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Abstract

In these notes we consider the usual Fedosov star product on a symplectie manifold (M, w)
emanating from the fibrewise Weyl product 0, a symplectie torsion free connection \7 on M,
a formal series n E vZJR(M)[[v]] of closed two-formson M and a certain formal series S of
symmetrie contravariant tensor fields on M. For a givensymplectic vector field X on M we
derive necessary and sufficient conditions for the triple (\7, n, s) determining the star product *
on whieh the Lie derivative Lx with respect to X is a derivation of *. Moreover, we also give
additional conditions on which LX is even a quasi-inner derivation. Using these results we find
necessary and sufficient criteria for a Fedosov star product to be g-invariant and to admit a
quantum Hamiltonian. Finally, supposing the existence of a quantum Hamiltonian, wepresent
a cohomologieal condition on n that is equivalent to the existence of a quantum momentum
mapping. In partieular, our results show that theexistence of a classieal momentum mapping
in general does not imply the. existence of a quantum momentum mapping.

*Michael.M uel1er@math. uni- mannheim.de
!iNikolai.N eumaier@physik.uni-freiburg.de
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The concept of deformation quantization as introduced in the pioneering articles [3] by Bayen,
Flato, Fronsdal, Lichnerowicz and Sternheimer has proved to be an extremely useful framework for
the problem of quantization: the quest ion of existence of star products * (i.e. formal, associative
deformations of the c1assical Poisson algebra of complex-valued functions COO(M) ona symplectic
or more generally, on a Poisson manifold M, such that in the first order of the formal parameter
lJ the commutator of the star product yields the Poisson bracket) has been answered positively by
DeWilde and Lecomte [9], Fedosov [11], Omori, Maeda and Yoshioka [22]in the case of a symplectic
phase space as weIl as by Kontsevich [18] in the more general case of a Poisson manifold. Moreover,'
star products have been c1assified up to equivalence in terms of geometrical data of the phase space
by Nest and Tsygan[21], Bertelson, Cahen and Gutt [5]' Weinstein and Xu [25] on symplectic
manifolds and the c1assification on Poisson manifolds is due to Kontsevich [18]. Comparisons
between the different results on c1assification and reviews can be found in articles of Deligne [8],
Gutt and Rawnsley [14, 15]' Neumaier [19] and Dito and Sternheimer [10, 23].

Already at the very beginning of the investigations of deformation quantization various notions
of invariance of star products with respect to Lie group resp. Lie algebra actions were introduced
and discussed by Arnal, Cortet, Molin and Pinczon in [2]. Later on it was Xu who systemati-
cally defined the notion of a quantum moment um mapping for g-invariant star products in the
framework of deformation quantization in [26] that naturally generalizes the concept of the mo-
mentum mapping in Hamiltonian mechanics (cf. [1]) and computed the apriori obstructions for
its existence. Actually the notion of a quantum moment um mapping has proved to be essential
for the formulation of the quantum mechanical analogue of the Marsden- Weinstein reduction in
deformation quantization as it was studied by Fedosov in [13]' where it was shown that in some
sense 'reduction commutes with quantization'. For the application of the BRST quantization in
deformation quantization as it was introduced and discussed by Bordemann, Herbig and Waldmann
in [7] the existence of a quantum momentum mapping also turned out to be a major ingredient
of the construction. For the more special discussion of the example of reduction of star products
for ccpn as it was given by Bordemann, Brischle, Emmrich and Waldmann in [6] and was slightly
generalized by Waldmannin [24] again the use of a quantum momentum mapping the existence of
which can be shown explicitly in this case was the key ingredient of the consideratio~s.

Recently in [17]Hamachi has taken up afresh the question under which preconditions the usual
Fedosov star product admits a quantum momentum mapping and he has given a condition in terms
of parts of the Fedosov derivation used to define the star product which is assumed to be invariant
with respect to a symplectic Lie Group action on M.

In the present paper we want to generalize these results into two directions: Firstly we drop the
assumption of invariance of the star product with respect to a Lie group action and replace it by the
somewhat weaker invariance with respect to the action of a Lie algebra g.Secondly we make the
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eonditions given in [17] more preeise and shöw that assuming that:there is a classical momentum
mapping the quest ion of existenee of a quantum momentum mapping relies on two eohomologieal
eonditions on the formal series n E vZ;R(M)[[v]] used to eonstruet the g-invariant star produet.

Thepaper is organized as follows: In Seetion 2 we eolleet some notations and give a very
short review of Fedosov's eonstruetion. Here we also prove some teehnical details that enable us to
deseribe all derivations of the Fedosov star products in a very eonvenient way whieh turns out to be
very useful for the furt her investigations. In Seetion 3 we eonsider an arbitrary sympleetie veetor
field on M and give neeessary and suffieient eonditions for the Lie derivative with respeet to this
veetor field to be a derivation of the star produet * und er eonsideration. Furthermore we ean also
speeify additional eonditions guaranteeing that this derivation is even quasi-inner. In Seetion 4 we
reeall the definitions of g-invariant star produets, quantum Hamiltonians and quantum momentum
mappings from [26]and apply our result of Seetion 3 to give eriteria for the g-invarianee of a Fedosov
star produet. Finally, supposing that the Lie algebra action is Hamiltonian and the Hamiltonian
is equivariant with respeet to the eoadjoint action of 9 we moreover find eonditions that permit
adecision whether quantum moment um mappings do exist. We eonclude the paper with some
remarks on possible generalizations and furt her investigations.

Conventions: By COO(M), we denote the eomplex-valued smooth funetions and similarly
roo (T*M) stands for the eomplex-valued sIIlpoth one-forms et eetera. Moreover, we use Einstein's
summation eonvention in loeal expressions.

2 Preliminaries

In this seetion we shall briefly reeall the essentials of Fedosov's eonstruetion of star produets on
a sympleetie manifold (M, w). As we assurne the reader to be familiar with this eonstruetion we
shall restrict to the very minimum to introduee our notation (For more details we refer the reader
to [11, 12] and [19, Seet. 2], where we even used the same notation). Defining

(1)

it is obvious that W0A beeomes in a natural way an associative, super-eommutative algebra and
the produet is denoted by I-£(a 0 b) = ab for a, b E W0A (By W0Ak we denote the elements bf
anti-symmetrie degree k and set W := W0Ao.). Besides this pointwise produet the Poisson tensor
A eorresponding to w gives rise to another assoeiative produet 0 on W0Aby

(2)

whieh is adeformation of 1-£. Here is (Y) denotes the symmetrie insertion of a vector field Y E
rOO(TM) and similarly ia(Y) shall be used to denote the anti-symmetrie insertion of a vector field.
We set ad{a)b := [a, b] where the latter denotes the dega-graded super-eommutator with respeet
to o. Denoting the obvious degree-maps by degs' dega and degv = vOv one observes that they
all are derivations with respeet to 1-£but degs and degv fail to be derivations with respeet to o.

Instead Deg := degs + 2degv is a derivation of 0 and henee (W0A, 0) is formally Deg-graded and
the eorresponding degree is referred to as the total degree. Sometimes we write Wk 0A to denote
the elements of.total degree ~ k.

in loeal coordinates we define the differential 8 := (10 dxi)is(8i) whieh satisfies 52 = 0 and is a
super-derivation of o. Moreover, there is a homotopy operator 5-1 satisfying 55-1+ 5-15+ a = id
where a : W0A -t COO(M)[[v)] denotes the projeetion onto the part of symmetrie and anti-
symmetrie degree 0 and 5-1a := k~l (dxi 0 1)ia( 8i)a for degsa = ka', degaa = la with k + l #- 0
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(3)and
1br = \7r - -r 0 r + R + 1Q"90
v

and ö-1a := 0 else. From atorsion free symplectic connecti~n \7 on M we obtain a derivation
\7 := (1 Q"9 dxi)\7 Gi of 0 that satisfies the following identities: [b, \7] = 0, \72 = -~ad(R), where
R .- lW"tRt dxi V dxj iOI dxk 1\ dxl E WQ"9A2 involves the curvature of the connection. Moreover.- 4 1, jkl '<Y

we have bR = 0 = \7R by the Bianchi identities.
Now remember the following facts which are just restatements of Fedosov's original theorems

in [11, Thm. 3.2, 3.3] resp. [12, Thm. 5.3.3]: .
Forall f2E vZ~R(M)[[v]] and all 8 E W3 with 0"(8) ~ 0 there exists a unique element r E W2Q"9A1

such that

Moreover r satisfies the formula

r = {j8+ {j-1 ( \1r - ~r 0 r + R + 10 !1) (4)

from which r can be determined recursively. In this case the Fedosov derivation

1
V := -b + \7 - -ad(r)

v
(5)

is a super-derivation of anti-symmetrie degree 1 and has square zero: '02 = O. Furthermore observe
that the V-cohomology on elements a with positive anti-symmetrie degree is trivial since one has
the following homotopy formula VV-1a + V-1Va = a, where V...c.1a := -b-1 Cd:-[<5-1,~-fad(r)]a)

(cf. [12, Thm. 5.2.5]).
Then for any f E COO(M) [[v]] there exists a unique element 7(f) E ker(V) n W such that

O'(7(f)) = fand 7 : COO(M)[[v]] ~ .ker(V) n W isC[[v]]-linear and referred to as the Fedosov-
Taylor series corresponding to V. In addition 7(f) can be obtained recursively for f E COO(M)
from

r(f) = f + {j-1 (\1r(f) - ~ad(r)r(f)) . (6)

Using V-I one can also write 7(f) = f - '0-1(1 Q"9df). Since V as constructed above is a o-super-
derivation ker(V) n W is a o-sub-algebra and a new associative product * for COO(M)[[v]], which
turns out to be a star product, is defined by pull-back of 0 via 7.

Observe that in (3) we allowed for an arbitrary element 8 E W with 0'(8) = 0 that contains no
terms of total degree lower than 3, as normalization condition for r, i.e. b-1r = 8 instead of the .
usual equation b-1r = O. In the following we shall refer to the associative product * defined above
as the Fedosov star product (corresponding to (\7,0,8)).

Now we shall give a very convenient description of all derivations of the star product * that
will prove very useful for our furt her considerations. To this end we consider appropriate fibrewise
quasi-inner derivations of the shape

1
Dh = --ad(h), (7)

v

where h E Wand without loss of generality we assume O"(h) = O. Our aim is to define C[[v]]-linear
derivations of * by COO(M) [[v]] :1 fM O'(Dh7(f)) but for an arbitrary element h E W with O'(h) = 0
this mapping fails to be a derivation as Dh does not map elements of ker(V) nW to elements of
ker(V) n W. In order to achieve this one must have that V and Dh super-commute. As V is a
C[[v]]-linear o-super-derivation we obviously have

1
[V, Dh] = --ad(Vh)

v
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and henee obviously Vh must be eentral, Le:,'Dh hasto be ofthe shape 10A with A E rOO(T*M)[[v]]
to have [V, Dh] = O. From V2 = 0 we get that the neeessary eondition for the solvability of the
equation Vh = 1 0 A is the closedness of A sinee V(l 0 A} = 1 0 dA. But as the V-eohomology
is trivial on elements with positive anti-symmetrie degree this eondition is also suffieient for the
solvability of the equation Vh = 10A and we get the following statement.

Lemma 2.1 i.) For all formal series A E rOO(T*M)[[v]] of closed one-forms on M there is a
uniquely'determined element hA E W such that VhA = 1 0 A and a(hA) = O. Moreover hA
is explicitly given by

hA = V-1(10 A).

ii.) For all A E ZlR(M)[[v]] the mapping DA : COO(M)[[v]] -t COO(M)[[v]]' where

DAi := a(D hA TU)) = a ( - ~ ad( hA)T(f) )

(8)

(9)

for f E Coo (M) [[v]] defines a C[[v]]-linear derivation of * and hence this construction yields
a mapping ZlR(M)[[v]] 3A 1-+ DA E Derq[lIlJ (COO(M)[[v]], *). '

. PROOF: The fact that hA = V-1(1 0 A) satisfies VhA = 10 A is obvious from the homotopy formula for
V arid the closedness of A. In addition we have a(hA) = 0 since V-I raises the symmetrie degree at least
by 1. For the uniqueness of hA let hA be another solution of the equations above, then we obviously have
V(hA - hA) = 0 and hence hA - hA = 7(<p) for some <pE C=(M)([v]]. Applying a to this equation one
gets <p= 0, since a(hA) = a(hA) = 0 and a(7(<p)) = <p, and hence hA = hA proving that hA is uniquely
determined by the above equations. For the proof of iL) we just observe that the equation [V, DhA] = 0 which
is fulfilled according to L) implies that DhA 7(f) = 7(DAf) for all f E C=(M)[[v]]. Using this equation and
the obvious fact that DhA is a derivation of 0 it is straightforward to see using the very definition of * that
DA as defined above is a derivation of *. The C{[v]]-linearity of DA is also evident from the C([v]]-linearity
cl 7. 0

Furthermore we now are in the position to show that one even obtains all C[[v]]-linear derivations
of * by varying A in the derivations DA eonstrueted above.

Proposition 2.2 The mapping

defined in Lemma 2.1 is a bijection. Moreover, Ddf is a quasi-inner derivation for all f 6
COO(M)[[v]]' i.e. Ddf = ~ad*(f) and the induced mapping [A] M [DA] from H1R(M)[[v]] ~
ZlR(M)[[v]]/ BlR(M)[[v]] to Derq[lI]] (COO(M)[[v]], *}/Dert[[lI]](COO(M) [[v]],*r the space of C[[v]]-lin-
ear derivations 0/ * modulothe quasi-inner derivations, also is bijective.

PROOF: First we prove the injectivity of the mapping A ~,DA. To this end let DA = DA' then we
get from DhA 7(f) ::::7(0 Af) and from the analogous equation for A' that ad(hA - hA' )7(f) = 0 for all
f E C=(M)[[v]] and hence hA - hA' must be central (since it commutes with all Fedosov-Taylor series), Le.
we have hA -'- hA' == gA,A' E C=(M) ([v]]. But with a(hA) = a(hA,) = 0 this implies gA,A' = 0 and hence
hA = hA, such that we get 1 0 A = VhA ::::VhA' = 10 A' proving the injectivity. For the surjectivity we
start with an arbitrary derivation 0 of * and want to find closed one-forms Ai such thatO = E:o ViOAi
inductively. Assurne that we have found such one-forms for 0 :s; i :s; k- 1 such that D' = D - E7~~ViOAi
which obviously is again a derivation of * is of the shape 0' = E:k l} D~.The kth order in v of the equation
O'(f*g) = (D'f)*g+f*(D'g) for f,9 E C=(M) yields that D~ is avectorfield Xk E rOÖ(TM). Considering
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the anti-symmetrie part of 0' (f * g) = (0' f) * 9 + f * (0'g). at order k + 1 of v we get that this vector Held is
symplectic, Le. L-XkW = 0 and because of the Cartan formula Ak := -iXkw defines a closed one-form on M.
Considering the derivation 0A

k
it is a straightforward computation using the explicit construction above to

show that DAkf= Xk(f) + O(v) for all f E COO(M). But then 0' - vkDAk is again a derivation of * that
starts in order k + 1 of v and hence the surjectivity follows by induction. The fact that Ddf = lad* (f) for. v

all f E Cbo (M) [[v]] is obvious from the observation that 7(f) = f - V-l(10 clf) and the obvious fact that
ad(f) = O. From the above, the well-definedness of the mapping [A]H [DA] follows and the bijecti~ity is a
direct consequence of the bijectivity of the mapping A H DA. 0

Remark 2.3 Actually it is well-known that for an arbitrary star product * on a symplectic manifold
the space of C[[v]]-linear derivations is in bijection with Z!R(M)[[v]] and that the quotient space of
these derivations modulo the quasi-inner derivations is in bijection with H1R(M)[[v]] (cf. [5, Thm.
4.2), observe that the proof given above is just an adaption of the idea of the general proof to our
special situation) but the remarkable thing about Fedosov star products is that these bijections can
be explicitly expressed in terms of 1) resp. 1)-1 in a very lucid way which will be useful in the
following.

To conclude this section we shall remove some redundancy in the description of the star products* by ('V, 0, s). This will ease the more detailed analysis in the following section. To this end we shall
recall some well-known facts about symplectic torsion free connections on (M, w). Given two such
connections say 'V and 'V' it is obvious that S\1-\1

I

(X, Y) := 'VxY - 'V~Y where X, Y ErOO(TM)
de£lnes a symmetric tensor £leId S\1- \11E roo (V2 T* M 0 TM) on M. De£lning a \1- \11(X, Y,Z) :=
w(S\1-\11 (X, Y), Z) it iseasy to see that a\1-\11

E roo(v3 T*M) is a totally symmetric tensor £leId.
Vice versa given an arbitrary element a E roo (V3 T*M) and a symplectic torsion free connection
'\l and de£lJ;lingSeTE roo(v2 T* M 0 TM) by a(X, Y, Z) = w(SeT(X, Y), Z) then 'VeT de£lned by
\7xY := 'V X Y - SeT(X, Y) again is a symplectic torsion free connection and all such connections
can be obtained this way by varying a. Using these relations we shall compare the corresponding
mappings \7 and \7' onW0A in the following lemma.

Lemma 2.4 With the notations from above we have

(10)

where T\1-\11
E rOO(v2T* M 0 T'!"M) ~ W0A1 is defined by T\1-\11 (Z, Y; X) := a\1-\11 (X, Y, Z) =

w(S\1-\11 (X, Y),Z).Moreover T\1-\11 satisfies the equations

and (11)

where R = ~WitRjkldxi V dxj 0 dxk A dxl and R' = !witR'~kldxi V dxj 0 dxk A dxl denote the
corresponding elements of W0A 2 that are built from the curvature tensors of \7 and 'V'.

PROOF: The proof of (10) is a straightforward computation using the very definitions from above. The first
identity in (11) directly follows from (10) and [8,\7] = [8,\7'] = O. The other identities in (11) are also easily
obtained squaring equation (10). 0

Now we are in the position to compare two Fedosov derivat ions 1) and 1)' resp. the induced
star products * and *' obtained from (\7,0, s) and ('V', 0', s').
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Proposition 2.5 The Fedosov derivations;,V and V' coincide if and only ifT\l-\l' - r + r' = 1 (8) {)
where {) E vrOO(T* M)[(v]] which is equivalent to

a\l-\l'(8)l-s+s'={)(8)l and O-O'=d{). (12)

PROOF: Writing down the definitions of 7) and 7)' using equation (10) the first equivalence is obvious since
TV-v' - r + r' is central in (W0A,0) if and only if 7)= 7)'. For the proof of the second equivalence first
assurne that we have TV-v' - r + r' = 1 0 {).Applying 8-1 to this equation and using the normalization
condition on rand r' we obtain the first equation in (12) since 8-1Tv-v' = aV-v' 01. In order to obtain
the second equation in (12) we apply 8 to TV-v' - r + r' = 10 {) and a straightforward computation using
the equations for rand r' together with the identities from (11) yields the stated result. To prove that the
converse is also true assurne that the equations in (12) are satisfied and define B := r - r' - TV - v' + 10 {) E
W20A1. Then again a straightforward computation yields that B satisfies 7)B = _lB 0 Band 8-1B = 0v

such that the homotopy formula for 8 together with a(B) = 0 implies thatB is the unique fixed point of
the mapping W20A1 3 a ~ 8-1 (Va - ~ad(r)a + ~a 0 a) E W20A1. But 0 trivially is a fixed point of
this mapping and hence uniqueness implies that B = 0 proving the other direction of the second stated

equivalence. 0
As an important direct consequence of this proposition we get:

Deduction 2.6 For every Fedosov star product * obtained from ('\7,0, s) with s E W3 there is
a connection '\7', a formal series 0' of closed two-forms and an element s' E W4 without terms
of symmetrie degree 1 such that the star product obtained from ('\7', 0' ,s') coincides with *, and
hence we may without loss of generality restriet to such normalization conditions when varying the
connection and the formal series of closed two-forms arbitrarily,

PROOF: We write s = s' + a 0 1 - {)0 1 and the preceding proposition states that 7) coincides with
7)' (andhence the corresponding star products coincide) where 7)' is obtained from n' = n - d{) and

V' = V - ~ad(8(a01)). 0

3 Symplectic Vector Fields as Derivations of *
Throughout this and the following section let * denote the Fedosov star product obtained from
('\7,0, s) as in Seetion 2 where in view of Deduction 2.6 we may assume that S E W4 contains nö
part of symmetrie degree 1. Furthermore X E roo (TM) shall always denote a symplectic vector
field on (M,w) and the space of all these vector fields shall be denoted by r~mp(TM) := {Y E
rOO(T M) I Lyw = O}. It seems to be folklore and actually is not very hard to prove that the
conditions [LX, '\7] = 0, LXO = 0 = LXS are sufficient to guarantee that the Lie derivative with
respect to X is a derivation of *. Besides providing a very simple proof of this fact, our aim in this
section is to prove that the converse is also true, Le. the conditions given above are also necessary
to have that X defines a derivation of *. Moreover, we find an additional cohomologieal condition
involving w, 0 and X that is equivalent to LX being even a quasi-inner derivation.

As an important toolwe need the deformed Cartan formula (cf. [19, Appx. Al) that relates the
Lie derivative with respect to a symplectic vector field X with the Fedosov derivation V.

Lemma 3.1 For all X E r~mp(T M) the Lie derivative LX can be expressed in the following
manner:

LX = Dia(X) + ia(X)D - ~ad (ex 01 + ~Dex 0 1 - ia(X)r) , (13)

where D := dxiV '\7 Oi denotes the operator ofsymmetric covariant derivation and the closed one-
form 0x is defined by 0x := ixw.
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PROOF: Sin~e the Lie derivative is a loeal operator it suffiees to prove the above identity over any eontraetible
open subset U of M. But as X is symplectie it is loeally Hamiltonian, Le. over U thereis a function
f E COO(U) sueh that Xli; = Xf resp. df = 0xlu. For Hamiltonian vector fields the Cartan formula
as above was proved in [19, Prop. 5] and henee equation (13) is valid for all sympleetie veetor fields
XE poo (TM). 0

symp

As an immediate consequence of the preceding lemma we have:

Lemma 3.2 For X E r~mp(TM) the Lie derivative LX is a derivation with respect to o. In
addition we have [8, LX] = [8-1, LX] = o.
PROOF: The first statement of the lemma is obvious from equation (13) and the eommutation relations follow
from the fact that .cx is eompatible with eontractions and preserves the symmetrie and the anti-symmetrie
degree. 0

After these rat her technical preparations we get:

Propo,sition 3.3 Let X E r~inp(TM) then LX is a derivation of * if and only if [LX, V] = 0
which is equivalent to the existence of a formal series Ax E roo (T*M) [[v]] of closed one-forms such
that V (Bx 01 + ~DBx 01 - ia(X)r) = 10 Ax.
PROOF: First let us assurne that [.cx, V] = 0 then the obvious equation .cx 0 (J = (J o.cx implies that
.cx7(f) = 7(.cxf) for all f E COO(M)[[v]]. But with this equation and the faet that.cx is a deriva-
tion of 0 it is straightforward to prove that .cx is a derivation of *. Assuming that .cx is a deriva-
tion of * Proposition 2.2 implies that there is a formal series Ax of closed one-forms on M sueh that
.cxf = (J (-tad(V-I(l @AX))7(f)) but on the other hand the deformed Cartan formula yields .cxf =
(J (-tad (Ox @1 + ~DOx @ 1 -,- ia(X)r) 7(f)) and henee V-I(l@Ax)- (Ox @ 1 + ~DOx @ 1 - ia(X)r) has
to be eentral, Le. a formal funetion. Observing that V-I raises the symmetrie degree at least by 1 and that r
eontains rio part of symmetrie degree 0 whieh is due to the special shape of the normalization eondition this
implies V-I(l@Ax) = (ßx @ 1 + ~DOx @_l - ia(X)r). Applying V to this equation and using the homotopy
formula for 1) together with the fact that Ax is closed we get V (ßx @ 1 + ~DOx @ 1 - ia(X)r) = 1 @Ax.
Assumingfinally that this equation is fulfilled, the deformed Cartan formula together with V2 = 0 obviously
implies [.cx, 1)] = 0 sinee 1 @Ax is eentral and henee the proposition is proved. 0

We shall now go on by analysing the condition

where dAx = 0 (14)

in more detail in order to find out whether it gives rise to conditions on (\7, f2, s) and X.

Lemma 3.4 For all symplectic vector fields X E r~mp(T M) we have

PROOF: The proof of this equation is a straightforward eomputation using the equation that is solved by r
and the deformed Cartan formula (13) anee again. 0

Next we shall need some detailed formulas that describe [\7, LX] in order to simplify the result
of the above Lemma. The proofs of the following two lemmas are just slight variations of the proofs
of [19, Lemma 3 and Lemma 4].

Lemma 3.5 For all X E r~mp(TM) the mapping [V',LX] enjoys the following properiies:
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i.) In loeal coordinates one has

wh~re the tensor field Sx E rOO(T*M 0 T*M 0 TM) is defined by ,

Sx(8i,8j) = (L-X\1)Oi8j := L-x\1oJ)j - \loiL-X8j - \l £xoi8j = R(X,8i)8j + \1g~,Oj)X. (17)

ii.) S X as defined above is symmetrie, i.e. S X E roo (V2 T*M 0 TM).

iii.) For all U, V, W E rOO(TM) we have w(W, Sx(U, V)) = -w(Sx(U,W), V).

Now the tensor field Sx naturally gives rise to an element Tx E roo(v2 T* M 0 T* M) of W0A1

of symmetrie degree 2 and anti-symmetrie degree 1 by

Tx(W, U; V) := w(W, Sx(V, U))

and we have:

Lemma 3.6 The tensor field Tx as defined in (18) satisfies the following equations:

i.) tad(Tx) = [\1, L-x],

ii.) Tx = ia(X)R - \1 (!nBx (1),

iii.) 6Tx = 0 and \1Tx = L-XR.

(18)

From the preeeding lemma we find that the result of Lemma 3.4 simplifies to

V (Ox 01 + ~DOx 01- ia(X)r) = -100x - Tx - £xr -.10 ix!l. (19)

Finally we have to find equ"ations that determine L-xr in order to analyse equation (14).

Lemma 3.7 Let X denote a symplectie vector field then L-xr satisfies the equations

1 . 1 1
6L-xr = \1L-Xr - -ad(r)L-xr - -ad(Tx)r + L-xR + 10 dixn and 6- L-Xr = L-XS (20)

ZJ ZJ

from whieh L-xr is uniquely determined and ean be eomputed reeursively front

£xr = o£xs + 0-1 ( 'i7£xr - ~ad(r)£xr - ~ad(Tx)r + £xR + 10 dix!l) .

PROOF: For the proof of (20) one just has to apply £x to the equations that determiner and to use
the commutation relations of the involved mappings. From these equations it is straightforward to find
the recursion formula for £x using the homotopy formula for 8. Using statement iii.) of Lemma 3.6 the
argument for the uniqueness of the solution of these equationsis completely analogous to the one used to
prove"the uniqueness of r' and hence we leave it to the reader. 0

After all these preparations we are in the position to formulate the main results of this seetion.

Theorem 3.8 Let X be a sympleetie veetot field and let * be the Fedosov star produet eorresponding
to (\1, n, s), where s E W4 eontains no part of symmetrie degree 1. Then, L-x is a derivation of *
if and only if Tx = 0, L-xn = 0 and L-XS = 0, i.e. if and only ifX is affine with respect to \1 and
sand n are invariant with respect to X.
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.LXS= -(ßx + Ax + ixO) 01- 8-1Tx.

PROOF: First let Tx = 0 = .LxO = .LXS then we have .LxR = \lTx = 0 and dixO = 0 and hence
.Lxr = 8-1 (\l.LXr - ~ad(r).Lxr). But this implies .Lxr = 0 and then obviously [V,.Lx] = ~ad(Tx +
.LXr) = 0 such that Proposition 3.3 implies that .Lx is a derivation of *. To prove the converse we again
use Proposition 3.3 which says that in case .Lx is a derivation of * there is a formal series Ax of closed
one-forms on M such that V (ßx 01 + ~Dßx 01 - ia(X)r) = 10 Ax. Together with equation (19) this
yields .Lxr = -(10 (ßx + Ax + ixO) + Tx). Applying 8-1 to this equation and using the second equation
in (20) we get

Now sand hence .LXS is in W4 and has no part of symmetrie degree 1 such that this equation implies
.LXS= 0, ßx + Ax + ixO = 0 and 8-1Tx = O. Since ßx and Ax are closed the second of these equations
implies 0 = dixO = .LxO and using the homotopy formula for8 together with 8Tx = 0 the last equation
'Jields Tx = Ö which is equivalent t? X being affine with respect to \l according to the Lemmas 3.5 and 3.6.
Finally one can insert the above expression for .Lxr into the first equation in (20) which turns out to be
satisfied identically, which is just acheck for consistency. 0

Finally we can give an additional condition for LX to be even a quasi-inner derivation of *
which is originally due to Gutt [16].

Proposition 3.9 Let X be a symplectic vector field such that LX is a derivation of * then LX 'lS

even quasi-inner if and only if there is a formal function f E COO(M) [[v]] such that

df = ()x + ixn = ix(w + n) (21)

and then LX = LXfo
f+ E vCOO(M)[[v]].

-~ad*(f), where we have written f = fa + f+ with fa E COO(M) and

PROOF: From equation (13) it is obvious that .Lx is quasi-inner if and only if there is a formal function
I E CCXl(M)[[v]] such that ,(I) = 1+ßx 01 + ~Dßx 0 1- ia(X)r but using equation (19) together with
Tx = 0, .Lxr = 0 and VI = 1 0 dl this is equivalent to (21). In fact the necessary condition for the
solvability of this equation is fulfilled since ixO is closed according to Theorem 3.8 and ßx is closed as X
is symplectic. Moreover, observe that the zeroth order in v of (21) just means that X is Hamiltonian with
Hamiltonian function 10 and hence the second statement of the Proposition is immediate. 0

4 g-invariant Star Products * and Quantum Momentum Mappings

In this section we shall use the results of Theorem 3.8 to find necessary and sufficient conditions for
the star product * to be invariant with respect to a Lie algebra action. Furthermore Proposition
3.9 gives criteria for the existence of a quantum Hamiltonian and with some little more effort we
shall find a last condition which is necessary and sufficient for this quantum Hamiltonian to define
a quantum momentum mapping for *.

First let us recall some definitions from [26]. Let us consider a finite dimensional real or complex
Lie algebra 9 and let X. : 9 -7 r~mp (TM) : ~M X~ denote a Lie algebra anti-homomorphism, i.e.
[X~, X7]] = -X[~,7]] for all ~, 'TJ E g. Then obviously {}(~)f := -Lxf,.f defines a Lie algebra action of
9 on COO(M) that naturally extends to a Lie algebra action on COO(M)[[v]].

Definition 4.1 With the notations from above a star product * is called g-invariant in case e(~)
is aderivation of * for all~ E g.

Prom Theorem 3.8 we obviously get:
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Deduction 4.2 The Fedosov star product * constructed from (V, 0, s), .where s E W4 contains
no part of symmetrie degree 1, is g-invariant if and only if Xf" is affine with respect to V for alt
~ E g, i.e. [\7,.cx€] = O\:l~ E g and 0 and s are invariant with respect to Xf" for all ~ E g, i.e.
dix€O = .cx€O = 0 = .cx€s \:I~ E g. .

Let us introduce some notation: Considering some complex vector space V endowed with a
representation 7r : g --+ Hom(V, V) of the Lie algebra g in V we denote the space of V-valued
k-multilinear alternating forms on g by Ck(g, V) and the corresponding Chevalley-Eilenberg differ-
ential shall be denoted by c57l' : C.(g, V) --+ C.+1(g, V). Moreover the spaces of the corresponding
cocycles and coboundaries resp. the corresponding cohomology spaces shall be denoted by Z; (g, V)

k k 'and B7l'(g, V) resp. H7l' (g, V).
Now the Lie algebra action (} is called HaipUtonian if and only if there is an element Ja E

C1(g, COO(M)) such that XJo(f,,) = Xe for all ~ E g, i.e. ix€w = dJa(~). In this case (}(~).= {Ja(~), .}
and Ja is said to be a Hamiltonian for the action(} (For applications in physics where typically
g is the real Lie algebra corresponding to a Lie group that acts on M by symplectomorphisms
and where the generating vector fields Xf" arereal-valued the Hamiltonian Ja is assumed to be
real-valued, too.). In case Ja is equivariant with respect to the coadjoint representation of g, i.e.
{Ja(~), Ja(7])} = Ja([~,7]]) for all ~,7] E gone calls Ja a classical moment um mapping.

(22)1(}(~)= -ad*(J(~)) for alt ~ E g.
v

J is called a quantum' momentum mapping if in addition

Definition 4.3 Let * be ag-invariant star product, then J = Ja + J+ E C1(g, COO(M))[[v]] with
Ja E C1(g, COO(M)) and J+ E vC1(g, COO(M) )[[v]] is called a quantum Hamiltonian for the action
(} in case

1
- (J(~) * J(7]) - J(7]) * J(~)) = J([~,7]])
v

(23)

for alt ~, 7] E g.

Observe that the zeroth order in v of (22) is equivalent to Ja beingaHamiltonian for (}and
that the zeroth order in v of (23) just means equivariance of this classical Hamiltonian with respect
to the coadjoint action of g or 'equivalently that Ja is a classical moment um mapping. For Fedosov
star products the fact that Ja has to be a classical Hamiltonian for (}can also be seen directly from
Proposition 3.9 as we have the following:

Deduction 4.4 Ag-invariant Fedosov star product for (M,w) obtained from (:\7,0, s) admits a
quantum Hamiltonian if and only if there is an element J E C1(g,COO(M))[[v]] such that

dJ(~) = ix€ (w + 0) \:I~ E g ~ [ix€ (w + 0)] = [0] \:I~ E g

and from this equation J is determined (in case it exists) up toelements in Cl (g, C)[[v]].

(24)

Remark 4.5 Observe that the condition HlR (M) = 0 is obviously sufficient for the existence of
a quantum Hamiltonian for an arbitrary g-invariant star product * since then any C[[v]] -linear
derivation of * is quasi-inner. But for g-invariant Fedosov star products *' the condition for the
existence of a qua'ntum Hamiltonian is much weaker and more precise since only the cohomology
classes of very special closed one-forms have to vanish and not the complete cohomology.

Now recall the definition öf a strongly invariant star product from [2]:
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Definition 4.6 Let Jo be a classical momentum mapping for the action (2. Then ag-invariant star
product is called strongly invariant if and only if J = Jo defines a quantum Hamiltonian for this
action.

Observe that thenotion of stronginvariance does not depend on the chosen classical momentum
mapping since every classical moment um mapping is of the form Jo + b with b E ZJ (g, C) and hence
every classical momentum mapping defines a quantum Hamiltonian for (2 in case Jo does. Moreover,
in the case of a strongly invariant star product * every classical momentum mapping Jo obviously
yields a quantum momentum mapping J = Jo since tad*(Jo(~))Jo(1]) = {Jo(~),JO(77)} = JO([~,77])
for all ~, 77 E g. As an immediate corollary of Deduction 4.4 we have:

Corollary 4.7 Let Jo be a classical momentum mapping for the action {}. Then ag-invariant
Fedosov star product * obtained from (\7, n, s) is strongly invariant if and only if

(25)

In this case every classical momentum mapping defines a quantum momentum mapping for *.

PROOF: According to Deduction 4.4 a classical moment um mapping Jo defines a quantum Hamiltonian for
* if and only if dJo(~) = iXt; (w + 0) for all ~E 9 but because of dJo(~) = iXt;w this is equivalent to equation
(25). 0

Returning to the general case our next aim is to give a furt her condition. involving w, n and
X. which in addition guarantees that a quantum Hamiltonian J is in fact a quantum momentum
mapping.

Proposition 4.8 Let J be a quantum Hamiltonian for the Fedosov star product * then A E
02(g, COO(M)) [[v]] defined by

1
A(~, 1]) := - (J(~) * J(77) - J(77) * J(~)) - J([~, 77]) (26)v .

lies in 02(g, C)[[v]] and is an element of Z5(9, C)[[v]] which is explicitly given by

(27)

and the cohomology class [A]E H5(9, C)[[v]] does not depend onthe choice of J. Moreover quantum
momentum mappings exist if and only if [A]= [0] E H5(9, C)[[v]] and for every a E 01(g, C)[[v]]
such that c50a = A the element Ja := J - a E 01 (g, Coo (M) )[[v]] is a quantum momentum map-
ping for *. Finally, the quantum momentum mapping (if it exists) is unique up to elements in
ZJ(g, C)[[v]]' and hence we have uniqueness if and only if HJ(g, C) = o.
PROOF: In fact all the statements of the proposition except for the explicit shape of A hold for any g-invariant
star product * according to [26, Prop. 6.3] and are straightforward to prove. It thus remains to prove (27)
but this follows from the following computation using equation (24):

A(~, 77) + J([~, 77])

o
Again, for Fedosov star products the second condition for the existence of a quantum momentum

mapping can be formulated more precisely than in the general case since the cocycle A whose
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cohomology dass has to vanish to get a quantum momentum mappi'ng can be expressed explicitly
in terms of w, n and X.. Obviously, supposing the existence of a dassical Hamiltonian for g the
zeroth order of this condition is equivalent to the existence of adassical momentum mapping.

Let us consider the important example of a semi-simple Lie algebra 9 in more detail:

Example 4.9 In case 9 is semi-simple we have the following properties: [g, g] = g(::::} HJ (g, C) = 0)
and H(5(g, C) = O. But then [g, g] = 9 implies writing ~ = L:kEI[((k), 1](k)] (the sum ranges over a
jinite index set I) with ((k), 1](k) E 9 and using the invariance of w + n withrespect to X(k) and
X'I7(k) that

iXe (w + n) = - L i[X(k) ,X
7I
(k)] (w + n)

kEI

and hence for all ~ E 9 there is a J(~) E COO(M)[[v]] such that dJ(~) = iXe(w + n). Moreover, one
can achieve that J E C1(g, COO(M))[[v]] implying that J dejines a quantum Hamiltonian for * (e.g.
fix a basis {ei}1~i~dim(g) of g, write ei = I:kE1i [dk), 1];k)], dejine J( ei) :=L:kE1i (w+n) (Xdk), X'I7;k))
such that dJ(ei) = ixe. (w + n) holds according to the above computation and extend J to 9 by
linearity yielding J E C1(g,COO(M))[[v]]with dJ(~) = ixe(w + n)''i~ E g.). This observation
together with the statements of Proposition 4.8 and HJ(g, C) = H(5(g, C) = 0 implies that in this
case there is a unique quantum momentum mapping for every g-invariant Fedosov star product.

Returning to the case of an arbitrary Lie algebra 9 we also have the following:

Corollary 4.10 Let * be ag-invariant Fedosov star product and assume that there is a classical
momentum mapping Jo for the action g, then a quantum momentum mapping J exists if and only
if there is an element J+ E vC1(g, COO(M))[[v]] such that

(28)

and these equationsdetermine J+ up to elements of vZJ(g, C)[[v]].

PROOF: Assuming the existence of a classical momentum mapping it' is obvious that (24) and the equation
A(~, 1]) = 0 for all ~, 1] E 9 reduce to ixJ! = dJ+(~) and J+([~, 1]]) = O(Xe, X11) and it is straightforward
to see that these two equations are equivalent to (28). The statement about the ambiguity of J+ is obvious
from Proposition 4.8. 0

Observe that the condition for the existence of a quantum momentum mapping for g-invariant
Fedosov star products given in theabove corollary does not depend on the chosen dassical momen-
turn mapping but only on n and X.. Moreover, our result shows that the answer to the question
whether existence of a dassical momentum mapping implies the existence ofa quantum momentum
mapping posed in [26] in general is no if one allows for star products whose characteristic dass is
different from' ~[w] since the conditions above involve the two-form n that determines this dass
(cf. [19]) and thathas to be different from zero in this case. One can even construct very simple
examples where n is even exact and hence the characteristic dass is equal to ~[w] but nevertheless
there exists no quantummomentum mapping.
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Outlook andopen Problems

Let us condude with a few remarks on our results and some possible generalizations and questions
that could be studied in the future:

i.) It should be possible to adapt our investigations to the case of star products of Wick type
on Semi-Kähler manifolds by imposing additional conditions on the compatibility of the Lie
algebra action with the complex structure and due to the results of [20] such investigations
would give a complete answer for all such star products. These investigations will be subject
of a future project.

ii.) A second possibility for generalizations could be to weaken the conditions imposed on a
quantum moment um mapping and to drop the condition that ~ad*(J(~)) should equal the
Lie derivative with respect to - Xf. but tö stick to the condition of quantum covariance
(23) (which is reasonable since this notion behaves properly with respect to equivalence
transformations of star products, which is not the case for the not ion of quantum momentum
mappings considered in this paper) and to demand that ~ad*(J(~)) = -£x~ + O(v) is merely
adeformation of the classical Lie algebra action {J. Actually our results that establish a
strong relation between the characteristic dass of the Fedosov star product and the quest ion
of existence of a quantum momentum mapping suggest that such a relation should also exist
in general. Maybe thefact that any star product is equivalent to a Fedosov star product
together with the results of the present paper can be used to obtain' results in this direction.
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