From a discrete setting to a smooth idealized skin

Ernst Binz<br>Universität Mannheim<br>Lehrstuhl Mathematik 1, Seminargebäude A5<br>68131 Mannheim

No. $193 / 1995$

# From a discrete setting to a smooth idealized skin 

E. Binz

In memoriam G. Reeb and J.L. Callot

## 0 Introduction

The purpose of these notes is to show how the geometric description of a deformable continuum, here an idealized skin, can be based on the collection of finitely many interacting particles which constitute the medium.
Let us make this more precise: We assume a finite collection $P^{\prime} \subset \mathbb{R}^{n}$ of points to be given. Each point is thought of as the mean location of a material particle. The interaction shall be such that there is a smooth, compact, connected and oriented manifold $S^{\prime} \subset \mathbb{R}^{n}$ of $\operatorname{dim} S^{\prime} \geq 1$ passing through $P^{\prime} . S^{\prime}$ is the macroscopic, differential geometric visualization of the skin.

The problem we are confronted with is hence to derive, out of the interaction scheme of the particles, a differential geometric ingredient on $S^{\prime}$ characterizing a deformable medium in the sense of continuum mechanics. In doing so, we will not pass to a limit such as enlarging the number of interacting particles, e.g. Neather we will make use of an approximation.
Here is what we do: Let $S$ be an abstract manifold diffeomorphic to $S^{\prime}$ and $P \subset S$ be a collection of points with the same cardinality as $P^{\prime} . \mathbb{R}^{n}$ shall be equipped with a fixed scalar product $<$,$\rangle . We base our characterization of the discrete$ medium on the principle of virtual work (cf. [Bi1], $[\mathrm{Bi} 2]$ and $[\mathrm{M}, \mathrm{H}]$ ). The virtual work on the discrete level is here assumed to be a special kind of a one-form $A_{P}$ on the configuration space $E^{\infty}\left(P, \mathbb{R}^{n}\right)$, consisting of embeddings of $P$ into $\mathbb{R}^{n}$ (to be specified below). (This makes it already clear that the realm in which we work is rather simplified from a continuum mechanical point of view. We, however, do so to present the general principles we develop here in a simple fashion). Since the configuration space is finite dimensional, $A_{P}$, assumed to be smooth, admits a configuration dependent smooth force $\Phi_{P}$, formed with respect to the naturally given scalar product $\mathcal{G}_{P}$ on $E^{\infty}\left(P, \mathbb{R}^{n}\right)$. More precisely

$$
\begin{equation*}
A_{P}\left(j_{P}\right)\left(h_{P}\right)=\mathcal{G}_{P}\left(\Phi_{P}\left(j_{P}\right), h_{P}\right):=\sum_{q \in P}<\Phi_{P}\left(j_{P}\right)(q), h_{P}(q)> \tag{0.1}
\end{equation*}
$$

for any $j_{P} \in E^{\infty}\left(P, \mathbb{R}^{n}\right)$ and any $h_{P}$ in the finite dimensional vector space $\mathcal{F}\left(P, \mathbb{R}^{n}\right)$ of all $\mathbb{R}^{n}$-valued maps of $P$. We think of $h_{P}$ as a distortion of $j_{P}(P)$. Since $\Phi_{P}$ shall be an inner force, we assume that it is invariant under the translation group $\mathbb{R}^{n}$ of $\mathbb{R}^{n}$. Moreover, no constant distortion $z \in \mathbb{R}^{n}$ shall cause any virtual work at any configuration $j_{P}$, i.e. $A_{P}\left(j_{P}\right)(z)=0$.
To specify the type of interaction we let $P$ be the collection of all zero-simplices of an oriented, simplicial one-complex $\boldsymbol{L} \subset S$. We say that a particle at $q \in P$

## E. Binz

interacts with one at $q^{\prime}$ provided $q$ and $q^{\prime}$ bound the same one-simplex. A point $q^{\prime}$ is called a nearest neighbour of $q$ if $q$ and $q^{\prime}$ are the (mean) location of interacting particles. Thus we let the interaction scheme to be the one of nearest neighbour interaction (again a rather simple set-up). This sort of interaction, however, requires us to restrict $A_{P}$ to a (rather small) open set $O_{P} \subset E^{\infty}\left(P, \mathbb{R}^{n}\right)$, since in practice the interactions are determined by distance depending potentials. $\boldsymbol{L}$ determines a Laplacian $\Delta_{T}$, acting on $\mathcal{F}\left(P, \mathbb{R}^{n}\right)$. The assumption we made on $\Phi_{P}$ yields the representation

$$
\begin{equation*}
\Phi_{P}\left(j_{P}\right)=\Delta_{T} \mathcal{H}_{P}\left(j_{P}\right) \quad \forall j_{P} \in O_{P} \tag{0.2}
\end{equation*}
$$

for some map $\mathcal{H}_{P} \in C^{\infty}\left(O_{P}, \mathcal{F}\left(P, \mathbb{R}^{n}\right)\right)$. We called $\mathcal{H}_{P}$ the constitutive map of the medium. It is the equivalent to the first Piola-Kirchhoff stress tensor in continuum mechanics (cf. [Bi2]).

Exactly in the same way we characterize a deformable continuum: Let $E\left(S, \mathbb{R}^{n}\right)$ be the collection of all smooth embeddings of $S$ into $\mathbb{R}^{n}$, a Fréchet manifold if endowed with the $C^{\infty}$-topology. Fixing $j_{0} \in E\left(S, \mathbb{R}^{n}\right)$ there is a Riemannian metric $m\left(j_{0}\right):=j^{*}<,>$ and hence the associated $L_{2}$-scalar product $\mathcal{G}\left(j_{0}\right)$ on $C^{\infty}\left(S, \mathbb{R}^{n}\right)$. Given a smooth internal force density $\Phi$ on an open set $O \subset E\left(S, \mathbb{R}^{n}\right)$ (accordingly restricted as $\Phi_{P}$ ) there is a smooth map $\hat{\mathcal{H}} \in C^{\infty}\left(O, C^{\infty}\left(S, \mathbb{R}^{n}\right)\right)$ such that

$$
\begin{equation*}
\Phi(j)=\Delta\left(j_{0}\right) \hat{\mathcal{H}}(j) \quad \forall j \in O ; \tag{0.3}
\end{equation*}
$$

here $\Delta\left(j_{0}\right)$ is the Laplacian of $m\left(j_{0}\right)$. The virtual work caused by $\Phi$ is called $A$. (We refer at this point to a reformulation of the classical Dirichlet integral for $\Delta\left(j_{0}\right)$ in the appendix).
The link between the two descriptions is as follows: Given $A_{P}$ on $O_{P}$, we lift it up to some open set $O \subset E\left(S, \mathbb{R}^{n}\right)$. The idea is that $O \subset \mathcal{W}^{\infty}\left(j_{0}\right) \times \mathcal{F}^{\infty}\left(S, \mathbb{R}^{n}\right)^{\perp}$ where $\mathcal{F}^{\infty}\left(S, \mathbb{R}^{n}\right)^{\perp} \subset C^{\infty}\left(S, \mathbb{R}^{n}\right)$, say, is an infinite dimensional subspace and where $\mathcal{W}^{\infty}\left(j_{0}\right)$ is diffeomorphic to $O_{P}$, i.e. $\mathcal{W}^{\infty}\left(j_{0}\right)$ is a slice of some projection $\pi_{\infty}$ of $C^{\infty}\left(S, \mathbb{R}^{n}\right)$ to a finite dimensional subspace $\mathcal{F}^{\infty}\left(S, \mathbb{R}^{n}\right)$, say. This slice is of the form $j_{0}+\mathcal{W}^{\infty}\left(O^{\prime}\right)$ where $\mathcal{W}^{\infty}\left(O^{\prime}\right)$ is an open neighbourhood of $0 \in \mathcal{F}^{\infty}\left(S, \mathbb{R}^{n}\right) \subset C^{\infty}\left(S, \mathbb{R}^{n}\right)$. This subspace $\mathcal{F}^{\infty}\left(S, \mathbb{R}^{n}\right)$ is such that it is invariant under $\Delta\left(j_{0}\right)$, a requirement in accordance with (0.3), and is moreover isomorphic to $\mathcal{F}\left(P, \mathbb{R}^{n}\right)$ via the restriction map $r$. It hence is generated by $\mathbb{R}^{n}$ and some eigenvectors of $\Delta\left(j_{0}\right)$ with non-vanishing eigenvalues. The eigenvectors are chosen such that the $\operatorname{tr} \Delta\left(j_{0}\right) \mid \mathcal{F}^{\infty}\left(S, \mathbb{R}^{n}\right)$ is as small as possible. The above mentioned space $\mathcal{F}^{\infty}\left(S, \mathbb{R}^{n}\right)^{\perp}$ is generated by all eigenvectors of $\Delta\left(j_{0}\right)$ not in $\mathcal{F}^{\infty}\left(S, \mathbb{R}^{n}\right)$. We let thus $O=\mathcal{W}^{\infty}\left(j_{0}\right)+O^{\prime \prime}$ with $O^{\prime \prime} \subset \mathcal{F}^{\infty}\left(S, \mathbb{R}^{n}\right)^{\perp}$. The projection $\pi_{\infty}$ selects hence a certain finite sum of terms in the Fourier series. Setting $r_{\infty}:=r \circ \pi_{\infty}$ we let $A:=r_{\infty}^{*} A_{P}$ on $r_{\infty}^{-1} O_{P}=O$. We form the pull back $r_{\infty}^{*} \mathcal{G}_{P}$ of the metric $\mathcal{G}_{P}$ by $r_{\infty} \mid \mathcal{W}^{\infty}\left(j_{0}\right)$ to $\mathcal{W}^{\infty}\left(j_{0}\right)$. Moreover, we observe that $r_{\infty}^{*} \mathcal{G}_{P}$ is related to $\mathcal{G}\left(j_{0}\right)$ by some $\rho \in C^{\infty}(S, \mathbb{R})$, turning $\Phi_{P}$ into a force density. Then we determine the constitutive map $\hat{\mathcal{H}}$ according to (0.3). The map $\hat{\mathcal{H}}$ characterizes by definition the skin made up by finitely many particles and determines hence its first Piola-Kirchhoff stress tensor (cf. [Bi2]).

From a discrete setting to a smooth idealized skin

Then we determine the exact parts $\mathbb{D} \bar{F}$ of $A$ on $\mathcal{W}^{\infty}\left(j_{0}\right)$ respectively $\mathbb{D} \bar{F}_{P}$ of $A_{P}$ on $O_{P}$, and obtain, by construction, that $\bar{F}=r_{\infty}^{*} \bar{F}_{P}$ holds on the slice $\mathcal{W}^{\infty}\left(j_{0}\right) .(\bar{F}$ is linked to the notion of free energy associated with some observable within a Gibbs statistics (cf. [Bi3])). $\bar{F}$ has the form

$$
\bar{F}=\frac{1}{2}(a \cdot \mathcal{A})-\frac{1}{2} \cdot G+\text { const }
$$

where $a$ is the structural capillarity, determining the amount of work caused by distorting the area of $S$ and where $\mathcal{A}$ is the area functional. $G$ reflects in particular the (possible) non-linear dependence of $A$ on the configuration $j \in \mathcal{W}^{\infty}\left(j_{0}\right)$.

We then illustrate the mechanism just described in case that the internal force $\Phi_{P}$ is determined by a potential.

Finally we define the notion of a fitting surface $j_{0}(S)$ passing through $j_{0}(P)$, within our framework. $j_{0} \in O$ has to be an equilibrium configuration for which hence $A\left(j_{0}\right)=0$ holds true and for which $\rho=1$. For a dynamics we refer to $[\mathrm{Bi}, \mathrm{Sch}]$.

## 1 The spaces of configurations

Throughout these notes $S$ denotes a smooth, compact, oriented and connected manifold (without boundary) of $\operatorname{dim} S \geq 1$. The space of configurations of $S$ is $E\left(S, \mathbb{R}^{n}\right)$, the collection of all smooth embeddings of $S$ into $\mathbb{R}^{n}$ equipped with the $C^{\infty}$-topology. This set is open in $C^{\infty}\left(S, \mathbb{R}^{n}\right)$, the Fréchet space (carrying the $C^{\infty}$-topology) of all smooth $\mathbb{R}^{n}$-valued maps of $S$ (cf. [Bi,Fi1], [Bi,Sn,Fi],[G,H,V] and $[\mathrm{M}, \mathrm{H}]$ ).
The analogon of $C^{\infty}\left(S, \mathbb{R}^{n}\right)$ for a finite collection $P \subset S$ of points is $\mathcal{F}\left(P, \mathbb{R}^{n}\right)$, the $\mathbb{R}$-vector space of all $\mathbb{R}^{n}$-valued maps of $P$. The restriction map $r: C^{\infty}\left(S, \mathbb{R}^{n}\right) \longrightarrow$ $\mathcal{F}\left(P, \mathbb{R}^{n}\right)$ is surjective. Due to the link between $P$ and $S$ we have in mind, we choose the configuration space of $P$ to be $r\left(E\left(S, \mathbb{R}^{n}\right)\right.$ ), called $E^{\infty}\left(P, \mathbb{R}^{n}\right)$. It is open in $\mathcal{F}\left(P, \mathbb{R}^{n}\right)$. Let $<,>$ be a fixed scalar product on $S$. Each $j \in E^{\infty}\left(S, \mathbb{R}^{n}\right)$ defines a scalar product on $C^{\infty}\left(S, \mathbb{R}^{n}\right)$ given by

$$
\begin{equation*}
\mathcal{G}(j)(h, k)=\int_{S}<h, k>\mu(j) \quad \forall h, k \in C^{\infty}\left(S, \mathbb{R}^{n}\right) \tag{1.1}
\end{equation*}
$$

where $\mu(j)$ is the Riemannian volume form on $S$ given by the Riemannian metric $m(j):=j^{*}<,>$. The metric $\mathcal{G}(j)$ depends smoothly on $j$.

## 2 Characterization of the media

We assume that the particles located (in the mean) at the points of $P$ interact within the nearest neighbour interaction scheme. To make this precise we assume an oriented simplicial one-complex $\boldsymbol{L} \subset S$ to be given. $P$ shall be the collection of all zero-simplices.

## E. Binz

We hence have the finite dimensional spaces $\mathcal{F}\left(P, \mathbb{R}^{n}\right)$ and $C^{1}\left(\boldsymbol{L}, \mathbb{R}^{n}\right)$ of all $\mathbb{R}^{n}$ valued zero- and one-cochains respectively. These two spaces are connected with the simplicial coboundary operator

$$
\partial^{1}: \mathcal{F}\left(P, \mathbb{R}^{n}\right) \longrightarrow C^{1}\left(\boldsymbol{L}, \mathbb{R}^{n}\right) .
$$

Both spaces carry a metric namely $\mathcal{G}_{P}$ and $\mathcal{G}_{P}^{1}$ given respectively by

$$
\begin{equation*}
\mathcal{G}_{P}\left(h_{P}, k_{P}\right)=\sum_{q \in P}<h_{P}(q), k_{P}(q)>\quad \forall h_{P}, k_{P} \in \mathcal{F}\left(P, \mathbb{R}^{n}\right) \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left.\mathcal{G}_{P}^{1}\left(\alpha_{P}, \beta_{P}\right)=\sum_{\sigma \in \boldsymbol{L}_{1}}<\alpha(\sigma), \beta(\sigma)\right\rangle \quad \forall \alpha_{P}, \beta_{P} \in C^{1}\left(\boldsymbol{L}, \mathbb{R}^{n}\right) \tag{2.2}
\end{equation*}
$$

with $\boldsymbol{L}_{1}$ being the collection of all one-simplices of $\boldsymbol{L}$. Defining the divergence $\delta^{1}$ by

$$
\begin{equation*}
\mathcal{G}_{P}\left(\delta^{1} \alpha_{P}, h_{P}\right)=\mathcal{G}^{1}\left(\alpha_{P}, \partial h_{P}\right) \tag{2.3}
\end{equation*}
$$

for all $\alpha_{P} \in C^{1}\left(\boldsymbol{L}, \mathbb{R}^{n}\right)$ and all $h_{P} \in \mathcal{F}\left(P, \mathbb{R}^{n}\right)$ yields the Laplacian

$$
\begin{equation*}
\Delta_{T}:=\delta^{1} \circ \partial^{1} \tag{2.4}
\end{equation*}
$$

This Laplacian is the basic geometric ingredient to formulate the constitutive law, i.e. to define the type of the medium under consideration.

We assume that the medium is determined by a smooth map

$$
\begin{equation*}
\Phi_{P}: O_{P} \subset E^{\infty}\left(P, \mathbb{R}^{n}\right) \longrightarrow \mathcal{F}\left(P, \mathbb{R}^{n}\right) \tag{2.5}
\end{equation*}
$$

defined on a specified open set $O_{P}$. Its value $\Phi_{P}\left(j_{P}\right)$ at each $j_{P} \in O_{P}$ is thought of as the internal force resisting any deformations $h_{P} \in \mathcal{F}\left(P, \mathbb{R}^{n}\right)$. The virtual work $A_{P}$ caused by $h_{P}$ is defined by

$$
\begin{equation*}
A_{P}\left(j_{P}\right)\left(h_{P}\right)=\mathcal{G}_{P}\left(\Phi_{P}\left(j_{P}\right), h_{P}\right) \tag{2.6}
\end{equation*}
$$

for all $j_{P} \in O_{P}$ and all $h_{P} \in \mathcal{F}\left(P, \mathbb{R}^{n}\right)$. Internality of $\Phi$ shall be characterized by the following two requirements:

$$
\begin{equation*}
\text { a) } \Phi_{P} \text { is invariant under the translation group } \mathbb{R}^{n} \text { of } \mathbb{R}^{n} \tag{2.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\text { b) } \quad A_{P}\left(j_{P}\right)(z)=0 \quad \forall j_{P} \in O_{P} \quad \text { and } \quad \forall z \in \mathbb{R}^{n} \text {. } \tag{2.8}
\end{equation*}
$$

The latter property says that constant deformations cause no virtual work and it is obviously equivalent with

$$
\begin{equation*}
\left.b^{\prime}\right) \quad \sum_{q \in P} \Phi_{P}\left(j_{P}\right)(q)=0 \quad \forall j_{P} \in O_{P} \tag{2.9}
\end{equation*}
$$

This, however, is the integrability condition for solving the equation

$$
\begin{equation*}
\Delta_{T} \mathcal{H}_{P}\left(j_{P}\right)=\Phi_{P}\left(j_{P}\right) \quad \forall j_{P} \in O_{P} \tag{2.10}
\end{equation*}
$$

From a discrete setting to a smooth idealized skin

As it is easy to verify, there is a solution $\mathcal{H}_{P}$ to (2.10) smooth on $O_{P} . \mathcal{H}_{P}$ : $O_{P} \longrightarrow \mathcal{F}\left(P, \mathbb{R}^{n}\right)$ is called the constitutive map of the discrete medium. In characterizing the discrete medium we may thus specify either one of $A_{P}, \mathcal{H}_{P}$ or $\Phi_{P}$. We call $j_{P}^{0} \in O_{P}$ an equilibrium configuration if $\Phi_{P}\left(j_{P}^{0}\right)=0$. The following is now obvious (cf. [B]):

Theorem 2.1 Let $\mathcal{H}_{P}$ be a constitutive map on $O_{P} \subset E^{\infty}\left(P, \mathbb{R}^{n}\right)$ and let the number of nearest neighbours of any $q \in P$ be $k(q)$. Since for each $j_{P} \in O_{P}$

$$
\begin{equation*}
\Delta_{T} \mathcal{H}_{P}\left(j_{P}\right)(q)=k(q) \cdot \mathcal{H}_{P}\left(j_{P}\right)(q)-\sum_{i=1}^{k(q)} \mathcal{H}_{P}\left(j_{P}\right)\left(q_{i}\right) \tag{2.11}
\end{equation*}
$$

the left hand side is the resulting force of all the interaction forces $\mathcal{H}_{P}\left(j_{P}\right)(q)-$ $\mathcal{H}_{P}\left(j_{P}\right)\left(q_{i}\right)$, off equilibrium, at $j_{P}$ for all $i=1, \ldots, k(q)$. Vice versa if all these interaction forces for all $q \in P$ are given, then $\mathcal{H}_{P}$ exists provided (2.9) is satisfied. If $j_{P}^{0}$ is an equilibrium configuration, we may assume that $\mathcal{H}_{P}\left(j_{P}\right)=0$.
In the same spirit we characterize a deformable medium on $S$, i.e. a continuum. Any configuration $j$ in an open subset $O \subset E\left(S, \mathbb{R}^{n}\right)$ yields a Riemannian metric $m(j):=j^{*}<,>$ of which its Laplacian is denoted by $\Delta(j)$.

An internal force density $\Phi$ is a smooth map $\Phi: O \longrightarrow C^{\infty}\left(S, \mathbb{R}^{n}\right)$ satisfying the following two conditions
a) $\Phi$ is invariant under the translation group $\mathbb{R}^{n}$ of $\mathbb{R}_{n}$
b) $\quad \int_{S}<\Phi(j), z>\mu(j)=0 \quad \forall j \in O \quad$ and $\quad \forall z \in \mathbb{R}^{n}$.

The last requirement yields a smooth constitutive map $\mathcal{H}: O \longrightarrow C^{\infty}\left(S, \mathbb{R}^{n}\right)$ solving the equation

$$
\Delta(j) \mathcal{H}(j)=\Phi(j) \quad \forall j \in O
$$

(cf. [Bi1],[Bi2],[Hö] and [Bi,Fi2]). The configuration $j_{0} \in O$ is called an equilibrium configuration if $\Phi\left(j_{0}\right)=0$. If we want to describe the virtual work $A$ given by

$$
A(j)(h)=\mathcal{G}(j)(\Delta(j) \mathcal{H}(j), h)=0 \quad \forall j \in O \quad \text { and } \quad \forall h \in C^{\infty}\left(S, \mathbb{R}^{n}\right)
$$

with respect to a fixed configuration, $j_{0} \in O$, say, we solve

$$
\begin{equation*}
\operatorname{det} f(j) \cdot \Delta(j) \mathcal{H}(j)=\Delta\left(j_{0}\right) \hat{\mathcal{H}}\left(j_{0}\right) \tag{2.12}
\end{equation*}
$$

Here $f(j) \in E n d T M$ is such that

$$
m\left(j_{0}\right)\left(f^{2}(j) v, w\right)=m(j)(v, w) \quad \forall v, w \in T_{q} M \quad \text { and } \quad \forall q \in S
$$

(cf. A1.3). Again there is a smooth solution $\hat{\mathcal{H}}: O \longrightarrow C^{\infty}\left(S, \mathbb{R}^{n}\right)$ to (2.12) (cf. [ $\mathrm{Bi}, \mathrm{Fi} 2]$ ). Thus we have

$$
A(j)(h)=\mathcal{G}\left(j_{0}\right)\left(\Delta\left(j_{0}\right) \hat{\mathcal{H}}(j), h\right)
$$

for all $j \in O$ and any $h \in C^{\infty}\left(S, \mathbb{R}^{n}\right)$.

## E. Binz

This is a rather rough classification of deformable media; it would not be sufficient to describe plasticity e.g. To achieve the latter, one would have to replace $d \mathcal{H}$ and $d h$ by general one-forms: Moreover, one should extend the whole formalism to the phase space to include fluid phenomena. The setting we choose is for the sake of simplicity. It can be generalized appropriately (cf. [W] and [Bi1]).

## 3 The link between the two descriptions

The link between the two descriptions is made by the restriction map $r: E\left(S, \mathbb{R}^{n}\right) \longrightarrow E^{\infty}\left(P, \mathbb{R}^{n}\right)$. We base our construction on a fixed $j_{0} \in E^{\infty}\left(S, \mathbb{R}^{n}\right)$ (it will be an equilibrium configuration, occasionally). The Laplacian $\Delta\left(j_{0}\right)$ of the metric $m\left(j_{0}\right)$ admits a complete $\mathcal{G}\left(j_{0}\right)$-orthogonal eigensystem $\bar{e}_{1}, \bar{e}_{2}, \ldots \in C^{\infty}\left(S, \mathbb{R}^{n}\right)$ with respective eigenvalues $0<\lambda_{1} \leq \lambda_{2} \leq \ldots$ We form $r\left(\bar{e}_{1}\right), r\left(\bar{e}_{2}\right) \ldots$ and select a finite subset of the eigensystem of $\Delta\left(j_{0}\right)$ as follows:
Let $e_{1}=\bar{e}_{1}$. Then we take in the sequence $\bar{e}_{1}, \bar{e}_{2}, \ldots$ the vector $\bar{e}_{i_{2}}$, say, with the smallest index such that $r\left(\bar{e}_{1}\right)$ and $r\left(\bar{e}_{i_{2}}\right)$ are linearly independent. Call $\bar{e}_{i_{2}}$ by $e_{2}$. Next let $\bar{e}_{i_{3}}$ be the one with the smallest index for which $e_{1}, e_{2}$ and $\bar{e}_{i_{3}}$ are linearly independent, call it $e_{3}$. We continue in this way to obtain $e_{1}, \ldots, e_{\left(s_{0}-1\right) \cdot n} \in$ $C^{\infty}\left(S, \mathbb{R}^{n}\right)$ with $s_{0}$ is the number of points in $P$. Let $\mathcal{F}_{0}^{\infty}\left(S, \mathbb{R}^{n}\right)$ be its span. Setting $\mathcal{F}^{\infty}\left(S, \mathbb{R}^{n}\right):=\mathcal{F}_{0}^{\infty}\left(S, \mathbb{R}^{n}\right) \oplus \mathbb{R}^{n}$ we observe that $r_{\infty}:=r \mid \mathcal{F}^{\infty}\left(S, \mathbb{R}^{n}\right)$ is an isomorphism. We proceed accordingly for $n=1$. The following is obvious:

## Lemma 3.1

$$
\Delta\left(j_{0}\right)\left(\mathcal{F}^{\infty}\left(S, \mathbb{R}^{n}\right)\right) \subset \mathcal{F}^{\infty}\left(S, \mathbb{R}^{n}\right)
$$

Now let $\mathcal{W}^{\infty}(0) \subset \mathcal{F}^{\infty}\left(S, \mathbb{R}^{n}\right)$ be an open neighbourhood of zero, chosen such that $r$ maps $\mathcal{W}^{\infty}\left(j_{0}\right):=j_{0}+\mathcal{W}^{\infty}(0)$ bijectively onto $O_{P}$. The manifold $\mathcal{W}^{\infty}\left(j_{0}\right)$ has $\mathcal{W}^{\infty}\left(j_{0}\right) \times \mathcal{F}^{\infty}\left(S, \mathbb{R}^{n}\right)$ as its tangent bundle.

Next we relate the two metrics $\mathcal{G}\left(j_{0}\right)$ and $\mathcal{G}_{P}$ on $\mathcal{W}^{\infty}\left(j_{0}\right)$ and $O_{P}$, respectively. In doing so it is enough to work with $\mathcal{F}(P, \mathbb{R})$, the collection of all $\mathbb{R}^{n}$-valued maps of $P$ and the space $\mathcal{F}^{\infty}(S, \mathbb{R})$ defined in the same way as $\mathcal{F}^{\infty}\left(S, \mathbb{R}^{n}\right)$.

Clearly $r^{*} \mathcal{G}_{P}(h, k)=\mathcal{G}\left(j_{0}\right)(Q h, k)$ for any two $h, k \in \mathcal{F}^{\infty}(S, \mathbb{R})$ and some $Q \in$ End $\mathcal{F}^{\infty}(S, \mathbb{R})$. Since the characteristic maps $\mathbf{1}_{q}$ and $\mathbf{1}_{q^{\prime}}$ of any two $q, q^{\prime} \in P$ are $\mathcal{G}_{P}$-orthogonal we find for each $q \in P$

$$
Q\left(r_{\infty}^{-1}\left(\mathbf{1}_{q}\right)\right)=\rho_{P}(q) \cdot\left(r_{\infty}^{-1}\left(\mathbf{1}_{q}\right)\right)
$$

for some pointwise positive $\operatorname{map} \rho_{P}: P \longrightarrow \mathbb{R}$. Since $r: C^{\infty}(S, \mathbb{R}) \longrightarrow \mathcal{F}(P, \mathbb{R})$ is a surjection the following is easily verified:

Lemma 3.2 There is a smooth pointwise positive map $\rho \in C^{\infty}(S, \mathbb{R})$ such that

$$
\begin{equation*}
r_{\infty}^{*} \mathcal{G}_{P}(\rho \cdot h, k)=\mathcal{G}\left(j_{0}\right)(h, k) \quad \forall h, k \in \mathcal{F}^{\infty}\left(S, \mathbb{R}^{n}\right) \tag{3.1}
\end{equation*}
$$

From a discrete setting to a smooth idealized skin

Now we have the geometrical tools to lift a given internal force $\Phi_{P}$, prescribed on $O_{P}$, to an internal force density $\Phi$ defined on some suitably chosen open set $O \subset E\left(S, \mathbb{R}^{n}\right)$ and determine its constitutive map: At first we let

$$
A:=r_{\infty}^{*} A_{P}
$$

where $A_{P}$ is a given constitutive law on $O_{P}$. To construct $O \subset E\left(S, \mathbb{R}^{n}\right)$ we first observe that $C^{\infty}\left(S, \mathbb{R}^{n}\right)=\mathcal{F}^{\infty}\left(S, \mathbb{R}^{n}\right) \oplus \mathcal{F}^{\perp}\left(S, \mathbb{R}^{n}\right)$. Here $\mathcal{F}^{\perp}\left(S, \mathbb{R}^{n}\right) \subset$ $C^{\infty}\left(S, \mathbb{R}^{n}\right)$ is generated by all eigenvectors of $\Delta\left(j_{0}\right)$ which are not in $\mathcal{F}^{\infty}\left(S, \mathbb{R}^{n}\right)$. Let $\pi_{\infty}$ be the projection with $\mathcal{F}^{\perp}\left(S, \mathbb{R}^{n}\right)$ as its kernel (clearly $\pi_{\infty} \neq r_{\infty}^{-1} \circ r$ ). Now let $O$ be such that $\mathcal{W}^{\infty}\left(j_{0}\right) \subset O \subset E\left(S, \mathbb{R}^{n}\right)$ and $O=\mathcal{W}^{\infty}\left(j_{0}\right)+\left(\mathcal{F}^{\perp}\left(S, \mathbb{R}^{n}\right) \cap O\right)$. Thus $j \in O$ is of the form $j=j_{0}+l+k^{\prime}$ with $l \in \mathcal{W}^{\infty}\left(j_{0}\right)-j_{0} \subset \mathcal{F}^{\infty}\left(S, \mathbb{R}^{n}\right)$ and $k^{\prime} \in \mathcal{F}^{\perp}\left(S, \mathbb{R}^{n}\right)$. We extend $r_{\infty}$ to $O$ by $r_{\infty}:=r \circ \pi_{\infty}$. Now, we set

$$
\begin{equation*}
A=r_{\infty}^{*} A_{P} \tag{3.2}
\end{equation*}
$$

Clearly, $A \neq r^{*} A_{P}$ since $\mathcal{F}^{\infty}\left(S, \mathbb{R}^{n}\right)$ is not $\mathcal{G}\left(j_{0}\right)$-orthogonal to ker $r$. We call $A$ in (3.2) a finitely determined constitutive law on $S$. Let us remark, that instead of working on all of $O$ we continue to work mostly on $\mathcal{W}^{\infty}\left(j_{0}\right)$, for the sake of simplicity.

Let $r_{\infty}(j)=j_{P}$ for all $j \in \mathcal{W}^{\infty}\left(j_{0}\right)$. Now, the equation

$$
A_{P}\left(j_{P}\right)\left(h_{P}\right)=\mathcal{G}_{P}\left(j_{P}\right)\left(\Phi_{P}\left(j_{P}\right), h_{P}\right) \quad \forall j_{P} \in O_{P} \text { and all } h_{P} \in \mathcal{F}\left(P, \mathbb{R}^{n}\right)
$$

for a smooth $\Phi_{P}: O_{P} \longrightarrow \mathcal{F}\left(P, \mathbb{R}^{n}\right)$ implies

$$
A(j)(h)=r_{\infty}^{*} \mathcal{G}_{P}\left(\Phi_{\infty}(j), h\right) \quad \forall j \in \mathcal{W}^{\infty}\left(j_{0}\right) \text { and all } h \in \mathcal{F}^{\infty}\left(S, \mathbb{R}^{n}\right)
$$

for some $\Phi_{\infty} \in C^{\infty}\left(\mathcal{W}^{\infty}\left(j_{0}\right), \mathcal{F}\left(P, \mathbb{R}^{n}\right)\right)$. By lemma 3.2 the following is obvious:
Proposition 3.3 Given a constitutive law $A_{P}$ on $O_{P} \subset E^{\infty}\left(P, \mathbb{R}^{n}\right)$ then the internal force densities $\Phi$ on $O$, formed with respect to $\mathcal{G}\left(j_{0}\right)$ is smooth and is determined by

$$
\begin{equation*}
\Phi=r_{\infty}^{-1} \circ r\left(\rho \cdot \Phi_{\infty}\right) \quad \text { with } \quad r_{\infty} \circ \Phi_{\rho}=\Phi_{P} \tag{3.3}
\end{equation*}
$$

The constitutive map $\hat{\mathcal{H}}$ satisfies

$$
\Delta\left(j_{0}\right) \hat{\mathcal{H}}=\Phi
$$

Let $\hat{\mathcal{H}}$ be the constitutive map of $A=r_{\infty}^{*} A_{P}$, represented as $\hat{\mathcal{H}}(j)=\sum_{i=1}^{\left(s_{o}-1\right) \cdot n} \hat{\kappa}_{i}(j) \cdot e_{i}$ for all $j \in \mathcal{W}^{\infty}\left(j_{0}\right)$ (where $s_{0}$ equals the number of points in $P$ ). We now assume that $\hat{\kappa}_{i}(j)=1$ for all $i=1, \ldots,\left(s_{o}-1\right) \cdot n$ and all $j \in O$, yielding $\hat{\mathcal{H}}_{g e o m}$, say. Then $\sum_{i=1}^{\left(s_{o}-1\right) \cdot n} \mathcal{G}\left(j_{0}\right)\left(\mathcal{H}_{\text {geom }}(j), e_{i}\right)=\operatorname{tr} \Delta \mid \mathcal{F}^{\infty}\left(S, \mathbb{R}^{n}\right)$. Hence $\mathcal{F}^{\infty}\left(S, \mathbb{R}^{n}\right)$ is chosen such that the trace of $\Delta_{\mathcal{F} \infty}:=\Delta \mid \mathcal{F}^{\infty}\left(S, \mathbb{R}^{n}\right)$ is as small as possible. Calling the virtual work of $\hat{\mathcal{H}}_{\text {geom }}$ by $A_{\text {geom }}$, the virtual work $A_{\text {red }}$ defined by the reduced constitutive map $\hat{\mathcal{H}}_{\text {red }}:=\hat{\mathcal{H}}-\hat{\mathcal{H}}_{\text {geom }}$ depends only on physical grounds. Hence $j_{0} \in O$ is an equilibrium configuration for $A$ (with $\hat{\mathcal{H}}\left(j_{0}\right)=0$ ), iff $\hat{\mathcal{H}}_{r e d}=-\hat{\mathcal{H}}_{\text {geom }}$.

## E. Binz

## 4 Neumann decomposition of $A_{P}$ and $A$

Let $A_{P}$ be a smooth constitutive law on the closure $\bar{O}_{P}$ of $O_{P}$. We assume that $\bar{O}_{P}$ is a compact, connected, smooth manifold with boundary. We split $A_{P}$ on $\bar{O}_{P}$ in the sense of Neumann into

$$
A_{P}=\mathbb{D} \bar{F}_{P}+\Psi_{P}
$$

by solving the following (elliptic) Neumann problem:

$$
\operatorname{div}_{P} A_{P}=\not \forall \bar{F}_{P}
$$

with boundary condition

$$
A_{P}\left(j_{P}\right)\left(\mathcal{N}_{P}\left(j_{P}\right)\right)=\mathbb{I} \bar{F}_{P}\left(j_{P}\right)\left(\mathcal{N}_{P}\left(j_{P}\right)\right) \text { on } \partial \bar{O}_{P}
$$

Here $\operatorname{div}_{P}, \Delta_{P}$ and $\mathbb{D}$ are the divergence operator, the Laplacian of $\mathcal{G}_{P}$ and the Fréchet derivative on $O_{P}$, respectively. $\mathcal{N}_{P}$ is the outward directed unit normal field along $\partial \bar{O}_{P}$, assumed to be smooth. The one-form $\Psi$ is divergence free and vanishes on $\mathcal{N}_{P}$.
Accordingly, we split $A$ on $\overline{\mathcal{W}}^{\infty}\left(j_{0}\right)$, being diffeomorphic to $\bar{O}_{P}$ via $r_{\infty}$, into:

$$
\begin{equation*}
A=\mathbb{D} \bar{F}+\Psi \tag{4.1}
\end{equation*}
$$

with

$$
\begin{equation*}
\operatorname{div}_{\infty} A=\Delta_{\infty} \bar{F} \tag{4.2}
\end{equation*}
$$

and the boundary condition

$$
A(j)(\mathcal{N}(j))=\mathbb{D} \bar{F}(j)(\mathcal{N}(j)) \quad \text { on } \quad \partial \overline{\mathcal{W}}^{\infty}\left(j_{0}\right)
$$

with $\operatorname{div}_{\infty}$ and $\Delta_{\infty}$ the divergence operator and the Laplacian of $r_{\infty}^{*} \mathcal{G}_{P}$, respectively. Notice that (4.1) is orthogonal in the following sense: Let $\mathcal{Z}_{\Psi}$ be such that $\Psi=$ $r_{\infty}^{*} \mathcal{G}_{P}\left(\mathcal{Z}_{\Psi}, \ldots\right)$ and $\operatorname{Grad}_{\infty}$ be the gradient of $\bar{F}$ formed with respect to $r_{\infty}^{*} \mathcal{G}_{P}$. Then

$$
\begin{align*}
& \int_{\overline{\mathcal{W}}^{\infty}\left(j_{0}\right)} r_{\infty}^{*} \mathcal{G}_{P}\left(\operatorname{Grad}_{\infty} \bar{F}, \mathcal{Z}_{\Psi}\right) \mu_{\overline{\mathcal{W}}^{\infty}\left(j_{0}\right)}  \tag{4.3}\\
= & \int_{\overline{\mathcal{W}}^{\infty}\left(j_{0}\right)} \bar{F} \cdot \operatorname{div}_{\infty} \Psi \mu_{\overline{\mathcal{W}}^{\infty}\left(j_{0}\right)}+\int_{\partial \overline{\mathcal{W}}^{\infty}\left(j_{0}\right)} \bar{F} \cdot \Psi(\mathcal{N}) \mu_{\partial \overline{\mathcal{W}}^{\infty}\left(j_{0}\right)}=0,
\end{align*}
$$

where $\mu_{\overline{\mathcal{W}}^{\infty}\left(j_{0}\right)}$ and $\mu_{\partial \overline{\mathcal{N}}^{\infty}\left(j_{0}\right)}$ are the Riemannian volume forms of $r_{\infty}^{*} \mathcal{G}_{P}$ on $\overline{\mathcal{W}}^{\infty}\left(j_{0}\right)$ and $\partial \overline{\mathcal{W}}^{\infty}\left(j_{0}\right)$ respectively. By (3.2) and by construction we obviously have

## Lemma 4.1

$$
\begin{equation*}
\bar{F}=\bar{F}_{P} \circ r_{\infty} \quad \text { and } \quad r_{\infty}^{*} \Psi_{P}=\Psi \tag{4.4}
\end{equation*}
$$

on all of $\overline{\mathcal{W}}^{\infty}\left(j_{0}\right)$.

## From a discrete setting to a smooth idealized skin

To understand $\bar{F}$ a little better, we introduce the structural capillarity of $A$ : By construction $\overline{\mathcal{W}}^{\infty}\left(j_{0}\right)$ consists of smooth embeddings only. There is a smooth map $a \in C^{\infty}\left(\overline{\mathcal{W}}^{\infty}\left(j_{0}\right), \mathbb{R}\right)$ called the structural capillarity of $A$, for which

$$
\begin{equation*}
A(j)(j)=\operatorname{dim} S \cdot a(j) \cdot \mathcal{A}(j) \quad \forall j \in \overline{\mathcal{W}}^{\infty}\left(j_{0}\right) \tag{4.5}
\end{equation*}
$$

holds true; here $\mathcal{A}: E\left(S, \mathbb{R}^{n}\right) \longrightarrow \mathbb{R}$ is the area function of $S$ associating to each $j \in E\left(M, \mathbb{R}^{n}\right)$ the area

$$
\mathcal{A}(j):=\int_{S} \mu(j)
$$

of $S$ (cf.[ Bi 1$]$ and $[\mathrm{Bi} 2])$. In (4.5) we have used the fact that the linear map $A(j)$ is for each $j \in \overline{\mathcal{W}}^{\infty}\left(j_{0}\right)$ defined on all of $C^{\infty}\left(S, \mathbb{R}^{n}\right)$; hence $A(j)(j)$ is well defined. $a(j) \cdot \mathbb{D} \mathcal{A}(j)(h)$ is the amount of the virtual work $A(j)(h)$ caused by distorting the area at $j$ in the direction of $h \in C^{\infty}\left(S, \mathbb{R}^{n}\right)$. Since $\pi_{\infty}: \mathcal{W}^{\infty}\left(j_{0}\right) \longrightarrow \mathcal{F}^{\infty}\left(S, \mathbb{R}^{n}\right)$ is the gradient of the map assigning to any $j \in \overline{\mathcal{W}}^{\infty}\left(j_{0}\right)$ the value $r_{\infty}^{*} \mathcal{G}_{P}\left(\pi_{\infty}(j), \pi_{\infty}(j)\right)$, we deduce via (4.3) and (4.5) the following system of equations

$$
\begin{equation*}
A(j)(j)=\mathbb{D} \bar{F}(j)(j)=\operatorname{dim} S \cdot a(j) \cdot \mathcal{A}(j) \quad \forall j \in \overline{\mathcal{W}}^{\infty}\left(j_{0}\right) \tag{4.6}
\end{equation*}
$$

Thus

$$
\begin{equation*}
A=a \cdot \mathbb{D} \mathcal{A}+A_{1} \quad \text { and } \quad \mathbb{D} \bar{F}=a \cdot \mathbb{D} \mathcal{A}+A_{2} \tag{4.7}
\end{equation*}
$$

with $A_{1}$ and $A_{2}$ being one-forms on $\overline{\mathcal{W}}^{\infty}\left(j_{0}\right)$. Approximating all sides of (4.6) at $j \in \overline{\mathcal{W}}^{\infty}\left(j_{0}\right)$ up to order two yields for any $h \in \overline{\mathcal{W}}^{\infty}\left(j_{0}\right)$ the system:

$$
\begin{aligned}
& A(j)(j)+A(j)(h)+\mathbb{D} A(j)(h)(j)+\mathbb{D} A(j)(h)(h)+\frac{1}{2} \mathbb{D}^{2} A(j)(h, h)(j) \\
= & \mathbb{D} \bar{F}(j)(j)+\mathbb{D} \bar{F}(j)(h)+\mathbb{D}^{2} \bar{F}(j)(h, j)+\mathbb{D}^{2} \bar{F}(j)(h, h)+\frac{1}{2} \mathbb{D}^{3} \bar{F}(j)(h, h, j) \\
= & \operatorname{dim} S \cdot\left((a \cdot \mathcal{A})(j)+\mathbb{D}(a \cdot \mathcal{A})(j)(h)+\frac{1}{2} \mathbb{D}^{2}(a \cdot \mathcal{A})(j)(h, h)\right) .
\end{aligned}
$$

The following is immediately verified:
Proposition 4.2 Let $a \in C^{\infty}\left(\overline{\mathcal{W}}^{\infty}\left(j_{0}\right), C^{\infty}\left(S, \mathbb{R}^{n}\right)\right)$ be the structural capillarity of a finitely determined constitutive law $A$ with $\mathbb{D} \bar{F}$ as its exact part. Then the following equations hold for a fixed $j \in \overline{\mathcal{W}}^{\infty}\left(j_{0}\right)$ and all $h \in \mathcal{F}^{\infty}\left(S, \mathbb{R}^{n}\right)$ :

$$
\begin{align*}
A(j)(h)+\mathbb{D} A(j)(h)(j) & =\mathbb{D} \bar{F}(j)(h)+\mathbb{D}^{2} \bar{F}(j)(h, j) \\
& =\operatorname{dim} S \cdot \mathbb{D}(a \cdot \mathcal{A})(j)(h) \tag{4.8}
\end{align*}
$$

and

$$
\begin{align*}
\mathbb{D} A(j)(h)(h)+\frac{1}{2} \mathbb{D}^{2} A(j)(h, h)(j) & =\mathbb{D}^{2} \bar{F}(j)(h, h)+\frac{1}{2} \mathbb{D}^{3} \bar{F}(j)(h, h, j) \\
& =\frac{1}{2} \cdot \operatorname{dim} S \cdot \mathbb{D}^{2}(a \cdot \mathcal{A})(j)(h, h) \tag{4.9}
\end{align*}
$$

## E. Binz

Taking traces with respect to a $r_{\infty}^{*} \mathcal{G}_{P}$-orthogonal basis in $\mathcal{F}^{\infty}\left(S, \mathbb{R}^{n}\right)$ the system (4.9) yields via (4.2) immediately :

Corollary 4.3 Under the suppositions of proposition 4.2 there is real-valued function $G$ on $\bar{W}^{\infty}\left(j_{0}\right)$ uniquely determined up to a constant such that

$$
\begin{equation*}
-\operatorname{tr} \mathbb{D}^{2} A(j)(\ldots, \ldots)(j)=\Delta_{\infty} G(j)=-\operatorname{tr} \mathbb{D}^{3} \bar{F}(j)(\ldots, \ldots, j) \tag{4.10}
\end{equation*}
$$

and hence

$$
\begin{equation*}
\bar{F}(j)+\frac{1}{2} G(j)=\frac{1}{2} \cdot \operatorname{dim} S \cdot(a \cdot \mathcal{A})(j)+\text { const } \tag{4.11}
\end{equation*}
$$

(with Neumann boundary condition) hold for any $j \in \overline{\mathcal{W}}^{\infty}\left(j_{0}\right)$.
To identify the function $G$ we use (4.7). Decomposing both terms on the right hand sides in the decomposition (4.7) of $\mathbb{D} \bar{F}$ in the sense of Neumann yields

$$
\bar{F}=\bar{F}_{a}+\bar{F}_{A_{2}}+\text { const }
$$

with $\mathbb{D} \bar{F}_{A_{2}}$ being the exact part of $A_{2}$ and

$$
\bar{F}=a \cdot \mathcal{A}+\bar{F}_{A_{2}}-\bar{F}_{\mathcal{A}}+\mathrm{const}
$$

with $\mathbb{D} \bar{F}_{\mathcal{A}}$ being the exact part of $\mathcal{A} \cdot \mathbb{D} a$. Hence (4.11) yields
Proposition 4.4

$$
\begin{equation*}
G=(\operatorname{dim} S-2) \cdot \bar{F}_{a}-2 \cdot \bar{F}_{\mathcal{A}}-2 \cdot \bar{F}_{A_{2}}+\text { const. } \tag{4.12}
\end{equation*}
$$

Of some interest in elasticity theory are the linear constitutive laws. In case of a finitely generated constitutive law $A$ on $\overline{\mathcal{W}}^{\infty}\left(j_{0}\right)$, linearity means

$$
A\left(j_{0}+l\right)(h)=A\left(j_{0}\right)(h)+\mathbb{D} A\left(j_{0}\right)(l)(h)
$$

for all $l \in \overline{\mathcal{W}}^{\infty}\left(j_{0}\right)-j_{0}$ and for all $h \in \mathcal{F}^{\infty}\left(S, \mathbb{R}^{n}\right)$. If $A$ is linear then $G$ in (4.12) vanishes and (4.11) together with (4.9) yield hence

$$
\mathbb{D}^{3} \bar{F}\left(j_{0}\right)=0
$$

We therefore obtain by proposition 4.2, corollary 4.3 and (4.6):
Proposition 4.5 The structure of a linear, finitely generated constitutive law A is of the form (4.1) on $\overline{\mathcal{W}}^{\infty}\left(j_{0}\right)$, supplemented by the following equations

$$
\mathbb{D} A\left(j_{0}\right)(l)(h)=\mathbb{D}^{2} \bar{F}\left(j_{0}\right)(l, h)=\frac{1}{2} \cdot \mathbb{D}^{2}(a \cdot \mathcal{A})\left(j_{0}\right)(l, h)
$$

and hence

$$
A\left(j_{0}\right)(h)=\mathbb{D} \bar{F}\left(j_{0}\right)(h)
$$

valid for all $l \in \overline{\mathcal{W}}^{\infty}\left(j_{0}\right)$ and for all $h \in \mathcal{F}^{\infty}\left(S, \mathbb{R}^{n}\right)$. Moreover

$$
\bar{F}=\frac{1}{2} \cdot \operatorname{dim} S \cdot(a \cdot \mathcal{A})+\text { const },
$$

where $a$ is the structural capillarity of $A$. Hence

$$
a\left(j_{0}\right)=0
$$

if $j_{0} \in \mathcal{W}^{\infty}\left(j_{0}\right)$ is an equilibrium configuration and if in addition $A=\mathbb{F} \bar{F}$ then

$$
\bar{F}\left(j_{0}+l\right)=F\left(j_{0}\right)+\frac{\operatorname{dim} S}{4} \cdot \mathbb{D}^{2}(a \cdot \mathcal{A})\left(j_{0}\right)(l, l)+\text { const } \quad \forall l \in \overline{\mathcal{W}}^{\infty}\left(j_{0}\right)-j_{0}
$$

From a discrete setting to a smooth idealized skin

## 5 Examples: Potentials

In what follows, we will illustrate the apparatus developed in the previous sections in a special situation: We assume that the smooth internal force $\Phi_{P}$ of a given constitutive law $A_{P}$ on $O_{P} \subset E^{\infty}\left(P, \mathbb{R}^{n}\right)$ is caused by a smooth potential

$$
V_{P}: \partial^{1} O_{P} \longrightarrow \mathbb{R}
$$

The domain is open in $\partial^{1} \mathcal{F}\left(P, \mathbb{R}^{n}\right) \subset C^{1}\left(\boldsymbol{L}, \mathbb{R}^{n}\right)$. There is a gradient $\operatorname{grad}_{\rho^{1}} V_{P}$ of $V_{P}$ formed with respect to $g^{1}$. This gradient with values in $\partial^{1} \mathcal{F}\left(P, \mathbb{R}^{n}\right)$ splits for each simplex $\sigma \in \boldsymbol{L}_{1}$ in a $<,>$-orthogonal fashion into

$$
\operatorname{grad}_{O^{1}} V_{P}\left(\partial^{1} j_{P}\right)(\sigma)=\psi\left(\partial^{1} j_{P}\right)(\sigma) \cdot \partial^{1} j_{P}(\sigma)+\beta\left(j_{P}\right)(\sigma)
$$

for each $j_{P} \in O_{P}$ and some $\beta\left(j_{P}\right) \in C^{1}\left(\boldsymbol{L}, \mathbb{R}^{n}\right)$. For simplicity let us assume that $\psi$ is independent of $\partial^{1} j_{P}$. Thus $V_{P}$ splits accordingly into

$$
V_{P}\left(\partial^{1} j_{P}\right)=\frac{1}{2} \cdot o^{1}\left(\psi \cdot \partial^{1} j_{P}, \partial^{1} j_{P}\right)+V_{P}^{1}\left(\partial^{1} j_{P}\right) \quad \forall j_{P} \in O_{P}
$$

In analogy to the situation of a force of a spring, the map $\psi: \boldsymbol{L}_{1} \longrightarrow \mathbb{R}$ is called the spring constant. $j_{P}^{0} \in O_{P}$ is an equilibrium configuration iff

$$
\psi \cdot \partial^{1} j_{P}=-\operatorname{grad}_{O^{1}} V_{P}^{1}\left(\partial^{1} j_{P}\right)
$$

Thus if $V_{P}^{1}=0$, an equilibrium configuration exists if $\psi=0$ i.e. if $V_{P}=0$. To determine the constitutive map $\hat{\mathcal{H}}_{P}$ we start from

$$
\mathbb{D} V\left(\partial^{1} j_{P}\right)=\emptyset^{1}\left(\psi \cdot \partial^{1} j_{P}, \ldots\right)+o^{1}\left(\beta\left(\partial^{1} j_{P}\right), \ldots\right)
$$

and obtain by (2.3)

$$
\Delta_{T} \hat{\mathcal{H}}\left(j_{P}\right)=\delta^{1}\left(\psi \cdot \partial^{1} j_{P}\right)+\delta^{1} \beta\left(\partial^{1} j_{P}\right) \quad \forall j_{P} \in O_{P}
$$

Using the terminology of section four we thus have

$$
\bar{F}_{P}=V_{P}+\text { const } .
$$

Let $j_{0} \in O$ be such that $r\left(j_{0}\right)=j_{P}^{0}$ for a given $j_{P}^{0} \in O_{P}$. Setting $A=r_{\infty}^{*} A_{P}$ as in (3.2) and using (4.4) together with (4.6), the structural capillarity $a$ of $A$ on $\mathcal{W}^{\infty}\left(j_{0}\right)$ is determined for each $j \in \mathcal{W}^{\infty}\left(j_{0}\right)$ by the formula:

$$
a(j)=\frac{1}{\operatorname{dim} S \cdot \mathcal{A}(j)} \cdot g^{1}\left(\psi \cdot \partial^{1} j_{P}, \partial^{1} j_{P}\right)
$$

Here $G$ is by (4.10) entirely determined by $V_{P}^{1}$, namely as

$$
\Delta_{\rho} G(j)=-\operatorname{tr} \mathbb{D}^{3}\left(V_{P}^{1} \circ r_{\infty}\right)(j)(\ldots, \ldots) \quad \forall j \in \mathcal{W}^{\infty}\left(j_{0}\right)
$$

## E. Binz

## 6 Fitting surfaces

Let $A_{P} \in A^{1}\left(E^{\infty}\left(P, \mathbb{R}^{n}\right)\right)$ be a specified constitutive law with equilibrium configuration $j_{P}^{0}$. We lift $A_{P}$ to $O$ as in (3.2). This lift is called $A$. Moreover let $j_{0} \in O$ be fixed.

For the purpose of the description of $A_{P}$ on $S$, our developments presented so far offer to call $j_{0}(S) \subset \mathbb{R}^{n}$ to be a fitting surface passing through $j_{P}^{0}(P) \subset \mathbb{R}^{n}$ or, equivalently, $j_{0}$ to be a fitting configuration if the following is satisfied:
a) $j_{0}$ is an equilibrium configuration for $A:=r_{\infty}^{*} A_{P}$
b) $\rho$ in (3.1) is a constant equal to one.

In general $j_{0}$ satisfying (b) does not exist (cf. [G,R]).

## Appendix

Here we will present what is called the Dirichlet-integral in fashions different from the usual one. Let $<,>$ be a fixed scalar product on $\mathbb{R}^{n}$. At first we consider $h \in$ $C^{\infty}\left(S, \mathbb{R}^{n}\right)$ and a fixed embedding $j \in E\left(S, \mathbb{R}^{n}\right)$. The differential $d h: T S \longrightarrow \mathbb{R}^{n}$ can be represented via $d j$ as

$$
d h=c_{h} \cdot d j+d j \circ\left(C_{h}+B_{h}\right)
$$

which applied to any tangent vector $v_{q} \in T_{q} S$ for any $q \in S$ reads as

$$
d h v_{q}=c_{h}(q)\left(\left(d j v_{q}\right)\right)+d j\left(\left(C_{h}+B_{h}\right) v_{q}\right) .
$$

Here $c_{h}: S \longrightarrow s o(n)$ is a smooth map sending vectors in $d j T_{q} S$ into vectors in the orthogonal complement $\left(d j T_{q} S\right)^{\perp}$ and vice versa for any $q \in S$; thus $c_{h}$ is an infinitesimal Gauss map. The maps $C_{h}$ and $B_{h}$ are both smooth (strong) bundle endomorphisms of $T S$, skew - respectively selfadjoint with respect to the pull back metric $j^{*}<,>$ denoted by $m(j)$. For this representation we refer to [Bi1],[Bi2], [Bi,Fi2] or [ $\mathrm{Bi}, \mathrm{Sn}, \mathrm{Fi}]$. For any $q \in S$ the endomorphism $c_{h}^{2}(q)$ on $\mathbb{R}^{n}$ is a selfadjoint endomorphism of $d j T_{q} S$ respectively $\left(d j T_{q} S\right)^{\perp}$. The part of $c_{h}^{2}$ mapping $\left(d j T_{q} S\right)$ into itself is called $\left(c_{h}^{2}(q)\right)^{\top}$. For any two $h, k \in C^{\infty}\left(S, \mathbb{R}^{n}\right)$ we define
$d h \bullet d k:=-\operatorname{tr}\left(c_{h} \circ c_{k}\right)^{\top}-\operatorname{tr} C_{h} \circ C_{k}+\operatorname{tr} B_{h} \circ B_{k}=-\frac{1}{2} \operatorname{tr} c_{h} \circ c_{k}-\operatorname{tr} C_{h} \circ C_{k}+\operatorname{tr} B_{h} \circ B_{k}$ and observe that

$$
\begin{equation*}
\emptyset(j)(d h, d k):=\int_{S} d h \bullet d k \mu(j)=\int_{S}<\Delta(j) h, k>\mu(j) \tag{A1.1}
\end{equation*}
$$

where $\mu(j)$ is the Riemannian volume element of $m(j)$. The operator $\Delta(j)$ is the Laplacian associated with $m(j)$. For (A.1.2) and (A.1.3) we refer to [ Bi 1$],[\mathrm{Bi} 2]$ or [ $\mathrm{Bi}, \mathrm{Fi} 2]$. Clearly the metric $\mathcal{G}$, given by

$$
\mathcal{G}(j)(h, k)=\int_{S}<h, k>\mu(j) \quad \forall E\left(S, \mathbb{R}^{n}\right),
$$

is a weak Riemannian metric on $E\left(S, \mathbb{R}^{n}\right)$. The left hand side of (A1.1) is called the Dirichlet integral usually formulated via the Hodge star operator. Clearly of is a weak Riemannian metric on $\left\{d j \mid j \in E\left(S, \mathbb{R}^{n}\right)\right\}$.

Next we will represent the integral (A1.1) in a complete different way, based on the second derivative of $m(j)$ formed with respect to $j$. To this end let $j_{0} \in E\left(S, \mathbb{R}^{n}\right)$ be fixed and let $h \in C^{\infty}\left(S, \mathbb{R}^{n}\right)$ be such that $j_{0}+h \in E\left(S, \mathbb{R}^{n}\right)$. Then for any $v, w \in T_{q} S$ and any $q \in S$

$$
\begin{align*}
m\left(j_{0}+h\right)(v, w) & =m\left(j_{0}\right)(v, w)+<d j_{0} v, d h w> \\
& +<d h v, d j_{0} w>+<d h v, d h w> \\
& =m\left(j_{0}\right)+\mathbb{D} m\left(j_{0}\right)(h)+\frac{1}{2} \mathbb{D}^{2} m\left(j_{0}\right)(h, h) \tag{A1.2}
\end{align*}
$$

Writing

$$
\begin{equation*}
m\left(j_{0}+h\right)(v, w)=m\left(j_{0}\right)\left(f^{2}\left(j_{0}+h\right) v, w\right) \tag{A1.3}
\end{equation*}
$$

for a well defined smooth strong bundle endomorphism $f\left(j_{0}+h\right)$ of $T S$, positive definite with respect to $m\left(j_{0}\right)$, we observe by (A1.2) that

$$
\begin{align*}
m\left(j_{0}+h\right)(v, w) & =m\left(j_{0}\right)\left(f^{2}\left(j_{0}+h\right) v, w\right)  \tag{A1.4}\\
& =m\left(j_{0}\right)(v, w)+m\left(j_{0}\right)\left(\mathbb{D} f^{2}\left(j_{0}\right)(h) v, w\right) \\
& +\frac{1}{2} m\left(j_{0}\right)\left(\mathbb{D}^{2} f^{2}\left(j_{0}\right)(h, h) v, w\right)
\end{align*}
$$

for all $v, w \in T_{q} S$ and for all $q \in S$. Using (A1.1) we conclude that

$$
<d h v, d h w>=<\left(c_{h}+\bar{B}_{h}+\bar{C}_{h}\right) \circ\left(c_{h}+\bar{B}_{h}+\bar{C}_{h}\right)^{*} \cdot d j_{0} v, d j_{0} w>
$$

where $\bar{C}_{h} \cdot d j_{0}$ and $\bar{B}_{h} \cdot d j_{0}$ are defined by

$$
\bar{C}_{h} \cdot d j_{0}=d j_{0} \circ C_{h} \quad \text { and } \quad \bar{B}_{h} \cdot d j_{0}=d j_{0} \circ B_{h}
$$

and the requirement that both $\bar{C}_{h}$ and $\bar{B}_{h}$ vanish on the normal bundle of $T j T S$. By * we mean the adjoint. Therefore the following equations hold

$$
\begin{aligned}
<d h v, d h w> & =<-c_{h}^{2} \cdot d j_{0} v, d j_{0} w>+<d j_{0} \circ\left(B_{h}+C_{h}\right) \circ\left(B_{h}+C_{h}\right)^{*} v, d j_{0} w> \\
& =\frac{1}{2} m\left(j_{0}\right)\left(\mathbb{D}^{2} f^{2}\left(j_{0}\right)(h, h) v, w\right)
\end{aligned}
$$

Since $c_{h}^{2} \cdot d j_{0}=\left(c_{h}^{2}\right)^{\top} \cdot d j_{0}$ we find for all $h \in C^{\infty}\left(S, \mathbb{R}^{n}\right)$

$$
\frac{1}{2} \mathbb{D}^{2} f^{2}\left(j_{0}\right)(h, h)=-d j_{0}^{-1} \circ c_{h}^{2} \cdot d j_{0}-C_{h}^{2}+B_{h}^{2}+C_{h} \circ B_{h}-B_{h} \circ C_{h}
$$

and

$$
f^{2}\left(j_{0}+h\right)=i d+2 B_{h}-d j_{0}^{-1} \circ c_{h}^{2} \cdot d j_{0}-C_{h}^{2}+B_{h}^{2}+C_{h} \circ B_{h}-B_{h} \circ C_{h}
$$

Hence

$$
d h \bullet d h=\frac{1}{2} \operatorname{tr} \mathbb{D}^{2} f^{2}\left(j_{0}\right)(h, h)=\frac{1}{2} \mathbb{D}^{2}\left(\operatorname{tr} f^{2}\left(j_{0}\right)\right)(h, h)
$$

and by polarization

$$
d h \bullet d k=\frac{1}{2} \operatorname{tr} \mathbb{D}^{2} f^{2}\left(j_{0}\right)(h, k)=\frac{1}{2} \mathbb{D}^{2}\left(\operatorname{tr} f^{2}\left(j_{0}\right)\right)(h, k) .
$$

Therefore we may state

## Lemma:

Given any $j_{0} \in E\left(S, \mathbb{R}^{n}\right)$ and any two $h, k \in C^{\infty}\left(S, \mathbb{R}^{n}\right)$

$$
d h \bullet d k=\frac{1}{2} \mathbb{D}^{2}\left(\operatorname{tr} f^{2}\left(j_{0}\right)\right)(h, k)=\frac{1}{2} \operatorname{tr} \mathbb{D}^{2} f^{2}\left(j_{0}\right)(h, k)
$$

hold true and imply

$$
\sigma\left(j_{0}\right)(d h, d k)=\frac{1}{2} \cdot \int_{S} \mathbb{D}^{2} \operatorname{tr} f^{2}\left(j_{0}\right)(h, k) \mu\left(j_{0}\right)=\int_{S}<\Delta\left(j_{0}\right) h, k>\mu\left(j_{0}\right)
$$

for all $h, k \in C^{\infty}\left(S, \mathbb{R}^{n}\right)$. Hence (A1.4) yields
$\int_{S} \operatorname{tr} f^{2}\left(j_{0}+h\right) \mu\left(j_{0}\right)=\operatorname{dim} S \cdot \mathcal{A}\left(j_{0}\right)+\int_{S} \operatorname{tr} \mathbb{D} f^{2}\left(j_{0}\right)(h) \mu\left(j_{0}\right)+\int_{S}<\Delta\left(j_{0}\right) h, h>\mu\left(j_{0}\right)$.

## References:

[B] F. Bien : Construction of Telephone Networks by Group Representation, Notices of AMS, Vol.36, No. 1 (1989).
[Bi1] E.Binz : Global Differential Geometric Methods in Elasticity and Hydrodynamics; Differential Geometry, Group Representations, and Quantization, Ed. J.B. Hennig, W. Lücke and J. Tolar, Lecture Notes in Physics, 379, Springer-Verlag, Berlin, Heidelberg, New York (1991).
[Bi2] E. Binz : On the Irredundant Part of the First Piola-Kirchhoff Stress Tensor, Rep. on Math. Phys, Vol 3 (1993).
[Bi3] E. Binz : Idealized skins made up by finitely many particles, to appear in: Grazer Math. Berichte.
[Bi,Fil] E.Binz, H.R. Fischer : The Manifold of Embeddings of a closed Manifold, Differential Geometric Methods in Mathematical Physics, 139, Springer Verlag, Berlin, Heidelberg, New York (1981).
[Bi,Fi2] E.Binz, H.R.Fischer : One-Forms on Spaces of Embeddings: A Frame Work for Constitutive Laws: Note di Mathematica, Vol XI, No. 1 (1991).
[Bi,Sch] E.Binz, G.Schwarz : The principle of virtual work and symplectic reduction in a non-local description of continuum mechanics, Rep. on Math. Phys., Vol 32, No. 1, (1993).
[Bi,Sn,Fi] E.Binz, Sniatycki, H.-R.Fischer : Geometry of Classical Fields, Mathematics Studies 154, North-Holland, Amsterdam (1988).
[Ch,St] F.R.K.Chung, S.Sternberg : Laplacian and Vibrational Spectra of Homogeneous Graphs, Journal of Graph Theory, Vol. 16, No.6, John Wiley and Sons Inc. (1992).
[M,H] J.E. Marsden, J.R. Hughes : Mathematical Foundation of Elasticity, Prentice - Hall, Inc. Englewood Clifts, New Jersey (1983).

From a discrete setting to a smooth idealized skin
[G,R] M.L. Gomov, V.A. Rohlin : Embeddings and Immersions in Riemannian Geometry, Russian Math. Surveys, 25 (1970).
[G,A,V] W.Greub, S. Halperin, J.Vanstone : Connections, Curvature and Cohomology, I and II, Academic Press, New York, (1972-73).
[W] J. Wenzelburger : Die Hodge-Zerlegung in der Kontinuumstheorie von Defekten, Dissertation, Universität Mannheim, (1994).

Ernst Binz
Lehrstuhl für Mathematik I Universität Mannheim
Seminargebäude A5

