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GAUGE SYMMETRIES

üF AN EXTENDED PHASE SPACE

FüR YANG-MILLS AND DIRAC FIELDS

Günter Schwarz'" and J~drzej Sniatyckit

Abstract

We identify an extended phase space P for minimally interacting Yang-Mills and Dirac
fields in the Minkowski space. It is a Sobo~ev space of Cauchy data forwhich we p~ove the
finite time existence and'uniqueness of the evolution equations.

We prove that the Lie alg~bra,gs(P) of all infi,nit~simal gauge symmetries of P is a
Hilbert-Lie algebra, carrying a ~eppo Levi. topology ..The connected group GS(P) of the
gauge syrrimetries generated,by gs(P) is proved to be a Hilbert-Lie group.acting properly
in P.

The L.ie algebra gs(P) has a maximal ideal gs(P)o. We prove that the a:ction in P of
the connectedgroup GS(P)o generateä by gs(P)o is proper and free.The constraint set is
shown to be the zero level of the equivariant momentummap corresponding to the action .
of GS(P)o in P. . 1It \ . . . .
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1. Introduetion.

Gauge invariance is the most fundamental feature of Yang-Mills theories. The gauge
transformations preserving the extended phase space, called here gauge symmetries, give
rise to the conservation laws and the constraints. Other gauge transformations intertwine
equivalent Hamiltonian descriptionsof the theory. _' .

An extended phase space is aspace of Cauchy data which admit the existence arid the
uniqueness of(~nite time) solutions of the evolution'equations of the theory. For such a '
space of Cauchy data the space of solutions of the field equations iscompletely determined
by the constrairit equation.,

The aim of this paper is to study. the gauge symmetry group for minimally interacting
Yang-Mills and Dirac Helds. We study the' Yang-Mills-Dirac system over the Minkowski
space M4 = IR xIR 3 with a compact struCture group G, which is embedded in the space
M:of k x k matrices. Let {Ta} be a basis of the structure algebra 0), and [Ta, Tb] = f~bTc
the Lie bracket. The usual (3+ 1) splitting of space-time yields a splitting of the Yang-Mills
field A~ = (cI>,A) into the scalar potential cI>and the vector potential A = Aidxi. It leads
to a representation, of thefield strength F~v in terms of the"electric" ,field E and the
"magnetic" field .

B= curlA + [Ax,A]. (1.1)

We use theEuclidean 'metric in IR 3 to identify vector fields and forms, and x to denote
the cr9ssproduct. The fieldequations split into the evolution equations

ßtA = E + grad cI>- [cI>,A] ,

,ßtE =-curlB - [Ax, B] - [cI>,E] + J ,
ßtw = _,/°('yjßj + im +,j Aj + ,°cI»w ,

and the constraint equation
div E + [A;E] = JO •.

(1.2)
(1.3)
(lA)

(1.5) .

Here 'A, E, and Bare treated as time dependent O)-valuedvector fields on IR 3, a~d I]! is a
time dependent spinor field with, values in the, space VG of the fundamental representation
, of G. Moreover [A; E] ~eans the Lie bra~ket contracted over the vector indices, and

(1.6)
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The sca~ar potential cI>does not appear as an independent degreeof freedom in (1.2)
through (1.4). It canbe fixed for all times by the choice of an appropriate gauge trans-
formation. The mos~ common gauge fixing for studies of Yang-Mills fields as a dynamical
system is the temporal' gauge' Ao =, 0, cf. [1] and [2]. This leads to difficulties with the
linearized equations, disClissed in detail by Eardley and Moucrief, who had to ,modify the
dy'namical system off theconstraint set, [3]. In order to he able deal with the'evölution
equations also off the constraint set we fix the gauge differently by demanding, "l. ,.

ßcI> = -div E ~nd r p-4 <Pd3x '= 0 where p = Jl + Ix12. (1.7)
JJR3 .
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We chüüse the extended phase space

. P = ((A,E,w) E H2(IR3,0)) x H1(IR3,0)) x H2(IR3, Va)} , (1.8)

(1.10)

where Hk(IR3, 0)) and Hk(IR3, V) are Sübülevspaces üf the O)-valuedfürms and Va-valued
,spinürs, respectively, whieh are square integrable üver IR 3 tügether with their partial deriv-
atives up tü ürder k, [6]. Für the Cauchy data in P we prüve thefinite time existence and
the uniqueness üf classieal sülutiüns üf the eVülutiün equati~ns. The mathematically im-,
. pürtant prüblem üf the infinite time existence üf sülutiüns, cf. [3-5], is beyünd the scüpe
üf this paper. We prüve also. the füllüwing regularity result. If the initial data für the
~Yang-Mills-Dirac system are in

pk ={(A,E, w)IA E Hk+l(IR3,0)), E E Sk(IR3,0)),W EHk+1(IR3, Va)} (1.9)

then the sülutiün curve is in pk,.' .

Having established that P is an admissible extended phase space, we can turn tü
the main übjective üf this paper, that is tü thestudy üf the grüup üf time independent
gauge transfürmatiüns which preserve P. We denüte by. gs(P) the Lie algebra üf all time
independent infinitesimal gaugetransfürmatiüns which preserve P. We prüve that it 1S a'
Banach-~ie algebra whieh carries a Beppü Levi tüpülügy [7]with the nürm

1I~1Il33 :='11 l~rd3X + 11grad ~IIH2 ,

where D1 denütes the unite ball in IR 3 centered at 0..We shüw that this tüpülügy is induced
by a scalar prüduct, so.that gs(P) is a Hilbert-Lie algebra. This alge~ra admits a splitting

\

gs(P) =gs(P)o .EBO) . (1.11)

where the sub algebra gs(P)o is the cümpletiün üfthespace üf smoüth cümpactly suppürted
,maps ~ : IR 3 -+ 0) in the tüpülügy given by (1.10), cf. [8].

We cünstruct a cünnectedHilbert-Lie grüupGS(P) üf gauge symmetries für the Yang-
Mills and Dirac fields in the phase space P withLie algebra gs(P). It carries the unifürm
tüpolügy induced by tüpülügy üf gs(P). We prüve that the actiün üf GS(P) in P is cün-
tinuüus and prüper. .

The extended phase space P is weakly, symplectic. The actiün üfGS(P) ün l? is
Hamiltonian with an equivariant mümentum map :1. The vanishing üf the restrictiün üf
:J tü the sub algebra gs(P)o gives rise tü the cünstraintsüf the theüry. Müre precisely, if
C is the cünstraint set üf the theüry, i.e. the set üf all (A, E, w) E P satisfying Bq. (1.5),
then subalgebra gs(R)o can begiven a geümetrie interpretatiün as

gs(P)o = {~~ g~(P) I'(:J(A,E, w)I~)' 0 V(A,E,w) E C} . (1.12)

We cünstructa cünnected Banach-Lie subgrüup GS(P)o of GS(P) with Lie algebra gs(P)o
and prüve that. it acts freely and prüperly in P. Cünversely, the constraint set is shüwn tü. ,
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be the zero level of the moment um map JO for the action of GS(P)o in P,

C :- Jo-1(0) . (1'.13)

It follows £rom Eq. (1.13) that the' natural choice forthe reduced phase space is the space
P = C/GS(P)o of GS(P)o orbits in C. If C were a submanifold of P, the reduced phase
space P would be a symplectic (Hausdorff) manifold with an exact symplectic form. The'
structure of the constraint set and of the 'reduced phase space will be studied elsewhere.

This paper is organized as follows. In Section 2 we prove the (finite time) existence and
uniqueness of solutions of the evolution equations in P under our gaugE;condition. Section
3 is devoted to the study of the gauge symmetry group; In Appendix A we consider some
decomposition results and estimat'es for Beppo Levi spaces.

The authors would like to thank L. Bos and U. Wernick for useful comments on
decompositions of Beppo Levi spaces.

2. Existence ahd uniqueness results.

For any vector space V, let Hk(IR3
, V) be theS6bolevspace ofV-valued vector fields

on IR3. Each each X E Hk(IR3, V) allows for a Helmholtz decomposition
I

X = XL + XT such that curIXL = 0 and div,XT = 0 . (2.1)

,(2.2)

The components XL E Hk(IR3, V) and XT EHk(IR3, V) are uniquely determined by-
div X and curlX, and called the longitudinal and transverse.components of X,respectively.
For details see the Appendix. Splitting the gauge fields in this way we obtain '

ßtAL = EL + grad cI> - [cI>, A]L ,

ßtEL = -[Ax, B]L - [cI>, E]L + JL ,
T T TßtA = E - [cI>, A] .' ,

ßtET = -curlB - [Ax, B]T - [<p, E]T + 'JT.

In order to prove that the gauge condition (1.7) can be satisfied for each field EL we
need the Beppo Levi spaces BLm(L2(IR3,Oj)), which are defined as the spaces of Oj-valued
distributions on IR 3 with square integrable partial derivatives of order m, cf. [7]. For the
intersection of k Beppo Levi spaces we write,

k

ßk(IR3,Oj):~ nBLm(L2(IR3,Oj)) ','
m=1

These spaces are topologized by the norm

4

(2.3)

(2.4)



Proposition 2.1
For eaeh E E H1 (IR 3, q]) there exists a unique sealar'potential <I>E ß2 (IR 3, q]) obeying
the gauge eondition

/
grad <I>="- EL and r p~4 <I>d3x= 0 where p = '\11 + Ixl2

JJR3 .
. /

. If E E Hk(IR3,q]), one has <I>E ßk+'l(IR3,0)) and

11<I>II~k+l':S;CIIEII~~ .

(2.5)

(2.6)

(2.7)and

Proof.
Let H~2(IR 3,0)) and H:"'l (IR 3,0)) denote the weighted Sobolev spaees with respeet

to the weight funetion p, cf. (A.6). It is shown in [10], that the Laplaee operator ß :
H~2(IR3,0)) - L2(lR3,Ö)) is Fredholm, onto and has kernel ker(ß) = 0). Therefore, for.
each X E L2(IR3,q]), there exists a.unique <I>xE H~2(1R3,q])suehthat .

'.r p~4(<I>x' ~)d3X' O. V~ E 0) .
JJR3

By Fredholmness .of ß thereexists a eonst~mt C independent of X such that

(2.8)

qiven E E H1 (IR 3, q]) we eonsider XE = -divE E L2 (IR 3, 0)). The eorresponding
solution of (2,7) we denote by <I>E. Then the veetor field YE := grad <I>E+ EL is harmonie,
that is eurl YE = 0 and div YE ~ O. By the estimates (A.Lt) and (A.5), . .

3

L IlajYElli2 :S;lleurl YElli2 +lIdiv YElli2 ,
j=l

(2.9)
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shown.in [12] for bounded domains. The 'proof literally generalises to IR3 if one takes the
estimates of Lemma A.3 and (2.6) into account. ,

Using the gauge fixing (2;5) and linearizing the system given by (2.2) and (1.4) we
obtain

(2.12)

(2.13)

(2.14)

.'We shall study these linear equations in the Hilbert spaces'

HL= {(AL,EL) E H2(IR3,0)) x H1(IR3,0))} ,

HT = {(AT, ET) E H1(IR 3,0)) x L2(IR 3, O))} ,

H.Q = {\lf E L2(IR3, Vc)} .

"Proposition ,2.2
The operator T, defined by (2.13), with doma,in

DT = ((AT,ET) E H2(IR3,0)) x H1(IR3,0))}

is the generator of a continuous group exp(tT) of transformations in HT.

Proof.
~y standard. arguments, the operator

T = [1 ~] with domain H2 (IR 3, 0)) x H 1(IR 3,0))

is dissipative, and satisfies

(2.15)
(2.16)
(2.17)

(2.18)

(2.19)

! '

range(T- >-'I) =' H1(IR3,0)) x L2(IR3,0)) and ker'(T - >-.I) ={O} (2.20)

für >-. > O. In fact, T is the infinitesimal generator corresponding to the wave equation,
[13]. We have to show that exp( tT) pres'erves the Hilbert space HT of transverse fields.
Given (X'T, yT) EHT weconsider (A, E), satisfy#ing the equation ' ' '

Since ß maintains the Helmholtz decompositiori A = AT + AL ,'this implies that

(AL, EL) E ker(T,- >-.I)= {O} .

'6
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Therefore, since T = fIDT, we have

range(T - >'1) = range(f - >.1) I'nT = HT . (2.23)

The Lumer-Phillips theorem implies that T generatesa one parameter grbupof continuous
transformations exp(tT) in HT' Q.E.D.

Proposition 2.3 \
(i) The operator V, with domain

(2.24)

is the generator of a continuous group of (unitary) transformations exp(tV) in HD.'
(ii) exp(tV) restricts to agroup of continuous transformations in'H2(IR3, Ve).

Proof.
(i) It is known, [14], that the ope~ator V with dorflain DD is skew-adjoint in Hv-. Thus,
V generates a group exp(tV) of unitary transformations in HD'
(ii) The operator V: H1(IR3, Ve) --t L2-(IR3, Ve) is continuous, and its square

V2 = ß - m2 : H2(IR3, Ve) ~ L2(IR3, Ve)

is continuous and elliptic. With the elliptic a-priori estimate this implies that

C11IV2wll£2 ~ .llw[IH2 ~ C2 (11V2WIIL2 + IlwllHl) .
Moreover, fromthe identity ''''/'l = _8ik + tbi,/'k]'we obtain

3 .

IIVwlih =L 118jwll7,2:'-' A(w) +m211wll7,2 ,
j=l

(2.25)

(2.26)

(2.27)

where

(2.28)

Integration byparts shows that A(w) vanish~s for all win COO(IR3, Ve) nH1(IR3, Ve).
, Thus, by a density argument, A(w) = Ofor all W E H1(IR3, Ve). Therefore

(2.29)

and
(2.30) .

- Since exp(tV) is a unitary operator,which commutes on the domain DD with its generator
V, cf. [15]' we can estimate for all W E H2(IR3,Ve) : .

. ~

11exp(tV)wIIH2 ~ es (11v2 exp(tV)wIlL2 + IIVexp(tV)wIIL2)

)~.= Cs (IIV2w 11£2 + IIVw 11£2) ~ C611 w IIH2 .

7
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Hence exp(tV) acts continuously in the Hilbert space H2(lR3, VG).
'Corollary 2A

The linear operator

Q.E.D.

(2.32) ,

with domain D = H£ XDTXDv, corresponding to the dynamical system (2.12), (2.13)
~and (2.14), gener~tes a one parameter group exp(tS) of continuous transformations
in H = H£ X HTX Hv. The space .

_ (2.33)

(2.35)

is preserved by the action of exp( tS) in H. The restriction of exp( tS) to P is a
continuous one parameter group U(t) of continuous transformations in P,

U(t) = exp(tS)lp : P ~ P such that (A, E, '11) 1-+ U(t)(Ao, Eo; '110) (2.34)

and U(t}(Ao, Eo, '110) is the unique solution of the linear evolution equations (2.12L
(2.13) and (2.14) with initial condition (Ao, Eo, '110).

Having solved the linearized problem, we can rewrite the icoupled nonlinear equations
(1.2), (1.3) and (1.4) in anabstraetform as / - ,

~(A, E, '1I)t = S(A,E, '1I)t - F((A, E,'1I)t).

Here F descril;>es,the nonlinearity of the theory and is given by

where
{

F1(A, E, '11) : (0: [Ax., BJ j curl [Ax, A]; 0) .
F2(A, E, '11) - (0, -J, I I Aj '11) (2.36)
F3(A, E, '11) = ([<p, A] ;\ [<p, E] ; [<p, '11])

In order to solve the system (2.35) we apply themethod ofnonlinear semigroups. It requires
the knowledge of some analytic properties of the nonlinearity.

Proposition 2~5 .
The nonlinear part of the Yang-Mills-Dirac system, given by Eq. (2.36),is a map
F : P -'---+ P. Itis ~ontinuous and smooth with respect to the norm

(2.37)

Proof.
, The continuity and smoothness was proved for the component F1 in [3], and for the

minimal coupling component F2' in [16]. The proof given there under the bag boundary
conditions iiterally generalizes tolR 3. For the component F3 we get with the estimates of
Lemma A.3 and (2.6)

IIF311~'= 1I[<p,A]llt2 + 11[<p,BIll tl + 1I[q;, '1I]llt2.~ CII<pII~2(11AIIH2+ IIEllHl + 11'lJIIH2)2_
~ C'IIElltlll(A,E, 'lJ)II~ . (2.38)
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This proves the continuity of :F3 : P -+ P. Ta showdifferentiability we write (a, e,'lj;) for
an arbitrary infinitesimal variation and eyaluate

D:F3(A, E, \l1)(a, e, 'lj;) = ([</>, A] +[<1>, a]; [</>,E] + [<1>,e] ; [</>, \[I] + [<1>,'lj;]) . (2.39)

where I::i.</>=~dive. Sinee (a,e,'lj;) are ofthe same Sobolev dass as(A,E,\l1) we e1:m
estimate similarly as in (2.38) .

(2.40)

This proves that :F3 : P -+ P is differentiable. Higher 'order differentiability is shown
aeeordingly. Q.E.D.

Th~ result '.of Proposition 2.5 enables us to infer the existenee and uniqueness of
solutions of minimallycoupled Yang-Millsand Dirae equations from the eorresponding
results for nonlinear semigroups, cf. [171 : .

Theorem 2.6
.For eVEiryinitialeondition (Ao,Eo, \l10) E P there exists a unique maximal T E (0,00]
and a unique eurve (A(t), E(t), \l1(t)) in C1([0, T), P) satisfying the Yang-Mills and
Dirae equations (1.2), (1.3) and (1.4). If T < 00, then

(2.41)

Observe that the time evolution of the Yang-Mills-Dirae system diseussed here gives
rise to loeal diffeomorphisms of the phase spaee P. To see this, we eonsider the map

(A, E, \l1)0 1----+ (A, E, \l1)t = U(t)(A, E, \l1)0+ it
U(t - s):F«A, E, \l1)s)ds .

By differentiation ofthismap in the' dlreetion of a veetor (a, e, 'J/J) in P we obtain
•

(A, E, \l1)0,(a, e, 'lj;)) 1----+

U(t)(a,e,'lj;) +it
U(t - s)D:F«A,E, 'I!)s)(a,e,'lj;)ds,

(2.42)

(2.43)

.. which is eontinuous, sinee :F is smooth. A eorresponding argument for the higher derivatives
impliesthat the time evolution (2.42) is smooth. Sinee the dynamies is reversible, this shows '
that.it is a loeal diffeomorphism. It sftould be emphasized that this diffeomorphism is not
a sympleetomorphism. To obtain a Hamiltonianevolution one hag to modify the gauge
eondition of-Proposition 2.1, cf. [181. .

If the initial eonditions for the Yang-Mills-Dirae system are more regular, say in
. • r'

pk = {(A, E, \l1)IA E Hk+1(1R3,0)), EE Hk(IR3,0)), \l1 E 'Hk+l(IR3, Vc)} (2.44)

with k ~ 1, then the time evolution maintainsthis regularity. To see this, note that .

(2.45)



is thedomain of the k-th power of the öperator 7, Moreover, by repeating the arguments
of Proposition 2.3(ii), it follows that the domain of Vk is

I

. (2.46)

It is straight forward to show that :F : pk ~ pk is continuQus and smooth. Therefot~ we
can condude with [19] :

Corollary 2.7
For every initial condition (Ao, Eo, Wo)E pk the solution of Eqs. (1.2), (1.3) and (1.4)
is a 'curve (A(t), E(t), W(t))in C1([0,T), pk). .

3. Gauge symmetries.

The group GS(P) of gauge symmetries öf.the Yang-Mills-Dirac system in the phase.
space P is the connected group of gauge transformations .

(3.1)

where r.p is a map from, IR 3 to the structure group G, which preserve P. The infinitesimal
action of the elements ~ of the Lie a,lgebra gs(P) of GS(P) is given by

. where
D A~ = grad~ + [A, ~J

(3.2)

(3.3)

is the covatiant differential of ~ with respect to the connection defined by A.' Since the'
Yang-Mills potentials A in P are of Sobolev dass H2(1R3,q]), i~ follows that ~ Egs(P)
only if grad ~ E H2 (IR 3, q]). This suggests the following : .'

Proposition 3.1
The set of infinitesimal gauge symmetriesof P is the Hilbert-Lie alge,bra

(3.5) .

"

The scalar product in gs(P) isgiven by (A.14). The action of gs(P) in Pis continuous.

Proof.
The estimates of Lemma A.3 imply that

.11 [A,~HIH2 :::; c II~lIB3 IIAIIH2 , IlfE, ~lllHl :::; c IiellB311EIIHl
and )I~w1IH2 ::; c 11~IIB3IIwIIH2

for ~ E ß3{IR 3, q]). Therefore the infinitesimal action (3.2) of each ~E ß3(IR 3, q]) preserves
P. This implies that ß3(IR3,q]) ~'gs(P). By the argumen~ above (grad~) has to be in
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H2(IR 3,0)) in order to have ~ E gs(P). With the definition of 83 (IR 3,0)), cf. (2.3), this
proves (3.4). Moreover, .

11[~,7J]IIB3 ~ 1I~IIB3117JIIB3 (3.6)

which proves that gs(P) is a Banach-Lie algebra; Since B3(IR 3,0)) is a HÜbert space by
Theorem A.2, gs(P) is aHilhert-Lie algebra. Finally, the continuity of the action of gs(P)
in P follows from the esti;mates (3.5). . Q.E.D.

3 . 3'Let C~ (IR , 0)) denote the space of all smooth maps ~ : IR -t 0) Which are constant
outsidea'compact set, and let CÜ(JR3, 0)) be the subspace of compact1y supported maps.'
From the decomposition result~ of [8] we infer that _

gs(P) = gs(P)o EB 0) , (3.7)

where gs(P)o is the closure ofCÜ(IR3,0)) in the topology given by the norm (2.4). By
Theorem A.2, gs(P)o C CI(IR 3,0)), so that all infinitesimal gauge transformations in
gs(P) areCI-maps from IR3 thestructure'Lie algebra 0). Moreover C~(IR3"O)) is dense
in gs(P), cf. Lemma A.l.

The topology of the gauge group on non-compact manifolds with a Sobolev-Lie algebra
has been ,studied in [1] and [20]. Here we adapt the approach of [1] -to our case of a 83

Hilbert-Lie algebra. The set C~(IR 3, G) ,is a:group under pointwise multiplication with
the identity denoted by e. If we consider G as a subset of the space Mt of k x k matrices,
C~(IR3, G)' C C~(IR3, Mt) and it can be topologized by the norm 1I.IIBa,given by (2.4).

One parameter subgroups of C~(IR3,G) are of the form exp(te), where ~ is in the
dense subalgebra C~(IR 3,0)) of gs(P). The topology of gs(P) induces a uniform structure
in C~ (IR 3, G), with, a neighbourhood basis at e consisting of the sets

withE> 0 . (3.8)

In order to show that the completion of C~ (IR 3, G) in this uniform structure is a topo-
logical group, relatively to the canonically extended multiplication, we need to show :

Proposition 3.2
The mapping exp(g) ,f-o-+ exp(ft:I is uniformly continuous relative to Ni. That is, far

. every E > 0, there exists b > 0 such that, for every exp(e) E: NI,

Proof.
Let r.p E NE C C=(IR3, Mt) then

= 1
r.p = exp(e) == I>,c ,n.

n=O

and = n-I

gradr.p = grad exp(~) =LL ~e (grad 0 ~n-k-I .
n.

n=1 k=O

11

(3.9)

(3.10) '.

(3.11)
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Using the estimates of Lemma A.3 this implies that
I

(3.12)

(3.13)

and
00 '.

11<p1183~ L A {C11~1183r < eC€ .n.
.n=O ,

Für eaeh ( E gs(P) we then obtain by usingLemma A~3onee more:

11 exp(()-I ( exp(~)1183'~ C2l1exp( -0118311 (118311exp(~)1183 < C2e2C€11 (1183. (3.14)

This .proves (3.9) with 8.= €(CeC€)-2. Q.E.D.
By a result of' [21]' Proposition 3.2 irilplies that the eompletion of C;;o (IR3, G) in

this uniformstrueture is a topologieal group, relatively to the eanonieally extended mul-
tiplieation. It is a Hilbert-Lie group, whose Lie algebra is eanonically isomorphie to the
Hilbert-Lie algebra g$(P). In view of this we set:

Definition 3.3
The Hilbert-L'ie group GS(P) of gauge symmetries is the completion of the group
C;;o(JR3, G) in the uniform structure defined by the topology of its Lie algebra gs(;P).
The exponential mapexp : gs(P) -+ GS(P) maps the unit ball in gs(P) onto the'

neighbourhood of identity in GS(P) given by the completion NI of NI' Since G iscon-
nected, it follows that C;;o(IR 3, G) is connected, and GS(P)is connected: Therefore, GS(P)
istheunion of the sets

Ni = {<PI '<P2 ....• <Pm 1<Pi ENd. (3.15)

The inequality (3.12) together with (3.15) iinplies that, f~r each <P E GS(P),

, grad <po E }{2(IR 3,0) . (3.16)

Mor,eover, since G iscompact, it is bounded in M:, and the Sobolev embedding theorem
impliesthat each <pE GS(P) is.a boundedeontinuous map. H~nce, 11<p1183is finite for every
<P in GS(P). We can give an alte:r:native characterization of the topology of GS(P).

Proposition 3.4
A sequence <Pk E GS(P) converges to<p in GS(P) if and only if the sequence of niaps
<Pk : IR 3 -+ G converges to <P in the topology defined by the norm 11. 1183.. ' ,

Proof.
Suppose that <Pk converges to <P in the uniform topology of GS(P).For sufficiently

'large k,
. (3.17)

where the sequence ~k 'converges to zero in the topology of gs(P).'The estimate (A.24)
implies that . ., . '.

00 1
lI'Pk - <p1183::; CII<p118311L n! (~k)n"8~ ::;CII<p118311- eCllülls3! . (3.18)

- n=l,' .

12



(3.20)

For ek - 0 in the norm topology of gs(P) the right hand side' converges to zero. Therefore
<Pk - <P in the topology defined by 11. 1183.

Conversely, s~ppose that II<pk- <p11l33- O. Then

IJe - <P-1<Pk11133::;.ek (3.19)

with 'ek -0 as k goes to infinity. Eq. (3.17) yields

00 ( .-1 )n
ek = log(cp-lcpk) =- L e - <P CPk

, ' n=l n ,

for k sufficiently large. Therefore, by (A.24),

(3.21 )

, (3.24)

This implies that ek - 0 in the topology of gs(P), and hence <Pk - cP in the uniform
topologyof GS(P). Q.E.D.

Theorem 3.5
The action of GS(P) in P, given by (3.2), is continuous and proper.

Proof. '
Let !.pn be a sequence' in GS(P) converging to cP, and Pn = (An, En, Wn) a sequence

in P converging to P = (A, E,' w). From (3.2) we obtain by using the estimate (A.23) and.
the fact that the inversion <PÄ cp-1 in GS(P) is continuous :

11(<PnAncp;;:-l + <Pngrad cp;;l) -:-- (cpAcp-1 - cpgrad cp-1) IIH2 (3.22)

::;IICPnAn<p;;l ~ CPnAcp;;111H2 + IICPnAcp;;l ~ CPnAcp-111H2 + IICPnAcp-1 - cpAcp-111H2
+II<Pngrad cp;;l - CPngradcp-11IH2+IICPngrad cp-1 - cpgrad cp-111H2

t '. '. •

::; C(IICPnll~31IAn-AIIH2 + (1ICPnlll33-t IIcplll33)IIAIIH211CPn- cplll3~

+IICPnlll331IgradCPn-'grad cpllH2 + IICPn ~ cplll331lgradcp11H2).

Writing symbolically CPP for the action of cP E gs(P) on pEP, and (CPP)A for its A
compönent, this implies that

11 (<PnPn)A - (CPP)A IIH2 ::; c' (11An - AIIH2 + IICPn- <p-1 IIl33) , (3.23)

since IICPnlll33is bounded. Correspondingly weestimate with (A.22) and (A.23),

11(<PnPn)E ~ (CPP)ElIHl ::; C'(IIEn- EllHl + l<p~- cp-111l33)

11(<PnPn)w - (cpp)wIIH2 ::; C'(IIWn - wIIH2 + IICPn - cp-111l33).

Therefo"re IICPnPn - cppllp - 0 as n - 00, which proves the continuity of the action.

13
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Let Pn = (An, En, '!In) converge in P to P = (A, E, '!I), and <Pn be a sequence in
GS(P) such that <PnPn convergesto pEP. To prove properness ofthe action it is tö show
that <Pn converges to <P E GS(P) and p = .<pp. 'The argument used in [16] for compact.
domains implies that, for every compact domaiJiM c IR 3, the restrict~ons <PnIM converge
in H2(M} to a map <PM E H2(M). Since, M ~ M implies that <pIM restricted to M
coincides with <PM, it follows that there exists a continuous map <P : IR 3-+Gsuch that
cf;M is the restriction of ;p to M. The proof that grad <Pn converges to grad <P in the H2
topology is the same as in the compact case, [16]. Hence, 'Proposition 3.4 implies that <Pn
'converges to <P in the uniform topology. ' ". Q.E.D.

Let Cü( IR 3, G) be the subgroup of C~ (IR 3,G) consisting of maps <p : IR 3 -+ G'
which are the identity in G outside a compact set. Its closure in the uniform topology
discussed abovedefines a closed subgroup GS(P)o of GS(P}. The subalgebra gs(P)o of
gs(P), defined by (3.7'), is an ideal and hence GS(P)o is anormal subgroup of GS(P).

Proposition 3.6
GS(P)o is a Hilbert-Lie group with Lie algebra gs(P)o. The action of GS(P)o inP
is free and proper. .

Proof.
To show that the infinitesimal'action is also free suppose that ~o E gs(P)o has a fixed

point (A, E, '!I). By(3.2) .
. (3.25)

that is, ~o is covariantly constant with respect to theconnection given' by A. Since the
... scalar product in 0) is ad-invariant, this implies that ~o isconstant, This contradicts the
.assumptiori. ~o E gs(P)o, which proves that the action of gs(P)o is free. Since GS(P)o is
connected, every<pE GS(P)~ is of the form

. I

(3.26)

for some ~1', .•. ~n in gs(P)o: Therefore the action of GS(P)o is free.
The result of .Proposition 3.4 implies that the Liealgebra' of GS(P)o is theelosure

of CÜ(IR3, 0)) in the B3 topology. By the decomposition (3.7}this coincideswith gs(P)o.
,Since' GS(P)o is a closed subgrotip of GS(P) which acts properly in P, it follows that 'the
action of GS(P)o in P is proper. Q.E.D.

The extended phase spate P is endowed with aI-form 0 giYEmby

(3.27)

for(a,e,'ljJ)E TP, where E. a = -tr(Ea}. The exterior differential w = dOof 0 is a weakly
symplectic form on .P, that is w is non-degenerate and closed, but the induced mapping
p : TP -+ T*P defined by UD (v) = w( u,v) is not onto. Here T*P denotes the cotangent
bundle of P, that is the topological dual of the tangent bundle TP.

14



.The action of gs(P) in P is Hamiltonian.with the momentum map Jgiven by

(3.28)

Each ~ in gs(~)o is the limit oia sequence ~n of smooth and compactly suppörted elements
of gs(P)o. T~e continuity of the moment um map .1 implies that .

which follows by integration by parts. Therefore, for every~ in gs(P)o, the momentum
(J(A, E,w)I~) vanishes for ~ll (A, E, '11) satisfying the constraint equ~tion (1.5). On the
other hand, if ~ : IR 3 -+ qj is a constant map, then there exists (A, E, W)E C such that
(J(A, E, w)I~) does not vanish. Hence, we have obtained a geometrie characterization of
gs(P)o as

. Let .10 be the restriction of the momentum mappin,g .1 to the subJllgebra gs(P)o.
That is, .1 is themap from P to gs(P)(j such that

•

gs(P)o = {~E gs(P) I (J(A,E, w)I~) = O\f(A,E,W).E Cl:

(Jol~) .. (JI~)

(3.30)

.(3.31)

for all ~ E gs(P)o. It follows from Eq. (3.30) that the constraint set C is contained in the
zero level of .10. Conversely, the vanishing of (Jol~) fcr all smooth compactly supported
maps ~ from IR3 to the Lie algebra qj implies the constraint equations; This follows from the
FundamentalTheorem of the Calculus of Variations and Eq. (3.29). Since the moment um
mapping .10 is continuous and every ~ E gs(P)o is the limit of a sequence of smooth and
compactly' supported elements ~n it follows that the zero level of .10' is contained in C.
Hence, we have proved that . .

C = ..70-1(0). (3.32)

. We define the reduced phase space to be the space P of the GS(P)ö orbits in C,

P = C/GS(P)o , (3.33)

and denote by p .the canonical projection from C to P. Since C is a dosed subset of P and
the action of GS(P)o in P is proper and preserves C, it follows that the quotient topology
in P is Hausdorff. The differentiable structure of P willbe analysed in another paper, [22]..

It follows from Eq.(3.7) that gs(P)ö is an ideal in gs(P) and that the quotient algebra

colour(P) = gs(P)/ gs(P)o (3.34)
,

is isomorphie' to qj. For ~E gs(P) and (A, E, '11) E C, the moment um (J(A, E, w)I~)
depends only ~n the dass [~] in colour(P) and on the GS(P)o orbit through (A, E, 'lJ).
It is interpretedas the colour charge in the physical state p( A, E, '11) in the direction of
[~]E colour(P). It shouldbe noted that in.the decomposition (3.7) of gs(P)the second term
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.'
C!J is not an ideal. Hence, the not ion of the "constant infinitesimal gauge transformations"
makes invariant sense only as an element of the quotient algebra colour(P), [9].

Appendix : Decompositions and estimates for' Beppo Le~i spaces

Let 5 denote the Schwartz space of smooth fast falling test functions on IR 3. The
Fourier transformation X t--tF(X) isa homeomorphism from 5 to 5 which extends to a
unitary rilap from L2(IR3) to' L2(IR3). Given a vector field X E 5, orie has

3

F(div X)(p) = LPiF(Xi)(P)
i=l

3

and' F(CUrlX)l = L CijlpiF(Xj){p) .' (A.l)
i,j=l

, , This implies a splitting of F(X) = F(X)L t F(X)T with the components' given as

F(X)y(p)' l:f2F(diV X)(p) and

l
L

The Heimholtz decomposition X = XL+XT is defined via inverse Fourier transformation, I
XL = F-1 (F(X)L) and XT _F-1 (F(Xf) (A.3)"

on 5. It extends to a decomposition for vector fields in L2(IR 3). MQreover (A.2) implie's
that •

IIXLII~k ' J (1+lpI2)kIF(X)L(p)12d3P

:s J (1 + IpI2)k-1IF(X)L(p)12d3P -+: J (1+ IpI2)k-1IF(div X,(p)~2d3P (AA)

:s IIXLII~k_l + IIXII~k-l

for k 2': 1. Similarly
-IIXTII~k:s IIXTII~k_l + IIcurlXII~k_l . (A.5)

In order 'ta solve the Laplace equation on IR 3 one needs to introduce the weighted 1

Sobolev space H~ 1(IR 3, V) and H:2 (IR 3, V), ""here V is a finite dimensionalvector space.
, With the weight function p = Jl + Ix.12 these spaces are defined as the respective com-

pletions of Co (IR 3, V) in the norms
, 3

IIgllit~.,:= 1,Ip-lgl2d3x + ~ 1,18jgl2d3x and (A.6)

, ' 3 ,3'

IlglI~:'2 := 131p-2g12d3X + L 13 Ip-18jgl2d3x + L 13 18k8jgl2d3x .
IR j=l ' IR ' j,k=l IR '
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By this definition, the derivatives are continuous as maps8j :H:.2(lR 3, V) _ H~1(IR 3, V).
The space H~1 (IR 3, V) does not contain the constants, since for all c E V

}

(A.7)

Let BL1(L2(IR3, V)) be the first Beppo Levi space of V-valued distributions which
have a square integrable gradient, [7]. The following result can be found in a paper of
Aikawa [8]:

Lemma A.l
The spaceBL1(L2(IR3, V)) can be topologized by the norm'

(A.8)

It has a direct sum decomposition
J . ,

(A.9)

where V is considered as the space of constant functions from IR 3 to 'v and 1J1 is
the closure of the space Co(IR 3, V) of smoothcompactly supported functions in the
topoiogy of BL1(L2(IR'3, V)) given by the norm (A.8).

The intersection of k Beppo Levi spaces we denote by

k

Bk(IR3, V):= n BLk(L2(IR3, V)) .
rn=1

This space is topologized by the norm

IIg1161:' 11lgld3X + Iigrad gllHI:-l "

'Theorem A.2
(i) The space Bk (IR 3, V) splits into

Bk(IR3, V) = 1Jkffi V

(A.lO)

(A.ll)

(A.12)

where 1Jk is the closure of thespace Co (IR3, V) of smooth compactly supported -
functionsin the topology given by the norm (A.ll). Bach 9 E Bk (IR 3, V) uniquely
decomposes into

9 = go + Cg where

17

go E f)k and Cg E V .
'.

(A.13)
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(ii) The space Bk(]ß3, V) is a Hilbert space with thescalqr product

«f,g »[31e -« cf,cg »v +« p-1fo,p-lgo »£2 +« gradf,gradg »HIe-l(A.14)

. where «, »vand «, »Hi denote the scalarproducts in V and Hj(IR3,V),
(iii) For k .~ 2, each f E Bk (IR 3, V) is continuous and Ck-2-differentiable. Let g(a) denot~s

the partial derivative corresponding toamulti-index Q, then

L Ilg(a)II£'X):::;C1lgll[31e.
lol$k-2

(A:15)

Proof.
(i) The decomposition (A.12) is obvious by intersecting (A.9) with Bk(IR 3, V).
(ii) On the space CÜ(IR3, V) the BI-norm (A.8) isequivalentto the weightedSobolev .

norm inducedby the scalar product

(A.16)

This follo~s from the weighted Poincare inequaÜty for the weight function p, cf. [23], which
states that there is a constant Cp > 0 such that .

(A.17)

(A.18)

(A..19)

Conversely

l(li Ifol d3x f ::;(JJR3 p-
2
lfol d3xf ::;IIfoll1-:'l '

which implies that VI = H~1(IR 3, V).
The finite dimensional subspace V C B1(IR 3, V) is split. Therefore the scalar product

on B1(IR3,Y)given by (A.16) induces a norm which is equivalent to the norm given by
(A.8). The result for Bk(IR3, V) then is obvious.

(iii) To prove th~ embedding result of the Sobolev typeconsider the Fourier transform
F(g) ofg E CÜ(IR3, V). Then.

g(x) = J eipXF(g )(p) (lpI2(1 -+ IpI2)~~I) 1/2(lpI2(1 +lpI2)k-l) -1/2 d~p .

Using the Cauchy-Schwarz inequality we estimate

(A.20)

Since IJR(1 + IpI2)I-kdp < 00 for k > !and IpF(g)(p)12 = IF(gradg)(p)12 this implies.
that

(A.21)
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This sho~s tpat each I E Bk(IR3, V) is continuous and uniformly bounded. For the higher
order derivatives theargument applies correspondingly. . Q.E.D.

Lemma A.3
Let land 9 be maps from IR 3 to normed vector spaces, and I .9 any pointwise
multiplication with values in a normed vector space. 1£ I EBk(IR3, V) and k 2:: 2, the
following estimates hold :

111. gliBI :s; C11lflliv, IlgliHI
111. gllH2 :s; C211/11ßkIIgllH2
11/ ..gIIßk :s; C311fllßkllgllßk .'

Vg E H1(IR3, W) ,
V gE H2(IR3, W) ,
V11 E Bk(IR3

, W) .

(A.22)
(A.23)
(A.24)

Proof.
By TheoremA.2, I E Bk(IR~, V) implies that II/II£<><>is finite, and hence

1II . gll£2 :s; 11111£')()Ilgll£2 . V gEHl (IR 3, W) .

With an appropriately defined pointwise product ~.on the right hand side we have'

grad (I ~g) .:-. grad (I) . 9 + I .grad (g) .

1£ I E Bk (IR 3, V) then grad (I) E'H1(IR 3, V) and

Iigrad (I) . gll£2 :s; 11grad IllHIllgliHI .

(A.25)

(A.26)

(A.27)

Together with (A.15) and (A.25) this implies that

111. gllHI :s; 11/11£<",(1Igll£2 + Iigrad gll£2) + IlgradJIIHIlIgIIHI :::;Cdl/lisk IIgIlHI, (A.28)

which proves (A.22). Differe~tiating (A.26), we get

D grad (I. g) :..- D grad (I) .9 + 2 gnld (I) . grad (g) + I . D grad (g) . (A.29)

- Therefore, fo~'9 E H2 (IR 3, OJ),

IID grad (I. g)lI£2 :s; liD grau IIIl,211gllH2 + 211gradfllH1IIgIIH2 + 11/11£,>0Ilg1IH2. (A.30)

With (A.22) and (A.15) this implies that

111. gllH2 :s; C11I/IIßk IlgllHI + .31lgrad IIIHIIIgIIH2 + 11/11£=IIgllH2 , (A.31)

which proves (A.23). Finally the estimates above yield

111. gllß2 :s; 11/11£=(lllgl~3X + Ilgradgll£2 +'IIDgradgll£2) + 211grad/llHIligradgilHI

+ IIgll£= (Ilgrad gll£2 + 11Dgrad gll£2) . (A.32)

Since 11/11£= :s; CII/IIß2 this proves

(A.33)

19



For k> 2 the estimate (A.24) is shown accordingly. Q.E.D.

l
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