Symmetric Properties in Linear Programming Problems

Werner Oettli¹ and Maretsugu Yamasaki²

Nr. 117 (1990)

Lehrstuhl für Mathematik VII, Universität Mannheim
Department of Mathematics, Shimane University

į.

Symmetric Properties in Linear Programming Problems

Werner OETTLI and Maretsugu YAMASAKI

Let X and \tilde{X} be real linear spaces which are in duality with respect to a bilinear functional $\langle \cdot, \cdot \rangle$. Likewise let Y and \tilde{Y} be real linear spaces which are in duality with respect to another bilinear functional, for simplicity also denoted by $\langle \cdot, \cdot \rangle$. We assume that the topologies on X, \tilde{X} and Y, \tilde{Y} are such that $X^* = \tilde{X}$, $\tilde{X}^* = X, Y^* = \tilde{Y}, \tilde{Y}^* = Y$. Let $A : X \to \tilde{Y}$ be a continuous linear mapping. The adjoint $A^* : Y \to \tilde{X}$ is determined by the relation $\langle A^*y, x \rangle := \langle Ax, y \rangle$ for all $x \in X, y \in Y$. We require that A^* is continuous and $(A^*)^* = A$. For any nonvoid closed convex cone $\alpha \subseteq X$ we denote by α^+ the polar cone of α , i.e.,

$$\alpha^+ := \{ \xi \in \tilde{X} | \langle \xi, x \rangle \ge 0 \text{ for all } x \in \alpha \}.$$

According to the bipolar theorem, $(\alpha^+)^+ = \alpha$. Furthermore if $\alpha_1 \subseteq \alpha_2$, then $\alpha_2^+ \subseteq \alpha_1^+$, and if $x \in \alpha$, $x \neq 0$, and $\xi \in \text{int } \alpha^+$, then $\langle \xi, x \rangle > 0$. Likewise for any nonvoid closed convex cone $\beta \subseteq Y$ we denote by β^+ the polar cone of β , i.e.,

$$\beta^+ := \{ \eta \in \tilde{Y} | \langle \eta, y \rangle \ge 0 \text{ for all } y \in \beta \}.$$

The same comments as for α^+ apply.

Let $P \subseteq X$ be a fixed nonvoid closed convex cone with $\operatorname{int} P^+ \neq \emptyset$. Let $Q \subseteq Y$ be a fixed nonvoid closed convex cone with $\operatorname{int} Q^+ \neq \emptyset$. Let \mathcal{P} be a family of nonvoid closed convex cones $\alpha \subseteq P$ with $\alpha \neq \{0\}$, and let \mathcal{Q} be a family of nonvoid closed convex cones $\beta \subseteq Q$ with $\beta \neq \{0\}$. Finally let $f \in \operatorname{int} P^+$ and $g \in \operatorname{int} Q^+$ be given. For $\alpha \in \mathcal{P}$, $\beta \in \mathcal{Q}$ we consider the following mathematical programming problems:

(1)
$$M(\alpha,\beta) := \sup \{ \langle f, x \rangle | x \in \alpha, Ax + g \in \beta^+ \},$$

(2)
$$\check{M}(\alpha,\beta) := \sup \{ \langle g, y \rangle | \ y \in \beta, \ A^*y + f \in \alpha^+ \}.$$

We remark that problems (1) and (2) are not dual to each other in the usual linear programming sense. Rather, the standard dual of (1) is given by

(3)
$$M^*(\alpha,\beta) := \inf \{ \langle g, y \rangle | y \in \beta, A^*y + f \in -\alpha^+ \},$$

and the standard dual of (2) is given by

(4)
$$\check{M}^*(\alpha,\beta) := \inf \{ \langle f, x \rangle | x \in \alpha, Ax + g \in -\beta^+ \}.$$

Let us define

$$M(\mathcal{P}, \mathcal{Q}) := \sup \{ M(\alpha, \beta) | \alpha \in \mathcal{P}, \beta \in \mathcal{Q} \},$$
$$\check{M}(\mathcal{P}, \mathcal{Q}) := \sup \{ \check{M}(\alpha, \beta) | \alpha \in \mathcal{P}, \beta \in \mathcal{Q} \}.$$

We shall study the symmetric property $M(\mathcal{P}, \mathcal{Q}) = \check{M}(\mathcal{P}, \mathcal{Q})$.

Lemma 1. $M(\alpha,\beta) > 0$ and $\check{M}(\alpha,\beta) > 0$ for all $\alpha \in \mathcal{P}, \beta \in \mathcal{Q}$.

Proof: Let $\tilde{x} \in \alpha$, $\tilde{x} \neq 0$. Since $g \in \operatorname{int} Q^+ \subseteq \operatorname{int} \beta^+$ we can choose $\lambda > 0$ so small that $\lambda A \tilde{x} + g \in \beta^+$. Set $x_0 := \lambda \tilde{x}$. Then x_0 satisfies the constraints of (1), and from $x_0 \in \alpha$, $x_0 \neq 0$, $f \in \operatorname{int} P^+ \subseteq \operatorname{int} \alpha^+$ follows $\langle f, x_0 \rangle > 0$. Thus $M(\alpha, \beta) > 0$. A symmetric argument shows $\check{M}(\alpha, \beta) > 0$. q.e.d.

We introduce several conditions:

(A.1) For all $\alpha \in \mathcal{P}$, if $x \in \alpha$, $x \neq 0$, $\xi \in -\alpha^+$, $\langle \xi, x \rangle = 0$, then there exists $\tilde{\alpha} \in \mathcal{P}$ such that $\xi \in \tilde{\alpha}^+$.

(A.2) For all $\beta \in Q$, if $y \in \beta$, $y \neq 0$, $\eta \in -\beta^+$, $\langle \eta, y \rangle = 0$, then there exists $\tilde{\beta} \in Q$ such that $\eta \in \tilde{\beta}^+$.

Condition (A.1) will be satisfied in particular, if \mathcal{P} contains all cones of the type $\alpha(\overline{x}) := \{\lambda \overline{x} \mid \lambda \geq 0\}$ with $\overline{x} \in P$, $\overline{x} \neq 0$. Indeed, in this case, if x and ξ obey the hypothesis of (A.1), then with $\tilde{\alpha} := \alpha(x)$ we have $\tilde{\alpha} \in \mathcal{P}$ and $\xi \in \tilde{\alpha}^+$, as requested. Likewise condition (A.2) will be satisfied, if \mathcal{Q} contains all cones of the type $\beta(\overline{y}) := \{\lambda \overline{y} \mid \lambda \geq 0\}$ with $\overline{y} \in Q$, $\overline{y} \neq 0$.

(B.1) For all $\alpha \in \mathcal{P}$, $\beta \in \mathcal{Q}$ the duality theorem holds for (1) and (3), i.e., the linear programming problems (1) and (3) have optimal solutions, and the optimal values $M(\alpha,\beta)$ and $M^*(\alpha,\beta)$ are equal.

(B.2) For all $\alpha \in \mathcal{P}$, $\beta \in \mathcal{Q}$ the duality theorem holds for (2) and (4), i.e., the linear programming problems (2) and (4) have optimal solutions, and the optimal values $\check{M}(\alpha,\beta)$ and $\check{M}^*(\alpha,\beta)$ are equal.

Conditions (B.1) and (B.2) will be discussed below.

Theorem 1. If conditions (A.1), (A.2), (B.1), (B.2) are fulfilled, then the equality $M(\mathcal{P}, \mathcal{Q}) = \check{M}(\mathcal{P}, \mathcal{Q})$ holds.

Proof: Let $\alpha \in \mathcal{P}$, $\beta \in \mathcal{Q}$. Then from (B.1) problem (1) has an optimal solution \overline{x} , problem (3) has an optimal solution \overline{y} , and

$$\langle f, \overline{x} \rangle = M(\alpha, \beta) = M^*(\alpha, \beta) = \langle g, \overline{y} \rangle.$$

From Lemma 1 follows $\overline{x} \neq 0$. From the constraints of (1) and (3) follows

$$\langle f, \overline{x} \rangle \leq -\langle A^* \overline{y}, \overline{x} \rangle = -\langle A \overline{x}, \overline{y} \rangle \leq \langle g, \overline{y} \rangle.$$

Combined with $\langle f, \overline{x} \rangle = \langle g, \overline{y} \rangle$ this gives $\langle A^* \overline{y} + f, \overline{x} \rangle = 0$. Since $\overline{x} \in \alpha, \ \overline{x} \neq 0$ and $A^* \overline{y} + f \in -\alpha^+$, it follows from (A.1) that $A^* \overline{y} + f \in \tilde{\alpha}^+$ for some $\tilde{\alpha} \in \mathcal{P}$. From this and $\overline{y} \in \beta$ follows

$$M(\alpha,\beta) = \langle g, \overline{y} \rangle \le \sup \{ \langle g, y \rangle | \ y \in \beta, \ A^*y + f \in \tilde{\alpha}^+ \}$$
$$= \check{M}(\tilde{\alpha},\beta) \le \check{M}(\mathcal{P},\mathcal{Q}).$$

Hence $M(\mathcal{P}, \mathcal{Q}) \leq \check{M}(\mathcal{P}, \mathcal{Q})$. A symmetric argument, using (A.2) and (B.2), gives $\check{M}(\mathcal{P}, \mathcal{Q}) \leq M(\mathcal{P}, \mathcal{Q})$. Therefore $M(\mathcal{P}, \mathcal{Q}) = \check{M}(\mathcal{P}, \mathcal{Q})$. q.e.d.

Now we look for a condition which ensures that (B.1) and (B.2) are satisfied simultaneously.

Lemma 2. The following conditions are equivalent:

(C.1) $A^*y \in \text{ int } (-P^+) \text{ for all } y \in Q, \ y \neq 0;$

(C.2) $Ax \in \text{int} (-Q^+) \text{ for all } x \in P, x \neq 0.$

Proof: Because of symmetry it suffices to show that (C.2) implies (C.1). Let (C.2) hold. Assume, for contradiction, that there exists $y \in Q$, $y \neq 0$ with $A^*y \notin$ int $(-P^+)$. Then from the separation theorem for convex sets there exists $x \in (X^*)^* = X$, $x \neq 0$, such that

$$\langle x, A^*y \rangle \ge 0 \ge \langle x, \xi \rangle$$
 for all $\xi \in -P^+$.

This implies $\langle Ax, y \rangle \ge 0$ and $x \in (P^+)^+ = P$. But from (C.2) follows then $Ax \in int(-Q^+)$, and therefore $\langle Ax, y \rangle < 0$, a contradiction. q.e.d.

Theorem 2. Let (C.1) or (C.2) hold. Then both conditions (B.1) and (B.2) are satisfied.

Proof: From Lemma 2 we may assume that both (C.1) and (C.2) are satisfied. Let $\alpha \in \mathcal{P}$, $\beta \in \mathcal{Q}$. a) Choose $x_0 := 0$. Then $x_0 \in \alpha$ and $Ax_0 + g = g \in \operatorname{int} Q^+$. Now choose $\tilde{y} \in \beta$, $\tilde{y} \neq 0$. Then $\tilde{y} \in Q$, and by (C.1), $A^*\tilde{y} + U \subseteq \operatorname{int} (-P^+)$ for some neighborhood U of the origin. Choose $\lambda > 0$ so large that $f \in \lambda U$, and set $y_0 := \lambda \tilde{y}$. Then $y_0 \in \beta$ and $A^*y_0 + f \in \lambda A^*\tilde{y} + \lambda U \subseteq \operatorname{int} (-P^+)$. Since $P^+ \subseteq \alpha^+$ and $Q^+ \subseteq \beta^+$ we have altogether obtained x_0, y_0 such that

$$x_0 \in \alpha$$
, $Ax_0 + g \in \text{int } \beta^+$,
 $y_0 \in \beta$, $A^*y_0 + f \in \text{int } (-\alpha^+)$.

These are the regularity conditions which ensure that the duality theorem holds for (1) and (3) – see [2, p. 164], [3]. Hence (B.1) is satisfied. b) Using (C.2) instead of (C.1) we obtain y_0 and x_0 such that

$$y_0 \in \beta$$
, $A^* y_0 + f \in \text{int } \alpha^+$,
 $x_0 \in \alpha$, $Ax_0 + g \in \text{int } (-\beta^+)$.

These are the regularity conditions which ensure that the duality theorem holds for (2) and (4). Hence (B.2) is satisfied . q.e.d.

We turn now to the situation where Y = X, $\tilde{Y} = \tilde{X}$, so that $A : X \to \tilde{X}$ and $A^* : X \to \tilde{X}$. Instead of simply specializing the previous results we consider

a somewhat different problem. From now on let \mathcal{P} be a family of nonvoid closed convex cones $\alpha \subseteq X$. Let $f \in \tilde{X}$, $g \in \tilde{X}$ be given arbitrarily. For all $\alpha \in \mathcal{P}$ we consider the problems

(5)
$$L(\alpha) := \sup \{ \langle f, x \rangle | x \in \alpha, Ax + g \in \alpha^+ \},$$

(6)
$$\check{L}(\alpha) := \sup \{ \langle g, y \rangle | \ y \in \alpha, \ A^* y + f \in \alpha^+ \}.$$

The linear programming dual of (5) is given by

(7)
$$L^*(\alpha) := \inf \{ \langle g, y \rangle | y \in \alpha, A^*y + f \in -\alpha^+ \},$$

and the linear programming dual of (6) is given by

(8)
$$\check{L}^*(\alpha) := \inf \{ \langle f, x \rangle | \ x \in \alpha, \ Ax + g \in -\alpha^+ \}.$$

We define

(9)
$$L(\mathcal{P}) := \sup \{L(\alpha) \mid \alpha \in \mathcal{P}\},\$$

(10)
$$\check{L}(\mathcal{P}) := \sup \{\check{L}(\alpha) | \alpha \in \mathcal{P}\},\$$

and we want to establish the equality $L(\mathcal{P}) = \check{L}(\mathcal{P})$. We require the following conditions:

- (D) For all $\alpha \in \mathcal{P}$ and all $x \in \alpha$ there exists $\tilde{\alpha} \in \mathcal{P}$ such that $x \in \tilde{\alpha} \subseteq \alpha$ and, whenever $\xi \in -\tilde{\alpha}^+$ and $\langle \xi, x \rangle = 0$, then $\xi \in \tilde{\alpha}^+$.
- (E) For all α ∈ P with L(α) > -∞ the duality theorem holds for (5) and (7), and for all α ∈ P with Ľ(α) > -∞ the duality theorem holds for (6) and (8).
- (F) The suprema occuring in (9) and (10) are finite, and are assumed somewhere on \mathcal{P} .

Now we have:

Theorem 3. Let conditions (D), (E), (F) be satisfied. Then $L(\mathcal{P}) = \check{L}(\mathcal{P})$.

Proof: In accordance with condition (F) let $\alpha_1 \in \mathcal{P}$ be optimal for $L(\mathcal{P})$, so that $L(\mathcal{P}) = L(\alpha_1)$. In accordance with condition (E) let \overline{x} be optimal for $L(\alpha_1)$, so that $L(\alpha_1) = \langle f, \overline{x} \rangle$. Given $x := \overline{x}$ and $\alpha := \alpha_1$ fix $\tilde{\alpha}$ in accordance with condition (D). Then $\overline{x} \in \tilde{\alpha} \subseteq \alpha_1$. From the constraints of $L(\alpha_1)$ one has $A\overline{x} + g \in \alpha_1^+ \subseteq \tilde{\alpha}^+$. Thus \overline{x} satisfies also the constraints of $L(\tilde{\alpha})$, and therefore $\langle f, \overline{x} \rangle \leq L(\tilde{\alpha})$. But since $L(\mathcal{P}) = \langle f, \overline{x} \rangle$ it follows that $\langle f, \overline{x} \rangle = L(\tilde{\alpha})$, and \overline{x} is also optimal for $L(\tilde{\alpha})$. In accordance with condition (E) let \overline{y} be optimal for the dual $L^*(\tilde{\alpha})$, so that

$$\langle f, \overline{x} \rangle = L(\tilde{\alpha}) = L^*(\tilde{\alpha}) = \langle g, \overline{y} \rangle.$$

Then $A^*\overline{y} + f \in -\tilde{\alpha}^+$, and as in the proof of Theorem 1 follows $\langle A^*\overline{y} + f, \overline{x} \rangle = 0$. From condition (D) follows $A^*\overline{y} + f \in \tilde{\alpha}^+$. Consequently \overline{y} satisfies also the constraints of $\check{L}(\tilde{\alpha})$, and therefore $\langle g, \overline{y} \rangle \leq \check{L}(\tilde{\alpha}) \leq \check{L}(\mathcal{P})$. Since $L(\mathcal{P}) = \langle g, \overline{y} \rangle$ it follows $L(\mathcal{P}) \leq \check{L}(\mathcal{P})$. A symmetric argument gives $\check{L}(\mathcal{P}) \leq L(\mathcal{P})$. Hence the claimed equality is true. q.e.d.

Let us discuss condition (D). It is satisfied for instance, if $\alpha \subseteq P$ for all $\alpha \in \mathcal{P}$ and \mathcal{P} contains all cones of the type $\alpha(\overline{x}) := \{\lambda \overline{x} \mid \lambda \geq 0\}, \ \overline{x} \in P$, where $P \subseteq X$ is a given nonvoid closed convex cone. Indeed, if $x \in \alpha$ for some $\alpha \in \mathcal{P}$, then choosing $\tilde{\alpha} := \alpha(x)$ one has $\tilde{\alpha} \in \mathcal{P}, \ x \in \tilde{\alpha} \subseteq \alpha$, and if $\langle \xi, x \rangle = 0$, then $\xi \in \tilde{\alpha}^+$ $(x = 0 \text{ is permitted here since } \alpha = \{0\}$ is not excluded). Hence (D) is satisfied.

Another situation where (D) is satisfied is the following. Let K be a finite set and $X := \mathbb{R}^{K}$, \mathcal{P} be the family of all cones of the type $\alpha(A) := \{x \in \mathbb{R}^{K} \mid x_{i} \geq 0 \text{ for all } i \in A, x_{i} = 0 \text{ for all } i \in K \setminus A\}$, where A runs over all subsets of K. Then $(\alpha(A))^{+} = \{y \in \mathbb{R}^{K} \mid y_{i} \geq 0 \text{ for all } i \in A\}$. For $x \in \mathbb{R}^{K}_{+}$ let supp $x := \{i \in K \mid x_{i} > 0\}$. Now if $x \in \alpha(A)$, then choosing $\tilde{\alpha} := \alpha(\text{supp } x)$ we have $\tilde{\alpha} \in \mathcal{P}$ and $x \in \tilde{\alpha} \subseteq \alpha(A)$. Moreover, if $\xi \in -\tilde{\alpha}^{+}$ and $\langle \xi, x \rangle = 0$, then $\xi_{i} = 0$ for all $i \in \text{supp } x$, hence $\xi \in \tilde{\alpha}^{+} : (D)$ is satisfied. In this situation the

conclusion of Theorem 3 is equivalent with

 $\sup \{\langle f, x \rangle | x \in \mathbb{R}_+^K, (Ax + g)_i \ge 0 \text{ for all } i \in \text{ supp } x\}$

 $= \sup \{ \langle g, y \rangle | y \in I\!\!R^K_+, (A^*y + f)_j \ge 0 \text{ for all } j \in \text{ supp } y \},$

provided that both suprema are finite and are assumed. An infinite-dimensional analog of this result with K a compact Hausdorff space and x, y Radon measures over K, has been given by Ohtsuka [4], and motivated the present investigation.

References

- W. Bach: On constancy of potentials on supports of measures, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 15 (1967), 691-695.
- [2] R. J. Duffin: Infinite programs, Annals of Mathematics Studies 38 (1956), 157-170.
- [3] K. S. Kretschmer: Programmes in paired spaces, Canad. J. Math. 13 (1961), 221-238.
- [4] M. Ohtsuka: Generalized capacity and duality theorem in linear programming, J. Sci. Hiroshima Univ. Ser. A-I Math. 30 (1966), 45-56.

Lehrstuhl für Mathematik VII Universität Mannheim Mannheim Germany

and

Department of Mathematics Shimane University Matsue Japan