Mannheimer Manuékripte — Reihe Mathematik 192/95

Nr. 182 45

MATHEMATICAL THEORY OF UNIFORM
ELASTIC STRUCTURES

Marek Elzanowski*

z.Zt. am Lehrstuhl fir Mathematik I

Universitat Mannheim
68131 Mannheim, Germany.

* On leave from Portland State Univerity, Portland] Oregon, USA. Work partially sup-
ported by the grants from Deutscher Akademischer Auslandsdienst and the Faculty De-
velopement Fund of Portland State University and the Ministery of Education of Baden-
Wiirtemberg through the faculty exchange program with the Oregon State Higher Educa-
tion System. ' -




CONTENT

0. Introduction................ ... o 1
1. Basic Constitutive Theory.................. ... oot 5
1.1 Global Model ... 5
1.2 Local Model..... oo e e e 10
2. Material Symmetries............ ...l 13
3. Material Uniformity.............c.oooo oo il 17
4. Uniform Material Structures...............0...........c. 0 ..., 24
5. Material Connections...............oiiiiidiniiiinniiiii., 31
5.1 Principal Material Connections ............... 4o oot 31
5.2 Induced Material Connections ................ oo il 35
6. Integrable Material Structures: Homogeneﬁty ................. 50
Acknowledgements............. ... il 62
Bibliography ..o 63




0.INTRODUCTION

The theory of continuous distributions of material imperfections, dislo-
cations in particular, the origin of which can be traced back to the period of
1950-1967, has been approached from at least two different points of view, i.e.,
structural dynamics and continuum mechanics. While the pioneering works
of Bilby, Eshelby, Kroner, Kondo (see e.g., [B], [Kr]) land others represent a
structural point of view the mathematical theory of materially uniform simple
elastic bodies of Noll and Wang, [N}, W], [B]], is firmly based on contin-

uum mechanics notions. Seen as a natural generaliz‘ation of the structural

approach, this theory takes as its fundamental assumption that the presence
of imperfections does not modify the general constitut{ve nature of the elastic
material and that the information required to identif?y and describe smooth
“distributions of defects can be found in the materialiresponse functional of
a given uniform body without introducing any extra;parameters or a priori
geometries. Following this line of thought, imperfections are seen as being
responsible for a breakdown of homogeneity of these constitutive functionals.
Geometric periodicity of the underlying atomic lattice corresponds, on the
other hand, to material uniformity and the form of the material symmetry
~group. Using the language of modern differential geor‘netry the theory shows
that for a materially uniform simple elastic body a lir‘lear connection can be
defined in a manner consistent with the given constit‘utive relations but not

necessarily in a unique way.

The process of analyzing a given material body is at least two-fold. First,

_one needs to determine if the given constitutive functional indeed defines a

uniform material (see e.g., [EEp1]). Only after this h‘as been established the

question of local and global homogeneity can be addressed. It has been shown

by Noll [N] and Wang [W] that the existence of locall}‘f homogeneous configu-

|

rations is expressed mathematically by the availability of a locally flat material
connection. If the material symmetry group is a conf‘inuous group this task
© proves to be, in general, a very difficult one. Guided by these difficulties, in
-effort to develop some comprehensive approach to this problem, it was shown

by Elzanowski at al. [EEpS?] that a definite G-structure can be associated
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with a materially uniform simple elastic body and that the local homogene-
ity of such a body is equivalent to the local mtegrabxhty of the underlying
G-structure (material structure).

However, one thing is to determine that the given material structure is
locally integrable the other is to explicitly find the corresponding homoge-
neous configurations. Indeed, in the case of a material having at each point a
stress-free uniform reference conﬁguration (e.g. an isotropic elastic solid) one
does not know how to arrange a collection of stress-free pieces to fit them to-
gether into a global configuration without introducing internal stresses. In the
language of the differential geometric theory of linear connections the process
described above is equivalent to finding a uniform glbbal reference configu-
ration generating a flat material connection, ie., a local coordinate system
on the body manifold inducing in the corresponding bundle of linear frames,
in a manner consistent with the constitutive 1nformat1on a locally integrable

connection possessing a vanishing torsion.

It was shown in [EpES] and [EEpS2], that one pdssible way of resolving
this problem is to associate with the given material structure a geometric ob-
ject (called the characteristic object) capturing the essential geometric features
of the structure in question. The analysis of the object’s homogeneity (point
independence) as a field on the body manifold becomes then the means of an-
alyzing the integrability of the corresponding material structure. On the other
hand, looking at the material symmetry group as a éauge group and at the
changes of uniform configurations as gauge transformations one is also able to
develop, through rather straightforward calculations, a system of quasilinear
partial differential equations for the symmetry group éontrolled configuration
changes leading from ‘an arbitrary uniform reference to a uniform configura-
tion possessing the required geometric characteristics,: if such a configuration
exists, (EP1].

It has been often pointed out, by critics and supporters alike, that the
original theory of Noll and Wang does not enjoy the generality often demanded
by those propagating the so-called lattice model. This is mainly because in
the structural approach to the theory of continuous distribution of defects it
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has been suggested that although the presence of dislocations shows through
the non-vanishing torsion of a material connection, disclinations (rotatiohal
defects) are measured by the curvature of such a connection [An], [Lr]. The
structural approach suggests also that the bodies witjh defects, disclinations
in particular, are subject to couple and multipolar stresses, [Kr]. Since any
constitutive functional associated with a simple elastic material body induces,
by definition, a curvature-free material parallelism (field of isomorphisms) it
appears that the disclinations, and possibly other defects, are ruled out. There-
fore, as it has been suggested by Elzanowski and Epstein [EEp2], it seems only
natural to investigate the possibility of describing disclinations in the context
of the so-called second grade material. This seems to be also supported by the
non-local nature of disclinations, [Lr].

In this paper we present a comprehensive mathematical foundation of the
theory of material structures of uniform multipolar Hyperelastic bodies. Al-
though based on the original ideas of Noll and Wang the research undertaken
here, which grew out of our early works (see e.g., [EEp2], [EP1] and [EP2]),
aims at formulating and analyzing the theory of uniform. material structures
far more complex than simple elasticity. We not only show that such a gener-
alization is mathematically possible but also, in the process of doing so, which
often leads through rather unexplored areas of the differential geometry of
frame bundles of higher order contact, we show some Father intriguing possi-
bilities of discovering intrinsically higher order defects. Such defects have not

yet been, as far as we know, reported in the literature.

The paper is divided into six chapters. In the first chapter we present a
covariant constitutive theory of elasticity. Starting from a completely global
approach we proceed to study simple hyperelasticity emphasizing different lev-
els of non-locality as well as such primitive concepts as body manifold, ambient

space, global and local configurations and constitutive law. The second chap-

ter deals with the notion of symmetry both material and spatial. The concepts
of material isomorphism, material uniformity and material transitivity are in-
troduced and discussed in the third chapter. Chapters 4, 5 and 6 constitute

the core of this work. The concepts of the modern differential geometry of
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frame bundles are applied to show that a definite principal bundle, being the

reduction of the bundle of k-frames, can be a.ssociatedl with a uniform elastic
body. The k-principal material connection, the analog !of the material connec-
tion of Noll and Wang, is introduced. To analyze th'g material structure of
the uniform body cofnpletely we introduce also the concepts of the projected
and the induced material connections. These connections provide partial char-
acteristics (lower grade characteristics) of principal material connection and
help to identify different stages of inhomogeneities. We analyze in detale the
structure of connections on holonomic and semi-holonomic frame to be able
in Chapter 6 to derive explicite conditions for the local flatness of such con-
nections. We show that in the case of a curvature-free k-connection the local
flatness can be measured by the vanishing of some special tensor which, in the

context of continuum mechanics, we call the inhomogeneity tensor. Although

we are mostly concerned with the uniform hyperelastic : material bodies we also
make some comments on material bodies with mlcrostructures




1.BASIC CONSTITUTIVE THEORY

1.1. Global Model
|

Let B denote an oriented smooth n-dimensional cjompact manifold, pos-
sibly with boundary, called the body. We assume that the body B manifests
itself through smooth embeddings! ¥ : B — S into some, in general dif-
ferent, smooth boundaryless m-dimensional manifold 'S called the ambient
space. We also assume that dim & > n. A smooth embedding Y of Binto §
represents therefore a configuration of the continuous body B while (B) is
recognized as its possible placement in the ambient space. In fact, as pointed
out by Marsden [M2], one should accept as configurations immersions, rather
than embeddings. This would allow, for example, a %contact at the folding
boundary. Classically one assumes that the body is a differentiable manifold
admitting a global atlas and that § = IR®. For the most part we will not limit
ourselves to this partlcular case. 7 '

The set Cg of all smooth embeddings of B to S‘ which equipped with
Whitney’s C*-topology is an infinite dimensional Freclhe’_c manifold (see e.g.,
[BiSF] or [Mi]) is called the configuration space of B. In a more general
approach one can regard the space of configurations|of a continuous body
as the space of sections of some fibre (specially vector) bundle 7 : E — B.
Such an approach was shown to be particularly usefu] in the context of the
unified Lagrangian field theory of elasticity (see e.g., [MH]) Here, not to cloud
the picture, we restrain, for this general part of the exposition, from any
unnecessary generalizations. However, later on we will resort briefly to this
approach in the context of materials with microstructlkures. Nevertheless, in
our simple case we have E = B x S where, given a configuration ¥, the
corresponding section of E is a mapping B 3 X — (X, ¥(X)).

. Let =¢ : TCg — Cp denote the tangent space ‘of the manifold of all

\
configurations Cg. |
|

Definition 1.1 An element n, € TCg has the physzcal meaning of the

virtual displacement measured away from the configuration ¢ = mc(ny).

1 An embedding is an open and one-to-one immersion (cf., [K]). -
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Any element of the tangent space TCp is uniquely reprclzsented by the mapping
Ny : B — TS from the body B into the tangent space T'S of its ambient space

S such that mg ony = 19 where ms denotes the standar(‘:l projection of T'S.? In
other words, at the placement /(B) each material poi|nt X € B is assigned a
displacement vector 7y (X) € Tyx)S in the ambient space. Although a virtual
displacement induces a vector field on the placement (8) C S the assignment
of a vector to a material point X depends, in genemU7 on the whole current

configuration.

As pointed out in Epstein at al. [EpES], a force exerted on the body B is
intuitively conceived of as an object which performs work linearly on a virtual
displacement. Accepting this point of view we postulate:

Definition 1.2 A force fis a I-form on the configuration space Cg,

that 1s, a section of the cotangent bundle T*Cp of the configuration space.
|

Given the force f and the virtual displacement 7y, at the same current
configuration 7, the virtual work of f on 7, is given by evaluating the 1-form f
on the vector 7y, , i.e., f(7y) € R. Note, that despite th‘e fact that any tangent
vector (virtual displacement) to the configuration spacel Cp can be represented
by a vector field on the placement of the body in the anibient space, there is no
natural representation of the force f as a field of 1-form's on such a placement.
Such a representation would, however, be possible had we allowed for example

some choice of the matric on the configuration space (see e.g., [Bi]).

Definition 1.3 The elastic constitutive law, completely defining the
|C3 — T*Cp.

mechanical response of the body B, is a smooth field ¢ :
Such a constitutive law is global not only because it assigns forces to entire

. ) . | . .
configurations but also because the action of those assigned forces involves,

2 In general, the tangent space to the space of sections of a ﬁbr&e bundle, e.g. E = BxS,
is the space of sections of the bundle the fibre of which is the taingent space to the fibre of
the original bundle (see e.g., [EnM] or [Mi]).



as it has been mentioned before, the whole of 7, ratHer than any particular
characteristic of it. '

Definition 1.4 We say that the elastic constitutive law ¢ is of local ac-
tion if there ezists a linear mapping p from the space TCp of virtual displace-
ments to the space of n-forms on the body B with '

supp p(ny) C supp Ny i (1.1)

|

and such that for any given configuration 9 € Cg and any compatible virtual
displacement 1, the virtual work of the force field (1) on 1y is given by

C(¥)(ny) = /Bp(w)- l (1.2)
Note that we have ignored here a possible contribution‘!from the boundary of
the body B. Note also that as the map gp is supposed toi represent a density of
work, to ensure that work would not be assigned to a placement of a material
point unless there is a non-vanishing virtual displacemer!lt on a neighbourhood
of it, it is essential to impose the localization condition (1.1). The linear
mapping g of the Definition 1.4 represents a localization of the action of the
constitutive law ¢ in Cg but it does not define the local material. Its action
at any given material point may still depend on the pla‘?ement of points away

from it.

‘ |
Definition 1.5 The material body B 1s jet-local of order k or k-grade
elastic if there exists a mapping o : JE(B,TS) — A"B, called the local

response functional such that for each material point X € B

0(1)(X) = o (5%n, (X)). o 13)
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Here jk7, is to be understood as the jet extension of Fhe virtual displace-
ment 7, € C*(B,TS), i.e., a section of the k-jet bundle J*(B,TS), while A*B
denotes the space of differentiable n-form on B. Due to tﬂle localization condi-
tion (1.1) it follows immediately from the Local Peetre Theorem (see e.g., [K],
Theorem 6.2) that p is a linear differential operator and as such is locally of
finite order, i.e., it is generated locally by a finite number of derivatives of 7.
As B is assumed to be a compact manifold, the latter i!rrlplies that p is of a
finite order. The condition (1.3) is therefore always satisfied for some integer
k: I‘

|

Proposition 1.1  Any elastic constitutive law ¢ of loc‘al action p represents

|

a jet-local elastic material of some finite order.

Definition 1.6 Given the elastic material body B,|a smooth real-valued

function W on Cg, such that

«(¥)(ny) = nyp (W) | (1.4)

for any configuration v and any virtual displacement 77’¢ € ﬂc"l(w), 18 called

the elastic potential. Any elastic body possessing some elastic potential is
called hyperelastic. The elastic potential W is said to be localizable in B
if there exists a smooth real-valued function ¢ : B x Cg = IR such that at any
given configuration, say ¥, W) = [poX,¥)us wher?e up denotes a volume
element on B. - ‘ . L

In the case of the hyperelastic body the virtual work 1s given by the Fréchet

derivative (for the definition see e.g., [L]) of the poten’?ial W in the direction

of a virtual displacement. Thus, if the hyperelastic material with a localizable

elastic potential W is of local action _ ‘
| N
(1)(X) = dip (G (X)) (*nv )t (15)

8 | |
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for every virtual displacement 7,, any configuration % = me(ny) and every
material point X € B, assuming that one can differentiate under the integral.
The virtual work is now given by the first variation of ¢ [[EpES]

The density of the elastic potential ¢ of the k-grade hyperelastic material
becomes, at a given material point and relative to the choice of local charts
on the body manifold B and the ambient space S, a smo’oth function

|
cp:L(IR”,R")EBSZ(R”,R")EB...EBS'“(B",\' "y - R (1.6)
|
where L(IR™, IR™) denotes the set of all linear transformations from IR™ into
IR™, S'(IR™, IR™) is the algebra of all symmetric JR™-valued 1—linear maps from
IR™ and where the translational invariance in the ambient[spac.e S was enforced
FthatX € B,y € Cg,
y = 9(X), {U,a} and {V, 8} are manifold charts at X and y respectively while
a is chosen so that a(X) is the origin of R™. ¢ € j*¢(X) 3 if, and only if,
the corresponding k* order Taylor polynomials 7% are identical at o(X), i.e.,
TH(Boyoa N aX)) = T*B o ¢oat)a(X)) [BSIT"]. ‘This enables us to
identify 7% (X) with its representation j¥(8 o1 o a~!)(a(X)), the principal
part of which is an element of L(R", R™) &%_, S:(R™, R™).

to eliminate the target point dependence. Indeed, suppos

Definition 1.7 A k-local configuration of the 7_“naterial point X is an
element of the space of all invertible k-jets J*(B,S). Given two, in general
different, configurations ¥ and ¢ the deformation gradient at X of the
deformation x = 9o¢™! from the placement ¢(B) to t[he placement (B) *

is the tangent map x.(X) : Tox)S — Ty(x)S the Euclidean repfesentation of
which is an element of GL(n,IR). [ '

Higher order deformation gradients can then be thought'] of as the tangent maps
of automorphisms of the bundle of local configurations over corresponding

deformations.

\

3 The jet is understood here as an equivalence class of differgntia.ble functions.

4 [f S = IR™ and B is an open submanifold of IR™ a deformation is just another name

for a configuration. ‘

9 |
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Given the grade one (51mple) hyperelastic body, deﬁned by the density of
its elastic potential ¢ : J(B,8) — IR, the first Piola- Kzrchhoﬁ stress tensor
is introduced as P = Dgy where, if y is a deformation, F denotes the princi-
pal part of its tangent map x., and where D stands for the Fréchet derivative.
Note that as the deformation gradient can be looked at a.slthe change of frames
or a deformed frame (all the same) P can be understood as a vector bundle
automorphism of T'S over x~! (see e.g., [MN] and also th%a next section). Hav-
ing such a morphism (stress tensor) available one could attempt to express the
local action operator p in a more classical way as the tr‘ace of a composition
of linear maps [TN]. To be able to do this, however, one heeds to have a split-
ting (a linear connection) on T'S.® To this end and to show how to introduce
the concept of the stress tensor in the context of a 51mple yet not necessarily
potential, elasticity we will sketch, following Segev and!Epstein [Se], [EpSe],
the so-called local (first order) model - the alternative to the localized global
model presented above. ‘_
1.2 Local Model [

In contrast to the global model of a continuous deformable body the local
approach considers as its prime object a material point;and its neighborhood
rather than the body as a whole. By the neighborhood of a material point one
can understand, on the one hand, a topological neighborhood, le. an open
subbody containing the point in question, or on the o’ther hand, in a more
abstract sense, the pdint and an object attached to it wk;lich fully characterizes
the mechanical properties of the given material point.: In the tangent space
model of Segev and Epstein [Se] the neighborhood of a material point X €
B is modeled by Tx B, the tangent space to B at X/ The configuration of
that material point is therefore given by an immersion TxB — TS. The
local configuration of the body B is a vector bundle mo!rphism (VB-morphism
[L]) & : TB — TS ¢ where the underlying map k4 : B — S, such that
Ko © T = Ts O K, is not necessarily an embedding. T}‘w set C3(B,TS) of all’

5 For the discussion of this point see Marsden and Hughes [MH]
6 Equivalently, a section of J! (B S) -see Definition 1.6. (
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VB-morphisms of class C'* over C* base maps, where S:Sk, i1s a C°° vector
bundle over C*(B,S) [V], [Se]. Therefore, we postulate:
|

Definition 1.8 The local configuration space of‘the body B is a sub-
manifold C of CTB,TS). [
In particular, as the set Cp of all embeddings of B into Sfis open in C*(B,S),
one can select as the local configuration space the set of all VB-morphisms
TB—TS over embeddings B—S, as was proposed in [S‘v] The local virtual
displacement is then a vector én € TC which can be identified with the map
6nx : TB—=T(TS)|e(rp)- The local force, similarly to Fhe global case, is a
1-form on the space of local configurations, i.e., 6f e_‘T*CA. Suppose now
that a connection is given on TS. Thus, every vector U € TTS decomposes
uniquely into its horizontal and vertical parts and a VB—morphism v which
“assigns to every tangent vector u its vertical component v(u) € Ty(Tr(y)S)
can be defined. Moreover, any vertical component of a vector tangent to T'S
as a tangent vector to a vector space can be canonically identified with an
element of TS. If one now chooses to represent the local virtual displacement
6n. by Ane = 1000 6n,, where ¢ represents the above‘ mentioned canonical
identifications, the restriction of An,. to the tangent space at X becomes a
linear transformation from Tx B into T, x)S. The c?rresponding covector
Px, known as the local first Piola-Kirchhoff stress, is then a restriction of a
linear mapping p: &(TB) — TB to T, x)S such that ncjo mgopx(v) =7ws(v)
for every vector v€ x(TB). The total work of the local ‘forbes 6f acting on the

local virtual displacement 67 can now be given by

|

ston) = [ tr(oxco Am)(Xus. (17

The local stress px is hence identifiable with the value at X of the first Piola-
Kirchhoff stress tensor P, defined in the context of the localized hyperelasticity,
provided that both model are made compatible. Hence we say that the local
configuration « is compatible with the global conﬁauratlon Y if K = = 1,. On

|
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the other hand the local virtual displacement 47 is said to,1 be compatible with
the global virtual displacement 7 if én = w o 7. where% w is the canonical
involution on the double tangent TT'S [AM]. Finally, we postulate that the
local force 6f is compatible with the global force f if 6f(6n) = f(n) for any pair
of compatible virtual displacements 67, 7 at compatible (::onﬁgurations.7
i
|
!

7 Details can be found in [EpSe] and [Se].
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2. MATERIAL SYMMETRIES

By a symmetry of the body B with the constitutive‘i response function ¢
one understands a change of a configuration which leaves the material response
unchanged. In the context of the global theory we postulate, as in [EpES),
that:

Definition 2.1. The symmetry of the material bociy B characterized by
the constitutive functional ¢ is a diffeomorphism v of its configuration space

Cp such that |

Ye=c¢ (2.1)

- |
where the superscript star denotes the pull-back operator.

Thus, if v is a symmetry of B3, |

W) (1(1)) = W) | (22)

for every configuration ¥ € Cg and every virtual displ‘!acement Ny € TyCa.
Clearly, the set G. of all the diffeomorphisms of the configuration space of B
satisfying relation (2.2) forms a group under composition. The following two
special subgroups are of particular interest. First, let 8 : B — B be a diffeo-
morphism of the body manifold. It induces, by composition on the right, a
unique diffeomorphism vg € Dif fe, i.e., vg(¥) =¥ o ﬁ‘for any configuration
¥ € Cg. Dif fe denotes here the space of all diffeomorphisms of the configu-
ration space C. Similarly, a diffeomorphism s of the ambient space S induces

a diffeomorphism 7, of the configuration space by composition on the left.

Definition 2.2 The subgroups Gg and Gs genemited by the diffeomor-
phisms of the body manifold and the ambient space, respectively,v'will be called

the material and the spatial global symmetry groups of B.
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Note, that if S = IR? and the diffeomorphism s : S — S is a global isometry,
the relation (2.2) is the expression of the material frame indifference principle
(TN |

The symmetry group as defined above, whether material or spatial, is
both configuration and coordinate chart independent. @ften, however, it is
convenient to introduce the material symmetry group relative to a particular
configuration, say g, called the reference configuration. Namely, the material
symmetry of the body B relative to the reference v is an element of G, =
Yoo Gp oy . It is then easy to see that given another ﬁeference, say g,

Goo = X0 © Gyo © X0 : (2.3)

where xg = Yoo ¢51 denotes the deformation from one rgference conﬁguratioﬁ
|

to another reference configuration.

We shall look now at some particular classes of matell'ials and the relations
between their different but often overlapping symmetryi’groups. To this end,
let us assume that the material body B is hyperelastic. It follows from the de-
finition of the elastic potential W (Definition 1.6) that for every configuration
¥ € Cg and any material symmetry v € Gg

W) = WH). ‘ (2.4)

Moreover, if B is a'local hyperelastic material body with ¢ as the density of
its elastic potvential W, it is elementary to see that if there exists 8 € Dif fg
such that

]
()]
p—

(X, 78(¥))J(8.)(X) = ¢(B(X), %), (2.

at every material point X, and for any configuration %, ‘the induced diffeomor-
phism vg € Gg. B. denotes here the tangent map and J(B.) is its Jacobian.

14




Note that if we consider incompressible elasticity (e.g. rubber) not only will
the configuration space C,, contain only volume preserv“ing embeddings but
also, to check for the material symmetries, as well as the spatial symmetries,
one can only draw from the respective subgroups of volume preserving dif-
feomorphisms.® The set of all symmetries of a local hyperelastic material
(incompressible or not), obeying the relation (2.5), forms a subgroup Up of
Gs. For reasons which will be clear later we will call it the uniform subgroup
of the global material symmetry group of the local hypelr!elastic material body
B. |

Any local hyperelastic material body is, in fact, k-jet local for some finite
grade k (Proposition 1.1.). Consequently, the density of its elastic potential
W at the material point X € B can be affected by a configuration change only
if the new configuration has a different k-jet at X.

Definition 2.3 7. € Gg is the local material symmetry of a hyper-
elastic material point X € B if the diffeomorphism o € Dif fiz preserves the
point X and

P(F*V(X) 0 j* (X)) T (1 (X)) = p(7*¥(X)) (2.6)

for every k-jet local configuration FEY(X).0

Note that if Yo € Ug, for some diffeomorphism « ha\:/ing the material point
X as its fixed point, then according to the relation (2.4) j*a(X) is a local
material symmetry at X. Note also that whether we use the global model or a
compatible local model the definition of the local symmetry group as the set

8 Note that C,p is a submanifold of Cp, [EbM].
9 To define the local material symmetry one could invoke all diffeomorphisms 7y of the

configuration space Cpg satisfying (2.6) and such that for every configuration 1 and any
material point X 'y(w)(X) = ’d)(X) The jets of such 7¥'s could be considered local sym-
metries. This would, however, unnecessarily involve also symmetries of the ambient space

S.

o
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of k-jets of local diffeomorphisms of the reference configuration B preserving,
up to the Jacobian, the value of the constitutive functioral will always be the
same. All despite the fact that we may choose the stressitensor or the density
of its elastic potential, if there exists one, to be used as such a constitutive
functional. However, although the definitions are the same, the local symmetry
group based on the knowledge of the elastic potential is in general different
from the symmetry group of its first Piola-Kirchhoff st‘:ress tensor. Indeed,
adding any material point only dependent function to the density of the elastic
potential will not change the mechanical response of t}le material point, as
highlighted by the definition of the stress tensor (Deﬁn“ition 1.7), but it will

affect the choice of symmetries.
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3. MATERIAL UNIFORMITY

Intuitively speaking, a material body is thought of as ‘vmaterially uniform if
all its points are made of the same material. That is, if different material points
respond the same way to the compatible changes in their mechanical states.
As pointed out by Epstein at al. [EpES] in the context of a completely global
theory this way of formulating the idea of uniformity seems to be problematic
as it presupposes some kind of locality. For a truly global material body it
is impossible to measure the response of any single ma‘iterial point but only
the response of the body as a whole. The key idea of checking the uniformity,
however, is that of placing one piece of the body in the same configuration as
another piece and then checking for the local response.

To make this point more clear and the idea of uniformity more 'precise_
let us first introduce the concept of the non-local symrﬁetry group relative to
a material point. Let U be an open set in B. Denote t%y Ux the family of all
open neighbourhoods of the given material point X and let 7« be any virtual
displacement with a compact support in U.

- Definition 3.1 ,
a. v € Dif fe is called the global symmetry of the subbody U

() () = () (), (3.1)

!

for every virtual displacement ny and every configuration Y= me(nu).
b. The global symmetry group of the material point X s the

union

gc(X)z U gc(u) ) (3-2)
S UeUx : .

where G.(U)denotes the set of all global symmetries of the subbédy UucBsB.
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Having the group G.(X) defined we are now in a posmon to introduce the
concept of a material isomorphism.1°

Definition 3.2 The material point Y € B is globaily materially iso-
morphic {0 a material point X € B, if there exists a“diﬂeomorphism o €
Dif fg such that a(Y) = X and v4 € G(Y). The symmetry v, is then called
the global material isomorphism and the corresponding diffeomorphism «

the material isomorphism generator.

It is not difficult to see that being materially isomorphic is an equivalence
relation as it is both reflexive and transitive. Moreover, if 81, 82 € Dif f5 are
such that the corresponding diffeomorphisms of the configuration space, vg,
and g, are the global symmetries of the material points X and Y, respectively,
then V8100085 generates another global material 1somorph1sm Also, if &y and
@y are generators of two material isomorphisms of X and Y then v, “loa, is
a global symmetry of the material point Y. A conjugation of a rnatenal iso-
morphism by the material symmetries is again a material isomorphism and a
composition of a material isomorphism with the inver:se of another material
isomorphism is an element of a symmetry group [TW]. Incidentally, any ele-
ment of the uniform subgroup Us of a local hyperelastic material is a material
isomorphism. In fact, for this class of hyperelastic local materials one could
alternatively postulate that a diffeomorphism a € Diffg such that a(Y) =
and satisfying the relation (2.5) over some open neigk;lbourhood of the point
Y makes the material points X and Y materially isomorphic. Imitating the
standard definition of umformlty of Noll and Wang (see e.g., [TW]) we say
that: ' '

Definition 3.3 A material body B represented by the constitutive func-
tional ¢ is materially transitive if, and only if, all its points are parrwise

globally materzally isomorphic.11

10 The concept of the global symmetry group of a material point can also be used to

present locality as a symmetry, as shown by Epstein at al. [EpES]
1 The term transitive is borrowed from Sternberg (S], p-321) in anticipation of the fact
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As noted before and also in [EpES] and [EEpS1] the proposed definition
of global material uniformity may imply, due to the reqﬁired compactness of
B, some physically unreasonable behaviour at the perimeters of a truly global
body. This may be particularly true if the body has a material boundary. To
deal with this probler.n one should probably incorporate “intAo the definition of
uniformity some limiting process (similar to the one proposed by Epstein at
al. [EpES] in dealing with the concept of locality) to describe the transition
of material properties from the interior of the body 'ir‘:‘lto its boundary and
compatible with some definition of uniformity of a material boundary element.
This, however, will not be investigated in this exposition where, to avoid any
future confusion, we assume that as far as the uniformity problem is concerned

the manifold B is boundaryless.

For a k-grade local material, in addition to the conicept the giobal unifor-
mity, we can also adopt the standard definition of a material isomorphism of
Noll [N] and Wang [W] by saying that: ‘

Definition 3.4 Two material points, say X and Y, of the local material
body B are materially isomorphic if, and only if, there ezists an isomor-
phism Pxy : JE(B, TS) — J&(B, TS) such that |

o (%14 (Y)) = o(Pxy (7514 (Y))) o (3.3)

for every configuration ¢ € Cp and every my € TCB“.12 If in_addition, any
two material points are materially isomorphic and for every material po‘z’nt
Z € B there exists an open neighbourhood U in B containing Z over which
the material isomorphisms Pzy are distributed smoo?hly the material body 1is

called smoothly materially uniform.

that the material body which is materially transitive (globally uniform) induces in a natural

way a frame transitive G-structure. '
12 Note that for k = 1 the above condition can be realized by a linear isomorphism from

Ty B to Tk B, as originally postulated by Noll and Wang [N}, [W], [CoEp].
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For the local material we have now two notions of material uniformity, the
global one called transitivity which requires for each pair of material points
the existence of a local diffeomorphism generating a cor{ﬁguration space dif-
feomorphism satisfying (3.1) and the local uniformity of the Definition 3.4.
Clearly, for this class of materials, transitivity implies local uniformity since
for any global material isomorphism v, T*a] J5(8,Ts) 18 a local material iso-
morphism of (3.3). The converse, however, need not be true as even the exis-
tence of a smooth collection of material isomorphisms P2y does not guarantee
the existence of a global material isomorphism in the sense of the Definition
3.2. The discussion of the necessary and sufficient conditions for a materially
uniform local material body to be materially transitive consult Elzanowski at
al. [EEpS1].

We end this section by deriving the global uniformity condition for the
one-dimensional localized simple elasticity in terms of the Piola-Kirchhoff

3 and by showing a simple example of how to determine in a

stress tensor!
direct fashion whether or not a given constitutive law describes a uniform ma-
terial body [EEp1]. To this end let B C & = IR and assume that the local

response function

7(5'16)(X) = 3D P(X)dgdX. (34)

where p denotes, as before, the Piola-Kirchhoff stress and where the deformed
metric g = [1'(X)]2. The virtual work takes the well known form

1
() (ny) = /0 P! (X, X/ (X)) (X)dX. (3.5)

where prime denotes the differentiation in B. Suppose now that 8 € Dif fz is
the material isomorphism generator and let vg be the global material isomor-

phism. Then,

13 This is based on [E1] and some notes made available to me by Marcelo Epstein.
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1
V() (1) = (o B)(vpx (1)) =/0 p((¥oB), Z)(¥oB) (Z)é(wop) dZ. (3.6)

1

On the other hand, if X = §(Z) then,

1 A
() (1) =/0 p(V'(B(2)), B(Z))¥' (B(2))64' (6(2))5"(Z)dZ.. (3.7)

Using the global uniformity condition (Definition 3.2) one obtaines from the
fundamental theorem of calculus of variations that the localized simple elastic
material body is globaly uniform only if ' '

(W (8(2)), 8(2)) = p((w o B)(2),2)8(2) (3.8)

for every Z € B. '

For the second example let us consider a simple hypérelastic material with
the density of its elastic potential ¢ = (j*¥(X)), for every configuration ¢
and every material point X € B'= IR®. As pointed out before the first jet of
an embedding ¥ at a point X can be identified with a source, a target point
and a linear map F(X) = ¥.(X) : Tx B — Ty(x)S. Consequently, because of
the translational invariance in S the elastic potential becomes a function of a
material point and the deformation gradient F'. Moreovér, if S is a Riemannian
manifold, ¢ depends on F only through C = F*F, dué to the material frame
indifference (see e.g., [M1] or [TN]) where F* denotes the dual operator, [L].
Thus, given a smooth field of local configurations p* : U — JY(U,S), where
U is an open neighbourhood in B, let us consider the elastic potentiél density

function

oY, F(Y)) = tr(A()C(Y) +0o(Y) (3.9)
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where ¢,(Y) is a scalar function of position only and vx}here A(Y) € L(TyB,
TyB) is assumed to be positive definite and symmetric. In the context of
a simple hyperelastic material for the body U to be materially uniform the
Definition 3.4 can be realized by assuming that there‘exists a smooth VB-
automorphism P of the tangent bundle TU and a scalar-valued function f
such that

tr(A(Y)C(Y)) + £(Y) = tr(A(X)Pxy C(Y)Pyx) I+ wo(X) (3.10)

holds identically for all nonsingular F(Y) at any X and Y € U.}* To show that
this is possible we start by setting f(Y) = ¢(Y) and by observing that the con-
dition (3.10) implies that A(Y)Pyx = PyxA(X). Invoking polar decomposi-
tion theorem ({L] p.156) for the isomorphism Qyx = PYXA(X)% one obtains,
in view of the uniqueness of the polar decomposition", Qvyx = A(Y)%Ryx
where Ry x : TxB — Ty B is an orthogonal isomorphism. It follows that any

linear isomorphism

Pyx = A(Y)%RyxA(X)—% (3.11)

can serve as a material isomorphism. Incidently, we have just proved:

Proposition 3.1 " The material body B with the constitutive law (3.10). is
always smoothly materially uniform provided the map X —— A(X) is locally

smooth.

This fact is unfortunatély by no means a rule but rather an exception, as
shown in [EEpl]. Indeed, applying the method presented above to the higher
order polynomial analogy of the constitutive law (3.9)

14 P, when resfricted to the fibers at X and Y, becomes the linear isomorphism Pxy.

22



p(Y,F(Y)) = tr(A1(Y)C(Y)) + tr(A2(Y)C*(Y)) + wo(Y) (3.12)

it is easy to see that the uniformity condition (3.10) is, in general, impossible to
satisfy unless material coefficients A, and A, are related through the respec-
tive fields of orthogonal isomorphisms. By rather straightforward calculations
one can show that:

Proposition 3.2 The material body B defined by the elastic potential
(3.12) is uniform only if for any pair of material points X and Y the ma-
terial coefficients A1 and Ag are such that |

1

As(V)} = Ay (V) Ry AL (X) 3 Ax(X)¥Sy x (3.13)

where R and S are arbitrary orthogonal automorphisms of the tangent bundle
TB.
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4. UNIFORM MATERIAL STRUCTURES

After introducing in the previous section the concepts of material isomor-
phism and that of a material uniformity we are now in a‘;position to unveil the
intrinsic geometric structure associated with a smoothlﬂf uniform local mate-
rial body of an arbitrary finite grade. For the clarity and also the simplicity
of our exposition we shall restrict the class of materials considered here to the
finite grade local hyperelasticity.

Hence, suppose that ¢ denotes the density of an elastic potential of the
continuous material body B with placements in the ambient space S. As
we are going to deal only with unconstrained elastic materials '* we assume
that the body manifold B and the ambient space S are manifolds of the same
dimension, say n. Our first objective is to show that ¢ as the constitutive
functional of a k-grade local hyperelastic material body is in fact a function
on the fibre bundle of k- frames of the body B. To this‘end, select a material
point X € B. We recognize that two embeddings of B into S give rise to the
same k-jet at X if, and only if, they have at X the samé partial derivative up
to order k, with respect to some local coordinate systems on B and S. Note
that this definition is independent of the choice of the coordinate systems.
Moreover, any k-jet at X of the configuration ¢ is an invertible jet (see e.g.,

Kobayashi [Ko]) as’

F*B(X) 0 FY L (W(X)) = (W 0 p~H)(W(X)) = j*ids. (4.1)

where ids denotes the local identity in S. The collection of all the k-jets of
~ all possible embeddings of B into S, denoted by J*(B,S) is a fibre bundle

over the manifold B with the source map 7°(j*%(X)) = X being the nat-
* ural projection onto B, [Sa]. Its fibre at each and every material point X is
‘ isomorphic, modulo the translations in S8, with the s;et GF of all invertible
k-jets of the differentiable mappings g : IR™ — IR"™ with the source and the

15 gome discussion on the interplay of uniformity and constraints was presented in [EEp0].
16 This, in fact, has been taken care of in the definition of the k-jet.
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1

target at the origin of JR™. Indeed, given an invertible k-jet j¥4(X) and select-
ing, without loss of generality, local coordinate charts « and 3 on some open
neighbourhoods of X and ¥(X) respectively, such that a(X) = B(%(X)) = 0,
i*(a o1 o B71)(0) € JE(R™,R") and it is obviously invertible. Evidently,
the converse is true as well. Let H*(B) denote the bundle of all holonomic
k-frames of B, i.e. the set of k-jets at 0 € IR™ of all local diffeomorphisms of
IR™ into B, [Sa]. It is now easy to see that the set of k-jets of all conﬁgurationé
of B can be identified with H*(8B). Consequently we have:

Proposition 4.1 Given a k-grade local hyperelastic material its density of
the elastic potential @ is a smooth real valued function on the bundle of holo-

nomic k-frames of B.

This fact is particularly transparent in the case of a simple material bodyg
Indeed, the first jet of a configuration at X can be identify with the pair
(X,F) where F : TxB — TS is a deformation gradient and so a nonsingular
linear transformation. Selecting an orthonormal frame at Tx5 F induces
another basis in T'S at =(F(TxB)). ' '

The set G* is a group with the multiplication defined by the composition of
jets. It acts on H*(B) on the right. Namely, given a k-frame p* = j*y(X), for
some local diffeomorphism ¢, and g* = j*g(0) € G*, where g € J§(IR™, R™),
p*g* = j*¢(X) such that j5(¢~1oF71)(0) = j* (¥ "L oS tog)(0) for some local
coordinate map 3 on S. It is then easy to see that locally ¢ = B tog™loBoy. It
is also straightforward to show that H*(B) is a principal bundle over B with the
structure group G* (see e.g., [CDL] or [Sa]). Looking closer at '_ché collections
of all holonomic frame bundles we first notice that the structure group G =
GL(n,R) and that H}(B) is the bundle of linear frames of B, [CDL]. In turn,
G? is the semidirect product of the general linear group‘GL(n,R)vand the
space of bilinear symmetric JR"~valued forms S?(IR™, IR™) (see e.g., [CDL]
and also [EEp2]). H?(B), which in the literature appears under the name of

the holonomic second order frame bundle'”, is not only a principal bundle over

17 "The term holonomic, which as a matter of fact can be applied to any order frame,
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B with G? as its structure group but also an affine bundle over H'(5) with the
standard fibre A?(n) = S2(IR", IR") and the projection 7% : H?(8) — HY(B)
such that m3(p?) = 7 (7?(p?)) for any p? € H?(B).

Suppose now that ¢ : H*(B) — IR is the density of the Lagrangian (strain
energy function) W of the k-grade local hyperelastic body B. By the tsotropy
group of p at X we understand the collection of the elements of G*¥ on the
orbits of which <p|7r;1(x) is constant. A

Definition 4.1 The (local) symmetry group of the material point
X € B is the mazimum subgroup G% of G* such that v5(GX) is contained in
the special linear group SL(n, R) and which is also a subgroup of the isotropy
group of ¢ at X. : ' :

Note that the Implicit Function Theorem (see e.g., [K]) implies that for every
element of G£ there exists a corresponding local material symmetry of Defin-
ition 2.3. Note also that the definition of the symmetry group at X depends
on how the set of invertible jets of all embeddings of B in S is identified with
the bundle of holonomic k-frames, i.e. on the choice of an atlas on S or equiv-
alently the selection of a local reference configuration. Hence, for the rest of
this paper, we assume that such an identification is given.

Materials (or rather material points) are classified according to their sym-
metry group, [TN]. For example, the elastic fluid is a material body the points
of which have SL(n, IR) as their symmetry group. B is made of an isotropic
solid if for every material point X there exists a local configuration relative to -
which G& = SO(n, R), the special orthogonal group. These and other material
structures were analyzed in [WT], [EEpS1], [EEp0] and [EP1].

relates to the fact that the elements of Hk(B) are equivalent classes of embeddings rather
than jets of sections of bundles of frames of lower order. Only for k = 1 there is naturally no
difference between a holonomic frame and a non-holonomic frame. For the precise definition
of a non-holonomic and a semi-holonomic frame we refer the reader to [EP3], [Sa] and {Y].

Some aspects of these definitions will also be reviewed in Chapter 5.
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Even if for two different material points, say X and Y, of the k- grade local
hyperelastic material body B the corresponding symmetry groups are identical
one cannot be sure yet that both points are made of the same material. For, the
symmetry group of a material point is only a partial characteristic of a material
while the ultimate test is that of measuring the response of these material
points to the superimposed deformations. As we have argued before, the
mathematically correct test is that of the existence of a material isomorphism
of the Definition 3.3. Thus, suppose that X,Y € B are materially isomorphic,
i.e. there exists a volume preserving isomorphism Pxy : 7rk'1(Y) — 77 H(X)
such that

#(Pxy(p*)) = ¢(p*) (4.3)

for every p¥ € mg'(Y). Given gF € & C G*, let R, : H¥(B) — HF(B)
represent the principal bundle automorphism induced by the right action by
the element g®. It is then immediate from the relation (4.3) that -

Rix (Pxy (PF) = Pxy (Rge (pF)) (4.4)

for every k-frame p* over X and any g* € GX and h* € G%. The relation
(4.4) makes the respective symmetry groups not only homomorphic but also
renders Rz 0 Pxy o Ry« to be a material isomorphism for any g* € G&, any
h* € G&, and any material isomorphism Pxy (see also [WT]).

Definition 4.2 _

a. We say that two k-frames (local configurations) p¥ and pk at X andY,
respectively, are materially compatible if there exrists a material
isomorphism Pxy such that p& = Pxy(p¥). Hence, the material
reference is a smooth local section ¥ : 4 c B — HF(B) such that
any two k-frames in its image are materially compatible.

b. Any collection M*(B) of all materially compatible k-frames will be

called the material structure.
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Obviously, if the frames p¥ and p4 are materially compatible then for
any material symmetry g* and h*, at m(pk) and mi(p§) respectively, pkgt
and p5h* are materially compatible where, p*g* is the standard shorthand for
the right action ﬁ‘{gk(p’“). Also, given the material reference [* : U CB—
H*(B) it induces a local trivialization of the bundle of holonomic k-frames,
i.e. an isomorphism ¥* : 71',:1(2/1) — U x G* such that T*(*(X)) = (X, ek), for
any material point X € U/ where ¥ denotes the identity of G*. By doing so it
establishes a homomorphism of the symmetry group of each and every point in
U with a unique (base point independent) subgroup Q{i of the structure group

G* called the material symmetry group relative to the material reference 15,

Theorem 4.1 Let ¢ be the density of the strain energy of the smooth
materially uniform k-grade local hyperelastic body B. Then, M*(B) is a re-
duction'® of the bundle of k-frames of B to some material symmetry groups of
B. "

Proof.!® The statement of the theorem is deliberately generic as there
exist many different "collections of materially compatible frames” and many
corresponding material symmetry groups all parametrized by different mate-
rial references. To show that any particular material structure M*(B) is a
reduction of the principal bundle H*(B) it is enough to show that there exists
a trivialization of H*(B) whose transition functions take values in the material
symmetry group relative to some material reference ([S], Lemma 1.1). This is,
however, immediate from the previous discussion. Na,mely; taking an arbitrary
k-frame p* € H*(B) and choosing in its neighbourhood the material reference
(¢, the existence of which is guaranteed by the assumption of smooth local
uniformity, will automatically select the material symmetry group g[’z. It is
then apparent from the Definition 4.2 that the only means of collecting all
materially compatible frames over mx(p¥) is by the right action of the mate-

rial symmetry group g[’i. Extending the given section [¥ or selecting another

18 A subbundle of Hk(B) with the structure group being a closed subgroup of gk. See

also Sternberg [S].
19 See also [EEpS2).
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section at another materially compatible frame from 7r,:1(l/{) will induce lo-
cal trivialization with transition functions taking values in the given material
symmetry groups as implied by (4.4) &

It is also evident from the given construction of the particular material
structure that if we start the construction from a different frame, say r*, for
which there exists a group element g* ¢ g’“/g{z, the space of right cosets of
g{z in G*, such that r* = p*g* then the corresponding material structures
are conjugate, i.e. one is obtained from another by the right action by g*.
The associated material symmetry groups are then conjugate subgroups of
the structure group G* of H*(B). It is worth mentioning at this point that
if H*(B) can be reduced to MF*(B) then there exists a global section m* :
B—H*(B)x+G*/GE to the associated bundle of H*(B) with the standard fibre
gk/g{z. In our case such a section is easily available by gluing overlapping
material references. In fact, the existence of such a global section is both’
sufficient and necessary for the existence of a reduction [KoNo]. This property
is the basis of the analysis of the integrability of G-structures possessing the
so-called characteristic object, [EEpS2], [F]. Thus we have:

Corollary 4.1 Any two material structures of the same k-grade local hy-

perelastic body are conjugate.

Given a smoothly uniform k-grade hyperelastic body B, a (material) cov-
ering {Uy, }icr of B is available such that transition functions of the subor-
dinate trivialization {7y X tq, }:ser of H*(B) all take values in some material
symmetry group. As we know from the proof of Theorem 4.1 such a trivial-
ization is induced by the family of local material references [Ifx,- : Uy, — HE(B).
Namely, for every p* € H*(U,,) :

p* = & (me(p*))E, (p*) (4.5)

where t5_ : wgl(uai) — G* and t';'_t;jl € g(:. On the basis of such a material

trivialization we can now represent, at least locally, the density of the strain
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energy function ¢ by a function on the structure group G¥. To this end let us
therefore define W : G¥ — IR such that for every p* € T (Us,)

Wt (p*)) = o(p¥). (4.6)

Note that although the definition of the function W does depend on the
choice of a particular material trivialization it is a well defined smooth func-
tion on the whole structure group.?® Note also that its isotropy group is
the particular material symmetry group induced by the choice of the mate-
rial trivialization {m; X ta,}ie;. Indeed, let h* € G% and let p* = [¥ (X)
then W(ta, (15 (X)) = W(ta,(p*)) = 9(p*) = ©(Pxy © Rux © Pyx(p*)) =
o(Pyx(pF)h*) = W(tai([ﬁ‘.(X))hk). As the inducing trivialization has its
transition functions taking values in the material symmetry group Q"i the
relation (4.5) holds for every p* € H*(B). Thus we have:

Theorem 4.2 Given a smoothly uniform k-grade hyperelastic material
body B represented by the density ¢ of its elastic potential, and selecting a
particular material trivialization {(7x Xta,)}ic1, there exists a smooth function
W : GF — IR such that the relation (4.6) is satisfied for every p* € H*(B).

In fact, the converse is true as well. Namely, given any collection of smooth
invariant mappings tg, : H*(Us,) — G* and a smooth function W : g¥ — R
such that the relation (4.6) is satisfied on H*¥(B) it is easy to see that the
material body is smoothly materially uniform. Respective material references -

(¥ are then given by ¢7!(e*).

20 The availability of this relation is not only a reflection of the fact that material isomor-
phisms are volume preserving but also that the density of the strain energy function at the
stress free state, should there exist one, is assumed zero. Other relations where postulated, -

or derived, in [CoEp] and [EP1].
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5. MATERIAL CONNECTIONS

5.1. Principal Material Connections

Suppose that ¥ is a smooth (local) material reference of the open subbody
U C B. Having this available we can lift the tangent space TU to the bundle of
holonomic k-frames H*(B) creating a horizontal distribution®! H* on =, ' (U4)

viz:
HE(pF) = TRk (pr ) (15 (Trr (o B)) (5.1)

for every p* ¢ 7r,:1(1/l) where T denotes the tangent map and where t* :
7 H(U) — G* is defined by the relation (4.5). This distribution is obviously
equivariant and such that for every r* € 7rk_1(Z/{) it splits the tangent space
TH*(B) i.e., T+ H*(B) = Tem; '(r*)) ® H*(z*). Let g* denote the Lie algebra
of the structure group G*, ie. g¥ = T.xG*, and let w* : TH*U) — gF be
the Lie algebra valued 1- form on H*(Z{) such that at any p* € =7 (U) and
for every £ € T« HF () '

wF (&) = TLyxpry 0 t5(€) (5.2)

where L« : G* — G* denotes the left translation by the group element g*.
Using standard arguments (see e.g., [Po], [S]) one can show now that H*(l)
is exactly the kernel of the 1-form w*. Tt also easy to see from the definition
(5.2) that due to the equivariance of the horizontal distribution HE(U) the
form w* is an equivariant 1-form. The extension of the distribution H*(U)
and the form w* to the bundle H*(B) is then easily achieved by covering the
entire body B by local material references, generating locally connection forms
as per (5.2) and utilizing the partition of unity subordinate to the covering of
B (see [S] and [WT]). As we are able to cover B by local material references
the connection introduced above reduces to a connection on the corresponding

material structure M*(B). Thus, we postulate:

2l Being horizontal means that 7Tk,.7'{k(pk») = Tn(pk)B.
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Definition 5.1 Any k-connection on the material structure M*(B) of B

will be called the k-order principal material connection of the body B.

As M*(B) is locally trivial, for any X € B there exists a principal material
connection?®? such that in some neighbourhood of X it is generated by a local
material reference. That is, for every material point X there exists an open
neighbourhood and a material reference such that the tangent space of its
~ image in H¥(B) coincides with the horizontal distribution of some principal
material connection. Consequently the local holonomy group of such a locally
integrable principal material connection is trivial and we have the distant
material parallelizm [Po]. In the future analysis of material structures we will,
in fact, restrict, for most part, our choice of material connections to locally
integrable ones only.

Having the principal material connection available we can now restate
Theorem 4.2:

Proposition 5.1 Given the k-grade hyperelastic material body B, repre-
sented by the density ¢ of its strain energy function W, it is smoothly materi-
ally uniform if, and only if, for every p* € H*(B) there ezists a neighbourhood
U > mr(p*). a k-order connection w* and a smooth function W:G6* - R
such that the principal material connection wk|1r;1(u) is integrable and that for

“every 1 in mH(U) and every £ € T.H*(B)

dp(€) = dW 0 Ry (pry 0 w(€) (5.3)

for some smooth function t* : H*(U) — G* of (4.5), usually p*® dependent.

Proof. If B is smoothly materially uniform one gets the relation (5.3) by

differentiating the relation (4.6) and invoking the definition of the connection

- 22 The first-order principal material connection is a material connection in the sense of

Noll and Wang [WT] (see also Bloom [B]).
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1-form (5.2). On the other hand, if there exists a locally integrable connection
such that (5.3) holds then the corresponding horizontal distribution H* is
locally integrable as a differential distribution. Thus, for any X € B there
exists a local section [¥ which in turn induces a local trivialization of H* ()
and the function t* oBeying the relation (4.5). Equivalently, as shown by Poor
[Po], there exists a distant parallelism P which can be taken for the material
isomorphisms &

The principal material connection we have constructed above is clearly not
unique as it strongly depends onthe choice of a material section of the bundle
of holonomic frames. However, it should be quite obvious from the discussion
in this and in the previous chapter that the only two degrees of freedom
available to us, as far as choosing another material connection is concerned,
are: choosing another material structure or another material reference within
the current material structure. As any two material structures are conjugate
(Corollary 4.1) the first choice is only apparent, at least for k = 1. For the
simple material structures transiating everything by a constant element of
the structure group G* is going to change nothing. The connection itself will
obviously change but all its essential geometric characteristics will remain the
same. For the higher order cases this is not too obvious [EP4]. We will come
back to this problem a bit later on once we know more about the higher order

connections.

However, it appears that if we change the local material reference of (5.1)
from [ to another local material reference the horizontal distribution will
change and so will the corresponding connection form. To observe how these
changes occur let (¥ and 1§ represent two different local material references
but such that the corresponding standard isotropy groups are identical. Thus,
(¥ and 1§ are local sections of the same reduction of H*(B), say M*(B). For
simplicity, but without any loss of generality, we assume that their respective
domains of definition are identical, say 2. Being sections of the same principal
bundle I¥ and 1§ differ by a base point dependent deformation by the isotropy
group, i.e. there exists a smooth gauge 0 : T - gft such that
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5(Y) = Ryev) 0 (Y) (5.4)

for any Y € U. Consequently, if w¥ and w% represent the corresponding
principal material connection 1-forms then for any p* € 7rk_1(‘13) and any
vector £ € T, H*(T)

wk(€) = ad(o(mk(p*)) 1wk (€) + 5(¢)(E) (5.5)

where ad denotes the adjoint action of the group on its algebra, ¢ is the
Maurer-Cartan form on G*,(see e.g., [Po]), and § : 7, '() — G* is a constant
along fibers function, induced by the gauge g such that g o 7, = g. The same
is true even if the connections are not locally integrable. In particular, we may
choose to represent 1ocally any material connection by a 1-form on the body
B. This is done relative to a trivialization induced by a section, material or
not, specially by the coordinate map « : U — IR. Indeed, such a map induces
automatically, through its tangent map a., a choice of frames in the tangent
space and also higher order frames. The connection forms wf and w§ are then
represented by the g*-valued 1- forms w®; such that

k. jka*wf 7 = 1’2 (56)

Wai =

where j*o is understood as the local section of H*(B) induced by the coordi-
nate map «. Thus, using the standard shorthand, one can write

wh (Y) = o(Y) 1wk (Y)e(Y) + o(Y) to.(Y) (5.7)

for any Y € . Generalizing the above relations we have:

- Proposition 5.2 Let h* denote the Lie algebra of a particular isotropy

. group gfk. Given the principal material connection w* and a h*-valued 1-form
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% on H¥(B), w* + 7% represents another principal material connection if, and
only if, for any £ € TM*(B)

a) T%(v(€)) = 0 for every vertical vector v(€) € TM*(B),

b) TF is Gk equivariant.

Proof. Clearly, if w* + 7* represents a principal material connection on
MF¥(B) then conditions a) and b) are satisfied. On the other hand if 7% is
equivariant then w* + 7% is equivariant too. Also, for every p¥ € M*(8) and
£ € TM*(B)  dW o Rye(pry o (WF + 75)(0(8)) = dW 0 Ry () 0 wh(0(€)) =
dp(o(€)) and dW o Rk (k) © (WF + 7%)(hor(€)) = dW o Rk (pry 7 (hor(§)) =
0 = do(hor(€)) as 7% is h*-valued and g["; is the isotropy group of W. Thus,
the equation (5.2) holds for the connection w* + 7% which makes it a principal

material connection &

5.2. Induced Maferial Connections

To facilitate our future developments we need first to present the relevant
mathematical preliminaries. This is done not only to make this exposition as
self contained as possible and not only because the theory of linear connec-
tions on frame bundles of order higher than one is not easily available in the
mathematical literature but also to present some relevant recent results (EP3].

We start by pointing out that the relation between the second order frame
bundle and the bundle of linear frames of B, as presented at the beginning of
Chapter 4, is, in fact, typical for the whole chain of frame bundles (holonomic
or not). That is, if we consider the following chain of frame bundles:

H*(B)—»H1(B)— - -- —H*(B)—H(B). (5.8)

then for any ordered pair of positive integers s > m > 1 there is a projection

75 H¥3(B) —>Hr(B) (5.9)
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making H*(5) into an affine bundle over H(B) with the kernel of the epimor-
phism #} : G* — G being its structure group A;(n). The group N?(n) is
a normal subgroup of G° and for r = s — 1 is canonically isomorphic to the
abelian vector group of all multilinear symmetric JR™-valued (s — 1)-forms on
IR™ (Ko}, [Y]. The grbup G* is the semidirect product of G! = GL(n,R) and
the vector group J\f(’jc_l)(n). The algebra of #3(G°) is a graded Lie algebra
isomorphic to the algebra n? of A*(n). Let us now introduce some technical
definitions. '

Suppose that A*~1 : H*~1(JR") — H*~1(B) denotes a local isomorphism
about (0,e*~1). We say that h*~1 is admissible if there exists an embedding
¥ : U C IR"— B such that ¢ and h*~! commute with the respective projections
Te—1, 0 € U and h*~1(ek~1) = j¥~14(0). Thus, given a k-frame p* there
exists an admissible isomorphism A*¥~! such that p* = j1h*~1(e*¥~1). To show
this we point out that for any k-frame p* there exists an embedding f of
a neighbourhood of the origin of R™ into B such that p* = j*f(0). The
corresponding admissible isomorphism h*~! is then defined by the condition
that j*=1f o f = h%~1 o j*~1id where j*~!f denotes the jet extension of
f. The admissible isomorphism A*~! induces a linear isomorphism A*¥~1 :
T HF"LY(R™) — T,,:_l(pk)Hk-l(B). Since H*~1(IR) = IR™ x G*~! we have
that T« H(R™) = R™ ® gkt~L.

Definition 5.2 Let p* € H*(B) and let h*~! denote the corresponding
admissible isomorphism. The standard horizontal space of the frame p*
is the n-dimensional vector space SH(pF) = R*=1(IR",0).

-Generalizing the concept of the solder form the following is the standard
definition of the fundamental form on a frame bundle.

Definition 5.3 The fundamental form on H*(B) is the R™ @ gF!-
valued 1-form 6% such that given a k-frame p*, the corresponding admissible
isomorphism h*~!, and the tangent vector £ € Tpka(B)

RETL(0%(8)) = Trf_ 4 () (5.10)

36




The form 6% is equivariant with respect to the right action of G* on H*(B)
and the action p* of G¥ on the tangent space TH*(B). The latter being just
an extension of the natural action of GL(n,IR) on IR™. Namely,

85 (TR;. (€)) = p*((8*)"1)6%(€) (5.11)
for any g* € G* and any tangent vector (e THk(B). The adjoint action p* of
the structure group G* on IR™ @ g~ is such that for any vector X*~1 € gk~1
and any gt € Gk

pF (") X1 = ad®(7F_ (gF)) X5 (5.12)

On the other hand, for any v € R

Pk (g5)(v,0) = (74 (g*)v, A*(g*,v)) (5.13)

for some mapping A¥ : G¥ x R® — g*~! such that T#F oAk = AF~1o {7k | x
idp~}. %L denotes here the projection G' — G¥, I > k. For a fixed g* € G*
Me(gk ) IR™ — g*~1is linear and it is identically zero if, and only if, g* € G*
[Y]. Moreover, '

N (g5et,v) = A\ (gh, 7 (g})v) + ad* (T7E_1(g5)) A" (gl ) (5.14)

for any gt, gk € G*k. _

The fundamental form 8% decomposes canonically into the sum of 1-forms
with values in the subalgebras of IR™ @ g*~1. In particular, 6% = 6% + 0, where
6% is just a projection onto R™ while 0, takes values in {0} & g*~'. Further-

more, as for any r < k the group G* can be represented as the semidirect
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product of G" = #¥(G*) and the kernel N*(n) of the epimorphism #*, we can
write

0k = 0% + 0, + put (5.15)

where 7¥*0, = 7¥,0, and where u¥ takes values in nfZ}, the algebra of the
Lie group M¥~!(n). As a result of the equivariance of the fundamental form
6%, Eqn.(5.11), we get that

05 (R (6)) = 7 ((8")~1)65 (€) (5.16a)

and that

01 (Ryn. (6)) = ad® (7E_ (%) 71))0k(€) + N*((g*)™, 85(6)). (5.16b)

for any vector ¢ € TH*(B). -

Suppose now that ¢ : H*~1(B)—HF*(B) is a local section and let p* be
in the image of q. Given the element of the standard horizontal space at
Pk, €€ SH(PY), q 0%(€) = 0%(q.(€)) € R & {0} as A*"1(6%(g.(6)) =
Trk_,(q.(€)) = & by the Definition 5.3. Note that this is true irrespective
of the section g as long as p* belong to its image. All the above implies
immediately that: |

Proposition 5.3 (Elzanowski and Prishepionok [EP2]) . Let p* be a k-
frame. & € SH(pF) if, and only if, given a section q : HF-1(B)—HF(B) such
that p* is in the image of q, ¢*0x(§) = 0.

"To get some true insight into the structure of connections on the bundle

of k-frames we start by recalling the construction of an arbitrary k-connection
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w¥ in terms of the so-called €-connection (see e.g., [Ko|, [Y]). We adapt this

presentation, however, to our particular needs. To do this we need however to
broaden a little our picture and to imbedded the bundle of holonomic frames
H*(B) into the bundle of the non-holonomic frames H*(B) and specially the
bundle of semi-holonomic frames g+ (B).?3 We also recall that the local section
q : H"(B)—H*(B) is invariant (G"-invariant) if for any p” € H"(B) and every
e EGT

q(Re(P)) = Rui(gry(alp™)) (5.17)
where v¥ is a canonical embedding of G™ into G¥. For the simplicity of our
exposition but without any loss of generality, at least for what we intend to
do, let us restrict our analysis to the semi-holonomic case only. Therefore,
let e5+1 : HY(B)—H*+1(B) be a Gl-invariant section called the &-connection
of order k. It defines a G' reduction of the bundle H**1(B) given by the
image ¢**1(H!(B)). We shall denote it by M,«. The projection of M« to
the bundle H*(B) , that is Ny« = nf+1(ek+1(M+)), is also a G reduction.
This, in turn, induces the Gl-invariant partial section ¢* : N« — M_«. The

23 Although, for the precise definitions we refer the reader to Saunders [Sa] and Yuen [Y]
we also would like to point out at the way the space of non-holonomic k-frames Hk(B) can
be thought of recursively as the space of the first jets of all local sections of the bundle of
non-holonomic (k-1)-frames I:Ik(B). For example,let f : U(O) — HI(B) (for k=1 all frame
bundles are the same) be a differentiable map of a neighbourhood of the origin of IR™ into
HI(B) and such that 7lof : U(0)— B is a local diffeomorphism where ! : Hl(B)%B is-
the standard projection. The first jet of f at 0 can be considered a non-holonomic 2-frame
of Bat 7! (f(())) If, in addition, f is such that the first jet of mof at0is equal to f(O) the
corresponding 2-frame is called semi-holonomic. Exfending this definition recursively to
an arbitrary k-order we obtain the set of all non-holonomic and sémi-holonomic frames of
B. The space ﬁk(B) (also ﬁk(B)) is a principal bundle over 3. Its structure group Qk
is the fibre at 0 of I:Ik(Bn), i.e., the group of first jets at the origin of all local sections
of I:Ik_l(R") satisfying the semi-holonomicity condition. It can be easely shown (see e.‘g.,'

Saunders [Sa]) that Hk(B) C I:Ik(B) C I:Ik(B) :
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counection w* on H*(B) is then defined by selecting as its horizontal space
at p* € H*(B) SH(¢*(p*)) if p* € N« and TmnfSH(qk(pk)) for any other
k-frame, where n¥ denotes the appropriate element of the affine group NE(n).
The Gl-invariant submanifold N« of H*(B), fundamental for the construction
of the connection w’“,- will be called its characteristic manifold. We point out
here that to define a connection on the holonomic frame bundle H*(B), called
the holonomic connection, the defining £-connection does not need to be a
section into the holonomic (k+1)-frame bundle. As a matter of fact, if it is, it
has very special properties, as we show later.

We are now in the position to represent the k-connection w* through the
fundamental form %+1:

Theorem 5.1 (Elzanowski and Prishepionok [EP3]) Let w* be a connec-
tion of order k on the bundle of holonomic k-frames H*(B) and let ¢**! denotes
its generating &-connection with Ny« as its characteristic manifold. Then, for

any p* € Ny« and any g* € G*

W (Rgx (%)) (Rgral) = G Ok 1 (TR E) — Ne((g5) 71, 3*705(€))

 where § € ToeN,e and G® denotes the G*-equivariant extension of the G!-

invariant partial section ¢ induced by the &-connection £8+1.

Proof. As implied by (5.14a) the 1-form on the right hand side of the
identity is equivariant. What remains to be shown is that both sides are
“identical on the characteristic manifold of the connection w*. Thus, let p* €
N_« then w*(p*)(€) = 0 if, and only if, £ € SH(¢*(p*)). On the other hand if
p* € N« so does pg* for any g* € v¥(G'). However, \*({(g*)~1,-) is identically
zero for any g* € GL(n,R") & {0}. Also, ¢**0c11(TR,+&) = 0 if, and only if
£ € SH(g*(p*)) as attested by the Proposition 5.3 &

To get an even more detailed description of a k-connection as well as
to understand better the role of the mapping A* let us compare the stan-
dard horizontal spaces corresponding to two different (k + 1)-frames over the
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same k-frame. Hence, let us take pF+1 p*+! € H**+1(B) such that p* is their.

prolectlon onto H"(B) This implies that there exists n’”’1 € N,f“(n) such

k

Moreover, there exists an admissible local isomor-
phism o : Hk(lR") — H*(IR™) preserving the neutral element and such
that n**+! = jla’“(e"-). Also, there is an admissible local isomorphism A* :
H*(IR") — H*(B) such that j'h*(e¥) = p*+! (see Definition 5.2). The
composition h*¥ o o* is then an admissible local isomorphism the first jet of
which at e* gives the (k + 1)- frame pE*+l. According to the Definition 5.2
(h* o ak)(v,O) € SH(pF+1) for any (v,0) € IR™ & g*. Recalling the definition
of the fundamental form and that of the action p’“IJ’l of the group G**! on the
tangent space of H*(B) we obtain k¥ o ak(v,0) = h*opF+1((n ’,:*1)“1)(1}, 0) =
REGET o, X () 7o) = AF(0,0)  + RE(O M (0" ) =
R*(v,0) + h"(/\k(( +1)_1) v) = h*(v,0) +/\’°((nk+1) L,v)) for every
(v,0) € R™ & g* where, )\k( -} denotes a vertical vector at p* corresponding
to the Lie algebra element A*(-,-). All of the above shows that:

Lemma 5.1 Given two, in general different, (k 4 1)-frames pF+1, p*+!
over the same k-frame p*, i.e. w,’:“(f)k“) = mftl(pF+l) = pk, the stan-
dard horizontal space of pF*+1 is the gk translate, through Mk of the standard
horizontal space of p*.

Therefore, the statement of the Theorem 5.4 can be made even more precise:

Proposition 5.4 (Elzanowski and Prishepionok [EP3]) Let w* be a k-
connection with N« as its characteristic manifold. Let I¥ : H¥(B)—NF(n) be
an equivariant mapping, i.e. [¥(p*nk) = l’f(p_k)n’f for any k-frame p* and any
n* € N¥(n) while I5(p*g) = g~ (p*)g for any g € G*. Assume that I§ is such
that p*1%(p*)~1 € Noi for every p* € HE(B). Also, let ¢* : Nyx — H*+1(B)
be the Gl-equivariant section such that w* = q*0xy1 when restricted to N«
Then,

WH(DH)(E) = FBran (€) — Ao (IE ()L, 851 (g5E)) (5.20)
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for any p* € H*(B) and £ € Tpka(B). Moreover, there is a one-to-one
correspondence between linear connections on H*(B) and pairs of mappings
(7%, 15).

Proof. Given the pair (G, %) where §* : H*(B)—H*+1(B) is an équivari-
ant section and where ¥ : H¥(B)—ANF(n) is an equivariant mapping the
k-connection is uniquely defined by Eqn.(5.18). On the other hand, given
the connection w* the mapping ¥ is uniquely defined, modulo the G! ac-
tion, from the equation: mF¥*wk — @ = aEFIAR((1%)=1, 65 F1). Once I¥ is
available the equivariant section §* can be obtained from the condition that
w*|(1k)-1(0) = @*l(t)-1(0)Pk+1. We remark here that A' = 0 and that for k =2
we get the known expression for a 2-connection of Garcia [G]. We also point out
that the theorem shows that there exists a one-to-one correspondence between
the £-connections of order k and the k-connections, as shown in a different
way by Libermann [Li]d

k

A k-connection w® on H*(B) induces, through a projection, a (k-1)-

connection projiw* on H*~1(B). Namely, for any £ € TH*(B)

1wk (€) = TEr projiw®(€). (5.19)

If N« is the characteristic manifold of w* then the characteristic manifold
of projw* is the projection of Ny, i.e. Npoioe = mE_1(Nyx). Indeed,
“suppose that e5+1 is the £- connection of order k generating w®. Then, N x =
7R+l (k+1(H!(B))) and there exists a partial section ¢* : N& — S+ HY(B))
~such that for any p* € N_« the horizontal space of w* at p* is SH(g*(p*)) that
is the kernel of ¢¥*,1. Now, let ¢*~1 be a partial section on 7f_;(N,«) with
the property that ¢*~! ow,’:_l = 71',’5"'1 og¥*. Recalling that the projections 71",:+1
and_ﬂ',’z_l, when restricted to the characteristic manifolds, are one-to-one and
invoking the definition of a standard horizontal space, as well as Proposition

5.3, we get:

. Lemma 5.2 The standard horizontal space of a projection of a frame 1s

a projection of the standard horizontal space of that frame, ve. if pftl ¢
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HY*Y(B) then mi_ | SH(p**Y) = SH(x T (p5*Y)). Thus, the characteristic
manifold of the projected connection proj,w* is the projection of the charac-

teristic manifold N k.

This is obviously also true for a projection of a k — connection to any r-order
frame bundle, where 0 < r < k.

We are now ready to introduce the concept of the induced material connec-
tion. But first, let w* be some principal material connection of the materially
uniform k-grade hyperelastic body B5.

Definition 5.4 The (k —r)-material connection of the k-grade uniform
hyperelastic body B is the r-th projection of the principal material connection

Wk, ie. projrw®. ’

As we have stated before (see also Wang and Truesdel [WT]) for every
material point X of the smoothly uniform material body B there exists a
principal material connection w* such that in some neighbourhood of X, say
U, it is generated by a (local) material section. Let [¥ : &/ ¢ B—H*(B) be
such a section. Therefore, there exists the local section p! : —H!(B) and the
map =¥, : p!(U)—>H*(B) such that for any Y € U [*(Y) = i (p!(Y)). We
extend the mapping €%, by the action of G! on H*(B), to the G'-equivariant
section £, : H'(/)—H*(B). As we have shown before (Theorem 5.1) such
an equivariant section defines a local (k - 1)-connection i,w* where Nijwr =
W;’i_l[é[k (p'ENHGhH] = ”Z-1[lk(u>gl]-

Definition 5.5 Given the local material section * the induced ma-
terial connection i w* is the locally defined (k — 1)-connection such that
7% _ [*(U)G] is its characteristic manifold and g€~ : wf_, [(* UG —1*(U)G!t

is its generating section.

In general N; & # Np.oj,,¢. However, if the section {* defines locally the

principal material connection w* the section 7(',’:_1 o I¥ defines projiw®. This,

. . . ) . ~k—1 . .
in turn, enables one to define the G!-invariant section €% o inducing the
k-1
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(k - 2)-connection i proj wk with mf _,[(*(U/)G!] as its characteristic manifold.
The space w,’j:é(Niwk) is the characteristic manifold of the projection of 7,w*
to H*=2(B) proving:

Proposition 5.5 ~Given a material point X let w* be the principal material
connection integrable in the neighbourhood U of X. Then, for any pair of
positive integers J < k

ilprojjw’“ = projjilwk

mU.

‘The analysis of the locally induced connections, the projections of con-
nections and the relation between them will be fundamental for resolving the
problem of the local flatness of a principal k- material connection and so the
integrability of material structures for k-grade uniform hyperelastic material
bodies. This will be presented at length in the next chapter. Yet, even at this
point, on the bases the definition of the induced material connection (Defini-
tion 5.5) and the Proposition 5.4, we can safely claim that the main advantage
of having the induced and the projected material connections lays in the fact
that the analysis of the k-order principal material connection can be performed
on although two, but lover order, connections. Indeed, it is immediate from
‘the definition of the induced connection and the construction of the connection
from its £-connection that:

m

Proposition 5.6 Given an integrable connection w*~! and another k —1-

k—1

connection w which characteristic manifold N x-1 ts the integral manifold

of the horizontal distribution of w*~! there is only one integrable k-connection

k—1 ko= k=1

w* such that projiw® = w and 1w

"~ We end this part by locking in more detail at the second order holo-
nomic frame bundle and the second order connections. We shall follow here
Elzanowski and Prishepionok [EP2], [EP4].
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Suppose, for the simplicity and the clarity of our presentation, that the
body B can be covered by a single (global) chart and that S = R". Thus,
we assume the body B is equipped with the coordinate system {x',...,x"}.
Let us select as the reference placement U(0), a neighbourhood of the origin
of IR™. Then, any (local about the origin) diffeomorphism x : 4(0) € R"—B
can be viewed as a deformation of the body B. Consider a linear frame p!
and a holonomic 2-frame p? such that m2(p?) = 7 (p!) = Y = (y!,...y") € B.
These frames are represented in H!(B) and respectively in H?(5) by the sets of
local coordinates (y*,y%) and (y%,yL,yi,) such that det(y%) # 0 and y}, = yi.
Let us add here that a non-holonomic frame is respectively characterized by
the set of coordinates (y'i,yj,)'ff,yil) ‘where y%, is not necessarily symmetric.
If y} = §; the the frame is semi-holonomic.

In the locally induced by the coordinate system {x!...x™} bases

d

2 1 n, i i -
R A —_— 5.20
3 y Yka 3 Yksaxé> ( )

n ia
p =,y ;ykég), p =y

where the summation convention is enforced. One can think of y} as the
components of the deformation gradient at Y € B of x while the 2-frame p?
represents the first and the second deformation gradients. Given an element
(gi,n%,) of the structure group G = GL(n, R) & S%(n) of H*(B), where n}, =
ni,, it acts on the right on the holonomic 2-frame p? = (y%, v}, vi;) by (see
e.g., [CDL] and [EEp2])

(v' ¥ Vi) (8, m8p) = (v', Yisr, Yiigrgr + Yinyp) (5.21)
As we have shown before (see Definition 3.4 and Proposition 5.1) the
second-grade hyperelastic material body B is smoothly uniform if there exists

a gauge (p;, q§k) : B — G? and a smooth function W : G% — IR such that

W', v, vk,;) = W(Lpt, yk,;pEp) + vias,) (5.22)
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for all material points and any pair of the first and second ideformation gra-
dients yi,y;,;-** The material section [?, being just a collection of local con-
figurations relative to which W becomes material point independent, is then

given as

P(Y) = (v, 25(Y), bix(Y)), | (5.23)

where b;k = b, pj = (a71); and ¢}, = (a_l)fbflm(a‘l);?(a‘r‘l)}c”. This is set
up so that, for any Y € B, (p,q%)([(Y)) = e® = (6},0), the neutral element
of the structure group G2.

The material reference [* induces, by projection, the ?ection pt: B —
HY(B), i.e. 7} o[?2 =p! and 1

p'(Y) = (', 2;(Y)). | (5.24)
Consequently, there exists the partial section ¢2 : p!(B) — \H2(B) such that
q? op! = 2. As it follows from (5.21) and (5.23) this section, when ex-
tended equivariantly by the action of GL(n,IR) to the entire H(B), gives

the Gl—invariant section 2 : H}(B) — H2(B) such that

@Yk = 3, ¥k Prmn (27T (717 0R25)- (5.25)

|

Choosin'g a basis in the Lie algebra g! = gl(n, IR) a linear connection on

'~ the bundle of linear frames H!(B) is given locally by a collection of real-valued

G!—equivariant 1-forms

wh = (x4)7H(dx} + Tf,xbdx™) (5.26)

24 We deliberatly ignore here the fact that, in general, the body B has some non-trivial

symmetry group. |
\
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while the corresponding horizontal distribution is spanned by

o ., .0 | )
D; = %t —vl"i-‘jxiggk— (027)

where Ffj are the Christoffel symbols. If | as it happens in the case of the
1-material connection, the horizontal space is a lift of the tangent space T15B
by the local section p* to the bundle of linear frames

] o 9k ., 0
- = 1 = (a1
Di=pge) = g t g @ N g

(5.28)

Indeed, the horizontal distribution at p!(B) is spanned by p},(a‘?c,) = (%)pl(s)'

+%(5‘1—,~)p1(3). On the other hand, any invariant vector field on H!(8) has
i

the form asb%; + ﬁij{%. Comparing these two expressions yields (5.28).
The section p' induces on H'(B) the integrable connection w! (the 1-material
connection) the Christoffel symbols of which take the form

dak . i -
Ty = —é‘y—;(a i (5.29)

The fuﬁdamental form on the bundle of 2-frames is represented by a
collection of the following forms (see e.g., [CDL]):

' = (xi)~ldx* - (5.300)

and

0% = (xk)~H(dxf — xF,(x)) " dx!). (5.300)

Invoking the Proposition 5.4 and the Eqn. (5.25) this implies through straight-
forward calculations, that the Christoffel symbols of the induced material
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connection ¢ w?, i.e. the connection having as its characteristic manifold
712G} = H!(B), are given by

Lrnn = b (2™ (@™ (5.31)

Note, that this fact suggests that the £- connection of order 1 generating
a linear connection on H!(B) with the Christoffel symbols I'} _ is given as
ENz,2}) = (2%, 2%, ~Thm2727). Note also, as we have mentioned before (foot-
note 24), that although the £-connection generating a holonomic connection
does not need to be a section of a holonomic frame bundle, as evident from
its form, if it is the connection it induces has the Christoffel symbols are sym-
metric. This fact will later be proved for an arbitrary order connection (see
Collorary 6.2).

Finally, given the material reference [? it generates the horizontal distri-
bution on 1>(8) ¢ H*(B) spanned by

9 & a8 ov,, 0
— +

2 - Dnm
*(8}(") T ooxt + 9%t 9x] oxt Oxb,.’

(5.32)

On the other hand, as shown by Cordero at al. {CDL], any invariant horizontal
- vector field on H2(B) is of the form

-0

Pl
axrk

17} d
kI 3 m s m_l
< iy ek (Cimxrk + Timxxg)
o r

(5.33)

where I'’s are functions of position. Consequently, the generalized Christoffel
symbols of the principal material connection of the second-grade hyperelastic

material induced by the material reference (2 are given by

dak

e | (5.34)

k
I-‘is—_'
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y ks

33’5’ —Iyry —1\n/_—~ s ~INr (- =
ipg = (—9:{—1(2 hr(x 1)p(x 1)’;xnk— o (x 1)p(x 1)’;. (5.35)
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6. INTEGRABLE MATERIAL STRUCTURES: HOMOGENEITY

We have shown so far that if the k-grade hyperelastic body B is lo-
cally smoothly uniform then there exists the corresponding material stucture
MP*(B) being a reduction of the bundle of holonomic k-frames to the symmetry
group of B. This istructure is defined uniquely up to a conjugation by the ele-
ments of G¥, the structure group of H*(5). We have determined also that the
uniformity of the material body B is equivalent to the existance of the so-called
k-order principal material connection being a k-connection on the subbundle
MF*(B) locally induced by the material sections. As the Proposition 5.6 shows
every such a connection is uniquely characterized by its own 1-projection and
the induced material connection (Definition 5.5). What remains to be shown
is under what condition the arrangement of local configurations of a truly uni-
form material body into a local material reference can possibly be chosen such
a way that it is locally generated by a (global) configuration. The afforded
degree of freedom of choice comes naturally from the symmetry group of the
body B. This problem will be investigated in this chapter.

Definition 6.1 The materially uniform k-grade hyperelastic body B is
said to be locally homogeneous if for every material point X € B there
exist an open neighborhood U(X) and an integrable (local) material refer-
ence ¢ : U(X)—H*(B), i.e. there exists a local (about the origin) diffeo-
morphism x : U(0) C IR"—B such that x(0) = X, x(U(0)) C U(X) and
: (k.(U(X)) = j*x(U(0)). Such an integrable material reference at X will be called

the homogeneous material reference.

~ Suppose then that [¥ : 4/(X)—H*(B) is a homogeneous material reference
at X € B. Given some chart « : Y C S—IR" such that a(lf) C U(0) there
obviously exist at X a local embedding (configuration) v : V(X) C B—S such
that j*(a o 9)~! = j*¥x on some neighborhood of the origin of IR*. We have
agreed in Chapter 4 on how to identify J*(B,S) with the bundle of holonomic

k-frames and so the above argument proves that:

Proposition 6.1 If the materially uniform k-grade hyperelastic body B
is locally homogeneous at X then there ezists a subbody V(X) C B and a
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configuration ¥ : V(X) — S such that the k-jet extension j*y is a material

reference at X.

Intuitively speaking, in the case of the material having at each point a
stress-free uniform reference, the homogeneity means that in a vicinity of X
one can arrange the stress-free pieces into a global configuration in such a way
that no internal stress is introduced. The equilibrium of a finite sample with

the free boundary can be mentained with no internal stress.

As we know from our previous considerations, Theorem 4.1 in particu-
lar, if the k-grade hyperelastic bod'y B is smoothly materially uniform then
there exists the corresponding material structure M*(B) ¢ H¥(B). In fact,
as stated by the Corollary 4.1, if the symmetry group of B is a continuous
closed subgroup of G* there exist a whole conjugate class of material struc-
tures. Furthermore, if the material body is locally homogeneous and so at
every material point there is an integrable material reference, say [*, one can
find the material structure such that the material reference (* is its local sec-
tion. Consequently, as stated in the definition of local homogeneity, given a
material point X € B there exists at X a coordinate chart 3 : U € B—IR" such
that the k- jet extension of 87!|g) is identical, at some neighborhood of X,
with the material reference [*. '

Let us recall that two k-order G-structures M*(B) and MK (B) on B
and B, respectively, where G is a subgroup of the structure group Gk, are
said to be equivalent if there exist a diffeomorphism f : B—B such that f9 :
MF¥(B)—MF(B) given by the usuall composition of jets is the principal bundle
isomorphism over f. In particular, the structure is called locally flat if, and
only if, it is locally equivalent to the flat G-structure, i.e. the trivial bundle
IR™ x G. It is not hard to show (Sternberg [S], for k¥ = 1 and Saunders [Sa]
for k > 1) that the G-structure MF*(B) is locally flat if near every point on
the manifold B there is a coordinate system {x*,---,x"} the k-jet extension of
which is a local section of the G-structure in question. Invoking the Definition
4.2 and the discussion thereafter, as well as the Corollary 4.1, one immediately
gets that:




Theorem 6.1 (Elzanowski at al. [EEpS2] for k = 1) If the k-grade hy-
perelastic body B s locally homogeneous then there erists a material structure
MH(B) which is a locally flat Q,’;k -structure over B where Q'{;,c denotes the sym-

metry group of B relative to some homogeneous reference h* .25

Let w* (resp. &%) be a k-order G- connection on M¥(B) (resp. M*(5)).
We say that these two connections are equivalent if there exists a principal
bundle isomorphism f% : M¥(B)—MF*(B) such that fI*"o%F = w*. We say
that w* is a locally flat k-connection if it is locally equivalent to the canonical
flat connection on the trivial bundle R™ x G. It is then immediate that a
k-order G-structure is locally flat if, and only if, it admits a locally flat k-order
G-connection.

Thus, having a locally homogeneous k-grade hyperelastic body B there ex-
ists the material structure MPF(B) which is locally flat. There exist, therefore,
a locally flat connection on M*(B). As every locally flat G—valued connection
is locally generated by a section into the subbundle M*(B) C H*(B) and as
any local section of a material structure is a material reference, M*(B) ad-
mits a locally flat principal material connection. Such a connection as locally
equivalent to the canonical connection on the corresponding trivial bundle is
locally induced by a coordinate system on the body manifold B. The above
discussion yields therefore that:

Theorem 6.22% A k-grade hyperelastic body B is locally homogeneous if,
" and only if, there exists a locally flat principal material connection.

Indeed, given the locally homogeneous material body B there exists a
locally flat principal material connection generated by the corresponding ho-

2_5 Recall that although not every material reference of the given material structure
Mk(B) is a homogeneous reference ( if there is any at all )} the symmetry groups rela-
tive to any material reference, homogeneous or not, of the particular structure are always

identical.
26 This theorem was originally proved by Noll [N] and Wang [W] for k=1 (see also

Elzanowski at al. [EEpS2]) For the second-grade hyperelastic material the same was shown

by Elzanowski and Prishepionok [EP2] and independently by de Leon and Epstein [LE].
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mogeneous material reference, say h*. Any other principal material connection
generated by some other material reference does not need to be locally flat as
the gauging by the symmetry group Q{;k (see the relation (5.4)) takes the
homogeneous materia_d reference into, in general, arbitrary local material ref-
erence unless, the symmetry group Q’{;k is a discrete subgroup of G* or the
corresponding gauge is induced by the coordinate change on the body mani-
fold B. In the discrete case, due to the smoothness of any material reference, if
there is a homogeneous material reference then there is only one. On the other
hand, if the gauge is generated by the coordinate change on 5 it is only natural
as evident from the Definition 6.1 that a homogeneous material reference is
taken into another homogeneous material reference.

Given some principal material connection, to determine that it is locally
flat, is to show that its horizontal distribution is locally induced by some
homogeneous material reference. In the linear case (k=1, simple elasticity)
when the vanishing of the torsion form (see e.g., Sternberg [S]) guarantees the
flatness this amounts, as shown by Noll [N] and Wang [W}, to finding, through
gauging by the symmetry group, the (principal) material connection with the
zero torsion. In the case of the second and the higher grade materials the
vanishing of the torsion is only, as we show below, a necessary but certainly
not a sufficient condition for the principal material connection to be locally
flat. However, we will be able to invoke some other coordinate change invariant
objects which in the way simillar to the torsion measure the local flatness of
a principal material connection and so characterize the local homogeneity. To
be able to do this we need first to introduce the notion of the prolongation of

a k-connection and the concept of a simple connection.

Definition 6.2 Given the k-connection WF let F+1 be its generating £ -
connection, & : H¥(B) — H**1(B) the corresponding G*-equivariant section
and N its characteristic manifold. The prolongation of w* is the (k +1)-
connection P(w*) such that its horizontal space at any pEtl € ¢*(N_x) is the
g~ -lift of the horizontal space of w*, i.e. for any pF € N

hoqu(pk)’P(wk) =¢* (hor wk).
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The following facts are easy consequences of the definition of prolongation.

Proposition 6.2
a. Given the k-connection w* there is only one prolongation P(w*).
b. proj,P(w*) = k.
¢. The connection w**! is the prolongation of its projection proj,w®*1

if. and only if, N e+ = qk(NpmjlwkH).

Definition 6.3 (Yuen [Y])  The k-connection w* is called simple, and we
write w* = PF=1(wY), if it is the (k—1)-prolongation of some linear connection
wh.

It appears that any simple k-connection can be characterized by the "po-
sition” of its horizontal distribution relative to its characteristic manifold.
Indeed, we have:

Proposition 6.3  If w* is a simple connection then its horizontal distri-

bution is tangent to its characteristic manifold at all points.

Proof. It is enough to point out that if the 2-connection w? is the prolon-
gation (simple) of some linear connection w! then, by the definition of a simple
connection, horgipyw? = gi(horpiw!) for any p' € N,:.  However, accord-
ing to Proposition 6.2(c) ¢}(HY(B)) = q!(Ny1) = M, = Ng2. Therefore,
the definition of the prolongation implies immediately that horPl(wl)[Nwz C
TN,2. Applying this argument recursively proves the original claim &

In fact, somewhat more general statement can be made.

Theorem 6.3 The connection w*

on the bundle of holonomic k-frames
H*(B) is the (k— s )-prolongation of its projection projx—,w* if, and only if, its
horizontal distribution is tangent to the induced by the characteristic manifold
N_« G*-reduction of the bundle H*(B), i.e. if it is tangent to N e N _;(n). In
particular, w* is simple if, and only if, its horizontal distribution is tangent to

its characteristic manifold.*”

27 1 fact, the same is true in the semi-holonomic case.
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Proof.  The condition is obviously necessary as easily attested by the
definition of the prolongation of connection and Proposition 6.3. Also, as the
projection of the characteristic manifold of a connection is the characteristic
manifold of the projected connection Ny, & = 78(N,k). Therefore, the
horizontal distribution of projx—,w* is tangent to Np,,;, _,.cNZ_; = H*(B).
Consequently, the sequence of invariant sections {G'};=, .. k-1, corresponding
to the sequence of prolongations of projkfswk to H*(B), maps the horizontal
distribution of the (k — s)-projection of w* onto the horizontal distribution of
w* satisfying conditions of Definition 6.2

If the horizontal distribution of w* is locally integrable Theorem 6.3 has

particularly far reaching consequences.

k k

Collorary 6.1 A locally integrable k-connection w* is stmple, t.e., W =

PE-L(projr_1wk), zf and only if, 1,w* = projw*.

Proof. I_f the connection w*

is simple then, by Theorem 6.2, hOTpk(.dk C
T,eNx for every p® € N_t. On the other hand, as w* is locally integrable,
for any 7*(pF) there exists a local section I¥ : ¢ C B—HF(B) such that
horysw® = T,k l¥(U4). This implies that Tpe[*(U)CTp*N,« for any p* € Nx.
Moreover, as N is a Gl-reduction of H¥(B), [*(U)G = Nk |y and Ny, o5, o =
7k (Nyx) = mf_,(1*G') = N;,+ by the definition of the induced connection
(Definition 5.4). Therefore, the induced connection i;w* has the same char-
acteristic manifold as the 1-projection of w*. Having the same characteris-
tic manifold the connections do not need to be the same however, i;w* and
projiw* not only have the same characterist.ic'manifolds but also have the same
generating g-sections as Mp,oj,ux = Nyt = F(U)G! = M;,,x. Conversely, if

for some integrable connection w* k

, i1w* = projiw® then mf_ (N &) = N & =
N; e = mf_,(I*(U)G'). This, in general, may yet not guarantee that the
horizontal distribution of w* is tangent to its characteristic manifolds but as
the corresponding generating g-sections are identical it indeed does conclude

the proof &

Applying the above argument recursively one can easily conclude the following:
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Collorary 6.2  Let the k-connection w* be a simple connection, i.e. w* =
Pr=L(proji—1w*). Then, the horizontal distribution of w* is locally integrable
if, and only if, the horizontal distribution of proje_1w* is locally integrable.

We are ready now to determine under what conditions a k-order holonomic
connection is locally equivalent to the standard flat connection on IR™ x G*.
To this end, let us recall first that it was shown by Yuen [Y] and in the
context of continuum mechanics by Elzanowski and Prishepionok [EP2|, and
independently by de Leon and Epstein [LE1], that:

Theorem 6.4 The k-connection w* is locally flat if, and only if, it is
simple and its curvature and torsion vanish, i.e. w* = P*~(proj_1w*) and
Q.t =0, and ©,« = 0 where the curvature {0« of the k-connection w* is the
g*-valued 2-form dgj_"lhowk while the torsion ©_x is the R™ ® g*~-valued

2-form d6%|porut -

Note that the curvature and torsion of the j**-projection of w* are respec-
tively defined by the following identities (c¢f. [CDL]):

k* _ ~k—1
Wk—jeprojjw" = Zan X ﬂ'k_j_l*ewk, (61)

k* =~k
Wk—jQprojjw" = ﬂ'k——j*ka‘ (62)

Thus, if the connection w* has a vanishing torsion and/or curvature then its

projections proj;w* have the same properties.

* Although Theorem 6.4 sets the explicit sufficient and necessary conditions
for the k-connection to be locally flat, we shall try to determine if these con-
ditions could not be weaken, in particular, in the locally integrable case, i.e.,
Q‘;k = 0, that is particular in the case of the principal material connection.
“To this end let us recall that it was proved by Garcia [G] and Yuen [Y] that:
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Lemma 6.1 Let the (holonomic) connection w* be induced by the E- con-
nection ¢¥+1 . HY(B) — H**'(B) into the holonomic frame bundle. Then, w*

has a vanishing torsion.?3

This simple fact enables us to show that:

Collorary 6.3 If the k-connection w* is holonomic and has the vanishing

curvature then the induced connection i,w* has vanishing torsion.

Proof. Let(*:U CB— H*(B) define locally the horizontal distribution
of w*. The corresponding £-connection of i;w* is a section into the holonomic
k-frame bundle (see Definition 5.5). This, according to Lemma 6.1, guarantees

the vanishing of the torsion of i;w* &
Moreover,

Proposition 6.4 A k-connection (locally integrable or not) cannot be pro-
longed (see Definition 6.2) into the holonomic frame bundle H**1(B) unless it

has the vanishing torsion.

Proof. Suppose that w* has non-vanishing torsion and let PL(w*) be its
prolongation into the holonomic frame bundle H**!(B). As the prolongation
is holonomic Mk = Npi(,k) C Hf+1(B). This, however, means that the &-
connection inducing w* is a section of the holonomic frame bundle which in

turn, due to the Lemma 6.1, implyes that w* has vanishing torsion #

Finally, we have come to the point when we can conclude our analysis
by proving two important statements about locally flat connections. Some
other interesting intermediate cases will be presented elsewhere as they re-
quire somewhat deeper look at the form of k¥connections (Theorem 5.1 and

Proposition 5.4) and the properties of their curvature and torsion forms.

Proposition 6.5 A simple holonomic k-connection wk is locally flat if,

and only if, w! = proje_ 1w is locally flat.

28 The same can be show directly from the Proposition 5.4.
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Proof. If the (k—1)-prolongation P*=1(w!) is locally flat then obviously
w! is locally flat as w! = projr_1P*~(w!). We also know, from Collorary 6.1,
that w! is curvature free if, and only if, its prolongations are curvature free.
What remains to be shown is that if the torsion of w! vanishes then any of its
prolongations has variishing torsion. This is, however, immediate by Collorary

6.1, Proposition 6.4 and the uniqueness of the prolongation #

Proposition 6.6 Let the holonomic k-connection w* be simple and cur-
vature free. Then, it is locally flat.

Proof. If a holonomic connection w*

k

is simple and curvature-free then
by Collorary 6.1 ijw* = projw*. Moreover, because w* = P(i;w*), the in-
duced connection has vanishing torsion as otherwise, according to Proposition
6.4, it could not be prolonged into the holonomic frame bundle. This proveé
that projiw* is locally flat as it simple (is a projection of a simple connec-
tion), locally integrable (Collorary 6.2) and has no torsion as it is identical to
iyw®. This, in fact, concludes the proof as the prolongation of a locally flat

connection is a locally flat connection as attested by Proposition 6.5 &

The message of the Proposition 6.6 is that for a locally integrable holo-
nomic k-connections to be locally flat is equivalent to being simple. Combining
this with Collorary 6.1 enables one to state that:

Theorem 6.5 A curvature-free holonomic k-connection w* is locally flat
if, and only if, its projection projiw® is identical to its induced connection
Fiwk. .

For a curvature-free linear connection to be locally flat is to be symmetric,
i.é., to have a vanishing torsion. Similarly, for a curvature-free holonomic k-
connection, k > 2, the local flatness is equivalent to the vanishing of the tensor

(gk-valued tensorial 1-form) D = projiw* —i,w*. We therefore have:

Proposition 6.7 Let w* be a curvature-free holonomic connection and let
k > 2. Then, '
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(1) w* is locally flat if, and only if, D x =0,

(2) if Dye =0 then Qp,.ojlwk =0,
P (3) if Dprojiwt =0 then projiw* is a simple connection but, in general,
D« #£0.
Proof.

(1) This statement is equivalent to the statement of Theorem 6.5 and is
a straitforward consequence of Proposition 6.6 and Collorary 6.1.2°

(2) Qprojlw" = projl(projlw’“) - il(projlwk_) = pTOj?‘*)k _p'rojl(ilwk) =
proj1 (D) by Proposition 5.5. Therefore, if D« vanishes so does

its projection D,,,;, . Note that the tensor D + i1s indeed well

projiw
defined as if w* is curvature-free so is its projection guaranteeing the
existence of the induced connection i;(proj;w*).

(3) If Dypo5,0% = 0 then projiw® is a simple connection as stated in
(1). However, even if D,,,; ,+ vanishes w* may not be simple. In-

k a curvature-free holonomic con-

deed, it is enough to choose as w
nection which projection is simple but which has an arbitrary n’,g_l-

component (see Egs. (5.15) and (5.20))&

We are now in a position to go back the main topic of this presentation and
with the general results we have obtained above continue the analysis of the

29 We would like to add that somewhat similar, but not identical, statement can be made
in case w” is a semi-holonomic connection. The similarity comes from the fact that in
order to secure the local flatness of a curvature-free semi-holonomic connection one must
require, like in the holonomic case, that the tensor @wk vanisheg. To make the condition
sufficient one must also demand that the vanishing of the torsion of projk_lwk. The
difference between the semi-holonomic case and the' holonomic case comes from the fact
that, in general, the semi-holonomicity of w* does not guarantee the vanishing of the torsion
of the induced connection ilwk. Consequently, the.vanishing of D& although makes
projiw* '

and D+ = 0 then the linear connection projk_l'w_k_is locally flat making, by virtue of

= ilwk it does not force it to have a zero torsion. If however @projk_lwk =0

2), the 2-connection pro, 'k_gwk holonomic and simple. Iterating this upwards will imply
proj .

that w* is simple and holonomic and so locally flat.
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problem of the local homogeneity of smoothly uniform hyperelastic material
bodies. To this end let us recall once again that every principal material
connection of a k-grade hyperelastic material body B is by definition holonomic
and curvature-free as it is locally induced by a material reference being a local
section into the holonomic frame bundle H*(B). It always generates locally
the induced material connection as well as its projections. As we have argued
before (Theorem 6.2), the local homogeneity of B is equivalent to the existance
of a locally flat principal material connection, say w*. The local flatness of the
principal material connection of a simple uniform elastic body is guaranteed
by the vanishing of its torsion while for the second-grade and higher materials
it corresponds to the vanishing of the appropriate tensor Dk, as shown by
Propsition 6.7. In the context of continuum mechanics we shall call the tensor
D« the inhomogeneity tensor.
The discussion above can now be summarized in the following form:

Theorem 6.5 A smoothly uniform k-grade hyperelstic body B is locally
homogeneous if, and only if, there exists a principal material connection, say
w*, such that:

(1) «f k=1 its torsion O« =0,

" (2) if k > 1 its inhomogeneity tensor D« = 0.

We can now go back to our second order holonomic example from the
end of Chapter 5. We point out that, as stated above, the principal material
connection w? induced by the section (%) = (y*,ai(y*), b}, (v*)) is simple if,

and only if,

(ng );k = F;k - fi~k =0 (6.3)

J

where the Christoffel symbols I‘;k and f‘;k are defined by Eqs. (5.29) and
(5.31). The vanishing of the inhomogeneity tensor implies that

da’ .
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As b;l is always symmetric the above relation is, in fact, the integrability
conditon for a} Thus, there exist smooth functions ¢*(x*) such that the
gauge pj- = g—% and qgk = 6%4:0%; proving that if the inhomogeneity tensor
vanishes the body is locally homogeneous.

The importance of the simplicity condition for determining the local flat-
ness of the principal material connection can be illustrated by the following
example. Let us assume that our second-grade hyperelastic material body B
is not locally homogeneous (there is no locally flat principal material connec-
tion) but there exists a principal material connection w? such that its projected
material connection projjw? as well as the induced connection i;w?2 are both
locally flat but different. Therefore, there is no coordinate system in which the
corresponding Christoffel symbols oI’; . and Of‘j‘k vanish simultanieusly. The
inhomogeneity tensor D,z does not vanish, it only becomes symmetric. The
principal material connection w? has a vanishing torsion but it is not a pro-
longation of the locally flat linear connection projiw?. Despite the fact that
w? is curvature-free and has no torsion it is not locally induced by a single
coordinate system. _

In the case of a simple elastic material the torsion of the material connec-
tion is in some way a measure of the density of the distribution of dislocations
[Kx], [W]. Following this line of interpreting the geometric quantities appearing
in the theory one might say that the curvature of the induced connection mea-
sures the distribution of disclinations while the non-vanishing of the symmetric
inhomogeneity tensor (like in the example above) can possibly be regarded as
the indecation the presence of some intrinsically second order defects, as sug-
gested in [EEp2].. Note also that in order to be able to detect the presence
of these second order defects one musf have no first order once. Otherwise,
the non-vanishing of the inhomogeneity tensor indecates only that there are

all kinds of defects present.3°

30 We would like to point out here that the theory of non-holonomic frame bundles can
also be utilized to model the uniformity of material bodies w microstructure. For example,
the uniformity of a first-grade material body consisting of a rigid matrix and a smoothly

distributed micro-inclusions described by the déformable triades of vectors could be modeled
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We end this chapter by reiterating once again that to determine that the
material body, possesing a continuous symmetry group, is locally homogeneous
one must find a locally flat principal material connection. Normally there are
- many principal mateljial connections available (compare Egs. (5.5) and (5.7)
as well as Proposition 5.2) and only through gauging them by the symmetry
group one can possibly determine if there exists any which is locally flat. One
must find such a principal material connection which is a prolongation of a
locally flat linear connection. It must be stressed here that gauging does
not, _in general, preserve the differential lifting (prolongation) as evident from
Propsition 6.3. The non-vanishing of the inhomogeneity tensor for some choice
of the principal material connection does not prejudice its vanishing for some
other principal material connection as D, is not invariant under the action
of the symmetry group.
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by th.e analogous theory on semi-holonomic frame bundles. Indeed, the deformation of the
triad can be presented as a 2 X 2 matrix while its deformation gradient is not symmetric due
to the fact that the distribution of these bases is, in general, non-integrable. In such a case
the local homogeneity is guaranteed by the existence of the principal material connection
such that not only its inhomogeneity tensor vanishes but also the projected to the first level

material connection is symmetric (see footnote 29 and also [LE2]).
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