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0. Introduction

The contribution to this volume comes from non-linear functional analysis and is
motivated by a traditional part of physics. More precisely, the motivation arises
from elasticity theory : Given a body, thought of as a smooth compact manifold
M', possibly with boundary, moving and deforming in R", the latter equipped with
a fixed scalar product. The deformations shall be such that the diffeomorphism
type does not change. Hence M' is the image under a smooth embedding of a
smooth compact manifold M, possibly with boundary dM. Therefore the collection ‘
E(M,R") of all smooth embeddings of M into R™ is the collection of all the ‘
configuration under considerations. It is a Fréchet manifold if endowed with the |

C”—topology.

- The quality of the deformable material shall be characterized by a smooth '
one—form F on E(M,R"). This is to say that F(J)(L) is linear in each distortion
L € C®(M,R") at each configuration J € E(M,R"). The real F(J)(L) is interpreted as
the work the distortion L causes at the configuration J. An approach of this kind of
elasticity is described e.g. in [E,S], [Bi,Sc,So] and [Bi 1] to [Bi 4]. Why we deviate
from the classical setting will be explained in section 6, where we also relate our

treatment of the subject to the usual one as presented in [L,L].

If either the deformations mentioned above are subjected to (smooth) constraints
then the ambient space in which the body deforms is no longer R", it is a smooth
submanifold thereof. Therefore we are forced to consider E(M,N) the collection of
all smooth embeddings 6f M into a smooth manifold N with general Riemannian
metric <, >. Since the tangent bundle TE(M,N) is no longer trivial the techniques
to treat one—forms are more complicated. To allow integral representation of the

forms under consideration we suppose M and N to be oriented.

This sort of integral representation we have in mind relies on the metrics & and QSa
on E(M,N) respectively E(dM,N) and on a so—alled dot—metric g on Q[IE(M,TN),

the latter being the collection of all TN—valued one—forms of M covering
embeddings. We begin to describe these ingredients in a little more in detail.

First we note that E(M,N) is an open subset of C*(M,N) endowed with the
C®—topology. Since C®(M,N) is a Fréchet manifold (cf.[Bi,Sn,Fi]) E(M,N) inherits




this structure, too. The tangent space TJE(M)N) at each configuration J € E(M,N)
can be identified with C?(M,TN), the collection of all smooth vector fields along J.

Equipping this spaces with the C®—topology it turns into a nuclear Fréchet space.
The tangent bundle of E(M,N) is CE(M,TN); it consists of all maps in C*(M,TN)

covering embeddings. The functional analytic structure on each fibre of CE(M,TN)

guaranties us enough nowhere vanishing vector fields on E(M,N) (cf. appendix 3.2), .

a crucial observation for the general representation theorem 4.3 in section 4.

In the second and third section we introduce the basic geometric ingredients to

define an integral representation of those types of one—forms on E(M,N) which
depend at each J € E(M,N) on the first jet of the fields in C?(M,TN). The metric

<,> on N yields via integration on M two natural metrics & on E(M,N)
respectively Qﬁa on E(JM,N) given at each J € E(M,N) and each j € E(dM,N) by

&I)(LyLy) = . S<LyLy> w3), VYLyL, e CYMTN)

and

&)1 1) = . S<Ipl> i), Viply € CHAMTN),

respectively. Both are invariant under the group Diff "M of all smooth orientation
preserving diffeomorphisms of M and under any group J of orientation preserving

1sometries of N.

To formulate an integral representation involving the first jet dependence we
consider in section 3 the so—called dot—metric on QllE(M,TN), the collection of all

smooth. TN—valued one—forms éovering embeddings. Endowed with the

C"~topology Q[IE(M,TN) is a vector bundle on E(M,N) with fibre ﬁ}(M,TN). The
dot—metric g is defined by
' 1
aD@b) = fabul),  VabeAp(MTN),
M

and VJe€EMN),

where a-b is a smooth real valued function on M, based on the trace inner produc;c‘

of bundle endomorphisms of TM. These endomorphisms are obtained by



representing a and b with respect to TJ. The dot—metric shares the invariance
under Diff *M and J, too.

Next let us denote by V the Levi—Civita connection on N. The collection
QE(M,TN) consisting of all VL, with L € CE(M,TN) is a subspace of ‘211E(M,TN).

Then g restricted to SE(M,TN) is a generalization of the classical Dirichlet integral

(cf.[Bi 2]). We call a smooth one—form F on E(M,N) to be g—representable if there

is a smooth map

B(MN) — %' 5(MTN),

such that

(0.1) F(I)(L) = fa(J) VL w(J)

holds for all variables of F.

The next step in section 4 will be to show that associated with any g—representable

one—form F there is a smooth vector field ) on E(M,N), satisfying

(0.2) FIXL) = f vA(I)-VL p(J)

for all variables of F. The integrand now reflects the first jet dependence of F
mentioned earlier. The existence of such a vector field §) is based on the fact that
for each J € E(M,N) the TN—valued one—form a(J) on M defines an elliptic
boundary value problem (a Neumann—type of problem) of which the solvability is
guaranteed by [H& 2]..

Converti-ng;_the right hand side of (0.2) into

(03)  F((I) = f<A (NHI),L>U ) + f <V_H(3),L>i pJ),

where n denotes the positively oriented normal on M of unit length given by
* )
J <,>. Here A(J) denotes the Laplacean associated with V and the mietric

J <,>o0onM.

If F characterizes the physical properties of a medium deformable in N, then



A(J)$XJ) and V_$XJ) are the force densities acting upon M and dM respectively.

In the following section we restrict our attention to N = R and <, > being a fixed
scalar product on R". We will observe, that the first jet dependence of F is, in the
physical interpretation, equivalent to say that we confine ourselves to those

embeddings for which the center of mass is fixed.

Finally we show that the reason why we characterize the deforming medium in R"
via the notion of a one—form. The classical elasticity as described e.g. in [L,L]
works on all the Riemannian metrics on M which are pull—backs of the fixed scalar
product of R" by all elements of E(M,R"). It is not clear as to whether this
collection of metrics endowed with the C*—topology is a manifold or not. It is the
collection 9M(M) of all Riemannian metrics provided the codimension of M in R" is
high enough as the celebrated theorem of Nash states (cf.[St]). Since in general N
does usually not admit any non—trivial orientation preserving isometry groups we
may not necessarily be able to work with the notion of a symmetric stress tensor
(cf. below). This motivates us to lift the description of elasticity up to E(M,N) and

to characterize there this medium by first jet depending one—forms.

As it is shown in e.g. [Bi 4] the description of elasticity given in [L,L] is included in
ours. Moreover, a theorem in [S] shows that the smooth one—form F on E(M,R")
can be replaced by a smooth stress tensor assignment provided F is invariant under

SO(n) and no infinitesimal rigid motion causes any work.




1. Geometric preliminaries and the Fréchet manifold E(M.N)

Let M be a compact, oriented, connected smooth manifold with (oriented)
boundary dM and N be a connected, smooth and oriented manifold with a
Riemannian metric <, >. The Levi—Civita connection of <, > on N is denoted by
V and by d in the euclidean case, i.e. if N = R" and < , > is assumed to bé a fixed

scalar product. For J € E(M,R") we define a Riemannian metric on M by setting
(1.1) m(J)(X,Y) := <TIX,TJY>, VXY ¢e(TM)
and one on M via the formula

(1.2) m)XY) = <TiX,Tj¥>, VX,Y € I(T(aM))

_ % x _
(here j := J|dM). More customary are the notations J <, > and j <, > for m(J)

and m(j) respectively.
We use I'TQ to denote the collection of all smooth vector fields of any smooth

manifold Q (with or without boundary). Moreover by Q- TQ — Q we mean the

canonical projection.

Let L : M — TM be a smooth map. Then { = Ty © L € C*(M,N) and L is a "vector

field along . For a fixed {, the set of all such "vector fields along " is precisely
the tangent space at f to C*(M,N) (cf. [Bi,Sn,Fi] and also below at the end of this

section).

Next, let V be a (linear) connection on N, ie. in TN. There is the associated
splitting of T2N = T(TN) into the canonically defined vertical bundle V(TN) and
the horizontal bundle H(TN) defined by V (cf.[G,H,V]). Since V(TN) = ker(Tmy),

the fibre VV(TN) at the point v € TN is Tv(TqN) with q = myv and hence, there

is a natural isomorphism (_:V_(TN)— T_ N for every vé&TN. These
vov ™
isomorphisms yield a bundle map (: V(TN) — TN covering the projection ™ -

Lastly, let P : TQN — V(TN) be the projection with kernel H(TN).

The covariant derivative VL of L is now defined as follows : For X € P(TM), TL-X
. 2
is a map M — T“N and we set



VL := (P(TL-X).

. . . . . . l - - -
In our applications, V will be the Levi—Civita connection of the Riemannian
. .+ . . . . . . I .
manifold (N,<, >) and in this situation, the Levi—Civita connections of (M,m(J)),

(M, m(})) respectively are obtained as follows :

TN|J(M) splits into TJ(TM) and its orthogonal complement (TJ(TM))* (the
Riemannian normal bundle of J) and hence any Z € I'(J(M),TN) has an orthogonal
decomposition Z = Z" + Z*, where the tangential component Z' is a section of
TJ(TM) and so is of the form Z' = TJ-U for a unique U € I(TM).

If now Y € I'(TM), then TJY is a smooth map M — TN and _therefore, the above
covariant derivative V(TJY) is well-defined. We use this to define the vector field
V( J)XY on M by the equation ’

(1.3) TIWIyY) = Ty(TIY) = (Ty(TIX)*,

for all X,Y € I'(TM). Moreover, if now X,Y € I'TdM, then
(1.4) Ti(V())x Y) = TI(V(Nx Y) —m(G)W(X,Y)-N()

defines a vector field V(j)XY on M. Here W(j), the Weingarten map, is defined as

follows: By assumption, M is oriented and hence the normal bundle
(TM|AM)/T(M) has a nowhere vanishing section s which is used to define the
induced orientation of JM. Under the Riemannian structure m(J), the normal
bundle of M is isomorphic to T(M)™ and as a consequence, this bundle now has a
" section n of unit length which corresponds to a multiple of s by a non—vanishing
positive function. This n is the positive unit normal vector field along IM. With
this, let N(j) = TJ-n and now set

(1.5) TI-W()Z = (V,N(G)T, VZel(TM).

As mentioned earlier, this determines W(j) uniquely. Note here that N = R" , we
may replace TJ and Tj by their "principal parts' dJ and dj respectively. In this
particular case, we moreover define the second fundamental form §f(J) of J under




the additional assumptions that M = # and dim(M) = n—1, where now N(j) is
replaced by the positive unit normal field along J and W(j) is defined as in (1.5).

The two—tensor f then is given by
(X, Y) = m(JYW()X,Y),

for J € E(M,R") and X,Y € [(TOM). Note finally that now H(j) := tr W(j) and
&(j) = det(W(j)) are respectively the (unnormalized) mean ‘curvature and the
Gaussian curvature of j(dM) C R™. References for this section are e.g. [A,M,R],
[Be,Go] and [G,H,V].

It is well-known that the set C*(M,N) of smooth maps from M into N endowed
with Whitney's C*~topology is a Fréchet manifold (cf.e.g.[Bi,Sn,Fi]). For a given
K € C*(M,N), the tangent space TKCm(M,N) 1s the Fréchet space

CE(M,TN) = {L € C(M,TN)|ryo L = K} ¥ (K TN) and the tangent bundle

TC(M,N) is identified with C*(M,TN), the topology again being the
- C™—topology. In all this, M is assumed to be compact. '

The set E(M,N) of C®"—embeddings M — N is open in C*(M,N) and thus is a
Frechet manifold whose tangent bundle we denote by CE(M,TN); it is an open

submanifold of C™(M,TN), fibred over E(M,N) by "composition with ™™

Moreover, if M =@, E(M,N) is a principal Diff(M)~bundle under the obvious
right Diff(M)—action and the quotient U(M,N) = E(M,N)/Diff(M) is the manifold
of "submanifolds of type M'" of N (cf. the above reference, ch.5, and further
literature quoted there).

Lastly, the set 9%(M) of all Riemannian structures on M is a Fréchet manifold
since it is an open convex cone in the Fréchet space of smooth, symmetric bilinear

forms on M. Moreover, the maps

m : E(M,N) — 9(M)
and

m : E(dM,N) — (M)

are smooth (cf.[Bi,Sn,Fi]).




By an E—valued one—form a on M, where E is a vector bundle over N, we mean a
smooth map
a: TM —E

for which atTpM is linear for all p € M. We denote the set of such one—forms by

Qll(M,E) and now obtain the following description of its structure :

The requirement that a € Qll(M,E) should be linear along the fibres of TM means
that there is a (smooth) map f: M — N such that alTpM is a linear map into

Ef(p) for p € M, in other words, that a is a bundle map TM — E over { :
There is f € C*(M,N) such that rpoa=fo ™ (where TR, T)\p aTe the respective

bundle prOJectlons) The set of such one—forms is naturally 1dent1f1ed with the
Fréchet space A (M f E). This shows that

al(ME) = Y (AYMLE) [ fec N} .

It is clear from the construction that there is a natural surjection
ol ©
B: A (ME) — C(M,N)
*
whose fibres are the Fréchet spaces Al(-M,f E).

The map B is (set—theoretically !) locally trivial : fe€ C®(M,N) has an open
neighbourhood Uy such that' there exists a fibre—preserving, fibrewise linear

bijet:_tionf",

%
opi £ (U — Upx AlMA B

which also is topological on each fibre; thus, for each g € U, the restriction of 2

*
to ﬂ_l(g) is a linear and topological isomorphism onto Al(M,f E).

The assertion of local triviality can be established along the following lines

(cL.[A]) :
One chooses a neighbourhood Ug of f in C*(M,N) which is diffeomorphic to some




10

open, convex neighbourhood of OETme(M,N)=F(f*TN). By the very

construction of the usual Fréchet manifold structure of C®(M,N), this 1s always
possible (cf. e.g. [Bi,5n,Fi], ch.5 and its references). Accordingly, there now exists a
smooth contraction of U, onto {f}, i.e. a smooth map c: R x Uf"“‘ C%(M,N), such

that c(1,.) is the identity of Uf, c(t,Uf) C Uf for 0 <t <1, and ¢(0,g) = { for every
g€ Uf' In particular, every ge Uf is smoothly homotopic to f by a homotopy

induced by c. Accordlngly, the choice of a linear connection V in E induces an
1somorpiusm E f E as in [GHV]; the corresponding isomorphisms
Al(M,g E)~A (M f E) now yield the desired trivialization o -

Suppose next that U1 , Uy are neighbourhoods of f1 » chosen as above and that
Ul 9= Ul ﬂUQ#ﬂ let 2 be the corresponding trivializations. - Flrstly, then,
Uy 2% A (Mf E), i=1,2, will be open submanifolds of U. x A (M’fi E) a.nd
secondly, the compositions 992991—1, 991992—1 are diffeomorphisms of these two

submanifolds. As a consequence, there exist a unique topology and differentiable

structure on Ql (M,E) with the following properties :

The sets ,8_ (Uf) obtained as above are open submanifolds, diffeomorphic to

Uy x Al(M,f*E) under the maps o - Thus, the model space for ﬂ_l(Uf) is the
Fréchet space Tme(M,N) x Al(M,f*E). Lastly, the construction shows that with

this differentiable structure, Qll(M,E) becomes a smooth Fréchet vector bundle
over C®(M,N) with bundle projection 2.



2. The metric & on E(M.N)

The Riemannian structure <, > of N induces a "Riemannian structure'" & on
E(M,N) as follows: For J € E(M,N), let #{J) be the Riemannian volume defined on
M by the given orientation and the structure m(J). For any two tangent vectors

CCO ] \ :
LI,L2 € J(M,TN), we set

(2.1) SI(L,L )= Mf<Ll,L2>;A(J) .

It is clear, that &J) is a continuous, symmetric, positive—definite bilinear form on
C?(M,TN). In the same manner, one obtains the metric L’Sa on E(dM,N).

The metrics & and QSa possess some invariance properties which will become
important * later: Let Diff ™™ be the group of orientation—preserving
diffeomorphisms of M. As a subgroup of Diff M, it operates (freely) on the right on
E(M,N) as well as on E(M,N) by

(2.2) E(M,N) x Diff*M & E(M,N)
(Jip) — Joyp

for a fixed g, we also write RPJ for Jo ¢.

Similarly, if J is any group of orientation—preserving isometries of N, then it
operates on the left on E(M,N) as well as on E(M,N) by

(2.3) - JxE(M,N) — E(M,N)
(8J) — golJ

" for fixed g, we also write L gJ forgo J.

The geometry of these actions will be dealt with elsewhere, but we need the
following — rather obvious! — result for some basic invariance properties of

one—forms on E(M,N) :

Proposition 2.1 :
Both & and QSa are invariant under Diff M and J.



Proof:

The Diff "M—invariance is usual invariance of integration over M :

(2.4) R, &()(L,L,) = &Jop)(L op,L, op)
L L >0 Jo
=0 f <L L > o puJogp)

= SO)LL).
Next, if g € 3, then p(goJ) = y(J) and hence

. ,
(2.5) L, S(I)(Ly.Ly) = &go)(TgeL,, TgoLy)
= Mf<TgoL1,TgoL2> (golJ)

= &(J)(Ly.Ly) -

)

Similar arguments establish the claim for &,
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3. The fibred space SE(MJTN) and its dot metric

To begin with, denote by Q(IE(M,TN) the subset of Qil(M,TN) consisting of all

TN—valued one—forms covering embeddings M — N. This is the inverse image of
E(M,N) under the projection §: Q[I(M,TN) — C®(M,N), hence is an open
submanifold and, in fact, is itself a (Fréchet) vector bundle whose fibre at J we
denote by Q[lJ(M,TN).

By construction of m(J), TJ is fibrewise isometric and accordingly, the linear
algebra outlined in appendix 3.1 (cf. below) may be used to write a € ‘JIJ(M,TN)

~ in the form
(3.1) a =c(a,T])-TJ + TJ-A(a,TT)

for suitable bundle endomorphisms c(a,TJ) of TN |J(M) and A(a,TJ) of TM; these
endomorphisms are smooth and continuous linear functions of a. The second
summand on the right can also be written as A(a,TT)TJ (cf. appendix 3.2), and so
a = ¢(a,TJ) + A(a,TJ). The usual "trace inner product" for endomorphisms of TN
then yields the dot product

(3.2) a-b = — & tr c(a,TJ)-c(6,TJ) + tr A(a,TJ)-A"(8,TJ),
A* the adjoint of A formed fibre—wise with respect to m(J), and we define

(3.3) BT = fab ).

This, yields a smooth and continuous, symmetric and positive—definite bilinear
form on the Fréchet space QlIJ(M,TN), the ""dot metric'".

We shall also need a subfibration of QllE(M,TN ), defined by

(3.4) 25(M,TN) := {VL|L € CH(M,TN)} ,

whose fibres we denote by SJ(M,TN) (= EE(M,TN)HQ[IJ(M,TN)); gﬁdently




these are subspaces of the Fréchet spaces ‘JIIJ(M,TN); for more information, cf.

appendix 3.2.

Next, we introduce the Laplacean A(J) which will depend on J via m(J); cf.[Ma]
and a sew remarks in appendix 3.2 :

ForK € CmI(M,TN), we define the covariant divergence by

(3.5) V(DK:=0,

as usual, while following [Ma], V*(J)a fora € QllJ(M,TN) is given locally by
. , .
(3.6) V(Ja:= —EIVE (a)(ED,
r=1 T

(Er) a local orthonormal frame with respect to m(J); Vya = V(J)Xu is defined in

the standard manner by

(TJ)ya)(Y) = Uy (aY) (W) Y), V X,Y € D(TM).

To see that this definition does not depend on the moving frames chosen we write a

as a finite sum

(3.7) ~ a=3qes,
. 1

with "yi € Al(M,IR) and s, € TJE(M,N). Moreover, let a('yi,J) be the smooth strong

bundleéﬁdomorphism of TM such that
(3.8) Y)Y = m(I)a(4 DX, Y),

holds for all pairs X,Y € I'(TM) and for each i. In addition let Yi € I'(TM) for each
i be such that

(3.9) HX) = m(I)(Y X), VX el(TM).
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With these data it is a matter of routine to show that

(3.10) V*(J)a =3 (tr a('yi,J)'si +V ),
i yH!

an expression independent of any moving frame.

Clearly if vy € Al(M,IR) and V = d then

* . ,.
d y= —dle-Y , i
provided that AX) = m(I)NY,X), VXY e T(TM). ;
A(J) is then defined by
: |
, * *
(3.11) AT =W (H+V )V,

The Laplacean A(J) is elliptic for any J € E(M,N) (cf.[Pa]). As we will see below it
is self—adjoint with respect to &(J) if IM = §. For each K € TJE(M,N) equation

(3.6) yields

(3.12) ADK = V(K = — I211\7}3 (VK)E,) .
I= T

Remark 3.1:
Suppose that ~ye€ Al(M,IR) and V=4d. Define the vector field Y on M by
AX) = m(J)(Y,X) (VX € I(TM)). Then it is clear that d*y = — divJY , divy the

classical divergence operator with respect to p(J).

The following theorem will be a basic tool in our studies of one forms on E(M,N) :




Theorem 3.2 :
For any J € E(M,N), any a € ‘HIE(M,TN) and two Ll’L € C?(M,TN) the following

two relation hold

(3.13) 8(J1)(a,VL) = &IV (J)a,L) + &%) (a(n),])
and :
(314)  g(I)(VLy,TL) = S(IADL,,L) + 8%5)(T, L),

where j := J|OM and | := L| M. Here V denotes the Levi~Civita connection of the
metric < ,> on N. Let ﬁj :={L € C}’(M,TN)I VL = 0} for any J € E(M,N), then

(3.15) LeRy= (A(J)L = 0and V.L=0).
In fact dim .ﬁj < w . Equation (3.14) implies in turn a Green's equation

(3.16) . S <ADK,L> u(J) oy S <KAL> u(J)

= S <V LK>ipJ) - i S<UKL>i uJ).

Here in/.l,(J) is the volume element on JM defined by y(J). Moreover, if M = §
then a is g-orthogonal to all of %15 (M,TN), iff V'(J)a = 0.

Proof :
Writing any L € C*(M,TN) relative to a given J € E(M,N) in the form
(3.17) L=TJX(L,J) + L%

- with a unique X(L,J) € I(TM) (and L* being such that LY(p) is the component
normal to TJTPM for all p € M), we have the following formula at hand :

(3.18) VyL =TI Vi X(L,J) + (VyL)*, VX €D(TM).

From this equation we read off the coefficients in the decomposition (3.1) :
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(3.19) ¢(VL,T)TJ = (VL)*,
as well as
(3.20) A(VL.TJ) = VX(L,J) + W(J,L), VL e C®M,TN)

and VJeE(MN).

Here W(J,L) is given by TIJW(J,L)X = (VLE)T, where, once again, L denotes the
component in TN|J(M) orthogonal to TJ(TM), while T is the component
tangential to J(M), i.e. TJ(TM).

For eacha € Q(I(M,TN) and for each J € E(M,N), we write on the other hand

(3.21) | a = A(Va,T)T7T,

with  A(q,TJ): TN|J(M) — TN|JM) the smooth bundle -endomorphism

introduced above. Then for any moving frame (Er) on M, orthonormal with

respect to m(J), we deduce

m

a-TL = £ <A’(a,T3)-A(VL,TI)TIE, ,TIE >
r=1

m

21< (a,TJ)-VE L ,TJEr> ,

= T

I
A*(a,TJ) being the adjoint of A(a,TJ) formed with respect to <, >. Hence
m %
a-VL= % <V (A (a,TJ)L),TJEr>
r=1 r

m -
- ¥ <L Vi (A(e,T))TIE >
r=1 Er I

yields

m _
VL =3 <V (A*(a,TJ)L),TJEr>
1=1

+<V(Dal>+3 <A(a J) T (TIE,L>.

1_
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- ¥ ) ‘

Since (A (a,TJL)" = TJZ(a,L,J) for some well—defined Z(a,L,J) and since

VE (TJ)Er is pointwise normal to TJTM the following series of equations are
r

immediate :

m .
(3.22) a-VL=-1% <\7E (c(a,TJ)L),TJEr> + divJZ(a,L,J) '
1=1 r

1=

¥ m ‘
+ <V (NaL>+ ¥ <c(a,TT)Vp (THE LT>
I

1=

m
= -3 <V (c(a,THLY),TIE >
. 1 I T

1=

m
-2 < ((a,TIL"),TIE >
. 1 I T

1=

+ div [ Z(a,L,J) + <V (Da,L>

m
+ 3 <c(a,TJ)Vg (THE, L™>
i=1 r

1=

m
=-3 <V (c(aTJ)L*),TJEr>

1= r

+ div Z(a,L,) + <V (J)a,L>,

where divJ the divergence operator associated with m(J). Writing

c(e,TTL* = TJ U(a,L,J) , for some well defined U(a,L,J) € [ TM), we obtain

(3.23) a-VL = —div U(a,LJ) + div;Z(a,L,J) + <V (Ja,L> .

Here U(a,L,J) is given by TJ U(a,L,J) = c(a,TJ) L*. In case a = VK, then (3.23)

turns into .

(3.24) VK-VL = - div ;U(K,L,J) + div Z(K,L,J) + <A(J)K,L> .

Integrating (3.23) and (3.24) and applying the theorem of Gauss yields the desired
equations (3.13) and (3.14). Since V and A(J) are elliptic (cf. appendix 3.2)
dim Ry<mas shown, e.g. in [Pa] and [H& 2]. The rest of the routine arguments in

this proof are left to the reader.
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We close this section by showing that the metric g on the fibres of Lp(M,TN) also

possesses the invariance under Diff "M and any group orientation—preserving
1sometries on N :

For any choice ¢ € Diff TM , J € E(M,N) and L € C®(M,TN) we form

(3.25) ¥(Log) = VL o Ty

and represent V(Log) with respect to T(Jogp) yielding

(3.26) V(Log) = c(V(Lop),T(Jop))-T(Jop)A(V(Lop),T(Jop)) :

Multiplying W(Log) with (T;o)“l and comparing the resulting coefficients of (3.26)
with those of (3.1) shows |

co(VL,TT)op = c(V(Logp),T(Jop))

" and

A(VL,TT)op = Ty A(V(Lop), T(Jop))-(Te) L .
Now we verify

(3.27) K Jop) WLy 0),V(Lyop))
' =—%Mftr c(VLl,TJ) ~c(VL2,TJ)099 WJoyp)

+ [ tr A(VL{,TJ)-A (VLo TD)op wJop)
M

_ = H(J)(VLPVLQ) )

proving the DifftM—invariance of g at TJ. To show the J-invariance we let g€ J
and only need to remark that

(3.28) : ~ ¥(TgoL)=Tgo VL.

holds. The rest is obvious. Therefore we have :
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Proposition 3.3 :
The metric g on QE(‘M,TN) is invariant under Diff+M, and any group J of

orientation—preserving isometries on N.

Appendix 3.1:

As indicated earlier, we present here some of the linear algebra used in the
construction of the dot product used in this section. The arguments may be
interpreted as fibrewise considerations for bundle maps or, with some obvious

changes in the formulation, as considerations at the level of section modules.

The aim is to show that the dot product "essentially" is induced by the classical
trace inner product in endomorphism rings of euclidean spaces and to this end, we
now consider euclidean spaces E,F with inner products <, > and a fixed isometry
- a of E onto the subspace E; CF. For the sake of convenience, we write the

elements of F as columns [21] with respect to the direct sum decomposition
2

F=E1$E1J‘; here, eleE1 and eQEEl'L; let also ple——oEl', pQ:F—-oEIJ'

be the respective orthogonal projections.

Any endomorphism D of F now is represented by a 2x2 — matrix

Dy; Do
D=ip . p. |
91 Doo |

where Dy; € L(E;), Dy, € L(E; "), Dy, € L(E;"E;) and D, € L(E{,E;"); the
matrix acts on a column [:1} by the usual rules of matrix algebra.

2

Next, let ¢ € L(E,F). We are going to write ¢ in the form




(3.29) p=ca+ oA =ca+ Aa

for suitable choices of ¢ € L(F) and A € L(E) (or A € L(F)), both of them are linear
functions of ¢ :

For e€E, write e = {Ple} ; thus, 91 = Py¥ and ©y = Pop . Firstly, since
$oe B

E1 = im(a), the expression <ye,of> (with e,f € E) reduces to <p1e,a‘f> and this

bilinear form on E now can be written in the form <Ae,{> for a unique A € L(E);

in fact, since « is an isometry, _
A=oty = a7t
1= P1¥-
There i1s a corresponding endomorphism Ay of El’ namely A1 = plyaa_l and the
endomorphism A of F now is the extension by 0 of this map; in other words :

(3.30) A= .
0 0

Secondly, we wish to write p, = p,p in the form ca for some c € L(F) and it is

clear that ¢ is not automatically uniquely determined by this condition (unless

E; =F), so that in the course of the construction, certain choices will have to be
made. In a first step, let €y E1 ——»'El'L be defined by ¢, = ngoa—l. Any

extension of ¢y to an endomorphism of F then is of the form,

)

and its action on ce is the map ae — [?aie] ; this forces the choice 8= 0, but
1

leaves 7,8 undetermined. The obvious choice for §is 0 and with this, there now are

three options for v: y=0, y= cl* or ’y=—c1* (where '*'" is the euclidean

adjoint) and in all three cases, ¢ will remain a linear function of p. At this point,

we make the choice ¥y = —-cl* , so that we obtain
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0 —*
(3.31) | C= ¢ 0|

a skew—symmetric endomorphism of F : ¢* — — . In part, this choice is motivated
by the usual splitting so(F) = so(E,) @ so(ElJ') ® L(El,Ell), cf. section 5.

~

Let now ¢: E— F be a second linear map, written in the form % = (D + B)a

under the construction just outlined. A simple calculation shows that
(c + A)(D + B)* = —D + AB* + (cB* — A*D)

where the term in parentheses is tracefree. Morreover, the trace of AB* (in F) is

easily seen to coincide with trE(AB*) since a is an isometry. Accordingly, the
“trace inner product' in L(F) now reduces to —trF(cD) + trE(AB*). Thus, we see
that the dot product ¢4 in L(E,F) essentially is the inner product induced by the

classical trace inner product under the construction ¢ »c + A —up to the factor%—

in the first summand. We shall add some remarks on this point below, but firstly
now indicate the application of the linear algebra outlined here to the actual

constructions used in this section :
Pointwise, the role of a is played by TJ, that of p by a € ﬂ}(M,TN); accordingly

c(a,TJ)=c and A(a,TJ) = A. Note that this also shows that the bundle

endomorphisms used above depend linearly on a .

Let us turn to the factor % in equation (3.2); it appears because of the following

reason : The endomorphism

(33) (8, T3)-c(6,TI)I(p)) : Ty )N — Ty )N

of Tj(p)N splits for each p € M into a direct sum of the two linear maps

—~(a,19)-c(6,TT)| TIT M

and
—(a,TJ)-c(b,TJ) I(TJTPM)* ,
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both endomorphisms némely of TJTPM and (TJTpM)J' respectively. Their traces
~ are identical. Thus the factor %— allows us to take only the pointwise formed trace of
(3.33) —c(a,TJ)-c(b,TJ)ITJTpM

into account. The endomorphism (3.33) can be pulled back to TM in the obvious
manner. Hence in the dot product (3.2) contribute traces of endomorphisms of TM

only.

Appendix 3.2 :
It was pointed out earlier that the fibres (‘J(M TN) of C*(M,TN) = TC®(M,N) are

naturally isomorphic to the section spaces F(J TN); similarly, AJ(M TN) is

isomorphic to A (M J TN). On the other hand, if V denotes e.g. the Lev1—Cw1ta
- connection of N, then there is the induced '"pull-back connection" J Vin J TN,
obtained in the usual manner. It now is routine to verify that the following

diagram commutes:

C%M,TN) ” (I TN)
vl IBR
AXM,TM) ~ AXMTM) -

*
V simply ‘'is" the induced connection in J TN. As a first consequence, one
concludes that V,is a first—order elliptic differential operator, an observation of

great importance for later sections.

In addition, J TN carries a natural Riemannian sttucture given by <, > in TN;
the connection J V is compatible with this metric. The Riemannian structure of

J TN together with p(J) now is used to obtain a pre—Hilbert space structure in
F(J TN) as well as in Al(M J TN), etc., and hence under the isomorphisms in the
above diagram, one obta.ms a formal a,d]omt V(J) of V. This opsrator cotncides
with the operator V (J) of this section and this shows that V (J) again is a




first—order elliptic operator. Accordingly, the Laplacean A(J) as defined in the text

now is seen to be a second—order elliptic operator. This will be true "at all levels",

i.e. on the spaces AI}(M,TN), p 2 1, defined in the obvious manner. We omit the

Lastly, since V is elliptic, its H® (= Sobolev WQ’S-—) extensions all are Fredholm

maps and so have closed range. At "level 0", the symbol of V is injective and one

concludes now that the range SJ(M,TN) of this V is closed in ﬂ}(NI,TN), hence

itself a Fréchet space. In fact, one can argue that it is a split subspace and that

|
|
details here, but point out that the ellipticity of A(J) will be crucial later on.
|
SE(M,TN) is a Fréchet subbundle of Qlé(M,TN). The technical details of these |

claims will be dealt with elsewhere.
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4. One forms on E(M.N)

Recall that the tangent bundle of E(M,N) is identified with CE(M,TN);

accordingly, we define 1—forms on E(M,N) as follows:
A (scalar) I—form on E(M,N} is a smooth function

\ F: C2(M,IN) —R | |
with the property that for each J € E(M,N), the restriction F(J) = FIC?(M,TN) is
linear in L € CJ(M,TN). In particular, F(J) is a continuous linear form on this
fibre, i.e. an element of the topological dual C?(M,TN)' :F(J*TN)' .. Loosely
speaking, then, F is a smooth section of the '"cotangent bundle" gCJ(N,TN)' of

E(M,N), but this point—of—view will not be pursued any further here; cf.however

below.

For our purposes, it will be sufficient to limit attention to a smaller class of such
one—forms; in particular, their values will depend only on the one—jets of the

elements of CE(M,TN). More precisely:

Definition 4.1:
The one—~form F on E(M,N) is said to be g—representable if there exists a smooth
section a : E(M,N) — Qlé(M,TN) of the bundle (Q[é(M,TN),/B,E(M,N)) such that

(41) FOXL) = fa(d) - TLU3) = oI)e(I) L)

for JeE(M,N)and L € C?(M,TN). The section a is called the (g—)kernel of F .

For instance, suppose that ) is a smooth section of CE(M,TN)' over E(M,N), i.e a
smooth vector field. Then a(J) = V§XJ) will provide a.g—kernel and the right—hand

side of (4.1) then will define a representable one—form. In fact, this example can be
shown to characterize the representable one—forms, cf.below. Let us denote by»
Alg(E(M,N),IR) the collection of all smooth g—representable one~forms on E(M,N).




Remark 4.2 :

Clearly, the existence of non—trivial 1—forms, in particular that of g—tepresentable

ones depends on the existence of not identically vanishing smooth sections of the

bundles in question. Both Qlé(M,TN) and CE(M,TN) = TE(M,N) admit local

sections since they are locally trivial over E(M,N). Moreover, the model spaces
['(J TN) of E(M,N) are nuclear Fréchet spaces obtained as countable inverse limits
of Hilbert spaces, namely e.g. the H°—completions of F(J*TN) for s € N. This
implies that E(M,N) admits enough "bump functions': Given the open

neighbourhoods U,V of J with V c U, there exist an open neighbourhood
W of Jand a smooth function f on E(M,N) such that W c V, together with

0<1«1, fIW =1land f=0 on the complement of V. With this existence of
non—zero sections of the above bundles is clear. The paracompactness of E(M,N)
(as subspace of the paracompact and locally metrizable, hence metrizable space
C®(M,N)!) can be used to obtain smooth partitions of unity, but we omit the

details here and return to all these matters elsewhere.

We now show that any kernel a of a smooth one—form F can be presented by V§),

where

$: E(M,N) — CR(M,TN)

is a smooth vector field. This means that for any J € E(M,N)

. - VL D)= [VHI)VL T
(4.2) Mfa(J) L (J) ’Mffx) ")
or equivalently 7

(4.3) a(7)(a(3),VL) = g(I)(V$X(T), VL)

has to hold forall L € C?(M,TN). To do so we are required to solve

(4.4) ANHI) =V a
and

(45) V_5(J) = afn) .
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This is for each J € E(M,N) an elliptic boundary value problem (cf.[Pa] or [H& 2] as
well as appendix 3.2) and admits according to [H6 2] a smooth solution $XJ) for
each J e E(M,N). Since the solutions are smooth with respect to small

perturbations of the system (cf.[H& 2]), we may state :

Theorem 4.3 :
Any Fe Aé(E(M,N),IR) admits a smooth vector field

1 B(M,N) — CR(M,TN)
for which
(4.6) F(JYL) = f VA(T)-VL ()

holds for all variables of F .

The following corollary is an easy consequence of proposition 2.1 :

Corollary 4.4 :
Let G and K be groups acting on M and on N for a given J€ E(M,N) via the

homomorphism
®:G—DifitM and ¥:K—3

respectlvely, where J is an isometry group of N preserving the orientation. If
FeA (E(M N),R) is g—representable and invariant at J under ® and ¥
respectively, then there is a smooth vector field §: E(M,N) — (M,TN) such

that

F(J)L) = f VS(J)-VL u(J)

and

(4.7) Ao ®(g))=NI)o®(g), Vgei
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as well as

(4.8) S ¥(k) o J) = T¥U(k) o 5XJ),

hold for all variables of F' .

VkeK
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5. The special situation N = R"

We will show in this section that in case of N = R" and < , > being a fixed scalar

product, the spaces SE(TM,Tan) allow much simpler and more detailed -

description. In particular (4.1) in the previous section admits a natural
visualization. This enrichment is due to the algebraic structure of R", which one
hand yields the simplification as far as the triviality of TR" is concerned. On the
other hand the operation of R" as a translation group of the linear space R" allows
us to split SE(TM,TIRH) with respect to this action:

Based on the triviality of TR™ we first of all observe, that

(5.1) SE(TM,TIRH) = E(M,R") x {dL|L € C*(MR™)},

which is a Fréchet ma,nifolci as seen directly by considering, for each J € E(M,R")
the bijection : '
(5.2) EJ(TM,T'IRH) — CH(MR")/pn
given by |
dL s [L] .

The operation of R" as translation group of the vector space R™ provides us with
the action
(5.3) E(M,E")xR"* — E(M,R")
given by
(Ju)—J +u.

Let us study the orbit space : We consider

(5.4) | | E(M,IR“):EO(M,IRH)HR“

~

where

Eq(MR") := {J; € B(MR")| . SIg I =0}.

This set can be identified with the collection of all orbits of action (5.3). Since

mMOreover,
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(5.6) EO(M,IR“) — {dJ[J € E(M,RM)} ¢ C*(M,R")/pn

given by
Jr—dJ

is a bijection onto an open set of Cm(M,fRn)/IRn , the orbit space EO(M,!RD) of the

action of the translation group R" onto E(M,R") is thus a Fréchet manifold. Hence
we read off from (5.4) :

(5.7) TE(M,R") = TEO(M,IRH) + TR" .

Next let us determine Ty E(M,RY) for any .Jo € EO(M,IRH). To this end we let J(t)
A _

be a smooth parameterized family in E(M,R") which we decompose according to
(5.4) into
(5.8) J(t) = Jo(t) + u(t),

with u(t) € R® for any real t €R. Let J,+=7J(0) and u := U(0), then for

L:= J(O) we have
gTMfJ(t) I yg=  STMI)+ [Tt Dm(T )0 W3,)
o fJ(p) I )+ {10(0) . )+ . S3tr Dm(J Y(L) W)

Decomposing L according to (5.7) into

(5.9) . L=L +z,

withl €T;E(MR")andzeT, R" yields immediately
0 0
'JO(O) =L and {10(0) =3z,

Due to

MfJo(t)p(Jo(t))=o,- VteR,




we find

MfLo,u(Jo)=O.

Introducing

(5.10) CT (MR := (L € CMR")] MfLO W3 )= 0},
0

which naturally is linearly diffeomorphic to C®(M,R™)/R" , we deduce

(5.11) T; EO(M,IRH) = CT (MR") & C*(M,R™)/n
0 0

and in turn obtain the splitting

(5.12) TE(MR") = EO(M,IR“) x C(M,R")/pn @ (R" x R") . '

Any F € Al(E(M,[Rn),IRn) consequently splits for each J € E(M,R") and for each
L € C*(M,R") into

(5.13) F(IXL) = F(Jo+u)(Lo) + F(J0+u)(z) ,
where Jo.’ Lo , u and z are as above.

Thus (4.1) in the previous section amounts in this case to say that
(5.14) F(INL) =F(I ML),

Joand L, being the components of J in EO(M,IRn) and of L in C? (M,R")
: 0

respectively as introduced in (5.8) and (5.9). (In the application to continuum
mechanics any one—form F satisfying (5.13) means, that F depends only on those

embeddings for which the center of mass is fixed at 0 € R™.)

The foilowing theorem (cf.[Bi4]) describes in full generality the structure of

g—representable one—forms for N = R" and < , > being a fixed scalar product.
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Theorem 5.1 :
Every F € A;(E(M,IRH),!R) admits a smooth constitutive map

(5.15) 9 : BE(M,R") — Co(M,R")

such that F can be expressed as

(5.16) (L) = f <ADNKI,L>uJT) + f <d()(n),L>i_p(J),

for each J€ E(M,R") and each L € C®(MRR™). For all Je E(M,R") the map H
defines ® € C(E(M,R™),C®(M,R")) and p € C*(E(M,R™),C*(M,R")) respectively
by

(5.17) $(J) := A(J) )
and '

(5.18) o(J) := dXJ)(n) ,

which satisfy due to the first jet dependence of F , the equation

(5.19) 0=Mf¢(J)ﬂ(J)+ aMfga(J) i w(J) .

Given vice versa two smooth maps & € C*(E(M,R™),C"(M,R") and
v € C*(E(M,R™),C*(IM,R™)), for which (5.19) holds as an integrability condition,
then there exists a smooth map $ € C*(E(M,R"),C*(M,R")) satisfying (5.17) and
(5.18), which is uniquely determined up to a constant for each J € E(M,R™).

A

Remark 5.2:

a) If & e CYEM,R"),CYMR")) and '€ C(E(M, R™),C®(M,R")) are given
arbitrarily, we may split off a constant and components ¢ and ¢ satisfying (5.19).
Then & and ¢ can be expressed as in (5.17) and (5.18).

b) To comment the interplay be’tween linearity and non-linearity we point out
this : Even if $is of the form
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HI+K) = 5J) + DHINK),

for any K € C*(M,R") for which J+K € E(M,R"), the map in (5.17) and (5.18) does

not vary accordingly since the Laplacean varies more subtile on J (cf.(3.11)).

¢) Introducing the A—product and the Hodge—star operator as done in [A,M,R] we

may write

(5.20) de -dLy w(J) = de A*dL,

for any pair Ll Lo € C™(M,R™). This is easily seen by converting the right hand

side of (5.20) into the right hand side of (5.16). In fact the equality holds on the
level of the integrands (cf. [A]). -

d) A theorem analogous to theorem 5.1 holds in the general case as well. We omit

to state it because of the sake of simplicity.

Appendix 5.1 :
Here let us motivate (3.1) in the context of this section : Given two I,J € E(M, IRn)

which are in the same connected component. Then we may write
dJ = Q(J)-dI,

for some Q(J) € C®(M,L(R%,R"). According to the pointwise performed polar
decomposition (cf.[Bi,Sn,Fi]) the map Q(J) can be expressed by

QD) = g9 1),

where g(J) € C®(M,S0O(n)) and f(J_)ECm(M,LS(IRn,Rn)), the index s meaning

self—adjoint with respect to <, >. Moreover, for all X,Y € I'(TM)
(5.21) m(JXX,Y) = <{(D)dIX,{()dIY>

= m(I)({(N)X,{(I)Y),
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where f(J) is the square root of the strong bundle isomorphism A'(J) € L{(TM,TM),
defined by
m(J)Y(X,Y) = m(I)(A'(NX,Y), VXY e I(TM).

Defining f'(J) € C*(M,L(R",R™)) by

£1(J)-dI = dI-(J)
with £(J) |(T(JTM))* = 0, we conclude by (5.21)
dJ = g-dl 1.
Letting J depend on a smooth real parameter ¢ with J(0) = I, we find
(5.22) .dJ(O) = g(0) dI + dI {(0) .

Thus there is a unique C € Cm(M,La(IRn,IRn)), the index a meaning skew—adjoint,

such that
g(0ydI = c-dI 4+ dI-C,

with ¢ as in (3.1). Collecting C and {(0) into A(dJ,dI), yields
(5.23)  dJ(0) = c-dI + dI-A(dJ,dI)
the decomposition (3.1) in case of a = dJ(0). Equation (5.23) then motivates the

" general decomposition (3.1). The meaning of the coefficients ¢, C and f are

discussed e.g. in [Bi,Sc,So).
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6. g—representable one—forms on E(M.R®) as constitutive laws

In this part of the paper we link the formalism developed earlier to classical
elasticity as presented e.g. in [L,L]. In doing so, we work in a C®—setting. First of
all we introduce the work caused by deforming a body. The body being identified
with the manifold M with boundary enjoying the properties of the previous
sections. To this end we consider the derivative of the map m : E(M,R") — (M) ,
at any J € E(M,R") in the direction of any L € C®(M,R™). It is determined by

(6.1) Dm(I(LXX,Y) = <dJX,dLY> + <dLX,dJY>, VX,Y € [(TM).

Writing Dm(J)(L) with respect to m(J) yields the strong smooth bundle -

endomorphism
(6.2) B(dL,dJ): TM — TM .

Hence, B(dL,dJ) is the symmetric part of A(dL,dJ) a coefficient appearing in (3.1).
This is easily seen by using (3.1) and (6.1), the tensor

m(J)(B(dL,dJ).....) = 5 Dm(J)(L)

is called the linearized deformation tensor.

Let us assume that some smooth map
T : m(E(M,RY)) — S%(M)

is prescribed, where the range is the collection of all symmetric two tensors on M
endowed with the C*—topology. T(m(J)) is called the stress tensor at m(J).
%(m(J)) determines a uniquely defined smooth strong bundle map of TM, such

that
(6.3) Ym(N)X,Y) = m(NEADNX,Y), VXY € [(TM).

We define
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(6.4) (m(J))( Dm(T)(L)) f tr (%(m(J)) -B(dL)dI) (),

for any m(J) € m(E(M,R™)) and any Dm(J)(L) € Dm(E(M,R™))(C™(M,R™)).

It is not clear as to whether m(E(M,R")) is a manifold or not. It is one if the
codimension of M in R" is high enough (cf.[St]). Hence the usual techniques in
analysis and differential geometry cannot by applied with caution to this
topological space. However, E(M,R") is a Fréchet manifold and it makes sense to
lift (6.4) to E(M,R") by introducing the one—form

F: E(M,R") x C(MR") — R
given by
F(I)(L) = F_m(J)(3 Dm(J)(L)),

for any of the variables of F. It makes also sense to require that F is smooth even

though smoothness is not defined for F_. As shown in [Bi 4] there is a map

f: E(M,R") — C™(M,RY),
for which
(6.5) F(J)L) = y f ds)(dT)-dL (J)

holds for all variables of F. Hence, prescribing the stress tensor at each
configuration in m(E(M,R")) yields a g—representable one—form F. Since T is a
constitutive entity in elasticity, we call F a constitutive law (cf.[E,S]). Equation
(6.5) is the motivation for calling any F € Alg(E(M,!Rn),IR) a constitutive law.

As shown in [S], given any g—representable one—form F invariant under the natural
action of the euclidean group of R™ on E(M,R"), satisfying an additional condition,
there is a map ¥ such that (6.4) holds. The additional condition amounts to say

that no rigid motion in R" causes any work.

The force densities associated with any constitutive law F with g—kernel d§) are
given at each J € E(M,R") by




(6.6) ANHNT) on M

and
(6.7) dsJ)n) on M

cf.[Bi 4]). Thus, the formalism presenied in these notes refines the usual treatment
of elasticity and carries over to any ambient manifold N (cf. Remark 5.2 d) in the
previous section). If N ¢ K", then it may reflect constraints a deformation of a
body in R has to satisfy. )

If N has no non—trivial isometry group, then there is in general no natural
symmetric stress—tensor available at each configuration. Hence the generality of
the mechanism presented here, which describes all the deformable media admitting
smooth force densities at each configuration acting upon M and M respectively

seems to be necessary.
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