Interpolation mit C^2 -Supersplines vom Grad ≥ 7 auf Triangulierungen

Gero Hecklin

Nr. 272/2003

Interpolation mit C^2 -Supersplines vom Grad ≥ 7 auf Triangulierungen

Gero Hecklin

Institut für Mathematik, Universität Mannheim 68131 Mannheim, April 2003

Zusammenfassung

Wir entwickeln eine Methode zur Interpolation mit C^2 -Supersplines vom Grad $q \geq 7$ auf beliebigen Triangulierungen Δ . Für q = 7 ist dabei in speziellen, sehr seltenen Konstellationen von Kanten eine geringfügige Modifikation von Δ notwendig. Unter Berücksichtigung von Semisingularitäten bestimmen wir zunächst mit Bézier-Bernstein-Techniken die Dimension von $S_q^{2,3}(\Delta)$ für $q \geq 7$. Darauf basierend konstruieren wir Lagrange- und Hermite-Interpolationsmengen für diese Splineräume. Hermite-Interpolation tritt hierbei als Grenzfall der Lagrange-Interpolation auf. Die interpolierenden Splines werden effizient durch schrittweise Lösung kleiner linearer Gleichungssysteme berechnet.

AMS Subject Classification: 65D05, 65D07, 41A63, 41A05

Keywords: Bivariate Splines, Triangulierungen, Bézier-Bernstein-Techniken, Lagrange-Interpolation, Hermite-Interpolation, Minimal bestimmende Mengen.

1. Einleitung

In dieser Arbeit betrachten wir den Raum der bivariaten C^r -Splines vom Grad q mit Superdifferenzierbarkeit θ hinsichtlich Triangulierungen Δ eines polygonalen Grundgebiets $\Omega \subset \mathbb{R}^2$, gegeben durch

$$\mathcal{S}_{a}^{r,\theta}(\Delta) = \{ s \in C^{r}(\Omega) : s_{|_{\mathcal{T}}} \in \mathcal{P}_{q}, \ T \in \Delta \text{ und } s \in C^{\theta}(v), \ v \text{ Eckpunkt von } \Delta \}.$$

Dabei ist $\mathcal{P}_q = span\{x^i y^j : i, j \geq 0, i+j \leq q\}$ der Raum der bivariaten Polynome vom totalen Grad q und $C^r(\Omega)$ die Menge aller r mal differenzierbaren Funktionen auf Ω . Grundlegende Probleme in der Theorie der bivariaten Splineinterpolation sind die Bestimmung der Dimension von $\mathcal{S}_q^{r,\theta}(\Delta)$ und die Konstruktion von Interpolationsmengen für diese Splineräume. Eine Menge $L = \{z_1, ..., z_m\}$, wobei *m* die Dimension von $\mathcal{S}_q^{r,\theta}(\Delta)$ ist, heißt Lagrange-Interpolationsmenge für den Splineraum $\mathcal{S}_q^{r,\theta}(\Delta)$, falls zu jeder Funktion $f \in C(\Omega)$ genau ein Spline $s \in \mathcal{S}_q^{r,\theta}(\Delta)$ mit

$$s(z_i) = f(z_i), \qquad i = 1, ..., m,$$

existiert. Werden neben Funktionswerten auch partielle Ableitungen einer genügend oft differenzierbaren Funktion f interpoliert, und ist die Gesamtanzahl der Bedingungen gleich m, so sprechen wir von Hermite-Interpolation.

In der Literatur finden sich zahlreiche Arbeiten über Interpolation mit bivariate Splines von hohem Polynomgrad q relativ zur Differenzierbarkeitsordnung r. Morgan und Scott [21] bestimmten auf beliebigen Triangulierungen Δ die Dimension und Hermite-Interpolationsmengen für die Splineräume $S_q^1(\Delta)$, $q \geq 5$. Diese Ergebnisse wurden von Alfeld, Piper und Schumaker [2], basierend auf Resultaten von Alfeld und Schumaker [3], für C^r -Splines vom Grad $q \geq 4r + 1$ verallgemeinert. Hong [15] untersuchte Splineräume vom Grad $q \geq 3r + 2$ und berechnete deren Dimension für beliebige Triangulierungen. Dieses Resultat wurde von Ibrahim und Schumaker [16] für Supersplineräume verallgemeinert. Davydov, Nürnberger und Zeilfelder [10] entwickelten einen Algorithmus zur Konstruktion von lokalen Hermite-Interpolationsmengen für diese Räume.

Für niedrigeren Polynomgrad, d.h. q < 3r + 2, führt die Untersuchung bivariater Splines auf komplexe, bisher nicht vollständig gelöste Probleme. Alfeld, Piper und Schumaker [1] bestimmten die Dimension von $\mathcal{S}_4^1(\Delta)$ für beliebige Triangulierungen Δ . Ihre nichtlokalen Argumente der Graphentheorie liefern jedoch i.A. keine Interpolationsmengen für diese Splineräume. Später entwickelte Gao [14] eine Methode zur Hermite-Interpolation mit quartischen C^1 -Splines auf Triangulierungen, bei denen jeder innere Knoten ungeraden Grad besitzt. Davydov und Nürnberger [11] konstruierten, ebenfalls für $\mathcal{S}_4^1(\Delta)$, induktiv Interpolationsmengen auf beliebigen Triangulierungen Δ , bei denen in selten auftretenden Ausnahmefällen einige Dreiecke modifiziert werden. Kürzlich entwickelten Davydov, Nürnberger und Zeilfelder [9] eine Methode zur Lagrange- und Hermite-Interpolation mit kubischen C^{1} -Splines auf Nested Polygon-Triangulierungen, d.h. Triangulierungen ineinander geschachtelter geschlossener Polygonzüge. Aus der Finite Elemente Theorie (vgl. [7,17,18,19,20,29]), bei der jedes Dreieck der betrachteten Triangulierungen unterteilt wird, stammen zahlreiche Methoden der Hermite-Interpolation mit C^1 - und C^2 -Splines von niedrigem Polynomgrad. Über Lagrange-Interpolation mit C^2 -Splines vom Grad ≤ 8 ohne Verfeinerung der Triangulierungen, ist derzeit wenig bekannt. Auf regelmäßigen Rechteckszerlegungen Δ^1 und Δ^2 mit einer bzw. zwei Diagonalen in jedem Rechteck konstruierten Nürnberger und Riessinger [24] für beliebiges q und r Interpolationsmengen für die Splineräume $\mathcal{S}_q^r(\Delta^i), i \in \{1, 2\}.$ Nürnberger und Zeilfelder [26] bestimmten Interpolationsmengen für $\mathcal{S}_q^2(\Delta^2), q \geq 5$ auf unregelmässigen Δ^2 -Triangulierungen. Alfeld und Schumaker [4] untersuchten sogenannte nichtdegenerierte Triangulierungen Δ , d.h. Triangulierungen, in denen weder degenerierten Kanten noch singuläre Knoten auftreten, und gaben Hermite-Interpolationsmengen für die Splineräume $\mathcal{S}^{r}_{3r+1}(\Delta), r \geq 2$ an.

Ziel der vorliegenden Arbeit ist es, eine Methode zur Lagrange-Interpolation mit C^2 -Supersplines vom Grad $q \ge 7$ auf beliebigen Triangulierungen Δ zu entwickeln. In einer Verallgemeinerung der Methode von Davydov und Nürnberger [11] auf C^2 -Splines zerlegen wir dabei zunächst gegebene Triangulierungen Δ in eine Kette von Subtriangulierungen,

in dem wir ausgehend von einem Startdreieck induktiv geeignete Dreiecke von Δ anhängen (s.a. Davydov, Nürnberger und Zeilfelder [9]). Dabei wird für q = 7 in sehr selten vorkommenden Ausnahmefällen die Triangulierung geringfügig modifiziert, indem einige Dreiecke der Triangulierung durch Clough-Tocher-Splits unterteilt werden. Für die Interpolation mit $q \ge 8$ ist keine Modifikation der gegebenen Triangulierung notwendig. Mit Hilfe dieser Zerlegungen konstruieren wir dann induktiv minimal bestimmende Mengen für $\mathcal{S}_{q}^{2,3}(\Delta), q \geq 7$, und bestimmen so unter Verwendung von Bézier-Bernstein-Techniken die Dimension der Splineräume. Hierbei berücksichtigen wir die durch die Zerlegung entstandenen Semisingularitäten, und unterscheiden die beiden Fälle q = 7 und $q \ge 8$. Darauf basierend wählen wir geeignete Punkte bzw. geeignete Interpolationsbedingungen im Startdreieck und induktiv auf den angehängten Dreiecken der Triangulierung, die eine eindeutige Interpolation mit C^2 -Supersplines vom Grad $q \ge 7$ erlauben. Ähnlich wie bei Nürnberger und Riessinger [23], Davydov und Nürnberger [11] und Davydov, Nürnberger und Zeilfelder [9] sind die so erhaltenen Hermite-Interpolationsmengen als Grenzwert der Lagrange-Interpolationsmengen interpretierbar. Die interpolierenden Splines werden effizient durch schrittweise Lösung kleiner linearer Gleichungssysteme berechnet.

Die Arbeit ist wie folgt gegliedert. In Abschnitt 2 erläutern wir einige Grundlagen über bivariate Polynome und Splines, Bézier-Bernstein-Techniken, sowie Lagrange- und Hermite-Interpolation mit Splineräumen. Ein Algorithmus zur geeigneten Zerlegung beliebiger Triangulierungen Δ wird in Abschnitt 3 definiert. In Abschnitt 4 und 5 bestimmen wir die Dimension von $\mathcal{S}_7^{2,3}(\Delta)$ bzw. $\mathcal{S}_q^{2,3}(\Delta)$, $q \geq 8$, und konstruieren Lagrange- und Hermite-Interpolationsmengen für diese Splineräume.

2. Grundlagen

In diesem Kapitel erläutern wir einige Grundlagen der Bézier-Bernstein-Techniken und der Interpolation mit bivariaten Splines, die auf Alfeld, Piper und Schumaker [1], de Boor [6], Farin [13], Nürnberger und Zeilfelder [27], Schumaker [30], u.a. zurückgehen. Wir stellen Triangulierungen Δ des betrachteten polygonalen Gebiets $\Omega \subset \mathbb{R}^2$ vor, darauf definierte stückweise bivariate Polynome und Splines, deren Bézier-Bernstein-Darstellung, Differenzierbarkeitsbedingungen benachbarter Polynome über gemeinsame Kanten von Δ , minimal bestimmende Mengen sowie Lagrange- und Hermite-Interpolation mit Splineräumen.

Definition 2.1:

Sei Ω , eine einfach zusammenhängende, nicht notwendigerweise konvexe, polygonale Teilmenge des \mathbb{R}^2 , zerlegt in Dreiecke $T_1, ..., T_N$, sodass der Durchschnitt zweier verschiedener Dreiecke entweder leer, ein gemeinsamer Eckpunkt oder eine gemeinsame Kante ist. Dann heißt $\Delta = \{T_1, ..., T_N\}$ eine TRIANGULIERUNG VON Ω . Ist $\Delta' \subset \Delta$ eine Triangulierung einer einfach zusammenhängenden Teilmenge $\Omega' \subset \Omega$, so heißt Δ' SUBTRIANGULIERUNG VON Δ . Im Folgenden setzen wir

$V_I(\Delta), V_B(\Delta), V(\Delta)$:	Menge der inneren, der äußeren bzw. aller Knoten,
$E_I(\Delta), E_B(\Delta), E(\Delta)$:	Menge der inneren, der äußeren bzw. aller Kanten,
$N(\Delta)$:	Menge der Dreiecke, und
$\sigma(\Delta)$:	Menge der singulären Knoten

der Triangulierung Δ . Dabei gelten folgende wohlbekannten Beziehungen:

$$\begin{aligned} \#E_B(\Delta) &= \#V_B(\Delta), \\ \#E_I(\Delta) &= 3 \cdot \#V_I(\Delta) + \#V_B(\Delta) - 3, \\ \#N(\Delta) &= 2 \cdot \#V_I(\Delta) + \#V_B(\Delta) - 2. \end{aligned}$$

Eine Kante $e := [v_1, v_2] \in E(\Delta)$ heißt DEGENERIERT IM ENDPUNKT v_1 , falls die beiden benachbarten Kanten im Knoten v_1 gleiche Steigung besitzen. Ein Knoten $v \in V_I(\Delta)$ heißt SINGULÄR, falls es genau vier Kanten mit Endpunkt v gibt, und diese auf zwei Geraden liegen (vgl. Abbildung 1). Liegt $v \in V(\Delta)$ am Rande einer Subtriangulierung Δ' , so heißt v SEMISINGULÄR VOM TYP $i, i \in \{1, 2\}$ bzgl. Δ' , wenn es genau i Kanten mit Endpunkt v in Δ gibt, die nicht in $E(\Delta')$ liegen, und diese in v degeneriert sind.

Abb. 1: In v_1 degenerierte Kante e, singulärer Knoten v.

Für einen Knoten $v \in V(\Delta)$ definiert Grad(v) die Anzahl der Kanten in Δ mit Endpunkt v. Die Subtriangulierung $\Delta_v := \{T \in \Delta \mid v \in T\}$ von Δ , die alle Dreiecke mit Eckpunkt venthält, bezeichnen wir als ZELLE VON v.

Definition 2.2:

Seien $r, q \in \mathbb{N}_0$ mit $0 \leq r < q$ und eine Triangulierung Δ gegeben. Dann heißt

$$\mathcal{S}_{q}^{r}(\Delta) = \{s \in C^{r}(\Delta) : s_{|_{T}} \in \mathcal{P}_{q} \text{ für alle } T \in \Delta\}$$

der Splineraum der r mal differenzierbaren Funktionen vom Grad q. Dabei ist

$$\mathcal{P}_q = span\{x^i y^j : i, j \ge 0, i+j \le q\}$$

der $\binom{q+2}{2}$ dimensionale Raum der BIVARIATEN POLYNOME vom totalen Grad $\leq q$. Für natürliche Zahlen ρ_i , $i = 1, ..., d := \#V(\Delta)$ mit $r \leq \rho_i < q$, i = 1, ..., d und $\theta = (\rho_1, ..., \rho_d)$ definiert

$$\mathcal{S}_q^{r,\theta}(\Delta) = \{ s \in \mathcal{S}_q^r(\Delta) : s \in C^{\rho_i}(v_i), \ i = 1, ..., d \}$$

den SUPERSPLINERAUM VON $\mathcal{S}_{a}^{r}(\Delta)$ vom Grad θ , einen Teilraum von $\mathcal{S}_{a}^{r}(\Delta)$.

Funktionen aus $\mathcal{S}_{q}^{r,\theta}(\Delta)$ sind also stückweise Polynome vom Grad q, die r mal stetig differenzierbar über den Kanten von Δ verknüpft sind, und C^{θ} -Differenzierbarkeit in den Knoten von Δ besitzen.

Für einen Einheitsvektor $d \in \mathbb{R}^2$ und eine genügend oft differenzierbare Funktion f bezeichnen wir mit $f_d(z)$ die partielle Ableitung von f im Punkt z in Richtung d. Sind d_1 und d_2 linear unabhängige Einheitsvektoren, so heißt

$$D^{w}f(z) = \left(f_{d_{1}^{w}}(z), f_{d_{1}^{w-1}d_{2}}(z), ..., f_{d_{1}d_{2}^{w-1}}(z), f_{d_{2}^{w}}(z)\right)$$

der GEORDNETE VEKTOR DER PARTIELLEN ABLEITUNGEN vom Grad w.

Ein grundlegendes Problem der bivariaten Splineinterpolation ist neben der Bestimmung der Dimension von $\mathcal{S}_{q}^{r,\theta}(\Delta)$ die Konstruktion von Interpolationsmengen für diese Splineräume. Eine Menge $L = \{z_1, ..., z_m\}$, wobei *m* die Dimension von $\mathcal{S}_q^{r,\theta}(\Delta)$ ist, heißt Lagrange-Interpolationsmenge für den Splineraum $\mathcal{S}_q^{r,\theta}(\Delta)$, falls zu jeder Funktion $f \in C(\Omega)$ genau ein Spline $s \in \mathcal{S}_{q}^{r,\theta}(\Delta)$ mit

$$s(z_i) = f(z_i), \qquad i = 1, ..., m,$$

existiert. Werden neben Funktionswerten auch partielle Ableitungen einer genügend oft differenzierbaren Funktion f interpoliert, und ist die Gesamtanzahl der Bedingungen gleich m, so sprechen wir von Hermite-Interpolation.

Nach Schumaker [30] existiert für beliebige Triangulierungen Δ eine untere Schranke für die Dimension der Splineräume $\mathcal{S}_{q}^{r}(\Delta)$. Es gilt

$$dim(\mathcal{S}_{q}^{r}(\Delta)) \geq lb_{q}^{r}(\Delta) = \binom{q+2}{2} + \binom{q-r+1}{2} \# E_{I}(\Delta) - \left[\binom{q+2}{2} - \binom{r+2}{2}\right] \# V_{I}(\Delta) + \sum_{i=1}^{\# V_{I}} \sigma_{i}.$$

Dabei ist $\sigma_i = \sum_{j=1}^{d-r} (r+j+1-j \cdot e_i)_+$ und e_i die Anzahl der Kanten der Triangulierung mit Endpunkt v_i , die paarweise verschiedene Steigung besitzen.

Sind zwei Polynome auf benachbarten Dreiecken C^2 -differenzierbar verknüpft, so gibt es für die partiellen Ableitungen eine wichtige Eigenschaft. Seien $e_i = [v, v_i], i = 1, ..., 3$ drei aufeinanderfolgende Kanten im gemeinsamen Endpunkt v mit paarweise verschiedenen Steigungen, α_i für i = 1, ..., 2 der von e_i und e_{i+1} eingeschlossene Winkel sowie d_i für i = 1, ..., 3 ein Einheitsvektor entlang der Kante e_i . Ferner seien für $q \ge 2$ die Polynome $p^{[T_i]} \in \mathcal{P}_q, i = 1, 2$ auf $T_i = \Delta(v, v_i, v_{i+1})$ zweimal stetig differenzierbar über der Kante e_2 verknüpft (vgl. Abbildung 2).

Lemma 2.3: Aus $p_{d_1}^{[T_1]}(v)$, $p_{d_2}^{[T_1]}(v)$ und $p_{d_3}^{[T_2]}(v)$ lassen sich die partiellen Ableitungen $p_{d_1d_2}^{[T_1]}(v)$ und $p_{d_2d_3}^{[T_2]}(v)$ eindeutig berechnen.

Beweis:

Da e_2 in v nichtdegeneriert ist, gilt

$$\sin(lpha_1+lpha_2)p_{d_2^2}^{[T_1]} \ = \ \sin(lpha_1)p_{d_2d_3}^{[T_2]} \ + \ \sin(lpha_2)p_{d_1d_2}^{[T_1]}.$$

Durch nochmaliges anwenden erhalten wir

$$\sin^2(\alpha_1 + \alpha_2)p_{d_2^2}^{[T_1]} = \sin^2(\alpha_1)p_{d_3^2}^{[T_2]} + \sin(\alpha_1)\sin(\alpha_2)p_{d_1d_3}^{[T_1]} + \sin^2(\alpha_2)p_{d_1^2}^{[T_1]}$$

Mit $\sin(\alpha_i) = \sin(2\pi - \alpha_{i+1} + \alpha_{i+2}) = -\sin(\alpha_{i+1} + \alpha_{i+2})$ lösen wir die gemischte partielle Ableitung auf. Es gilt

$$\sin^{2}(\alpha_{1} + \alpha_{2})p_{d_{2}}^{[T_{1}]} = \sin^{2}(\alpha_{1})p_{d_{3}}^{[T_{2}]} + 2\sin(\alpha_{1} + \alpha_{2})\sin(\alpha_{2})p_{d_{1}d_{2}}^{[T_{1}]} - \sin^{2}(\alpha_{2})p_{d_{1}}^{[T_{1}]},$$

$$\sin^{2}(\alpha_{1} + \alpha_{2})p_{d_{2}}^{[T_{1}]} = \sin^{2}(\alpha_{2})p_{d_{1}}^{[T_{1}]} + 2\sin(\alpha_{1} + \alpha_{2})\sin(\alpha_{1})p_{d_{2}d_{3}}^{[T_{2}]} - \sin^{2}(\alpha_{1})p_{d_{3}}^{[T_{2}]}.$$

#

Aus $\alpha_1 + \alpha_2 \in (0, 2\pi) \setminus \{\pi\}$ folgt die Behauptung.

Abb. 2: Die gemischten Ableitungen ○ ergeben sich aus den Ableitungen ●.

Neben den kartesischen Koordinaten gibt es im \mathbb{R}^2 noch eine weitere Darstellungsweise, die sogenannten baryzentrischen Koordinaten. Dabei werden Punkte und Vektoren als Funktion der Eckpunkte eines Dreiecks dargestellt und sind somit invariant unter affinen Transformationen.

Sei $T = \Delta(z_1, z_2, z_3)$ ein Dreieck im \mathbb{R}^2 . Dann gibt es für alle $z \in \mathbb{R}^2$ eindeutig bestimmte sogenannte BARYZENTRISCHEN KOORDINATEN $\phi_1, ..., \phi_3$ mit $\sum_{i=1}^3 \phi_i = 1$ und der Interpolationseigenschaft $\phi_i(z_j) = \delta_{ij}, i, j \in \{1, ..., 3\}$, sodass sich z schreiben läßt als

$$z = \sum_{i=1}^{3} \phi_i(z) \cdot z_i$$

Diese Koordinaten sind lineare Polynome in z, die sich mit Hilfe der Formel

$$\phi_i(z) = \frac{\det(z_j - z \ z_k - z)}{\det(z_j - z_i \ z_k - z_i)}$$

für paarweise verschieden
e $1 \leq i,j,k \leq 3$ explizit berechnen lassen.

Für ein Dreieck T und $(i, j, k) \in \mathbb{N}_0^3$ mit i + j + k = q definiert $B_{i,j,k}^q \in \mathcal{P}_q$, gegeben durch

$$B_{i,j,k}^q(z) = \frac{q!}{i! \cdot j! \cdot k!} \left(\phi_1^i \phi_2^j \phi_3^k \right)(z), \qquad z \in T,$$

das BERNSTEIN-POLYNOM vom Grad q bzgl. T.

Die Menge aller Bernstein-Polynome vom Grad q bildet eine Basis von \mathcal{P}_q . Jedes Polynom $p \in \mathcal{P}_q$ läßt sich somit in eindeutiger Weise schreiben als

$$p(z) = \sum_{i+j+k=q} a^{[T]}_{i,j,k} \cdot B^q_{i,j,k}(z), \qquad z \in {\mathrm{I\!R}}^2,$$

genannt die Bézier-Bernstein-Darstellung von p. Die reellen Koeffizienten

$$a_{i,j,k}^{[T]}, \qquad i+j+k = q$$

heißen dabei Bézier-Bernstein-Koeffizienten. Sie bilden zusammen mit den gleichverteilten Bézier-Bernstein-Punkten

$$\left\{P_{i,j,k}^{[T]} = \frac{iz_1 + jz_2 + kz_3}{q}, \ i+j+k = q\right\}$$

das Bézier-Bernstein-Netz $\Big\{ \big(P_{i,j,k}^{[T]}, a_{i,j,k}^{[T]} \big), i+j+k=q \Big\}.$

Abb. 3: Bézier-Bernstein-Punkte und Bézier-Bernstein-Netz für q = 3.

Mit $R_w(v) := \{P_{w,i,j}^{[T]} \mid w + i + j = q, T = \Delta(v, u_1, u_2) \in \Delta\}$ bezeichnen wir den RING der Bézier-Bernstein-Punkte mit Abstand w vom Knoten v. Die SCHEIBE MIT RADIUS w um den Knoten v ist dann definiert als

$$D_w(v) = \bigcup_{i=0}^w (R_i(v)).$$

Sei M_{Δ} die Menge aller Bézier-Bernstein-Punkte von Δ und für alle i + j + k = q und alle Dreiecke $T \in \Delta$ das lineare Funktional

$$\lambda_{P_{i,j,k}^{[T]}}: \mathcal{S}_q^{r,\theta}(\Delta) \longrightarrow \mathbb{R} \qquad \text{d.d} \qquad s \longrightarrow \lambda_{P_{i,j,k}^{[T]}}(s) = a_{i,j,k}^{[T]}$$

für alle $s \in S_q^{r,\theta}(\Delta)$, gegeben. Dann heißt $M \subset M_{\Delta}$ eine BESTIMMENDE MENGE für $S_q^{r,\theta}(\Delta)$, falls gilt

$$\lambda_P(s) = 0 \quad \forall P \in M \implies \lambda_P(s) = 0 \quad \forall P \in M_\Delta.$$

M heißt MINIMAL, falls es keine bestimmende Menge mit weniger Elementen gibt.

Nach Farin [13] (vgl. de Boor [6]) ist die Differenzierbarkeit benachbarter Polynome über eine gemeinsame Kante durch Bedingungen an die Koeffizienten ihrer Bézier-Bernstein-Darstellung charakterisiert. Seien $T_1 = \Delta(v_1, v_2, v_3)$ und $T_2 = \Delta(v_1, v_2, v_4)$ zwei Dreiecke mit gemeinsamer Kante $[v_1, v_2]$ und $s \in S_q^0(\{T_1, T_2\})$ definiert durch $s_{|T_m} \equiv p_m \in \mathcal{P}_q$ für m = 1, 2 auf T_m , gegeben in seiner Bézier-Bernstein-Darstellung mit Koeffizienten $a_{i,j,k}^{[m]}$.

Lemma 2.4:

Folgende Aussagen sind äquivalent:

(i) $s \in C^r(\{T_1, T_2\})$

(ii) Für $\rho = 0, ..., r$ und alle $i + j = q - \rho$ gilt

$$a^{[2]}_{i,j,
ho} = \sum_{lpha+eta+\gamma=
ho} a^{[1]}_{i+lpha,j+eta,\gamma} rac{
ho!}{lpha! eta! \gamma!} ig(\phi^{lpha}_1 \phi^{eta}_2 \phi^{\gamma}_3 ig)(v_4).$$

Abb. 4: Relevante Koeffizienten für C^r -Stetigkeit.

Für C^2 -differenzierbar verknüpfte Polynome gibt es eine wichtige Folgerung. Seien T_1, T_2 , p_1, p_2 gegeben wie in Lemma 2.4, und es gelte $s \in S_q^2(\{T_1, T_2\}), q \ge 2$ sowie i + j = q - 2.

Korollar 2.5:

Aus $b_{i,j,2}$, $a_{i+\alpha,j+\beta,\gamma}$, $\alpha + \beta + \gamma = 2$, mit $(\alpha + \beta + \gamma) \notin \{(0,1,1), (0,2,0)\}$ und entweder $a_{i,j+1,1}$ oder $a_{i,j+2,0}$ lassen sich alle Koeffizienten $a_{i+\alpha,j+\beta,\gamma}$, $b_{i+\alpha,j+\beta,\gamma}$ für $\alpha + \beta + \gamma = 2$ eindeutig berechnen.

Nach Farin [13] und de Boor [6] gilt:

Lemma 2.6:

Die r-te Richtungsableitung des Bézier-Bernstein-Polynoms $B_{i,j,k}^q$ entlang eines Einheitsvektors $\lambda \in \mathbb{R}^2$ ist für alle $z = (\phi_1(z), \phi_2(z), \phi_3(z))$ gegeben durch

$$(B_{i,j,k}^q)_{\lambda^r}(z) = \frac{q!}{(q-r)!} \sum_{\alpha+\beta+\gamma=r} B_{\alpha,\beta,\gamma}^r(\lambda) \cdot B_{i-\alpha,j-\beta,k-\gamma}^{q-r}(z), \quad i+j+k=q$$

Damit läßt sich ein wichtiger Zusammenhang zwischen den partiellen Ableitungen eines Polynoms und den Bézier-Bernstein-Koeffizienten seiner Darstellung herleiten (vgl. Nürnberger und Zeilfelder [28]). Sei $T = \Delta(v_1, v_2, v_3)$ und $p \in \mathcal{P}_q$ definiert durch

$$p(z) = \sum_{i+j+k=q} a_{i,j,k} \cdot B^q_{i,j,k}(z), \qquad z \in T.$$

Ferner sei d_i für i = 1, 2 ein Einheitsvektor entlang der Kante $[v_1, v_{i+1}]$.

Lemma 2.7:

 $F\ddot{u}r \ \alpha + \beta + \gamma \leq q \ gilt$

$$p_{d_1^{\alpha}d_2^{\beta}}(v_1) = \frac{q!}{(q-\alpha-\beta)!} \sum_{j=0}^{\alpha} \sum_{k=0}^{\beta} {\binom{\alpha}{j}} {\binom{\beta}{k}} {\binom{\phi}{j}} {\binom{\beta}{d_1}} {\binom{\phi}{d_1}} {\binom{\beta-k}{d_2}} {\binom{\phi}{d_1}} {\binom{\phi}{d_2}} {\binom{\phi}{d_1}} {\binom{\phi}{d_2}} {\binom$$

und umgekehrt

$$a_{q-\alpha-\beta,\alpha,\beta} = \frac{(q-\alpha-\beta)!}{q!(\phi_2)_{d_1}^{\alpha}(\phi_3)_{d_2}^{\beta}} p_{d_1^{\alpha}d_2^{\beta}}(v_1) - \sum_{j=0}^{\alpha-1} {\alpha \choose j} \left(\frac{(\phi_1)_{d_1}}{(\phi_2)_{d_1}}\right)^{\alpha-j} \cdot a_{q-j-\beta,j,\beta}$$
$$- \sum_{j=0}^{\alpha} \sum_{k=0}^{\beta-1} {\alpha \choose j} {\beta \choose k} \left(\frac{(\phi_1)_{d_1}}{(\phi_2)_{d_1}}\right)^{\alpha-j} \left(\frac{(\phi_1)_{d_2}}{(\phi_3)_{d_2}}\right)^{\beta-k} \cdot a_{q-j-k,j,k}.$$

Damit können die partiellen Ableitungen $p_{d_1^j d_2^k}(v_1)$ für $j = 0, ..., \alpha$ und $k = 0, ..., \beta$ in eindeutiger Weise aus den Bézier-Bernstein-Koeffizienten $a_{q-j-k,j,k}$ und umgekehrt die Bézier-Bernstein-Koeffizienten $a_{q-j-k,j,k}$ für $j = 0, ..., \alpha$ und $k = 0, ..., \beta$ in eindeutiger Weise aus den partiellen Ableitungen $p_{d_1^j d_2^k}(v_1)$ berechnet werden.

3. Zerlegung von Ω

In diesem Abschnitt definieren wir geeignete Zerlegungen beliebiger Triangulierungen Δ zur Interpolation mit C^2 -Supersplines vom Grad ≥ 7 . In einer Verallgemeinerung der von Davydov und Nürnberger [11] entwickelte Methode auf C^2 -Splines zerlegen wir dabei das polygonale Grundgebiet Ω in eine Kette von Teilmengen und Δ in eine Kette von Subtriangulierungen, indem wir ausgehend von einem Startdreieck induktiv geeignete Dreiecke der Triangulierung anhängen. Für q = 7 wird dabei in sehr selten vorkommenden Ausnahmefällen die Triangulierung geringfügig modifiziert, indem einige Dreiecke durch Clough-Tocher-Splits unterteilt werden. Für die Interpolation mit $q \geq 8$ ist keine Modifikation notwendig.

Sei $\Omega \subset \mathbb{R}^2$ ein einfach zusammenhängendes polygonales Gebiet. Dann zerlegen wir Ω in eine Kette von Teilmengen Ω_m , m = 0, ..., n mit der Eigenschaft

$$\Omega_0 \subset \ldots \subset \Omega_n = \Omega.$$

Wir setzen $\Omega_0 = T = \Delta(w_1, w_2, w_3) \in \Delta$ ein beliebiges Dreieck der Triangulierung, das sogenannte Startdreieck, und definieren die Mengen Ω_m für m = 1, ..., n induktiv. Angenommen für ein $m \in \{1, ..., n\}$ ist Ω_{m-1} bereits konstruiert, so wählen wir einen geeigneten Knoten $v_m \in V(\Delta)$ mit $v_m \notin \Omega_{m-1}$, für den gilt:

(i) Es gibt mindestens ein Dreieck mit Eckpunkt v_m in Δ , das eine gemeinsame Kante mit Ω_{m-1} besitzt.

Seien $T_{m,1}, ..., T_{m,n_m}, n_m \ge 1$ alle Dreiecke in Δ mit dieser Eigenschaft, dann definieren wir

$$\Omega_m := \Omega_{m-1} \cup \Big(\bigcup_{i=1}^{n_m} T_{m,i}\Big),$$

und setzen $\Delta_m := \{T \in \Delta \mid T \subset \Omega_m\}$, die zu Ω_m gehörige Subtriangulierung von Δ . Dabei heißt v_m geeignet, wenn folgende beiden Bedingungen erfüllt sind:

- (ii) Ω_m ist einfach zusammenhängend, d.h. besitzt keine Löcher. Ein LOCH von Ω_m ist eine beschränkte Teilmenge von $\mathbb{R}^2 \setminus \Omega_m$, die einfach zusammenhängend ist.
- (iii) Für alle $v_j, v_k \in V(\Delta_m)$ mit $[v_j, v_k] \in E(\Delta)$ gilt $[v_j, v_k] \subset \Omega_m$.

Abbildung 5 zeigt einen Knoten v_m , der nicht hinzugefügt werden kann. In diesem Beispiel läge die Kante $[v_m, v_{m,0}]$ nicht in Ω_m und es entstände in Ω_m ein Loch mit den Eckpunkten $v_m, v_{m,2}, v_{m,3}$ und $v_{m,4}$.

Abb. 5: Beispiel eines ungeeigneten Knotens v_m .

Lemma 3.1:

Sei Ω_{m-1} , $m \in \{1, ..., n\}$ konstruiert. Dann gibt es einen geeigneten Knoten zur Festlegung von Ω_m .

Beweis:

Wie man leicht sicht, ist ein Knoten $v_m \in V(\Delta)$, $v_m \notin \Omega_{m-1}$ genau dann geeignet, wenn

- $[v_{m,j}, v_{m,j+1}]$ für $j = 0, ..., n_m 1$ eine Kante der Triangulierung ist, und
- im Innern des von $v_{m,0}, ..., v_{m,n_m}$ und v_m erzeugten Polygongebiets P_m keine weiteren Knoten der Triangulierung liegen.

Offensichtlich gibt es stets einen Knoten der Triangulierung, der Bedingung (i) erfüllt. Liegen im Innern von P_m weitere Knoten $w_1, ..., w_k \in V(\Delta)$, $k \in \mathbb{N}$, so wähle einen Knoten $w_i, i \in \{1, ..., k\}$, der ebenfalls Bedingung (i) erfüllt. Im Innern des dazugehörigen Polygongebiet $\tilde{P}_m \subset P_m$ liegen nur $\tilde{k} < k$ Knoten der Triangulierung. Da $\#V(\Delta) < \infty$ gibt es nach endlich vielen Schritten somit einen Knoten $v_m \in V(\Delta)$, $v_m \notin \Omega_{m-1}$ der die Bedingungen (i), (ii) und (iii) erfüllt.

#

Für Δ_m , $m \in \{1, ..., n\}$ definieren wir Parameter τ_m , $c_{m,0}, ..., c_{m,n_m} \in \{0, 1\}$ aufgrund der Eigenschaften der Knoten der Triangulierung (vgl. Abbildung 6). Wir setzen für $j \in \{0, n_m\}$

$$c_{m,j} := \begin{cases} 0, & \text{falls } v_{m,j} \text{ semisingulär bzgl. } \Delta_m \text{ ist, und } e_{m,j} \text{ in } v_{m,j} \\ & \text{nichtdegeneriert ist,} \\ 1, & \text{sonst.} \end{cases}$$

Für die inneren Indizes $j \in \{1, ..., n_m - 1\}$ sei

$$c_{m,j} := \begin{cases} 1, & \text{falls } e_{m,j} \text{ in } v_{m,j} \text{ degeneriert ist,} \\ 0, & \text{sonst.} \end{cases}$$

Außerdem setzen wir

$$\tau_m := \begin{cases} 0, & \text{falls } v_m \text{ semisingulär bzgl. } \Delta_m \text{ und nichtsingulär ist,} \\ 1, & \text{sonst.} \end{cases}$$

Gilt $c_{m,0} = c_{m,n_m} = \tau_m = 0$, so führen wir für die Interpolation mit $S_7^{2,3}(\Delta)$ eine lokale Modifikation der Triangulierung durch. Hierbei unterteilen wir das Dreieck $\Delta(v_m, v_{m,0}, w) \in \Delta \setminus \Delta_m$ durch einen Clough-Tocher-Split mit einem Knoten y_m , und setzen $v_{m+1} := y_m$ sowie $\Omega_{m+1} := \Omega_m \cup \Delta(v_m, v_{m,0}, w)$. Dadurch gilt $\tau_m = \tau_{m+1} = 1$. Für die Interpolation mit $S_q^{2,3}(\Delta)$, $q \geq 8$ ist keine Modifikation von Δ notwendig.

Abb. 6: Beispiel für $\Omega_m \setminus \Omega_{m-1}$ mit Parametern τ_m und $c_{m,0}, ..., c_{m,n_m}$.

Bemerkung 3.2:

Der Fall $c_{m,0} = c_{m,n_m} = \tau_m = 0$ ist eine Ausnahmesituation, die nur in den folgenden sehr selten auftretenden Konstellationen vorkommt:

- v_m ist nichtsingulär und semisingulär vom Typ 1 bzgl. Δ_m , und sowohl $v_{m,0}$ als auch v_{m,n_m} sind semisingulär bzgl. Δ_m (vgl. Abbildung 7,(a)).
- v_m ist nichtsingulär und semisingulär vom Typ 1 bzgl. Δ_m . Zusätzlich ist einer der beiden Knoten $v_{m,0}$, v_{m,n_m} semisingulär bzgl. Δ_m und der andere Knoten derart, dass die dazugehörige Kante $e_{m,j}$, $j \in \{0, n_m\}$ in v_m degeneriert ist (vgl. Abbildung 7,(b)).
- v_m ist nichtsingulär und semisingulär vom Typ 2 bzgl. Δ_m und sowohl $v_{m,0}$ als auch v_{m,n_m} sind semisingulär bzgl. Δ_m (vgl. Abbildung 7,(c)).

Abb. 7: Modifikationen in den Fällen $c_{m,0} = c_{m,n_m} = \tau_m = 0.$

4. Interpolation mit $\mathcal{S}_{7}^{2,3}(\Delta)$

In diesem Abschnitt berechnen wir unter Verwendung von Bézier-Bernstein-Methoden die Dimension der Splineräume $S_7^{2,3}(\Delta)$ für beliebige Triangulierungen Δ . Im Anschluss konstruieren wir Lagrange- und Hermite-Interpolationsmengen für diese Splineräume, indem wir geeignete Interpolationspunkte bzw. Interpolationsbedingungen im Startdreieck und auf den induktiv angehängten Dreiecken auswählen.

4.1 Bestimmung der Dimension

Im Folgenden konstruieren wir minimal bestimmende Mengen für die Splineräume $S_7^{2,3}(\Delta)$ auf beliebige Triangulierungen Δ , die in Abschnitt 3 geeignet zerlegt wurden. Dazu wählen wir im Startdreieck $T = \Omega_0 \in \Delta$ die Menge aller Bézier-Bernstein-Punkte $M_0 = \{P_{i,j,k}^{[T]} \mid i, j, k \geq 0, i + j + k = 7\}$. Die Punkte $M_m \setminus M_{m-1} \subset M_\Delta$ auf den Dreiecken von $\Delta_m \setminus \Delta_{m-1}, m = 1, ..., n$ werden induktiv ausgewählt. Für $\tau_m = 0$ sei o.B.d.A. $c_{m,n_m} = 1$. (Für $c_{m,n_m} = 0$ gilt nach Konstruktion $c_{m,0} = 1$. Setze dann $v_{m,l} := v_{m,n_m-l}$ für $l = 0, ..., n_m$.) Angenommen für ein $m \in \{1, ..., n\}$ ist M_{m-1} bereits konstruiert, dann wähle:

•
$$D_3(v_m) \cap T_{m,1} = \{ P_{i,j,k}^{[T_{m,1}]} \mid i \ge 4 \}$$
 sowie $P_{3,2,2}^{[T_{m,1}]}$,

•
$$P_{3,1,3}^{[T_{m,j}]}$$
 für alle $j \in \{1, ..., n_m - 1\}$ mit $c_{m,j} = 1$,

- $P_{3,3,1}^{[T_{m,1}]}$, falls $c_{m,0} = 1$, und
- $P_{3,1,3}^{[T_{m,n_m}]}$, falls $(c_{m,n_m} = 1, \tau_m = 1)$.

Sei Δ eine beliebige Triangulierung, zerlegt wie in Abschnitt 3 beschrieben, und $M = M_n \subset M_\Delta$ die Menge aller oben gewählten Bézier-Bernstein-Punkte von Δ .

Theorem 4.1:

M ist eine minimal bestimmende Menge für $\mathcal{S}_{7}^{2,3}(\Delta)$, und es gilt $\#M = dim(\mathcal{S}_{7}^{2,3}(\Delta))$.

Beweis:

Wir zeigen zunächst, dass M eine bestimmende Menge für $\mathcal{S}_{7}^{2,3}(\Delta)$ ist. Sei dazu $s \in \mathcal{S}_{7}^{2,3}(\Delta)$ für alle $T \in \Delta$ gegeben durch $s_{|_{T}} \equiv p^{[T]} \in \mathcal{P}_{7}$ in seiner Bézier-Bernstein-Darstellung mit Koeffizienten $a_{i,j,k}^{[T]}$, i + j + k = 7. Ferner sei $a_{i,j,k}^{[T]} = 0$ für alle $P_{i,j,k}^{[T]} \in M$.

Alle Koeffizienten $a_{i,j,k}^{[T]}$ im Startdreieck T verschwinden, da M sämtliche Bézier-Bernstein-Punkte von T enthält. Sei jetzt für ein $m \in \{1, ..., n\}$ bereits gezeigt, dass $a_{i,j,k}^{[T]} = 0$ für alle $P_{i,j,k}^{[T]}$ auf Δ_{m-1} , dann betrachten wir die Dreiecke von $\Delta_m \setminus \Delta_{m-1}$. Nach Lemma 2.4 gilt mit den C^2 -Bedingungen über den Kanten $[v_{m,l}, v_{m,l+1}], l = 0, ..., n_m - 1$ und der Supersplineeigenschaft in den Knoten der Triangulierung, dass $a_{i,j,k}^{[T_{m,l}]} = 0$ für $i = 0, ..., 2, l = 1, ..., n_m$

Abb. 8: Die Menge $M_m \setminus M_{m-1}$ auf dem Gebiet $\Omega_m \setminus \Omega_{m-1}$.

sowie $a_{3,4,0}^{[T_{m,l}]} = a_{3,0,4}^{[T_{m,l}]} = 0$ für $l = 1, ..., n_m$. Aus $D_3(v_m) \cap T_{m,1} \subset M_m$ folgt $a_{i,j,k}^{[T_{m,l}]} = 0$ für $l = 1, ..., n_m$ und alle i + j + k = 7 mit $i \ge 4$. Auf dem Dreieck $T_{m,1}$ ist der Koeffizient $a_{3,1,3}^{[T_{m,1}]}$ Null gegeben, falls $c_{m,1} = 1$ ist, bzw. kann im Fall $c_{m,1} = 0$ mit $a_{i,j,k}^{[T_{m,1}]} = 0$ für $(i, j, k) \in \{(2, 2, 3); (2, 1, 4); (2, 0, 5); (3, 0, 4); (4, 0, 3)\}$ und $a_{2,3,2}^{[T_{m,2}]} = 0$ nach Korollar 2.5 Null berechnet werden. Gilt $c_{m,0} = 1$, so ist der Koeffizient $a_{3,3,1}^{[T_{m,1}]} = 0$ gegeben. Andernfalls ist $v_{m,0}$ semisingulär bzgl. Δ_m , und es gibt ein Dreieck $T = \Delta(v_m, w, v_{m,0})$ in Δ , auf dem die Koeffizienten $a_{2,j,5-j}^{[T]}$, j = 0, ..., 2 verschwinden. Daher impliziert $a_{i,j,k}^{[T_{m,1}]} = 0$ für $(i, j, k) \in \{(2, 3, 2); (2, 5, 0); (3, 4, 0); (4, 3, 0)\}$ nach Korollar 2.5, dass $a_{3,3,1}^{[T_{m,1}]} = 0$. Wegen $P_{3,2,2}^{[T_{m,1}]} \in M_m$ gilt $a_{3,2,2}^{[T_{m,1}]} = 0$. Folglich sind alle Bézier-Bernstein-Koeffizienten des Dreiecks $T_{m,1}$ gleich Null.

Betrachten wir jetzt induktiv die Dreiecke $T_{m,l}$, $l = 2, ..., n_m - 1$. Mit der C^2 -Bedingung über der Kante $e_{m,l-1}$ sind nach Lemma 2.4 die Koeffizienten $a_{i,j,k}^{[T_{m,l}]} = 0$ für alle i+j+k=7mit $k \leq 2$. Die gleiche Argumentation wie im Dreieck $T_{m,1}$ liefert mit der C^2 -Bedingung über der Kante $e_{m,l}$ nach Korollar 2.5, dass $a_{3,1,3}^{[T_{m,l}]} = 0$. Folglich verschwinden alle Bézier-Bernstein-Koeffizienten des Dreiecks $T_{m,l}$.

Es verbleibt das Dreieck T_{m,n_m} . Die C^2 -Bedingung über der Kante e_{m,n_m-1} impliziert nach Lemma 2.4, dass $a_{i,j,k}^{[T_{m,n_m}]} = 0$ für alle i + j + k = 7 mit $k \leq 2$. Für $\tau_m = 1$ folgt $a_{3,1,3}^{[T_{m,n_m}]} = 0$ mit analoger Argumentation wie im Dreieck $T_{m,1}$. Der Fall $\tau_m = 0$ impliziert nach Konstruktion $c_{m,n_m} = 1$, und es gibt $\lambda_m \in \{2,3\}$ Dreiecke $\tilde{T}_l = \Delta(v_m, w_{l-1}, w_l)$, $l = 1, ..., \lambda_m$ mit $w_0 = v_{m,0}$ und $w_{\lambda_m} = v_{m,n_m}$, wobei die Kanten $[w_l, v_m]$, $l = 1, ..., \lambda_m - 1$ in v_m degeneriert sind. Nach Lemma 2.4 folgt mit den C^2 -Bedingungen über diesen Kanten $a_{3,2,2}^{[\tilde{T}_l]} = 0, l = 1, ..., \lambda_m$. Die C^2 -Bedingung über der Kante e_{m,n_m} , sowie $a_{i,j,k}^{[T_m,n_m]} = 0$ für $(i, j, k) \in \{(5, 0, 2); (4, 0, 3); (3, 0, 4); (3, 2, 2)\}$ und $a_{3,2,2}^{[\tilde{T}_{\lambda_m}]} = 0$ implizieren nach Korollar 2.5, dass $a_{3,1,3}^{[T_m,n_m]} = 0$. Somit sind auch im Dreieck T_{m,n_m} alle Bézier-Bernstein-Koeffizienten gleich Null. Also ist M_m eine bestimmende Menge für $\mathcal{S}_7^{2,3}(\Delta_m)$ und damit induktiv M eine bestimmende Menge für $\mathcal{S}_7^{2,3}(\Delta)$.

Wir zeigen jetzt, dass M minimal ist. Es gilt:

$$dim\left(\mathcal{S}_{q}^{r,\rho}(\Delta)\right) \geq \binom{\rho+2}{2} \cdot \#V(\Delta) + \left(\binom{q-3r-1}{2} - 3\binom{2r-\rho+1}{2}\right) \cdot \#N(\Delta) \\ + \frac{1}{2}(r+1)(2q-4\rho+r-2) \cdot \#E(\Delta) + \binom{2r-\rho+1}{2} \cdot \sigma.$$

Wie in [9], Theorem 5 gezeigt, ist bei der Konstruktion der Subtriangulierungen Δ_m , m = 0, ..., n eine Kante $e_{m,j}$ genau dann im Knoten $v_{m,j}$ degeneriert, wenn der Knoten $v_{m,j}$ für ein k < m einem Knoten $v_{k,l}$, $l \in \{0, n_k\}$ entspricht, der semisingulär bzgl. Δ_k ist. In $M = M_n$ liegen daher folgende Bézier-Bernstein-Punkte der Triangulierung:

- genau 36 Punkte im Startdreieck,
- genau 13 Punkte für jeden hinzugefügten Knoten von Δ , und
- genau 1 Punkt für jeden singulären Knoten.

Also gilt

$$#M = 36 + 13(\#V(\Delta) - 3) + \sigma(\Delta)$$

= $13 \cdot \#V(\Delta) - 3 + \sigma(\Delta)$
= $10 \cdot \#V(\Delta) + 3(\#V(\Delta) - 1) + \sigma(\Delta)$
= $10 \cdot \#V(\Delta) - 3 \cdot \#N(\Delta) + 3 \cdot \#E(\Delta) + \sigma(\Delta)$
 $\leq dim(\mathcal{S}_7^{2,3}(\Delta)).$

Damit ist *M* minimal, d.h.

$$dim\left(\mathcal{S}^{2,3}_{7}(\Delta)\right) = \#M = 13 \cdot \#V(\Delta) - 3 + \sigma(\Delta).$$

#

4.2 Lagrange-Interpolation

Sei Δ eine beliebige Triangulierung, zerlegt wie in Abschnitt 3 beschrieben. Wir konstruieren nun Lagrange-Interpolationsmengen für den Splineraum $S_7^{2,3}(\Delta)$, indem wir geeignete Interpolationspunkte im Startdreieck und induktiv in den angehängten Dreiecken wählen. Im Startdreieck T wählen wir eine Menge L_0 von 36 Punkten, die eindeutige Interpolation mit \mathcal{P}_7 erlauben. Dies sind z.B. für i = 1, ..., 8 genau i Punkte auf der Strecke l_i für 8 parallele Strecken $l_1, ..., l_8$ auf T. Angenommen für ein $m \in \{1, ..., n\}$ sind die Interpolationspunkte auf Ω_{m-1} bereits konstruiert, dann wählen wir auf $\Omega_m \setminus \Omega_{m-1}$ die Punkte $L_m \setminus L_{m-1}$ wiefolgt:

- v_m , je genau drei Punkte im Innern der Kanten $e_{m,0}$ und $e_{m,1}$, genau $2 + c_{m,0}$ Punkte im Innern der Strecke $[v_{m,0}, \frac{v_m + v_{m,1}}{2}]$, genau $1 + c_{m,1}$ Punkte im Innern der Strecke $[v_{m,1}, \frac{v_m + v_{m,0}}{2}]$ und genau einen Punkt im Innern von $T_{m,1}$, der auf keiner dieser Strecken liegt,
- für $j = 2, ..., n_m 1$ genau einen Punkt im Innern von $T_{m,j}$, falls $c_{m,j} = 1$, und
- genau einen Punkt im Innern von T_{m,n_m} , falls $(c_{m,n_m} = 1, \tau_m = 1)$.

Abb. 9: Mögliche Interpolationspunkte auf $\Omega_m \setminus \Omega_{m-1}$ für q = 7.

Sei Δ eine beliebige Triangulierung, zerlegt wie in Abschnitt 3 beschrieben, und $L = L_n$ die Menge aller oben gewählter Interpolationspunkte.

Theorem 4.2:

L ist eine Lagrange-Interpolationsmenge für den Splineraum $S_7^{2,3}(\Delta)$.

Beweis:

Nach Konstruktion gilt $\#L = dim(S_7^{2,3}(\Delta))$. Somit reicht es zu zeigen, dass das homogene Interpolationsproblem nur trivial lösbar ist. Sei also $s \in S_7^{2,3}(\Delta)$ gegeben durch $s_{|_T} \equiv p^{[T]} \in \mathcal{P}_7$ für alle $T \in \Delta$, und es gelte s(z) = 0 für alle $z \in L$. Die Interpolationsbedingungen im Startdreieck implizieren $s_{|_T} \equiv 0$. Sei jetzt für ein $m \in \{1, ..., n\}$ bereits gezeigt, dass $s_{|_{\Omega_{m-1}}} \equiv 0$, dann betrachten wir s auf $\Omega_m \setminus \Omega_{m-1}$. Die C^2 -Stetigkeit über den Kanten $[v_{m,l}, v_{m,l+1}], l = 0, ..., n_m - 1$ und die Supersplineeigenschaft in den Knoten der Triangulierung implizieren $D^k s(z) \equiv 0$ für k = 0, ..., 2 und alle $z \in [v_{m,l}, v_{m,l+1}],$ $l = 0, ..., n_m - 1$ sowie $D^3 s(v_{m,l}) \equiv 0$ für alle $l = 0, ..., n_m$. Auf dem Dreieck $T_{m,1}$ folgt mit den Interpolationsbedingungen auf den Kanten $e_{m,l}$, l = 0, 1, dass $s_{|e_{m,l}|} \equiv 0$ für l = 0, 1. Daher gibt es ein Polynom $q_2^{[T_{m,1}]} \in \mathcal{P}_2$, sodass sich $p^{[T_{m,1}]}$ schreiben läßt als

$$p^{[T_{m,1}]}(z) = l_1^3 \cdot l_2 \cdot l_3 \cdot q_2^{[T_{m,1}]}(z), \qquad z \in T_{m,1},$$

wobei l_1 eine Gerade durch die Kante $[v_{m,0}, v_{m,1}]$ und l_j für j = 1, 2 Geraden durch die Kanten $e_{m,j-2}$ sind. Im Folgenden sei $\tilde{d}_{i,j}$ ein Einheitsvektor entlang der Kante $[v_{m,i}, v_{m,j}] \in E(\Delta)$. Im Fall $c_{m,1} = 0$ wird aus den Ableitungen $p_{\tilde{d}_{1,0}^2(-d_{m,1})^2}^{[T_{m,1}]}(v_{m,1}), p_{\tilde{d}_{1,2}^2(-d_{m,1})^2}^{[T_{m,1}]}(v_{m,1})$ und $p_{(-d_{m,1})^4}^{[T_{m,1}]}(v_{m,1})$ nach Lemma 2.3 die partielle Ableitung $p_{\tilde{d}_{1,0}^2(-d_{m,1})^3}^{[T_{m,1}]}(v_{m,1}) = 0$ berechnet. Dies impliziert $D^4 p^{[T_{m,1}]}(v_{m,1}) \equiv 0$ und damit $q_2^{[T_{m,1}]}(v_{m,1}) = 0$. Falls $c_{m,0} = 0$, so ist $v_{m,0}$ semisingulär bzgl. Δ_m , und aus $s_{|\Omega_{m-1}|} \equiv 0$ folgt $p_{d^2(-d_{m,0})^2}^{[T_{m,1}]}(v_{m,0}) = 0$ für einen Einheitsvektor d entlang der benachbarten Kante von $e_{m,0}$ im Knoten $v_{m,0}$. Analog der Argumentation für $v_{m,1}$ impliziert dies $D^4 p^{[T_{m,1}]}(v_{m,0}) \equiv 0$, also $q_2^{[T_{m,1}]}(v_{m,0}) = 0$, falls $c_{m,0} = 0$. Aufgrund der Interpolationspunkte im Innern der Strecken $[v_{m,0}, \frac{v_m+v_{m,1}}{2}]$ und $[v_{m,1}, \frac{v_m+v_{m,0}}{2}]$ gibt es daher ein Polynom $q_0^{[T_{m,1}]} \in \mathcal{P}_0$, sodass sich $p^{[T_{m,1}]}$ schreiben läßt als

$$p^{[T_{m,1}]}(z) \;=\; l_1^3 \cdot l_2 \cdot l_3 \cdot l_4 \cdot l_5 \cdot q_0^{[T_{m,1}]}(z), \qquad z \in T_{m,1},$$

wobei l_j für j = 4, 5 eine Gerade durch die Strecke $[v_{m,0}, \frac{v_m + v_{m,1}}{2}]$ bzw. $[v_{m,1}, \frac{v_m + v_{m,0}}{2}]$ ist. Aus den Interpolationsbedingung im Innern von $T_{m,1}$ folgt schließlich $q_0^{[T_{m,1}]} \equiv 0$ und damit $p^{[T_{m,1}]} \equiv 0$.

Wir betrachten nun induktiv die Dreiecke $T_{m,l}$, $l = 2, ..., n_m - 1$. Mit der C^2 -Stetigkeit über den Kanten $e_{m,l-1}$ und $[v_{m,l-1}, v_{m,l}]$ sowie der Supersplineeigenschaft in den Knoten v_m und $v_{m,l}$ gibt es ein Polynom $q_0^{[T_{m,l}]} \in \mathcal{P}_0$, sodass sich $p^{[T_{m,l}]}$ schreiben läßt als

$$p^{[T_{m,l}]}(z) = l_1^3 \cdot l_2^3 \cdot l_3 \cdot q_0^{[T_{m,l}]}(z), \qquad z \in T_{m,l},$$

wobei l_1 eine Gerade durch die Kante $[v_{m,l-1}, v_{m,l}]$ und l_j für j = 2, 3 Gerade durch die Kante $e_{m,l+j-3}$ sind. Mit gleicher Argumentation wie im Dreieck $T_{m,1}$ folgt $p_{\bar{d}_{l,l-1}(-d_{m,l})^3}^{[T_{m,l}]}(v_{m,l}) = 0$, falls $c_{m,l} = 0$. Für $c_{m,l} = 1$ gibt es einen weiteren Interpolationspunkt im Innern von $T_{m,l}$. Beides impliziert jeweils $q_0^{[T_{m,l}]} \equiv 0$ und damit $p^{[T_{m,l}]} \equiv 0$.

Es verbleibt das Dreieck T_{m,n_m} . Aus der C^2 -Stetigkeit über der Kante e_{m,n_m-1} folgt für alle $z \in e_{m,n_m-1}$, dass $D^k p^{[T_m,n_m]}(z) \equiv 0$ für k = 0, ..., 2. Daher gibt es ein Polynom $q_0^{[T_m,n_m]} \in \mathcal{P}_0$, sodass sich $p^{[T_m,n_m]}$ schreiben als

$$p^{[T_{m,n_m}]}(z) = l_1^3 \cdot l_2^3 \cdot l_3 \cdot q_0^{[T_{m,n_m}]}(z), \qquad z \in T_{m,n_m},$$

wobei l_1 eine Gerade durch die Kante $[v_{m,n_m-1}, v_{m,n_m}]$ und l_j , j = 2,3 Geraden durch die Kanten e_{m,n_m+j-3} sind. Im Fall $\tau_m = 1$ folgt wie auf dem Dreieck $T_{m,1}$, dass die partielle Ableitung $p_{\tilde{d}_{n_m,n_m-1}^{[T_{m,n_m}]}}(v_{m,n_m})$ verschwindet oder ein zusätzlicher Interpolationspunkt im Innern von T_{m,n_m} liegt. Dies impliziert $q_0^{[T_{m,n_m}]}(v_{m,n_m}) = 0$ und damit $p^{[T_{m,n_m}]} \equiv 0$. Für $\tau_m = 0$ gilt nach Voraussetzung $c_{m,n_m} = 1$, und es gibt $\lambda_m \in \{2,3\}$ Dreiecke $\tilde{T}_l = \Delta(v_m, w_{l-1}, w_l), l = 1, ..., \lambda_m$ in Δ mit $w_0 = v_{m,0}$ und $w_{\lambda_m} = v_{m,n_m}$, wobei die Kanten $[w_l, v_m]$, $l = 1, ..., \lambda_m - 1$ in v_m degeneriert sind. Mit der C^2 -Stetigkeit über diesen Kanten folgt $p_{\tilde{d}_{l-1}^2 \tilde{d}_l^2}^{[\tilde{T}_l]}(v_m) = 0$ für $l = 1, ..., \lambda_m$, wobei \tilde{d}_l ein Einheitsvektor entlang der Kante $[v_m, w_l]$ ist. Daher impliziert die C^2 -Stetigkeit über der Kante e_{m,n_m} sowie $p_{d_{m,n_m}}^{[T_{m,n_m}]}(v_m) = p_{d_{m,n_m}^2}^{[T_{m,n_m}]}(v_m) = 0$ nach Lemma 2.3, dass $p_{d_{m,n_m}}^{[T_{m,n_m}]}(v_m) = 0$. Daraus folgt $q_0^{[T_{m,n_m}]}(v_m) = 0$, also $p^{[T_{m,n_m}]} \equiv 0$.

Insgesamt gilt $s_{|\Omega_m} \equiv 0$ und induktiv $s \equiv 0$.

#

4.3 Hermite-Interpolation

Sei Δ eine beliebige Triangulierung, zerlegt wie in Abschnitt 3 beschrieben. Wir wählen nun geeignete Interpolationsbedingungen im Startdreieck und induktiv in den Knoten der angehängten Dreiecke, und konstruieren so Hermite-Interpolationsmengen für den Splineraum $\mathcal{S}_{7}^{2,3}(\Delta)$.

Sei $f \in C(\Omega)$ eine genügend oft differenzierbare Funktion und d_i für i = 1, ..., 3 ein Einheitsvektor entlang der Kante $e_i := [w_i, w_{i+1}], w_4 := w_1$, des Startdreiecks $T = \Delta(w_1, w_2, w_3)$. Dann setzen wir H_0 eine Menge von 36 Interpolationsbedingungen, die den interpolierenden Spline *s* auf *T* eindeutig festlegen. Dies sind z.B.

• $D^k s(w_i) = D^k f(w_i)$, für k = 0, ..., 3, i = 1, ..., 3, und

•
$$s_{d_i^2(-d_{i-1})^2}(w_i) = f_{d_i^2(-d_{i-1})^2}(w_i), \ s_{d_i^3(-d_{i-1})}(w_i) = f_{d_i^3(-d_{i-1})}(w_i)$$
 für $i = 1, ..., 3$.

Angenommen die Menge H_{m-1} wurde bereits konstruiert, so wählen wir auf den Dreiecken von $\Delta_m \setminus \Delta_{m-1}$ die Bedingungen $H_m \setminus H_{m-1}$ im Knoten v_m . Sei dazu $d_{m,j}$ für $m = 1, ..., n, j = 0, ..., n_m$ ein Einheitsvektor entlang der Kante $e_{m,j} = [v_m, v_{m,j}]$. Im Fall $\tau_m = 0$ sei o.B.d.A. $c_{m,n_m} = 1$. Dann gelte:

•
$$D^k s(v_m) = D^k f(v_m)$$
, für $k = 0, ..., 3$,

•
$$s_{d_{m,0}^2 d_{m,1}^2}(v_m) = f_{d_{m,0}^2 d_{m,1}^2}(v_m)$$

•
$$s_{d_{m,j-1}d_{m,j}^3}(v_m) = f_{d_{m,j-1}d_{m,j}^3}(v_m)$$
 für alle $j \in \{1, ..., n_m - 1\}$ mit $c_j = 1$,

•
$$s_{d_{m,0}^3 d_{m,1}}(v_m) = f_{d_{m,0}^3 d_{m,1}}(v_m)$$
, falls $c_{m,0} = 1$, und

• $s_{d_{m,n_m-1}d_{m,n_m}^3}(v_m) = f_{d_{m,n_m-1}d_{m,n_m}^3}(v_m)$, falls $(c_{m,n_m} = 1, \tau_m = 1)$.

Sei Δ eine beliebige Triangulierung, zerlegt wie in Abschnitt 3 beschrieben, und $H = H_n$ die Menge aller oben gestellter Interpolationsbedingungen für $S_7^{2,3}(\Delta)$.

Theorem 4.3:

H ist eine Hermite-Interpolationsmenge für den Splineraum $S_7^{2,3}(\Delta)$.

Beweis:

Nach Konstruktion gilt $\#H = dim(S_7^{2,3}(\Delta))$. Daher reicht es zu zeigen, dass das homogene Interpolationsproblem nur trivial lösbar ist. Sei also $s_{|_T} \equiv p^{[T]} \in \mathcal{P}_7$ für alle $T \in \Delta$ und $f \equiv 0$ gegeben. Die Interpolationsbedingungen im Startdreieck T implizieren $p^{[T]} \equiv s_{|_{\Omega_0}} \equiv 0$. Angenommen für ein $m \in \{1, ..., n\}$ ist bereits gezeigt, dass $s_{|_{\Omega_{m-1}}} \equiv 0$, dann betrachten wir s auf $\Omega_m \setminus \Omega_{m-1}$.

Die C^2 -Stetigkeit über den Kanten $[v_{m,l}, v_{m,l+1}], l = 0, ..., n_m - 1$ und die Supersplineeigenschaft in den Knoten der Triangulierung implizieren $D^k s(z) \equiv 0$ für k = 0, ..., 2 und alle $z \in [v_{m,l}, v_{m,l+1}], l = 0, ..., n_m - 1$ sowie $D^3 s(v_{m,l}) \equiv 0$ für $l = 0, ..., n_m$. Aus $D^k s(v_m) \equiv 0$ für k = 0, ..., 3 folgt damit insbesondere $s_{|e_{m,l}|} \equiv 0$ für $l = 0, ..., n_m$. Im Folgenden sei $\tilde{d}_{i,j}$ ein Einheitsvektor entlang der Kante $[v_{m,i}, v_{m,j}] \in E(\Delta)$.

Im Dimerits vokuor childrang der Haute $[v_{m,i}, v_{m,j}] \in D(\Delta)$. Im Dreieck $T_{m,1}$ interpoliert für $c_{m,1} = 1$ die partielle Ableitung $p_{d_{m,j-1}d_{m,j}}^{[T_{m,1}]}(v_m) = 0$. Mit der Supersplineeigenschaft in den Knoten v_m und $v_{m,1}$ impliziert dies $p_{\tilde{d}_{1,0}(-d_{m,1})^3}^{[T_{m,1}]}(v_{m,1}) = 0$. Gilt dagegen $c_{m,1} = 0$, so läßt sich $p_{\tilde{d}_{1,0}(-d_{m,1})^3}^{[T_{m,1}]}(v_{m,1})$ aus den Ableitungen $p_{\tilde{d}_{1,0}^2(-d_{m,l})^2}^{[T_{m,1}]}(v_{m,1})$, $p_{\tilde{d}_{1,2}^2(-d_{m,1})^2}^{[T_{m,1}]}(v_{m,1})$ und $p_{(-d_{m,1})^4}^{[T_{m,1}]}(v_{m,1})$ nach Lemma 2.3 Null berechnen. Im Fall $c_{m,0} = 1$ interpoliert die partielle Ableitung $p_{d_{m,0}^3(m,0)}^{[T_{m,1}]}(v_m) = 0$. Aus der Supersplineeigenschaft in v_m und $v_{m,0}$ folgt daraus $p_{\tilde{d}_{0,1}(-d_{m,0})^3}^{[T_{m,1}]}(v_{m,0}) = 0$. Für $c_{m,0} = 0$ ist $v_{m,0}$ semisingulär bzgl. Δ_m und $p_{\tilde{d}_{0,1}(-d_{m,0})^3}^{[T_{m,1}]}(v_{m,0})$ läßt sich mit Hilfe der Ableitungen $p_{(-d_{m,0})^4}^{[T_{m,1}]}(v_{m,0}), p_{\tilde{d}_{0,1}^2(-d_{m,0})^2}^{[T_{m,1}]}(v_{m,0})$ und $p_{d^2(-d_{m,0})^2}^{[T_{m,1}]}(v_{m,0})$ nach Lemma 2.3 Null berechnen. Dabei ist d ein Einheitsvektor entlang der benachbarten Kante von $e_{m,0}$ im Knoten $v_{m,0}$. Folglich gibt es auf dem Dreieck $T_{m,1}$ ein Polynom $q_0^{[T_{m,1}]} \in \mathcal{P}_0$, sodass sich $p^{[T_{m,1}]}$ schreiben als

$$p^{[T_{m,1}]}(z) = l_1^3 \cdot l_2^2 \cdot l_3^2 \cdot q_0^{[T_{m,1}]}(z), \qquad z \in T_{m,1},$$

wobei l_1 eine Gerade durch die Kante $[v_{m,0}, v_{m,1}]$ und $l_j, j = 2, 3$ Geraden durch die Kanten $e_{m,j-2}$ sind. Aus $p_{d_{m,0}^2 d_{m,1}^2}^{[T_{m,1}]}(v_m) = 0$ folgt $q_0^{[T_{m,1}]}(v_m) = 0$ und damit $p^{[T_{m,1}]} \equiv 0$.

Wir betrachten jetzt induktiv die Dreiecke $T_{m,l}$, $l = 2, ..., n_m - 1$. Aus der C^2 -Stetigkeit über der Kante $e_{m,l-1}$ folgt $D^k p^{[T_{m,l}]}(z) \equiv 0$ für k = 0, ..., 2 und alle $z \in e_{m,l-1}$. Also gibt es ein Polynom $q_0^{[T_{m,l}]} \in \mathcal{P}_0$, sodass sich $p^{[T_{m,l}]}$ schreiben als

$$p^{[T_{m,l}]}(z) = l_1^3 \cdot l_2^3 \cdot l_3 \cdot q_0^{[T_{m,l}]}(z), \qquad z \in T_{m,l},$$

wobei l_1 eine Gerade durch die Kante $[v_{m,l-1}, v_{m,l}]$ und $l_j, j = 2, 3$ Geraden durch die Kanten $e_{m,l+j-3}$ sind. Mit analogem Argument wie im Dreieck $T_{m,1}$ gilt $p_{\tilde{d}_{l,l-1}(-d_{m,l})^3}^{[T_{m,l}]}(v_{m,l}) = 0$. Dies impliziert $q_0^{[T_{m,l}]}(v_m) = 0$ und damit $p^{[T_{m,l}]} \equiv 0$.

Es verbleibt das Dreieck T_{m,n_m} . Aus der C^2 -Stetigkeit über der Kante e_{m,n_m-1} folgt für alle $z \in e_{m,n_m-1}$, dass $D^k p^{[T_m,n_m]}(z) \equiv 0$ für k = 0, ..., 2. Daher gibt es ein Polynom

 $q_0^{[T_{m,n_m}]} \in \mathcal{P}_0$, sodass sich $p^{[T_{m,n_m}]}$ schreiben als

 $p^{[T_{m,n_m}]}(z) = l_1^3 \cdot l_2^3 \cdot l_3 \cdot q_0^{[T_{m,n_m}]}(z), \qquad z \in T_{m,n_m},$

wobei l_1 eine Gerade durch die Kante $[v_{m,n_m-1}, v_{m,n_m}]$ und l_j , j = 2,3 Geraden durch die Kanten e_{m,n_m+j-3} sind. Im Fall $\tau_m = 1$ folgt wie im Dreieck $T_{m,1}$, dass die partielle Ableitung $p_{\tilde{d}_{nm,n_m-1}(-d_{m,n_m})^3}^{[T_{m,n_m}]}(v_{m,n_m}) = 0$ für $c_{m,n_m} = 1$ interpoliert, oder für $c_{m,n_m} = 0$ berechnet werden kann. Dies impliziert $q_0^{[T_{m,n_m}]}(v_{m,n_m}) = 0$ und damit $p_{\tilde{d}_{m,n_m}}^{[T_{m,n_m}]} \equiv 0$. Für $\tau_m = 0$ gilt analog dem Beweis für die Lagrange-Interpolation, dass $p_{\tilde{d}_{m,n_m}d_{m,n_m-1}}^{[T_{m,n_m}]}(v_m) = 0$. Dies impliziert $q_0^{[T_{m,n_m}]}(v_m) = 0$ und damit ebenfalls $p^{[T_{m,n_m}]} \equiv 0$.

Insgesamt gilt $s_{|_{\Omega_m}} \equiv 0$ und damit induktiv $s \equiv 0$.

#

5. Interpolation mit $\mathcal{S}_q^{2,3}(\Delta), q \geq 8$

In diesem Abschnitt konstruieren wir Lagrange- und Hermite-Interpolationsmengen für die Splineräume $S_q^{2,3}(\Delta), q \geq 8$ auf beliebigen Triangulierungen Δ .

Nach Ibrahim und Schumaker [16] ist die Dimension der Splineräume $S_q^{r,\theta}(\Delta)$ für $q \ge 3r+2$ auf beliebigen Triangulierungen Δ bekannt. Für $q \ge 8$ gilt:

$$dim\left(\mathcal{S}_q^{2,3}(\Delta)\right) = 15 \cdot \#V(\Delta) + \left(\binom{q-7}{2} - 3\right) \cdot \#N(\Delta) + \left(3q - 18\right) \cdot \#E(\Delta) + \sigma.$$

5.1 Lagrange-Interpolation

Sei Δ eine beliebige Triangulierung, zerlegt wie in Abschnitt 3 beschrieben. Dabei ist keine Modifikation von Δ notwendig. Wir wählen nun geeignete Interpolationspunkte im Startdreieck und induktiv in den angehängten Dreiecken, und konstruieren so Lagrange-Interpolationsmengen für die Splineräume $S_q^{2,3}(\Delta), q \geq 8$.

Auf dem Startdreieck T wählen wir eine Menge L_0 von $\binom{q+2}{2}$ Punkten, die eindeutige Interpolation mit \mathcal{P}_q erlauben. Dies sind z.B. für i = 1, ..., q + 1 genau i Punkte auf der Strecke l_i für q + 1 parallele Strecken $l_1, ..., l_{q+1}$ auf T. Angenommen für ein $m \in \{1, ..., n\}$ sind die Interpolationspunkte auf Ω_{m-1} bereits konstruiert, dann wählen wir die Punkte $L_m \setminus L_{m-1}$ auf $\Omega_m \setminus \Omega_{m-1}$ wiefolgt:

- Auf dem Dreieck $T_{m,1}$ wähle
 - -v und je genau q-4 Punkte im Innern der Kanten $e_{m,0}$ und $e_{m,1}$,

- genau $q 5 + c_{m,0}$ Punkte im Innern der Strecke $[v_{m,0}, \frac{v_m + v_{m,1}}{2}],$
- genau $q 6 + c_{m,1}$ Punkte im Innern der Strecke $[v_{m,1}, \frac{v_m + v_{m,0}}{2}]$, und
- genau $\binom{q-5}{2}$ nicht auf diesen Strecken liegende Punkte im Innern von $T_{m,1}$, die eine eindeutige Interpolation mit \mathcal{P}_{q-7} erlauben.
- Auf den Dreiecken $T_{m,l}$, $l = 2, ..., n_m 1$ wähle
 - genau q 7 Punkte im Innern von $e_{m,l}$,
 - genau $q 7 + c_{m,l}$ Punkte im Innern der Strecke $[v_{m,l}, \frac{v_m + v_{m,l-1}}{2}]$, und
 - genau $\binom{q-6}{2}$ nicht auf dieser Strecke liegende Punkte im Innern von $T_{m,l}$, die eine eindeutige Interpolation mit \mathcal{P}_{q-8} erlauben.
- Auf T_{m,n_m} wähle
 - genau q-7 Punkte im Innern von e_{m,n_m} ,
 - genau $q 7 + c_{m,n_m}$ Punkte im Innern der Strecke $[v_{m,n_m}, \frac{v_m + v_{m,n_m-1}}{2}],$
 - genau $q 8 + \tau_m$ Punkte im Innern der Strecke $[v_m, \frac{v_{m,n_m-1}+v_{m,n_m}}{2}]$, und
 - für $q \ge 9$ genau $\binom{q-7}{2}$ nicht auf diesen Strecken liegende Punkte im Innern von T_{m,n_m} , die eine eindeutige Interpolation mit \mathcal{P}_{q-9} erlauben.

Abb. 10: Mögliche Lagrangepunkte auf $\Omega_m \setminus \Omega_{m-1}$ für q = 8.

Sei Δ eine beliebige Triangulierung, zerlegt wie in Abschnitt 3 beschrieben, und L die Menge aller oben gewählter Interpolationspunkte.

Theorem 5.1:

Set $q \geq 8$. Dann ist L eine Lagrange-Interpolationsmenge für den Splineraum $\mathcal{S}_q^{2,3}(\Delta)$.

Beweis:

Wir zeigen zunächst, dass die Anzahl der gewählten Punkte mit der Dimension des interpolierenden Splineraums übereinstimmt. In L enthalten sind:

- genau $\binom{q+2}{2}$ Punkte im Startdreieck,
- genau $\binom{q-4}{2}$ 3 Punkte in jedem hinzugefügten Dreieck,
- genau 10 + 3(q 6) zusätzliche Punkte für jeden angehängten Knoten v_k in den Dreiecken $T_{k,1}$ und T_{k,n_k} , und
- genau einen Punkt für jeden singulären Knoten.

Also gilt

$$\#L = \binom{q+2}{2} + \left[\binom{q-4}{2} - 3\right] \cdot \left(\#N(\Delta) - 1\right) + \left[10 + 3(q-6)\right] \cdot \left(\#V(\Delta) - 3\right) + \sigma(\Delta)$$

= $(q^2 - 6q + 6) \cdot \#V_I(\Delta) + \frac{1}{2}(q^2 - 3q - 2) \cdot \#V_B(\Delta) - \frac{1}{2}(q^2 - 6q - 4) + \sigma(\Delta)$
= $10 \cdot \#V(\Delta) + \left[\binom{q-7}{2} - 3\right] \cdot \#N(\Delta) + 3(q-6) \cdot \#E(\Delta) + \sigma(\Delta)$
= $dim\left(S_q^{2,3}(\Delta)\right),$

Somit reicht es zu zeigen, dass das homogene Interpolationsproblem nur trivial lösbar ist. Sei also $s \in S_q^{2,3}(\Delta)$ gegeben durch $s_{|_T} = p^{[T]} \in \mathcal{P}_q$ für alle $T \in \Delta$, und es gelte s(z) = 0für alle $z \in L$. Die Interpolationsbedingungen im Startdreieck implizieren $s_{|_T} \equiv 0$. Sei jetzt für ein $m \in \{1, ..., n\}$ bereits gezeigt, dass $s_{|_{\Omega_{m-1}}} \equiv 0$, dann betrachten wir s auf $\Omega_m \setminus \Omega_{m-1}$. Die C^2 -Stetigkeit über den Kanten $[v_{m,l}, v_{m,l+1}], l = 0, ..., n_m - 1$ und die Supersplineeigenschaft in den Knoten implizieren $D^k s(z) \equiv 0$ für k = 0, ..., 2 und alle $z \in [v_{m,l}, v_{m,l+1}], l = 0, ..., n_m - 1$ sowie $D^3 s(v_{m,l}) \equiv 0$ für $l = 0, ..., n_m$.

Auf dem Dreieck $T_{m,1}$ folgt aus den Interpolationsbedingungen auf den Kanten $e_{m,l}$, l = 0, 1, dass $p_{|e_{m,l}|}^{[T_{m,1}]} \equiv 0$ für l = 0, 1. Daher gibt es ein Polynom $q_{q-5}^{[T_{m,1}]} \in \mathcal{P}_{q-5}$, sodass sich $p^{[T_{m,1}]}$ schreiben läßt als

$$p^{[T_{m,1}]}(z) = l_1^3 \cdot l_2 \cdot l_3 \cdot q_{q-5}^{[T_{m,1}]}(z), \qquad z \in T_{m,1},$$

wobei l_1 eine Gerade durch die Kante $[v_{m,0}, v_{m,1}]$ und l_j , j = 2, 3 Geraden durch die Kanten $e_{m,j-2}$ sind. Wie im Fall q = 7 folgt für $c_{m,0} = 0$ mit analogem Beweis $D^4 p^{[T_{m,1}]}(v_{m,1}) \equiv 0$ und damit $q_{q-5}^{[T_{m,1}]}(v_{m,1}) = 0$, sowie für $c_{m,1} = 0$, dass $D^4 p^{[T_{m,1}]}(v_{m,0}) \equiv 0$ und damit $q_{q-5}^{[T_{m,1}]}(v_{m,0}) = 0$. Zusammen mit den Interpolationsbedingungen im Innern der Strecken $[v_{m,0}, \frac{v_m + v_{m,1}}{2}]$ und $[v_{m,1}, \frac{v_m + v_{m,0}}{2}]$ gibt es daher ein Polynom $q_{q-7}^{[T_{m,1}]} \in \mathcal{P}_{q-7}$, sodass sich $p^{[T_{m,1}]}$ schreiben läßt als

$$p^{[T_{m,1}]}(z) = l_1^3 \cdot l_2 \cdot l_3 \cdot l_4 \cdot l_5 \cdot q^{[T_{m,1}]}_{q-7}(z), \qquad z \in T_{m,1},$$

wobei l_j für j = 4, 5 eine Gerade durch die Strecke $[v_{m,0}, \frac{v_m + v_{m,1}}{2}]$ bzw. $[v_{m,1}, \frac{v_m + v_{m,0}}{2}]$ ist. Die verbleibenden Interpolationsbedingungen im Innern von $T_{m,1}$ implizieren schließlich $q_{a-7}^{[T_{m,1}]} \equiv 0$ und damit $p^{[T_{m,1}]} \equiv 0$.

Wir betrachten nun die Dreiecke $T_{m,l}$, $l = 2, ..., n_m - 1$. Die Supersplineeigenschaft in den Knoten v_m und $v_{m,l}$, $l = 1, ..., n_m$ zusammen mit den Interpolationsbedingungen im Innern der Kanten $e_{m,l}$, $l = 1, ..., n_m$ impliziert $s_{|e_{m,l}|} \equiv 0$ für $l = 1, ..., n_m$. Mit der C^2 -Stetigkeit über den Kanten $e_{m,l-1}$ und $[v_{m,l-1}, v_{m,l}]$ folgt daher die Existenz eines Polynoms $q_{q-7}^{[T_{m,l}]} \in \mathcal{P}_{q-7}$, sodass sich $p^{[T_{m,l}]}$ schreiben läßt als

$$p^{[T_{m,l}]}(z) = l_1^3 \cdot l_2^3 \cdot l_3 \cdot q^{[T_{m,l}]}_{q-7}(z), \qquad z \in T_{m,l},$$

wobei l_1 eine Gerade durch die Kante $[v_{m,l-1}, v_{m,l}]$ und l_j , j = 2, 3 Geraden durch die Kanten $e_{m,l+j-3}$ sind. Für $c_{m,l} = 0$ folgt nach Lemma 2.7 wie im Fall q = 7, dass $p_{d_{l,l-1}(-d_{m,l})^3}^{[T_{m,l}]}(v_{m,l}) = 0$ für einen Einheitsvektor $d_{l,l-1}$ entlang der Kante $[v_{m,l}, v_{m,l-1}]$, und damit $q_{q-7}^{[T_{m,l}]}(v_{m,l}) = 0$. Für $c_{m,l} = 1$ liegt ein zusätzlicher Interpolationspunkt im Innern der Strecke $[v_{m,l}, \frac{v_m + v_{m,l-1}}{2}]$. In beiden Fällen gibt es mit den gewählten Interpolationspunkten daher ein Polynom $q_{q-8}^{[T_{m,l}]} \in \mathcal{P}_{q-8}$, sodass sich $p^{[T_{m,l}]}$ schreiben läßt als

$$p^{[T_{m,l}]}(z) = l_1^3 \cdot l_2^3 \cdot l_3 \cdot l_4 \cdot q^{[T_{m,l}]}_{q-8}(z), \qquad z \in T_{m,l},$$

wobei l_4 eine Gerade durch die Strecke $[v_{m,l}, \frac{v_m + v_{m,l-1}}{2}]$ ist. Die restlichen Interpolationsbedingungen im Innern von $T_{m,l}$ implizieren $q_{q-8}^{[T_{m,l}]} \equiv 0$ und damit $p^{[T_{m,l}]} \equiv 0$.

Es verbleibt das Dreieck T_{m,n_m} . Für $\tau_m = 0$ folgt aus der Semisingularität von v_m und der C^2 -Stetigkeit über den Kanten von Δ nach Lemma 2.7, dass $s_{d_{m,n_m}-1}d_{m,n_m}^3(v_m) = 0$. Für $\tau_m = 1$ liegt ein zusätzlicher Interpolationspunkt im Innern der Strecke $[v_m, \frac{v_{m,n_m}-1+v_{m,n_m}}{2}]$. Aus $c_{m,n_m} = 0$ folgt $D^4 p^{[T_{m,n_m}]}(v_{m,n_m}) \equiv 0$ wie im Fall q = 7, und damit $q_{q-5}^{[T_{m,n_m}]}(v_{m,n_m}) = 0$. Für $c_{m,n_m} = 1$ liegt ein zusätzlicher Interpolationspunkt im Innern von $[v_{m,n_m}, \frac{v_m+v_{m,n_m-1}}{2}]$. Im Fall q = 8 impliziert dies $p^{[T_{m,n_m}]} \equiv 0$. Für $q \geq 9$ liegen zusätzlich q - 8 Interpolationspunkte im Innern der Strecke $[v_m, \frac{v_{m,n_m-1}+v_{m,n_m}}{2}]$, weshalb ein Polynom $q_{q-9}^{[T_{m,n_m}]} \in \mathcal{P}_{q-9}$ existiert, sodass sich $p^{[T_{m,n_m}]}$ schreiben läßt als

$$p^{[T_{m,n_m}]}(z) = l_1^3 \cdot l_2 \cdot l_3^3 \cdot l_4 \cdot l_5 \cdot q^{[T_{m,n_m}]}_{q-9}(z), \qquad z \in T_{m,n_m},$$

wobei l_4 eine Gerade durch die Strecke $[v_m, \frac{v_{m,n_m-1}+v_{m,n_m}}{2}]$ und l_5 eine Gerade durch die Strecke $[v_{m,n_m}, \frac{v_m+v_{m,n_m-1}}{2}]$ ist. Aus den Interpolationsbedingungen im Innern von T_{m,n_m} folgt schließlich $q_{q-9}^{[T_{m,n_m}]} \equiv 0$ und damit $p^{[T_{m,n_m}]} \equiv 0$. Insgesamt gilt daher $s_{|\Omega_m} \equiv 0$ und induktiv $s \equiv 0$.

#

5.2 Hermite-Interpolation

Sei Δ eine beliebige Triangulierung, zerlegt wie in Abschnitt 3 beschrieben. Wir wählen nun für $q \geq 8$ geeignete Interpolationsbedingungen im Startdreieck und induktiv in den Knoten der angehängten Dreiecke, und konstruieren so Hermite-Interpolationsmengen für die Splineräume $S_q^{2,3}(\Delta)$.

Sei $f \in C(\Omega)$ eine genügend oft differenzierbare Funktion und d_i für i = 1, ..., 3 ein Einheitsvektor entlang der Kante $e_i := [w_i, w_{i+1}], w_4 := w_1$, des Startdreiecks $T = \Delta(w_1, w_2, w_3)$. Wir setzen H_0 eine Menge von $\binom{q+2}{2}$ Interpolationsbedingungen, die den interpolierenden Spline *s* auf *T* eindeutig festlegen. Dies sind z.B.

•
$$D^k s(w_1) = D^k f(w_1)$$
 für $k = 0, ..., [\frac{q}{2}],$

- $s_{(-d_1)^j d_2^k}(w_2) = f_{(-d_1)^j d_2^k}(w_2)$ für $j = 0, ..., [\frac{q-1}{2}], k \ge 0$, wobei $j + k \le [\frac{q}{2}]$, und
- $s_{(-d_2)^j d_3^k}(w_3) = f_{(-d_2)^j d_3^k}(w_3)$ für $j, k = 0, ..., [\frac{q-1}{2}]$.

Dabei ist [x] die größte ganze Zahl $\leq x$. Angenommen die Menge H_{m-1} ist bereits konstruiert, dann wählen wir im Knoten v_m die Bedingungen $H_m \setminus H_{m-1}$. Sei dazu $d_{m,j}$ für $m = 1, ..., n, j = 0, ..., n_m$ ein Einheitsvektor entlang der Kante $e_{m,j} = [v_m, v_{m,j}]$. Wir wählen

- $D^k s(v_m) = D^k f(v_m)$ für k = 0, ..., q 4,
- $s_{d_{m,0}^k d_{m,1}^l}(v_m) = f_{d_{m,0}^k d_{m,1}^l}(v_m)$ für $k, l \ge 2, k+l = q-3,$
- $s_{d_{m,j-1}^k d_{m,j}^l}(v_m) = f_{d_{m,j-1}^k d_{m,j}^l}(v_m)$ für $k \ge 3, 4 \le k+l \le q-3, (k,l) \notin \{(0,q-3); (1,q-4)\}, l = 2, ..., n_m, (k,l,j) \ne (1,3,n_m),$
- $s_{d_{m,0}^{q-4}d_{m,1}}(v_m) = f_{d_{m,0}^{q-4}d_{m,1}}(v_m)$ bzw. $s_{d_{m,j-1}d_{m,j}^{q-4}}(v_m) = f_{d_{m,j-1}d_{m,j}^{q-4}}(v_m)$, falls $c_{m,0} = 1$ bzw. $c_{m,j} = 1, j = 1, ..., n_m$,
- $s_{d_{m,n_m-1}d_{m,n_m}^3}(v_m) = f_{d_{m,n_m-1}d_{m,n_m}^3}(v_m)$, falls $\tau_m = 1$.

Abb. 11: Interpolationsbedingungen $H_m \setminus H_{m-1}$ im Knoten v_m für q = 8.

Sei Δ eine beliebige Triangulierung und H die Menge aller oben gewählter Interpolationsbedingungen in den Knoten von Δ .

Theorem 5.2:

Set $q \geq 8$. Dann ist H eine Hermite-Interpolationsmenge für den Splineraum $\mathcal{S}_{q}^{2,3}(\Delta)$.

Beweis:

Nach Konstruktion gilt $\#H = dim(S_q^{2,3}(\Delta))$. Daher reicht es zu zeigen, dass das homogene Interpolationsproblem nur trivial lösbar ist. Sei also $s_{|T} \equiv p^{[T]} \in \mathcal{P}_q$ für alle $T \in \Delta$ und $f \equiv 0$ gegeben. Die Interpolationsbedingungen im Startdreieck T implizieren $p^{[T]} \equiv 0$. Sei jetzt für ein $m \in \{1, ..., n\}$ bereits gezeigt, dass $s_{|\Omega_{m-1}|} \equiv 0$, dann betrachten wir s auf $\Omega_m \setminus \Omega_{m-1}$.

Die C^2 -Stetigkeit über den Kanten $[v_{m,l}, v_{m,l+1}], l = 0, ..., n_m - 1$ und die Supersplineeigenschaft in den Knoten der Triangulierung implizieren $D^k s(z) \equiv 0$ für k = 0, ..., 2und alle $z \in [v_{m,l}, v_{m,l+1}], l = 0, ..., n_m - 1$ sowie $D^3 s(v_{m,l}) \equiv 0$ für $l = 0, ..., n_m$. Aus $D^k s(v_m) \equiv 0, k = 0, ..., 3$ und den Interpolationsbedingungen im Innern der Kanten $e_{m,l}, l = 0, ..., n_m$ folgt damit insbesondere $s_{|e_{m,l}|} \equiv 0$ für $l = 0, ..., n_m$.

Analog dem Fall q = 7 sind für $q \ge 8$ die partiellen Ableitungen $s_{(-d_{m,l})^3 \tilde{d}_{l,l+1}}(v_{m,l}), l = 0, ..., n_m - 1$ und $s_{\tilde{d}_{l,l-1}(-d_{m,l})^3}(v_{m,l}), l = 1, ..., n_m$ entweder durch die homogenen Interpolationsbedingungen gegeben, oder lassen sich mit der C^2 -Stetigkeit über den Kanten $e_{m,l}, l = 0, ..., n_m$ nach Lemma 2.3 Null berechnen.

Für $l = 1, ..., n_m - 1$ implizieren die Interpolationsbedingungen in den Knoten $v_m, v_{m,l-1}$ und $v_{m,l}$ daher $D^k p^{[T_{m,l}]}(z) \equiv 0$ für k = 0, ..., 2 und alle z auf einer Kante von $T_{m,l}$. Im Fall q = 8 folgt daraus $p^{[T_{m,l}]} \equiv 0$, für $q \ge 9$ folgt die Existenz eines Polynoms $q_{q-9}^{[T_{m,l}]} \in \mathcal{P}_{q-9}$, sodass sich $p^{[T_{m,l}]}$ schreiben läßt als

$$p^{[T_{m,l}]}(z) \;=\; l_1^3 \cdot l_2^3 \cdot l_3^3 \cdot q^{[T_{m,l}]}_{q-9}(z), \qquad z \in T_{m,l},$$

wobei l_1 eine Gerade durch die Kante $[v_{m,l-1}, v_{m,l}]$ und l_j , j = 2, 3 Geraden durch die Kanten $e_{m,l+j-3}$ sind. Mit den verbleibenden Interpolationsbedingungen im Knoten v_m folgt $D^k q_{q-9}^{[T_{m,l}]} \equiv 0$ für k = 0, ..., q - 9 und damit $q_{q-9}^{[T_{m,l}]} \equiv 0$. Dies impliziert $p^{[T_{m,l}]} \equiv 0$.

Betrachten wir nun das Dreieck T_{m,n_m} . Im Fall $\tau_m = 0$ wird die partielle Ableitung $s_{d_{m,n_m-1}d_{m,n_m}}(v_m) = 0$ analog dem Fall q = 7 berechnet. Für $\tau_m = 1$ ist $s_{d_{m,n_m-1}d_{m,n_m}}(v_m) = 0$ gegeben. Mit gleicher Argumentation wie auf den Dreiecken $T_{m,l}$, $l = 1, ..., n_m$ gilt damit $p^{[T_{m,n_m}]} \equiv 0$. Die impliziert $s_{|\Omega_m} \equiv 0$ und schließlich induktiv $s \equiv 0$.

#

Literaturverzeichnis

- [1] P. Alfeld, B. Piper, L.L.Schumaker: An explicit basis for C^1 quartic bivariate splines, SIAM Journal of Numerical Analysis **24** (1987) 891-911.
- [2] P. Alfeld, L.L. Schumaker: The Dimension of bivariate spline spaces of smoothness r and Grad $d \ge 4r + 1$, Constructive Approximation **3** (1987) 189-197.

- [3] P. Alfeld, B. Piper, L.L.Schumaker: Minimally supported bases for spaces of bivariate piecewise polynomials of smoothness r and degree $d \ge 4r + 1$, Computer Aided Geometric Design 4 (1987) 105-123.
- [4] P. Alfeld, L.L. Schumaker, On the dimension of bivariate spline spaces of smoothness r and degree d = 3r + 1, Numer. Math. 57 (1990) 651-661.
- [5] C. de Boor: A practical guide to splines, Springer Verlag, New York 1978.
- [6] C. de Boor: B-Form basics, in: G. Farin, (Ed.): Geometric Modeling, SIAM, Philadelphia 1987, 131-148.
- [7] R.W. Clough and J.L. Tocher: Finite element stiffness matries for analysis of plates in bending, in: Proc. Conf. on Matrix Methods in Structural Mechanics, Wright Patterson A.F.B., Ohio 1965.
- [8] O. Davydov, G. Nürnberger, F. Zeilfelder: Interpolation by splines on triangulations, in: M.W. Müller, M.D. Buhmann, D.H. Mache, M. Felten (Eds.): New Developments in Approximation Theory, ISNM 132, Birkhäuser, Basel 1999, 49-70.
- [9] O. Davydov, G. Nürnberger, F. Zeilfelder: Cubic spline interpolation on nested polygon triangulations, in: A. Cohen, C. Rabut, L.L. Schumaker (Eds.): Curve and Surface Fitting, St. Malo 1999, Vanderbilt Univ. Press, Nashville 2000, 161-170.
- [10] O. Davydov, G. Nürnberger, F. Zeilfelder: Bivariate spline interpolation with optimal approximation order, Constr. Approx. 17 (2000) 181-208.
- [11] O. Davydov, G. Nürnberger: Interpolation by C^1 splines of degree $q \ge 4$ on triangulations, Journal of Computational and Applied Mathematics **126** (2001) 159-183.
- [12] G. Farin: A modified Clough-Tocher interpolant, CAGD 2 (1985) 19-27.
- [13] G. Farin: Triangular Bernstein-Bézier Patches, CAGD 3 (1986) 83-127.
- [14] J. Gao: Interpolation by C^1 quartic bivariate splines, Journal of Mathematical Research Expo. **11** (1991) 433-442.
- [15] D. Hong: Spaces of bivariate spline functions over triangulations, Approximation Theory and its Applications 7 (1991) 56-75.
- [16] A. Ibrahim, L.L. Schumaker: Super spline spaces of smoothness r and degree $d \ge 3r + 2$, Constructive Approximation 7 (1991) 401-423.
- [17] M. Laghchim-Lahlou, P. Sablonnière: C^r finite elements of HCT, PS and FVS types, in: J. Periaux and R.P. Shaw (Eds.): Proceedings of the Fifth International Symposium on Numerical Methods in Engineering, Vol. 2, Springer, Berlin 1989, 163-168.
- [18] M. Laghchim-Lahlou, P. Sablonnière: Triangular finite elements of HCT type and class C^{ρ} , Advances in Computationel Mathematics 2 (1994) 101-122.

- [19] M. Laghchim-Lahlou, P. Sablonnière: C^r -finite elements of Powell-Sabin type on the three directional mesh, Adv. Comp. Math. **6** (1996) 191-206.
- [20] M.-J. Lai, L.L. Schumaker,: Scattered data interpolation using C^2 supersplines of degree six, SIAM J. Numer. Anal. **34** (1997) 905-921.
- [21] J. Morgan, R. Scott: A nodal basis for C^1 piecewise polynomials of degree $n \ge 5$, Mathematics of Computation **29** (1975) 736-740.
- [22] G. Nürnberger: Approximation by Spline Functions, Springer Verlag, Berlin 1989.
- [23] G. Nürnberger, Th. Riessinger: Lagrange and Hermite interpolation by bivariate splines, Numer. Funct. Anal. Optim. 13 (1992) 75-96.
- [24] G. Nürnberger, Th. Riessinger: Bivariate spline interpolation at grid points, Numer. Math. 71 (1995) 91-119.
- [25] G. Nürnberger, F. Zeilfelder: Lagrange interpolation by splines on triangulations, in: R.H. Wang (Ed.): Proceedings of the Morningside Institute, Peking 1998.
- [26] G. Nürnberger, F. Zeilfelder: Interpolation by spline spaces on classes of triangulations, J. Comput. Appl. Math. 119 (2000) 347-376.
- [27] G. Nürnberger, F. Zeilfelder: Developments in bivariate spline interpolation, Journal of Computational and Applied Mathematics **121** (2000), 125-152.
- [28] M.J.D. Powell, M.A. Sabin: Piecewise quadratic approximation on triangles, ACM Transactions on Mathematical Software **3** (1977) 316-325.
- [29] P. Sablonnière: Composite finite elements of class C² in: C.K. Chui, L.L. Schumaker, F.I. Utreras (Eds.): Topics in Multivariate Approximation, Academic Press, New York 1987, 207-217.
- [30] L.L. Schumaker: Bounds on the dimension of spaces of multivariate piecewise polynomials, Rocky Mountain Journal of Mathematics 14 (1984) 251-264.