
(under the additional assumption that the underlying probability space is complete).

~ The proof of Theorem 1 in [DM 78] (cf. Theorem IV.30 there) has essentially two
parts. The first is to establish that a measurable process X has an approximation by

processes of the form .
t) = Z Hn,k ]'An,k (t)’ (13)
k -

where the A, i are Borel sets which form a partition of the time parameter domain, and the
H,, x, are random variables. In order to prove this, one combines elementary measure theory
with the monotone class theorem. In the second part, one replaces the Hy, x (which are
close to X on A, k) by values of X, so that the expressions H, x 14, k become progressive
processes. For example, if A,k is an interval of the form [sn ks tnx] one may choose
Hyy = X, ., because the fact that X, . is Fs, ,—measurable 1mp11e§ that

(w7 t) ’—> Xs;z,(e (w) 1[s'n,k,tn,k](t)

is progressive. For a general Borel set Ay, which does not have a minimum the situation
becomes more involved. In this case, Dellacherie and Meyer replace H, x by a weak L (P)-
limit of a sequence (X3, ¢ € N), where the t; € A, i decrease to the infimum of A, k. Once

one has the new progressive processes, say' (X,, n € IN), one may choose
X = lim sup X,
n .

to obtain a progressive modification of X.

In the present paper we carry this proof out in detail. However, instead of the weak
L1(P)-convergence mentioned above, we use weak L£?(P)-convergence. This has the ad-
vantage that we can avoid the Dunford—Pettis and Eberlein-Smulian theorems and use
instead a very simple result, namely the classical “Theorem of Choice”, which, e.g., can be
found in [RN 55]. Its proof uses only very elementary Hilbert space theory (the projection
theorem and the Riesz representation theorem), and this way, the proof of the desired
result becomes in our opinion rather simple (though still somewhat lengthy).
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Lemma 2.2 Let (E,£) be a measurable space, (M, d) a separable metric space. Assume
that f is a measurable mapping frori F into M. Then f is a uniform pointwise limit of a
sequence of countably valued, measurable step functions.

Proof For given n € IN, we construct a countably valued, measurable step function f,
so that for all z € E, d(fn(z), f(z)) < 1/n, in the following way: Let {ym, m € N} be a
dense subset in M. For m, n € N, B,, ,,, denotes the open ball of radius 1/n with center
Ym: Bnm ={y € M; d(ym,y) < 1/n}. Furthermore, define

m—1
An,m = Bn,m \ ( U Bn,k)-
k=1

Then for every n € N, {A, m, m € N} is a cover of M of pairwise disjoint. Borel sets. Now
we set
() == Ym for all z € £~ (An m)-

fn is clearly of the desired type. Let x € E,n € N. Then z € f~!(Ap ) for some m € N,
and fn(2) = Ym € An,m, 0 that d(fn(z), f(z)) < 1/n. o

Consider again a general metric space (M,d) and a sequence of countably valued
mappings from E into M. Then the union of the images of E' under these mappings is still
a countable subset of M, and its closure in (M, d) is a separable subspace of (M, d). Thus
we can combine Lemmas 2.1 and 2.2 into the following

Corollary 2.3 Let f be a m‘apping from a measurable space (E, ) into a metric space
(M, d) equipped with its Borel o—algebra. Then the following two statements are equiva-
lent:

(i) f is measurable and takes values in a separable subspace of M;
(ii) f is the uniform pointwise limit of a sequence of countably valued, measurable step
functions. :

Let (£2, A, P) be a probability space. Rp denotes the space of P—equivalence classes
[Y]p of extended real valued random variables Y on (2, A, P). By Rpp we denote the
space of P—equivalence classes of P—a.s. bounded real valued random variables. We equip

Rpp with the norm || - ||, of L*(P).

Let X be an extended real valued stochastic process on (£2,.A4, P) For simplicity we
shall only consider R as time parameter domain; — the modification of the arguments of
this paper for other domains are straightforward. Throughout we consider X as a mapping

X: OxRy — R
(w,t)  — Xe(w).
Also the notation X (w,t) for the evaluation X;(w) of X at (w,t) will be convenient here
and there. With X we can associate the following mapping

—~

X : IR,+ — @P )
i — Xt = [Xt]P
Without loss of generahty, we shall consider from now on only processes X which are such
that X takes values in Rpp. We call X (P-a.s.) bounded, if there is M > 0 so that for all
t € Ry and (P-a.e.) w € Q, | X(w,t)| < M.




Lemma 2.4 Assume that X = (X;, t € R4) is a measurable stochastic process so that
for all t € R4, X is bounded. Then the following two equivalent statements hold:

(i) X is measurable and takes its values in a separable subspace of Rpy;

(ii) X is a uniform pointwise limit of countably valued, measurable step functions.

Proof 1If we choose E = R4, £ = B(R;), M = Rpy, and d as defined by || - ||, on Rpp,
then the equivalence of (i) and (ii) is just the statement of Corollary 2.3.

First we reduce to the case that X is bounded. Assume that we have shown that for
every measurable bounded process Y the properties (i) and (ii) hold for Y. Let X be a
process as in the hypothesis of the lemma, and for n € N set

X (w) = (Xyw) An)V (-n), weQ,teRy.

Then X ™ is bounded, and by our assumption we have that X (™) is measurable and takes
values in a separable subspace of Rpp. For every ¢t € Ry, Xt(") converges pointwise on €2
to X;. Since we can bound | X, — X{™ ’|? from above by 4 | X:|%, the dominated convergence
theorem implies that the sequence (X () n € N) of mappings from R into (Rpp, || - |l )
converges pointwise to X. X being " measurable we obtain from Lemma 1.1 that X

is measurable, too. Furthermore, as the limit of separably valued. X (") X is separably
valued, too. Thus, from now on we may and do assume that X is bounded '

We denote by H the set of all bounded processes X so that for X property (i), and
consequently also property (ii), holds. We show that H is a vector space which admits all
the properties in the hypothesis of the monotone class theorem (Theorem A.1 in Appendix
A). That H is a vector space with 1 € H is trivial from (i). Next we show that H is
stable under uniform limits. Assume that (X,,n € N) is a sequence in H which converges
uniformly on QxR to X. Then in particular for every ¢t € Ry, (X, (-,t), n € N) converges
uniformly on Q to X(-,t), and therefore for every ¢ € Ry, ()/(\ (t),n € N) converges in
L%(P) to X (t). By assumption, for every n € N the mapping t — X, (t) from R4 into
(Rpp, || - |l,) is measurable, and by Lemma 1.1, the same holds for ¢ — X (t). Moreover,
since for all n € N, X,, is separably valued, so is X. (Set Moo = U, X, (R4), which is a
separable subspace of (M, d) Let Mj be the closure of Myo. Then also My is separable.
For every t € R, we have X(t) = lim, Xn(t), Xa(t) € M,. Hence X(t) € My, because
Mo is closed.) Thus X fulfills (i) and we have X € H, so that H is closed under uniform
limits.

Now assume that (X,,, n € N) is a uniformly bounded, increasing sequence of positive
processes in H which converges to X. Clearly, X is bounded, too. By the dominated

convergence theorem, for every ¢t € Ry, X, (t) converges to X(t) in L?>(P). Then we can
argue as in the previous case and find that H is closed under limits of uniformly bounded,

increasing sequences.

Let C denote the set of processes X of the form
Xt(w) = 1A<w) 1[a,b](t)7 wE Q) te IR'+:
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with a,b € Ry, a < b, A € A. Clearly, C is closed under multiplication, and ¢(C) =
A®B(R). By the monotone class theorem (Theorem A.1 in Appendix A) # contains all
bounded measurable processes. 0O

Let X be as in the hypothesis of Lemma 2.4, and let the sequence in statement (ii) of
Lemma 2.4 be denoted by (X,,, n € N). Then for n € N, X,, is of the following form

oo

Z Hyklpla,,(t), te Ry,
k=1 | |

where (A, k, k € N) is a sequence of pairwise disjoint Borel subsets which form a partition
of Ry, and (Hpk, £ € N) is a sequence of random variables. Hence statement (ii) of
Lemma 2.4 reads explicitly as follows:

Corollary 2.5 Let X be as in the hypothesis of Lemma 2.4. Then there exists a sequence
(X, n € N) of processes of the form

oo
= ZHn’k(UJ) 1Aﬁ,k (t)a we Q) te 1R+v

so that
1/2
sup (B(X(,) - Xa(1)’) ()

te]R_l_ n—oo

Lemma 2.6 Let (E;, &), 1= 1,2, be two measurable spaces and fz, t = 1, 2, be measur-
able mappings from (E;, &) to (R, B(R)). Set '

fi ® fa(z,y) == fi(2) f2(y), z € B,y € Eo.

Then f; ® f2 is &1 ® £2-B(IR)-measurable.

The proof of Lemma 2.6 is an elementary exercise in “turning the prayer—wheel” of
measure theory: Begin with indicators, move on to their linear combinations with positive
coefficients, take increasing limits to get the statement for all positive measurable functions
f;,i=1,2, and finally decompose general f; into positive and negative parts. Details are
left to the interested reader.

Given a filtration F = (F;,t € Ry) and t € Ry, we set Fy := (g5, Fs-

Lemma 2.7 Let A€ B(Ry), 7= inf A, and let Z be a random variable. Set Y = Z®14.
Then Y is in the following cases F-progressive:

(a) T € A and Z is F,—measurable, or
(b) 7 ¢ A and Z is F,-measurable.



Proof We only give the (almost trivial) proof for case (b), case (a) is similar (and even
easier). If t < 7, then Y(s) = 0 for all s € [0,¢], and hence the restriction of ¥ to 2 x [0, ¢]
is 7 ® B([0, t])-measurable. Let ¢ > 7. Then F,, C F;, and therefore Z is F;—measurable.
Moreover, 14 restricted to [0, ] is B([0, t])-measurable. Now we can apply Lemma 2.6 to
conclude that the restriction of ¥ to Q x [0,¢] is F; ® B([0, t])—measurable. o

Lemma 2.8 Suppose that X is an F-adapted process, t € Ry, and (t,, n € N) is a
sequence which converges to t. Assume furthermore that (X; , n € IN) converges weakly
in £P(P) to a random variable Z. Then the following statements hold:

(a) If (tn, n € N) is decreasing to ¢, then Z is P-a.s. equal to an .7-"t+—measui‘able random
variable.

(b) If for all n € N, || X3, ||, < M, then also || Z]|, < M.
Proof

(a) Let Z, := X;,, n € N, so that a comparison with Lemma B.1 in Appendix B shows
that Z is P-a.s. equal to a random variable which is measurable with respect to the
o-algebra [, 0(Xy,, k > n). On the other hand, since X is F-adapted, we have that
o(Xi,, k > n) C F,. Finally, we observe that (,, 7, = Fi4, because F; C F; for s > ¢.

(b) With the notation BY := {Y € L1(P); ||Y|ly < 1}, we have

11|, = sup E(ZY)
YeB]
= sup liminf E(X;, Y)
vesB!

< liminf sup E(X, Y)
" YeB!

= lim inf |)th||p
<M. : » |

Now we are ready for the proof of Theorem 1.

Proof of Theorem 1 We do the proof in several steps.

Step 1 With the following argument we reduce to the case that X is in addition bounded.
Suppose that we can show the statement of Theorem 1 for every bounded, measurable and
F-adapted process. Consider Y = arctanX. Then Y is bounded, measurable and F-
adapted, and by our assumption Y has an F-progressive modification Y. Set X =tanY.
Then X is progressive, too, and for ¢t € Ry we have P(X; = Xt) P(arctan X = Yt) =
P(Y, = Y,) = 1. Hence X is also a modification of X. Therefore, we can from now on

assume. that X is bounded.




Step 2 By Corollary 2.5 we know that there exists a sequence of processes (X,, n € N)
of the form |

Xn(t) =) Hppla,,(t), t€Ry, (2.1)
k=1 ) :

where the A, x € B(R.) form a partition of Ry, and (Hy, x,n, k € N) are random variables,
such that

Jim Sup 1X (&) = Xn(®)llz =0,
where ||-||, denotes the semi-norm of £2(P). By choosing a subsequence — if necessary
— we may assume that for every n € N we have

sup [|IX(t) - Xa(Dll, <27
teR,

This entails that for all n, &k € N,

sup X (6) = Holl, <277
teAn,k ’

Step 3 We replace the Hy,  in (2.1) by other random variables so as to make the resulting
process F—progressive as follows: Let n,k € N, and define 7, ; := inf Ay, x.

Case I Tp i € An k. Set

Then we have

sup

X(t) = Xnpl|, < sup (1X(8) = Hully + [[Hne = Xr, . ],)
C tEAn K 2

teAn,k

By Lemma 2.7a, X’n,k ® 14, , is F-progressive.

Case 2 Tpx & Angk. Choose a sequence (tm,, m € N) in Apx which is decreasing to
Tn,k- Consider the sequence (Xy,,,m € N) which is bounded in £2(P). By Theorem C.2
in Appendix C, we may assume — by selecting another subsequence, if necessary — that
(X, m € N) converges weakly in £L2(P) to some random variable X, ;. By Lemma
2.8a, we may choose X'n',k as Fr, ,+—measurable. Therefore, the process )~(n,k ®1a,, is
F-progressive by Lemma, 2.7b. Moreover, by Lemma 2.8b we have

sup || X (t) — Xn,k”2 < 2=(n=1)
tEA'n,k

because (Xy,, — Hp , m € N) converges weakly in L%(P) to )?n,k — Hp k.



Step 4 For n € N define
. (o)

=Y Xnk®la,,.
k=1

In view of Lemma 2.6 it is clear that X’n is measurable and by Step 3, for every n € N,
X, is F—progressive. Moreover, we have

Sup IX(#) = Xn(®)l2 < 2770

But this implies that for every ¢t € R, (X, (t),n € N) converges P-a.s. to X (t), uniformly
in ¢t € Ry. (The argument is the same as proving, e.g., that £2—convergence implies a.e.
convergence of a subsequence.)

Step 5 Define N _
X :=limsup X,.

Then X is still measurable and JF—progressive, because it is the pointwise lim sup of map-
pings of this type. On the other hand, for every ¢ € Ry, (t) is P—a.s. the limit of

(Xn(t),n € N). Hence we have for every t € Ry, P(X(t) = X(t)) = 1, so that X is a
modification of X. O

3. Proof of Theorem 2

Let X be as in the hypothesis of Theorem 2, and consider a measurable F-progressive
modification X of X which exists according to Theorem 1. Because X is a modification
of X, we have that for every ¢ € R,

/ |)Aft - th2dp = 0.
Q

The theorem of Fubini-Tonelli entails that X € £2(P ® \) and
IX — X||2(pea) = 0.

Therefore, it suffices to show the statement for X.

For n € N, set _ _ v
: Xn = (X An)V (—n).

Then X,, is bounded by n, and for all n € N, we have | X,,| < |X|. Since |X| € L2(P®)), we
may apply the dominated convergence theorem, and conclude that (Xn, n € IN) converges
to X in £L2(P ® A). Therefore, in the sequel we may assume that X is bounded, say by

M > 0.

Let w € O and extend X(w,-) to R by setting it identically zero on (—00,0). Let
¢ = 1p,1}, and for n € N, ¢, (u) = np(nu), u € R. Put .

Xn(w, t) = (‘Pn * X(w’ ))(t)a t € R,
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and restrict - X, (w,-) to Ry. According to Lemma D.2 in Appendix D, for every w €
Q, Xp(w,-) is uniformly continuous on R,. Lemma D.5 in Appendix D implies that

(Xn(w,),n € N) converges in £2(R..) to X (w, -). It is plain to check that | X, (w,t)| < M
foralln € N, (w,¢) € @ x Ry. Thus the dominated convergence theorem implies that

I X — Xnllc2(Per) -0,

as n — oQ.

It remains to shOW that X, is F-adapted. Let ¢ € R+. Writing the convolutlon On * X
as an integral, we have ,

t ~
Xn(w,t) = n/ X(w,s)ds
t—1/n
t
= n/o Li(e—1/m)v0,(8) X (w, s) ds.

X is F—progressive so that its restriction to Qx[0, t] is F;®B([0, t])-measurable. It is trivial
that 1j;—1/n)vo,q has the same properties, and therefore the integrand is F; ® B([0,t])-

measurable. But then the (first part of the) theorem of Fubini-Tonelli states that w —
X, (w,t) is F;—measurable. , o

Appendix A: Monotone Class Theorem

The following powerful version of the monotone class theorem can be found, e.g., in [DM
78]. For the convenience of the reader we give a detailed proof.

Theorem A.1 Let (E,£) be a measurable space; and H a vector space of bounded, real
valued functions on E which contains 1. Assume that the following holds:
(i) H is closed under uniform convergence;

(ii) H is closed under limits of uniformly bounded, monotone increasing sequences of
nonnegative functions.

If C is a subset of H which is closed under multiplication, then H contains all bounded,
o(C)—measurable functions.

Proof Let C' be the algebra generated by € and 1, i.e. f € C’ is of the form
, . ,
f=ao+) axfi
k=1

for certain n € N, ag,a1,...,anp € R, f1,...,fn € C. Since 1 € H, C C 7—[ and H is a
vector space, we have C' C H. :

Let A denote the set of all algebras T of functions in H so that ' C 7. A is partially
ordered by inclusion. Consider a chain. 71 C T2 C ... C T, C ... in A. Then A contains
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also U, Te: If f,9 € U, Tk, then we can find k so that f,g € Tk, and therefore f - g € T,
and f-g € U, Tk. Similarly, we can show that f + ag belongs to |J, 7x for any a € R.
Hence |J,, Tx is an algebra, it contains C' and (J, Tx C H. Therefore |J, 7x € A, and
Ug Tk is an upper bound for the chain 73 C 72 C ... C Ty C ... By Zorn’s lemma, A has
a maximal element which we denote by 7p.

We are now going to prove that 7o shares all stability properties of #. Note that
1 € 7o, because C' C To and 1 € C'.

We show that 7y is closed under uniform limits. Assume that (f,, n € N) is a sequence
of functions in 7y which converges uniformly to f: Since 79 C H and # is stable with
respect to uniform convergence, we have f € H. Assume that f ¢ 75. We bring this in
contradiction to the maximality of 7o as follows: Let 7; be the algebra generated by T
and f so that our assumption implies that 7 is strictly larger than 7. The contradiction
follows if we can show that 7 € A. C' C 7y is trivial, and so it remains to show
that 7y C H. Clearly, the uniform convergence of (f,, n € N) to f entails the uniform
convergence of (f?, n € N) to fP, p € N. Since f2 € 7y, we have fF € #, and the stability
of H with respect to uniform convergence implies f? € #. Similarly, for every g € 7o,
g- f? € To C H and these functions converge uniformly to g- f?, so that g - f? € H. Thus
we have Ty C M and the proof of the stability of 7y with respect to uniform convergence.

Next we prove that Ty is closed under taking absolute values. Let f € Ty and recall
that |f| is bounded, say by M > 0. By Weierstraf’ theorem the function z — |z| can
be approximated uniformly on [—M, M] by a sequence (pn, n € N) of polynomials p,.
Then p,, o f belongs to Ty and converges uniformly to |f|, and therefore | f| belongs to 7o.
Consequently, Tp is also closed under the operations A and V.

Now we can show that 7g is closed under increasing limits of uniformly bounded
sequences of nonnegative functions in 7. Let (fn, n € N) be such a sequence. Then it
has a limit f in H. Also (fE, n € N) is monotone increasing to f? for all p € IN." Hence we
have fP € H. For g € Ty, we decompose g = g+ — g~ with g* > 0 in Ty, by the previous
step. Then g* - fP increase to g* - fP. Therefore we have g- f? € H. Thus, as before, the
assumption f &€ Ty leads to a contradiction.

Consider the family
D::{ACE; 1A€76}.

Since 7q is an algebra it follows that D is stable with respect to intersections. 1 € 7Ty
implies that E € D, and the fact that 7q is a vector space entails that D is closed under
formation of complements. Finally, the stability of 7o with respect to uniformly bounded,
monotone increasing limits of positive functions translates into the stability of D with
respect to countable unions of monotone increasing sequences. Thus D is an intersection—
stable Dynkin system and consequently, a o—algebra. It is clear, that 7o contains all
bounded D-B(RR)-measurable functions. :

Finally, we show o(C) C D to conclude the proof: This implies that every o(C)-
measurable function is D-measurable, hence in 7o and consequently in . To this end,
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N

we remark that we have o(C) C o(7p), since C C Ty, so that it suffices to prove that
o(7To) C D. This in turn follows, if we can show that for every f € 7o,

B:={z € FE; f(x)>1} €D,
because then we also have {z € E; f(z) > a} € D for all a € R. To prove B € D, consider

1 if f(z)>1
0 otherwise,

1p(z) = {

and define
' g:(f/\l)VOG%.

Then (g", n € IN) decreases to 1p, or in other words, 1 — g™ increases to 1gg. Thus we
have 1gg € To and hence also 1 € 7. Consequently, B € D and the proof is finished. O

Appendix B: Weak £F —Convergence and Measurability

Let (2, A, P) be a probability space, and assume that (Z,, n € N) is a sequence of random
variables in L£P(P), p > 1, which converges weakly in £?(P) to a random variable Z. For

n € N set
A_p:=0(Zy, k> n),

and furthermore define ‘
: A_ = ﬂ A_n.

neN

Lemma B.1 7 is P-a.s. equal to an A_,,—measurable random variable.

Proof First we show that for every n € N, (Zg, k > n) converges weakly in LP(P) to
E(Z|.A_y). To this end, let Y € £LI(P) with p~* 4+ ¢~ =1, and observe that by Jensen’s
inequality we have that E(Z | A_,) € L9(P). Then we have for every k € N with £ > n,

E(Y (E(Z|A-n) — Zk)) = B(YE(Z ~ Z | A-v))
= E(E(Y | A-n) (Z - Zx)),

and by hypothesis the last term converges to zero as k tends to infinity.

Consequently, for every n € N there exists N,, € N/, where AV is the family of P-null
sets in A, with Z = E(Z|.A_,) on the complement of N,. Set N = J,, Nn € N. Then
foralln € N, Z =E(Z|.A_,) on the complement of the null set V.

Since Z € LP(P) for some p > 1, we have that Z is P-integrable. Therefore we can
now apply Theorem VII1.4.3 in [Do 53] with the result that the sequence (Zn, n € —N) given
by Zn := E(Z ] An), n € =N, converges P-a.s. to E(Z | A_s), as n tends to —oo. If we
denote the exceptional set for this convergence by M, then we have that Z = E(Z | A_)
on the complement of the P—null set N U M. O
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Remarks The theorem of Doob we used in the last step of the proof is a very simple conse-
quence of Doob’s second martingale convergence theorem (Theorem VII.4.2 in [Do 53], or,
e.g., Theorem 19.9 in [Ba 91], Corollary 2.4 in [RY 91]), which is a convergence theorem for
martingales indexed by —IN. It is very easy to use alternatively Doob’s second martingale
theorem directly for the second step in the proof.

If one wants to avoid to use Doob’s second martingale theorem or its above mentioned
consequence, one can simply set

7 =

~ {ZvonCN
0 on N

after the first step in the proof. Then Z is measurable with respect to the o-algebra

N %

ne—N

where A, denotes the augmentation of A, by the P-null sets in A. For the application
of this result to Theorems 1 and 2, one has then to augment the filtration considered
there appropriately. For example, the conclusion of Theorem 1 would read that X has a
measurable modification which is progressive with respect to F, where F is the filtration
obtained from F by augmenting it with the P—null sets in .4. The statement of Theorem
2 has to be adjusted accordingly. Of course, this gives somewhat weaker results than
Theorem 1 and Theorem 2, but for all practical purposes the differences are immaterial.

Appendix C: Theorem of Choice

In this appendix we give a proof of the classical theorem of choice as one can find it, e.g.,
in [RN 55]. We begin with a (well-known) lemma. '

Lemma C.1 Every Hilbert spéce is weakly complete.

Proof Let # be a Hilbert space with inner product (-,-), norm || - || and dual #*.
Assume that (u,, n € N) is a sequence in M, such that for every v € H, ((un,v), n € ]N)
is Cauchy. We have to show that there exists.u € H so that for every v € H, we have that

(un — u, v) — 0, as n tends to infinity.

Let v € H. Because ((us,v), n € N) is a Cauchy sequence it converges, and there-
fore this sequence is bounded. I.e., ((un,-), n € IN) is pointwise bounded on H. The
Banach-Steinhaus-theorem implies that ((un,-), n € N) is bounded in #*. By the Riesz
representation theorem we know that the norm of (uy,-) in H* is equal to [[up[|. Thus
(tn, n € N) is bounded in H, say |lun|| < M, M >0, for all n € N.

For v € H, set
L(v) := lim (up,v).

n—o0
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Clearly, v —> L(v) is linear (as the limit of linear mappings). Moreover it is continuous:

|L(vy) = L(va)| = | im (un, vy — v2)
. n—o0 :
' ‘ © - < limsup [(un, v1 — v2)|
) n—oo
S M|]v1 - ’U2” .
Therefore, by the Riesz representation theorem there exists u.€ H with L, = (u,v). O

Theorém C.2 Every bounded sequence in a Hilbert space contains a weakly convergent
subsequence.

Proof Let (un, n € N) be a sequence in a Hilbert space 7 which is bounded by M > 0.
Let Ho be the closure of the span of the elements in (uyn, n € N). Then Hq is a Hilbert
subspace of H.

First we show that there is a subsequence (u,/) and an element u € o so that
for all v € Ho, (un,v) —>(u,v) as n’ — oo. By construction, Ho is separable, and we
let (vk, k € N) be a dense subset. Then for each &, ((un,vk), n € N) is a sequence of
real numbers, bounded by M - ||vg||. The Bolzano—Weierstrafl theorem implies that this
sequence contains a convergent subsequence. By the diagonal process we can hence extract
a subsequence (uy') so that for every k € N, (un/, vg) converges. Le., the subsequence (uy')
converges weakly on a dense subspace.of Ho. Since (up:) is bounded, (u,s) converges weakly
on all of Ho. (Let v € Ho and € > 0 be given. Choose k € N so that |lv — vx| < e/2M,
and choose ng large enough so that for all n’ > ng, |(un, vg)| < e/2. Then

€
<z
- 2
€

I('Uln’; U)l < l(;Ltn’, Uk)l + l(un’> v Uk)l :
+ M [|v — v |

IN

)

In particular, for every v € Ho, ((%n, v)) is a Cauchy sequence: (u,’) is weakly Cauchy
in Ho. Since Mo is Hilbert we can apply Lemma C.1 so that there exists u € Ho with
Un — u weakly in Hg.

Now let w € H. By the projection theorem (H, is a closed subspace of H), w admits
an orthogonal decomposition w = wo + wb with wo € Ho, w orthogonal to Ho. In
particular, w' is orthogonal to the elements of the sequence (un/) and to u: (up, wt) =0
for all ', (u,w’) = 0. Therefore (un —u, w) = (Un' — u, wo) —>0 as n' — oo. O

Remark The reader might think that we can conclude the statement of this theorem
directly from the Banach—Alaoglu theorem. This is not so, because the weak topology
is in general not metrizable, and therefore sequential compactness does not follow from

compactness.
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Lemma D.3 Let (E;, &, i), @ = 1,2, be two o—finite measure spaces, f a positive
&1 ® E2-B(IR)-measurable mapping from E; X E, into R. For p > 1,

H/f( y) “2(?! £ (s /“f W 2o (ur) A2 (y).

The proof of Lemma D.3 follows the same pattern as the proof of Minkowski’s in-
equality on the basis of Holder’s, and is left as an exercise to the interested reader.

Lemma D.4 (Young’s Inequality) Let f € LP(R), g € LI(R), p,q > 1, withp~1+¢71 >
1. Let 7 be given by r~' =p~' +¢7! — 1. Then f xg € L7(R), and

A proof of Lemma D.4 can be found, e.g., in [Zy 88], p. 37 f, or in [RS 75], p. 28 {.

Let p > 1, and let ¢ € LY(R) N LYR), p~t + ¢~ =1 with ¢ > 0, ||¢||; = 1. For
n € N, set
on(z) :=np(nz), z € R.

Assume that I C R is an interval, where we also allow +co as endpoints. Furthermore let
f € LP(I). We associate with f its-trivial extension f € LP(IR), given by

TN flz) zel
/(@) {O otherwise.

Set N N
fn(z) :=on* f(z), zER,n€eN,

which is well-defined and uniformly continuous by Lemma D.2. We denote by f, the
restriction of fn, n € N, to I.

Lemma D.5 Forevery n € N, f, € LP(I). Moreover, (f,, n € N) converges in LP(I) to
f- |

Proof The first statement follows from Young’s inequality (Lemma D.4) for r = ¢ = 1.
For the second consider

”f - fn”L:p(I) < ”f fn”[,p(]R)

/‘/ — flz— ))son(y)dy’pdw,
/‘/ o(y)(f f(x—— dyl dz

< (/}R o(y) Hf— f—y/n”'z:v(lR) dy) ’

where we used Lemma D.3 in the last step. By Lemma D.1, the integrand of the last
integral converges pointwise to zero as n — co. On the other hand,

“f—y/nHP ||f|lp
- ”fHL',P(I)a
so that 2¢ || f||z»(r) is a uniform majorant. Thus the result follows from an application of
the dominated convergence theorem. O
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