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O. Introduetion

The contribution to this volume comes from non-linear functional analysis and is
motivated by a traditional part of physics. More precisely, the motivation arises
from elasticity theory : Given a body, thought of as a smooth compact manifold
M', possibly with boundary, moving and deforming in IRn,the latter equipped with
a fixed scalar product. The deformations shall be such that the diffeomorphism

type does not change. Hence M' is the image und er a smooth embedding of a
smooth compact manifold M, possibly with boundary 3M. Therefore the collection
E(M,lRn) of all smooth embeddings of M into IRn is the collection of all the
configuration under considerations. It is a Frechet manifold if endowed with the
COO-topology.

The quality of the deformable material shall be characterized by a smooth
one-form F on E(M,lRn). This is to say that F(J)(L) is linear in each distortion
L E Coo(M,lRn)at each configuration JE E(M,lRn). The real F(J)(L) is interpretedas

the work the distortion L causes at the configuration J. An approach of this kind of
elasticity is described e.g. in [E,S], [Bi,Sc,So] and [Bi 1] to [Bi 4]. Why we deviate
from the classical setting will be explained in section 6, where we also relate our
treatment of the subject to the usual one as presented in [L,L].

If either the deformations mentioned above are subjected to (smooth) constraints
then the ambient space in which the body deforms is no longer IRn, it is a smooth
submanifold thereof. Therefore we are forced to consider E(M,N) the collection of

all smooth embeddings öf M into a smooth manifold N with general Riemannian
metric < , >. Since the tangent bundle TE(M,N) is no longer trivial the techniques
to treat one-forms are more complicated. To allow integral representation of the
forms under consideration we suppose M and N to be oriented.

This sort of integral representation we have in mind relies on the metrics (!5 and (!58

on E(M,N) respeetively E( 3M,N) and on a so~alled dot-metric 9 on m1E(M, TN),
the latter being the colleetion of all TN-valued one-forms of M covering
embeddings. We begin to describe these ingredients in a little more in detail.

First we note that E(M,N) is an open subset of COO(M,N) endowed with the
COO-topology. Since COO(M,N)is a Frechet manifold (cf.[Bi,Sn,Fi]) E(M,N) inherit~
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this strueture, too. The tangent space T JE(M,N) at each configuration JE E(M,N)

can be identified with C](M, TN), the collection of all smooth vector fields along J.

Equipping this spaces with the COO-topology it turns into a nuclear Frechet space.
The tangent bundle of E(M,N) is CEOv!,TN); it consists of all maps in CooUvI,TN)

covering embeddings. The funetional analytic strueture on each fibre of CECM,TN)

guaranties us enough nowhere vanishing vector fields on E(M,N) (cf. appendix 3.2),
a crucial observation for the general representation theorem 4.3 in section 4.

In the second and third seetion we introduce the basic geometrie ingredients to
define an integral representation of those types of one-forms on E(M,N) which
depend at each J E E(M,N) on the first jet of the fields in C](M, TN). The metric

< , > on N yields via integration on M two natural metries QS on E(M,N)
respeetively QSd on E( dM,N) given at each JE E(M,N) and each j E E( dM,N) by .

and

respeetively. Both are invariant under the group Diff+M of all smooth orientation
preserving diffeomorphisms of M and under any group J of orientation preserving
isomet ries of N.

To formulate an integral representation involving the first jet dependence we
consider in section 3 the so~alled dot-metric on m1E(M,TN), the colleetion of all

smooth< TN-valued one-forms covering embeddings. Endowed with the
COO-topology 2(1E(M,TN) is a veetor bundle on E(M,N) with fibre m~M,TN). The

dot-metric gis defined by

g(J)(a,b) = f a.b p(J) ,
M

and

1Va,b Em E(M,TN),

V JE E(M,N) ,

. . .

where a.b is a smooth real valued funetion on M, based on the trace inner product

of bundle endomorphisms of TM. These endomorphisms are obtained by
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representing a and b with respect to T J. The dot-metric shares the Invanance

under Diff+M and J, tao.

Next let us denote by 'iJ the Levi-Civita connection on N. The collection

£E(M,TN) consisting of all 'iJL with L E CE(M,TN) is a subspace of m1E(M,TN).

Then g restricted to £E(M,TN) is a generalization of the classical Dirichlet integral

(d.[Bi 2]). We call a smooth one-form F on E(M,N) to be g-representable if there

is a smooth map

a: E(M,N) - m1E(M,TN),

such that

(0.1)

holds for all variables of F.

F(J)( L) = f a( J) . 'iJLp{J)
M

The next step in section 4 will be to show that associated with any g-representable

one-form F there is a smooth veetor field f.Jon E(M,N), satisfying

(0.2) F( J)( L) = f 'iJf.J(J) . 'iJLp{J)
M

for all variables of F. The integrand now reflects the first jet dependence of F
mentioned earlier. The existence of such a veetor field f.J is based on the fact that
for each Je E(M,N) the TN-valued one-form a(J) on M defines an elliptic
boundary value problem (a Neumann-type of problem) of which the solvability is

guaranteed by [Hö 2].

Converting.the right hand side of (0.2) into

(0.3) F(J)(L) = f <Ll(J)f.J(J),L>p{J) + f <'iJnf.J(J),L>inP{J),M aM

where n denotes the positively oriented normal on aM of unit length given by* /J < , >. Here Ll(J) denotes the Laplacean associated with 'iJ and the rnetric

*J <, >on M.

If F characterizes the physical properties of a medium deformable In N, then
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ß(J)S))) and V'nSXJ)are the force densities acting upon M and aM respedively.

In the following seetion we restrid our attention to N = IRand < )> being a fixed
scalar produd on IRn.We will observe, that the first jet dependence of Fis, in the

physical interpretation, equivalent to say that we confine ourselves to those

embeddings for which the center of mass is fixed.

Finally we show that the reason why we charaderize the deforming medium in IRn

via the nation of a one-form. The classical elasticity as described e.g. in [L,L]

works on all the Riemannian metries on M which are pull-backs of the fixed scalar
produet of IRn by all elements of E(M,lRn). It is not clear as to whether this
colleetion of metries endowed with the COO-topology is a manifold or not. It is the

colledion 9J1(M) of all Riemannian met ries provided the codimension of M in IRnis
high enough as the celebrated theorem of Nash states (d.[St]). Since in general N
does usually not admit any non-trivial orientation preserving isometry groups we
may not necessarily be able to work with the not ion of a symmetrie stress tensor

(d. below). This motivates us to lift the description of elasticity up to E( M,N) and

to charaderize there this medium by first jet depending one-forms.

As it is shown in e.g. [Bi 4] the description of elasticity given in [L,L] is included in

ours. Moreover, a theorem in [S] shows that the smooth one-form F on E(M,lRn)
can be replaced by a smooth stress tensor assignment provided F is invariant under

SO( n) and no infinitesimal rigid motion causes any work.
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1. Geometrie preliminaries and the Freehet manifold E(M,N)

Let M be a eompact, oriented, connected smooth manifold with (oriented)
boundary 3M and N be a connected, smooth and oriented manifold with a

Riemannian metrie < , >. The Levi-Civita eonnection of < , > on N is denoted by
V and by d in the euclidean ease, i.e. if N = !Rnand < , > is assumed to be a fixed
scalar product. For J E E(M,!Rn) we define a Riemannian metrie on M by setting

(1.1) m(J)(X, Y) := <T JX,T J'l> , 'VX,Y E f(TM)

and one on 3M via the formula

(1.2) m(j)(X,Y) := <TjX,TjY>, 'VX,Y E f(T( 3M))

* *(here j := JIOM). More customary are the notations J < , > and j < , > for m(J)

and m(j) respectively.
We use fTQ to denote the eolleetion of all smooth vector fields of any smooth

manifold Q (with or without boundary). Moreover by ll"Q: TQ - Q we mean the

eanonieal projection.

Let L : M - TM be asmooth map. Then f = ll"N0 L E COO(M,N)and L is a "vector

field along f". For a fixed f, the set of all such "vector fields along f" is preeisely
the tangent spaee at f to COO(M,N)(cf. [Bi,Sn,Fi] and also below at the end of this

section).

Next, let V be a (linear) eonnection on N, i.e. in TN. There is t he associated
splitting of T2N = T(TN) into the eanonieally defined vertieal bundle V(TN) and
the horizontal bundle H(TN) defined by V (cf.[G,H,V]). Sinee V(TN) = ker(Tll"N) ,

the fibre V (TN) at the point v E TN is T (T N) with q = ll"NVand henee, therev v q

is a natural isomorphism ( : V (TN) - T N for every v E TN. Thesev v ll"NV

isomorphisms yield a bundle map (: V(TN) -I TN eovering the projection ll"N'

Lastly, let P : T2N -I V(TN) be the projection with kernel H(TN).

The eovariant derivative VL of L is now defined as folIows : For X E f(TM), TL ~X

is a map M - T2N and we set
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V'XL := (P(TL. X) .

I

In our applieations, V' will be the Levi-eivita eonnection of the Riemannian
I

manifold (N,< , » and in this situation, the Levi-eivita connections of (M,m(J)),
(oM,m(j)) respeetively are obtained as follows :

TN r J(M) splits into T J(TM) and its orthogonal eomplement (T J(TM)).l (the
Riemannian normal bundle of J) and henee any Z E r(J(M),TN) has an orthogonal
decomposition Z = ZT + Z.l, where the tangential eomponent ZT is a seetion of
T J(TM) and so is of the form ZT = TJ. U for a unique U E f(TM).

1£ now Y E f(TM), then TJY is a smooth map M -+ TN and, therefore, the above
covariant derivative V'(TJY) is well-<lefined. We use this to define the vector field
V'( J)X Y on M by the equation

(1.3)

for all X,Y E f(TM). Moreover, if now X,Y E fTOM, then

(1.4) Tj(V'(j)X Y) = T J(V'(J)X Y) - m(j)(W(j)X, y).N(j)

defines a vector field V'(j)X Y on OM. Here W(j), the Weingarten map, is defined as

folIows: By assumption, M is oriented and henee the normal bundle
(TM IOM)/T( OM) has a nowhere vanishing section s whieh is used to define the
indueed orientation oi OM. Under the Riemannian structure m(J), the normal
bundle oi OM is isomorphie to T( OM).l and as a eonsequenee, this bundle now has a
seetion n oi unit length whieh eorresponds to a multiple of s by a non-vanishing
positive iunction. This n is the positive unit normal vector field along OM. With
this, let N(j) = T J.n and now set

(1.5) T J. W(j)Z = (V'ZN(j))T, V Z E r(TOM) .

As mentioned earlier, this determines W(j) uniquely. Note here that N = IRn , we
may replace TJ and Tj by their "principal parts" dJ and dj respectively: In this
particular case, we moreover define the second fundamental form f( J) of J under
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the additional assumptions that aM = 0 and dim(M) = n-l , where now N(j) is
replaeed by the positive unit normal field along J and W(j) is defined as in (1.5).
The twer-tensor f then is given by

ffj)(X,Y) = m(J)(W(j)X,Y) ,

for JE E(M,lRn) and X,Y E r(TaM). Note finally that now H(j) := tr W(j) and
,q:j) = det(W(j)) are respectively the (unnormalized) meancurvature and the
Gaussian curvature of j(aM) (IRn. Referenees for this seetion are e.g. [A,M,R),
[Be,Go] and [G,H,V].

It is well-known that the set COO(M,N)of smooth maps from M into N endowed
with Whitney's COO-topology is a FfEkhet manifold (cf.e.g.[Bi,Sn,Fi]). Fora given
K E COO(M,N), the tangent spaee TKCOO(M,N) IS the Freehet spaee

00 00 *.CK(M,TN) = {L E C (M,TN) ITNO L = K} ~ r(K TN) and the tangent bundle

TCOO(M,N) isidentified with COO(M,TN), the topology again being the
COO-topology. In all this, M is assumed to be eompaet .

. The set E(M,N) of COO~mbeddings M -+ N is open in COO(M,N)and thus is a
Freehet manifold whose tangent bundle we denote by CE(M, TN); it IS an open

submanifold of COO(M,TN), fibred over E(M,N) by "eompositio~ with TN".

Moreover, if ßM = 0, E(M,N) is a principal Diff(M)-bundle under the obvious
right Diff(M)--aetion and the quotient U(M,N) = E(M,N)/Diff(M) is the manifold
of "submanifolds of type M" of N (cf. the above referenee, eh.5, and furt her
literature quoted there).
Lastly, the set roteM) of all Riemannian struetures on M is a Frechet manifold
since it is an open convex eone in the Freehet spaee of smooth, symmetrie bilinear
formson M. Moreover, the maps

m : E(M,N) -+ roteM)
and

m: E( GM,N) -+ rote GM)

are smooth (cf. [Bi,Sn,Fi]).
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Ey an E-valued one-forma on M, where E is a vector bundle over N, we mean a
smooth map

a: TM ---+ E

for which alT M is linear for all pE M. We denote the set of such one-forms byp

m\M,E) and now obtain the following description of its structure :

The requirement that a Em1(M,E) should be linear along the {ibres of TM means
that there is a (smooth) map f: M ---+ N such that alTpM is a linear map into

Ef(p) for p E M, in other words, that a is a bundle map TM - E over f :

There is fE COO(M,N)such that1l"E 0 a = f 0 TM (where1l"E ' TM are the respective

bundle projedions). The set of such one-forms is naturally identified with the
Frechet space A l(M,tE). This shows that

m\M,E) = U {A l(M,tE) I £ E COO(M,N)}.
£

It is clear £rom the construdion that there is a natural surjection

whose £ibres are the Frechet spaces A l(M,tE).

The map ß is (set-theoretically!) locally trivial; fE COO(M,N) has an open
neighbourhood U{ such that there exists a fibre-preserving, fibrewise linear

bijection: .
1 1 *~£: fT (U£) ---+ Ur x A (M,f E) I

which also is topological on each £ibre; thus, for each gE Uf, the restrietion of ~{

to fT\g) is a linear and topological isomorphism onto A l(M,tE).

The assertion of local triviality can be established along the following, lines
(d.[A]) :
One chooses a neighbourhood Uf of f in COO(M,N)which is diffeomorphicto sorne
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open, convex neighbourhood of 0 E TfCOO(M,N)= r(f*TN). By the very

construction of the usual Frechet manifold structure of COO(M,N): this is always
possible (cf. e.g. (Bi,Sn,Fi), ch.5 and its references). Accordingly, there now exists a
smooth contraction of Uf onto {f}, i.e. a smooth map c : IR x Uf -+ COO(M,N),such

that c(l,.) is the identity of Uf, c(t,Uf) C Uf for 0 ~ t ~ 1 , and c(O,g) = f for every

g E Uf. In particular, every gE Uf is smoothly homotopic to f by a homotopy

induced by c. Accordingly, the choice of a linear connection 'iJ in Einduces an
* *isomorphism g E ~ f E as in [G,H,V); the corresponding isomorphisms

A l(M,g*E) ~ Al(M,r*E) now yield the desired trivialization !Pf'

Suppose next that U1 ' U2 are neighbourhoods of f1,2 chosen as above and that

U1,2:= U1 n U2 *' 0; let !Pi be the corresponding trivializations .. Firstly, then,

U1 2 x A\M,r*E), i=1,2, will be open submanifolds of U. x Al(M,f. *E) and
, 1 1

secondly, the compositions !P2!Pl-1 !Pl!P2-1 are diffeomorphisms of these two

submanifolds. As a consequence, there exist a unique topology and differentiable
structure on m\M,E) with the following properties :
The sets pl(Uf) obtained as above are open submanifolds, diffeomorphic to

1 * . 1Uf x A (M,f E) under the maps !Pf' Thus, the model space for p (Uf) is the

Frechet space TfCOO(M,N) x Al(M,f*E). Lastly, the construction shows that with

this differentiable st ruct ure, m1(M,E) becomes a smooth Frechet vectof bundle
over COO(M,N)with bundle projection ß.
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2. The metrie Q:5on E(M,N)

The Riemannian structure <, > of N induees a "Riemannian structure" Q:5on
E(M,N) as follows: For JE E(M,N), let J4.J) be the Riemannian volume defined on
M by the given orientation and the structure m( J). For any two tangent vectors
L,L E C~M,TN), we set

I 2 J'.

Q5(J)(L ,L ):= f <L ,L >J4.J) .
12M 1.2

It is c1ear, that Q5(J) is a eontinuous, symmetrie, positive-definite bilinear form on
Cj(M,TN). In the same manner, one obtains the metrie Q:50on E( ßM,N) ..
The met ries Q:5and Q:50 possess some invarianee properties which will beeome

important later: Let Diff+M be the group of orientation-preserving
diffeomorphisms of M. As a subgroup of Diff M, it operates (freely) o'n the right on
E(M,N) as weIl as on E( ßM,N) by

(2.2) E(M,N) x Diff+M ~ E(M,N)

(J,IO) -- J 0 10

for a fixed 10, we also write R J for J 0 10.
10

Similarly, if j is any group of orientation-preserving isometries of N, then it
operates on the left on E(M,N) as weH as on E( ßM,N) by

(2.3) j x E(M,N) -- E(M,N)

(g,J) -- go J

for fixed g, we also write LgJ for go J.

The geometry of these actions will be dealt with elsewhere, but we need the
following - rather obvious! - result for some basie lllvananee properties of
one-forrns on E(M,N) :

Proposition 2.1 :
Both Q:5and Q:50are invariant under Diff+M and j.
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Proof:

The Di£f+M-invariance is usual invariance of integration over M :

*(2.4) R~ Q5(J)(L"L2) = Q5(Jo~)(Llo~,L2 o~)

= f<L ,L > 0 ~ p{Jo~)
~M) I 2

= Q5(J)( L , L ) .
I 2

Next, if gE J, then p.(goJ) = p.(J) and hence

*(2.5) Lg Q5(J)(L1,L2) = Q5(goJ)(TgoL1,TgoL2)

= f <TgoL1,TgoL2> p.(goJ)
M

= Q5(J)(L1,L2) .

Similar arguments establish the claim for Qjo.

[J
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3. The fibred space '£E(M, TN) and its dot metrie

(3.1) II = e(ll,T J) .T J + T J .A( ll,T J)

for suitable bundle endomorphisms e( ll,T J) of TN IJ(M) and A( ll,T J) of TM; these

endomorphisms are smooth and eontinuous linear funetions of ll. The seeond
summand on the right ean also be written aB Ä( ll,T J)T J (cf. appendix 3.2), and so
II = e(ll,TJ) + Ä(ll,TJ). The usual11traee inner produet'l for endomorphisms of TN
then yields the dot produet

(3.2) 1 *ll.b:= -~ tr e(ll,TJ)'e(b,TJ) + tr A(ll,TJ).A (b,TJ) ,

*A the adjoint of A formed fibre-wise with respeet to m( J), and we define

(3.3) g(TJ)(ll,b):= f ll.b J4.J) .
M

This, yield~ a smooth and eontinuous, symmetrie and positive-<iefinite bi linear
form ontheFnkhet spaee m,1fM,TN), the "dot metriell•

We shall also need a subfibration of m,1E(M,TN), defined by

(3.4)

1whose £ibres we denote by ,£fM, TN) (= '£E(M,TN) nm, fM,TN)); evidently
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Next, we introduce the Laplacean .b.(J) which will depend on J via m( J); cf.[Ma]
and a sew remarks in appendix 3.2 :
For K E COO fM,TN), we define the covariant divergence by

(.3.5) *V (J)K := 0,

as usual, while following [Mal, V*(J)a for a E m1fM,TN) is given locally by

(3.6)

(Er) a local orthonormal frame with resped to m(J) ; VXa = V(J)Xa is defined in

the standard manner by
(V(J)Xa)(Y) = VX(aY) - a(V(J)X Y), VX,Y E f(TM).

To see that this definition does not depend on the moving frarnes chosen we write a
as a finite sum
(3.7) a = ~ ,l GD s. ,

. 1
1

with ,i E.A1(M,IR) and Si ET JE(M,N). Moreover, let a( ,i,J) be the smooth strong

bundle'endomorphism of TM such t hat

(3.8)
. . .

V(J)xC-l)(Y) = m(J)(a{ .l,J)X,Y) ,

holds for all pairs X,Y E f( TM) and for each i. In addition let y1 E f(TM) for each
i be such that

(3.9)
. .

'leX) = m(J)(y1,X), V X E f(TM).
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With these data it is a matter of routine to show that

l

(3.10) * . .
V (J)Cl = ~ (tr a( -l,J) 's. + V .5.),

i 1 y1 1

an expression independent of any moving frame.

Clearly if -y E Al(M,IR) and V = d then

provided that

*d 1= - div JY ,

'((X) = m(J)(Y,X), TI X,Y E r(TM).

L\( J) is t hen defined by

(3.11) * *L\(J):= VV (J) + V (J)V ,

The Laplacean L\( J) is elliptic for any JE E(M,N) (cf. (Pa]). As we will see below it
is self-adjoint with resped to Q5(J) if ßM = 0. For each K E T JE(M,N) equation

(3.6) yields

(3.12) * nL\(J)K = V (J)VK = - ~ VE (VK)(Er) .
r=l r

Remar! 3.1 :
Suppose that -y E Al(M,IR) and V = d. Define the vector field Y on M by

'((X) = m(J)(Y,X) (V X E r(TM)). Then it is dear that d*-y = - div JY , div J the

dassical divergence operator with respect to '" J).

The following theorem will be a basic tool in our studies of one forms on E(M,N) :
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Theorem 3.2 :

For any JE E(M,N), any Q' E 2{1E(M, TN) and two L1'L E C](M, TN) the following

two relation hold

(3.13) g(J)(a,VL) = Q5(J)(V*(J)a,L) + QSO(j)(a(n),I),
and

(3.14) g(J)(VL1,VL) = Q5(J)(1l(J)L1,L) + QSO(j)(VnL1,1),

where j := JI GM and I := L IGM. Here V denotes the Levi-Givita connection of the
metric < ,> on N. Let ~ J := {L E C](M, TN) I VL= O} for any J E E(M,N), then

(3.15 )

In fact dirn ~J < 00 • Equation (3.14) implies in turn a Green's equation

(3.16)

Here in"" J) is the volume element on ßM defined by "" J). Moreover, if oM = 0
t hen a is g-ort hogonal t0 all of 2i1E(M, TN), iff V*(J)a = 0 .

Proof:
Writing any LE Coo(M,TN) relative to a given JE E(M,N) in the form

(3.17) L = TJ X(L,J) + L.1.,

with a unique X(L,J) E f(TM) (and L.1.being such that L.1.(p) is the component
normal to T JT pM for all p E M), we have the following formula at hand:

From this equation we read off the coefficients in the decomposition (3.1) :



(3.19 )
as weIl as

(3.20)
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c(VL,T)TJ = (VL)1. ,

A(VL,TJ) = VX(L,J) + W(J,L), 'VL E Coo(M,TN)

and 'VJE E(M,N) .

Here W(J)L) is given by TJW(J,L)X = (VL1.X)T, where, once again, 1.denotes the
cornponent in 'l'N IJ(M) orthogon~ to T J(TM), while T is the cornponent
tangential to J(M), i.e. T J(TM).

For each a E Q.(\M, TN) and for each JE E(M,N), we write on the other hand

(3.21 ) a = Ä(Va,TJ)TJ ,

with Ä( a, T J) : TN lJ(M) --+ TN IJ(M) the srnooth bundle endomorphism
introduced above. Then for any moving frame (Er) on M, orthonormal with

resped to m( J), we deduce

m _* _
a.VL = ~ <A (a,TJ).A(VL,TJ)TJE ,TJE>

r=l r r
m _*

= ~ <A (a,TJ)'VE L ,TJEr>,
r=l r

-* -
A (a,TJ) being the adjoint of A(a,TJ) formed with resped to < , >. Hence

m _*
a'VL = ~ <VE (A (a,TJ)L),TJEr>r=l r

m
- ~ <L ,VE (Ä(a, TJ))TJEr>r=l r

yields
m _*

a.n = ~ <VE (A (a,TJ)L),TJE >
i=l r r

* m_+ <V (J)a,L> + ~ <A(a,TJ) VE (TJ)E ,L> .
i=l r r
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-* TSince (A (a,TJ)L) = TJZ(a,L,J) for some well-defined Z(a,L,J) and smce
VE (T J)Er is pointwise normal to T JTM the following series of equations are
r

immediate:

m
(3.22) a. VL= -. E <VE (c(a,T J)L), T JEr> + div JZ( a,L,})

1=1 [
* m .

+ <V (1)a,L> +.E <c(a,TJ)V'E (TJ)Er,LT>
1=1 r

m
= - E <VE (c(a,TJ)L.1),TJE >

i=l r [
m T

- E <VE (c(a,TJ)L ),TJE >
i=1 r r

*+ div JZ(a,L,J) + <V (J)a,L>
m

+ E <c(a,TJ)VE (TJ)E ,LT>
i=l r r

m
= - E <VE (c(aTJ)L.1),TJE >

i=l r r

*+ div JZ(a,L,J) + <V (J)a,L>,

where div J the divergence operator associated with m( J). Writing

c(a,TJ)L.1 = TJ U(a,L,J) , for some weH defined U(a,L,J) E r(TM), we obtain

*(3.23) a.VL = -divJU(a,L,J) + divJZ(a,L,}) + <V (1)a,L>.

Here U(Cl,L,J) is given by TJ U(a,L,J) = c(a,TJ) L.1. In case a = VK, then (3.23)
turns into

(3.24) VK. V'L= - div JU(K,L,J) + div JZ(K,L,J) + <~( J)K,L> .

Integrating (3.23) and (3.24) and applying the theorem of Gauss yields the desired
equations (3.13) and (3.14). Since V and ~(J) are elliptic (cf. appendix 3.2)
dirn ~J < 00 as shown, e.g. in [Pa] and [Hö 2]. The rest of the routine arguments in

this proof are left to the reader.

o
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We closethis section by showing that the metric gon the fibres üf £E(M,TN) also

possesses the invariance under Diff+M and any group orientation-preserving
isometries on N :
Für any choice !p E Diff+M , JE E(M,N) and L E COO(M,TN)we form

(3.25) V(Lo!P) = VL ° T!P

and represent V'(Lo!p)with respect to T(Jo!P) yielding

(3.26) V(Lo!P)= c(V(Lo!P),T(Jo!P)).T(Jo!P)A(V(Lo!P),T(Jo!P)) .

Multiplying V(Lo!P) with (T!P)-l and comparing the resulting coefficients of(3.26)
with those of (3.1) shows

c(VL,T J)o!P = c(V(Lo!P),T(Jo!P))
and

A(VL,TJ)o!P = T!P A(V(Lo!P),T(Jo!P)).(T!P)-l .

Now we verify

(3.27) g( JO!P)(V(L1o!P), V(L2o!P))

=-~ f tr c(VL1,T J) .c(VL2,T J)o!P p( J0!P)M
*+ ftr A(VL1,TJ).A (VL2,TJ)o!Pp.{Jo!p)M

= g(J)(VLl'VL2) ,

proving the Diff+M-invariance of 9 at T J. To show the J-invariance we let g E J
and only need to remark that

(3.28) V(TgoL) = Tg ° VL .

holds. The rest is obvious. Therefore we have :
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Proposition 3.3 :
The metric g on £E(M, TN) is invariant under Diff+M and any group J of

orientation-preserving isometries on N.

Appendix 3.1:
As indicated earlier, we present here some of the linear algebra used. in the
construetion of the dot product used in this seetion. The arguments may be
interpreted as fibrewise considerations for bundle maps or, with. some obvious
changes in the formulation, as considerations at the level of section modules.

The aim is to show that the dot produet "essentially" is induced by the classical
trace inner produet in endomorphism rings of euclidean spaces and to this end, we

now consider euclidean spaces E,F with inner products < , > and a fixed isometry
a of E onto the subspace EI cF. For the sake of convenience, we write the

elements of F as eolumns [:~] with respeet to the direet sum deeomposition

F = EI E9 E1.l; here, e1 E EI and e2 E E1.l; let also PI : F -+ EI ' P2 : F -+ E1.l

be the respeetive orthogonal projections.

Any endomorphism D of F now is represented by a 2x2 - matrix

_ [DU DI2.]D - D D '
21 22.

where DU E L(E1), D22 E L(E1.l), D12 E L(E1.l,E1) and D21 E L(E1,E1.l); the

matrix acts on a column [:~] by the usual rules of matrix algebra.

Next, let 'P E L(E,F). We are going to write 'P in the form
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'P = ca + aA = ca + A a

far suitable choices of cE L(F) and A E L(E) (or A E L(F)), both of them are linear
funetions of 'P :
For e E E; write <pe= ['PIe] ; thus, 'PI = P1'P and <P2= P2'P' Firstly, since

'P2e

EI = im(a), the expression <<pe,af> (with e,f E E) reduces to <'P1e,af> and this

bilinear form on E now can be written in the form <Ae,f> for a unique A E L(E);
in fact, since a is an isometry,

A -1 -1
= a 'PI = a P1'P'

There is a corresponding endomorphism Al of EI' namely Al = PI 'Pa-1 and the

endomorphism A of F now is the extension by 0 of this map; in other words :

(3.30) ~ _ [Al 0]A- .o 0

Secondly, we wish to write 'P2 = P2'P in the form ca for some c E L(F) and it is

dear that c is not automatically uniquely determined by this condition (unless
EI = F), so that in the course of the construetion, certain choices will have to be

made. In a first step, let cl: EI ---I 'E1l. be defined by Cl = P2 'Pa-1. Any

extension of Cl to an endomorphism of F then is of the form,

and its action on oe is the map oe •.......•[ßae ] ; this forces the choice ß = 0 , butCl oe

leaves 1,8undetermined. The obvious choiee for 8is 0 and with this, there now are
three options for 1: 1= 0, "I = Cl* or 1= -<:1* (where 11*" is the eudidean

adjQint) and in all three cases, c will remain a linear funetion of 'P. At this point,

we makethe choice 1= -<:1 * , so that we obtain



(3.31)

22

_ [0 --<:1*]
c - cl 0.'

a skew-symmetric endomorphism of F : c* -+ --<:. In part, this choice is motivated
by the usual splitting so(F) = so(E1) ED so(E1.L) ED L(El'E1.L), cf. seetion .5.

Let now .!j;: E-+ F be a second linear map, written in the form 1/J = (D + B)a

under the construetion just outlined. A simple calculation shows that

(c + A)(D + B)* = --<:D+ ÄB* + (cB* -Ä*D),

where the term in parentheses is tracefree. Moreover, the trace of ÄB* (in F) is

easily seen to coincide with trE(AB*) since a is an isometry. Accordingly, the

"trace inner produetl' in L(F) now reduces to -trF(cD) + trE(AB*). Thus, we see

that the dot produet 'P.1/J in L(E;F) essentially is the inner produet induced by the

classical trace inner product under the construetion 'P H C + Ä - up to the factor ~

in the first summand. We shall add some remarks on this point below, but firstly

now indicate the application of the linear algebra outlined here to the actual

construetions used in this section :
Pointwise, the rale of ais played by TJ, that of 'P by a E m~M,TN); accordingly

c(a,TJ) = c and A(a,TJ) = A. Note that this also shows that the bundle

endomorphisms used above depend linearly on a .

Let us turn to the factor 1in equation (3.2); it appears because of the following

reason : The endomorphism

(3.32) --<:(a,TJ)'c(b,TJ)(J(p)): TJ(p)N -+ TJ(p)N

of T J(p)N splits for each p E M into a direct sum of the two linear maps

-e(a,T J) 'c(b,TJ)lTJT Mp

and
--<:(a,T J). c( b,T J)I (T JT pM).L ,
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both endomorphisms namely of T JT M and (T JT M).L respeetively. Their traeesp p
are identieal. Thus the faetor ~ allows us to take only the pointwise formed traee of•..
( 3.3,3) -e( 0,T J) .e( b,T J) IT JT pM

into aceount. The endomorphism (3.33) ean be pulled back to TM in the obvious
manner. Henee in the dot produet (3.2) eontribute traces of endomorphisms of TM
only.

Appendix 3.2 :
It was pointed out earlier that the fibres Cj(M,TN) of COO(M,TN)=, TCOO(M,N)are

naturally isomorphie to the seetion spaees r(J*TN); similarly, A~M,TN) is

isomorphie to Al(M,lTN). On the other hand, if 'iJ denotes e.g. the Levi-Civita
* *eonneetion of N, then there is the induced "pull-back conneetion" J 'iJ in J TN,

obtained in the usual manner. It now is routine to verify that the following

diagram commutes:

Cj(M,TN)

V!
A~M,TM)

*r(J TN)

*!J 'iJ
A~M,TM)

*'iJ simply lIisll the induced connection in J TN. As a first eonsequence, one
concludes that 'iJ.Js a first-order elliptic differential operator, an observation of

great importance for later sections.

*In addition, J TN carries a natural Riemannian structure given by < , > in TN;
*the connection J V is compatible with this metric. The Riemannian structure of

*J TN together with J.L( J) now is used to obtain a pre-Hilbert space structure in
r(lTN) as weIl as in A\M,lTN), etc., and hence under the isomorphisms ill the* /
above diagram, one obtains a formal adjoint V(J) of V. This operator colficides

* * .with the operator 'iJ (J) of this section and this shows that 'iJ (J) again 1S a
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first-order elliptic operator. Accordingly, the Laplacean ß(J) as defined in the text
now is seen to be a second-order elliptic operator. This will be true lIat alllevelslI,

i.e. on the spaces A}(M,TN), p ~ 1, defined in the obvious manner. We omit the

details here, but point out that the ellipticity of D.(J) will be cruciallater on.

Lastly, since 'iJ is elliptic, its HS (= Sobolev W2,s_) extensions all are Fredholm

maps and so have closed range. At IIlevel 0'" the symbol of 'iJ is injective and one

concludes now that the range £fM,TN) of this 'iJ is closed in m~M,TN), hence

itself a Fn~chet space. In fact, one can argue that it is a split subspace and that
£E(M, TN) is a Fnkhet subbundle of m~(M,TN). The technical details of these

claims will be dealt with elsewhere.
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4. One forms on E(M,N)

A (scalar) 1-form on E(1vl,N) is a smooth funetion

F : CE(M, TN) -+ IR

with the property that for each JE E(M,N), the restrietion F(J) = F IC](M,TN) is

linear in L E C fM, TN). In particular, F( J) is a continuous linear form on this

*fibre, i.e. an element of the topological dual C](M,TN)':::: r(J TN)' . Loosely

speaking, then, F is a smooth section of the "cotangent bundle" W CfN,TN)' of
J

E(M,N), but this point~f-view will not be pursued any further here; cf.however
below.

For our purposes, it will be sufficient to limit attention to a smaller dass of such
one-forms; in particular, the.ir values will depend only on the one-jets of the
elements of CE(M,TN). More precisely:

Definition 4.1:
The one-form F on E(M,N) is said to be g-representable if there exists a smooth
section 11: E(M,N) -+ ~~(M,TN) of the bundle (~~(M,TN),ß,E(M,N» such that

(4.1) F(J)(L) = f 11(J) . VLp{J) = g(J)(l1(J),VL)
M

for JE E(M,N) and L E C](M,TN). The section 11is called the (g-)kernel of F .

For instance, suppose that .fj is a smooth seetion of CE(M,TN) over E(M,N), i.e a

smoot h vect or field. Then 11(J) = V.fj(J) will provide a g-kernel and the righ t-hand
side of (4.1) then will define a representable one-form. In fact, this example can be
shown to charaeterize t he represen table one-forms, cf.below. Let us denote by
1 --

A g(E(M,N),IR) the colleetion of all smooth g-representable one-forms on E(M,N).
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Remark 4.2:
Clearly, the existence of non-trivial I-forms, in particular that of g-representable
ones depends on the existence of not identically vanishing smooth sections of the

bundles in question. Both 2l~(M,TN) and CE(M,TN) = TE(M,N) admit local

sect~ons, since they are locally trivialover E(M,N). Moreover, the model spaces
f(J TN) of E(M,N) are nuclear Frechet spaces obtained as countable inverse limits

*of Hilbert spaces, namely e.g. the HS-completions of f(J TN) for sEIN. This
implies that E(M,N) admits enough "bump functionsl': Given the open

neighbourhoods U,V of J with V ( U, there exist an open neighbourhood

W of J and a smooth funetion f on E(M,N) such that W ( V, together with

o ~ f ~I, f IW = 1 and f = 0 on the complement of V. With this existence of
non-zero seetions of the above bundles is clear. The paracompactness of E(M,N)
(as subspace of the paracompaet and locally metrizable, hence metrizable space
COO(M,N)!) can be used to obtain smooth partitions of unity, but we omit the

details here and return to all these matters elsewhere.

We now show that any kernel a of a smooth one-form F can be presented by Vi) ,

where

i): E(M,N) -- CE(M,TN)

is a smooth veetor field. This means that for any JE E(M,N)

(4.2)

or equivalently
( 4.3)

f a( J). VL p.( J) = fV i)( J). VL p.( J)M M

g( J)( a( J),VL) = g(J)(V i)( J),VL)

has to hold for all L E Cj(M, TN). Ta do so we are required to salve

(4.4)
and
( 4.5)

*Ci( J)i)( J) = V a

V fX J) = a( n) .n I
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This is for each JE E(M,N) an elliptic boundary value problem (d.[Pa] or [Hö 2] as
weIl as appendix 3.2) and admits according to [Hö 2] a smooth solution SX J) for
each JE E(M,N). Since the solutions are smooth with respect to small
perturbations of the system (cf.[Hö 2]), we may state :

Theorem 4.3 :
Any F E A~(E(M,N),IR) admits a smooth vector field

Sj: E(M,N) -I CE(M,TN)

for which
( 4.6) F( J)( L) = f Vij J) .VL p/..))

M
holds for aIl variables of F .

The following corollary is an easy consequence of proposition 2.1 :

Corollary 4.4 :
Let G and K be groups acting on M and on N for a given JE E(M,N) via the

homomorphism

respeetively, where J is an isometry group of N preserving the orientation. 1£
F E Al(E(M,N),IR) is {rrepresentable and invariant at J under <I> and 'lJ
respeetively, then there is a smooth vector field Sj: E(M,N) -I CE(M,TN) such

that
F(J)(L) = fVijJ).VL J4J)

M

and
(4.7) ijJ 0 <I>(g))= ijJ) 0 <I>(g), V gE G
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as weH as
(4.8) .f.(\l1(k) 0 J) = T\l1(k) 0 .f.(J), V k E K

hold for all variables of F .
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5. The special situation N = IRn

We will show in this section that in case of N = IRnand < , > being a fixed scalar
product, the spaces .£E(TM, TlRn) allow much simpler and more detailed.

description. In particular (4.1) in the previous section admits a natural
visualization. This enrichment is due to the algebraic strueture of IRn, which one
hand yields the simplification as far as the triviality of TlRn is concerned. On the
other hand the operation of IRnas a translation group of the linear space IRnallows
us to split .£E(TM,TlRn) with respeet to this action:

Based on the triviality of TlRnwe first of all observe, that

(5.1)

which is a FfE!chet manifold as seen direetly by considering, for each J e E(M,lRn)
the bijeetion
(5.2) '£fTM,TlRn) -+ Coo(M,lRn)/lRn

given by
dL •..••.••[1] .

The operation of IRnas translation group of the vector space IRnprovides us with
the action
(5.3)
given by

(J,u) •...•.••J + u .

Let us.~tudy the orbit space : We consider

(5.4)

where

This set can be identified with the collection of all orbits of action (5.3). Since
moreover,
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(5.6)

given by
J •...•..•dJ

is a bijection onto an open set of Coo(M,lRn)/lRn, the orbit space E (M,lRn) of the. 0
action of the translation group IRnonto E(M,lRn) is thus a Frechet manifold. Hence
we read off from (5.4) :

(5.7)

J( t) = J (t) + u( t) ,
o

Next let us determine TJ E(M,lRn) for any J E E (M,lRn). To this end we let J(t)
o 0 0 .

be a smooth parameterized family in E(M,lRn) which we decompose according to
(5.4) into
(5.8)

with u(t) E IRn for any real t E IR. Let J := J (0) and u := U (0), then foro 0 0 0

L := J(O) we have

~ MI J(t) p(J(t)) It=o = MIL "'Jo) + j" Jo tr Dm(Jo)(L) "'Jo)

= 1](0) "'J ) + ~ (0) I"'J) + IJ tr Dm(J )(L) "'J ) .M. 00 MO MO 0 0

Decomposing L according to (5.7) in to

(5.9) L=L +z,o

with LET J E(M,!Rn) and z E T !Rnyields immediately
o 0 uo. .

J (0) = L and u (0) = z .o 0
Due to

IJ(t)"'J(t))=O, VtEIR,
M 0 0
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we find

fL J4J) = 0 .
1'1 0 0

Introducing
(5.10)

which naturally is linearly diffeomorphic to Coo(M,lRn)/lRn, we deduce

(5.11) TJ Eo(M,lR
n) = Cj (M,lRn) ~ Coo(M,lRn)/lRn

o 0

and in t um 0btain t he split ting

(5.12)

Any F E Al(E(M,lRn),lRn) consequently splits for each JE E(M,lRn) and for each
L E Coo(M,lRn)into

(5.13) F(J)(L) = F(J +u)(L ) + F( J +u)(z) ,o 0 0

where J ,L ,u and z are as above.o 0

Thus (4.1) in the previous seetion amounts in this case to say that

(5.14) F(J)(L) = F(J )(L ) ,o 0

Joand L
o
being the components of J in EO(M,ot) and of L in Cj (M,lRn)

o
respectively as introduced in (5.8) and (5.9). (In the application to continuum
mechanics any one-form F satisfying (5.13) means, that F depends only on those
embeddings for which the center of mass is fixed at 0 E IRn.)

The following theorem (cf.(Bi 4]) describes in fuH generality the strueture of
g-representable one-forms for N :: IRnand < , > being a fixed scalar produet. '
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Theorem 5.1 :
Every F E A~(E(M,lRn),IR) admits a smüüth cünstitutive map

(.s.15) Sj: E(M,lRn) -; Coo(M,lRn) ,
such that F can be expressed as

(5.16 ) F(J)(L) = f<ß(J)S)(J),L>P{J) + f<dS)(J)(n),L>i p{J) ,M ~ n

für each JE E(M,lRn) and each L E Coo(M,lRn). Für all JE E(M,lRn) the map Sj
defines <I>E COO(E(M,lRn),Coo(M,lRn)) and rp E COO(E(M,lRn),Coo(~,lRn)) respectively
by

(5.17)

and
(5.18)

<I>(J) := LX(J) S)(J)

~J):= dS)(J)(n) ,

which satisfy due to the first jet dependence of F , the equation

(5.19) 0 = f <I>(J)"'J) + f ~J) in"'J) .M ßM
Given VlCe versa two smüoth maps <I>E COO(E(M,lRn),Coo(M,lRn)) and
rp E COO(E(M,lRn),Coo(ßM,lRn)), for which (5.19) hülds as an integrability cündition,
then there exists a smooth map .fj E COO(E(M,lRn),Coo(M,lRn)) satisfying (5.17) and
(5.18), which is uniquely determined up to a constant for each JE E(M,lRn).

ß

Remar15.2 :
a) If <I>I E COO(E(M,lRn),Coo(M,lRn)) and rpl E COO(E(M,lRn),Coo(ßM,lRn)) are given
arbitrarily, we may split off a constant and components <I>and rp satisfying (5.19).
Then <I>and rp can be expressed as in (5.17) and (5.18).

,
b) To cümment the interplay between linearity and non-linearity we point out
this : Even if Sj is of the form



.fX J + K) = .fX J) + D.fX J)( K) ,

for any K e CCll(M,lRn)for which J+K e E(M,lRn), the map in (5.17) and (5.18) does
not vary accordingly since the Laplacean varies more subtile on J (d.(3.11».

c) Introducing the A-product and the Hodge-star operator as done in [A,M,R] we
may write
(5.20)

for any pair LI ,L2 E CCll(M,lRn).This is easily seen by converting the right hand

side of (5.20) into the right hand side of (5.16). In fact the equality holds on the
level of the integrands (cf. [Al).

d) A theorem analogous to theorem 5.1 holds in the general case as weIl. We omit
to state it because of the sake of simplicity.

Appendix 5.1 :
Here let us motivate (3.1) in the context of this section : Given two I,J e E(M,lRn)
which are in the same connected component. Then we may write

dJ = Q(J) .dl ,

for some Q(J) e CCll(M,L(lRn,lRn).According to the pointwise performed polar
decomposition (cf.(Bi,Sn,Fi]) the map Q( J) can be expressed by

Q(J) = g(J).f(J),

where g(J) e CCll(M,SO(n» andf(J) e CCll(M,Ls(lR
n,lRn», the index s meanmg

self-adjoint with respect to < , >. Moreover, for all X,Y e r(TM)

(5.21) m(J)(X,Y) = <f(J)dIX,f(J)dIY>

= m(I)(f(J)X,£(J)Y) ,
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where f(J) is the square root of the strong bundle isomorphism N(J) E L(TM,TM),
defined by

m(J)(X,Y) = m(I)(A'(J)X,Y), 'V X,Y E r(TM).

f'(J) .dI = dI.f(J) ,

with fl(J) I(T(JTM)).L = 0, we conclude by (5.21)

dJ = g.dI.f .

Letting J depend on a smooth real parameter t with J(O) = I , we firid

(5.22) dj(O) = g(O) dI + dI £(0) .

Thus there is a unique C E COO(M,L(IRn,lRn)), the index a meaning skew-adjoint,a

such that
g(O) dI = c.dI + dI.C,

with c as in (3.1). Colleeting C and £(0) into A( dJ,dI), yields

(5.23) dj(O) = c.dI + dI.A(dJ,dI)

the decomposition (3.1) in case of a = dj(O). Equation (5.23) then motivates the
generaCdecomposition (3.1). The meaning of the coefficients c, C and f are

discussed e.g. in (Bi,Sc,So].
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6. g-representable one-forms on E(M,lRn) as eonstitutive laws

In this part of the paper we link the formalism developed earlier to classieal
elastieity as presented e.g. in [L,L]. In doing so, we work in a Cl)-setting. First of

all we introduee the work eaused by deforming a body. The body being identified
with the manifold M with boundary enjoying the properties of the previous
seetions. To this end we consider the derivative of the map m: E(M,lRn) .-. 9Jl(M) ,
at any JE E(M,lRn) in the direction of any L E Coo(M,lRn). It is determined by

(6.1) Dm(J)(L)(X,Y) = <dJX,dLY> + <dLX,dJY>, 'VX,Y E r(TM).

Writing Dm(J)(L) with respect to m(J) yields the strang smooth bundle

endomorphism

(6.2) B( dL,dJ) : TM -+ TM .

Henee, B( dL,dJ) is the symmetrie part of A( dL,dJ) a eoeffieient appearing in (3.1).

This is easily seen by using (3.1) and (6.1), the tensor

1m(J)(B(dL,dJ) .. ,.. ) = 7JDm(J)(L)

is ealled the linearized deformation tensor.

Let us assurne that some smooth map

is prescribed, where the range is the eolleetion of all symmetrie two tensors on M
endowed with the COO-topology. '!(m(J)) is ealled the stress tensor at m(J).
't(m( J)) determines a uniquely defined smooth strong bundle map of TM, such

that
(6.3) 'I(m(J))(X,Y) = m(J)('!(dJ)X,Y), 'VX,Y E r(TM).

We define
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(6.4) Fm(m(J))(~Dm(J)(L)):= ftr('!(m(J)).B(dL)dJ) p(J),
M

for any m(J) E m(E(M,lRn)) and any Dm(J)(L) E Dm(E(M,lRn))(Coo(M,lRn)).

It is not clear as to whether m(E(M,lRn)) is a manifold or not. It is one if the
codimension of M in IRn is high enough (d.[StJ). Hence the usual techniques in

analysis and differential geometry cannot by applied with caution to this
topological space. However, E(M,lRn) is a Frechet manifold and it makes sense to
lift (6.4) to E(M,lRn) by introducing the one-form

given by
F(J)(L) = Fmm(J)(~ Dm(J)(L) ,

for any of the variables of F. It makes also sense to require that F is smooth even

though smoothness is not defined for F . As shown in [Bi 4] there is a mapm

for which

(6.5) F(J)(L) = f d.f.(dJ).dL p(J)
M

holds for all variables of F. Hence, prescribing the stress tensor at each

configuration in m(E(M,lRn)) yields a g-representable one-form F. Since ~ is a
constitutive entity in elasticity, we call F a constitutive law (cf.[E,S]). Equation
(6.5) is the motivation for calling any F E Al iE(M,!Rn),IR) a constitutive law.

As shown in [S], given any g-representable one-form F invariant under the natural
action of the euclidean group of !Rnon E(M,lRn), satisfying an additional condition,
there is a map '! such that (6.4) holds. The additional condition amounts to say

that no rigid motion in IRncauses any work.

The force densities associated with any constitutive law F with g-kernel dS) are

given at each JE E(M,lRn) by



(6.6)
and
( 6.'7)
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L1(J)S)( J) on M

dS)( J)( n) on GM.

d.(Bi 4]). Thus, the formalism presented in these notes refines the usual treatment
of elasticity and carries over to any ambient manifold N (cf. Remark .5.2 d) in the
previous section). If N ( lRn , then it may refleet constraints adeformation of a
body in lRn has to satisfy.

If N has no non-trivial isometry group, then there is in general no natural
symmetrie stress-tensor available at each configuration. Hence the generality of
the mechanism presented here, which describes all the deformable media admitting

smooth force densities at each configuration acting upon M and GM respeetively

seems to be necessary.
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