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Idealized skins constituted by finitely many material particles
I

E. Binz

Introduetion

In this article we present a link between the description of in idealized skin as a continuum
on one hand and as a collection of finitely many interactingl material particles on the other.
In doing so, we restrict us, for simplicity, to the followini set up: We take into account
the quality of the medium in as far only, as it characte*izes the internal force density
responding an infinitesimal distortion. This is to say, we classify the medium by the
virtual work only (cf. [He],[E,S]). (It is not hard to overc04e this restriction).

I

Let P be a given finite collection of points and jp : PI -t JR n be an injective map.
j (P) visualizes the configuration of material points in JRn. On the other hand let M
with ßM = (j) be a given connected, smooth, compact manifold, the idealized skin, and
j :M -t JR n be a smooth embedding. j (M) visualizes the continuum-"in JR n. We thus
call jp and j configurations of the discrete medium respettively of the continuum. The

I
following observation provides the geometric grounds of the link mentioned above : Let
P c M and jo be a fixed configuration. To Op, a small o~en collection of configurations
of the discrete medium, there is a collection 0 of configur~tions of the continuum which
constitutes of a collection of slices each diffeomorphic to O~. The slicing is such that the
tangent space FOO(M, JR n) at each j E 0 is generated (independently of j) by a collection
of eigenvectors in COO(M,JRn) of .6.(jo), where .6.(jo) is the Laplacian of the pullback
metric m(jo) determined by the fixed configuration jo (JRn 'is equipped with a fixed scalar
product). The restriction map roo from Foo(M,JRn) to the collection F(p,JRn) of all
JRn-valued maps of Pis an isomorphism and determines al natural projection, called roo,
too, from each slice to Op. Here is the physical ground of tlie mentioned link: Any virtual

1

work Ap on Op , a one-form, is pulled back to each slice W(j), passing through j E 0,
1

say. The pull back r:CAp characterizes the the discrete medlium on the continuum.
The slicing of 0 together with the pullback mechanism prov:ides the above mentioned link
between the two types of descriptions. The chosen slicing is !based on the observation that
the (smooth) internal force density cf?(j) associated with a virtual work A(j) of the conti-

A AAl

nuumis of the form <PU) = .6.(jo)1i(j) for some 1i(j) E COO(M, JR n), at any configuration
jE O. I
The natural L2-structure on F(P,JRn) and the one on Foo(M,JRn) determined by m(jo)
are related in a simple fashion. We use this relation to re~,ate a Hodge-type of splitting
of Ap on Op with the slice wise formed analogon of its pullback A := r:CAp on O. The

-I -
exact parts represent the differentials of the free energies Fip on 0p respectively F on 0
which are slice wise related by P = Pp 0 rOO' '

The not ion of free energy is associated with a particular obsbrvable derived from a chosen
density of Pp. We study various aspects of Ap, A, Pp and PI together with their interplay.
In particular we illustrate these not ions in case of the nearestl neighbour interaction (n.n.i.)
scheme. Finally we introduce, preliminarily, the notion of *' weIl fitting configuration jo
expressing that jo(M) fits j~(P) weIl, here jolP = j~. We work with JRn and a manifold
M of this generality to make dimensional factors apparent.\ The formalism can easily be
extended to the appropriate Sobolev spaces.
Finally let us point out that the concepts introduced can be generalized to fit into the

I
theories presented by the professors Elzanowski, Epstein and de Leon.

I

I



A2

E. Binz

A The general description of deformable media

We base our description of continua on the not ion of the fdrce and traction densities caused
by a smooth infinitesimal distortion of a material body. I

Al Configuration space

Let M be a smooth, compact, connected and oriented nianifold possibly with boundary
of dim M ~ 2, embedable in IRn. A configuration j is ~ smooth embedding of M into
IR n. The collection E(M, IR n) of all configurations is a Fnkhet manifold if endowed

I
with the Coo-topology (cf. [Bi,Fi,Sn], [Hi], [Bi,Fi,l], [Fr,M;r]). The collection Coo(M,IRn)
of all smooth IRn-valued maps of M (a Fnkhet space under the Coo-topology) contains
E(M, IR n) as an open set, is hence the tangent space at each embedding. An infinitesimal
distortion is, therefore, a function in Coo(M, IR n). \

The virtual work, deformable media and skiJs
I

Let 0 C E(M,IRn) be an open set. By the virtual work A, we mean a special sort
(cf. (A2.2) below) of a smooth one-form I

A: 0 X coo(M,IRn) ---+ IR
. I

admitting a force density <I>and a traction density cp (cf. [M,H]) yielding the representation

A(j)(h) = r < <I>(j),h > /L(j) + r < CPq), hlaM > /LaM(j) (A2.l)1M 1aM,
I

for all h E coo (M, IR n). Here both <I>(j)and cp(j) are smooth IR n-valued maps of M and
3M, respectively, depending smoothly on j E O. The integrands are given by
< <I>(j)(q), h(q) > and < cp(j)(q), h(q) > for all q E Mandl q E 3M, respectively. <, > is
a fixed scalar product on IRn for which the natural basis!.s orthonormal (for simplicity).
/L(j) and /LaM(j) on M and 3M respectively, are the volu~e forms of the pull back m(j)
of <, > by j. We require from A to satisfy

r <I>(j)/L(j) + r cp(j)/L(j) = 0 I \j j E O.1M 1aM
Thus there is a smooth map 1i: 0 ---+ Coo(M,IRn) obeying

b..(j)1i(j) = <I>(j) and d1i(j) (NaM ) =Icp(j) \j j E O.

(A2.2)

(A2.3)

Here b..(j) is the Laplacian of m(j) (cf. [Ma]), and NaJJI is the positive oriented unit
normal of 3M in M. Clearly 1i(j) is determined up to ~ constant only, for all j E O.
Hence (A2.l) turns into

A(j)(h) = r < b..(j)1i(j), h > /L(j) + r < d1i(AJaM)' h > /LaM(j). (A2.4)1M 1aM'
Specifying the virtual work via <I>(j)and cp(j) for any j E 0 is thus equivalent to specify
1i : 0 ---+ Coo(M, IR n). In these notes we characterize theideformable medium only in as
far as <I>and cp are determined (a rat her simplified point of view, in deed). Consequently
we specify here the deformable medium by the map 1i,whidh hence is called a constitutive
map (cf. [Bil] to [Bi6] and [Bi,Fi2]). I
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If a medium would be specified by a first Piola-Kirchhoff stress tensor (cf. [M,H],[L,LJ)
I

a: TM ----+ IRn

then 'H is given by the Neumann boundary problem

!:l(j)'H(j) = divja and a(NaM) J d'H(j) (NaM ) (A2.5)

where divj is the divergence operator determined by the Rliemannian metric m(j). Hence

a = d'H(j) + ry(j) VjEOJ
!

(A2.6)

where ry(j) : TM ----+ IR n is a smooth one-form dependingl smoothly on j E 0, regardless
as to whether a depends on j or not (cf. [Bil,2,3J). Thu~ ry(j) encodes qualities of the
material which neither infiuence the internal force density Idivja nor the traction density
a(NaM). Finally let us remark that (A2.3) does not imply, in general, that A has to be
exact on 0, as we will see by an example in seetion D2. I
An idealized skin is meant to be a manifold M as in Al with ßM =~. On a skin (A2.4)
hence red uces to I

A(j)(h) = r < <P(j), h > /-L(j) = r < !:l(j)'H(j), h > /-L(j) (A2.7)1M 1M I
for all jE 0 and any hE CC'O(M,IRn). Clearly

I
A(j)(h) = r d'H(j). dh /-L(j)

1M !
(A2.8)

where the right hand side is the Dirichlet integral (cf. [Bi2j;[Bi,Fi2J). For a later purpose,
we will rewrite (A2.7) with respect to a fixed configurationljo E 0 by solving

dei f(j) . !:l(j)'H(j) = !:l(jo)Hej)

for H with H(jo) = O. Here f is a smooth strong bundle en~omorphisms of TM given by

< djv, djw >= m(j)(v, w) = m(jo)(f2(j)(q)v, w)
I

(A2.9)

for all v, w E TqM and all q E M. We thus have for all j E 0 and any h E COO(M, IR n)
the equation i

A(j)(h) = r < !:l(jo)H(j), h > /-L(jo). (A2.10)
1M i

By using [A] and [W] these not ions can be extended to the scenario presented by the
Professors Elzanowski, Epstein and de Leon. I

A3 Struetural capillarity
I

Let A: 0 c E(M, IR n) ----+ IR be the area functional of a skin given by
I

A(j) = J /-L(j) Vj E O. i (A3.1)
M I

A particular sort of virtual work A, the virtual work caused: by distorting the area, is

A(j)(h) := a(j) . ID A(j)(h) Vj E 0 and V h ~ COO(M, IR n). (A3.2)
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Here a : 0 ---+ IR is a smooth map, called the strudural capillarity (cf. [Bi3]); JI)
denotes the Frechet derivative on 0 (cf. [Bi,Sn,FiJ). it is not hard to see, that any
1i : 0 ---+ COO(M, IR n) splits into i

I

1i(j) = a(j) . j + 1i1(j) \:j j: E 0 (A3.3)

for some map a, where 1i1(j) is not sensitive to area defprmation (cf. [Bi2] to [Bi3J); Le
b.(j)j is L2-orthogonal to 1i1(j) for all j E O. Let us point out that b.(j)j is the mean
curvature tensor (cf. [L,M],[Bi3J).

B General description of discrete media

In this section we are given a finite set P of points, thought of as material points. We
characterize the discrete medium via internal forces. Thelanalogy to the previous section
is apparent in the case of nearest neighbour interaction (ri.n.i.).

BI Configuration space, discrete media

The discrete configuration space is E(P, IR n), the collectibn of all injective maps from P
I

to IRn. Again we restrict us to some open set Op C E(p,'fRn). Clearly Op is open in the
finite dimensional space F(P, IR n) of all maps from P to 'IRn.

An internal force cI> p(jp) at a configuration jp E Op, resisting distortions in F(P, IR n), is
supposed to be a smooth map cI> p : Op ---+ F(P, IR n) satilsfying

\:j jp E O'p,
I

!

(B1.1)

the analogon of (A2.2). The virtual work Ap at jp caused by any distortion hp E F(P, IR n)
is given by 1

Ap(jp)(hp) = L < cI>p(jp)(q),hi:(q) >.
qEM

An equilibrium configuration j~ E Op has to satisfy cI>p(j~) = o.

B2 Nearest neighbour interaction (n.n.i.)

We think of P as the collection of all null-simplices of a finite, one-dimensional and oriented
simplicial complex L. The collection of all one-simplices is denoted by L1• Two particles
at q and q1, say, interact, iff they bound the same one-Jimplex er E L1. Any qi E P
interacting with q is called a nearest neighbour (n.n.) of q. By ~(q) we mean the total
number of n.n. of any q E P. I

On the linear spaces F(P, IR n) and F1 (L, IR n) of all zero a;nd one-cochains of L there are
the natural scalar products yp and yL, given respectively' by

and

yp(hp, kp) =L < hp(q), kp(q) >
qEP

yL, (Cl' C2) = L < Cl (er), C2 (er) >
<TEL,

(B2.1)

(B2.2)
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Vhp EF(P,IRrt) VeEF1(L,IRn).
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i

The coboundary operator 81 : F(P,lIC) --t F1(L,IRn) has an adjoint
81 : F1(L,IRn) --t F(P,IRn) defined by

9 L, (81hp, e) = 9p(hp, 81e)
We therefore have the Hodge Laplacian

D.T := 81 081

on F(P,IRn), a Laplacian oftopological nature (cf. [B],[E),[Ch,StJ).

B3 Internal forces in n.n.i.

Any internal force cI> p : Op --t F(P, IR n) caused by n.n.i'1 admits a map
Hp : Op --t F(P, IR n), called a constitutive map too, satisfying

Vjp E Op.
i

We thus characterize this kind of a medium by Hp. Since '

. . k(q) . I
D.THp(Jp)(q) = k(q)' Hp(Jp)(q) - 'L,.Hp(Jp)(qi)

i=l

Vq E P

(B3.1)

(B3.2)

we immediately observe that Hp(jp)( q) - Hp(j P )(qi) is the ipteraction force off equilibrium
between the material points q and qi, which is alternatively described by

(B3.3)

with ::I: accordingly as to whether q = CJt or q = CJi.
These forces may be determined by a potential which is prd>portional to the square of the
length of 8jp(CJ). Hence cI>p(jp) is determined by the poteritial

Vp(jp):=l'9L,('IjJ.81jp,81jp) ~jpEOp; (B3.4)

'IjJ(CJ)E IR is called the spring constant along 8j p (CJ)for all CJE LI' In this case Ap = lD Vp
where lD denotes the Frechet derivative on Op. I

C The relation.between the two descriptions :

In order to link the descriptions of media presented in the 'sections A and B, we assume
here that Pe M and in case of n.n.i. that also L c M. Again 8M = (j). We fix ja E O.

Cl The geometrie setting

Given some internal force cI> p we consider the virtual work 'Ap associated with it. What
would seem to be the simplest way to link the descriptions in section B1 with the ones in

I

A2 is to consider r*Ap where r: COO(M,IRn) --t F(P,IRn) denotes the restriction map
(sending any h into hiP) and to look for a 9(jo)-orthogonal complement K to ker r*. The
L2-metric 9(jo) on E(M,IRn) is given by i

9(jo)(h, k) = IM < h, k > J.L(jo) Vh, k E ICOO(M,IRn). (C1.1)

However, this kind of a complement does not exist (since otherwise the point-evaluation
(8-functions) would admit a density (cf. [Bi5])). What we have to drop is the orthogonality

i

condition. I
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Our choice of a complement is based on the observatiqn (A2.10) involving E1(jo)' In
principal H(j) can be replaced by just an eigenvector of E1(jo)' Therefore we proceed
as follows (cf. [Bi5]'[Bi6]): We use the fixed (reference) 'configuration jo. (It will be an
equilibrium configuration later). We order the eigenveetors Ei E COO(M, IR n) of E1(jo)
with non-vanishing eigenvalues Ai for i = 1, ... such that( Al ::; A2'" (we use the natural
basis in IRn). Out of {r(Ei)li = 1, ... } c F(P, IRn) we pick a maximal system of linearity
independent vectors r(Ei1)' ••• , r(EiJ, say, such that :L:=1IAi8 is the smallest value for all
possible choices. The b-dimensional span of this system is called Fg"'(M, IR n). Set es := Ei,
for all s = 1, ... , band let FOO(M, IR n) := Fg"'(M, IR n) tB IR n. Clearly rIFOO(M, IR n) is an
isomorphism onto F(P, IR n). This isomorphism is denoted by r 00'

I

The collection ofthe eigenvectors of E1(jo) not in Foo(M,IRn) generates a complement to
FOO(M,IRn) in COO(M,IRn), not identical to ker r. The (wmplement to ker r we looked
for is FOO(M,IRn). Let j~ := r(jo) be fixed. We let 0 :~ r-10p C E(M,IRn) for Op
small enough. Any j + h E 0 with j E r-1(j~) and h IE FOO(M, IR n) is projected to
j~ + roo(h). This projection is called roo too.

Hence
WOO(j) := 0 n ({j} + FOO(M, IR n))

satisfies roo(Woo(j)) = Op. By construction

0= U woo(j).

I

V j E r-1(j~)
I

(C1.2)

(C1.3)

I

This is the slicing of 0 needed in the sequel, Le. 0 is as in (C1.3) from now on. (C1.2)
defines a Hat connection on the vector bundle 0 x COO(M,IIRn).

C2 The link
i

Now, suppose there is a virtual work Ap given on Op. Let 0 C E(M, IR n) be as in (C1.3).
We form the pull back I

(C2.1)

of Ap to O. The one-form A on 0 characterizes the diserbte medium (given by Ap) on
the continuum M. Since the force <I>p of Ap satisfies (B1.1) the one-form A admits a force
density .f? satisfying (A2.2) with respect to g(jo). Therefore Ap defines a constitutive
map H: 0 ---+ FOO(M,IRn) for A, yielding

.f?(j) = E1(jo)H(j) Vj E 0

(cf. (A2.10) where jo E 0 is fixed). Thus H exists on d even if we have no n.n.i. If,
however, the discrete medium is one of n.n.i. then Hp exists on Op. As shown in F1(c),
roo(H(j)) i- Hp(roo(j)) for all j E 0, in general. For elch j E 0 the coefficients in
H(j) = :L~=1 K,i(j) . ei are called the characteristic coefficien:ts of the medium.

D The free energy
I

Here we split Ap on Op of a skin M (to be specified below) via a Neumann boundary
problem into exact and non-exact parts and show that thE1exact part can be identified
as the differential of the free energy associated with a speclfic observable. As far as the
continuum description is concerned we only work on woo(jo), where jo E 0 is fixed.
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Dl Geometrie preliminaries

As it is easily seen the two metrics yp (B2.1) and y(ja) in! (C1.1) are related by

(D1.1)

where pp is an area density. On the other hand there is a 'PM : M ---+ IR such that

(D1.2)

, ,
for all h,k E Foo(M,IRn). In general PXt. hand PXt. k are not in Foo(M,IRn). (D1.2)_'_i
shows that there is a Riemannian metric, g, namely p'fjm M. m(j) for which its L2-metric
y(g) on Foo(M,IRn) agrees with r-:x,yp on Woo(ja). However, there is no j E E(M,IRn)
in general such that 9 = m(j) unless the codimension of M in IR n is high enough (cf.
[Gr,Ro]). '

D2 The free energy

Let F(P, IRn) be oriented and Op be a compact neighbourhbod of j~ := jalP with smooth
boundary BOp. Given Ap on Op we use the Neumann decomposition to write

(D2.l)

with cß.ivAp = $.Fpp and Ap(nop) = IDFp(nop) for some smooth positive map
Pp : Op ---+ IR, determined up to a constant. Here $. is theLaplacian of yp on F(P, IR n)
and nop the positively oriented unit normal of BOp in Op.
Choosing a density Fp of Fp, Le. 2:.qEp Fp(jp )(q) = F(jp) for all jp E Op, each
ß E Coo (0 p, IR +) defines

- 1 FpIp := Fp - - .ln -=-ß Fp
on Op I (ß =F 0). (D2.2)

,

Defining the Gibbs state pp(jp) := ?«(jp)) we let Sp(jp) := 2:.qEp pp(jp )(q)ln pp(jp )(q)
p Jp .

and observe that '
- - -1-Fp = Ip - ß . Sp and L e-ß1p(q) = e-ßFp'

qEP

on Op (D2.3)

where lp(jp) := 2:.qEp pp(jp )(q) . Ip(jp )(q). Thus Fp is th~ free energy associated with
the observable Ip (cf. [B,St.]). Here W p =F S .1D ß unless Wp admits an integrating factor
in which case Fp can be "chosen such that Wp = S. lD ß holds indeed. Clearly we can use
r-:x,yp in (D1.2) to determine F on Woo(ja) yielding F = Fp,o rOO"

I

Next ass urne a n.n.i. to be given. For the eigenvector e~ of flT with non-vanishing
eigenvalue Xp we set A~ := AplIR . e~ for i = 1, ... , b (where, however, ep =F roo(ei) with
ei as in Cl). Due to (B3.1) this implies A~ = A~' K,~ • yp(e~, ... ) with K,~ E Coo(Op, IR),
called the i-th characteristic coefficient of the discrete n.n.i. 'medium. Clearly Ap is not
exact in general! However, it is, provided that lD K,~(j)(ep) =;:: 0 for all s =F i. Setting

ViE{1, ... ,b} and v jp E Op (D2.4)
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with fi being the free energy of A~, then

Pp = -~ .ln tr e-ßQ
ß

on (D2.5)

with Q(e~) := 'Pp . ep for i = 1, ... , b. The heat kernel of Q given by

~p(jp )(ß(jp), q, q') = L e-ß(jp)''Pi(jP) < e~(q), e~(qi) >
q,q'EP

\j j p E 0p \j q, q' E P

for ß(jp) #- 0 (cf. Cl) contains aIl the information on the statistics introduced. Moreover

showing that t. tr Qm = limß--->af-Lm, where f-Lm is the m-th order momentum of the Gibbs
state e;:'" on {I, ... , b} with parameters in Op. Clearly ,

- 1 ~ fi
tr Q = b . F - - . LJ ln~

ß i=l Fp
on

FinaIly, let us restrict the concept of an equilibrium configuration j p: We require both to
hold ipp(jp) = 0 and GradgpPp(jp) = 0, with Gradgp being the gradient formed with
respect to gp. An equilibrium ~onfiguration j E 0 is defined accordingly by yusing g(ja).

E Linearization

In this section we deal with skins as previously. In addition we assume that 0 is as in
D2 and that ja E 0 as weIl as j~ := jalP are equilibrium configurations. The purpose is
here to link the modes of the Hessian at j~ of the free energy Pp with the characteristic
coefficients in the setting of n.n.i.. I

EI Linearized forces

Given Ap on Op the force ipp splits into

ipp(j~ + hp) = JD ipp(j~)(hp) + higher order terms \j hp E Op - j~. (E1.1)

The respective force ipPp of JD Pp (a gradient with respect to g p) and the force ipw p of
w p split accordingly (cf. [Bi5]). In case of n.n.i., the constitutive map 1iPp associated
with ip Pp writes as

(E1.2)

with the choice of 1iPp (j~) = O. The linearization of ipPp yi~lds

(E1.3)

up to higher order terms. Let the modes of JD 2Pp and thei~ eigenvectors be denoted by
Vi and Up respectively, i = 1, ... , b.
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2 -The müdes üf J[) Fp(jo):

Here we assume a n.n.i. to be given. Since H Pp(jp) = 2:~=;1/'\,~p(jp) . ep for all j p E 0

b

J[) 2Fp(j~)(hp, hp) = L A~ .J[) /'\,~p(j~)(hp) . gp(e~, hp)
i=1

for all hp E F(P, IR n) implying

b :

Vr = L A~.J[) /'\,~p(j~)(u';,)' gp(e~, u';,).
i=1 !

Thus

(E2.1)

(E2.2)

Vi = A~ .J[) /'\,~p (j~)(e~), (E2.3)

provided all /'\,~p decouple near j~, i.e. J[) /'\,F)j~)(ep) = 8i,s.Therefore (E2.3) yields

p

J[)Hpp(j~)(hp) = L ;ii .e~' gp(e~,hp) + higher order terms.
i=1 p

(E2.4)

By (E2.2) the linear maps J[) /'\,~p (j~) can be expressed in t~rms of Vr) A~ and gp(e~, up)
with i, r = 1, ... , b, i.e. the modes determine Hpp on Op up to higher order terms.

Instead of working on Op we can work on woo(jo) using r';)}P in (D1.2) and get the same
type of formulas, since Fp 0 roo = F. In particular Hp = 2:~=1/'\,1'" ei implies

b

Vr = LAi .J[) /'\,~(jo)(Ur) . g(jO)(PM .1 ei, ur)
i=1

(E2.5)

with Vr and Ur := r~1(up) for r = 1, ..., b being the eigenvalues and eigenvectors of
J[) 2P(jo) and PM is the map introduced in (D1.2). 1£hence ,all /'\,~decouple near ja then

(E2.6)

saying that the modes are proportional to the eigenvalues of b.(jo) provided PM = 1; the
proportionality factors are the first order characteristic coefficients in H PP'

Let Ap be linear, i.e. if?p(jp + hp) = J[) if?p(j~)(hp) for all hp E Op - j~. The free energy
P on woo(jo) satisfies then

A(j)(j) = J[) F(j)(j) = a(j) .J[) A(j)(j) V j E 0 (E2.7)

with a as in (A3.2). Since a(jo) = 0 and J[) P(jo) = 0 (ja is an equilibrium configuration!)

(E2.8)

showing
Vi=l, ... ,b (E2.9)

where ja = 2: i? . Ui' Hence a on woo(jo) is determined up to first order by the modes Vi;
I

The reader may link (D2.5) and (E2.9).
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I

F Preliminary definition of a weIl fitting configuration

Given a skin M, let A := r;:'Ap on Woo(ja) for a given Ap on Op with Ap(j~) = 0
and J[)Fp(j~) = O. Here jalP = j~ again. We call, preliminary, ja to be a weIl fitting
configuration (expressing that ja(M) fits j~(P) weIl) if

Pp = 1

(cf. (D1.1). If Pp = 1 then the Neumann decompositions of Ap and A = r;:'Ap formed
with respect to Qp and Q(ja) yield F = Fp 0 roo (cf. sec: D2), the reason of the above
definition of weIl fitting.

Fl Some consequences for weIl fitting configuratipns in case of n.n.i.

Let ja be a weIl fitting configuration for A = r;:'Ap on Woo(ja). We assume that Ap is
caused by n.n.i .. At first we remark that due to (C2.1)

(F1.1)

The simple consequences we have in mi nd here are the follöwing ones:
a) By (E2.7) the structural capillarity a on Woo(ja) of A ='r;:'J[) Vp satisfies for all j E 0

a(j) = dirn ~. A(j) . QLJI/J. 81jp',81jp)

(cf. (B3.4)) with jp := jlP.
b) The derivative of the characteristic coefficient of HF and 1t Fp at ja respectively j~ (cf.
E2) are linked by (D2.1) and its analogon on Woo(ja). Hence (E2.6) and (E2.2) yield

b

IJr = Ar.J[) "'p(ja)(er) = '" A~ .J[) "'p (j~)(roo(er)).Qp(e~, roo(e~)).
~ p ,
~l .

(F1.2)

There is an analogous equation if all "'Pp decouple near j~.

c) Finally let us compare b..(ja)h and b..Thp with hp = hiP for h E FOO(M, IR 3) for
dirn M = 2 in order to understand (F1.1). One easily verifies from Gausse's theorem

,

(F1.3)

where IBql is the volume of a geodesic ball Bq centered about q E M and NBq is the
oriented unit normal of 8Bq• Since

(cf. B2) for each nearest neighbour qi (assumed to be on 8Bq) of q, equation (F1.3) yields

. 2
b..(]a)h(q) = k(q) . r2 • b..Thp(q)

as an approximation for symmetrically distributed n.n .. Here r = 100ii for i = 1, ... , k(q).
Hence H(j)(q) = k(q~.r2.1tp(roo(j)(q)) for all j E Woo(ja) hdlds approximately.
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