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Idealized skins constituted by finitely ma‘.ny material particles

E. Binz l
Introduction

In this article we present a link between the description of an idealized skin as a continuum
on one hand and as a collection of finitely many interacting] material particles on the other.
In doing so, we restrict us, for simplicity, to the followiné‘ set up: We take into account
the quality of the medium in as far only, as it charactel‘jizes the internal force density
responding an infinitesimal distortion. This is to say, we classify the medium by the
virtual work only (cf.[He],[E,S]). (It is not hard to overcome this restriction).

Let P be a given finite collection of points and jp : P| — IR™ be an injective map.
§(P) visualizes the configuration of material points in JR™ . On the other hand let M
with &M = (D be a given connected, smooth, compact mz‘lmifold, the idealized skin, and
j: M — IR™ be a smooth embedding. j(M) visualizes the continuum’in IR". We thus
call jp and j configurations of the discrete medium respe'gtively of the continuum. The
following observation provides the geometric grounds of the link mentioned above : Let
P C M and j, be a fixed configuration. To Op, a small oﬂ;en collection of configurations
of the discrete medium, there is a collection O of configurations of the continuum which
constitutes of a collection of slices each diffeomorphic to O\,P' The slicing is such that the
tangent space F><(M,R™) at each j € O is generated (ind?pendently of j) by a collection
of eigenvectors in C=(M,IR"™) of A(j,), where A(jo) is the Laplacian of the pullback
metric m(jo) determined by the fixed configuration j, (IR™ is equipped with a fixed scalar
product). The restriction map 7o, from F<(M,IR") to the collection F(P,R"™) of all
IR ™-valued maps of P is an isomorphism and determines a‘natural projection, called 7,
too, from each slice to Op. Here is the physical ground of the mentioned link: Any virtual
work Ap on Op , a one-form, is pulled back to each slice W(j), passing through j € O,
say. The pull back r?, Ap characterizes the the discrete medium on the continuum.

The slicing of O together with the pullback mechanism provides the above mentioned link
between the two types of descriptions. The chosen slicing istbased on the observation that
the (smooth) internal force density &(j) associated with a virtual work A(j) of the conti-

nuum. is of the form ®(j) = A(jo)H(j) for some H(j) € C'°°(‘M, IR™), at any configuration

JjEo. |

The natural Ly-structure on F(P,IR™) and the one on F*°(M,IR™) determined by m(jo)
are related in a simple fashion. We use this relation to relate a Hodge-type of splitting
of Ap on Op with the slice wise formed analogon of its pu_l‘lback A:=r;,Ap on O. The
exact parts represent the differentials of the free energies Fip on Op respectively F' on O

which are slice wise related by F = Fpore.

The notion of free energy is associated with a particular observable derived from a chosen
density of Fp. We study various aspects of Ap, A, Fp and F|together with their interplay.
In particular we illustrate these notions in case of the nearestineighbour interaction (n.n.i.)
scheme. Finally we introduce, preliminarily, the notion of :%L well fitting configuration jg
expressing that jo(M) fits j%(P) well, here jo|P = jp. We work with JR™ and a manifold
M of this generality to make dimensional factors apparent. l The formalism can easily be
extended to the appropriate Sobolev spaces.

Finally let us point out that the concepts introduced can f‘)e generalized to fit into the
theories presented by the professors Elzanowski, Epstein and de Leon.




A The general description of deformable media

We base our description of continua on the notion of the force and traction densities caused
by a smooth infinitesimal distortion of a material body. \

Al Configuration space !

Let M be a smooth, compact, connected and oriented manifold possibly with boundary
of dim M > 2, embedable in IR™. A configuration j is a smooth embedding of M into
IR™. The collection E(M,IR™) of all configurations is a Fréchet manifold if endowed
with the C®-topology (cf. [Bi,Fi,Sn], [Hi], [BiFi,1], [Fr,Kr]). The collection C>°(M,R")
of all smooth IR"-valued maps of M (a Fréchet space under the C*-topology) contains
E(M,IR") as an open set, is hence the tangent space at each embedding. An infinitesimal
distortion is, therefore, a function in C*°(M,R").

A2 The virtual work, deformable media and skir}s

Let O C E(M,IR™) be an open set. By the virtual work A, we mean a special sort
(cf. (A2.2) below) of a smooth one-form

A:0xC®(M,R") —>B‘

admitting a force density ® and a traction density ¢ (cf. [M,H]) yielding the representation
AGE) = [ < @G> )+ [ <ol bow > poni)  (A2)

{
for all h € C=(M,IR™). Here both ®(j) and ¢(j) are smooth IR"-valued maps of M and
OM, respectively, depending smoothly on j € O. The 1ntegrands are given by
< ®(5)(q), h(q) > and < ¢(5)(q),h(q) > for all ¢ € M and g € M, respectively. <,> is
a fixed scalar product on JR™ for which the natural basis i 1s orthonormal (for simplicity).
p(4) and paon(j) on M and OM respectively, are the volume forms of the pull back m(j)
of <,> by j. We require from A to satisfy

[ 2w+ [ et =0 lw eo. (A22)
M oM ;
Thus there is a smooth map H : O — C®(M,IR"™) obeying

AGH(G) =2() and  dH())(Noum) =le(j)  VJj€O. (A2.3)

Here A(j) is the Laplacian of m(j) (cf. [Ma]), and Npu is the positive oriented unit
normal of &M in M. Clearly H(j) is determined up to 2"1, constant only, for all j € O.

Hence (A2.1) turns into |
AR = [ < AGHGLE> )+ [ < HWNow)oh > o). (429

Specifying the virtual work via ®(j) and ¢(j) for any j € P is thus equivalent to specify
H: O — C®(M,IR™). In these notes we characterize the|deformable medium only in as
far as ® and ¢ are determined (a rather simplified point of view, in deed). Consequently
we specify here the deformable medium by the map H, which hence is called a constitutive

map (cf. [Bil] to [Bi6] and [Bi,Fi2]). |
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l
If a medium would be specified by a first Piola-Kirchhoff ‘stress tensor (cf. [M,H],[L,L])

|

A(GYH(F) = div;a and a(Noum) =] dH(j)(Nan) (A2.5)

a: TM — R"

then H is given by the Neumann boundary problem

where div; is the divergence operator determined by the Riiemannian metric m(j). Hence
a=dHG) +2() VYi€O (426)

where v(j) : TM — IR™ is a smooth one-form dependingjsmoothly on j € O, regardless
as to whether o depends on j or not (cf. [Bi1,2,3]). Thus v(j) encodes qualities of the
material which neither influence the internal force density‘divja nor the traction density
a(MNay). Finally let us remark that (A2.3) does not imply, in general, that A has to be
exact on O, as we will see by an example in section D2.

An idealized skin is meant to be a manifold M as in Al with 9M = @. On a skin (A2.4)
hence reduces to }

A = [ <2G)h>p0)= [ <AGHDAZuG) (A2
|

AGY) = [ 1) dh ) (423)

where the right hand side is the Dirichlet integral (cf. [Bi2];[Bi,Fi2]). For a later purpose,
we will rewrite (A2.7) with respect to a fixed configurationij, € O by solving

for all j € O and any h € C*(M,IR"™). Clearly

73

det £(j) - AGYH() = AGo)A()
for H with H(j,) = 0. Here f is a smooth strong bundle endomorphisms of T'M given by
< djv, djw >= m(j)(v,w) = m(jo)(f*(H)(@)v, w) (A2.9)

for all v,w € T,M and all ¢ € M. We thus have for all j € O and any h € C°(M,R™)
the equation |

AGYW) = [ < Ao > nlio) (A210)

[
By using [A] and [W] these notions can be extended to the scenario presented by the

Professors Elzanowski, Epstein and de Leon. }

1

|

A3 Structural capillarity
Let A: O C E(M,IR") — IR be the area functional of a s‘kin given by
AG)= [ wG)  Yieo. (A3.1)
A particular sort of virtual work A, the virtual work causedlby distorting the area, is
A()(h) = a(j) - D A(j)(h) VjeO and Vh E‘ C®(M,R"). (A3.2)

‘,
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Here @ : O — IR is a smooth map, called the structural capillarity (cf. [Bi3]); DD
denotes the Fréchet derivative on O (cf. [Bi,Sn,Fi]). It is not hard to see, that any

H:0 — C>°(M,IR") splits into ‘

M) =a(j)-j+Hi(j) Vi€O (A3.3)
for some map a, where H,(j) is not sensitive to area defﬁ)rmation (cf. [Bi2] to [Bi3)); i.e

A(j)j is Ly-orthogonal to H;(j) for all j € O. Let us point out that A(j);j is the mean
curvature tensor (cf. [L,M],[Bi3]).

B General description of discrete media

In this section we are given a finite set P of points, thought of as material points. We
characterize the discrete medium via internal forces. The|analogy to the previous section
is apparent in the case of nearest neighbour interaction (n.n.i.).

Bl Configuration space, discrete media

The discrete configuration space is E(P,IR™), the collectlon of all injective maps from P
to JR™. Again we restrict us to some open set Op C E(P, | R ™). Clearly Op is open in the
finite d1mens1onal space F(P,IR™) of all maps from P to R™.

An internal force ®p(jp) at a configuration jp € Op, rems{mng distortions in F(P,IR™), is

supposed to be a smooth map ®p : Op — F(P,IR") satisfying

> ®p(jp)=0 Vi€ O;p, (B1.1)

qeEP i

the analogon of (A2.2). The virtual work Ap at jp caused by any distortion hp € F(P,IR™)
is given by |
p(gp)(hp) = Z < ®p(jr)(q), hi(g) > .
qgEM

An equilibrium configuration j% € Op has to satisfy ®p(j3) = 0.

B2 Nearest neighbour interaction (n.n.i.) \

We think of P as the collection of all null-simplices of a finite, one-dimensional and oriented
simplicial complex L. The collection of all one-simplices is denoted by L;. Two particles
at ¢ and ¢, say, interact, iff they bound the same one-s‘_implex oc € L. Any ¢; € P
interacting with ¢ is called a nearest neighbour (n.n.) of ¢. By k(g) we mean the total
number of n.n. of any ¢ € P. ‘

On the linear spaces F(P,IR"™) and F*(L,IR"™) of all zero a‘lnd one-cochains of L there are

the natural scalar products Gp and Gy, given respectively’ by

p(hp kp) = Y < holg),kp(q) >  Vhe,kp € F(P,R") (B2.1)
q€EP
and |
ng Cl,CQ Z < C1 02(0') VCl,‘_CQ € .Tl(L,Rn) (B22)

o€L1
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The coboundary operator 8* : F(P,R™) — F*(L,R™) l‘ias an adjoint
8 FYL,R™) — F(P,IR"™) defined by |
G (8'hp,c) = Gp(hp,6'c)  Yhp € F(P,R") Vce F(L,R").
We therefore have the Hodge Laplacian |
Ap =80t
on F(P,IR™), a Laplacian of topological nature (cf. [B],[E],[Ch,St]).

B3 Internal forces in n.n.i.

Any internal force ®p : Op — F(P,IR™) caused by n.n.i. | admits a map
Hp:Op — F(P,IR™), called a constitutive map too, satisfying

ATHP(]p) = q)P(jp) V]p S ‘OP (B31)
We thus characterize this kind of a medium by Hp. Since
k(q)
ArHp(jp)(q) = k(q) - Hp(ip)( ZHP JP @) VgqeP (B3.2)

we immediately observe that Hp(jp)(q)—Hp(J p)(qi) is the interaction force off equilibrium
between the material points ¢ and ¢;, which is alternatively described by

He(ip)(q) — He(ip) (@) = 0" Hp(jp)(0:) | Vi=1,..,k(g) (B3.3)
with £ accordingly as to whether ¢ = o or ¢ = o; . :

These forces may be determined by a potential which is proportlonal to the square of the
length of 85p(c). Hence ®p(j p) is determined by the potential

Ve(jp) == 5 G, (¥ d'jp,0'jp) Vu'P € Op; (B3.4)

¥(o) € IR is called the spring constant along 0jp(c) for all o € L,. In this case Ap = ID Vp
where ID denotes the Fréchet derivative on Op. |

C The relation.between the two descriptions ‘

In order to link the descriptions of media presented in the 'sections A and B, we assume
here that P C M and in case of n.n.i. that also L C M. Again M = (. We fix j, € O.

Cl1 The geometric setting ‘
Given some internal force ®p» we consider the virtual work Ap associated with it. What
would seem to be the simplest way to link the descriptions in section B1 with the ones in
A2 is to consider r*Ap where r : C*(M,R") — F(P,IR"™) denotes the restriction map
(sending any h into h|P) and to look for a G(jo)-orthogonal complement K to ker r*. The
L,-metric G(jo) on E(M,IR™) is given by !

G (o) (h, k) = /M <hE>p)  Yhk€O™(MR") (CL.1)

However, this kind of a complement does not exist (since otherwise the point-evaluation
(6-functions) would admit a density (cf. [Bi5])). What we have to drop is the orthogonality

condition.
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Our choice of a complement is based on the observation (A2.10) involving A(jg). In
principal H(j) can be replaced by just an eigenvector of A(j;). Therefore we proceed
as follows (cf. [Bi5],[Bi6]): We use the fixed (reference) configuration jo. (It will be an
equilibrium configuration later). We order the eigenvectors & € C*(M,IR™) of A(jo)
with non-vanishing eigenvalues A; for ¢ = 1,... such that[ A1 < Ag... (we use the natural
basis in IR™). Out of {r(&;)|i =1,...} C F(P,IR") we pick a maximal system of linearity
independent vectors 7(&;,),...,7(€;,), say, such that ZZ:l‘.)\is is the smallest value for all
possible choices. The b-dimensional span of this system is called 75°(M,IR™). Set e, := &,
forall s =1,...,b and let F*(M,R") := F*(M,IR"™) ®R". Clearly r|F>(M,IR™) is an
isomorphism onto F(P,IR™). This isomorphism is denoted by 7.

The collection of the eigenvectors of A(jg) not in F>°(M, i%”) generates a complement to
Fo(M,R") in C*(M,IR™), not identical to ker 7. The complement to ker 7 we looked
for is F°(M,R™). Let j% := r(jo) be fixed. We let O :=r7'0p C E(M,IR™) for Op
small enough. Any j + h € O with j € r~(j%) and h € F>(M,IR") is projected to
7% + roo(h). This projection is called ro, too. ]
\

Hence .
W=(j) == 0n ({j} + F=(M,R")) vje 7 (jp) (CL.2)
satisfies 7o (W™ (j)) = Op. By construction '
o= |J w=@). | (C1.3)
FE€Er~1(5%)

\
This is the slicing of O needed in the sequel, i.e. O is as in (C1.3) from now on. (C1.2)
defines a flat connection on the vector bundle O x C°(M,IR").

C2 The link

‘
Now, suppose there is a virtual work Ap given on Op. Let O C E(M,IR™) be as in (C1.3).
We form the pull back \

A:=rl Ap f (C2.1)
of Ap to O. The one-form A on O characterizes the discrete medium (given by Ap) on
the continuum M. Since the force ®p of Ap satisfies (B1.1) the one-form A admits a force
density @ satisfying (A2.2) with respect to G(jo)- Therefore Ap defines a constitutive
map H: O — F*(M,IR") for A, yielding ‘

$(j) = AG)H(G)  Vi€O
(cf. (A2.10) where jo € O is fixed). Thus H exists on 0O even if we have no n.n.i. If,
however, the discrete medium is one of n.n.i. then Hp exis“cs on Op. As shown in F1(c),
roo(H(j)) # Hp(ree(j)) for all j € O, in general. For each j € O the coefficients in
H(j) = 0., k*(j) - e; are called the characteristic coefficients of the medium.

D The free energy

|
Here we split Ap on Op of a skin M (to be specified below) via a Neumann boundary
problem into exact and non-exact parts and show that the exact part can be identified
as the differential of the free energy associated with a specific observable. As far as the
continuum description is concerned we only work on W*(jg), where jo € O is fixed.

l
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D1 Geometric preliminaries
As it is easily seen the two metrics Gp (B2.1) and G(jo) inl‘ (C1.1) are related by
Gp(pp - Too(h),To (k) = G(jo)(h, k) Vh k€ FZ(M,R") (D1.1)

where pp is an area density. On the other hand there is a py : M — IR such that
T;ogP(hvk) = gP(TOO(h)’TOO(k)) = /M pm < h k> M(]b) = g(jo)(pM “hy k) (D1'2)

for all h,k € F°(M,IR™). In general p%'u - h and p}_u -k are not in F*(M,IR"). (D1.2)
shows that there is a Riemannian metric, g, namely pf}"_:ﬁ" -m(j) for which its L,-metric
G(g) on F~(M,IR™) agrees with 72,Gp on W*(jo). However, there is no j € E(M,IR")
in general such that g = m(j) unless the codimension of M in IR™ is high enough (cf.

[Gr,R0]).

D2 The free energy

Let (P, IR™) be oriented and Op be a compact neighbourhbod of 7% := jo|P with smooth
boundary 80p. Given Ap on Op we use the Neumann decqmposition to write

APZDFP+\PP (D2.1)

with div Ap = A Fpﬁ and Ap(no,) = ID Fp(ng,) for some smooth positive map
Fp: Op — IR, determined up to a constant. Here A is the Laplacian of Gp on F(P,IR™)
and ng, the positively orieinted unit normal of d0p in Op.
Choosing a density Fp of Fp, ie. 3 cp Fr(jp)(q) = F(jp) for all jp € Op, each
B e C®(0p,IR*) defines
_ 1 F
Ip=Fp—=-In= on Op |(B#0). (D2.2)
g Fr
Defining the Gibbs state pp(jp) := %ﬁ% we let Sp(jp) == > eep Pe(ir)(@)in pp(ip)(9)
and observe that ‘

FP = I_P - ﬂ_l . SP and Z e—ﬁIP(‘I) = e-ﬁFP: on OP (D23)

q€P

where Ip(jp) := S ,ep PP(iP)(q) - Ip(jp)(g). Thus Fp is the free energy associated with
the observable Ip (cf. [B,St.]). Here ¥p # S - ID (3 unless ¥ p admits an integrating factor
in which case Fp can bechosen such that ¥p = S - ID § holds indeed. Clearly we can use
r* Gp in (D1.2) to determine F on W™ (j,) yielding F' = Fp O Too-

Next assume a n.n.i. to be given. For the eigenvector et of Ar with non-vanishing
eigenvalue A we set A% := Ap|R - e} for i = 1,...,b (where, however, €% # Too(€;) with
e; as in C1). Due to (B3.1) this implies A% = A - k% - Gp(€b, ...) with k5 € C(Op, IR),
called the i-th characteristic coefficient of the discrete n.n.i. 'medium. Clearly A%, is not
exact in general! However, it is, provided that ID x%(j)(e) = 0 for all s # <. Setting

.'_—._1_nf'i(jP) i ' an ;
@:(jp) == Fp(jr) 30r) ! Folin) Vie{1,..,b} d VjpeOp (D24)




E. Binz

with f; being the free energy of A%, then

— 1 ‘
Fp=—Z.Intre®? on  Op (D2.5)

g
with Q(eb) := % - €% for 4 =1,...,b. The heat kernel of @ given by

Ep(ip)(BUr) g, @) = > ePUr)eilir) < ei(q),ep(q) >  Vjp€Op Vg, g €P

q,9'€P |

for B(jp) # 0 (cf. C1) contains all the information on the statistics introduced. Moreover

ﬁ (JP)

7o Ze —lr)eiie) = h — B(jp) - tr Q + =L - tr Q(jp) —

=1
showing that %-tr Q™ = limg—g [tm, Where ., is the m-th order momentum of the Gibbs

state e;:o on {1, ...,b} with parameters in Op. Clearly

1< |
tr Q = Bz:: FP on‘ Op.

Finally, let us restrict the concept of an equilibrium configuration jp: We require both to
hold ®p(jp) = 0 and Gradg, Fp(jp) = 0, with Gradg, being the gradient formed with
respect to Gp. An equilibrium configuration j € O is defined accordingly by yusing G(jg).

E Linearization

In this section we deal with skins as previously. In addition we assume that O is as in
D2 and that j, € O as well as j3 := jo|P are equilibrium configurations. The purpose is
here to link the modes of the Hessian at j% of the free energy Fp with the characteristic
coefficients in the setting of n.n.i..

E1 Linearized forces
Given Ap on Op the force ®p splits into
®p(j% + hp) = D ®p(j2)(hp) + higher order terms Vhp € Op — 75 (E1.1)

The respective force ®z, of ID Fp (a gradient with respect to Gp) and the force @y, of
U p split accordingly (cf. [Bi5]). In case of n.n.i, the constltutlve map Hp, associated

with &z, writes as
Hp, (j% + hp) = D Hp, (jp)(hp) + higher order terms Vhp € Op — j». (E1.2)
with the choice of Hz,(j%) = 0. The linearization of @z, yields
_ = 1 = 0N/
Fp(jp + hp) = Fp(jp) + 3 D*Fp(jp)(he, hp) (EL.3)

up to higher order terms. Let the modes of ID ?Fp and their eigenvectors be denoted by
v; and u’ respectively, i = 1,...,b.
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E2 The modes of ID*Fp(j,):
Here we assume a n.n.i. to be given. Since Hp, (jp) = Loy K%, (jp) - €p for all jp € O
D*Fp(j2)(hp,hp) = Y Np - D k5, (jp)(hp) - Gr(ep, hp) (E2.1)
i=1

for all hp € F(P,IR™) implying
b ‘ |
vp =3 Ap - DK, (7p)(up) - Gr(ep, up)- (E2.2)
Thus

v; = Xp - D k%, (73)(ep), (E2.3)
provided all % decouple near jp, i.e. ID k%, (j%)(e3) = 6i5. Therefore (E2.3) yields

DHg,(53)(hp) = Z ¥ -5 - Gpleb, hp) + hlgher order terms. (E2.4)

By (E2.2) the linear maps ID k%_(j3) can be expressed in terms of v, A and Gp(eb, up)
with 4,7 = 1,..., b, i.e. the modes determine Hz, on Op up to higher order terms.

Instead of working on Op we can work on W (Jo) using r* Gp in (D1.2) and get the same
type of formulas, since Fip o ro, = F. In particular Hp = 25:1 Kf - €; implies

Z (o) (ur) - G(Jo)(om * €15 ur) (E2.5)

with v, and w, = r7!(u}) for 7 = 1,...,b being the eigénvalues and eigenvectors of
ID*F(j,) and py is the map introduced in (D1.2). If hence all k% decouple near j, then

v, =X - D &F(j0)(e,) - G(Go)pum - €ryer) r=1,..,b (E2.6)

saying that the modes are proportional to the eigenvalues of A(jo) provided py = 1; the
proportionality factors are the first order characteristic coefficients in Hg,.

Let Ap be linear, i.e. ®p(jp+hp) = ID &p(j%)(hp) for all hp € Op ~jp. The free energy
F on W®*(j,) satisfies then

A()(j) = DF()() = a(j) - D A(G)(G) Vj€O (E2.7)
with a as in (A3.2). Since a(jo) = 0 and ID F(j,) = 0 (jo is an equilibrium configuration!)

DZF(jo)(h,jo) = Da(jo)(h) (]0)‘(30) (E2.8)

showing
v, 10 =dim M - A(Go) - D a(jo)(us)  Vi=1,..,b (E2.9)
where jo = 30 - u;. Hence a on W*(jo) is determined up to first order by the modes v;;

The reader may link (D2.5) and (E2.9).
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F Preliminary definition of a well fitting conﬁgura‘tion
Given a skin M, let A := ri, Ap on W*(jo) for a given Ap on Op with Ap(j%) = 0
and ID Fp(j%) = 0. Here j,|P = j% again. We call, preliminary, j, to be a well fitting
configuration (expressing that jo(M) fits j%(P) well) if

pp =1

(cf. (D1.1). If pp = 1 then the Neumann decompositions of Ap and A = ri, Ap formed
with respect to Gp and G(jy) yield FF = Fp o1y, (cf. sec. D2), the reason of the above
definition of well fitting.

F1 Some consequences for well fitting configurations in case of n.n.i.

Let jo be a well fitting configuration for A = r Ap on W>(j,). We assume that Ap is
caused by n.n.i.. At first we remark that due to (C2.1)

AGGo)H() = ArHe(re(f)) Vi€ W (o). (FL.1)
The simple consequences we have in mind here are the following ones:
a) By (E2.7) the structural capillarity a on W>(j,) of A ='r% ID Vp satisfies for all j € O

N 1 . oAl "al -
(cf. (B3.4)) with jp := j|P.

b) The derivative of the characteristic coefficient of Hp and Hp, at jo respectively j% (cf.
E2) are linked by (D2.1) and its analogon on W*(j,). Hence (E2.6) and (E2.2) yield

v, = A - DR (jo)(er) = D Ap - D K, (72) (oo (€:)) G (€ps Too (€5)): (F1.2)

=1
There is an analogous equation if all k% decouple near j.’

¢) Finally let us compare A(jo)h and Arhp with hp = h|P for h € Fo(M,R?) for
dim M = 2 in order to understand (F1.1). One easily verifies from Gausse’s theorem

1

— lim —
|Bql—0 |B,| JaB,

A(jo)h(q) = dh(Ns,)iB, (F1.3)

where |B,| is the volume of a geodesic ball B, centered about ¢ € M and Np, is the
oriented unit normal of dB,. Since

—dh(g:)(Ns,) - |loil = h(q¢) — h(g:) + higher order terms

(cf. B2) for each nearest neighbour ¢; (assumed to be on 9B,) of g, equation (F1.3) yields

A(jo)h(q) = k—(ﬁ - Arhp(q)

as an approximation for symmetrically distributed n.n.. Here r = |o;| for i = 1,..., k(q).
Hence H(j)(q) = ﬁﬁ - Hp(re(5)(q)) for all j € W*(j,) holds approximately.
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