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GAUGE SYMMETRIES .
OF AN EXTENDED PHASE SPACE
FOR YANG-MILLS AND DIRAC FIELDS

Giinter Schwarz* and Jedrzej Sﬁniatycki}L _

Abstract

We identify an extended phase space P for minimally interacting Yang-Mllls and Dirac

fields in the Minkowski space. It is a Sobolev space of Cauchy data for which we prove the - -
finite time existence and uniqueness of the evolution equations. :
, ‘We prove that the Lie algebra. gs(P) of all infinitesimal gauge symmetrles of P is a
‘Hilbert-Lie algebra, carrying a Beppo Levi.topology.. The connected group GS(P) of the
gauge symmetrles generated by gs(P) is proved to be a Hllbert Lie group-acting properly
in P. -

The Lije algebra gs(P) has a max1ma1 ideal gs(P) We prove that the action in P of
the connected group GS(P)o generated by gs(P)o is proper and free. The constraint set is
shown to be the zero level of the equlvarlant momentum map correspondmg to the action -
of GS (P)o in P. : y '
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1. Introductlon

Gauge invariance is the most fundamental feature of Yang-Mllls theories. The gauge
transformations preserving the extended phase space, called here gauge symmetries, give
rise to the conservation laws and the constraints. Other gauge transformations intertwine
equivalent Hamiltonian descriptions of the theory. :

An extended phase space is a space of Cauchy data Wthh admit the ex1stence and the
uniqueness of (finite time) solutions of the evolution'equations of the theory. For such a -
space of Cauchy data the space of solutions of the field equations is completely determined
by the constraint equation. . - - :

The aim of this paper is to study the gauge symmetry group for minimally 1nteract1ng
Yang-Mllls and Dirac fields. We study the Yang-Mills-Dirac system over the Minkowski
space M* =R x IR® with a compact structure group G, which is embedded in the space
MF of k x k matrices. Let {T"*} be a basis of the structure algebra g, and [T®,T%) = 2T -
the Lie bracket. The usual (3+1) splitting of space-time yields a splitting of the Yang-Mills

field A, = (®, A) into the scalar potential ® and the vector potential A = A;dx®. It leads

to .a representatidn. of the field stre.ngth F, v in terms of the “electric” field E and the
“magnetic” field : _
' B=curlA+[Ax,A]. . : o (1.1)

" We use. the Euclidean metrlc in IR3 to identify vector fields and forms and X to denote.

the cross product. The field equations split into the evolution equatlons
8,A=FE +grad® — [0, 4] ,
I8tE =—curl B - [Ax,B] - [®,E]+ J ,
8,0 = —70(73@ +im -+ A; +4°9)T
and the constraint equation R . |
div E + [4; E] Jo. o - (1.5).

Here A E, and B are treated as time dependent g-valued vector fields on R3 and Uis a

- time dependent spinor field with values in the space Viz of the fundamental representation
"of G. Moreover [A; E] means the Lie bracket contracted over the vector indices, and =

Jo =l (1o 1T, | Jk—qff(yovk@'Tﬁ)\I/T . (16)

The scalar potentlal ® does not appear as an independent degree: of freedom in (1.2)
through (1.4). It can be fixed for all times by the choice of an appropriate gauge trans-
formation. The most common gauge fixing for studies of Yang-Mills fields as a dynamical
system is the temporal gauge Ag = 0, cf. [1] and [2]. This leads to difficulties with the
lirl_earized equations, discussed in detail by Eardley and Moncrief, who had to modify the
dynamical system off the constraint set, [3]. In order to be able deal with the evolution
equations also off the constraint set we ﬁx the gauge differently by demanding

A® = —divE and'/ 4<I>d3x—0 where p=+1+|z|? . o (1.7)
. . 1R3' S
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We choose the extended phase space ‘ .
P ={(A,E,¥) eH?(m?',q;) X HI(RB,@) xBYR*Va)}, (18

where H*(R3,q) and H*(IR®,V) are Sobolev sp_aces of the g-valued forms and Vé;-vzilued )

_spinors, respectively, which are square integrable over JR > together with their partial deriv-

atives up to order k, [6]. For the Cauchy data in P we prove the finite time existence and
the uniqueness of classical solutions of the evolution equations. The mathematically im--
- portant problem of the infinite time existence of solutions, cf. [3-5], is beyond the scope -
of this paper. We prove also the followmg regularity result. If the initial data for the
Yang-Mllls-Dlrac system are in '

={(4.E1)Ac H*"Y(R®q), E hktms’@), Ve H’“*’?(JR% Vo)) (19)

“then the solution curve is in P*.

Having established that P is an admlss1ble extended phase space, we can turn to
the main objective of this paper, that is to the study of the group of time independent
gauge transformations which preserve P. We denote by. gs(P) the Lie algebra of all time
independent 1nﬁn1te51mal gauge transformations which preserve P. We prove that it is a'
Banach-Lie algebra Wthh carries a Beppo Levi topology [7] with the norm

D,

el = [ leldsz + llgrad el o)

where D; denotes the unite ball in IR 3 centered at 0. We show that this topology is induced
by a scalar product, so that gs(P) is a Hilbert-Lie algebra. This algebra admits a splitting -

gs(P):‘gs(P)o,@.oj. | o auw

where the subalgebra gs(P)g is the completion of the space of smooth compactly supported
.maps ¢ : IR® — g in the topology given by (1.10), cf. [8].

We construct a connected Hilbert-Lie group GS(P) of gauge symmetries for the Yang-
Mills and Dirac fields in the phase space P with Lie algebra gs(P). It carries the uniform
topology induced by topology of gs(P) We prove that the action of GS(P) in P is con-
tinuous and proper. '

The extended phase space P is weakly symplectlc The actlon of GS(P) on P is
Hamiltonian with an equivariant momentum map 7. The vanishing of the restriction of
~ J to the subalgebra gs(P)o gives rise to the constraints of the theory. More precisely, if -
C is the constraint set of the theory, i.e. the set of all (A, E, V) € P satisfying Eq. (1.5),

N

“then subalgebra gs(P)p can be given a geometric interpretation as

45(Plo = (€ € gs(P) HT(A B O =0 Y(ABWEC).  (112)

We construct a connected Banach-Lie subgroup GS (P)O of GS(P) with Lie algebrs 9s(P)o
and prove that it acts freely and properly in P Conversely, the constlalnt set is shown to



be the zero level of Vt':he momentum map Jo for the action of GS (P)o in P,
C=7'0). o (1)

It follows from Eq. (1 13) that the natural choice for the reduced phase space is the space
P=C /GS (P)o of GS(P)o orbits in C. If C were a submanifold of P, the reduced phase
space P would be a symplectic (Hausdorff) manifold with an exact symplectic form. The’
structure of the constraint set and of the reduced phase space will be studied elsewhere.

This paper is organized as follows. In Section 2 we prove the (finite time) existence and
uniqueness of solutions of the evolution equations in P under our gauge condition. Section
3 is devoted to the study of the gauge symmetry group. In Appendix A we consider some
decomposition results and estimates for Beppo Levi spaces.

The authors would like to thank L. Bos and U. Wernick for useful comments on
decomposmons of Beppo Levi spaces. :

2. Existencé and uniqueness results.
For any vector space V, let H*(IR3,V) be the Sobolev space of V-valued vector fields

on R3. Eacheach X € H ’“(RB V) allows for a Helmholtz decomposition
X = XY+ X7 such that curl XL =0 and divxT =0. N (2.1)

The components X% € H*(IR® V) and XT € H*¥(IR®,V) are uniquely determined by -
div X and curl X, and called the longitudinal and transverse.components of X, respectlvely
For details see the Appendix. Sphttlng the gauge fields in this way we obtam

9,AY = EL 4 grad® — [, AL,
&EY = —[Ax,B| - [@,E]F + JE |
AT = ET — [®, AT, S
&,ET = —'curlB [Ax, BT - [@,E]T +JT.

(2.2)

_ In order to prove that the gauge condition (1. 7) can be satisfied for each field EX we-
need the Beppo Levi spaces BL,, (L2(IR3,q)), which are defined as the spaces of g-valued
distributions on IR3 with square integrable partial derivatives of order m, cf. [7]. For the
intersection of k Beppo Levi spaces we write. . : :

Bk(mi**,g) = [} BLn(L*(R% q)) .. | ©(2.3)

m=1

Thes_e spaces are topologized by the norm

€= [ leldsz + lgradle-s | (24)




. Proposition 2. 1

For each E € HY(IR3, @) there exists a unique scalar potentlal <I> € BZ(R 3 @) obeying

the gauge condition

grad® = —EY and / | *4<D‘d3r#0 where p=+/1+|z[2 .  (2.5)

, . R3 : ’ : :
e . o o

"IfEe H"’(]R3,q) one has ® € B**(IR3, g) and

1830 < cuEum N X )

Proof. '
Let H2,(IR?, @) and H',(RR?, g) denote the welghted Sobolev spaces with respect
to the Werght function p, cf. (A.6). It is shown in [10], that the Laplace operator A :

H? ('R ,@) — L?*(IR®,g) is Fredholm, onto and has kernel ker(A) = g. Therefore for .

‘ each X € L?(R®, ), there exists a.unique ®, € H2,(R?, g) such that

A%, = x and / ‘(<I> 'E)dscv=0 ‘Veeg. en
B - R3

By Fredholmness of A there exxsts a constant. C mdependent of x such that

!I‘I’xllm < Clixlize - - o (28)_

Given F € Hl(R3,a]) we consider xg = —divE € L2(1R3,iy) The corresponding

solution of (2:7) we denote by ®g. Then the vector field Yg := grad @+ E L'ig harmomc .

that is curl Yg = 0 and divYg = 0. By the estimates (A. 4) and (A 5)

Zna YEg|L2 < [|curlYE||Lz +||d1vYEI|L2 : - (2.9)
il | o

see also [11] Therefere Yg is conStant. Since; by constrﬁction, Yg has a finite norm in
H! (IR3 g), this implies that Yr = 0, cf. (A.7). This proves that ® g is the unique solution
of the problem (2. 5) From the a—pI'IOI‘l estlmate (2 8) and (A.6) we conclude that

1 ' 2 ‘ 1 ) N ‘ & N
| Z</D &<1>E|d3:c) < (/]R |<I>E|d3:v) < ll@sllfs, < Clidiv Bz (2.10)

- Moreover ||grad <I>EHH1¢ = ||EL|| < ||E||3;+. This proves the estimate (2.6). _ Q.E. D.‘

On the constraint set C thrs specral gauge ﬁxmg can be achieved by a gauge trans-

formation , »
®— B =pbp ! + B! . ' (2.11)

More prec1sely, let (<I>(t) A(t), E(t), I(t )) be a C! curve in B3(R3,q) X P such that
(A(¢), E(t), ¥(t)) satisfy the constraint equation (1.5). Then, for ¢ small enough, there
exists a C’l curve @(t) : IR?® — G of gauge transformations such that. the transformed
scalar potentlal ® satisfies the gauge condition (2. 5) It is of class 83(ﬂ?, MF). This is

)




shown in [12] for bounded domalns The proof literally generahses to IR 1f one takes the
estimates of Lemma A.3 and (2.6) into account.

‘Using the gauge fixing (2:5) and hnearlzmg the system given by (2 2) and (1.4) we
~obtain . _

aran _f PR 12
dt[EL] o] * N . (212)

d[AT] o 1][AT - - : |
O O | AT Y

- d o ' _

U= —°(¥?8; +im)¥ =: DY . o (2.14)

We shall study these linear equations in the_Hilbert‘spaces;' | |
H; = {(4%, B%) € HY(R%,q) x H\(R®,q)} , o (215)
Hr = {(AT,ET) € H'(R® q) x LA(R%,q)}, -  (2.16)
Hp = {‘I’ € L*(R®,Vg)} . o ' 21

" Proposition 2.2 . o
The operator T, defined by (2.13), with domain

Dy = {(47,E7) ¢ HY (R q) x H (R} (a8)
is the generator of a contmuous group exp(tT ) of transformatlons in Hr. '

Proof.
By standard arguments the operator

T = [g' (1)] with domain H*(R?,q) x H'(R?,q) (2.19)
is d1531pa.t1ve and satisfies , ,
v range(T /\I) Hl( 3,@) x L*(R 3,, @) and  ker(T — ) = {0} . (2:20)

for A > 0. In fact T is the 1nﬁn1te31ma.l generator corresponding to the wave equatlon
- [13]. We have to show that exp(tT) preserves the Hilbert space Hy of transverse fields. _
Given (X7 YT) €. HT we consider (A, E), satistying the equatlon :

T-A)AE)=xTYD). (22
Slnce A maintains the Helmholtz decomposition A AT 4 AL thls implies that

(AL Ebye ker(T Al = {0} . . - (2.22)



Therefore, since 7 = 7 |p,., we have

rarige(’f - )\I) = range(’f - )\I) b, = HT ‘ \ | (2.23) |

The Lumer-Phillips theorem implies tha’c T generates a one parameter group of continuous

transformatlons exp(t7) in Hy. . . , Q.E.D.

'Propos1t10n 2.3 .
(1) The operator D, with domam

‘Dp={ve HY(R®,Vg)} | (2 '24)
is the generator of a continuous group of (umtary) transformations exp(tD) in Hp.

(ii) exp(tD) restncts to a group of continuous transformations in H2(IR 3, Vo).

Proof.

~ (i) It is known, [14], that the operator D with domain Dp is skew-adjomt in Hp. Thus,
D generates a group exp(tD) of unitary transformatmns in Hp. :

(ii) The operator D : H(R? Vo) — — L2(IR®,Vg) is contlnuous and its square .

D2 = A-m?: HX(R?, V )—>L2(.IR3 Vo) | (2.25)

is contmuous and elliptic. Wrth the elhptlc a—pI'IOI’l estimate this implies that

DY s < 12 < C(ID* W2 + |1 W) . (2:26)

Moreover from the 1dent1ty yiyk = —§tk 4 3y ,’y’,“], we obtain ' o
quan Zua \IJHLZ—A( )+ m2 )| (227)

] ) : ) .

where Cog . »

- | L

A(\Il 5 kzl v, 7*] 8k\I/ 9;T) 2 | | (2.28)

. o I1,R= . ¥ - .

Integratlon by parts shows that A(¥) vanishes for all ¥ in C°°(1R Vc;) NH 1(IR3 Vo).
.. Thus, by a density argument, A(¥) = 0 for all ¥ € H'(RR?, VG) Therefore

C3||D¥[z2 < [|[¥]|gr < Call DV L2 ('2'-_29)

and o v

- II‘I’llm < Cs(|ID?¥|| + IID\I’Ilm) - (2.30).
Since exp(t’D) is a unitary operator, which commutes on the domain D p with its generator
D, cf. [15], we can estimate for all ¥ € H?*(R3, Vg) :

II exp(t’D)\IfHHe < 05(11792 exp(tD)¥||zz + || D exp(tD)‘I’HLz)
= C5(||D2\I/||Lz + ||D\14|L2) < Csl| ¥ g2 -

(2.31)

~




Hence exp(tD) acts continuously in the Hllbert space H 2(R3 VG) " Q.E.D. |
"Corollary 2. 4 . ‘ |

The linear operator.
| S=06T&D o . (2.32)
with domam D H;xDrxDp, correspondmg to the dynamlcal system (2.12), (2.13)

-and (2.14), generates a one parameter group exp(tS) of continuous transformations
in H=H; x Hr x Hp. The space ' :

P={(4EV)dcH(R®q) Ec HYR3,q), U e HYR3,Vs)} (2. 33)

is preserved by the action of exp(tS) in H. The restriction of exp(tS) to P is a
~ continuous one parameter group U(t) of continuous transformations in P, ‘

u(t) = exp(tS)|p : P — P such that (A, E,¥) — U(t)(Ao, Eo, To) (2:34)

_ and u (t)(Ao, Ey, ¥p) is the unique solution of the linear evolutlon equations (2 12),
(2. 13) and (2. 14) with initial condition (Ag, Eo, To). ‘

Having solved the linearized problem, we can rewrlte the: coupled nonlinear equatlons

(1.2), (1 3) and (1.4) in an abstract form as , -
di(A:, B, 1), =S(A,E V).~ F(4ET)) . (2.35)

Here F descnbes the nonlinearity of the. theory and is given by

_ : . ‘ Fi(AE,¥) = (0; [Ax, B] + curl [Ax, A] 0)
F=F1+Fr+F3 where f2(A, E, ‘I') = ( —J 5 ’7]‘43\11) - (2:36)

In order to solve the system (2.35) we apply the method of nonlinear semigroups. It requires
the knowledge of some analytic properties of the nonlinearity. :

‘Proposition 2.5 o
The nonlinear part of the’ Yang-Mllls-Dlrac system, g1ven by Eq. (2.36), is a map
]—' P— P It is contmuous and smooth with respect to the norm

|I(A E, ‘I’)Ilp = “A”H2 +El + II‘I’HHz - (2.37)

Proof.
. The contmulty and stoothness was proved for the component F; in [3], and for the
mlmmal coupling component F3 in [16]. The proof given there under the bag boundary

conditions literally generalizes to IR3. For the component F3 we get with the estimates of
Lemma A.3 and (2.6) :

173l = 110, Al + 1, Bl + %, @i < CIoN (1Allns + 1l + 1]02)
| <CUBIRIA B DR . (239)




This proves the continuity of ]-"3 P — P. To show dlfferentlablhty we write (a e, 1/1) for_ ‘
an arbltrary infinitesimal varlatlon and evaluate '

DF4(A, E, ¥)(a,e, %) = (16, 4] + [®,a]; (6, E] + [@, s (6, 9] + [@ w])‘ (2.39)

where A¢ = —dive. Slnce (ase, ) are of the same Sobolev class as (A, E, \If) we can'
‘estimate 51m11arly as in (2. 38) '

IDF3(A, E, ¥)(a, e, )p < C(Ilallm + llella + Ilwllm) 1A, B, B)|[5.. | (2.40)

This proves that 73 : P — P is differentiable. Higher order dlfferentlablhty is shown
: accordlngly ' - ‘ - . QED.

The result of Propos1t10n 2.5 enables us to infer the existence and uniqueness of
solutions of mmlmally coupled Yang-Mills and Dirac equations from the correspondmg :
" results for nonlinear semlgroups cf. [17] : :

Theorem 2.6 , _
For every initial condition (Ag, Ey, \Ilo) € P there exists a unique maximal T € (0, oo]
and a unique curve (A(t), E(t), ¥(t)) in C'([0,T), P) satisfying the Yang-Mllls and
Dirac equations (1.2), (1.3) and (1.4). If T < oo, then - - S

 Im(AB )=, 4

I

Observe that the time evolution of the Yang—Mills—Dirac system discussed here gives
rise to local diffeomorphisms of the phase space P. To see this, we con51der the map

. .
(4, E, U)o — (A, B, ), :u@)(A, E, ) + / U(t - $)F((A, E, ),)ds . (2.42)
' '_By differentiation of this .map'in the direction of a vector (a,e,¥) in P we obtain
((Aa E7 \Il)Oa(aa €, ¢)) —

. t
U0 0) + [ Ult = IDF((A B, ))(ae,)ds S
v 0

..which is continuous, since F is smooth. A corresponding argument for the higher derivatives
_implies that the time evolution (2.42) is smooth. Since the dynamics is reversible, this shows

- that it is a local diffeomorphism. It should be emphasized that this diffeomorphism is not
a symplectomorphism. To obtain a Hamiltonian evolution one has to modify the gauge
condition of Proposition 2.1, cf. [18]. :

' If the 1mtlal COIldIthIlS for the Yang—Mllls-Dlrac system are more regular, say m

~ (4, B, )A€ H* (R®,0), E € HY(R®q), ¥ € H¥ (R Vo)) (244)
with £ > 1, then the time evolution maintains this regularity. To see thlS note that

'DE = (AT, ET) € H**\(RR® ,o»xH'“(RS,@)}_ . (2.45)




" is the domaln of the k th power of the operator T. Moreover by repeatmg the arguments
of Proposrtlon 2. 3(11) it follows that the domain of D* is

D% = (T er(R3 Ve)y. o (2.46)
It is strarghtforwa,rd to show that ]—' P’c — P’c is continuous and smooth. Therefore we
can conclude with [19] :

Corollary 2.7 C _
For every initial condition (4o, EO, Up) c Pk the solutlon of Egs. (1.2), (1.3) and (1:4)
- is acurve (A(t), E(t), ¥(¢)) ) in C([0,T), P¥). o

3. Gauge symmetries.

The group GS(P) of gauge symmetrles of the Yang-Mllls-Dlrac system in the phase -
space P is the connected group of gauge transformatrons

A 0Ap™! +pgrade™ , Ew pEp! ,‘I’F*w\I’» . (3.1)

where ¢ is a map from IR to the structure group G which preserve P. The mﬁnltesrmal
action of the elements £ of the Lie algebra gs(P) of GS(P) is given by

A—A-Dsf, E—~E—[E§, ¥ —»T+ET, . (3:2)
~ where | , . 3 ; . : "

Da€ =gradé+[A, €] E o (3.3)
is the covariant drfferentlal of £ with respect to the connection deﬁned by A.-Since the

- Yang-Mills potentials A in P are of Sobolev class H2(IR?, ), it follows that £ €-gs(P)
only if gradf €H 2(R3, @). This suggests the followmg

Proposition 3.1 :
The set of 1nﬁn1tes1mal gauge symmetrres of P is the Hllbert L1e algebra

gs( .)—33(11%3,.91)- - .34)
The scalar product in gs(P) is given by (A.14). The action of gs(P) inPis continuous. :

Proof. :
' The estlmates of Lerama A.3 1mply that

A€l < Cliglise 1Allee iI[E Ellzr < Clellse I Ell

3.5)
and  [€¥]lne < C el [ (

for £ € 83(B3, @). Therefore the 1nﬁn1te51mal action (3.2) of each ¢ € B3(IR 3, ) preserves
P. This implies  that BB(RS,Q) - gs(P) By the argument above (gradf) has to be in

10




H%(R3,q) in order to have £.€ gs(P). With the definition of Bé(Rs,q/), cf. (2.3), this ..

' proves (3.4). Moreover, - : ,
| 1€ mllss < [1€lls2 lImllse. : - (36)
which proves that gs(P) is a Banach-Lie algebra. Since B3(R?,q) is a Hilbert space by

Theorem A.2, gs(P) is a Hilbert-Lie algebra. Finally, the continuity of the action of gs(P) .
in P follows from the estimates (3.5). - ' ' Q.ED.

Let C§°(B3, @) denote the space of all s_moofh‘ maps & : R® - g which are constant

outside a compact set, and let C§°(IR 3, g) be the subspace of compactly supported maps.’

From the decomposition results of (8] we infer that _

gs(P) = gs(Plodg, (3.7)

-where gs(P)o is the closure of C’g°(]R3,q7) in the topology glven by the norm (2.4). By -

Theorem A2, gs(P) C CI(R3,cy) so that all infinitesimal gauge transformations in

gs(P) are Cl-maps from IR the structure Lie algebra g. Moreover C’°°(1}23, q) is dense

in gs(P), cf. Lemma A.1.

The topology of the gauge group on nbn—éompact manifolds with a Sobolev Lie algebra

has been studied in (1] and [20]. Here we adapt the approach of {1] to our case of a B2
Hilbert-Lie algebra. The set C’°°(R3 G) is a group under pointwise multiplication with

the identity denoted by e. If we consider G as a subset of the space M ,f of k x k matrices,
Ce(R3,G) C C®(IR3, M}) and it can be topologized by the norm || - || 52, given by (2.4).
One parameter subgroups of C®(IR3, G) are of the form exp(t£), where ¢ is in the
dense subalgebra C>(IR3, g) of gs(P). The topology of gs(P) induces a uniform structure
in C*(R3,G), with-a nelghbourhood basis at e consisting of the sets L

N. = {exp(6) €€ C2(R% ), €llss <€}  withe>0. (38)

In order to show that the completion of C°°(Il-23 G) in this uniform structure is a topo-
loglcal group, relatively to the canomcally extended multiplication, we need to show :-

Proposition 3.2

The mapping exp(¢) — exp(£)~
_every € > 0, there exists § > 0 such that, for every exp(§) € Ny,

1

eXp(E)"lNa exp(§) S Ne . . T (39)
Proof. )
‘Let p € N, C C’°°(]R3 M,f) then
| 1 1 n : ' 7 . . .
¢ = exp(§) = Zh—,é , - (3.10) .
: : n=0 o _
and-v ‘ : '1
' oo n— 1 . v ,
grad ¢ = grad exp Z Z mﬁk gradf grk-t (3.11)
, . n=1k=0 " : -

11

is uriiformly co_ntinudus_ relative to N;. That is, for :



Is
Using the estimates of Lemma A.3 this implies that

| '.||gl‘3id}<P||1L12 SeXP(CHEHBB) lgrad&llg= - (3.12)
and ) ' o - |
l|<P||B3 < Z C||§||83 < efe. RN R E)

For each { € gs(P) we then obtain by using Lemma A'.3 once more :

Nl exp(€)* ¢ exp(€)lls < G exp(=)llsslI ¢ el exp(&) s < C2e* 4[| ¢l . (3.14)
'Thls proves (3.9) with &= e(CeCe)~2 : - o : N Q E.D.
By a result of [21], Proposmon 3.2. implies that the completion of C®(R>,G) in

this uniform structure is a topological group, relatively to the canonically extended mul-

' tiplication. It is a Hilbert-Lie group, whose Lie a.lgebra is canonically 1somorph1c to the
Hilbert-Lie algebra gs(P). In view of this we set :

Definition 3.3 : :

The Hilbert-Lie group GS (P) of gauge symmetnes is the completlon of the group

C>®(IR3,G) in the uniform structure defined by the topology of its Lie algebra gs(P).

The exponential map exp : gs(P) — GS(P) maps the unit ball in g5(P) onto the -
_ neighbourhood of identity in GS (P) given by the completion N; of N;. Since G is-con-
nected, it follows that C° (IR 3, G) is connected, and GS(P) is connected. Therefore, GS(P)
is -the union of the sets ' | o -
| | NT* ={p1 w2~ - omlpi € Ni}. T (3.15)
The 1nequahty (3 12) together with (3. 15) 1mpl1es that, for each p€GS (P) ‘

grady € H(R®,q) . L (316)

Moreover, since G is. compact 1t is bounded in M} ., and the Sobolev embedchng theorem.
implies that each ¢ € GS(P) is a bounded continuous map. Hence, ||¢||s is finite for every
¢ in GS(P). We can glve an alternatlve characterization of the topology of GS (P)

Proposition 3. 4 » : . .
‘ A sequence vr € GS(P) converges to go inGS (P) if and only if the sequence of maps
-k R®*> @ converges to ¢ in the topology defined by the norm || - || B3- \
Proof. ' '
Suppose that g converges to ¢ in the uniform topology of GS (P) For sufﬁc1ently
‘large k, - '
o= pexp(c) - @)

where the sequence I converges to.zero in the topology of gs(P) ‘The estimate (A 24)
implies that -

llew — @llge < Cllepllpe
. - ’ n= 1

< C||<p||33|1.— eCllEkllss | (3.18)

B3
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For & — 0 in the norm topology of gs(P) the right hand side converges to zero. Therefore
@k —  in the topology defined by || - ||s. ' = ' ‘ |
' Conversely, suppose that |[px — <p|| gs — 0. Then

lle — N <Pk||33 <er | C(3.19) B

L W1th €, — 0ask goes. to 1nﬁn1ty Eq (3 17) yields

k= log v ' ok) Z (=g lon) N . (3.20)

for k sufﬁc1ently large Therefore, by (A 24)

C - <P Yokliss | 1 , o R .
||§k||B3 < Z (Clle s ) < -glog(l=Cer). (3.21) -
This implies that & — 0 in the topology of gs(P), and hence ¢ — go in the uniform
topology of GS(P). ' | . QED.
~ Theorem 3.5 - : ' | ‘ . ‘
The action of GS (P) in P, g_iveh 'by_ (3.2), is continuous and proper.

Proof. " : '

~ Let ¢, be a sequence'in GS (P) converging to ¢, and pn = (An, En, ¥,,) a sequence
in P converging to p = (4, E, ). From (3.2) we obtain by using the estlmate (A 23) and--
the fact that the inversion ¢ +— p~! in GS(P) is contmuous o .

1(onAnpi® + @ngrad o) = (0Ae~" — pgrad ™)z - - (3.22)

< NlonAngnt = on Aoy a2 + londor' = @n Ao~ Im2 + ende™ — 0A™ lH2
+llgngrad vt — @ngrad o™ g2 + llpngrad o™t — pgrad 0™ a2

< C(llenlis Il 4n=Allms + (loallss + ellso) 1Al lon = llas
+Hignllas leradion — grad pllz + llgn ~ el llsrad ol s )

Writing symbolically ¢p for the action of ¢ € gs(P) on p € P, and (pp)a for its A
component, this 1mphes that ' ' , R '

”(‘pnpn)A - (wp)Alle < C'(HA - A||H2 +len — 0 ise) (3.23)

since ||¢n||5s is bounded. Correspondingly we estimate with (A.22) and (A.23),

N(Bnpn)E = (p)EllEr < C'(|1En— Ellgn + o — ¢ 52)

) (3.24)
1(npn)e — (@P)elliz < C'(1%n = Uliaz + |lon — 0 ise) -

Therefore ||onpn — ¢p|lp — 0 as n" — oo,:which proves the continuity of the action.
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" Let pn = (An, En, ¥,) converge in P to p = (A, E,¥), and ¢, be a sequence in
GS(P) such that ¢, p, convergesto p € 'P To prove properness of the action it is to show
that @, converges to ¢ € GS(P) and p =.¢p.-The argument used in [16] for compact,
domains 1mp11es that, for every compact domain M - IR, the restrictions ¢, |M converge
in H%(M) to a map ¢p € H?(M). Since, M C M implies that <p|M restricted to M
coincides with ¢ps, it follows that there exists a continuous map ¢ : IR®—G such that
¢um is the restriction of ¢ to M. The proof that grad ¢, converges to grad ¢ in the H?
topology is the same as in the compact case, [16]. Hence, Prop051t10n 3.4 implies that ¢,

“converges to ¢ in the uniform topology. - . QED.

Let C3°(IR®, G) be the subgroup of C=(R3,G) consisting of maps ¢ : R3 — G'
which are the identity in' G outside a compact set. Its closure in the uniform topology
discussed above-defines a closed subgroup GS(P)o of GS(P). The subalgebra gs(P)o of

(P) defined by (3.7), is an ideal and hence G'S(P) is a normal subgroup of GS(P).

: Propqs1t10n 3.6 S
GS(P)o is a Hilbert-Lie group with Lie algebra gs(P)o. The action of GS(P)g in P
is free and proper. -

Proof _ : ‘ o

To show that the infinitesimal ‘action is also free suppose that &o € gs(P)g has a fixed
pomt (A, E, \Il) By (3. 2) L _
DA§0 ——-‘0, . (32v)

that is, £y is covariantly constant with respect to the connection given by A. Since the
- .scalar product in g is ad-invar_iant, this implies that g is constant. This contradicts the

.assumption & € gs(P)o, which proves that the action of gs(P)g is free. Since GS(P)o is
" connected, every cpe GS(P)y is of the form ' '

p=(exp&) (xp&) ... (&) (3.26)

- for some &y, ...&, in gs(P)o. Therefore the action of GS(P)g is free. o
The result of Proposition 3.4 implies that the Lie algebra of GS(P)g is the closure
" of C3°(IR3, @) in the B topology. By the decomposition (3.7) this coincides with g9s(P)o.
Since GS(P)y is a closed subgroup of GS(P) which acts properly in P, it follows that the
actlon of GS(P)O in. P is proper. : o QED.

. The extended phase space P is endowed with a 1-form 6 given by

(9(A,E,\If)|(a,é,¢))=/]Ra(E-a+\I{Tw)d3x, ' ©(3.27)

for (a,e, )€ TP, where E -a = —tr(Ea). The exterior differential w = df of 6 is a weakly -
symplectic form on P, that is w is non-degenerate and closed, but the induced mapping
b : TP — T*P defined by v’(v) = w(u,v) is not onto. Here T*P denotes the cotangent
bundle of P, that is the topological dual of the tangent bundle TP.
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’The action of gs(P) in P is Hamiltonian with the momentum map VJ given by
(04,2, 9)6) = (Bl (4,2, ) = | B -Dag+ Wlen)asz.  (329)
R . _

- Each ¢ in gs(P)o is the limit of a sequence &, of smooth and compactly supported elements
of gs(P)o. The contmulty of the momentum map J 1mp11es that ' :

(T(4,E, v)6) = lim (J(A,E, \1:)|§-n>:— lim ]R (divE+[A; B] = J°) - éudaz, (3.29)

Wthh follows by 1ntegrat10n by parts. Therefore for every - in gs(P)o, the momentum‘

(J(A, E,)|E) vamshes for all (A, E, ¥) satisfying the constraint equation (1.5). On the
other hand, if £ : R3 — g is a constant map, then there exists (A, E,¥) € C such that
(J(A, E,T)|€) does not vanish. Hence we have obtained a geometrlc characterization of
gs(P)o as -

95(P)o = {¢ € g5(P) | {T(A, B, D)) =0 V(AE¥)eC}.  (330)

 Let Jo be the restriction of the momentum mapping J to the subélgebfa js(P)o.
That is, J is the map from P to gs(P)§ such that

(Jol6) = (T1E) '_ (331)

for all § € gs(P)o. It follows from Eq. (3.30) that the constraint set C is contained in the

" zero level of .70 Conversely, the vanlshmg of (Jo|€) for all smooth compactly supported

maps £ from IR to the Lie algebra ¢ implies the constraint equations. This follows from the
-Fundamental Theorem of the Calculus of Variations and Eq. (3.29). Since the momentum
mapping Jp is continuous and every & € gs(P)o is the limit of a sequence of smooth and
compactly’ supported elements ¢, it follows that the. zero level of .70 is contalned in C.
Hence, we have proved that :

C=J540). | : , (3.32)
- We deﬁne the reduced phase space to be the space P of the GS (P)g orbits in C,

P=C/GS(P, | (333)

and denote by p the canonical projection from C to P. Since C isa closed subset of P and

the action of GS(P)o in P is proper and preserves C, it follows that the quotient topology _‘
in P is Hausdorff. The differentiable structure of P will be analysed in another paper, [22]..

- It follows from Eq. (3.7) that gs(P)g is an ideal in gs(P) and that the quotient algebra
colour( ) = gs(P)/gs(P)o : - (3.34)

is 1somorph1c to g. For f € gs(P) and (A,E,¥) € C, the momentum (J(A, E, ¥)|£)
depends only on the class [£] in colour(P). and on the GS(P)O orbit through (A, E, ¥).
It is interpreted as the colour charge in the physical state p(A, E, ¥) in the direction of
[€] € colour(P). It should be noted that in the decomposition (3.7) of gs(P) the second term
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g is not an ideal. Hence, the notion of the ”constant infinitesimal 'ga.uge transformations”
makes invariant sense only as an element of the quotient algebra colour(P), [9].

‘Appendix : Decompositions and estimates for Beppo Levi s'paces

Let S denote the Schwartz space of smooth fast falling test functions on R3. The
Fourier transformation X — F(X) is a homeomorphism from S to S which extends to a
‘ umtary map from L2(R? ) to L2(R3). Given a vector field X € S, one has

d1vX )p) = Zp,}'(X ,- and f(cur}Xl-— Ze”lpl (X )(p) (A1)
. t,j=1 . :

E ThlS implies a sphttmg of F (X )=F (X Yt F (X ) ‘with the components glven as

FX)Ep) =

L F(divX)(p)  and f-(X)T(p) —2><}'(curlX)() (A.2).
|| . lp| j

The Helmholtz decomposmon X = X Ly XTis deﬁned v1a inverse Fourler transformatlon
: /

Xt=rYFX)") and XT=F" (]-‘(X) ) | (A.3)'

on S. It extends to a decompbsition for vector fields in L2(IR3). Mo_reover (A.2) implies .
that ' ' )

IXE0e = [ (4 18P) 1700 o) s

k—1 , k=1, 7. ' . |
< [ IFCORR P+ [ (1417 F i @) Pp (A
S IX s+ X e )
for £ > 1. Similarl_y‘ ' - | , R |
1XT e < DX Npocs + Hewrl X s - (45)

In order t6 solve the Laplace equation on IR® one needs to introduce the we1ghted
“Sobolev space HX (R? ,V) and H2 o(IR®,V), where V is a finite dimensional vector space. -

With the weight function p = /1 + |a:!2 these spaces are deﬁned as the respective com-
pletions-of CO (IR3,V) in the norms : :

Ilgllifg.l :=/ Ip g|2d3x+2/ 1ajg| dsz  and | | - (48)
ol = [ 1™ g|2d3m+z / |p-1agg|2d3:c+ 3 / 04591753
' ' . ' j,k=1
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By this definition, the derivatives are continuous as maps 8; : H2,(IR3,V) — HL,(R3,V).

The space H!,(IR?,V) does not contain the constants, since for all c € V

lel%s = lef? /}R pdm=oo fe#0. (A7)
Let BLy(L2(IR3,V)) be the first Beppo'L‘evi space of V-valued distrlbutlons which

have a square integrable gradient, [7] The following result can be found in a paper of
Aikawa [8]: '

Lemma A.1 : o O -
The space BLI(L2(R3 V)) can be topologized by the norm

lglls: = /D lgldaz + lgrad gllzs . (48)
. 1 . ) .

It has a direct sum décompositi_on _ |
BL(L*RV))=Di@V (A9

where V is considered as the space of constant functions from R> to V and D, is
the closure of the space C(R3,V) of smooth compactly supported functions in the
topology of BL1(L?(IR3,V)) given by the norm (A.8).

The intersection of k£ Beppo Levi spaces we denote by

k- ' .
B*(IR3,V) ﬂ L2 R%V)).  (A.10)
_ThiS's‘p_acé is topologized b?)/-qthe norm
lgllae = /D lglds + lgrad gll s o a
‘"Theorem A.2 ' o C
(i) The space B’“(R3 V) sphts into - |
B (]R3 V)=DreV (Al

~ where Dy, is the closure of the space C$°(IR?, V) of smooth compactly supported -
functions in the topology given by the norm (A.11). Each g e Bk(R3 V) uniquely
decomposes into

g=go+tcg where . goei?_’“ and ¢, €V . o (A.13)
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(ii) The space B*(IR3,V) is a Hilbert Space with the scalar product
" < f,g >> g =<K cf,cg Sy + <K p” Lt 07 g0 >> 12 + < grad f,grad g >> g 1(A 14)

- where <, >y and << >>p; denote the scalar products in V and H7(IR3, V).

(iii) For k > 2, each f € B¥(IR®,V) is continuous and C*~2-differentiable. Let g{® denotes
the partlal denva.tlve corresponding to a multi-index a, then ' -

> Ilg(“)lle<CII9|lsk- o (Aas)
lo| <k—2 L

Proof. ‘

- (i) The decomposition (A 12) is obvious by 1ntersect1ng (A. 9) Wlth B’“(ﬂ?3 V)
(ii) On the space C§° (R3 V) the Bl-norm (A.8) is equivalent to the welghted Sobolev
norm induced by the scalar product .

< f,g >>H1 =K p- fo,p “go >>L2 + <« grad f, gradg >>L2 . (A.16)

This follows from the welghted Poincaré 1nequahty for the welght function p, cf. [23], Wthh |
states that there is a constant C >0 such that

foll2s. < Gyllgrad ol < Cylgrad folls -Vfo’€C°f’(IR3,V)-_ (A1)

1 2 ‘ , | :
Z(/bl |f9|d3:v) < (/R |fo|d3a:) < ||foHH1 L (A.18?
 which implies that Dy = HL,(R% V). ' .

The finite dimensional subspace V' C li’l(lR3 V)is spht Therefore the scalar product
on BY(IR3,V) given by (A.16) induces a norm which i is equlvalent to the norm given by
(A.8). The result for B5(JR3,V) then is obvious.’

(iii) To prove the embeddmg result of the Sobolev type consider the Fourier transform

F(g) of g € CP(IR3, V). Then,

' Conversely

inz - , . ’__ 1/2 i N ~1/2
9@) = [ €% F@)p) (P ) (P + ) . (419)
Using the Ca,uchy;Schwarz ineQuality We estimate

9@ < (fro@ia+i )“dp)(/ D™ ). a0

Since [g (1 + |p|?)'~ k,dp < oo for k> 3 and |p.7"(g)(p)|2 = |F(grad g)(p)|? this implies .
that ' ' '

l9(@)|* < Cllgrad gllfye-s < Cligradygllge . (A21)
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This shows that each f € B* ('R'B, V)is continuous and uniformly bounded. For the higher
order derivatives the argument applies correspondingly. - 7 Q.E.D.

Lemma A.3
Let f and g be maps from IR3 to normed vector spaces and f - g any pointwise
multiplication with values in a normed vector space. If f € lS”“(]R3 V) and k > 2, the
followmg estimates hold : : '

||f-gt|H1sclufllzekug'um- Yge H(R3W), = (A22)

If-gllae < Caollfliseliglles Vg€ HX(R? W), - (A23)

1f -gllas < Callfllsliglss . Vi€ B(R®, W) . (A24)

Proof. S Co
By Theorem A.2, f € B’“(]R3 V') implies that |||z is finite, and hence -

I£- 9|1L2<l|fl|L°°||9||L2 VgeH'(R®W). - (A25)

' Wlth an approprlately defined pointwise product - on the right hand side we have ‘

grad (f 1 g) = grad (f)-g + f -grad (). (A.26)
Iff.eBk(JRi’g_V.) then grad (f) € HY(IR?3, )and ' o
lgrad (£) - 9||L2<l|gradf||H1||g|lH1- (A2

Together W1th (A 15) and (A. 25) this implies that

7 - glla < ||f||L°°(”g||L2 + Ilgradglle) + ”gradf”H1”9“H1 < Cl]|f”6’°“gHH1 ; (4-28)
which proves (A.22). lefer_entlatmg (A.26), we get \ | ‘
Dgrad (f ) = Derad (f) g+2gad (f) -grad (g) + f - Dgrad(g) .~ (A.29)
" Therefore, _for- g € HY(R?, q;) | |
D grad(f Pllzz < || D grad fllz2llgll s +2 |grad f |z llgllar= + ||f||L°°||QHH2 - (A.30)
k'Wlth (A.22) and (A 15) this implies that
If - gllaz < Callfllseligllar + 3 llgrad fll s flgl a2 + ”f||L°°||g”H2 ; (A.31)
; Wthh proves (A. 23) Finally the estimates above yleld ’ |
1F ol < Wl | loldse + lradglse + lngradgHm) + 2llgrad 1 [lgrad gl
 tlglle=(leradgl e + ||Dgradg||Lz> . (am)
Since ||fHLoo < C||f||32 thls proves _
A gl < Callflselgllen - (439)
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For k > 2 the est\i'mate (A24) is shown accordingly. x N " Q.E.D.
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