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1 Introduction

This paper is inspired by articles of Chow [Ch] and Nualart-Zakai [NZ], in which
certain (linear) stochastic heat equations are treated within the framework of
generalized Brownian functionals. In particular, in [Ch] a stochastic heat equa-
tion with a gradient-coupled noise (namely, the noise associated with a Wiener
integral with respect to Brownian motion) is proposed as a model for the trans-
port of a substance in a turbulent medium. The present article extends the work
in [DP,P2] (and also [CLP]) in several ways: most notably, to the non-linear
case and to very general noise terms which may depend on space and time.

" We consider a class of Cauchy problems of the type: 3

% = A+ F@)+VGE@oN,
$(0) = o, | |

where A is a second order differential operator on IR?, N is a noise and F, G are
(possibly) non-linear functions of the solution ¢ (F may contain noise terms as
well), and o denotes the Wick product; — for a more precise formulation of the
problem we refer to Section 2.2. We prove existence and uniqueness results for
these Cauchy problems under various conditions of (global and local) Lipschitz.
type on the non-linearities F', G, and for various types of noise. (This is for
example motivated by the works [L@U1,2] in which positive noise of exponential
type has been employed.) _

Our method is an extension of the ideas in [DP, P1, P2] (cf. also [CLP, CP]),
namely of the combination of the S-transform with classical fixed point theo-
rems and so—called characterization theorems (e.g., [HKPS, KLPSW, KLS, Ou,
PS] and references quoted there), which serve to reverse the S-transform. The
basic reason for this procedure is the fact that the S—trz#nsform turns the Ito
integral and its generalizations (i.e., the Skorokhod and Hitsuda—Skorokhod in-

tegrals, and even more generally, integrals of Wick product!s of random variables
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and noise terms) into a usual Lebesgue integral. Hence, after the S-transform is
carried out on the above Cauchy problem, it is amenable to a more or less stan-
dard contraction method. On a more technical level: due to the non -linearities
one has to work with Banach’s contraction mapping theorem on various spaces
of so—called U-functionals (which are images of generalized random variables
under the S-transform). In order to cover a large class of Cauchy problems we
make use as well of the Hida triple of random variables as of the Kondratiev
triples (cf. Section 2.1). We also apply our methods to anticipating stochastic
differential equations and stochastic Volterra equations. v

We combine our machinery with the Wick calculus (e.g., [KLS]) in order to
produce a number of examples as illustrations of our results. Among others, we
consider: stochastic reaction—diffusion equations, stochastic Burgers equations
and an equation modelling population growth in a random medium (all in Wick
form). In this context we also want to mention the works [HQUZ, HLOUZ2,
HLOUZ3, LOU1, LAU2]. In the linear case (and for space-time white noise),
one finds in [PW] an approach via the Feynman-Kac and Cameron—Martin—
Girsanov—Maruyama formulae. v ,

Our article is organized as follows. Section 2 provides some mathematical
background from white noise analysis, a precise formulation of the Cauchy prob-
lem and the notion of solution to be used. In Section 3 the necessary Banach
spaces of U—functionals are introduced. In Sections 4 and 5 we prove existence
and uniqueness of solutions of the Cauchy problem under certain global (Sec-
tion 4), resp. local (Section 5) Lipschitz conditions on the coefficients F' and
G. Moreover, a number of examples are considered there. Finally, as a by—

~ product of our method we treat in Section 6 non-linear anticipating stochastic
differential equations and stochastic Volterra equations, and give again several
. examples.

Acknowledgement One of us (J.P.) has profited very much from discussions
~ with Professor H. Watanabe.

2 Mathematical Preliminaries

2.1 Some Elements From White Noise Analysis

For k € IN, denote the space of Schwartz functions by S(]Rk) and its dual by
S'(IR*). We have the well-known family of semi-norms on S(IR*)

ll(a,y) := sup [0%E(x)I(L + |z]).
. zelRF

where o = (a1, ..., ak), @,y € INg. We are going to make use of the norms

€]2,p = [(H®F)PE]2 0




where p € IN¢ and |-|,0 is the Lz(RIc )-norm. Here; H is t‘he harmonic oscillator
on R :
H _._ d2 1 2
=--3 + (1 +z%).
The complexification of the Schwartz space and its dual will be denoted by
Sc(Rk) and Sé:(Rk), respectively. The notation for the corresponding families
of semi—norms and norms stays unchanged. \
We shall make use of the probability space (S’(Rk),-B, ,u;), where B is the

Bore] o—algebra induced by the weak topology and p is the measure with char-
acteristic functional exp(—3| - |3 ). For each £ € S(IRF) the dual pairing with

w € 8'(JR¥) defines the random variable w =< w,€ >. To X € (L?) := L*(p) .

there is associated a function on S(IR*), called the S—trajnsfo_rm of X:
SXE©= [ Xy Hldu) M)
S(R*) - _

It is known that elements X € (L?) admit the Wiener-It6-Segal decomposition
i

X = i L(x™y,
=0

where the X(") are symmetric elements in L*([R*"), and I, denotes the n—fold
Wiener integral. The norm of X is ' |

oo

1XIizsy = D n IXPNE aggrny

n=0

For 8 €[0,1], p € IVy, introduce the Hilbert spaces (S)g consisting of elements

o 1
¢ = Z I (¢™)
n=0

such that

00

15,5, == D _(n)!** I(H®’°”)”¢(")l§zmkn;> < oco.

n=0

Denote by (S)'_‘f,i the dual. The space (S)? is defined as the projective limit

(w.rit. p) of the spaces (§)F. Its dual is the inductive limit of (8):5, and is

denoted (S)~7. For § = 0, the spaces (S)° and (S)~° will frequently be denoted

(S) and (S)* respectively. The following chain of inclusions holds: 0 < 8 < 1,
| () C (8P C(8§)c (L)) cS)Pc©s)

Remark (S) and (8§)* are known as the spaces of Hida test functions and of

Hida distributions, respectively. For 8 € (0, 1], (8)” and (S)~7 are called the



spaces of Kondratiev test functions and of Kondratiev distributions, respective-
ly. The S—transform (1) can be extended to elements X € (S)71.

To characterize (S)‘ﬁ we need the no!tioh of U~functionals. First let 3 €
[0,1): Consider functions U : S¢(R*) — @, with the following two properties:

1. For every &,1€ S¢(IRY), the mapping z — U(£ + zn) is entire. .

2. There exist Ki, Ky >0and pe Z shch that for all £ € S@(le),

U < K e;prs'g'lsB? ).

The space of all such functions U will be denoted U?. Consider complex valued

functions U defined on an open neighborhood @ around zero in S@(]Rk), with
the following two properties:

'1’. For every €,1 € O there exists an open set Vg, around zero in (' such
that the following mapping is analytic:

z’—->U(£+z"77):V§,,7—>(E’_
|

.2’ U is locally bounded on @, i.e. every € € O has a neighborhood N' C O
such that U(N) is bounded.

We identify two functions when they are equal on a neighborhood of zero in
Sc(R*). Hence, the space U! consists of germs of functions of above type. We

state the characterization theorem for (S)j_ﬁ:

Theorem 1 Let 8 € [0,1]: If ¢ € (Sj)‘ﬁ, then S¢ € UP. Conversely, if
U € UP there exists a unique element ¢ € (S)™7 such that S = U.
A proof of this theorem for # = 0 can be found in [HKPS], [KLPSW], [Ou] and
[PS]. The general case 8 € [0, 1] is treated in [KLS].

The spaces U? are all closed under the pointwise product of functions. Hence,

‘we can define the Wick product of two elements ¢, % € (§)77:

gotp:=8"1(S¢ SY). - (2)

In the following we shall be concerned! with elements of (S)~? parametrized

. by (¢,z) € Dr, where D, := [0,1] x R%for 0 <t < 0o, and d > 1. L.e. mappings
f ,

(t,2) v @(t,z): D — ().

‘For 8 € [0,1] and n € INo, we say that ¢ € CY™(Dr; (S)=P) if and only

if (8(-,-),%) € CP™(Dr) for every ¥ € (S). Here CJ*™(Dr) denotes the

space of complex valued functions which are m times resp. n times continuously



differentiable in t € [0, 7] resp. in z € IR%, and all the derivatives are bounded.:
We set CP(R?) := C)""(IR%) and Cy(R%) := Co(R?). Consider mappings

(t,z)— f(t,z;-): Dr —Uuk.

For 8 € [0,1), f € Cp(Dr;UP) if and only if f(-,¢) € CY™(Dr) for every
€ € Sc(IR*) and the constants Ki, K in property 2 above are independent of
tand z. In case 8 = 1, f € Cp"™(Dr;U") if and only if f(-,;€) € cy™(Dr)
for every £ € @ and property 2’ holds uniformly in ¢ and z. The proof of the
following result is an adoption of the proof given for case § = 0 in [P2]:

Lemma 2 Let 3 € [0,1] and n € INg. If f € C,?’"(DT;Z,(") then S~1f €
Cy™(Dr; (8)77). | |

2.2 Formulation Of The Problem

We assume (t,z) € Dr, ford > 1 and 0 < T < co. Let A be a second order
uniformly elliptic differential operator, .

d ‘62 d a )
A= Z aij(t,l’)m + Zbl(t’z)a_l'; + C(t; -’17);
i=1 .

ij=1
where, for given A2 > A; > 0,

d ,
Mlyl? < E aij(t, x)yiy; < Aalyl®
i,j=1

for all y € R?, and (t,z) € Dr. We furthermore assume that the coefficient

functions are in C}(Dr) so that the heat equation §% —‘Au = 0 has a funda-

mental solution ¢(¢, z; s, y) with bounds

- ~df2 |z —y|?

lg(t,z;5,9)] < Kt — s exp(—A T ),
2
|Vg(t.z;s,y)] < Kq|t—SI_(dH)/Zexp(—)\v————!Tt le ),

where A, K, > 0 are suitable constants, and the gradient is taken either w.r.t.
the z or the y variable (see, e.g. [Fr], [LSU]). These bounds imply the following
estimates

IA

- \
/md la(t,z5,9)l dy < Ko()* =Cy, (3)

/le [Vyq(t,z;s,9)| dy

IN

C,(t—5)7%. (4)




Consider g € [0,1]and N(t,z) = (Nl.(t z),...,Na(t,z)), where the components
N;(t, z) belong to (§)77?, for i = 1,...,d. Let F and G be two functions on
Cy(Dr;(S)#) such that for every ¢ E Cb(DT, (S)™9)

 F(¢),G(): Dr — (8)™".
We consider the stochastic Cauchy problem

Bty Abte) = F@)12)+ VOGN (L)
- #(0,2) = ¢oe), M

with

VG(g)(t,z)o N(t,z) = 0G

Oz;
i=1 ¢

The corresponding integral formulation of (5) leads (after an integration by
parts) to: '

(t,z) o Ni(t, x).

o(t,2) = / bo()a(t, z;0,3) dy

// alt, 75 5,5)F(9)(s,v) dy ds
// alt, 25 5,5)G(6)(s,9) o Z

_/0 ‘/de qu(t,J?;S’y)~N(S,y)OG‘(.¢)(Svy)dde. (6)

The integrals are understood in the sense of Bochner. By a solution of (5), we

shall understand an element ¢ € Cy(Dr;(S)™?) which satisfies (6). To prove

existence and uniqueness results for (5) we are going to study its S-transform:
Let u(t,z;€) := S¢(t, z, -)(€) and define the functions o

J)t e = SFEult o)),
g(u)(t,z;€) = SG(S'u(t,z))(§).
Informal S-transformation of (6) with n(¢,z;£) := SN(t, z)(£) gives

w(t,m:€) = / uo(y; €)a(t, 730, y) dy

// q(t, z; 5, 9) f( )(Syﬁ)dyds
R

/ / ,a(t, 23 5, y)n(s, 33 €)g(u)(s, y;€) dy ds. (1)

)dyds




In this paper, we study problem (6) for f and g satxsfymg a uniform or local
Lipschitz condition. We refer to Section 4 and 5 for a precision of the conditions
on f and g. In case that f and g are uniform Lipschitz, we will distinguish
between two types of noise N(t,z): f n = SN grows like a polynomial in |£],
le,foraa>0

In(t, ;)| < Kn(1+ |€|z,p)

we call N polynomial noise, otherwise nonpolynomial noise.

3 Banach Spaces of U-Functionals

" In this section we introduce function spaces which will become useful for our
treatment of (5). We remark that similar spaces can be found in [CLP, CP].

For d,k € IN and T > 0 fixed, consider functions u: Dy x V — C, where V
is an open subset of S¢(IR*). We make the following assumptions:

(i) (Continuity) For every fixed element £ € V, u(:, ;¢) € Cy(Dr).

(n) (Measurabzlzty) For évery &, nE V, there exists an open set V¢, C € such
- that the followmg mapping is Borel measurable:

(t,z,z) — u(t, x£+zn) DT><VE,,——>(E'

(iii) (Analyticity) For every (t,z) € Dt an analytlc mapping is defined by

zu(t,z;€+2n): Ve — C.

Denote by U the space of all such functions ». Introduce the norm
llull := sup{|u(t, z; §)w(t; €); (. z,€) € Dr x V}, (8)
where the weight function w is given by

exp(—tL(£))
1.+ R(¢) )

The functions R, L : V — IR are such that z — L(£+2n) and z — R(£+27) are
measurable and bounded on every compact subset K C V¢, for fixed {,neV.
vLet U:= {u €U :|lu||l < oo} Obv1ously, (L( || ||) is a normed vector space oo

w(t;€) =

Proposxtlon 3 (U ) isa Banach space

Proof The proof follows the arguments glven in [CLP] To show that U is
complete, let (u,)>>, be a Cauchy sequence in U. For (t,z, £) e Dr x V:

lun(t, 2;€) = um(t, ;)] < llun — um||(1+ R(£)) exp(¢L(€))-




Denoting by | - |o the supremum-norm on D7 we obtain.

a6 = i 3 €)oo < [lum — ummll(1 + R(E)) exp(TL(E)).

By completeness of the space (C3(Dr),| - |0o), there exists‘u(-, ,5) € Cy(Dr)
such that u,(-,;€) — u(:,€) in |- |o—norm. Le., for a given € > 0

sup{l“n(t@&) - U(t;m;é)l : (t"’"’) € Dr} <v€:

for an appropriate n > N(£). This inequality together with 0 < w(t;€) < 1
implies . ’ : o : ;

lu(t, z; §)|w(t; €) u(t, ©;€) — un(t, z; €)|w(t; €) + |un(t, #; )|w(t; €)

<
< fu(, 5 €)= un( 5l + llunll < €+ fluall
for n > N(€). Because ||us|| < const. for all n € N we find ,
llull < €+ [luall < co:
Since (un )., is Cauchy in U, there exists N > 0 such that
|lun — umll <€, VYn,m>N.
By the tr.iangle inequality we get

lu(t, z; €) — un(t, z;€)|w(t; §) _ ’
< Jun(t, 2;8) — um(t, z; &) w(t; ) + lum(t, ;&) — u(t, z; €)|w(t; €)
< et lum(, €)= uls, 5 8)leo-

Since um (-, ;&) — u(-, &) in | - |oo—norm, we let m tend to co and obtain:
lut, z;€) — un(t, z;€)|w(t;§) <6, VR N.

This yields |ju — un |} < € for alln > N, ie., up — u w.r.t. the || - ||-norm.
It remains to show conditions (ii) and (iii): Since by assumption

(t,3,2) = un(t, 26+ 2n) : Dp X Vg = €

is measurable for every n, thé same holds for the limit (¢;z, z) — u(t, ;€ + 29).
We show analyticity (iii): Fix £,7 € V and (t,2) € Dr: Consider the analytic
function iin(2) := ua(t,z;€ + zn) on Vg ,. By direct estimation P

Nuall + K (€ + zn))) exp(tL(E + zm))
(:ggv lunll)(1 + 1K (€ + 2n)]) exp(tL(€ + 2n))-

|dn(2)] = lun(t, 2;€ + 21)|

IN A



Hence, i, is bounded uniformly on every compact K C Ve since sqQ are
L(& + zn) and K (€ + 7). Moreaver, since tin(2) capverges pointwise to fi(z) 1=
u(t, ;€ + zn), it follows by the theorem of Vitali that @ is analytic on V¢ ,. Le.,

z»—»u(t,x;£+zn):VEm - C

is analytic, and therefore u satisfies condition (iii), too. [

In what follows some explicitly given functions L(£), R(£) and subsets V will
be used. We fix notation for later purposes:

The case B < 1: Choose V = S¢(IR*) and V¢, = € in (ii). Condition (ii1) now
says that the map z — u(t,z;& + zn) is entire. In this case, denote U by U.,
where ¢ indicates entireness. For p € INy and constants C, C > 0 consider

L(§) =C(+ IEI ), R(E) = Cexp(CIEIL,). (9)
For these particular choices of L(€), R(£) and V, we shall denote the correspond-
ing space by (Us p, || - lls,p)- Notice that § < B implies Up,, C Up' .
The case B = 1: The space (U p, || - |l1,p), for p € INo, is defined by setting

| L(§)=C, RE§):=C - (10)
where C,C > 0. V and V;, in (ii) (depending on p and é > 0) are given by
Vp(6) = {€€Sc(BY): Iehy <5}, (11)
Ve = {2€C: |zllnl2p <8 —[El2p}-

Thus z — u(t, z; € + z7) is locally analytic. U will in this case be denoted ;.
Remark Let u €U, for B € [0,1). Then u(t, z;¢) satisfies the bound
|ut, 2;€)] < {lulls,p exp(TC(1+ [€3,7))-

- Moreover, since u(-, ;&) € Cy(Dr) for every § € Sc(IR*), we see by Lemma 2
that there exists ¢ € Cy(Dr;(S)~?) such that

So(t,z)(€) = u(t, z; €).
For u € U, , we correspondingly obtain ¢ € Cy(Dr; (8)~1) such that
So(t, z)(§) = u(t,z;§), €€ Vp(6).

4 The Uniform Lipschitz Case

In this section we are going to work with the spaces Ue, U and Up p, 1] ls,p)-
The treatment of polynomial and non—polynomial noise. is separated into two
sections. In Section 4.1 the case of polynomial noise is considered, for § € [0, 1).
The non-—polynomial case is treated for 3 = 1 in Section 4.2.




4.1 The Case of Polynomial Noise

Define the operator T on Up ,, for B € [0,1) and p € IV by
Tut,z;8) = / Uo(y £) q(t 20, y)dy
+ / / (t,z;s y){f(u) — g(w)m}(s, y; €) dy ds |
- /0 /ma VyQ(t,x;é,y)~vn(s.,’y;ﬁ)g(u)(s,y;g)dydvs’. a2)

where

anz
mt,z;€) := (t z;€).

i-l

We impose the following technical assumptions on the opefator I

(A) The initial function ug : R? x S¢(R*) — € is such that
2
luo(; €)] < Koexp(Koléls,?),
for some Ky > 0. Moreover, for every £, n € Sc(Rk), the mapping
0:9) = wl o) R €~ 0

1s Borel measurable, and z — uo(y,f + 2p) is entu'e

(B) f and g are functions frorn Ue nto itself. For u,v E U, Lhey satlsfy a
uniform Lipschitz bound with some constant Ky, >0, and o € [0, 1]:

A

(236 = FO)E O] < Kpg(l+ 15D lut, 2:6) - o(t, 2;6)],
lo)(t,2:6) = gL € Kyl + 1) 5 fult, 25 — ol 7)1

Also, f and g are of polynomial growth

A

F@) 58] < Kpo(1+ iei?ﬂ )1 + [u(t, 2 €))),
950 < Kpg(1+ 1575 (14 fu(t, z:)).

C) Fori= 1,...d, n; and 2% are elements of U,. In addltlon, there exists a
oz; -
positive constant K,, such that for all ¢ € S¢(IRF)

1—37 -4 - ; ﬁ 4o
In(t,2;6)] < Kn(1+16l257)%,  Im(t, 2;8)] < Ka(1+1€]257) 7

)

where ¢ is the constant in (B). "

10




We remark that a—priori we do not need to have the same p in conditions (A)-
(C). However, since the norms | - |3,y are increasing for increasing ¢, we can

always find one p-for which all the above conditions hold. Define the constant
C appearing in (9) to be equal to the constant Ko in condition (A): To get a
more compact notation, introduce the function

Fu)(t,2;€) = f(u)(t, z:€) — g(u)(t, z:E)m(t, 2;€).
Note that f fullfills assumption (B), but now with K7 := Ky ¢+ Kf,¢Kn.

Proposition 4 Under conditions (A)-(C), the operator T maps Ug p into ut-
self. . ' '

Proof In the first step we verify the properties (i)-(iii) from Section 3:

(i) Let u € Upp and fix £ € Sc(IR¥). Conditions (A)—(C) imply that uo(;€),
f(u)(~, -€) and g(u)(-, 5 E)ni(-, € for=1,.. ., d are bounded and measurable
functions. ;From Theorem A.3 in [DP] we conclude Tu(:, -;€) € Cy(Dr)-

(i1) Fix¢,n € Sc(_Rk), and let u € Up p. By conditions (A)-(C), the functions

(z,2) = wuo(z;§+2m)
(t,z,2) — flu)(t z;€+2n) _
(t,z,z) ~— g(u)t,z;€+zmni(t,z;€+12n), 1= 1,...,d‘,

are all Borel measurable. The function (t,z,z) — Tu(t,z,€ + zn) is therefore
Borel measurable, since it is the integral of products of such functions.

(i) Fix§,n € Sc(Rk), and consider u € Ug ,. We will show by an application
of Morera’s theorem that z — Tu(t,z;€ + zn) is entire, for every (t,z) € Dr.
Define : !

g(t, 2;0, y)uo(y; € +21) - (13)

a(t,z;5,9) f(u)(5,y; € + 2n)
~Vya(t,z;5,9) - n(s,y;€ + zn)g(u)(s, ;€ + zn). (14)‘

- a(y, 2)
b(s,y,2)

_ From (A)—(C) we know that, for every fixed (.é,y) € Dr, the functions a(y, -)

and b(s, y, ) are entire. Moreover, a and b are Borel measurable. We estimate
la(y, 2)| = la(t, 2;0,9)| - luo(y; € + zn)] < la(t, 2;0,9)|- RE +2zn).  (15)

Since R(£ + zn).is bounded on every comp_éct K c €, it follows that a 1s

" integrable on IR® x K. Let v be the boundary of a closed rectangle in €. By

Fubini’s theorem and entireness of a(y, -),

/ ‘a(y,z)dydz:/ /a(y,z)dzdyzo,
v x IR? R Jy

11.



« -

Since this holds for every closed rectangle in ©, Morera’s theorem implies that’

'2".—’/ a(y, z) dy
JRe o

is entire. We argue similarly for b, and estimate in the following way:

C Bewal < syl e et |
Ttz s )l o), 6+ )] (s, i€ + 2)

IA

< ez, y)lfx F(1+ l€+znlé,p‘g)(1+IU(s Y; E+zn)l)
O HIValtzs y)lK; AL+ 1€+ 2nl337 )2 (1+ [u(s, ;€ + 2n)])
< etz y)lf\ (1+I£+zn|5p’s)(1+HUI|ﬁ p)w w(t; € +2m)

+HVya(t, @8, )| K5(1+ €+ 21l35 S+ llullp)w(t €+ 2m) 7"

By the assumptlons on w, it follows-that b is integrable on Dy x K for every
compact £ C €. By Fubml s theorem and the entireness of b(s, y, -), we have

/ b(s,y,z)dzdsdy:/ / /b(s,y,z)dzdyds:O.
yx[0,t]x R? 0o Jmi Jy ’

Again, by Morera’s theofer_n we have that

. :
2 / / b(s,y,z)dyds
0 .md ) °
is entire. This proves (111)

The second step is to show that Tu is bounded in the || - ||5 p—horm, for
u€ Up »- We will use the abbreviation '

K = max (Kf-, C), - o (16)
where C, is.defined in (3). Using (B) for f and g we find
ICu(t, 2;€)] | S
< Ku(he) + KA )+ g1+ R [ exp(sE(©)ds

T+ o)1+ RE) [ (=) Fexp(sL(©)ds.

We estlmate fo exp(sL{£))ds < (L({)) exp(tL(ﬁ)). In [CLP] we find the fol-
lowing estimate: - . _ : : :

L
2

/ (£~ &) ¥ exp(sL(€))ds < (L(Q) exp(QL(s». |
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Taking into account L(§) = C(1 + ] 13ﬂ) we finally obtain

1
7z K?
T
2

[Put,2;6)| < (K g+ T uunp,p)) o™ a7

This implies ||Tullg , < const.(1 + [|ulls,»)- L

Proposition 5 Let K be given by (16). For C = 4K? + 16mK* in (9), T
defined in (12) is a strict coniraction and therefore has a unique fized point
u€lpyp. .

Proof Let u,v € Ugp. Using the Lipschitz condition on f and g in (B), the
polynomial bound on n(t,z;£) in (C) and the definition of || - [|5,p, gives '

Pt 56) ~ Tolt, 2301 < (K2 + 5720+ R [ exp(ar(e)ds

R4 IR RE) [ - 9 expleD(€)ds) = ol
The estimations of the integrals in the proof of Proposition 4 yield
|Tu(t, z;€) — To(t, z; )]
(1<2(1+|sn;?) T K21+ €15
= L(¢) L(£)?

With the choice C' = 4K2 + 167 K* we obtain

) llu = vllppw(t; €)7"

1
ICu(t, 2;€) - To(t, 2:€)| < gllu = vllgpw(t )7

and hence |[Tu—T"||gp < 3]ju—vl|s,p- Banach’s fixed point theorem now implies
the second claim. ]

By the remark at the end of Section 3, there exists a unique ¢ € Cy(Dr; (8)=%)
such that for the fixed point u we have Sé(t, z)(£) = u(t, z;€). To show that ¢
is a solution of (6), we must prove that the inverse S-transform commutes with
the integrals in (7): For the fixed point u € Up , and fixed (t,z) € Dr, define

6(s,3:6) = a(t,z;5,y)f(w)(s,3:€) ‘
+Vyq(t, z;5,y) - n(s,y;€)g(u)(s, ¥;£)- (18)

Then we have for a suitable constant K: »
1605, 561 < la(t, 255, DKL+ €571+ Ilullp,p) exp(TL(E)
. 2
+|Vya(t, 255, K1+ €57 )7 (1 + [|ulls,p) exp(TL(E))

< (la(t, ;5,9 +Vya(t, z55,9)]) K (1 + llullg,p) exp(K (1 + IEIQ‘?))-
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.Since lq(t, z; ,)| and |Vyq(t,z; -, )! are integrable on Dy, it follows as in the
proof of Theorem 4.51 in [HKPS] that '

S(/Ot . S’1¢(8_,y;-)dyd8) (E)Z/Ot /Rd é(s,y:€) dyds.

Hence, ¢ is a solution of (6). We summarize:

" Theorem 6 Under conditions (A)-(C) and for B € [0,1), there exists a unique
solution ¢ € Cy(Dr;(S)™P) of (6).

4.2 - The Case Of Nonpolynomial Noise

Consider again T introduced in (12). In this section I' will be studied on U,
for fixed p € INg and 6§ > 0. Recall that V¢, and V depend on p and 6, and
that ug is the initial function. We make the following assumptions:

(A1) up: R? x V,(8) — € is bounded and such that for every £, n € V,(6),
(y,2) = wo(y; €+ 2m) : R x Ve — €
is Borel measurable. Also z — uo(y;€ + z7) is analytic on Vg ..

(B1) f and g are functions on U, into itself. For u,v € U; they satisfy a uniform
Lipschitz bound (h stands for f or g)

[R(u)(t, z; €) — h(v)(t, z; €)] < Ky glu(t, z;€) — v(t, z;€)],

and are of polynomial growth (K 4 is a positive constant)
[h(u)(t, z; )] < Kip,o(1 + Ju(t, z;€)]).

(C1) Fori=1,...d, n; and g—;’-} are elements of ;. In addition, there exists a
positive constant K, such that for all (¢,z,€) € Dy x V,(8)

J ‘
. on; .
In(t, 2:€)| < Kn, |; 2. (b 26| < Ko,
Choose the constant C in (10) as C := sup{|uo(z;€)}; (z,€) € R® x V,(8)},

which is finite by (A1). The constant C in (10) is chosen like in Proposition 5.

Proposition 7 Under conditions (A1)-(C1), the operator T' defined by (12) -
is a strict contraction on Uy, and has a unique fized point u € Uy p.
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Proof Similarly as in Section 4.1, but now with conditions (A1)-(C1), we
argue as follows: For fixed &,n € V,(6), Tu(:,;€) € Cy(Dr) and

(t,z,2) — Tu(t,z;€+2zn) : Dr x Vg,u > €

is Borel measurable. Let K be a compact subset of V¢, and u € U p. Since

"L(¢) = C,R(¢) = C, an argument analogous to the one in Section 4.1 shows

that the two functions @ and b defined in (13) and (14), are integrable on RYxK
and Dp x K, respectively. Let v be the boundary to a closed rectangle in V¢ 5.
Fubini’s theorem together with analyticity of a and b on V¢ q yield

[ awadyds= [ [awoday=0
JyxIR? R Jy

and

t
/ b(s,y, 2) dzdsdy:/ / /b(s,y, z)dzdyds = 0.
vx[0,t]x R* 0 JR* Jy

Hence, by Morera’s theorem, the function z — Tu(t, z; € + zn) is analytic on

Vi,p- Tuis bounded in the || -{|1 y—norm, whenever u € Uy, and from the choice
of C, T is strictly contractive in the norm || - |[1,. By Banach’s fixed point
theorem the second claim follows. u

From the remark at the end of Section 3, there exists ¢ € C3(Dr;(S)™") so that
S¢(t, 2)(€) = ult, z;§), €€ Vp(d).

By estimating the function ¢(s, y; &) defined in (18) like in the preceding section,
we get from Theorem 6 in [KLS] that the inverse S—transform commutes with
integration. Hence ¢ is a solution of (6).

Theérem 8 Under conditions (A1)-(C1), there ezists a unique solution ¢ €
Co(Dr;(S)™1) of (6).

4.3 Examples

Assume G(¢)(t,z) = ¢(t,z) and F(¢)(t,z) = ¢(t,z)° N(t,z), with N €
C(Dr;(8)~7). Hence, the equation under consideration is

%—f(t, z) — Ag(t, z) = ¢(t,z) 0 N(t, )+ Vé(t,z)o N(t, :z:) (19) -

Ezample 1: Polynomial noise. Let k=d +1, and define N; and N to be equal
to time—space white noise. L.e., informally

Ni(t,z,w) = N(t,:z;,w) = (w,81,2),

15



where §; , is Dirac’s 6—function. This space-time white noise will also be denoted
as W; ¢, and is the time-space derivative of the Brownian sheet considered as a
generalized random variable in (S)*. Its S—transform is given by

SWt,x(e) = f(t, 1‘)

The hypotheses (B) and (C) are obviously satisfied for 8 = 0. Hence, if S¢o = ug
satisfies (A), we have a solution ¢ € Cy(Dr;(S)") of (19).

From a physical point of view, it might be interesting to smear out the noise
in the space variable. Given d + 1 functions p,v¥; € C’,(,)’I(DT), 1=1,...,d,
define N; and N to be N '

Ni(t,z,w) = / ¥tz — YWy (w)dy, i=1,...,d,
IR¢

N(,z,w) := /de(t,z—y)Wt,y(w)dy.

The corresponding S—transforms will be

il

SN;(t,z,-)(€) /}R-i vi(t, e —y)€t,y)dy, i=1,....4d,
SN2 O = [ plte— vt n)dy |

Since p is bounded, we get for large enough v

$8@z)O1 < [ -l la< K, [ ety

IA

Ky [ (141077 dy Ello < Ol

We argue in the same way for SN;. Moreover, since p € cYt(Dr),

B%SN(L z,)(€) = . —(%:p:(t, g—yl(ty)dy, i=1,....d

We find |aimSNi(t,x, Y| < Clléllco,y)- For p large enough, [€[l¢0,y) < Clél2,p,

and thus our hypotheses (B) and (C) are satisfied with # = 0.- We obtain a

solution ¢ € Cy(D;(8)") of (19), whenever S¢o = uq satisfies (A). |
" In [GHOUZ] a noise is considered which is also smeared out in the time :

variable. L.e.,

Ni(t,z,w) = / Yi(t — s,z — YW y(w)dyds, i=1,...,d,
IR .

.N(t,x,w) = /m/mdp(t-—s,x—y)W,,y(w)dy.ds,

16



for p,¢; € C,?’I(R X Rd).- p,%i and their first order space derivatives are
elements in S_,(IR**") for some p > 0, so that we can estimate the S-transform
with the Cauchy-Schwarz inequality, and obtain

ISN(t,z,-)(€)] < lpl2pl€l2,-5

SN; is treated similarly. If S¢o = uo satisfies hypothesis (A) for this p and § =
0, we see that there exists a solution ¢ € Cy(Dr; (8)™). For p,9; € Sp(R*)
and p large enough one can even show that

é(t,z,) € (L), for all (t,z) € Dr.

For example, if we have deterministic initial conditions in C’b(Rd), and p,¥; €
S(IR*'), such a p obviously exists. We remark that in [GHOUZ] a Feynman-
Kac formula for the solution is worked out. '

'Ezample 2: Nonpolynomial noise. Examples of noises which cannot be bounded
by a polynomial, are easy to produce. For instance, let N; and N be equal to
the Wick exponential of singular white noise W, o(w). Le., informally

Ni(t,z,w) = N(t,i',w) =rexp Wy o(w):, 1=1,...,d.

The Wick exponential of white noise vhas been considered as a model for positive
noise (e.g. [HL@UZ1]). Its S-transform (which could be taken as a rigorous
definiton in view of Theorem 1) is ' :

S (: exp Wea(") 1) (6) = exp(é(t, 2)),

which shows that this noise can not be bounded like in (C). Choose 6 > 0, and
let € € Vp(6) where p is such that sup(; ;)epr [€(t, z)| < ¢l€l2,p- Then

|S (: exp Wy 2(-) 1) (€)] < exp(cé), for all € € Vp(6). -

Similarly, by changing p if necessary, we can bound the space derivative of SN;.
It is easily seen that conditions (B1), (C1) hold, so we have a solution ¢ €
Cy(Dr;(S)™") for (19), whenever S¢ = uq satisfies (Al). The same argument
shows that also the normalized exponential of regularized noise (smeared in
space or in time-space) gives a solution in Cy(Dr; (8)~1).

5 The Local Lipschitz Case

The spaces of U-functionals under consideration in this section will be Uy , with
L(€) and R(€) both identical to zero. Moreover, we will see that for the non—
linear heat equation, only local (in time) solutions exist. Hence, we are going
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| .
to consider the space Ui , where the time parameter is in an interval [0; ], for
a 7 < T. We denote this space by U; p(7), and its norm will be.

lullr := sup{|u(t, z;€)|; (¢, z,€) € Dy x Vi (8)}.

Of course, (U1 p(7),||||-) is a Banach space. We shall see that there exists a
T = tp for which the problem under investigation has a solution. This t¢ will be
explicitly given in Section 5.1 below (see (20)). We remark that the idea to our
approach is taken from [Sm)].

5.1 Existence And Uniqueness Of Solution

For the operator T in (12), we assume (A1) and (C1) of Section 4.2, p € INo
fixed and § > 0. In addition f and g will satisfy a modification of (B1):

(B1') f and g are functions of U, into itself, obeying f(0) = g(0) = 0. Consider
u,v € Uy with |u(t, z;€)], |v(t, z;§)] < M for a constant M > 0. Then
there exists K ,(M) such that (h stands for f and g)

[R(u)(t, z;€) — h(v)(t, z;€)| < Ky glu(t, z;€) — v(t, z; €)|.

Let |uo|oo := sup{|uo(z;€)| : (z,€) € R® x V,(6)}, and consider the closed ball
with:radius Cyluoleo (to will be specified below):

By p(to) == {u € Ur p(to) : [Ju— /Rd uo(y; )q(:, 5 0,9) dylls, < quuOioo} .

Obviously 0.€ By ,(to), so u € By ,(to) satisfies ||ul|;, < 2C;|uo|o. For
Kj,q = K,4(2C, uoloo) ‘

the functions f and g are uniform Lipschitz on B; ,(to) for any tg, with Lipschitz
constant Ky 4. Le., for u,v € By ,(to), (h stands for f or g)

Ih(u)(t, 2;€) — h(v)(t, 7;€)] < Ky qlu(t, ;€)= v(t, z;€)].

The function f := f —g-m (m is as in Section 4) satisfies (B1’) and is uniform
Lipschitz on By p(to) with Lipschitz constant

Kji=Kpg+KpgKn.

Proposition 8 Assume (A1), (BI') and (C1). Then there ezists tg > 0 s0
that T : By p(to) — Bip(to) is a contraction and has a unique fized point u €
B1,p(t0). .
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Proof Let u € By p(to) and t < to. We estimate, using (Al), (B1’) and (C1),

Pu(t,2i€) = [ uo(u; €)a(t,:0,4)du

IA

t ~ .
// la(t,z; 5, 9)|F(u)(s, 9 )| dy ds
0 JR¢ .
) 1
4[] 19aattzin - InGs, 50l oo )l duds
o JIR?
t |
Kl [ [ lat,sls,ldyds

t
PpaKaliles [ [ 19a(t,z0,0)|dyds
o JR¢

(Cokf -t +2C K g Kn £4) 2C,|uoleo.

IA

IA

Choose tg as
-1
to := (4C K +64C2K} K2) . (20)

From this it is easy to see that for t <o

2C,K; -t < % 4C Kj o Kn 13 < (21)

B | =

We therefore obtain that
ITu - fm wo(y: a0, 9) dylley < Cyluoleo,

thus Tu € By p(tg). For u € By p(to), the arguments in Section 4.1 with the
modifications made in Section 4.2 show that T'u(t,z;€) possesses the correct
continuity, measurability and analyticity properties.

If u, v € By p(to), we show that T is strictly contractive in the [| - l}tg—norm:

[Pu(t, z;€) — To(t, ;)
t
< [ [ ot ms )l 1650 - FO) w0l dyds
o Jme '
t
+/ /m IVyq(t,z;5,9)] - In(s, 3 )] - l9(u)(s,4:€) — 9(v)(s, y; §) dy ds -
0 d
< (CyKj-t+2C,Ks5Kn 44} flu = olles < L= olle
= 0 f q it ’ °© = 9 07
so ||ITu — To|l, < %llu — vlls,- Since By p(to) C Uy p(to), we obtain the second

claim from Banach’s fixed point theorem. m

There exists ¢ € Cy(Ds,; (S)™1) so that S¢(t, z, ME) = u(t, z;€), for € € Vp(8).
Moreover, by arguments similar to those in Sections 4.1 and 4.2, ¢ solves (6).
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Theorem 10 Under conditions (A1), (B1’) and (C1) there exists ty > 0 such
that problem (6) has a solution ¢ € Cy(Dyy; (S)™1).

Remark The solution ¢ above is unique in the sense that it is the only solution
of (6) for which the S—transform is an element of By ,(to).

5.2 Examples

We shall concentrate on examples produced by the so—called Wick calculus (see
[KLS)): Let h(z) be an entire function with Taylor expansion

[ee]

_ h(z) = Zanz”.

n=1

Theorem 12 in [KLS] states that for every ¥ € (S)~! we have

ho(¥) 1= ) e, " € (S)™! and S (h°(¥))(€) = h(S¥(S)).

Ezample 1. Stochastic Reaction—Diffusion Equations of Wick Type. Let k =
d+1, N = 0, and assume that the noise N(t, z,w) satisfies 7 := SN € Uy p(T),
e.g. N = Wy ,. Then (C1) trivially holds and (Bl’) is easily verified for the
following two types of reaction—diffusion problems:

g—f(t,x)-—AqS(t,z) h°(¢(t,z))+¢(t,x)oﬁ(t,x)

‘g—f(t, z) — Ad(t, z) - rO(4(t, ) o N(t, z).

In view of Theorem 10 we obtain a local solution ¢ € Cy(Dy,; (S)~1), whenever
Séo = ug satisfies (A1). We remark that the second equation possesses a global
solution, i.e. g = T, if ug is just a function of z, and if {|A||r < c|€]2p, for some
p,c¢ > 0. This can be seen as follows. For |u(t, z,€)|, |v(t, z,€)] < 2C;|uo|eo and
EE€Vp(6),1.e. |€]2p <6, we have

|f(w) = f(v)

|#3] - |A(w) — A(v)|
ll7illr sup{|A'(2)}; |2] < 2Cy|uofoo Hu — 2|
eSih | oo |u — v, :

IA A

where |h'|o 1= sup{[h’(2)]; |¢| < 2Cj|uo|oo}. Hence we choose Ky 4 = eb|h oo
Since N = 0 we have K, =-0, thus K7 = Ky,g. The definition of £, in (20) gives

1 1
T AC Ky, ACch|M oo

to
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We set 6 = (4C,cT|h'|)~! and obtain to = T, i.e. the solution ¢ is in
Cy(Dr;(8)™!). Notice that the conditions on N are satisfied for N = W,
or one of the smeared out versions of W, , considered in Section 4.3.

Ezample 2: The Wick Burgers Equation. Let d =1 and k = 2. We consider
9 | o
—a—f(t, z) — Ag(t,x) = —¢(t,z) o Eg(t’ z) + ¢(t, z) o Wy s,

ie.,welet N(t,z) =1, F(¢)(t, ) = —¢(t, z)oW; ; and G(o)(t,2) = —1¢°%(t, z) |
Of course, we can also let G(¢) = h°(¢) for any entire function h. In any case,

we obtain local solutions for this type of equations by Theorem 10. We remark

that the following Burgers equation with gradient coupled noise can also be

studied in our framework:

0 0 0
%(t, z) — A¢(t,z) = —o(t,z) 0 —a%(t,.z‘) + %(t, z)o Wy .

Although this equation is not representable by (5), it is not hard to see that
with minor modifications of our approach a local solution can be established.

The Burgers equation with non-linearity in Wick form (and additive noise)
has also been considered in [HLOUZ2, HLOUZ3].

6 Other Applications

In this last section we shall look at ordinary (anticipating) stochastic differential
equations and stochastic Volterra equations within our framework. For earlier
work in this direction, we mention [KP], [L@U1+2], [CLP], [@Z] and [B2). The

equation under consideration reads

t t
X,::Xo-}-/ b(t,s,Xs)ds+/ o(t,s,X,) 6B;. .
0 v 0

Xo, b and o can all be anticipating. The last integral above is the Skorokhod
integral (see e.g. [NZ]), which is a generalization of the It6 integral. It is well-
known that the Skorokhod integral coincides with the Hitsuda—Skorokhod inte-
gral (cf. [HKPS], [LOU2], [B1]) in the case of Skorokhod integrable processes

F; ie.
t t
/F, 6B,:/ F, o Wi ds.
0 o

Remark In case of ordinary equations the variable z € IR? which appears in
“the definition of U, U. etc. is absent. We will express a function f € U which
is constant with respect to « simply by f(t;€) instead of f(t, z;§).
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6.1 Anticipating Stochastic Differential Equations

Consider the stochastic differential equation

t ot
X: = Xo +/ b(s,Xs)ds+/ o(s, Xs)oWyds (22)
0 0

The conditions on Xy, b and o will be imposed below. Take the S—transform of
(22): Put v,(€) := SX:(€), and define the function

F)(;€) = Sb(t, 5™ ) () + EM)Sa(t, ST ur)(¢). (23)

Then we obtain the fixed point problem

RGE Uo(f)-+~j£ F(v)(s:€) ds. (24)

The Uniform Lipschitz Case: Let f € [0,1), p € INo, and assume

(al) The mapping vo : S¢(IR) — € is such that for every &, € S¢(IR) the
function z +— wvo(€ + z7) is entire, and |vg(€)| < Ko exp(Ko |£|2"?).

(bl) f is a function on U, into itself. Moreover, for u, v € U,:

2

F@)GE) - FOEO] < KL+ et €) — vt O,
PG < K1+ €571 + u(t; €)).

Proposition 11  Under conditions (al) and (b1) there exist unique solutions
v €Up,p to problem (24), and X, € Cy([0,T]; (8)~?) to problem (22).

Proof Define the operator I on U , by

mmo=m@+4fwmo@. (25)

Informally speaking, we obtain this operator I' from the one in Section 4.1 if
we set N = 0, p(t,z,s,y) = 1, and drop the Rdfintegration. Also conditions
(A) and (B) lead to (al) and (b1) if there is no dependence on z € R?. Simple
modifications in the proof of Proposition 4 thus show that I' is a contraction
on Ug . The proposition follows by Banach’s fixed point theorem and inverse
S-transformation (Theorem 1). )

The Local Lipschitz Case: Fix p € INg and § > 0. Consider (24) with the
function f given as in (23) on U; ,. We impose the following conditions:
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(a2) The function vy : V,(6) — € is bounded, and for every &,n € Vy(6),
: z v vo(€ + z7) is analytic on V¢ 5.

(b2) f: U — U satisfies f(0) = 0. I u,v € Uy obey |u(t;€)], lv(t;€)] < M for
a constant M, there exists K;(M) such that

|F(u)(t:€) = f(0)(&:€)] < Kylu(t; €) = v(t;€)]-

We follow the arguments in Section 5: Let |vo|eo := sup{|vo(§)] : € € Vp(6)} and
consider the closed ball (for 0 < to < T to be defined below)

By p(to) := {u € Uz p(to); llu = vollte < lvoloo} -

We see that u € By ,(to) implies ||ull;, < 2|voloo. With Ky := K;(2|voloo) the
function f is uniform Lipschitz on By ,(to) with Lipschitz constant K.

Proposition 12  Under conditions (a2), (b2) there exists to > 0 such that
(24) has a unique solution u € By p(to), and equation (22) has a solution Xy in

Co([0,10; (S)™)- '

Proof Let I on U; »(to) be defined by (25). We calculate for u € By,p(to):

Pt &) = (O] < [ 1f(s:)lds < K | Iutsi)lds < 2 tofln

From the arguments in Section 5 and with the choice to := (2K;)~1, we find
that T is a strict contraction on By ,(to). By Banach’s fixed point theorem and
inverse S—transformation the proposition follows. H

Remark The solution X; is unique in the sense that it is the only solution of
~ (22) for which SX;(¢) € By p(to)-

Ezample 1: We start with an application of the uniform Lipschitz case: Define
the functions b and ¢ in (22) to be

b(s, X,) = By, 0 X,, o(s,X,) =By to X,

where a € IV. It is easy to see that the function f in (23) in this case is

T—-s T—s
f(v)(S;£)=(( / E(T)dT)“+E(S)(/O £(r)dr)“‘1> o(s€).

Choose p € IN such that |€]ec < Kplél2p. A straightforward estimation yields

T—3s

T3
|</0 E(T)df)“+€(s)(/o €(r)dr)*l < (TKS +To 1K) [els,
KL+ ELS,),

A
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for a constant K;. We see that f is uniform Lipschitz and of polynomial growth
in the sense of condition (bl). Let 3 be such that o = 1—3'5, e B=22 If
a € {0,1} then 8 < 0. In such a case {(al) and (a2) also hold for g = 0. Hence,
(22) has a unique solution X; € C,([0,7T];(S)™). If @ > 2, then 8 € (0,1), and
the unique solution X; will be an element of Cy([0, T]; (S)™7).

Ezample 2: In [L@U2] and [B2], the following nonlinear stochastic equation has
been considered as a model for population growth in a random medium:

t ' t
Xt:X0+/X30(1—X3)dS+/XSO(I—XS)(SBS.
0 0

The function f will be f(v)(s;€) = (1 +£€(s))v(s;€)(1 — v(s; €)) which is a local
Lipschitz function. If {u(s;€)|, |v(s; &)l < 2|8 Xo|os, We see that

[f(u)(s;€) — F(u)(s:€)] < (1 + Kpd)(1 + 4|8 Xoloo)|u(s; €) — v(s; €)].
Hence, from Proposition 12 we obtain a solution X; € C;([0,%0]; (S)~ 1), where

t;} = 2(14 K,p6)(1+4|8Xo]w). We remark that in [LOU2] and [B2] an explicit
solution is found for the above equation.

_ Ezample 3: Let hq, hy be any two entire functions for which #,(0) = h2(0) = 0.
From Theorem 12 in [KLS] and our results there exists to > 0 such that

t 1
X, = Xo + / RO(X,)ds + / hS(X,) 6B, (26)
0 0

has a solution X; € Cy([0,t0}; (8)!) for any X, where $X; satisfies condition
(a2). With |h|e := sup{|hi(2)|; |2] < |SXo]co} the time tg is given by

to = (2/h oo + 2K p6|Bhlo0) "
- From this expression we see that for the sub—class of equations (26) satisfying

hy = 0 we can obtain global solutions: Choose (in advance) § = (2K, T|hy|o0)~ 1.
Then to = T, i.e. there exists X; € Cy([0,T]; (S)™?) solving ’

t
X, = Xo + / h3(X,) 6B,.
[0}

6.2 Nonlinear Stochastic Volterra Equations

We shall concentrate our discussion on Volterra equations of the form

t
X:=Y; +/ o(t,s, Xs) 6B;. (27)
0
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Informal S-transformation yields the equation
¢ -
W) =yt + | FO)(E 58 ds (28)

where we abbreviated v(t;€) = SXi(£), f(v)(t,5;€) = So(t,s, S 1u(s, ) ()
and y(t;€) := SY;(¢). Choose p € IN such that [{]ec < Kp|€|2,p, and denote
Ar:={(t,s): 0<t<T, 0<s<t).

The uniform Lipschitz case: For 0 < a < 1 and A > 0, we assume:

(a3) y € U., and for a positive constant Ky, t € [0,T] and £ € S¢(R):
A1
[y(t;€)] < Ky exp(tKy |£|21;, )-

(b3) [ : U, — U, is such that f(u) : Ar x S¢(R) — €. For §,n € Sc(R)
the mapping (t,s,z) — f(u)(t,s;€ + zn) is Borel measurable, and z —
f(u)(t, s;€ + 2n) is entire. Also, s — f(u)(t, s;£) is integrable on [0,1] for
0 <t < T. There exists a constant K; such that for u,v € U, and s < t,

A
556~ FOE O] € e ulei6) = a(si€)

A
PSS GLE+ (),

A

A

With the definition
A4+2a—-1

F=—31
the exponential growth bound on y(t; ) in (a3) says

(29)

(6 €)1 < Ky exp(tIy €15,7)-

Observe that 8 € [-1,1) when a € [0,1) and A > 0. We are going to work

with (Up p, || - ||3,p), with the modification of L(€) := C'|£|§;“‘T in (9), and choose

C in (9) to be equal to K, in (a3). Notice that u € Upp for 8 < 0 implies
S—1u € Cy([0,T]; (S)"). If the constant C in L(£) above is chosen to be

C = (2K,K;T(1 - a))™5
where I'(z) is the I'-function, we have the following result:

Proposition 13  Under conditions (a3) and (b3) there ezists a unique solution
u € Up, of (28), with B given as in (29). Also (27) has a unique solution
X: € Co([0,T);(S)") for B <0 and X € Cp([0,T);(S)P). for0 < B < 1.
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Proof Define the mapping I on Ug p by

Pu(t;€) = y(t;€) + / F(u)(t, 5 E)€(s) ds. (30)

By the integrability condition in (b3), T is a well-defined operator on Up p.
The proof of the proposition follows the arguments from Section 4.1, with the
obvious modifications due to the different form of L(£). We here just show that
T is strictly contractive in the || - ||g p—norm with the above choice of C:

Cu(ti6) — To(t6)] < Kplélay / 0050 = 1) 536

IA

K,

l”‘/(t )= lu(s;€) — v(s:€)| ds

IN

Ky 214+ RE) [ (¢ = )= exp(sCIELE) dsllu — vl 5
0

K, K;T(1 - Atl 2
KA = )y |y ol (1 + RE) exp(CIEEP).
(ClelEyi—e

In the last inequality we used Lemma 2.2 in [CLP]. By our choice of 3, we see
that E%B‘(l —a) = A+ 1. Moreover, C1=® = 2K, K;I'(1 — a). We finally obtain
ITu — Tvllgp < 3llu—v|lgp. The last claim follows by Banach’s fixed point
theorem and inverse S—transformation. ]

The local Lipschitz case: Let p be as above, and fix § > 0. Consider (28) with
the following assumptions:

(a4) y € U, and for a positive constant Ky,

ly(t;€)| < Ky, forall (¢,&) € [0,T] x V,(6).

(b4) f : U, — U, is such that f(u) : Ar x S¢(R) — € and f(0) = 0.
For £,n € Sc(R), (t,s,2) — f(u)(t,s;€ + zn) is Borel measurable and
z— f(u)(t, s; £+ 2n) is entire. Also, s — f(u)(2, s;€) is integrable on [0, ¢]
for 0 <t <T. For 0 < o < 1 and w,v € U obeying |u(t; €)|, |v(t;€)] < M
for a constant M, there exists K;(M) such that

K¢ (M)
(t —s)e

We follow the arguments in Section 5. Let |y|oo := sup{ly(t;€)|; (t,€) € [0,T] x
Vp(6)}, and define for 0 < tg < T, the closed ball in U; ,(to):

Bip(to) := {u € Unp(to); llu = yllso < |yloo}-

|f(u)(t,5,8) — F(0)(2,5:€)] < u(s;€) = v(s;€)]-

2




Obviously u € Ui p(to) implies ||ul|;, < 2|yl Let Ky := K;¢(2lyloo)- Then f is
uniform Lipschitz on Bj ,(fo) in the sense that for u,v € Bi p(to) one has

F)(658) ~ FOE 5] < s (s ) = o0

Proposition 14  Under conditions (a4), (b4) there existsto > 0 such that (28)
has a unique solution u € By p(to) and (27) has a solution X; € Cy([0,T]; ($)"H

Proof Introduce the operator T' on Ui p(to) defined by (30). Then

t
mmm»wwa|s.mKwLa—@*mwaws
9K ; Ky
1l -«

IA

t
VK1 K Blyloo / (t—s)~*ds <
0

to = l1-a =
° 7 \2K;K,6

[ is a strict contraction on Bj p(to). When & decreases then also K decreases.
Thus, choosing 6 small enough we obtain ¢o = 7. Theorem 1 gives the second
statement. : ]

tl—a|y|oo.

With the choice

Ezample 1: Let SY, satisfy (a3) and choose ¢ in (27) to be

oft, s, X,) = _Bs o X,,
(t—s)*
for 0 < a < 1. Applying the S-transform immediately gives
Js &(s")ds’
f()(t,58) = —O(tT;)a—v(S;é);

f obviously satisfies (b3) with A = 1. Consequently there exists a unique solu-
tion X; € Cp([0,71); (S)~*) of (27).
Ezample 2: If the function o is given by

o(t,s, Xs) = (t—8)" "X,

we find that f(v)(t,s;€) = (t — 5)~v(s; €) satisfies (b3) with A = 0. In view of
(29) we will have a unique solution X; € Co([0,T);(S)") when 0 < o < 1, and
we will have X; € Co([0,T]; (S)~(?*~1)) when § < a < 1.

Ezample 3: Let SY; satisfy (a4) and h be an entire function with h(0) = 0. Put

_ h(X,)
T (t—s)>’

a(t,s, X,):
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(B1]

[B2]

[Ch]

[CLP)

(CP]

[DP]

(Fr]

[GHOUZ)

[HOUZ]

[HLQUZ1]

for 0 < @ < 1. Then

Fu)(t, 5;6) = h(—(t“—f%fﬁ

One verifies that f obeys (b4) with K;(M) :=sup{|h'(2)|: |2| < M}. We thus
obtain a solution X; € Cy([0,T],(S)™?) of (26). ~
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