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O.INTRODUCTION

The theory of continuous distributions of material imperfections, dislo-
cations in particular, the origin of which can be trace~ back to the period of
1950-1967, has been approached from at least two diffe~ent points of view, i.e.,
structural dynamics and continuum mechanics. Whilb the pioneering works

of Bilby, Eshelby, Kröner, Kondo (see e.g., [B]' [Kr]) land others represent a
structural point of view the mathematical theory of materially uniform simple

elastic bodies of Noll and Wang, [N]' [W]' [BI]' is fiirmly based on contin-
uum mechanics notions. Seen as a natural generaliz~tion of the structural

I

approach, this theory takes as its fundamental assumption that the presence
I

of imperfections does not modify the general constitut~ve nature of the elastic
I

material and that the information required to identify and describe smooth

distributions of defects can be found in the material, response functional of
a given uniform body without introducing any extra parameters or apriori
geometries. Following this Hne of thought, imperfections are seen as being
responsible for a breakdown of homogeneity of these constitutive functionals.
Geometrie periodicity of the underlying atomic lattice corresponds, on the
other hand, to material uniformity and the form of the material symmetry
group. Using the language of modern differential georhetry the theory shows
that for a materially uniform simple elastic body a lihear connection can be
defined in a manner consistent with the given constitlutive relations but not

necessarily in a unique way.

The process of analyzing a given material body is at least two-fold. First,
one needs to determine if the given constitutive funJtional indeed defines a
uniform material (see e.g., [EEp1]). Only after this h~s been established the
quest ion of local and global homogeneity can be addre~sed. It has been shown
by Noll [N] and Wang [W] that the existence of localli homogeneous configu-
i:ations is expressed mathematically by the availability bf a locally flat material
connection. If the material symmetry group is a conLnuous group this task
proves to be, in general, a very difficult one. Guided IbY these difficulties, in
. effort to develop some comprehensive approach to this problem, it was shown
by Elzanowski at al. [EEpS2] that adefinite G-struJture can be associated
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with a materially uniform simple elastic body and that the local homogene-
ity of such a body is equivalent to the local integrability of the underlying
G-structure (material structure).

However, one thing is to determine that the given material structure is
locally integrable the other is to explicitly find the corresponding homoge-
neous configurations. Indeed, in the case of a material having at each point a
stress-free uniform reference configuration (e.g. an isotropie elastic solid) one
does not know how to arrange a collection of stress-free pieces to fit them to-
gether into a global configuration without introducing internal stresses. In the

language of the differential geometrie theory of linear connections the process
described above is equivalent to finding a uniform global reference configu-
ration generating a flat material connection, Le., a 1aca1 coordinate system
on the body manifold inducing in the corresponding bundle of linear frames,
in a manner consistent with the constitutive information, a locally integrable
connection possessing a vanishing torsion.

It was shown in [EpES] and [EEpS2]' that one p0ssible way of resolving
this problem is to associate with the given material structure a geometrie ob-
ject (called the characteristie object) capturing the essefl1tia1geometrie features
of the structure in question. The analysis of the object's homogeneity (point
independence) as a field on the body manifold become!> then the means of an-
alyzing the integrability of the corresponding material ~tructure. On the other
hand, looking at the material symmetry group as a gauge group and at the
changes of uniform configurations as gauge transformations one is also able to
develop, through rat her straightforward calculations, a system of quasilinear
partial differential equations for the symmetry group controlled configuration
changes leading froman arbitrary uniform reference to a uniform configura-
tion possessing the required geometrie characteristies, if such a configuration

exists, [EP1].

It has been often pointed out, by critics and supporters alike, that the
original theory of Noll and Wang does not enjoy the gellerality often demanded
by those propagating the so-called lattice model. This is rrtainly because in
the structural approach to the theory of continuous distribution of defects it
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has becn suggcsted that although the presence of disl0cations shows throllghI .
the non-vanishing torsion of a material connection, disc1inations (rotational
defects) are measured by the curvature of such a conbection [An], [Lr]. The
structural approach suggests also that the bodies with defects, disc1inations

in particular, are subject to couple and multipolar stresses, [Kr]. Since any

constitutive functional associated with a simple elastic !material body induces,
by definition, a curvature-free material parallelism (field of isomorphisms) it

appears that the disc1inations, and possibly other defectls, are ruled out. There-
fore, as it has been suggested by Elzanowski and Epste~n [EEp2], it seems only

I

natural to investigate the possibility of describing disc1inations in the context
of the so-called second grade material. This seems to b~ also supported by the
non-local nature of disc1inations, [Lr]. I

In this paper we present a comprehensive mathematical foundation of the
theory of material structures of uniform multipolar hyperelastic bodies. Al-

I
though based on the original ideas of Noll and Wang the research undertaken

I
here, which grew out of our early works (see e.g., [EEp2], [EP1] and [EP2]),
aims at formulating and analyzing the theory of unifdrrn material structures
far more complex than simple elasticity. We not only dhow that such a gener-
alization is mathematically possible but also, in the pr~cess of doing so, which

I
often leads through rat her unexplored areas of the differential geometry of
frame bundles of higher order contact, we show some ~ather intriguing possi-

I

bilities of discovering intrinsically higher order defects; Such defects have not
yet been, as far as we know, reported in the literat ure;

The paper is divided into six chapters. In the fidt chapter we present a
covariant constitutive theory of elasticity. Starting fr~m a completely global
approach we proceed to study simple hyperelasticity eJphasizing different lev-
els of non-Iocality as weIl as such primitive concepts as body manifold, ambient
space, global and local configurations and constitutivellaw. The second chap-
ter deals with the not ion of symmetry both material anti spatial. The concepts
of material isomorphism, material uniformity and mathial transitivity are in-
troduced and discussed in the third chapter. Chapters 4, 5 and 6 constitute
the core of this work. The concepts of the modern differential geometry of
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frame bundles are applied to show that adefinite principal bundle, being the
reduction of the bundle of k-frames, can be associatedl with a uniform elastic
body. The k-principal material connection, the analog pf the material connec-

tion of NoH and Wang, is introduced. To analyze th~ material structure of
• I

the uniform body completely we introduce also the cOh.cepts of the projected
and the induced material connections. These connections provide partial char-
acteristics (lower grade characteristics) of principal ~aterial connection and

help to identify different stages of inhomogeneities. 1e analyze in detale the
structure of connections on holonomic and semi-holonomic frame to be able
in Chapter 6 to derive explicite conditions for the loc~l flatness of such con-

nections. vVe show that in the case of a curvature-freel k-connection the local
flatness can be measured by the vanishing of some special tensor which, in the
context of continuum mechanics, we caH the inhomoge6eity tensor. Although

I
we are mostly concerned with the uniform hyperelastic ~aterial bodies we also
make some comments on material bodies with microsÜ'uctures.
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1.BASIC CONSTITUTIVE THEORY

1.1. Global Model

Let 6 denote an oriented smooth n-dimensional compact manifold, pos-
sibly with boundary, called the body. We assurne that the body ß manifests
itself through smooth embeddings1 'I/; : ß --+ Sinto' some, in general dif-

ferent, smooth boundaryless rn-dimensional manifold is called the ambient
space. We also assurne that dirn S 2:: n.A smooth embedding 'I/; of ß into S
represents therefore a configuration of the continuou~ body ß while '1/;(6) is
recognized as its possible placement in the ambient sp1ace. In fact, as pointed

out by Marsden [M2]' one should accept as configurati~ns immersions, rather
I

than embeddings. This would allow, for example, a 1contact at the folding
I

boundary. Classically one assurnes that the body is a .differentiable manifold
admitting a global atlas and that S = lR3. For the most part we will not limit

ourselves to this particular case.
The set Cß of all smooth embeddings of ß to sj which equipped with

Whitney's COO-topology is an infinite dimensional Fredhet manifold (see e.g.,

[BiSF] or [Mi]) is called the configuration space of ß. In a more general
approach one can regard the space oE configurations of a continuous body
as the space oE sections of some fibre (specially vector) bundle 1r : E --+ ß.

I
Such an approach was shown to be particularly usefu~ in the context of the
unified Lagrangian field theory of elasticity (see e.g., [MH]). Here, not to cloud
the picture, we restrain, for this general part of th~ exposition, from any
unnecessary generalizations. However, later on we will resort briefly to this
approach in the context of materials with microstruetures. Nevertheless, in. I . .

our simple case we have E == ß x S where, given a configuration '1/;, the
corresponding section of E is a mapping ß 3 X f-+ (X, k(X)).

Let 1rc : rCß --+ Cß denote the tangent space IOfthe manifold of all

configurations Cß. I
I

Definition 1.1 An element TI1/.> E reß has the physical meaning of the
virt ual displacement measured away fram the configuration 'I/;=1rc( Tl1/.»'

1 An embedding is an open and one-to-one immersion (cf., (K]).
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Any element of the tangent space TCa is uniquely represented by the mapping
I

TJ,j; : ß -+ T S from the body ß into the tangent space T S of its ambient space
S such that 7fs 0TJ'I/;= 'Ij; where 7fs denotes the standar1 projection of TS.2 In
other words, at the placement 'Ij;(ß) each material poi1nt X E ß is assigned a

- I
displacement vector TJ'I/;(X) E T'I/;(x)S in the ambient space. Although a virtual
displacement induces a vector field on the placement 'Ij;(ß) C S the assignment
of a vector to a material point X depends, in generaÜ on the whole current
configuration.

As pointed out in Epstein at a1. [EpES], a force exerted on the body ß is
intuitively conceived of as an object which performs wdrk linearlyon a virtual
displacement. Accepting this point of view we postulate:

Definition 1.2 A force f is a l-/orm on the lonjiguration space Ca,
that is, a section 0/ the co tangent bundle T*Ca 0/ the Lnjiguration space.

I
i

Given the force fand the virtual displacement TJ'I/;, at the same current
configuration 'Ij; , the virtual work of f on TJ'I/;is given by 'evaluating the 1-form f
on the vector 1]'1/; , i.e., f(TJ'I/;)E IR. Note, that despite t~e fact that any tangent
vector (virtual displacement ) to the configuration spacJ Ca can be represented

I
by a vector field on the placement of the body in the am:bient space, there is no
natural representation of the force f as a field of 1-forrrts on such a placement.
Such a representation would, however, be possible had ~e allowed for example
some choice of the matric on the configuration space (see e.g., [Bi]).

Definition 1.3 The e!astic constitutive !aw, LmPletelY defining the
mechanical response 0/ the body ß, is a smooth jield c :1 Ca -+ T*Ca.

Such a constitutive law is global not only because it assigns fore es to entire
configurations but also because the action of those a~signed forces involves,

I

2 In general, the tangent space to the space of sections of a fib~ebundle, e.g. E = ß X S,
is the space of sections of the bundle the fibre of which is the t~ngent space to the fibre of

the original bundle (see e.g., (EnM] or [Mi]).
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as it has been mentioned before, the whole oE 1]1/1 rather than any particular
I

characteristic of it. I
I
I

Definition 1.4 We say that the elastic constitutiv'e law , is of local ac,..
tion if there exists a -linear mapping p from the space tCa of virtual displace-
ments to the space of n-forms on the body B with

supp p( 1]1/1) C supp 1]1/1 (1.1)

and such that for any given configuration 7/J E Ca and any compatible virtual
displacement 1]1/1 the virtual work of the force field (4) on 1]1/1 is given by

(1.2)

I
Note that we have ignored here a possible contribution! from the boundary of
the body B. Note also that as the map p is supposed tO

i
represent a density of

work, to ensure that work would not be assigned to a p~acement of a material
I

point unless there is a non-vanishing virtual displacement on a neighbourhood
of it, it is essential to impose the localization condition (1.1). The linear
mapping p of the Definition 1.4 represents a localizatidn of the action of the
constitutive law , in Ca but it does not define the local material. Its action
at any given material point may still depend on the pla~ement of points away

I
from it.

I
I

Definition 1.5 The material body B is jet-Iocal of order k or k-grade
elastic if there exists a mapping (J" : jk(B, TS) -> AnB, called the local
response functional such that for each material point X E B

I

(1.3)

7
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k:

Here jkTJ,P is to be understood as the jet extension of the virtual displace-
I

ment TJ1/JE Ck(ß,TS), i.e., asection ofthe k-jet bundle J,k(ß,TS), while i\nß
denotes the space of differentiable n-form on ß. Due to tAe localization condi-

tion (1.1) it follows immediately from the Local Peetre T~eorem (see e.g., [K],
Theorem 6.2) that p 'is a linear differential operator and as such is locally of

finite order, Le., it is generated locally by a finite numbeJ of derivatives of TJ1/J.
As ß is assumed to be a compact manifold, the latter Ünplies that p is of a
finite order. The condition (1.3) is therefore always satisfied for some integer

I

Proposition 1.1 Any elastie eonstitutive law C of loeal action p represents
I

a jet-loeal elastie material of some finite order.

Definition 1.6 .. Given the elastie material body ß, la smooth real-val1led
funetion }V on CB,sueh that .

i

c(1/J)(TJ1/J)= TJ1/J(W) (1.4)

I

for any eonfiguration 1/J and any virtual displaeement ~1/J E 1re1(1/J), is ealled
the elastie potential. Any elastie body possessing some elastie potential is
ealled hyperelastie. The elastie potential W is said to be loealizable in ß

if there exists a smooth real-valued function cp : ß x CB 1-. IR sueh that at any
given eonfiguration, say 1/J, W(1/J) = JB cp(X, 1/J){LB wher~ {LB denotes a volume
element on ß.

In the case of the hyperelastic body the virtual work is given by the Fnkhet
derivative (for the definition see e.g., [L]) of the potential W in the direction
of a virtual displacement. Thus, if the hyperelastic maJerial with a localizable
elastic potential )IV is of local action i

(1.5)

8
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i
for every virtual displacement Tl"" any configuration 'lj; ~ 1rc('I]I/I) and every
material point X E ß, assuming that one can differentiat~ under the integral.
The virtual work is now given by the first variation of<p I[EpES].

The density of the elastic potential <p of the k-grade hyperelastic material
. I

becomes, at a given material point and relative to the choice of local charts
on the body manifold Band the ambient space 5, a smo1oth function

far a configuration.
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I

Given the grade one (simple) hyperelastic body, defined by the density of

its elastic potential <fJ : .Jl (ß, S) --+ IR, the first Piola-Klrchhofj stress tensor
is introduceel as P = DF<fJ where, if X is adeformation, F elenotes the princi-
pal part of its tangent map X., and where D stands for the Fnkhet derivative.

. . I

Note that as the eleformation gradient can be looked at as the change of frames
I

or a deformeel frame (all the same) P can be understootl as a vector bundle
automorphism ofTS over X-I (see e.g., [MN] and also thr next section). Hav-

ing such a morphism (stress tensor) available one could attempt to express the
local action operator &0 in a more classical way as the tiace of a composition
of linear maps [TN]. To be able to elo this, however, one needs to have a split-
ting (a linear connection) on TS.5 To this end and to show how to introeluce

I

the concept of the stress tensor in the context of a simp~e, yet not necessarily

potential, elasticity we will sketch, following Segev anel! Epstein [Se]' [EpSe],
the so-calleel local (first oreler) moelel- the alternative tp the localizeel global

model presenteel above.

1.2 Local l\IIodel

In contrast to the global moelel of a continuous defotmable body the local
I

approach consielers as its prime object a material point Ianel its neighborhooel
rat her than the boely as a whole. By the neighborhood qf a material point one
can unelerstanel, on the one hanel, a topological neighborhood, i.e. an open
subboely containing the point in question, or on the clther hanel, in a more
abstract sense, the point anel an object attached to it w~ich fully characterizes
the mechanical properties of the given material point.: In the tangent space
model of Segev andEpstein [Se] the neighborhooel ofl a material point X E

B is modeled by Tx ß, the tangent space to ß at X.I The configuration of
that material point is therefore given by an immersion Txß --+ TS. The

I

loeal configuration of the body ß is a vector bundle morphism (VB-morphism
[L]) '" : TB --+ TS 6 where the underlying map "'6 : ß --+ S, such that
"'o07rß = 7rS 0 "', is not necessarily an embedding. Tfe set Ct.(ß, TS) of all

5 For the discussion of this point see Marsden and Hughes [lYIH].
6 Equivalently, a section of Jl(ß,S)-see Definition 1.6. '

10



VB-morphisms of dass es over ek base maps, wherc si::;k, is a COO veetor
I

bundle over Ck(6, S) [V], [Se]. Therefore, we postulate:

Definition 1.8 The loeal eonfiguration spaee ofithe body 6 is a sub-
manifold C of C'k(T6-, TS).

In particular, as the set eß of all embeddings of 6 into Si is open in ek (6, S),
one ean seleet as the loeal eonfiguration spaee the set cf all VB-morphisms
T6-.TS over embeddings 6-.S, as was proposed in [S~]. The local virtual
displacement is then a veetor OT) E TC whieh ean be identified with the map

07]"" : Tß-.T(TS)I",,(Tß)' The local force, similarly. to ~he global ease, is a
I-form on the spaee of loeal configurations, Le., ME. T*C. Suppose now
that a eonneetion is given on TS. Thus, every veetor tl E TTS deeomposes
uniquely into its horizontal and vertieal parts and a VB-morphism tl which

I

assigns to every tangent veetor u its vertieal eompone~t tl( u) E Tu (T7T(u)S)

ean be defined. Moreover, any vertieal eomponent of a \reetor tangent to TS
as a tangent veetor to a veetor spaee ean be eanonically identified with an
element of TS. If one now ehooses to represent the loea~ virtual displacement

I

OT)"" by 6T)"" = i 0 tl 0 OT)"", where i represents the above mentioned eanonieal
identifieations, the restriction of 67]"" to the tangent spaee at X beeomes a
linear transformation from Tx ß into T""o(x)S. The e9rresponding eoveetor
Px, known as the local first Piola-Kirchhoff stress, is t:hen a restriction of a

linear mapping p: K(T6) -. T6 to T""o(x)S such that KJ0 1rß0 px(v) = 1rs(v)

for every veetor vE K(T6). The total work of the loeal forees Maeting on the

loeal virtual displacement OT) ean now be given by

M(OT)) = l tr(px 0 67])(X)J.Lß. (1.7)

i

The loeal stress px is henee identifiable with the value at X of the first Piola-
Kirehhoff stress tensor P, defined in the eontext of the ldealized hyperelastieity,
provided that both model are made eompatible. Hene: we say that the loeal
eonfiguration K is eompatible with the global configuration 'lj; if /'i, = 1/;*. On

I

11



I

the other hand the local virtual displacement 8TJ is said tq be compatible with
I

the global virtual displacement TJ if 8TJ = W 0 TJ* where w is the canonical
I

involution on the double tangent TTS [AM]. Finally, we postulate that the
I

local force M is compatible with the global force f if M( 8TJ) = f( TJ) for any pair
of compatible virtuar" displacements 8TJ, TJ at compatible ~onfigurations. 7

I

7 Details can be found in [EpSe] and [Se].
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2. MATERIAL SYl\!IMETRIES

By a symmetry of the body ß with the constitutive! response function c
one understands a change of a configuration which leaves t,he material response

- I.'unchanged. In the context of the global theory we postulate, as in [EpES],
that:

!

Definition 2.1. The symmetry of the material body ß characterized by
the constitutive functional c is a dijJeomorphism 'Y of itf configuration space
C6 such that i

'Y*c = c

where the superscript star denotes the pull-back operator.

Thus, if'Y is a symmetry of ß,

(2.1)

(2.2)

for every configuration 'l/J E Cs and every virtual displ~cement TI1/! E T",Cs.
Clearly, the set ge of all the diffeomorphisms of the c0D;figuration space of ß
satisfying relation (2.2) forms a group under composition. The following two

I .

special subgroups are of particular interest. First, let ß : ß -+ ß be a diffeo-
morphism of the body manifold. It induces, by composition on the right, a

I

unique diffeomorphism 'Yß E Diffe, i.e., 'Yß('l/J) = 'l/J 0 ßlfor any configuration
'l/J E Cs. DiJ Je denotes here the space of all diffeomorphisms of the configu-
ration space C. Similarly, a diffeomorphism s of the ambient space Sind uces
a diffeomorphism 'Y. of the configuration space by composition on the left.

Definition 2.2 The subgroups 9s and 95 genera'ted bythe dijJeomor-
phisms oJ the body maniJold and the ambient space, respectively, will be called
the material and the spatial global symmetry grottps oJ B.

13
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Note, that if S = JR3 anel the diffeomorphism s : S -; S is aglobai isometry,

the relation (2.2) is the expression of the material frame i'ndifference vrinciple
[TN].

The symmetry group as elefined above, whether m~terial or spatial, is

both configuration and coordinate chart independent. Often, however, it is
I

convenient to introduce the material symmetry group relative to a particular
configuration, say '!/Jo, calleel the reference configuration. Namely, the material

symmetry of the body ß relative to the reference '!/Jo is an element of 9"'0 _
'1/;00 9a 0 '!/Jäl. It is then easy to see that given another ~eference, say cPo,

9"'0 = Xöl 09"'0 0 xo (2.3)

where XO = '!/Jo 0 cPöl denotes the deformation from one reference configuratio~
,

to another reference configuration. I

i

We shalllook now at some particular classes of materials and the relations
between their different but often overlapping symmetryigroups. To this enel,
let us assurne that the material body ß is hyperelastic. It follows from the de-
finition of the elastic potential W (Definition 1.6) that fqr every configuration

'!/J E Ca and any material symmetry 'YE 9a

W("(('I/;)) = W('I/;). (2.4)

Moreover, if ß is a local hyperelastic material body with <p as the density of
its elastic potentialW, it is elementary to see that if t~ere exists ß E Dif fa
such that

(2.5 )

at every material point X, anel for any configuration '!/J, fhe induced diffeomor-
phism 'Yß E 9a. ß* denotes here the tangent map anel J(ß*) is its Jacobian.

14



Note that if we eonsider ineompressible elasticity (e.g. rubber) not only will

the configuration spaee Cp.s eontain only volume preserving embeddings but
also, to check for the material symmetries, as well as the spatial symmetries,
one ean only draw from the respeetive subgroups of volume preserving dif-
feomorphisms.8 The' set of all symmetries of a loeal hyperelastie material
(ineompressible or not), obeying the relation (2.5), forms a subgroup UB of
9B' For reasons which will be c1ear later we will eall it the uniform subgro'up

,
of the global material symmetry group of the loeal hyperelastie material body
ß.

Any loeal hyperelastic material body is, in fact, k-j~t loeal for some finite

grade k (Proposition 1.1.). Consequently, the densityof its elastie potential
W at the material point X E ß ean be affeeted by a configuration change only

if the new configuration has a different k-jet at X.

Definition 2.3,Cl E 9B is the local material symmetry of a hyper-
I

elastic material point X E ß if the dijJeomorphism a ~ Dif fB preserves the
point X and

(2.6)

for every k-jet local configuration jk'ljJ(X).9

Note that if ~(Cl E UB, for some diffeomorphism a haying the material point
X as its fixed point, then aeeording to the relation (2.4) jka(X) is a loeal
material symmetry at X. Note also that whether we use the global model or a
eompatible loeal model the definition of the loeal symmetry group as the set

8 Note that Cp.s is a submanifold of Cß, [EbM].
9 To define the local material symmetry one could invoke all diffeomorphisms , of the

configuration space CB satisfying (2.6) and such that for every configuration 'ljJand any

material point X ,(-l/J)(X) = 'ljJ(X). The jets of such ,'s could be considered local sym-

metries. This would, however, unnecessarily involve also symmetries of the'ambient space

s.

15



....--------------------------------------- -

of k-jets of loea.l diffeomorphisms of the reference configuration ß preserving,

up to the Jacobian, the value of the constitutive functiorial will always be the
same. All despite the fact that we may choose the stress itensor or the density

of its elastic potential, if there exists one, to be used as such a constitutive
functional. However, although the definitions are the same, the local symmetry
group based on the knowledge of the elastic potential i's in general different
from the symmetry group of its first Piola-Kirchhoff stress tensor. Indeed,
adding any material point only dependent tunction to the density of the elastic
potential will not change the mechanical response of the material point, as

highlighted by the definition of the stress tensor (Defi~ition 1.7), but it will
affect the choice of symmetries.

'.
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3. MATERIAL UNIFORMITY

Intuitively speaking, a material body is thought of as imaterially uniform if
I

all its points are made of the same material. That is, if different material points
respond the same way to the compatible changes in th~ir mechanical states.
As pointed out by Epstein at al. [EpES] in the context of a completely global

theory this way of formulating the idea of uniformity seems to be problematic
as it presupposes some kind of locality. For a truly gldbal material body it

I
is impossible to measure the response of any single material point but only

I

the response of the body as a whole. The key idea of checking the uniformity,
however, is that of placing one piece of the body in the same configuration as

another piece and then checking for the local response.

To make this point more clear and the idea of uniformity more precise
let us first introduce the concept of the non-local symmetry group relative to
a material point. Let U be an open set in ß. Denote 9Y Ux the family of all
open neighbourhoods of the given material point X and let TJu be any virtual
displacement with a compact support in U.

Definition 3.1

a. "(E DiJ Je is called the global symmetry of the subbody U iJ

"(*c('Ij;)(TJu) = c('Ij;)(TJu), (3.1)

Jor every virtual displacement TJu and every confiiJuration'lj; = 1rc(TJu).
b. The global symmetry group of the material point X is the

unwn

9c(X) =u 9c(U)
UEUx

(:3.2)

I

where 9c(U)denotes the set oJ alt global symmetr~es of the subbody U C ß.
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Having the group 9c(X) defined we are now In a position to introduee the
eoneept of a material 'isomorphism.10

Definition 3.2 The material point Y E ß is globally materially iso-
morphie to a material point X E ß, iJ there exists a, diffeomorphism a E

DiJ Ja such that a(Y) = X and "to. E 9c(Y)' The symmetry "ter. is then called
the global material isomorphism and the corresponding diffeomorphism a
the material isomorphism generator.

It is not diffieult to see that being materially isomorphie is an equivalenee

relation as it is both reflexive and transitive. Moreover"if ß1, ,82 E DiJ Js are
such that the eorresponding diffeomorphisms of the configuration spaee, "tßI

and ~fß2 are the global symmetries of the material points ,Je and Y, respeetively,
then 'ßIo er.o,a:;I generates another global material isomorphism. Also, if a1 and
a2 are generators of two material isomorphisms of X and Y then "ter.~loa2 is
aglobai symmetry of the material point Y. A eonjugation of a material iso-
morphism by the material symmetries is again a matedal isomorphism and a
eomposition of a material isomorphism with the inver~e of another material
isomorphism is an element of a symmetry group [TW1. Incidentally, any ele-
ment of the uniform subgroup Us of a local hyperelastie material is a material
isomorphism. In fact, for this dass of hyperelastie loeal materials one eould
alternatively postulate that a diffeomorphism a E DiJls such that a(Y) = X
and satisfying the relation (2.5) over some open neig~bourhood of the point
Y makes the material points X and Y materially isomorphie. Imitating the
standard definition of uniformity of Noll and Wang (see e.g., [TW]) we say

that:

Definition 3.3 A material body B represented by the constitutive Junc-
tional c is materially transitive iJ, and only iJ, all its points are pairwise
globally materially isomorphic.ll

10 The concept of the global symmetry group of a material point can also be used to

present locality as a symmetry, as shown by Epstein at al. [EpES].
11 The term transitive is borrowed from 8ternberg ([8], p.321) in anticipation of the fact
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As noted before and also in [EpES] and [EEpSl] the proposed definition

of global material uniformity may imply, due to the reql;lired compactness of
ß, some physically unreasonable behaviour at the perimeters of a truly global
body. This may be particularly true if the body has a material boundary. To

deal with this problem one should probably incorporate into the definition of
uniformity some limiting process (similar to the one pröposed by Epstein at
al. [EpES] in dealing with the concept of locality) to describe the transition

of material properties from the interior of the body into its boundary and
compatible with some definition of uniformity of a material boundary element.
This, however, will not be investigated in this exposition where, to avoid any
future confusion, we assume that as far as the uniformity problem is eoneerned
the manifold ß is boundaryless.

For a k-grade local material, in addition to the con,cept the global unifor-
mity, we can also adopt the standard definition of a material isomorphism of

NoH [N] and Wang [W] by saying that:

Definition 3.4 Two material points, say X and Y, of the loeal material
body ß are materially isomorphie if, and only if, there exists an isomor-
phism PXY : J~(ß, TS) -t J~(ß, TS) sueh that

(3.3)

for every eonfiguration 7/J E Cs and every Tl,;, E TC~.12 If in addition, any
two material points are materially isomorphie and for every material point
Z E ß there exists an open neighbourhood U in ß containing Z over whieh
the material isomorphisms PZy are distributed smoo,thly the material body is
ealled smoothly materially uniform.

that the material body which is materially transitive (globally ,uniform) induces in a natural

way a frame transitive G-structure.
12 Note that for k = 1 the above condition can be realized hy a linear isomorphism from

TyB to TxB, as originally postulated by Noll and Wang [Nl, [W], [CoEpl.
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13 This is basedon [EI] and some notes made available to me by Marcelo Epstein.

(3.5)

(3.4)

where p denotes, as before, the Piola-Kirchhoff stress and where the deformed
metric g = ['l/J' (x)F. The virtual work takes the weIl known form

We end this section by deriving the global uniforn:ity condition for the
one-dimensional localized simple elasticity in terms of the Piola-Kirchhoff
stress tensor13 and by showing a simple example of how to determine in a
direct fashion whether or not a given constitutive law describes a uniform ma-

terial body [EEpl]. To this end let ß c S = IR and ~ssume that the local
response function

where prime denotes the differentiation in ß. Suppose now that ß E D'iJ Jß is
the material isomorphism generator and let 'Yß be the global material isomor-
phism. Then,

For the local material we have now two notions of material uniformity, the

global one called transitivity which requires for each pair of material points
the existence of a local diffeomorphism generating a codfiguration space dif-

feomorphism satisfyi~g (3.1) and the local uniformity df the Definition 3.4.
Clearly, for this dass of materials, transitivity implies local uniformity since

for any global material isomorphism 'Ya TkalJk(ß TS) is a local material iso-
Y' I

morphism of (3.3). The converse, however, need not be true as even the exis-
tence of a smooth collection of material isomorphisms Pz'y does not guarantee
the existence of a global material isomorphism in the sense of the Definition
3.2. The discussion of the necessary and sufficient conditions for a materially
uniform local material body to be materially transitive consult Elzanowski at
al. [EEpSl].



On the other hand, if X = ß(Z) then,

c(-Ij;)(ryt/J) =11

p( 'Ij;' (ß(Z)), ß(Z) )'Ij;' (ß(Z) )8'1j;'(ß(Z) )ß' (Z)dZ. (3.7)

Using the global uniformity eondition (Definition 3.2) one obtaines from the
fundamental theorem of ealculus of variations that the loealized simple elastie
material body is globaly uniform only if

p('Ij;'(ß(Z)),ß(Z)) = p(('Ij; 0 ß)'(Z), Z)ß'(Z) (3.8)

for every Z E B.
For the seeond example let us eonsider a simple hyperelastic material with

the density of its elastie potential 'P = 'P(jl 'Ij;(X)) , for every configuration 'Ij;

and every material point X E B = JR3. As pointed out before the first jet of
an embedding 'Ij; at a point X ean be identified with a souree, a target point

and a linear map F(X) = 'Ij;*(X) : TxB -. Tt/J(x)S. Cqnsequeritly, beeause of
the translational invarianee in S the elastic potential beeomes a funetion of a
material point and the deformation gradient F. Moreover, if S is a Riemannian
manifold, 'P depends on F only through C = F*F, due to the material frame
indifferenee (see e.g., [MI] or [TN]) where F* denotes the dual operator, [1].
Thus, given a smooth field of loeal eonfigurations pI : U -. Jl(U, S), where
U is an open neighbourhood in B, let us eonsider the elastie potential density

funetion

'P(Y, F(Y)) = tr(A(Y)C(Y)) + 'Po(Y)

21
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whcre 'Po(Y) is a scalar function of position only anel where A(Y) E L(TyB,
Ty ß) is assumeel to be positive elefinite anel symmetrie. In the context of
a simple hyperelastic material for the boely U to be ~aterially uniform the
Definition 3.4 can be realizeel by assuming that there exists a smooth VB-

automorphism P of the tangent bunelle TU anel a scalar-valueel function f
such that

tr(A(Y)C(Y)) + f(Y) = tr(A(X)PXyC(Y)PYX)I+ 'Po(X) (3.10)

holels ielentieally for all nonsingular F(Y) at any X anel Y E U .14 To show that

this is possible we start by setting f(Y) = 'Po(Y) anel by 6bserving that the con~
elition (3.10) implies that A(Y)Pyx = PYXA(X). Invoking polar elecomposi-

tion theorem ([1] p.156) for the isomorphism QyX = PYXA(X) tone obtains,
in view of the uniqueness of the polar elecomposition; QyX = A(Y) t Ryx
where Ry x : Txß -> Tyß is an orthogonal isomorphism. It follows that any

linear isomorphism

1 1
Pyx = A(Y) 2" RyxA(X) - 2"

can serve as a material isomorphism. Incielently, we have just proved:

(3.11)

Proposition 3:1 The material body ß with the constitutive law (3.10) zs
always smoothly materially uniform provided the map X -...+ A(X) is locally

smooth.

This fact is unfortunately by no means a rule but rat her an exception, as
shown in [EEp1]. Indeed, applying the method presented above to the higher
order polynomial analogy of the constitutive law (3.9)

14 P, when restricted to the fibers at X and y, becomes the linear isomorphism PXY'
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<p(Y, F(Y)) = tr(A1(Y)C(Y)) + tr(A2(Y)C2(y)) + <po(Y) (3.12)

it is easy to see that the uniformity condition (3.10) is, in general, impossible to

satisfy unless material coefficients At and A2 are related through the respec-
tive fields of orthogonal isomorphisms. By rather straightforward ealculations
one can show that:

Proposition 3.2 The material body B defined by the elastic potential
(3.12) is uniform only if for any pair of material points X and Y the ma-

!

terial coefficients At and A2 are such that

where Rand S are arbitrary orthogonal automorphisms of the tangent bundle
TB.
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4. UNIFORJ\!I MATERIAL STRUCTURES

After introelucing in the previous seetion the eoneepts of material isomor-

phism anel that of a material uniformity we are now in a:position to unveil the

intrinsie geometrie st~ueture associateel with a smoothly uniform loeal mate-

rial boely of an arbitrary finite graele. For the darity anel also the simplicity
of our exposition we shall rest riet the dass of materials eonsielereel he re to the

finite grade loeal hyperelasticity.

Henee, suppose that cp denotes the density of an elastie potential of the

eontinuous material body B with placements in the ambient spaee 5. As
we are going tö deal only with uneonstrained elastie materials 1.'5 we assurne

that the body manifold Band the ambient spaee 5 are manifolds of the same

dimension, say n. Our first objeetive is to show that cp as the eonstitutive
funetional of a k-grade loeal hyperelastic material body is in fact a function

on the fibre bundle of k- frames of the body B. To this 'end, seleet a material
point X E B. We reeognize that two embeddings of B into 5 give rise to the

same k-jet at X if, and only if, they have at X the same partial derivative up
to order k, with respeet to some loeal coordinate systems on B anel 5. Note

that this definition is independent of the ehoice of th~ coordinate systems.
Moreover, any k-jet at X of the configuration 'ljJ is an invertible jet (see e.g.,

Kobayashi [Ko]) as

where ids denotes the loeal identity in 5. The colleetion of all the k-jets of
all possible embeeldings of B into 5, denoteel by jk(B,5) is a fibre bunelle
over the manifold B with the souree map 1rk(jk'ljJ(X)) = X being the nat-
ural projection onto B, [Sa]. Hs fibre at eaeh anel every material point X is
isomorphie, moel ulo the translations in 516, with the set gk of all invertible
k-jets of the elifferentiable mappings 9 : !Rn -> !Rn with the souree anel the

15 Some discussion on the interplay of uniformity and constraints was presented in [EEpO].
16 This, in fact, has been taken care of in the definition of the k-jet.
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target at the origin of JRn. Indeed, given an invertible k-jet /1/;(X) and select-

ing, without loss of generality, local coordinate charts a and ß on some open

neighbourhoocls of X and 1/;(X) respectively, such that a(X) = ß( 1/J(X)) = 0,
jk(ao1/;oß-1)(0) E J~(JRn,JRn) and it is obviously invertible. Evidently,

the converse is true as weIl. Let Hk (ß) denote the bundle of all holonomic

k-frames of ß, Le. the set of k-jets at 0 E JRn of all local diffeomorphisms of

JRn into ß, [Sa]. It is now easy to see that the set of k-jets of all configurations

of ß can be identified with Hk(ß). Consequently we ha~e:

Proposition 4.1 Given a k-grade loeal hyperelastie material its density of
the elastie potential r.p is a smooth real valued function on the bundle of holo-

nomie k-frames of ß.

This fact is particularly transparent in the case of a simple material body.

Indeed, the first jet of a configuration at X can be identify with the pair
(X, F) where F : Txß -l- TS is a deformation gradient and so a nonsingular

linear transformation. Selecting an orthonormal frame at Txß F induces

another basis in TS at 7r(F(Txß)).

The set (Y is a group with the multiplication defined by the composition of

jets. It acts on Hk(ß) on the right. Namely, given a k-fr?-me pk = /1/;(X), for

some local diffeomorphism 1/;, and gk = /g(O) E gk, where g E J~(JRn,JRn),
pkgk == /iP(X) such that /(iP-1 oß-1 )(0) = /(1/;-1 oß-1 og)(O) for some local

coordinate map,3 on S. It is then easy to see that locally iP = ß-1og-1oßo1/;. It
is also straight forward to show that Hk (ß) is a principal bundle over ß with the
structure group gk (see e.g., [CDL] or [Sa]). Looking closer at the collections
of all holonomic frame bundles we first notice that the structure group gl =
GL(n, JR) and that H1(ß) is the bundle of linear frames'of ß, [CDL]. In turn,
g2 is the semidirect product of the general linear group GL(n, JR) and the
space of bilinear symmetrie JRn-valued forms s2(JRn, JRn) (see e.g., [CDL]
and also [EEp2]). H2(B), which in the literature appears under the name of
the holonomie seeond order frame bundle 17, is not only a principal bundle over

17 The term holonomic, which as a matter of fact can be applied to any order frame,
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l3 with ~?as its structure group but also an affine bundle over Hl(l3) with the

standard fibre Nf(n) = s2(IRn, IRn) and the projection 1fT : H2(l3) ~ Hl(l3)
such that 7r2(p2) = 7rl(7rI(p2)) for any p2 E H2(l3).

Suppose now that <P: Hk(l3) ~ IR is the density of the Lagrangian (strain

energy function) W of the k-grade local hyperelastic body B. By the isotropy
group of <Pat X we understand the collection of the elements of gk on the

orbits of which <P11l";l(X) is constant.

Definition 4.1 The (local) symmetry group of the material point

X E B is the maximum subgroup g~ 0/ gk such that l/t(9~) is contained in
the special linear group SL(n, IR) and which is also a subgroup 0/ the isotropy
group 0/ <Pat X.

Note that the Implicit Function Theorem (see e.g., [K]) implies that for every
element of g~ there exists a corresponding local material symmetry of Defin-

ition 2.3. Note also that the definition of the symmetry group at Xdepends
on how the set of invertible jets of all embeddings of B in S is identified with
the bundle of holonomic k-frames, Le. on the choice of an atlas on S or equiv-

alently the selection of a local reference configuration. Hence, for the rest of

this paper, we ass urne that such an identification is given.

Materials (or rat her material points) are c1assified according to their sym-

metry group, [TN]. For example, the elastic fluid is a material body the points
of which have SL(n, IR) as their symmetry group. B is made of an isotropie
solid if for every material point X there exists a local configuration relative to .
which g~ = SO(n, IR), the special orthogonal group. These and other material
structures were analyzed in [WT], [EEpS1]' [EEpO] and [EP1].

relates te the fact that the elements cf Hk (l3) are equivalent classes cf embeddings rather

than jets cf sectiens cf bundles cf frames cf lewer order. Only for k = 1 there is naturally no

difference between a holonomic frame and a non-holonomic frame. For the precise definition

of a non-holonomic and a semi-holonomic frame we refer the reader to [EP3J, [SaJ and [V].

Some aspects of these definitions will also be reviewed in Chapter 5.
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Even if for two different material points, say X and Y, of the k- grade local

hyperelastic material body ß the corresponding symmetry groups are identieal

one cannot be sure yet that both points are made of the same material. For, the
symmetry group of a material point is only a partial characteristic of a material

while the ultimate test is that of measuring the response of these material
points to the superimposed deformations. As we have argued before, the
mathematically correct test is that of the existence of a material isomorphism

of the Definition 3.3. Thus, suppose that X, Y E ß are materially isomorphie,
Le. there exists a volume preserving isomorphism PXY : 7l"k"l(y) --+ 7l"k"l(X)
such that

(4.3)

for every pk E 7l"k"l(y). Given gk E g~ C gk, let 9tgk : Hk(ß) --+ Hk(ß)
represent the principal bundle automorphism induced by the right action by
the element gk. It is then immediate from the relation (4.3) that -

(4.4)

for every k-frame pk over X and any gk E g~ and hk E g}. The relation
(4.4) makes the respective symmetry gtoups not only h~momorphic but also
renders 9tgk 0 PXY 0 9thk to be a material isomorphism for any gk E g~, any
hk E g}, and any material isomorphism PXY (see also [WT]).

Definition 4.2
a. We say that two k-frames (local configurations) pt and p~ at X and Y,

respectively, are materially compatible if there exists a material
isomorphism PXY such that p~ = PXy(pt). Hence, the material
reference is a smooth local section [k : U c ß --+ Hk (ß) such that
any two k-frames in its image are materially compatible.

b. Any collection Mk(ß) of all materially compatible k-frames will be
called the material structure.
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Obviously, if the frames pt anel p~ are materially compatible then for

any material symmetry gk anel hk, at 7T"k(pn and 7T"k(p~)respectively, ptgk

anel p~hk are materially compatible where, pkgk is the standard shorthand for

the right action ~gk (pk). Also, given the material reference (k : U C ß ->

Hk (ß) it induces a löcal trivialization of the bundle of holonomic k-frames,
Le. an isomorphism wk : 7T";;l(U) -> U X gk such that Wk((k(X)) = (X, ek), for
any material point X EU where ek denotes the identity of gk. By doing so it

establishes a homomorphism of the symmetry group of each anel every point in
U with a unique (base point independent) subgroup gfk of the structure group
gk called the material symmetry group relative to the material referenee [k.

Theorem 4.1 Let cp be the density of the strain energy of the smooth
materially uniform k-grade loeal hyperelastie body ß. Then, lvtk(ß) is a re~
d'uction 18 of the b'undle of k-frames of ß to some material symmetry gro'ups of

ß.

Proof.19 The statement of the theorem is deliberately generie as there
exist many different" eolleetions of materially eompatible frames" and many
eorresponding material symmetry groups all parametrized by different mate-
rial referenees. To show that any particular material structure Jvtk(ß) is a
reduetion of the principal bundle Hk (ß) it is enough to show that there exists
a trivialization of Hk (ß) whose transition functions take values in the material
symmetry group relative to some material referenee ([8], Lemma 1.1). This is,
however, immediate from the previous diseussion. Namely, taking an arbitrary
k-frame pk E Hk(ß) and choosing in its neighbourhood the material referenee
[k, the existenee of which is guaranteed by the assumption of smooth loeal
uniformity, will automatieally seleet the material symmetry group g~. It is
then apparent from the Definition 4.2 that the only nieans of eolleeting all
materially compatible frames over 7T"k(pk)is by the right action of the mate-
rial symmetry group g~. Extending the given seetion [k or selecting another

18 A subbundle of Hk(ß) with the structure group being a closed subgroup of gk, See

also Sternberg [S].
19 See also [EEpS2].
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section at another materially compatible frame from 7r;; 1(U) will induce 10-
cal trivialization with transition functions taking values in the given material
symmetry groups as implied by (4.4) •

It is also evident from the given construction of the particular material
structure that if we start the construction from a different frame, say rk, for

which there exists a group element gk E gk /gtk' the space of right cosets of
gtk in gk, such that rk = pkgk then the corresponding material structures

are conjugate, Le. one is obtained from another by the right action by gk.

The associated material symmetry groups are then conjugate subgroups of
the structure group gk of Hk (ß). It is worth mentioning at this point that
if Hk(ß) can be reduced to Mk(B) then there exists aglobai section mk :
ß-+Hk(ß) x gkgk /g~ to the associated bundle ofHk(ß) with the standard fibre

gk /gtk' In our case such a section is easily available by gluing overlapping
material references:' In fact, the existence of such aglobai section is both
sufficient and necessary for the existence of a reduction [KoNol. This property
is the basis of the analysis of the integrability of G-structures possessing the

so-called characteristic object, [EEpS2l, [Fl. Thus we have:

Corollary 4.1 Any two material structures 0/ the same k-grade local hy-
perelastic body are conjugate.

Given a smoothly uniform k-grade hyperelastic body .8, a (material) cov-

ering {U"", LEI of ß is available such that transition functions of the subor-
dinate trivialization {7rk X t""JiEI of Hk (B) all take values in some material
symmetry group. As we know from the proof of Theorem 4.1 such a trivial-
ization is induced by the family oflocal material references [~; : U",,; -+ Hk(ß).
Namely, for every pk E Hk (U""J

(4.5)

where t~i : 7r;;1(U""J -+ gk and t~,t;;;} E g~",i On the basis of such a material
trivialization we can now represent, at least locally, the density of the strain

29



cnergy function <p by a function on the structure group gk. To this end let us
therefore dcfinc vV : (Y -> IR such that for every pk E 7r;l(Ua,)

(4.6)

Note that although the definition of the function W does depend on the

choke of a particular material trivialization it is a weIl defined smooth func-
tion on the whole structure group.20 Note also that its isotropy group is

the particular material symmetry group induced by the choke of the mate-

rial trivialization {7rk X taJiEI' Indeed, let hk E g~ and let pk = [~i (X)
then VV(tai ([~i (X)) = W(tai (pk)) = <p(pk) = <p(PXy 0 91:hk 0 pYX(pk)) =
<p(Pyx(pk)hk) = W(tai(l~i(X))hk). As the inducing trivialization has its
transition functions taking values in the material symmetry group g~ the
relation (4.5) holds for every pk E Hk(ß). Thus we have:

Theorem 4.2 Given a smoothly uniform k-grade hyperelastic material
body ß represented by the density <pof its elastic potential, and selecting a
partiC'Ular material trivialization {( 7rk X tai) }iEI, there exists a smooth function
W: gk -> IR such that the relation (4.6) is satisfied for every pk E Hk(B).

In fact, the converse is true as weIl. Namely, given any collection of smooth
invariant mappings tßi : Hk(UßJ -> gk and a smooth function vV : gk -> IR
such that the relation (4.6) is satisfied on Hk (ß) it is easy to see that the
material body is smoothly materiaIly uniform. Respective material references

(k are then given by t;;i1 (ek).

20 The availability of this relation is not only a reflection of the fact that material isomor-

phisms are volume preserving but also that the density of the strain energy function at the

stress free state, should there exist one, is assumed zero. Other relations where postulated,

or derived, in [eoEp] and [EPl].
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5. MATERIAL CONNECTIONS

5.1. Principal Material Connections

5uppose that [k i~ a smooth (local) material reference of the open subboely
U C 6. Having this available we can lift the tangent space TU to the bundle of
holonomic k-frames Hk(6) creating a horizontal distribution21 1tk on 1r;l(U)
VIZ:

(5.1)

for every pk E 1r;l(U) where T denotes the tangent map and where tk :

1r;l(U) -+ gk is defined by the relation (4.5). This distribution is obviously

equivariant anel such that for every rk E 1r;l(U) it splits the tangent space
THk(6) i.e., TrkHk(6) = Trk1r;l(rk)) EB1tk(rk). Let gk denote the Lie algebra
of the structure group gk, Le. gk = Tekgk, and let wk: THk (U) -+ gk be

the Lie algebra valueel 1- form on Hk(U) such that at any pk E 1r;l(U) anel

for every ~ E Tpk Hk (U)

(5.2)

where Lgk : gk -+ gk denotes the left translation by the group element gk.

Using standard arguments (see e.g., [Po]' [5]) one can show now that 1tk(U)
is exactly the kernel of the I-form wlo• It also easy to see from the definition
(5.2) that due to the equivariance of the horizontal distribution 1tk(U) the
form wk is an equivariant I-form. The extension of the distribution 1tk (U)
and the form wk to the bundle Hk(6) is then easily achieved by covering the
entire body 6 by local material references, gene rating locally connection forms
as per (5.2) and utilizing the partition of unity suborelinate to the covering of
6 (see [5] and [WT]). As we are able to cover ß by local material references
the connection introeluced above reduces to a connection on the corresponeling
material structure A1.k(6). Thus, we postulate:
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Definition 5.1 Any k-connection on the material str-uct7.LreMk(ß) of ß
will be called the k-order principal material connection of the body ß.

As Mk(ß) is locally trivial, for any X E B there exists a principal material
connection22 such thät in some neighbourhood of X it is generated by a local
material reference. That is, for every material point X there exists an open

neighbourhood and a material reference such that the tangent space of its
image in Hk (ß) coincides with the horizontal distribution of some principal

material connection. Consequently the local holonomy group of such a locally

integrable principal material connection is trivial and we have the distant
material parallelizm [Po]. In the future analysis of material structures we will,

in fact, restrict, for most part, our choice of material connections to locally
integrable ones only.

Having the principal material connection available we can now restate

Theorem 4.2:

Proposition 5.1 Given the k-grade hyperelastic material body B, repre-
sented by the density <pof its strain energy function W, it is smoothly materi-
ally uniform if, and only if, for every pk E Hk(B) there exists a neighbourhood
U 3 Jrk (pk), a k-order connection wk and a smooth function W : gk -+ IR

such that the principal material connection wkL1l";1(U) is integrable and that for
. every rk in JrJ:1(U) and every ~ E TrkHk(B)

(5.3)

for some smooth function tk : Hk(U) -+ gk of (4.5), usually pk dependent.

Proo£. 1£ß is smoothly materially uniform one gets the relation (5.3) by
differentiating the relation (4.6) and invoking the definition of the connection

22 The first-order principal material connection is a material connection in the sense of

NoH and Wang [WT] (see also Bloom [B]).
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I-form (5.2). On the othcr hand, if there cxists a locally integrable conncction

such that (5.3) holds then the corresponding horizontal distribution 'Hk is

locally integrable as a differential distribution. Thus, for any X E ß there
exists a local section (k which in turn induces a local trivialization of Hk(U)
and the function tk obeying the relation (4.5). Equivalently, as shown by Poor

[Po]' there exists a distant parallelism P which can be taken for the material

isomorphisms '"

The principal material connection we have constructed above is c1early not
unique as it strongly depends onthe choice of a material section of the bundle

of holonomic frames. However, it should be quite obvious from the discussion
in this and in the previous chapter that the only two degrees of freedom

available to us, as far as choosing another material connection is concerned,
are: choosing another material structure or another material reference within
the current material structure. As any two material structures are conjugate
(Corollary 4.1) the first choice is only apparent, at least for k = 1. For the
simple material structures translating everything by a constant element of
the structure group gk is going to change not hing. The connection itself will

obviously change but all its essential geometrie characteristics will remain the
same. For the higher order cases this is not too obvious [EP4]. We will come
back to this problem a bit later on once we know more about the higher order

connections.

However, it appears that if we change the local material reference of (5.1)
from (k to another local material reference the horizontal distribution will
change and so will the corresponding connection form. To observe how these
changes occur let (~ and [~ represent two different local material references
but such that the corresponding standard isotropy groups are identical. Thus,
[~ and [~ are local sections of the same reduction of Hk (ß), say /v1 k (ß). For
simplicity, but without any loss of generality, we assurne that their respective
domains of definition are identical, say QJ. Being seetions of the same principal
bundle [~ and [~ differ by a base point dependent deformation by the isotropy
group, i.e. there exists a smooth gauge Q : QJ -+ g~k such that

1
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[~(Y) = 9\e(Y) 0 [~(Y) (5.4)

for any Y E QJ. C<?nsequently, if w~ and w~ represent the corresponding
principal material connection I-forms then for any pk E 1l"k1(QJ) and any
vector ~ E TpkHk(QJ)

(5.5)

where ad denotes the adjoint action of the group on its algebra, ( is the
Maurer-Cartan form on gk,(see e.g., [Po]), and e : 1l";l(QJ) ~ gk is a constant

along fibers function, induced by the gauge {}such that {}0 1l"k = Q. The same
is true even if the connections are not locally integrable. In particular, we may
choose to represent locally any material connection by a I-form on the body
ß. This is done relative to a trivialization induced by a section, material or
not, specially by the coordinate map a :QJ ~ IR. Indeed, such a map induces
automatically, through its tangent map a*, a choice of frames in the tangent
space and also higher order frames. The connection forms w~ and w~ are then

represented by the gk-valued 1- forms W~i such that

i= 1,2 (5.6)

where jka is understood as the local section of Hk(ß) induced by the coordi-
nate map a. Thus, using the standard shorthand, oue can write

W~2 (Y) = {}(Y) -1W~ 1(Y) {}(Y) + {}(Y) -1{}* (Y)

for any Y EQJ. Generalizing the above relations we have:

(5.7)

Proposition 5.2 Let ~k denote the Lie algebra of a particular isotropy
group g~. Given the principal material connection wk and a ~k -valued i-form
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k Hk (5) k + k t th "" l " l ""1T on , W T represen s ano er pnnczpa materw connectwn"l, and
only if, fo1' any ~ E T Mk(ß)

a) Tk(tl(O) = 0 fo1' everY,vertical vector tl(O E TJ'vtk(ß),

b) Tk is gk - eq,!"ivariant.

Proof. Clearly, if wk + Tk represents a principal material connection on

Mk(ß) then conditions a) and b) are satisfied. On the other hand if Tk is
equivariant then wk + Tk is equivariant too. Also, for every pk E J'vtk(ß) and

k - k k" - k~ E Tj'vt (5) dW 0 9ttk(pk) 0 (w + T )(tl(O) = dW 0 9ttk(pk) 0 w (tl(O) =
dep(tl(O) and dvV 0 9ttk(pk) 0 (wk + Tk)(hor(O) = dW 0 9ttk(pk)Tk(hor(O) =
o = dep(hor(O) as Tk is f)k-valued and g~ is the isotropy group of W. Thus,
the equation (5.2) holds for the connection wk + Tk which makes it a principal

material connection •••

5.2. Induced Material Connections

To facilitate our future developments we need first to present the relevant
mathematical preliminaries. This is done not only to make this exposition as
self contained as possible and not only because the theory of linear connec-
tions on frame bundles of order higher than one is not easily available in the
mathematicalliterature but also to present some relevant recent results [EP3].

We start by pointing out that the relation between the second order frame
bundle and the bundle of linear frames of 5, as presented at the beginning of
Chapter 4, is, in fact, typical for the whole chain of frame bundles (holonomic
or not). That is, if we consider the following chain of frame bundles:

(5.8)

then for any ordered pair of positive integers s > m > 1 there is a projection

(5.9)
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making HS(6) into an affine bundle over Hr (ß) with the kernel of the epimor-

phism ir~ : 9-' - gr being its strueture group N:(n). The grollp N:(n) is
anormal subgroup of 93 anel for r = s - 1 is eanonieally isomorphie to the
abelian veetor group of all multilinear symmetrie lRn-valued (8 - l)-forms on
lRn [Ko], [Y]. The group gs is the semidireet produet of gl = GL(n, R) and

the veetor group N(\-l)(n). The algebra of ir~(9S) is a graded Lie algebra
isomorphie to the algebra n: of N:(n). Let us now introduee some teehnieal
definitions.

Suppose that hk-I: Hk-l(lRn) _ Hk-l(ß) denotes a loeal isomorphism

about (0, ek-1). 'Ne say that hk-1 is admissible if there exists an embedding
'lj; : U c lRn_ß such that 'lj; and hk-1 eommute with the respeetive projeetions
7T'k-l, 0 E U and hk-l(ek-l) = jk-l'lj;(O). Thus, given a k-frame pk there

exists an admissible isomorphism hk-1 such that pk = phk-l(ek-l). To show

this we point out that for any k-frame pk there exists an embedding f of
a neighbourhood of the origin of lRn into ß such that pk = jk f(O). The
eorresponding admissible isomorphism hk-l is then defined by the eondition
that jk-l f 0 f = hk-l 0 /-lid where jk-l f denotes the jet extension of

f. The admissible isomorphism hk-l induees a linear isomorphism hk-l :

Te.k_1Hk-l(lRn) _ T1f"k (pk)Hk-1(ß). Sinee Hk-l(lR) = lRn X gk-l we have
k-l

that Tek-1H(lRn) = lRn EB gk-l.

Definition 5.2 Let pk E Hk(ß) and let hk-l denote the corresponding
admissible isomorphism. The standard horizontal space of the frame pk
is the n-dimensional vector space S1i(pk) == hk-l(lRn, 0) .

.Generalizing the eoneept of the sold er form the following is the standard
definition of the fundamental form on a frame bundle.

Definition 5.3 The fundamental form on Hk(ß) is the lRn Ei gk-l_
valued I-form gk such that given a k-frame pk, the corresponding admissible
isomorphism hk-I, and the tangent vector ~ E TpkHk(ß)

(5.10)
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The form ek is equivariant with respect to the right action of gk on Hk (ß)
anel the action pk of gk on the tangent space THk(ß). The latter being just

an extension of the natural action of GL( n,JR) on JRn. Namely,

(5.11)

for any gk E gk anel any tangent vector ( E THk(B). The adjoint action pk of
the structure group gk on JRn EB gk-1 is such that for any vector Xk-1 E gk-1
anel any gk E gk

(5.12)

On the other hanel, for any v E JRn

(5.13)

for some mapping)..k : gk x !Rn -. gk-1 such that Tir:=~o)..k == )..k-1o{irL1 X

idIRn}. iri elenotes here the projection gl -. gk, l ~ k. For a fixeel gk E gk
)..k (gk , .) : !Rn -. gk-1 is linear anel it is ielentically zero if, anel only if, gk E 91
[Y]. Moreover,

(5.14)

for any g~, g~ E gk.
The fundamental form Bk decomposes canonically into the sum of 1-forms

with values in the subalgebras of JRn EB gk-1. In particular, Bk = B~+Bk where
B~ is just a projection onto !Rn while Bk takes values in {O} EBgk-1. Further-
more, as for any r < k the group gk can be represented as the semidi reet
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product of 9r == ir~(9k) and the kernel Nrk(n) of the epimorphism ir~, we can
write

(5.15)

where 1r~*(}r = 7i"~*(}k and where fL~ takes values in n;=i, the algebra of the
Lie group JV:::} (n). As a result of the equivariance of the fundamental form
(}k, Eqn.(5.11), we get that

(5.l6a)

and that

(5.l6b)

for any vector ~ E THk (B).
Suppose now that q : Hk-1(B)->Hk(B) is a local section and let pk be

in the image of q. Given the element of the standard horizontal space at
pk, ~ E SH(pk), q*(}k(O = (}k(q*(O) E ]Rn EB {O} as hk-1((}k(q*(O) =
T1rLl(q*(O) = ~ by the Definition 5.3. Note that this is true irrespective
of the section q as long as pk belong to its image. All the above implies

immediately that:

Proposition 5.3 (Elianowski and Prishepionok [EP2]) Let pk be a k-
frame. ~ E SH(pk) if, and only if, given a section q : Hk-1(B)->Hk(B) such
that pk is in the image of q, q*ek(~) == O.

To get some true insight into the structure of connections on the bundle
of k-frames we start by recalling the construction of an arbitrary k-connection
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wk in terms of the so-called [-collnection (see e.g., [Ko], [Y]). We adapt this

presentation, however, to our particular needs. To do this we ne cd however to

broaden a little our picture and to imbedded the bundle of holonomic frames
Hk(8) into the bundle of the non-holonomic /rames Hk(8} and specially the
bundle of semi-holonomic frames fIk(8).23 We also recall that the local section
q: HT(8)_Hk(B) is invariant (I}T-invariant) if for any pT E HT(8) and every
gT E gT

(5.17)

where 1/: is a canonical embedding of gT into gk. For the simplicity of our

exposition but without any loss of generality, at least for what we intend to
do, let us restrict our analysis to the semi-holonomic case only. There£ore,
let ck+l : H1(8)_fIk+1(8) be a gI-invariant section called the [-connection
0/ order k. It defines a gl reduction of the bundle Hk+l(B) given by the
image ~k+l(Hl(B)). We shall denote it by Mwk. The projection o£ Mwk to
the bundle Hk(B) , that is Nwk == 7r~+I(ck+l(Mwk )), is also a gl reduction.

This, in turn, induces the gI-invariant partial section qk : Nwk - Mwk. The

23 Although, for the precise definitions we refer the reader to Saunders [Sa] and Yuen [Y]

we also would like to point out at the way the space of non-holonomic k-frames Hk (8) can

be thought of recursively as the space of the first jets of all local sections of the bundle of
- k 1non-holonomic (k-l)-frames H (8). For example, let £: U(O) - H (8) (for k=l all frame

bundles are the same) be a differentiable map of a neighbourhood of the origin of JRn into

H1(B) and such that 71"10£: U(0)-8 is a local diffeomorphism ~here 71"1 : H1(B)---+ß is

the standard projection. The first jet of £ at 0 can be considered a non-holonomic 2-frame

of 8 at 71"1 (£(0)). 1£,in addition, £ is such that the first jet of 71"10 £ at 0 is equal to £(0) the

corresponding 2-frame is called semi-holonomic. Extending this definition recursively to

an arbitrary k-order we obtain the set of all non-holonomic and semi-holonomic frames of

8. The space fIk(B) (also Hk(8)) is a principal bundle over 8. Its structure group gk
is the fibre at 0 of fIk(JRn), i.e., the group of first jets at the origin of alliocal sections

of fIk-l(JRn) satisfying the semi-holonomicity condition. It can be easely shown (see e.g.,
k -k -k

Saunders [Sa]) that H (8) c H (8) c H (B).
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connection wk on Hk (ß) is then defined by sclecting as its horizontal space
at pk E Hk(ß) SH(qk(pk)) if pk E Nwl: and Tff\nl:S1t(qk(pk)) for any other

1

k-frame, where nt denotes the appropriate element of the affine group Nt(n).
The gI-invariant submanifold Nwl: of Hk(ß), fundamental for the construction
of the connection wk; will be called its characteristic manifold. We point out
here that to define a connection on the holonomic frame bundle Hk(ß), called

the holonomic connection, the defining E-connection does not need to be a

section into the holonomic (k+I)-frame bundle. As a matter of fact, if it is, it
has very special properties, as we show later.

vVe are now in the position to represent the k-connection wk through the
fundamental form gk+l:

Theorem 5.1 (Elzanowski and Prishepionok [EP3]) Let wk be a connec-
tion of order k on the bundle of holonomic k-frames Hk(ß) and let EH1 denotes
its generating E -connection with Nwl: as its characteristic manifold. Then, for
any pk E Nwl: and any gk E gk

where ~ E Tpl:Nwl: and il denotes the gk-equivariant extension of the gl_
invariant partial section qk induced by the E -connection Ek+1.

Proof. As implied by (5.14a) the I-form on the right hand side of the
identity is equivariant. What remains to be shown is that both sides are
identical on the characteristic manifold of the connection wk. Thus, let pk E

N~l: then wk(pk)(~) = 0 if, and only if, ~ E S1t(qk(pk)). On the other hand if
pk E Nwl: so does pgk for any gk E vf(gl). However, ..\k((gk)-l,.) is identically
zero for any gk E GL(n, Rn) EB{O}. Also, qhgk+l(Tff\gl:~) = 0 if, and only if
~ E S1t(qk(pk)) as attested by the Proposition 5.3 •

To get an even more detailed description of a k-connection as well as
to understand better the role of the mapping ,\k let us compare the stan-
dard horizontal spaces corresponding to two different (k + I)-frames over the
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same k-frame. Hence, let us take pk+l, pHl E HHI(6) such that pk is their

projection onto Hk(ß). This implies that there exists n~+l E N;+l(n) such
that pk+1 = pk+ln~+l. Moreover, there exists an admissible local isomor-

phism cl : Hk(JRn) -+ Hk(JRn) preserving the neutral element and such

that nk+1 = j Iak (ek\ Also, there is an admissible local isomorphism hk :

Hk(JRn) -+ Hk(ß) such that jIhk(ek) = pHI (see Definition 5.2). The

composition hk 0 ak is then an admissible local isomorphism the first jet of

which at ek gives the (k + l)-frame pHI. According to the Definition 5.2
(hk7ak)(v,0) E SH(pk+l) for any (v,O) E JRn EBgk. Recalling the definition
of the fundamental form and that of the action pk+1 of the group gk+l on the
tangent space ofHk(ß) we obtain hk7ak(v, 0) = jikopk+I((n~+I)-1 )(v, 0) =
jik(7r~+I(n~+I)v,,,\k((n~+l)-I,v)) = jik(v,O) + jik(O,,,\k((n~+I)-\v)) =

jik(V,0) + h:(,,\k((n~+.LI),v) = jik(v,O) + ,,\k((n~+l)-l,v)) for every
(v, 0) E JRn EB gk Where, ,,\k (., .) denotes a vertical vector at pk corresponding

to the Lie algebra element ,,\k(-, .). All of the above shows that:

Lemma 5.1 Given two, in general different, (k + l)-frames pk+l, pk+1
over the same k-frame pk, i.e. 1l"Z+i(pk+l) = 1l"Z+I(pHI) = pk, the stan-
dard horizontal space of pk+1 is the gk translate, through ,,\k, of the standard

horizontal space of pk .

Therefore, the statement of the Theorem 5.4 can be made even more precise:

Proposition 5.4 (Elzanowski and Prishepionok [EP3]) Let wk be a k-
connection with Nwk as its characteristic manifold. Let l~ : Hk(ß)-+Nf(n) be
an equivariant mapping, i.e. l~(pkn~)= l~(pk)n~ for any k-frame pk and any
n~ E N1k(n) while l~(pkg) = g-Il~(pk)g for any gE gl. Assume that l~ is such
that pkl~(pk)-l E Nwk for every pkE Hk(ß). Also, let qk : Nwk -+ fIk+l(ß)
be the gl-equivariant section such that wk = q*(h+1 when restricted to Nwk.

Then,

~.

(5.20)
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fOT any pI.: E Hk(ß) and ~ E Tpk Hk(ß). !vfoTeove'T, there is a one-to-one

cOTrespondence between linear connections on Hk(ß) and pairs of mappings
(qk,lt).

Proof. Given the pair (qk, l~) where qk : Hk(ß)-tHk+l(ß) is an equivari-

ant section and where l~ : Hk(ß)-tNf(n) is an equivariant mapping the
k-connection is uniquely defined by Eqn.(5.18). On the other hand, given

the connection wk the mapping l~ is uniquely defined, modulo the 91 ac-
tion, from the equation: 1rZ+hwk - fh+l = 1rZ+hAk((ln-1, e~+l). Once l~ is
available the equivariant section qk can be obtained from the condition that

wkl(ln-l(o) = qkl(l~)-I(O)ek+l' We remark here that Al == 0 and that for k = 2
we get the known expression for a 2-connection of Garcia [G]. We also point out
that the theorem shows that there exists a one-to-one correspondence between
the [-connections of order k and the k-connections, as shown in a different

way by Libermann [Li]"-

A k-connection wk on Hk(ß) induces, through a projection, a (k-1)-
connection prollwk on Hk-1(ß). Namely, for any ~ E THk(ß)

(5.19)

If Nwk is the characteristic manifold of wk then the characteristic manifold

of prollwk is the projection of Nwk, i.e. Nprojlwk = 1rZ_1(Nwk). Indeed,
suppose that ek+1 is the [- connection of order k generating wk. Then, Nwk =

1rZ+1(ek+l(H1(ß))) and there exists a partial section qk : Nwk -t ek+1(H1(B))
such that for any pk E Nwk the horizontal space of wk at pk is S1i( qk (pk)) that
is the kernel of qhek+1. Now, let qk-1 be a partial section on 1rL1 (Nwk) with
the property that qk-101rL1 = 1rZ+loqk. RecaIling that the projections 1rZ+1

and1r~_l' when restricted to the characteristic manifolds, are one-to-one and
invoking the definition of a standard horizontal space, as weIl as Proposition

5.3, we get:

Lemma 5.2 The standard horizontal space of a projection of a frame is
a pmjection of the standard horizontal space of that frame, i. e. if pk+1 E
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Hk+1(ß) then 1rLl.SH(pk+l) = SH(1rZ+1(pk+l)). Th.us, the chamcteristic

man'ifold of the projected connection proj 1wk is the projection of the charac-
teristic manifold Nwk.

This is obviously also' true for a projection of a k - connection to any r-order

frame bundle, where 0 < r < k.

'vVeare now ready to introducethe concept of the induced material connec-
tion. But first, let wk be some principal material connection of the materially
uniform k-grade hyperelastic body ß.

Definition 5.4 The (k - r)-material connection of the k-grade uniform
hyperelastic body ß is the r-th projection of the principal material connection
k. . kw , ~.e. proJrW .

As we have stated before (see also Wang and Truesdel [WT]) for every
material point X of the smoothly uniform material body ß there exists a

principal material connection wk such that in some neighbourhood of X, say
U, it is generated by a (local) material section. Let [k : U C ß-+Hk(ß) be
such a section. Therefore, there exists the local section pI: U-+ H1 (ß) and the
map €~k : pl(U)-+Hk(ß) such that for any Y E U [k(y) = c~k(pl(y)). We
extend the mapping C~k'by the action of gl on H1(ß), to the gl-equivariant
seetion i~k : H1(U)-+Hk(ß). As we have shown before (Theorem 5.1) such

an equivariant section defines a local (k -' l)-connection i1wk where Ni1",k
1rLdi~k(pl(U)91)] = 1rLl[[k(U)gl].

Definition 5.5 Given the local material section [k the induced ma-
terial connection i1wk is the locally defined (k - l)-connection such that
1rLIW(U)gl] is its characteristic manifold and ijk-l : 1rLIW(U)91]-+[k(U)gl

is its generating section.

In general Ni1Wk =1= Nprojlwk. However, if the seetion [k defines locally the
principal material connection wk the section 7fLl 0 [k defines proiIwk. This,
in turn, enables one to define the gI-invariant section ik-;;l (k inducing the

71'k_10
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(k - 2)-connection i1proj1wk with 7l'L2[[k(U)91] as its characteristic manifold.

The space 7l'z=i (NiIWk) is the characteristic manifolcl of the projection of i1Wk
to Hk-2(ß) proving:

Proposition 5.5 . Given a material point X let wk be the principal material
connection integrable in the neighbo'Urhood U of X. Then, for any pair of
positive integers j < k

in U.

The analysis of the locally induced connections, the projections of con-

nections and the relation between them will be fundamental for resolving the
problem of the local f1.atness of a principal k- material connection and so the
integrability of material structures for k-grade uniform hyperelastic material
bodies. This will be presented at length in the next chapter. Yet, even at this
point, on the bases the definition of the induced material connection (Defini-
tion 5.5) and the Proposition 5.4, we can safely claim that the main advantage
of having the induced and the projected material connections lays in the fact
that the analysis of the k-order principal material connection can be performecl
on although two, but lover order, connections. Indeed, it is immediate from
the definition of the induced connection and the construction of the connection
from its [-connection that:

Proposition 5.6 Given an integrable connection wk-1 and another k - 1-
connection Wk-1 which characteristic manifold Nwk-I is the integral manifold
of the horizontal distrib'Ution of wk-1 there is only one integrable k-connection
wk s'Uch that proj1wk = wk-1 and i1wk = Wk-1.

We end this part by 100king in more detail at the second order holo-
nomic frame bundle and the second order connections. vVe shall follow here

Elianowski and Prishepionok [EP2], [EP4].
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Suppose, für the simplicity and the clarity of our presentation, that the

body ß can be covered by a single (global) chart and that S = !Rn. Thus,
we assurne the body B is equipped with the coordinate system {xI, ... , xn}.

Let us select as the r.eference placement U(O), a neighbourhood of the origin

of !Rn. Then, any (local about the origin) diffeomorphism X: U(O) E !Rn-tß
can be viewed as adeformation of the body ß. Consider a linear frame pI
and a holonomic 2-frame p2 such that 7I"2(p2)= 71"1(pI) = Y = (yl, ... yn) E ß.
These frames are represented in HI(B) and respectively in H2(B) by the sets of

local coordinates (yi,Y1) and (yi,Y1,Y11) such that det(y1) =1= 0 and yL = ytk'
Let us add here that a non-holonomic frame is respectively characterized by

the set of coordinates (yi,y),yLY11) where Y11 is not necessarily symmetric.
1£ yt = yt the the frame is semi-holonomic.

In the locally induced by the coordinate system {Xl ... xn} bases

I (1 n. i a )p = y , ... ,y 'Yk-a . ,
. x'

2 (1 n. i a . i a )p = y , ... y 'Yk-a "Yks-a .x' X~
(5.20)

where the summation convention is enforced. One can think of y1 as the
components of the deformation gradient at Y E ß of X while the 2-frame p2
represents the first and the second deformation gradients. Given an element

(gi, nil) of the structure group g2 = GL(n,!R) EB 82(n) of H2(B), where n~l =
ntk' it acts on the right on the holonomic 2-frame p2 = (yi, y1, y~l) by (see

e.g., [CDL] and [EEp2])

(5.21)

As we have shown before (see Definition 3.4 and Proposition 5.1) the
second-grade hyperelastic material body ß is smoothly uniform if there exists
a gauge (p~, q;k) : B -t g2 and a smooth function W : g2 -t !R such that

(5.22)
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for all material points anel any pair of the first anel seconel ;eleformation gra-

elients Y1,Ytj.24 The material section [2, being just a colledion of local con-
figur at ions relative to which W becomes material point inclfpenelent, is then

~wn~ I

(5.23)

(5.24)

I
where bi = bi . pi = (a-1)i. anel qi = (a-1)ibl (a-1)n(a+-1)m This is set]k k]'] ] ]k I nm ] k .

up so that, for any Y E ß, (p), q)k)(£(Y)) = e2 = (8;, 0), th~ neutral element
of the structure group g2.

The material reference [2 ineluces, by projection, the section pI : l3 -t
I

H1 (l3), i.e. Kr 0 [2 = pI anel :

I
i

Consequently, there exists the partial section q2 : pI (ß) -t IH2 (ß) such that
q2 0 pI = [2. As it follows from (5.21) anel (5.23) this section, when ex-

tenelecl equivariantly by the action of GL(n, IR) to the enyire H1(ß), gives

the gI-invariant section iP : H1(ß) -t H2(ß) such that I

-2( i i) (i i bi (-I)m( -1)n s r)q Y, Yk = Y, Yk, mn a s a r YkYj . (5.25)

I
Choosing a basis in the Lie algebra gl = g[(n, IR) a line'ar connection on

the bunelle of linear frames H1 (ß) is given locally by a collection of real-valueel
gl ~equivariant 1-forms

(5.26)

24 'Ne delibeni.tly ignore here the fact that, in general, the body ß has some non-trivial

symmetry group.
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.-----------------------------------

while thc corrcsponding horizontal distribution is spanned by

1). - ~ rk j fJ
• - fJxi - ijxr fJxk

r

(5.27)

where rfj are the Christoffel symbols. If, as it happens in the case of the
I-material conneetion, the horizontal spaee is a lift of the tangent spaee T 8
by the loeal seetion pI to the bundle of linear frames

(5.28)

Indeed, the horizontal distribution at pI (8) is spanned by p; (a~s ) = (a~s )pl(ß)

+~(a:i. )pl(ß)' Onthe other hand, any invariant veetor field on HI(8) has
}

the form o:S 8~s + ßsjx{ a:~'Comparing these two expressions yields (5.28).
The seetion pI induees on HI(8) the integrable eonneetion wl (the I-material
eonneetion) the Christoffel symbols of which take the form

rk __ fJaf ( -I)i
nl - ;:} a I'uyn

(5.29)

The fundamental form on the bundle .of2-frames is represented by a
eollection of the following forms (see e.g., [CDL]):

and

()i (i )-l(d k k ( ")-Id I)j = Xk Xj - Xrj XI . x.

(5.30a)

(5.30b)

Invoking the Proposition 5.4 and the Eqn. (5.25) this implies through straight-
forward ealculations, that the Christoffel symbols of the indueed material
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connection i lw2, Le. the connection having as its characteristic manifold
7l"1[[2g1] = H1(ß), are given by

fi __ bi ( -l)p ( -l)r
mn - pr a man' (5.31)

Note, that this fact suggests that the [- connection of order 1 generating

a linear connection on H1(ß) with the Christoffel symbols f~m is given as

[1(Zi, z~) = (zi, z~, - f~mzjzk)' Note also, as we have mentioned before (foot-
note 24), that although the [-connection generating a holonomic connection
does not need to be a section of a holonomic frame bundle, as evident from
its form, if it is the connection it induces has the Christoffel symbols are sym-
metrie. This fact will later be proved for an arbitrary order connection (see
Collorary 6.2).

Finally, given the material reference [2 it generates the horizontal distri-
bution on [2(ß) C H2(ß) spanned by

(5.32)

On the other hand, as shown by Cordero at al. [CDL], any invariant horizontal
vector field on H2(ß) is of the form

(5.33)

where f's are functions of position. Consequently, the generalized Christoffel
symbols of the principal material connection of the second-grade hyperelastic
material induced by the material reference [2 are given by

k aa~( -l)r
fis = -~ X s'ux'
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r1 8a~( -l)r( -l)n( -l)k s 8b~k ( -l)r( -l)k
ipq = 8xi X s X p X q Xnk - 8xi X P X q'
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6. INTEGRABLE MATERIAL STRUCTURES: HOMOGENEITY

We have shown so far that if the k-grade hyperelastic body ß is 10-
cally smoothly uniform then there exists the corresponding material stucture
J'v'{k (ß) being a reduction of the bundle of holonomic k-frames to the symmetry
group of ß. This istructure is defined uniquely up to a conjugation by the ele-
ments of gk, the structure group of Hk(ß). We have determined also that the

uniformity of the material body ß is equivalent to the existance of the so-called
k-order principal material connection being a k-connection on the subbundle
j\;{k(ß) locally induced by the material sections. As the Proposition 5.6 shows
every such a connection is uniquely characterized by its own 1-projection and
the induced material connection (Definition 5.5). Wh at remains to be shown
is under what condition the arrangement of local configurations of a truly uni-
form material body into a local material reference can possibly be chosen such
a way that it is locally generated by a (global) configuration. The afforded
degree of freedom of choice comes naturally from the symmetry group of the
body ß. This problem will be investigated in this chapter.

Definition 6.1 The materially uniform k-grade hyperelastic body ß is
said to be locally homogeneous if for every material point X E ß there
exist an open neighborhood U(X) and an integrable (local) material refer-
ence (k : U(X)-.Hk(ß), i.e. there exists a local (about the origin) diffeo-
morphism :'( : U(O) c JRn-.ß such that X(O) = X, X(U(O)) C U(X) and
(k(U(X)) = jkX(U(O)). Such an integrable material reference at X will be called
the homogeneous material reference.

Suppose then that (k : U(X)-.Hk(ß) is a homogeneous material reference
at X E ß. Given some chart a : U C S-.JRn such that a(U) C U(O) there
obviously ex ist at X a local embedding (configuration) 'l/J : V(X) C ß-.S such
that jk(a 0 'l/J)-1 = jkX on some neighborhood of the origin of JRn. We have
agreed in Chapter 4 on how to identify jk(ß, S) with the bundle of holonomic
k-frames and so the above argument proves that:

Proposition 6.1 If the materially uniform k-grade hyperelastic body ß

2S locally homogeneous at X then there exists a subbody V(X) C ß and a
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config'urationl/J V(X) ---+ S ,S'Uch that the k-jet extension jk,pts a mateTial
reference at X.

Intuitively spea~ing, in the case of the material having at each point a
stress-free uniform reference, the homogeneity means that in a vicinity of X
one can arrange the stress-free pieces into a global configuration in such a way
that no internal stress is introduced. The equilibrium of a finite sampie with

the free boundary can be mentained with no internal stress.

As we know from our previous considerations, Theorem 4.1 in particu-

lar, if the k-grade hyperelastic body B is smoothly materially uniform then
there exists the corresponding material structure A1k(ß) c Hk(ß). In fact,
as stated by the Corollary 4.1, if the symmetry group of ß is a continuous
closed subgroup of gk there exist a whole conjugate class of material struc-
tures. Furthermore, if the material body is locally homogeneous and so at
every material point there is an integrable material reference, say (k, one can
find the material structure such that the material reference (k is its local sec-
tion. Consequently, as stated in the definition of local homogeneity, given a
material point X E ß there exists at X a coordinate chart ß :U E ß---+JRn such

that the k- jet extension of ,ß-1Iß(u) is identical, at some neighborhood of X,
with the material reference (k.

Let us recall that two k-order g-structures J\;/ k (ß) and J\;/ k (B) on ß
and B, respectively, where 9 is a subgroup of the structure group gk, are
said to be equivalent if there exist a diffeomorphism f : ß---+B such that f~ :
Mk (ß)---+J\;/k (B) given by the usuall composition ofjets is the principal bundle
isomorphism over f. In particular, the structure is called locally flat if, and
only if, it is locally equivalent to the flat g-structure, i.e. the trivial bundle
JRn x g. It is not hard to show (Sfernberg [8], for k = 1 and Saunders [Sa]
for k > 1) that the g-structure J\;/k(B) is locally flat if near every point on
the manifold B there is a coordinate system {Xi, ... , xn} the k-jet extension of
which is a local section of the g-structure in question. Invoking the Definition
4.2 and the discussion thereafter, as weIl as the Corollary4.1, one immecliately

gets that:
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Theorem G.l (Elianowski at al. [EEpS2] for k = 1) II the k-gm,de hy-
perelastic body 6 is locally homogeneous then there exists a material stmet'ure
J'vtk (6) which 'i.s a locally fiat g;k -struet'ure over ß where g; k denotes the sym-
metry group of ß relative to some homogeneous reference fJk .25

Let wk (resp. wk) be a k-order g- connection on Mk(6) (resp. J'vtk(ß)).
vVe say that these two connections are equivalent if there exists a principal
bundle isomorphism jb : Mk(ß)-+J'vtk(ß) such that Ib*wk = wk. We say

that wk is a locally fiat k-connection if it is locally equivalent to the canonical
flat connection on the trivial bundle !Rn X g. It is then immediate that a
k-order g-structure is locally flat if, and only if, it admits a locally flat k-order

g-connection.
Thus, having a locally homogeneous k-grade hyperelastic body ß there ex-

ists the material structure J'vtk(ß) which is locally flat. There exist, therefore,
a locally flat connection on Mk(ß). As every locally flat g-valued connection
is locally generated by a section into the subbundle Mk(ß) c Hk(ß) and as
any local section of a material structure is a material reference, J'vtk (ß) ad-
mits a locally flat principal material connection. Such a connection as locally
equivalent to the canonical connection on the corresponding trivial bundle is
locally induced by a coordinate system on the body manifold ß. The above
discussion yields therefore that:

Theorem 6.226 A k-grade hyperelastic body ß is locally homogeneous ij,
and only ij, there exists a locally fiat principal material connection.

Indeed, given the locally homogeneous material body ß there exists a
locally flat principal material connection generated by the corresponding ho-

25 Recall that although not every material reference of the given material structure

M k (ß) is a homogeneous reference ( if there is any at all ) the symmetry groups rela-

tive to any material reference, homogeneous or not, of the particular structure are always

identical.
26 This theorem was originally proved by Noll [N] and Wang [W] for k=l (see also

Elzanowski at al. [EEpS2]). For the second-grade hyperelastic material the same was shown

by ElZanowski and Prishepionok [EP2] and independently by de Leon and Epstein [LEJ.
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mogcneous material reference, say !)k. Any other principal material connection
generated by some other material reference does not need to be locally fiat as
the gauging by the symmetry group g~k (see the relation (5.4)) takes the
homogeneous materi(~.l reference into, in general, arbitrary local material ref-
erence unless, the symmetry group g~k is a discrete subgroup of gk 01' the
corresponding gauge is induced by the coordinate change on the body mani-
fold ß. In the discrete case, due to the smoothness of any material reference, if

there is a homogeneous material reference then there is only one. On the other
hand, if the gauge is generated by the coordinate change on ß it is only natural
as evident from the Definition 6.1 that a homogeneous material reference is
taken into another homogeneous material reference.

Given some principal material connection, to determine that it is locally

fiat, is to show that its horizontal distribution is locally induced by some
homogeneous material reference. In the linear case (k=1, simple elasticity)
when the vanishing of the torsion form (see e.g., Sternberg [S]) guarantees the
flatness this amounts, as shown by Noll [N] and Wang [W]' to finding, through
gauging by the symmetry group, the (principal) material connection with the
zero torsion. In the case of the second and the higher grade materials the
vanishing of the torsion is only, as we show below, a necessary but certainly
not a sufficient condition for the principal material connection to be locally
flat. However, we will be able to invoke some other coordinate change invariant
objects which in the way simillar to the torsion measure the local flatness of
a principal material connection and so characterize the local homogeneity. To
be able to do this we need first to introduce the notion of the prolongation of
a k-connection and the concept of a simple connection.

Definition 6.2 Given the k-connection wk let cHi be its generating £,-
connection, i/ :Hk(ß) -t fIk+1(ß) the corresponding gk-equivariant section
and Nwk its characteristic manifold. The prolongation of wk is the (k + 1)-
connection P(wk) such that its horizontal spate at any pHi E qk(Nwk) is the
qk -lift of the horizontal space of wk, i. e. fot any pk E Nwk
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The following facts are easy consequences of the definition of prolongation.

Proposition 6.2

a. Giuen the k-connection wk there is only one prolongation P( wk).
b. proJtP(wk)'= wk.
c. The connection wH1 is the prolongation of its projection proj1wk+l

if. and only if, Nwk+1= qk(Nprojjwk+I).

Definition 6.3 (Yuen [Y] ) The k-connection wk is calted simple, and we
write wk = pk-l (w1), if'it is the (k -1)-prolongation of some linear conneetion
w1.

It appears that any simple k-connection can be characterized by the "po-

sition" of its horizontal distribution relative to its characteristic manifold.
Indeed, we have:

Proposition 6.3 If wk is a simple connection then its horizontal distri-
b'Ution is tangent to its charaeteristic manifold at alt points.

Proo£. It is enough to point out that if the 2-connection w2 is the prolon-
gation (simple) of some linear connection wl then, by the definition of a simple
connection, horql(pl)W2 = q;(horplwl) for any pI E Nwl. However, accord-
ing to Proposition 6.2(c) q;(H1(ß)) = q;(Nwl) = Mwl = Nw2. Therefore,
the definition of the prolongation implies immediately that horP1 (wi ) IN

w
2 C

TNw2. Applying this argument recursively proves the original claim.

In fact, somewhat more general statement can be made.

Theorem 6.3 The connection wk on the b'Undle of holonomic k-frames
Hk (ß) is the (k - s)-prolongation of its projeetion proj k_swk if, and only if, its
horizontal distrib'Ution is tangent to the ind'Uced by the characteristic manifold
Nwk gS-reduction ofthe b'Undle Hk(ß), i.e. ifit is tangent to NwkN:_I(n). In
partic'Ular, :..;k is simple if, and only if, its horizontal distrib'Ution is tangent to
its characteristic manifold.27

.27 In fact, the same is true in the semi-holonomic case.
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Proof. The condition is obviously necessary as easily attested by the
definition of the prolongation of connection and Proposition 6.3. Also, as the
projection of the characteristic manifold of a connection is the characteristic

manifold of the proj~cted connection Nprojk_swk = 71': (Nwk). Therefore, the
horizontal distribution of projk_swk is tangent to Nprojk_swkN:-l = HS(B).
Consequently, the sequence of invariant seetions {ql}l=s, ... ,k_l, corresponding
to the sequence of prolongations of projk--:swk to Hk(B), maps the horizontal

distribution of the (k - s)-projection of wk onto the horizontal distribution of
wk satisfying conditions of Definition 6.2.

If the horizontal distribution of wk is locally integrable Theorem 6.3 has

particularly far reaching consequences.

Collorary 6.1 A locally integrable k-connection wk is simple, i.e., wk =
pk-l(projk_lwk), ij and only ij, i1wk = prohwk.

Proof. If the connection wk is simple then, by Theorem 6.2, hor pkWk C

TpkNwk for every pk E NwL On the other hand, as wk is locally integrable,
for any 71'k (pk) there exists a local section [k : U C B-+ Hk (B) such that
horpkwk = Tpdk(U). This implies that Tpdk(U)CTpkNwk for any pk E NwL
Moreover, as Nwk is a gl-reduction ofHk(B), [k(U)91 = Nwklu and Nprojlwk =
71'Ll (Nwk) = 71'Ll (£kgl) = Ni1Wk by the definition of the induced connection
(Definition 5.4). Therefore, the induced connection i1wk has the same char-
acteristic manifold as the 1-projection of wk. Having the same characteris-
tic manifold the connections do not need to be the same however, i1wk and
projlwk not only have the same characteristic manifolds but also have the same
generating q-sections as MproJtwk = Nwk = [k (U)gl = Mi1Wk. Conversely, if
for some integrable connection wk, i1wk = prohwk then 71'Z_l(Nwk) = N1Wk =
Ni1Wk = 71'LIW(U)91). This, in general, may yet not guarantee that the
horizontal distribution of wk is tangent to its characteristic manifolds but as
the corresponding generating q-sections are identical it indeed does conclude

the proof.

Applying the above argument recursively one can easily conclude the following:
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Collorary 6.2 Let the k-connection wk be a simple connection, i. e. wk =
pk -[ (proj k_[ wk). Then, the horizontal d'istribution of wk is loealt!) integrable
if, and onl!) if, the horizontal distribution of projk_lwk is loealt!) integrable,

We are ready now to determine under what conditions a k-order holonomic
connection is locally equivalent to the standard Hat connection on JRn X gk.
To this end, let us recall first that it was shown by Yuen [Y] and in the

context of continuum mechanics by Elianowski and Prishepionok [EP2J, and

independently by de Leon and Epstein [LEI]' that:

Theorem 6.4 The k-conneetion wk is loealty flat if, and only if, it is
simple and its curvature and torsion vanish, i.e. wk = pk-l(projk_lwk) and

Dwk = 0, and 8wk = ° where the curvature Dwk of the k-eonneetion wk is the
gk-valued 2-form dwklhorwk while the torsion 8wk is the JRn EB gk-l-valued

2-form dOklhorwk.

Note that the curvatureand torsion of the jth-projection of wk are respec-

tively defined by the following identities (cf. [CDL]):

(6.1)

(6.2)

Thus, if the connection wk has a vanishing torsion and/or curvature then its

projections pro}jwk have the same properties.

Although Theorem 6.4 sets the explicit sufficient and necessary conditions
forthe k-connection to be locally Hat, we shall try to determine if these con-
ditions could not be weaken, in particular, in the locally integrable case, i.e.,
D~k = 0, that is particular in the caseof the principal material connection.
To this end let us recall that it was proved by Garcia [G] and Yuen [Y] that:
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Lemma 6.1 Let the (holonomic) connection wk be ind'uced by the [- con-
nection eHI :Hl(ß) --+ Hk+I(ß) into the holonomic frame bundle. Then, wk

has a vanishing torsion.28

This simple fact -enables us to show that:

Collorary 6.3 If the k-connection wk is holonomic and has the vanishing
curvature then the induced connection i1wk has vanishing torsion.

Proof. Let [k : U c ß --+ Hk (ß) define locally the horizontal distribution

of wk• The corresponding [-connection of i1wk is a section into the holonomic

k-frame bundle (see Definition 5.5). This, according to Lemma 6.1, guarantees

the vanishing of the torsion of i1wk ••

Moreover,

Proposition 6.4 A k-connection (locally integrable or not) cannot be pro-
longed (see Definition 6.2) into the holonomic frame bundle Hk+1(ß) unless it

has the vanish'ing torsion.

Proo£. Suppose that wk has non-vanishing torsion and let p1 (wk) be its
prolongation into the holonomic frame bundle Hk+l(ß). As the prolongation
is holonomic Mwk = Npl(wk) c Hk+l(ß). This, however, means that the [-
connection inducing wk is a section of the holonomic frame bundle which in
turn, due to the Lemma 6.1, implyes that wk has vanishing torsion.

Finally, we have come to the point when we can conclude our analysis

by proving two important statements about locally flat connections. Some
other interesting intermediate cases will be presented elsewhere as they re-
quire somewhat deeper look at the form of k~connections (Theorem 5.1 and
Proposition 5.4) and the properties of their curvature and torsion forms.

Proposition 6.5 A simple holonomic k-conneetion wk is locally fiat if,

and only if, w1 == projk_lwk is locally fiat.

28 The same can be show directly from theProposition 5.4.
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Proof. If the (k - 1)-prolongation pk-l (w 1) is locally flat then obviously

wl is locally flat as wl = projk_lpk-l(wl). We also know, from Collorary 6.1,

that w1 is curvature free if, and only if, its prolongations are curvature free.

What remains to be ~hown is that if the torsion of wl vanishes then any of its

prolongations has vanishing torsion. This is, however, immediate by Collorary
6.1, Proposition 6.4 and the uniqueness of the prolongation.

Proposition 6.6 Let the holonomic k-connection wk be simple and cur-
vature jree. Then, it is locally flat.

Proof. If a holonomic connection wk is simple and curvature-free then

by Collorary 6.1 i1wk = projlwk. Moreover, because wk = P(i1wk), the in-
duced connection has vanishing torsion as otherwise, according to Proposition
6.4, it could not be prolonged into the holonomic frame bundle. This proves
that prohwk is 10cally flat as it simple (is a projection of a simple connec-
tion), locally integrable (Collorary 6.2) and has no torsion as it is identical to
i1wk. This, in fact, concludes the proof as the prolongation of a locally flat

connection is a locally flat connection as attested by Proposition 6.5 '"

The message of the Proposition 6.6 is that for a locally integrable holo-
nomic k-connections to be locally flat is equivalent to being simple. Combining

this with Collorary 6.1 enables one to state that:

Theorem 6.5 A curvature-jree holonomic k-connection wk is lociJ,llyflat
ij, and only ij, its projection prohwk is identical to its induced connection

i1wk

For a eurvature-free linear eonnection to be locally flat is to be symmetrie,
i.e., to have a vanishing torsion. Similarly, for a eurvature-free holonomie k-
connection, k 2: 2, the local flatness is equivalent to the vanishing of the tensor
(gk-valued tensorial I-form) 1)wk == projlwk - i1wk. We therefore have:

Proposition 6.7 Let wk be a curvature-jree holonomic connection and let

k 2: 2. Then,
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(1) wk: 'i.s locally fiat 'ij) and only 'ij, 'Dwk == 0)

(2) ij 'Dwk = 0 then 'Dproitwk = 0,
,~ (3) ij'Dproj\wk = 0 then projlwk is a .simple connection but, 'in general,

'Dwk =F O.

Proof.

(1) This statement is equivalent to the statement of Theorem 6.5 and is
a straitforward consequence of Proposition 6.6 and CoIlorary 6.1.29

(2) 'Dproitwk == projl(prohwk) - i1(prohwk) = prohwk - projl(i1wk) =
proit ('Dwk) by Proposition 5.5. Therefore, if 'Dwk vanishes so does
its projection 'Dproitwk. Note that the tensor 'Dproitwk is indeed weIl
defined as if wk is curvature-free so is its projection guaranteeing the
existence of the induced connectioni1(projl(;})'

(3) If 'Dproitwk = 0 then projlwk is a simple connection as stated in
(1). However, even if 'Dproitwk vanishes wk may not be simple. In-
deed, it is enough to choose as wk a curvature-free holonomic con-

nection which projection is simple but which has an arbitrary nLl-
component (see Eqs. (5.15) and (5.20))-"

vVe are now in a position to go back the main topic of this presentation and
with the general results we have obtained above continue the analysis of the

29 We would like to add that somewhat similar, but not identical, statement can be made

in case wk is a semi-holonomic connection. The similarity comes from the fact that in

order to secure the local flatness of a curvature-free semi-holonomic connection one must

require, like in the holonomic case, that the tensor 'Dwk vanishes. To make the condition

sufficient one must also demand that the vanishing of the torsion of projk_lwk. The

difference between the semi-holonomic case and the holonomic case comes from the fact

that, in general, the semi-holonomicity of wk does not guarantee the vanishing of the torsion

of the induced connection i1wk. Consequently, the vanishing of 'Dwk although makes

projlwk = i1wk it does not force it to have a zero torsion. If however 8projk_lwk == 0

and 'Dwk == 0 then the linear connection projk_lwk is locally flat making, by virtue of

(2), the 2-connection projk_2wk holonomic and simple. Iterating this upwards will imply

that wk is simple and holonomic and so locally flat.
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problem of the loeal homogeneity of smoothly uniform hyperelastic material

bodies. To this end let us recall onee again that every principal material
connection of a k-grade hyperelastic material body ß is by definition holonomic
and eurvature-free as it is loeally indueed by a material reference being a local
seetion into the holo~omic frame bundle Hk(ß). It always generates loeaHy
the indueed material eonneetion as weH as its projeetions. As we have argued
before (Theorem 6.2), the loeal homogeneity of ß is equivalent to the existanee
of a loeally flat principal material eonneetion, say wk. The loeal flatness of the

prineipal material eonneetion of a simple uniform elastie body is guaranteed
by the vanishing of its torsion while for the seeond-grade and higher materials
it corresponds to the vanishing of the appropriate tensor :Dwk, as shown by
Propsition 6.7. In the eontext of eontinuum meehanics we shall eall the tensor

:Dwk the inhomogeneity tensor.
The diseussion above ean now be summarized in the following form:

Theorem 6.5 A smoothly uniform k-grade hyperelstic body ß is locally
homogeneous if, and only if, there exists a principal material connection, say

wk, such that:
(1) if k = 1 its torsion 8wk == 0,
(2) if k > 1 its inhomogeneity tensor 1)wk == O.

We can now go back to our second order holonomic example from the
end of Chapter 5. We point out that, as stated above, the principal material
conneetion w2 indueed by the section [2(yi) = (yi, a~(yi), b~k(yi)) is simple if,

and only if,

(6.3)

where the Christoffel symbols qk and t~k are defined by Eqs. (5.29) and
(5.31). The vanishing of the inhomogeneity tensor implies that

(6.4)
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As bjl is always symmetrie the above relation is, in fact, the integrability
eonditon for a~. Thus, there exist smooth funetions (i(Xk) sueh that the

i 2£ d i 82(' • •• •gauge Pj = ax) an qjk = ~ provmg that If the mhomogeneIty tensor
vanishes the body is locally homogeneous.

The importanee of the simplicity eondition for determining the loeal flat-
ness of the principal material eonneetion ean be illustrated by the following
example. Let us assurne that our seeond-grade hyperelastie material body ß
is not loeally homogeneous (there is no loeally flat principal material eonnee-
tion) but there exists a principal material eonneetion w~ sueh that its projeeted

material eonneetion prollw~ as well as the indueed eonneetion ilW~ are both
loeally flat but different. Therefore, there is no eoordinate system in whieh the

eorresponding Christoffel symbols or~k and J'~k vanish simultanieusly. The
inhomogeneity tensor '3)w2 does not vanish, itonly beeomes symmetrie. The

o

prineipal material eonneetion w~ has a vanishing torsion but it is not a pro-
longation of the loeally flat linear eonnection projlw~, Despite the faet that
w~ is eurvature-free and has no torsion it is not loeally induced by a single

eoordinate system.

In the ease of a simple elastie material the torsion of the material connee-
tion is in some way a measure of the density ofthe distribution of disloeations
[Kr], [W]. Following this line of interpreting the geometrie quantities appearing
in the theory one might say that the eurvature of the indueed eonnection mea-
sures the distribution of disclinations while the non-vanishing of the symmetrie
inhomogeneity tensor (like in the exampleabove) ean possibly be regarded as
the indeeation the presenee of some intrinsieally .second order defeet.s, as sug-
gested in [EEp2]. Note also that in order to be able to deteet the presenee
of these seeond order defeets one must have no first order onee. Otherwise,
the non-vanishing of the inhomogeneity tensor indeeates only that there are

all kinds of defects present.30

30 "Ve would like to point out here that the theory of non-holonomic frame bundles can

also be utilized to model the uniformity of material bodies w microstructure. For example,

the uniformity of a first-grade material body consistirig of a rigid matrix and a smoothly

distributed micro-inclusions described by the deformable triades of vectors could be modeled
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We end this chapter by reiterating once again that to determine that the

material bocly, possesing a continuous symmetry group, is locally homogeneous
one must find a locally flat principal material connection. Normally there are
many principal mate:ial connections available (compare Eqs. (5.5) and (5.7)
as well as Proposition 5.2) and only through gauging them by the symmetry
group one can possibly determine if there exists any which is locally flat. One
must find such a principal material connection which is a prolongation of a
locally flat linear connection. It must be stressed here that gauging does
not, in general, pr eserve the differential lifting (prolongation) as evident from
Propsition 6.3. The non-vanishing of the inhomogeneity tensor for some choice
of the principal material connection does not prejudice its vanishing for some
other principal material connection as '!)wk is not invariant under the action

of the symmetry group.
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by the analogous theory on semi-holonomie frame bundles. Indeed, the deformation of the

triad ean be presented as a 2 X 2 matrix while its deformation gradient is not symmetrie due

to the faet that the distribution of these bases is, in general, non-integrable. In sueh a ease

the ioeal homogeneity is guaranteed by the existenee of the prineipal material eonneetion

sueh tha,t not only its inhomogeneity tensor vanishes but also the projeeted to the first level

material eonneetion is symmetrie (see footnote 29 and also [LE2]).
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