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From a discrete. setting to a smooth idealized skin

E. Binz

In memoriam G. Reeb and J.L. Callot

o Introduction

The purpose of these notes is to show how the geometrie description of a deformable
continuum, he re an idealized skin, can be based on the collection of finitely many
interacting particles which constitute the medium.

Let us make this more precise: We assurne a finite collection P' C !R n of points to
be given. Each point is thought of as the mean location of a material particle. The
interaction shall be such that there is a smooth, compact, connected and oriented
manifold 5' C !Rn of dirn 5' 2 1 passing through P'. 5' is the macroscopic,
differential geometrie visualization of the skin.

The problem we are confronted with is hence to derive, out of the interaction scheme
of the particles, a differential geometrie ingredient on 5' characterizing a deformable
medium in the sense of continuum mechanics. In doing so, we will not pass to a limit
such as enlarging the number of interacting particles, e.g. Neather we will make use
of an approximation.

Here is what we do: Let 5 be an abstract manifold diffeomorphic to 5' and PeS
be a collection of points with the same cardinality as P'. !Rn shall be equipped
with a fixed scalar product <, >. We base our characterization of the discrete
medium on the principle of virtual work (cf. [Bil],[Bi2] and [M,H]). The virtual
work on the discrete level is here assumed to be a special kind of a one-form Ap
on the configuration space E=(P, !Rn), consisting of embeddings of P into !Rn (to
be specified below). (This makes it already clear that the realm in which we work
is rather simplified from a continuum mechanical point of view. We, however, do
so to present the general principles we develop here in a simple fashion). Since
the configuration space is finite dimensional, Ap, assumed to be smooth, admits
a configuration dependent smooth force <I>p, formed with respect to the naturally
given scalar product yp on E=(P, !Rn). More precisely

A p (jp ) (hp) = y p (<I>p (jp ) , hp) :=L < <I>p (jp ) (q) , hp (q) > (0.1 )
qEP

for any jp E E=(P, !Rn) and any hp in the finite dimensional vector space F(P, !Rn)
of all !Rn-valued maps of P. We think of hp as a distortion of jp(P). Since <I>p
shall be an inner force, we assurne that it is invariant under the translation group
!Rn of !Rn. Moreover, no constant distortion z E !Rn shall cause any virtual work
at any configuration jp, i.e. Ap(jp )(z) = O.

To specify the type of interaction we let P be the collection of all zero-simplices
of an oriented, simplicial one-complex L C S. We say that a particle at q E P
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interacts with one at q' provided q and q' bound the same one-simplex. A point q'
is called a nearest neighbour of q if q and q' are the (mean) location of interacting
particles. Thus we let the interaction scheme to be the one of nearest neighbour
interaction (again a rather simple set-up). This sort of interaction, however, requires
us to rest riet Ap to a (rather small) open set Op C EOO(P,lRn), since in practice
the interactions are determined by distance depending potentials. L determines a
Laplacian l:1T, acting on F(P, lRn). The assumption we made on <Ppyields the
representation

(0.2)

for some map Hp E COO(Op,F(P, lRn)). We called Hp the constitutive map of the
medium. It is the equivalent to the first Piola-Kirchhoff stress tensor in continuum
mechanics (cf. [Bi2]).

Exact1y in the same way we characterize a deformable continuum: Let E(5, lRn)
be the collection of all smooth embeddings of 5 into lR n, a Fnkhet manifold if
endowed with the COO-topology. Fixing jo E E(5, lRn) there is a Riemannian metric
m(jo) := j* <, > and hence the associated L2-scalar product g(jo) on COO(5,lRn).
Given a smooth internal force density <P on an open set 0 C E(5, lRn) (accordingly
restricted as <Pp)there is a smooth map il E COO(0,COO(5,lRn)) such that

<P(j) = l:1(jo)il(j) Vj E 0; (0.3)

here l:1(jo) is the Laplacian of m(jo). The virtual work caused by <P is called A. (We
refer at this point to a reformulation of the classical Dirichlet integral for l:1(jo) in
the appendix).

The link between the two descriptions is as follows: Given Ap on Op, we lift it up
to some open set 0 C E(5,lRn). The idea is that 0 C woo(jo) x FOO(5,lRn)-l
where FOO(5, lR n)-l C COO(S,lR n), say, is an infinite dimensional subspace and
where woo(jo) is diffeomorphic to Op, i.e. woo(jo) is a slice of some projec-
tion 1f00 of COO(5,lRn) to a finite dimensional subspace FOO(5, lRn), say. This
slice is of the form jo + WOO(O') where WOO(O') is an open neighbourhood of
o E FOO(5, lRn) C COO(5,lRn). This subspace FOO(5, lRn) is such that it is invariant
under l:1(jo), a requirement in accordance with (0.3), and is moreover isomorphie
to F(P, lRn) via the restriction map r. It hence is generated by lRn and some
eigenvectors of l:1(jo) with non-vanishing eigenvalues. The eigenvectors are chosen
such that the tr l:1(jo) IFOO(5,lR n) is as small as possible. The above mentioned
space FOO(5, lRn).l is generated by all eigenvectors of l:1(jo) not in FOO(5, lRn). We
let thus 0 = woo(jo) + 0" with 0" c FOO(5, lRn)-l. The projection 1f00 selects
hence a certain finite sum of terms in the Fourier series. Setting r00 := r 0 1f00 we
let A := r~Ap on r;;}Op = O. We form the pull back r~gp of the metric gp by
rooIWoo(jo) to woo(jo). Moreover, we observe that r~gp is related to g(jo) by some
p E COO(5,lR), turning <Ppinto a force density. Then we determine the constitutive
map il according to (0.3). The map il characterizes by definition the skin made
up by finitely many particles and determines hence its first Piola-Kirchhoff stress
tensor (cf. [Bi2]).
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Then we determine the exact parts lD P of A on woo(jo) respectively lD Pp of Ap
on Op, and obtain, by construction, that P = r':x,Pp holds on the slice woo(jo). (P
is linked to the not ion offree energy associated with some observable within a Gibbs
statistics (cf. [Bi3J)). P has the form

- 1 1
F = - (a . A) - - .G + const,

2 2

where a is the structural capillarity, determining the amount of work caused by
distorting the area of 8 and where Ais the area functional. G refiects in particular
the (possible) non-linear dependence of A on the configuration j E woo(jo).

We then illustrate the mechanism just described in case that the internal force <I>p
is determined by a potential.

Finally we define the notion of a fitting surface jo(8) passing through jo(P), within
our framework. jo E 0 has to be an equilibrium configuration for which hence
A(jo) = 0 holds true and for which p = 1. For a dynamics we refer to [Bi,Schj.

1 The spaces of configurations

Throughout these notes 8 denotes a smooth, compact, oriented and connected
manifold (without boundary) of dim 8 2: 1. The space of configurations of 8 is
E(8, JRn), the collection of all smooth embeddings of 8 into JRn equipped with
the 000_ topology. This set is open in 000 (8, JRn), the Frechet space (carrying the
Ooo-topology) of all smooth JRn-valued maps of 8 (cf. [Bi,Fil], [Bi,Sn,Fi],[G,H,Vj
and [M,HJ).

The analogon of 000 (8, JRn) for a finite collection P c 8 of points is F( P, JRn), the
JR-vector space of allJRn-valued maps of P. The restriction map r : 000(8, JRn) ---t

F(P, JRn) is surjective. Due to the link between P and 8 we have in mind, we choose
the configuration space of P to be r (E(8, JRn)), called Eoo(P, JRn). It is open in
F(P, JRn). Let <, > be a fixed scalar product on 8. Each j E Eoo(8, JRn) defines a
scalar product on 000(8, JRn) given by

9(j)(h, k) = fs < h, k > /L(j) V h, k E 000(8, JRn), (1.1)

where /L(j) is the Riemannian volume form on 8 given by the Riemannian metric
m(j) := j* <, >. The metric 9(j) depends smoothly on j.

2 Charaeterization of the media

We assurne that the particles located (in the mean) at the points of P interact
within the nearest neighbour interaction scheme. To make this precise we assurne
an oriented simplicial one-complex L c 8 to be given. P shall be the collection of
all zero-simplices.
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We hence have the finite dimensional spaces F(P, JRn) and C1(L, JRn) of all JRn_
valued zero- and one-cochains respectively. These two spaces are connected with
the simplicial coboundary operator

Both spaces carry ametrie namely YP and Y~ given respectively by

yp(hp, kp) = 2: < hp(q), kp(q) > V hp, kp E F(P, JRn) (2.1)
qEP

and
y~(ap,ßp)- 2: <a((J),ß((J)> Vap,ßpEC1(L,JRn) (2.2)

O'EL1

with LI being the collection of all one-simplices of L. Defining the divergence 61 by

yp(61ap, hp) = yl(ap, ßhp)

for all ap E C1(L, JRn) and all hp E F(P, JRn) yields the Laplacian

D..T := 61 0 ß1.

(2.3)

(2.4)

This Laplacian is the basie geometrie ingredient to formulate the constitutive law,
i.e. to define the type of the medium under consideration.

We assume that the medium is determined by a smooth map

(2.5)

defined on a specified open set Op. Its value cf!p(jp) at each jp E Op is thought of
as the interna1 force resisting any deformations hp E F(P, JRn). The virtual work
Ap caused by hp is defined by

(2.6)

for all jp E Op and all hp E F(P, JRn). Internality of cf! shall be characterized by
the following two requirements:

a) cf!p is invariant under the translation group JRn of JRn (2.7)

and
b) Ap(jp)(z) = 0 Vjp E Op and V z E JRn. (2.8)

The latter property says that constant deformations cause no virtual work and it is
obviously equivalent with

b') 2: cf!p (j p ) (q) = 0 V j p E 0p.
qEP

This, however, is the integrability condition for solving the equation

(2.9)

(2.10)
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As it is easy to verify, there is a solution Hp to (2.10) smooth on Op. Hp :
Op ---+ F(P, lRn) is called the constitutive map of the discrete medium. In
characterizing the discrete medium we may thus specify either one of Ap, Hp or
<I>p.We call j~ E Op an equilibrium configuration if <I>p(j~) = O. The following
is now obvious (cf. [B]):

Theorem 2.1 Let Hp be a constitutive map on Op C E'X)(P, lRn) and let the
number of nearest neighbours of any q E P be k(q). Since for each jp E Op

k(q)

b:..THp(jp )(q) = k(q) . Hp(jp )(q) - LHp(jp )(qi),
i=l

the left hand side is the resulting force of alt the interaction forces Hp(jp )(q) -
Hp(jP)(qi), off equilibrium, at jp for alt i = 1, ..., k(q). Vice versa if alt these
interaction forces for alt q E P are given, then Hp exists provided (2. g) is satisfied.
1f j~ is an equilibrium configuration, we may assume that Hp(jp) = O.

In the same spirit we characterize a deformable medium on S, i.e. a continuum.
Any configuration j in an open subset 0 C E(S, lRn) yields a Riemannian metric
m(j) := j* <, > of which its Laplacian is denoted by b:..(j).

An internal force density <I> is a smooth map <I> : 0 ---+ COO(S, lRn) satisfying
the following two conditions

a) <I> is invariant under the translation group lR n of lR n

b) fs < <I>(j),z > J.L(j) = 0 Vj E 0 and Vz E lRn.

The last requirement yields a smooth constitutive map H : 0 ---+ COO(S, lRn)
solving the equation '

b:..(j)H(j) = <I>(j) V j E 0
(cf. [Bi1],[Bi2],[Hö] and [Bi,Fi2]). The configuration jo E 0 is called an equilibrium
configuration if <I>(jo) = o. If we want to describe the virtual work A given by

A(j)(h) = Q(j) (b:..(j)H(j), h) = 0 Vj E 0 and VhE COO(S, lRn)

with respect to a fixed configuration, jo E 0, say, we solve

dei f(j) . b:..(j)H(j) = b:..(jo)il(jo). (2.12)

Here f(j) E End TM is such that

m(jo) (J2(j)V,w) = m(j)(v,w) Vv,w E TqM and Vq ES

(cf. A1.3). Again there is a smooth solution il :0 ---+ COO(S,lRn) to (2.12) (cf.
[Bi,Fi2]). Thus we have

A(j)(h) = Q(jo)(b:..(jo)il(j), h)

for all j E 0 and any h E COO(S, lRn).
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This is a rather rough classification of deformable media; it would not be sufficient
to describe plasticity e.g. To achieve the latter, one would have to replace d'H and
dh by general one-forms: Moreover, one should extend the whole formalism to the
phase space to include fluid phenomena. The setting we choose is for the sake of
simplicity. It can be generalized appropriately (cf. [W] and [Bi1]).

3 The link between the two descriptions

The link between the two descriptions is made by the restrietion map
r : E(S, lRn) ---+ Eoo(P, lRn). We base our construction on a fixed jo E Eoo(S, lRn)
(it will be an equilibrium configuration, occasionally). The Laplacian ß(jo) of the
metric m(jo) admits a complete Q(jo)-orthogonal eigensystem el, e2, E Ooo(S, lR n)
with respective eigenvalues 0 < Al ::; A2 ::; .... We form r(ed, r(e2) and select a
finite subset of the eigensystem of ß(jo) as follows :

Let el = el' Then we take in the sequence el, e2, ... the vector ei2' say, with the
smallest index such that r(ed and r(ei2) are linearly independent. Call ei2 by e2.
Next let ei3 be the one with the smallest index for which el, e2 and ei3 are lin-
early independent, call it e3' We continue in this way to obtain el, ... , e(so-l).n E
Ooo(S, lRn) with So is the number of points in P. Let Fü(S, lRn) be its span. Set-
ting FOO(S, lRn) := Fü(S, lRn) EBlRn we observe that roo := rIFoo(S, lRn) is an
isomorphism. We proceed accordingly for n = 1. The following is obvious:

Lemma 3.1

Now let Woo(O) C Foo(S, lRn) be an open neighbourhood of zero, chosen such that
r maps woo(jo) := jo + Woo(O) bijectively onto Op. The manifold woo(jo) has
woo(jo) x Foo(S, lRn) as its tangent bundle.

Next we relate the two metrics Q(jo) and Qp on woo(jo) and Op, respectively. In
doing so it is enough to work with F(P,lR), the collection of alllRn-valued maps
of P and the space Foo (S, lR) defined in the same way as Foo (S, lR n).

Clearly r*Qp(h, k) = Q(jo)(Qh, k) for any two h, k E Foo(S, lR) and some Q E
End Foo(S, lR). Since the characteristic maps 1q and 1q, of any two q, q' E P are
Qp-orthogonal we find for each q E P

for some pointwise positive map pp : P ---+ lR. Since r : Ooo(S, lR) ---+ F(P, lR)
is a surjection the following is easily verified:

Lemma 3.2 There is a smooth pointwise positive map p E Ooo(S, lR) such that

(3.1)
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Now we have the geometrical tools to lift a given internal force <Pp, prescribed
on Op, to an internal force density <Pdefined on some suitably chosen open set
o c E(S, lRn) and determine its constitutive map: At first we let

where Ap is a given constitutive law on Op. To construct 0 C E(S, lRn) we
first observe that Coo(S,lRn) = Foo(S,lRn) EB Fl.(S,lRn). Here Fl.(S,lRn) c
Coo(S, lRn) is generated by all eigenvectors of ~(jo) which are not in Foo(S, lRn).
Let 1f00 be the projection with Fl.(S, lRn) as its kernel (clearly 1f00 =j:. r;;} 0 r). Now
let 0 be such that woo(jo) cO c E(S, lRn) and 0 = woo(jo) + (Fl.(S, lRn) n 0).
Thus j E 0 is of the form j = jo + l + k' with l E Woo(jo) - jo c Foo(S, lR n) and
k' E Fl.(S, lRn). We extend roo to 0 by roo := r 01f00, Now, we set

(3.2)

Clearly, A =j:. r*Ap since Foo (S, lR n) is not 9 (jo )-orthogonal to ker r. We call A in
(3.2) a finitely determined constitutive law on S. Let us remark, that instead of
working on all of 0 we continue to work mostlyon woo(jo), for the sake of simplicity.

Let roo(j) = jp for all j E woo(jo). Now, the equation

for a smooth <Pp: Op ----+ F(P, lRn) implies

for some <PooE Coo (woo(jo), F(P, lRn)). By lemma 3.2 the following is obvious:

Proposition 3.3 Given a constitutive law Ap on Op C Eoo(P, lRn) then the
internal force densities <P on 0, formed with respeci to 9 (jo) is smooth and is de-
termined by

<P= r~l 0 r(p. <poo) with roo 0 <Pp= <Pp.

The constitutive map H satisfies

(3.3)

Let H be the constitutive map of A = r~Ap, represented as H(j) = L~;l-l).n ki(j).ei
for all j E woo(jo) (where So equals the number of points in P). We now assume
that ki(j) = 1 for all i= 1, ... , (so - 1) . n and all j E 0, yielding Hgeom, say. Then
L~;l-l).n g(jo) (Hgeom(j), ei) = tr ~IFoo(S, lRn). Hence Foo(S, lRn) is chosen such
that the trace of ~:Foo := ~IFoo(S, lRn) is as small as possible. Calling the virtual
work of Hgeom by Ageom, the virtual work Ared defined by the reduced constitutive
map Hred := H - Hgeom depends only on physical grounds. Hence jo E 0 is an
equilibrium configuration for A (with H(jo) = 0), iff Hred = - Hgeom.
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4 Neumann decomposition of Ap and A

Let Ap be a smooth constitutive law on the c10sure Op of Op. We assume that Op
is a compact, connected, smooth manifold with boundary. We split Ap on Op in
the sense of Neumann into

Ap = IDPp + wp,

by solving the following (elliptic) Neumann problem:

with boundary condition

Here dlivp, $. p and ID are the divergence operator, the Laplacian of gp and the
Frechet derivative on Op, respectively. Np is the outward directed unit normal field
along ßOp, assumed to be smooth. The one-form W is divergence free and vanishes
on Np.
Accordingly, we split A on W= (jo), being difIeomorphic to 0p via r =, into:

(4.1)

with
(4.2)

and the boundary condition

A(j)(N(j)) = ID P(j)(N(j)) on ßW=(jo)

with dliv= and $.= the divergence operator and the Laplacian of r~gp, respectively.
Notice that (4.1) is orthogonal in the following sense: Let Zw be such that W =
r~gp(Zw, ... ) and Grad= be the gradient of P formed with respect to r~gp. Then

(4.3)

= f_ . P.dliv=WJ-lwoo(jo)+ f_ . P.w(N)J-lßwoo(jo) =0,
}WOO(Jo) } ßWOO(JO)

where J-lwoo(jo)and J-lßwoo(jo)are the Riemannian volume forms of r~gp on W=(jo)
and ßW=(jo) respectively. By (3.2) and by construction we obviously have

Lemma 4.1
(4.4)
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To understand P a little better, we introduce the struetural capillarity of A: By
construction woo(jo) consists of smooth embeddings only. There is a smooth map
a E Coo(woo(jo), IR) called the structural capillarity of A, for which

A(j)(j) = dirn 5. a(j) . A(j) Vj E woo(jo) (4.5)

holds true; here A: E(5,IRn) ---t IR is the area function of 5 associating to each
j E E(M, IRn) the area

A(j) := ~ /1(j)

of 5 (cf. [Bil] and [Bi2]). In (4.5) we have used the fact that the linear map A(j)
is for each j E woo(jo) defined on all of Coo(5, IR n); hence A(j)(j) is weIl defined.
a(j) . JD A(j)(h) is the amount of the virtual work A(j)(h) caused by distorting the
area at j in the direction of hE Coo(5, IRn). Since 7f00 : woo(jo) ---t Foo(5, IRn) is
the gradient of the map assigning to any j E woo(jo) the value r~gp(7foo(j), 7f00(j)),
we deduce via (4.3) and (4.5) the following system of equations

A(j)(j) = JD P(j)(j) = dirn 5. a(j) . A(j) Vj E woo(jo). (4.6)

Thus
A = a. JDA + Al and JDP = a. JDA + A2 (4.7)

with Al and A2 being one~forms on woo(jo). Approximating all sides of (4.6) at
j E woo(jo) up to order two yields for any h E woo(jo) the system:

A(j)(j) + A(j)(h) + JD A(j)(h)(j) + JD A(j)(h)(h) + ~JD 2A(j)(h, h)(j)

= JD P(j)(j) + JD P(j)(h) + JD 2P(j)(h, j) + JD 2P(j)(h, h) + ~JD 3P(j)(h, h, j)

= dirn 5. ((a. A)(j) + JD (a. A)(j)(h) + ~JD 2(a. A)(j)(h, h)) .

The following is immediately verified:

Proposition 4.2 Let a E 000 (woo(jo), 000(5, IRn)) be the structural capillarity
of a finitely deterrnined constitutive law A with JD P as its exact part. Then the
following equations hold for a fixed j E WOO (jo) and all h E Foo (5, IR n) :

and

A(j)(h) + JD A(j)(h)(j) = JD P(j)(h) + JD 2P(j)(h, j)
= dirn 5. JD(a. A)(j)(h) (4.8)

JD A(j)(h)(h) + ~JD 2A(j)(h, h)(j) = JD 2P(j)(h, h) + ~JD 3P(j)(h, h, j)

=! .dirn 5.JD2(a.A)(j)(h,h). (4.9)
2
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Taking traces with respect to a r~gp-orthogonal basis in Foo(5, lRn) the system
(4.9) yields via (4.2) immediately :

Corollary 4.3 Under the suppositions of proposition 4.2 there is real-valued
funciion G on woo(jo) uniquely determined up to a constant such that

- tr JD 2A(j)( ... , ... )(j) = ~ ooG(j) = -tr JD 3F(j)( ... , ... , j)

and hence
- 1 1
F(j) + "2G(j) = "2' dim 5. (a. A)(j) + const (4.11)

(with Neumann boundary condition) hold for any j E woo(jo).
To identify the function G we use (4.7). Decomposing both terms on the right hand
sides in the decomposition (4.7) of JDF in the sense of Neumann yields

F = Fa + FA2 + const

with JDFA2 being the exact part of A2 and

F = a . A + FA2 - FA + const

with JDFA being the exact part of A . JDa. Hence (4.11) yields
Proposition 4.4

G = (dim 5 - 2) . Fa - 2. FA - 2. FA2 + const.

Gf some interest in elasticity theory are the linear constitutive laws. In case of
a finitely generated constitutive law A on woo(jo), linearity means

A(jo + l)(h) = A(jo)(h) + JD A(jo)(l)(h)

for alll E woo(jo) - jo and for all h E Foo(5, lRn). If Ais linear then G in (4.12)
vanishes and (4.11) together with (4.9) yield hence

JD 3F(jo) = o.
We therefore obtain by proposition 4.2, corollary 4.3 and (4.6):

Proposition 4.5 The structure of a linear, finitely generated constitutive law A
is 0f the form (4.1) on WOO (jo), supplemented by the following equations

JDA(jo)(l)(h) = JD 2F(jo)(l, h) = ~ . JD2(a. A)(jo)(l, h)

and hence
A(jo)(h) = JD F(jo)(h)

valid for alll E woo(jo) and for all hE Foo(5, lRn). Moreover
- 1
F = - .dim 5. (a. A) + const,

2
where a is the structural capillarity of A. Hence

a(jo) = 0

if jo E Woo (jo) is an equilibrium configuration and if in addition A = JD F then
- dim 5 .
F(jo + l) = F(jo) + 4 . JD 2(a . A)(Jo)(l, l) + const V l E woo(jo) - jo.
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5 Examples: Potentials

In what folIows, we will illustrate the apparatus developed in the previous sections
in a special situation: We assume that the smooth internal force <I>p of a given
constitutive law Ap on Op C EOO(P, JRn) is caused by a smooth potential

The domain is open in 81F(P, JRn) C C1(L, JRn). There is a gradient gradqjl Vp of
Vp formed with respect to q;l. This gradient with values in 81F( P, JRn) splits for
each simplex (j E LI in a <, >-orthogonal fashion into

far each jp E Op and some ß(jp) E C1(L,JRn). For simplicity let us assume that
1/J is independent of fjl j p. Thus Vp splits accordingly into

In analogy to the situation of a force of aspring, the map 1/J : LI ~ JR is called
the spring constant. j~ E Op is an equilibrium configuration iff

Thus if V) = 0, an equilibrium configuration exists if 1/J = 0 i.e. if Vp = O. To
determine the constitutive map Hp we start from

m V (81j p) = 0/ (1/J . 81j p, ... ) + q/ (ß (81j P), ... )
and obtain by (2.3)

ßTH(jp) = 81(1/J. 81jp) + 81ß(81jp) V jp E Op.

Using the terminology of section four we thus have

Pp = Vp + const.

Let jo E 0 be such that r(jo) = j~ for a given j~ E Op. Setting A = r.':,Ap as in
(3.2) and using (4.4) together with (4.6), the structural capillarity a of A on woo(jo)
is determined far each j E woo(jo) by the formula:

Here G is by (4.10) entirely determined by V), namely as
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6 Fitting surfaces

Let Ap E Al (Eoo(P, IRn)) be a specified constitutive law with equilibrium configu-
ration j~. We lift Ap to 0 as in (3.2). This lift is called A. Moreover let jo E 0 be
fixed.

For the purpose of the description of Ap on S, our developments presented so far
offer to call jo (S) c IR n to be a fitting surface passing through j~ (P) c IR n or,
equivalently, jo to be a fitting configuration if the following is satisfied:

a) jo is an equilibrium configuration for A := r~Ap
b) p in (3.1) is a constant equal to one.

In general jo satisfying (b) does not exist (cf. [G,R]).

Appendix

Here we will present wh at is called the Dirichlet-integral in fashions different from
the usual one. Let <, > be a fixed scalar product on IRn. At first we consider h E
Coo(S, IR n) and a fixed embedding j E E(S, IR n). The differential dh : T S -----+ IR n
can be represented via dj as

dh = Ch . dj + dj ° (Ch + B h)

which applied to any tangent vector vq E TqS for any q E S reads as

dh vq = Ch(q) ((dj vq)) + dj ((Ch + Bh)vq).

Here Ch : S -----+ so( n) is a smooth map sending vectors in djTqS into vectors in
the orthogonal complement (djTqS)l.. and vice versa for any q E S; thus Ch is an
infinitesimal Gauss map. The maps Ch and Bh are both smooth (strong) bundle
endomorphisms of TS, skew - respectively selfadjoint with respect to the pull back
metric j*<, > denoted by m(j). For this representation we refer to [Bi1],[Bi2],[Bi,Fi2]
or [Bi,Sn,Fi]. For any q E S the endomorphism c~(q) on IRn is a selfadjoint endo-
morphism of djTqS respectively (djTqS)l... The part of c~ mapping (djTqS) into itself
is called (c~( q)) T. For any two h, k E Coo(S, IR n) we define

T 1dh.dk := -tr(chock) -tr ChoCk+tr BhoBk = -"2tr Chock-tr ChoCk+tr BhoBk

and observe that

OJ(j) (dh, dk) := fs dh • dk p,(j) = fs < t::.(j)h, k > p,(j) (A1.1)

where p,(j) is the Riemannian volume element of m(j). The operator t::.(j) is the
Laplacian associated with m(j). For (A.1.2) and (A.1.3) we refer to [Bi1],[Bi2] or
[Bi,Fi2]. Clearly the metric Q, given by

Q(j)(h, k) = fs < h, k > p,(j) V E(S, IR n),

is a weak Riemannian metric on E(S, IRn). The left hand side of (A1.1) is called
the Dirichlet integral usually formulated via the Hodge star operator. Clearly OJ is
a weak Riemannian metric on {djlj E E(S, IRn)}.
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(A1.4)

Hence

From a discrete setting to a smooth idealized skin

Next we will represent the integral (A1.l) in a complete different way, based on the
second derivative of m(j) formed with respect to j. To this end let jo E E(S, JRn)
be fixed and let h E COO(S,JRn) be such that jo + h E E(S,JRn). Then for any
v, w E TqS and any q E S

m(jo + h)(v, w) = m(jo)(v, w)+ < djo v, dh w >
+ < dh v, djo w > + < dh v, dh w >
= m(jo) + lD m(jo)(h) + ~1D 2m(jo)(h, h).

Writing
m(jo + h)(v, w) = m(jo)(f2(jo + h)v, w) (A1.3)

for a weIl defined smooth strong bundle endomorphism j(jo + h) of TS, positive
definite with respect to m(jo), we observe by (A1.2) that

m(jo + h)(v, w) = m(jo)(f2(jo + h)v, w)
= m(jo)(v, w) + m(jo)(1D j2(jo)(h)v, w)
1+2m(jo)(1D 2 j2(jo)(h, h)v, w)

far all v, w E TqS and far all q E S. Using (A1.l) we conclude that

< dh v, dh w > = < (Ch+ Eh + Ch) 0 (Ch+ Bh + Ch)* . djo v, djo w >
where Ch . djo and Bh . djo are defined by

Ch . djo = djo 0 Ch and Bh. djo = djo 0 Eh
and the requirement that both Ch and Bh vanish on the normal bundle of TjTS.
By * we mean the adjoint. Therefore the following equations hold

< dh v, dh w >=< -c~ . djo v, djo w > + < djo 0 (Eh + Ch) 0 (Eh + Ch)*v, djo w >

= !m(jo)(1D 2 j2(jo)(h, h)v, w).
2

Since c~ . djo = (cDT . djo we find for all h E COO(S,JRn)

!1D 2 j2(jo)(h, h) = -djü1 0 C~ • djo - C~+ E~ + Ch 0 Eh - Eh 0 Ch
2

and

dh. dh = !tr lD 2 j2(jo)(h, h) = !lD 2(tr j2(jo))(h, h)2 2
and by polarization

Therefore we may state
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Lemma:
Given any jo E E(S,lRn) and any two h,k E COO(S,lRn)

1 1
dh. dk = 2m 2(tr f2(jo))(h, k) = 2tr m 2 f2(jO)(h, k)

hold true and imply

0(jo)(dh, dk) = ~. fs m 2tr f2(jo)(h, k)fL(jo) = fs < ~(jo)h, k > fL(jo)

for all h, k E COO(S, lRn). Henee (Al.4J yields

fs tr f2(jO+h)fL(jo) = dim S.A(jo)+ fs tr m f2(jO)(h)fL(jo)+ fs < ~(jo)h, h > fL(jo).
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