Symmetric Properties in Linear Programming Problems

Werner Oettli ${ }^{1}$ and Maretsugu Yamasaki ${ }^{2}$

Nr. 117 (1990)

[^0]
Symmetric Properties in Linear Programming Problems

Werner Oettli and Maretsugu Yamasaki

Let X and \tilde{X} be real linear spaces which are in duality with respect to a bilinear functional $\langle\cdot, \cdot\rangle$. Likewise let Y and \tilde{Y} be real linear spaces which are in duality with respect to another bilinear functional, for simplicity also denoted by $\langle\cdot, \cdot\rangle$. We assume that the topologies on X, \tilde{X} and Y, \tilde{Y} are such that $X^{*}=\tilde{X}$, $\tilde{X}^{*}=X, Y^{*}=\tilde{Y}, \tilde{Y}^{*}=Y$. Let $A: X \rightarrow \tilde{Y}$ be a continuous linear mapping. The adjoint $A^{*}: Y \rightarrow \tilde{X}$ is determined by the relation $\left\langle A^{*} y, x\right\rangle:=\langle A x, y\rangle$ for all $x \in X, y \in Y$. We require that A^{*} is continuous and $\left(A^{*}\right)^{*}=A$. For any nonvoid closed convex cone $\alpha \subseteq X$ we denote by α^{+}the polar cone of α, i.e.,

$$
\alpha^{+}:=\{\xi \in \tilde{X} \mid\langle\xi, x\rangle \geq 0 \text { for all } x \in \alpha\} .
$$

According to the bipolar theorem, $\left(\alpha^{+}\right)^{+}=\alpha$. Furthermore if $\alpha_{1} \subseteq \alpha_{2}$, then $\alpha_{2}^{+} \subseteq \alpha_{1}^{+}$, and if $x \in \alpha, x \neq 0$, and $\xi \in$ int α^{+}, then $\langle\xi, x\rangle>0$. Likewise for any nonvoid closed convex cone $\beta \subseteq Y$ we denote by β^{+}the polar cone of β, i.e.,

$$
\beta^{+}:=\{\eta \in \tilde{Y} \mid\langle\eta, y\rangle \geq 0 \text { for all } y \in \beta\} .
$$

The same comments as for α^{+}apply.
Let $P \subseteq X$ be a fixed nonvoid closed convex cone with int $P^{+} \neq \emptyset$. Let $Q \subseteq Y$ be a fixed nonvoid closed convex cone with int $Q^{+} \neq \emptyset$. Let \mathcal{P} be a family of nonvoid closed convex cones $\alpha \subseteq P$ with $\alpha \neq\{0\}$, and let \mathcal{Q} be a family of nonvoid closed convex cones $\beta \subseteq Q$ with $\beta \neq\{0\}$. Finaily let $f \in$ int P^{+}and $g \in \operatorname{int} Q^{+}$be given. For $\alpha \in \mathcal{P}, \beta \in \mathcal{Q}$ we consider the following mathematical programming problems:

$$
\begin{equation*}
M(\alpha, \beta):=\sup \left\{\langle f, x\rangle \mid x \in \alpha, A x+g \in \beta^{+}\right\} \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\check{M}(\alpha, \beta):=\sup \left\{\langle g, y\rangle \mid y \in \beta, A^{*} y+f \in \alpha^{+}\right\} . \tag{2}
\end{equation*}
$$

We remark that problems (1) and (2) are not dual to each other in the usual linear programming sense. Rather, the standard dual of (1) is given by

$$
\begin{equation*}
M^{*}(\alpha, \beta):=\inf \left\{\langle g, y\rangle \mid y \in \beta, A^{*} y+f \in-\alpha^{+}\right\}, \tag{3}
\end{equation*}
$$

and the standard dual of (2) is given by

$$
\begin{equation*}
\check{M}^{*}(\alpha, \beta):=\inf \left\{\langle f, x\rangle \mid x \in \alpha, A x+g \in-\beta^{+}\right\} . \tag{4}
\end{equation*}
$$

Let us define

$$
\begin{aligned}
& M(\mathcal{P}, \mathcal{Q}):=\sup \{M(\alpha, \beta) \mid \alpha \in \mathcal{P}, \beta \in \mathcal{Q}\}, \\
& \check{M}(\mathcal{P}, \mathcal{Q}):=\sup \{\check{M}(\alpha, \beta) \mid \alpha \in \mathcal{P}, \beta \in \mathcal{Q}\} .
\end{aligned}
$$

We shall study the symmetric property $M(\mathcal{P}, \mathcal{Q})=\breve{M}(\mathcal{P}, \mathcal{Q})$.
Lemma 1. $M(\alpha, \beta)>0$ and $\check{M}(\alpha, \beta)>0$ for all $\alpha \in \mathcal{P}, \beta \in \mathcal{Q}$.
Proof: Let $\tilde{x} \in \alpha, \tilde{x} \neq 0$. Since $g \in \operatorname{int} Q^{+} \subseteq$ int β^{+}we can choose $\lambda>0$ so small that $\lambda A \tilde{x}+g \in \beta^{+}$. Set $x_{0}:=\lambda \tilde{x}$. Then x_{0} satisfies the constraints of (1), and from $x_{0} \in \alpha, x_{0} \neq 0, f \in$ int $P^{+} \subseteq$ int α^{+}follows $\left\langle f, x_{0}\right\rangle>0$. Thus $M(\alpha, \beta)>0$. A symmetric argument shows $\check{M}(\alpha, \beta)>0$. q.e.d.

We introduce several conditions:
(A.1) For all $\alpha \in \mathcal{P}$, if $x \in \alpha, x \neq 0, \xi \in-\alpha^{+},\langle\xi, x\rangle=0$, then there exists $\tilde{\alpha} \in \mathcal{P}$ such that $\xi \in \tilde{\alpha}^{+}$.
(A.2) For all $\beta \in \mathcal{Q}$, if $y \in \beta, y \neq 0, \eta \in-\beta^{+},\langle\eta, y\rangle=0$, then there exists $\tilde{\beta} \in \mathcal{Q}$ such that $\eta \in \tilde{\beta}^{+}$.

Condition (A.1) will be satisfied in particular, if \mathcal{P} contains all cones of the type $\alpha(\bar{x}):=\{\lambda \bar{x} \mid \lambda \geq 0\}$ with $\bar{x} \in P, \bar{x} \neq 0$. Indeed, in this case, if x and ξ obey the hypothesis of (A.1), then with $\tilde{\alpha}:=\alpha(x)$ we have $\tilde{\alpha} \in \mathcal{P}$ and $\xi \in \tilde{\alpha}^{+}$, as requested. Likewise condition (A.2) will be satisfied, if \mathcal{Q} contains all cones of the type $\beta(\bar{y}):=\{\lambda \bar{y} \mid \lambda \geq 0\}$ with $\bar{y} \in Q, \bar{y} \neq 0$.
(B.1) For all $\alpha \in \mathcal{P}, \beta \in \mathcal{Q}$ the duality theorem holds for (1) and (3), i.e., the linear programming problems (1) and (3) have optimal solutions, and the optimal values $M(\alpha, \beta)$ and $M^{*}(\alpha, \beta)$ are equal.
(B.2) For all $\alpha \in \mathcal{P}, \beta \in \mathcal{Q}$ the duality theorem holds for (2) and (4), i.e., the linear programming problems (2) and (4) have optimal solutions, and the optimal values $\breve{M}(\alpha, \beta)$ and $\breve{M}^{*}(\alpha, \beta)$ are equal.

Conditions (B.1) and (B.2) will be discussed below.

Theorem 1. If conditions (A.1), (A.2), (B.1), (B.2) are fulfilled, then the equality $M(\mathcal{P}, \mathcal{Q})=\check{M}(\mathcal{P}, \mathcal{Q})$ holds.

Proof: Let $\alpha \in \mathcal{P}, \beta \in \mathcal{Q}$. Then from (B.1) problem (1) has an optimal solution \bar{x}, problem (3) has an optimal solution \bar{y}, and

$$
\langle f, \bar{x}\rangle=M(\alpha, \beta)=M^{*}(\alpha, \beta)=\langle g, \bar{y}\rangle .
$$

From Lemma 1 follows $\bar{x} \neq 0$. From the constraints of (1) and (3) follows

$$
\langle f, \bar{x}\rangle \leq-\left\langle A^{*} \bar{y}, \bar{x}\right\rangle=-\langle A \bar{x}, \bar{y}\rangle \leq\langle g, \bar{y}\rangle
$$

Combined with $\langle f, \bar{x}\rangle=\langle g, \bar{y}\rangle$ this gives $\left\langle A^{*} \bar{y}+f, \bar{x}\right\rangle=0$. Since $\bar{x} \in \alpha, \bar{x} \neq 0$ and $A^{*} \bar{y}+f \in-\alpha^{+}$, it follows from (A.1) that $A^{*} \bar{y}+f \in \tilde{\alpha}^{+}$for some $\tilde{\alpha} \in \mathcal{P}$. From this and $\bar{y} \in \beta$ follows

$$
\begin{aligned}
M(\alpha, \beta) & =\langle g, \bar{y}\rangle \leq \sup \left\{\langle g, y\rangle \mid y \in \beta, A^{*} y+f \in \tilde{\alpha}^{+}\right\} \\
& =\breve{M}(\tilde{\alpha}, \beta) \leq \breve{M}(\mathcal{P}, \mathcal{Q})
\end{aligned}
$$

Hence $M(\mathcal{P}, \mathcal{Q}) \leq \breve{M}(\mathcal{P}, \mathcal{Q})$. A symmetric argument, using (A.2) and (B.2), gives $\check{M}(\mathcal{P}, \mathcal{Q}) \leq M(\mathcal{P}, \mathcal{Q})$. Therefore $M(\mathcal{P}, \mathcal{Q})=\check{M}(\mathcal{P}, \mathcal{Q})$. q.e.d.

Now we look for a condition which ensures that (B.1) and (B.2) are satisfied simultaneously.

Lemma 2. The following conditions are equivalent:

$$
\begin{equation*}
A^{*} y \in \operatorname{int}\left(-P^{+}\right) \quad \text { for all } y \in Q, y \neq 0 \tag{C.1}
\end{equation*}
$$

$$
\begin{equation*}
A x \in \text { int }\left(-Q^{+}\right) \quad \text { for all } x \in P, x \neq 0 \tag{C.2}
\end{equation*}
$$

Proof: Because of symmetry it suffices to show that (C.2) implies (C.1). Let (C.2) hold. Assume, for contradiction, that there exists $y \in Q, y \neq 0$ with $A^{*} y \notin \operatorname{int}\left(-P^{+}\right)$. Then from the separation theorem for convex sets there exists $x \in\left(X^{*}\right)^{*}=X, x \neq 0$, such that

$$
\left\langle x, A^{*} y\right\rangle \geq 0 \geq\langle x, \xi\rangle \quad \text { for all } \xi \in-P^{+} .
$$

This implies $\langle A x, y\rangle \geq 0$ and $x \in\left(P^{+}\right)^{+}=P$. But from (C.2) follows then $A x \in \operatorname{int}\left(-Q^{+}\right)$, and therefore $\langle A x, y\rangle<0$, a contradiction. q.e.d.

Theorem 2. Let (C.1) or (C.2) hold. Then both conditions (B.1) and (B.2) are satisfied.

Proof: From Lemma 2 we may assume that both (C.1) and (C.2) are satisfied. Let $\alpha \in \mathcal{P}, \beta \in \mathcal{Q}$. a) Choose $x_{0}:=0$. Then $x_{0} \in \alpha$ and $A x_{0}+g=g \in \operatorname{int} Q^{+}$. Now choose $\tilde{y} \in \beta, \tilde{y} \neq 0$. Then $\tilde{y} \in Q$, and by (C.1), $A^{*} \tilde{y}+U \subseteq \operatorname{int}\left(-P^{+}\right)$for some neighborhood U of the origin. Choose $\lambda>0$ so large that $f \in \lambda U$, and set $y_{0}:=\lambda \tilde{y}$. Then $y_{0} \in \beta$ and $A^{*} y_{0}+f \in \lambda A^{*} \tilde{y}+\lambda U \subseteq \operatorname{int}\left(-P^{+}\right)$. Since $P^{+} \subseteq \alpha^{+}$ and $Q^{+} \subseteq \beta^{+}$we have altogether obtained x_{0}, y_{0} such that

$$
\begin{gathered}
x_{0} \in \alpha, \quad A x_{0}+g \in \operatorname{int} \beta^{+}, \\
y_{0} \in \beta, \quad A^{*} y_{0}+f \in \operatorname{int}\left(-\alpha^{+}\right) .
\end{gathered}
$$

These are the regularity conditions which ensure that the duality theorem holds for (1) and (3) - see [2, p. 164], [3]. Hence (B.1) is satisfied. b) Using (C.2) instead of (C.1) we obtain y_{0} and x_{0} such that

$$
\begin{array}{cc}
y_{0} \in \beta, & A^{*} y_{0}+f \in \operatorname{int} \alpha^{+}, \\
x_{0} \in \alpha, & A x_{0}+g \in \operatorname{int}\left(-\beta^{+}\right) .
\end{array}
$$

These are the regularity conditions which ensure that the duality theorem holds for (2) and (4). Hence (B.2) is satisfied . q.e.d.

We turn now to the situation where $Y=X, \tilde{Y}=\tilde{X}$, so that $A: X \rightarrow \tilde{X}$ and $A^{*}: X \rightarrow \tilde{X}$. Instead of simply specializing the previous results we consider
a somewhat different problem. From now on let \mathcal{P} be a family of nonvoid closed convex cones $\alpha \subseteq X$. Let $f \in \tilde{X}, g \in \tilde{X}$ be given arbitrarily. For all $\alpha \in \mathcal{P}$ we consider the problems

$$
\begin{equation*}
L(\alpha):=\sup \left\{\langle f, x\rangle \mid x \in \alpha, A x+g \in \alpha^{+}\right\} \tag{5}
\end{equation*}
$$

$$
\begin{equation*}
\breve{L}(\alpha):=\sup \left\{\langle y, y\rangle \mid y \in \alpha, A^{*} y+f \in \alpha^{+}\right\} . \tag{6}
\end{equation*}
$$

The linear programming dual of (5) is given by

$$
\begin{equation*}
L^{*}(\alpha):=\inf \left\{\langle g, y\rangle \mid y \in \alpha, A^{*} y+f \in-\alpha^{+}\right\} \tag{7}
\end{equation*}
$$

and the linear programming dual of (6) is given by

$$
\begin{equation*}
\breve{L}^{*}(\alpha):=\inf \left\{\langle f, x\rangle \mid x \in \alpha, A x+g \in-\alpha^{+}\right\} . \tag{8}
\end{equation*}
$$

We define

$$
\begin{align*}
& L(\mathcal{P}):=\sup \{L(\alpha) \mid \alpha \in \mathcal{P}\}, \tag{9}\\
& \breve{L}(\mathcal{P}):=\sup \{\breve{L}(\alpha) \mid \alpha \in \mathcal{P}\}, \tag{10}
\end{align*}
$$

and we want to establish the equality $L(\mathcal{P})=\breve{L}(\mathcal{P})$. We require the following conditions:
(D) For all $\alpha \in \mathcal{P}$ and all $x \in \alpha$ there exists $\tilde{\alpha} \in \mathcal{P}$ such that $x \in \tilde{\alpha} \subseteq \alpha$ and, whenever $\xi \in-\dot{\tilde{\alpha}}^{+}$and $\langle\xi, x\rangle=0$, then $\xi \in \tilde{\alpha}^{+}$.
(E) For all $\alpha \in \mathcal{P}$ with $L(\alpha)>-\infty$ the duality theorem holds for (5) and (7), and for all $\alpha \in \mathcal{P}$ with $\breve{L}(\alpha)>-\infty$ the duality theorem holds for (6) and (8).
(F) The suprema occuring in (9) and (10) are finite, and are assumed somewhere on \mathcal{P}.

Now we have:

Theorem 3. Let conditions (D), (E), (F) be satisfied. Then $L(\mathcal{P})=\check{L}(\mathcal{P})$.
Proof: In accordance with condition (F) let $\alpha_{1} \in \mathcal{P}$ be optimal for $L(\mathcal{P})$, so that $L(\mathcal{P})=L\left(\alpha_{1}\right)$. In accordance with condition (E) let \bar{x} be optimal for $L\left(\alpha_{1}\right)$, so that $L\left(\alpha_{1}\right)=\langle f, \bar{x}\rangle$. Given $x:=\bar{x}$ and $\alpha:=\alpha_{1}$ fix $\tilde{\alpha}$ in accordance with condition (D). Then $\bar{x} \in \tilde{\alpha} \subseteq \alpha_{1}$. From the constraints of $L\left(\alpha_{1}\right)$ one has $A \bar{x}+g \in \alpha_{1}^{+} \subseteq \tilde{\alpha}^{+}$. Thus \bar{x} satisfies also the constraints of $L(\tilde{\alpha})$, and therefore $\langle f, \bar{x}\rangle \leq L(\bar{\alpha})$. But since $L(\mathcal{P})=\langle f, \bar{x}\rangle$ it follows that $\langle f, \bar{x}\rangle=L(\tilde{\alpha})$, and \bar{x} is also optimal for $L(\bar{\alpha})$. In accordance with condition (E) let \bar{y} be optimal for the dual $L^{*}(\tilde{\alpha})$, so that

$$
\langle f, \bar{x}\rangle=L(\tilde{\alpha})=L^{*}(\tilde{\alpha})=\langle g, \bar{y}\rangle .
$$

Then $A^{*} \bar{y}+f \in-\tilde{\alpha}^{+}$, and as in the proof of Theorem 1 follows $\left\langle A^{*} \bar{y}+f, \bar{x}\right\rangle=0$. From condition (D) follows $A^{*} \bar{y}+f \in \tilde{\alpha}^{+}$. Consequently \bar{y} satisfies also the constraints of $\breve{L}(\tilde{\alpha})$, and therefore $\langle g, \bar{y}\rangle \leq \breve{L}(\tilde{\alpha}) \leq \breve{L}(\mathcal{P})$. Since $L(\mathcal{P})=\langle g, \bar{y}\rangle$ it follows $L(\mathcal{P}) \leq \breve{L}(\mathcal{P})$. A symmmetric argument gives $\breve{L}(\mathcal{P}) \leq L(\mathcal{P})$. Hence the claimed equality is true. q.e.d.

Let us discuss condition (D). It is satisfied for instance, if $\alpha \subseteq P$ for all $\alpha \in \mathcal{P}$ and \mathcal{P} contains all cones of the type $\alpha(\bar{x}):=\{\lambda \bar{x} \mid \lambda \geq 0\}, \bar{x} \in P$, where $P \subseteq X$ is a given nonvoid closed convex cone. Indeed, if $x \in \alpha$ for some $\alpha \in \mathcal{P}$, then choosing $\tilde{\alpha}:=\alpha(x)$ one has $\tilde{\alpha} \in \mathcal{P}, x \in \tilde{\alpha} \subseteq \alpha$, and if $\langle\xi, x\rangle=0$, then $\xi \in \tilde{\alpha}^{+}$ ($x=0$ is permitted here since $\alpha=\{0\}$ is not excluded). Hence (D) is satisfied.

Another situation where (D) is satisfied is the following. Let K be a finite set and $X:=\mathbb{R}^{K}, \mathcal{P}$ be the family of all cones of the type $\alpha(A):=\{x \in$ $\mathbb{R}^{K} \mid x_{i} \geq 0$ for all $i \in A, x_{i}=0$ for all $\left.i \in K \backslash A\right\}$, where A runs over all subsets of K. Then $(\alpha(A))^{+}=\left\{y \in \mathbb{R}^{K} \mid y_{i} \geq 0\right.$ for all $\left.i \in A\right\}$. For $x \in \mathbb{R}_{+}^{K}$ let supp $x:=\left\{i \in K \mid x_{i}>0\right\}$. Now if $x \in \alpha(A)$, then choosing $\tilde{\alpha}:=\alpha(\operatorname{supp} x)$ we have $\tilde{\alpha} \in \mathcal{P}$ and $x \in \tilde{\alpha} \subseteq \alpha(A)$. Moreover, if $\xi \in-\tilde{\alpha}^{+}$and $\langle\xi, x\rangle=0$, then $\xi_{i}=0$ for all $i \in \operatorname{supp} x$, hence $\xi \in \tilde{\alpha}^{+}:(D)$ is satisfied. In this situation the
conclusion of Theorem 3 is equivalent with

$$
\begin{aligned}
& \sup \left\{\langle f, x\rangle \mid x \in \mathbb{R}_{+}^{K},(A x+g)_{i} \geq 0 \text { for all } i \in \operatorname{supp} x\right\} \\
= & \sup \left\{\langle g, y\rangle \mid y \in \mathbb{R}_{+}^{K},\left(A^{*} y+f\right)_{j} \geq 0 \text { for all } j \in \operatorname{supp} y\right\},
\end{aligned}
$$

provided that both suprema are finite and are assumed. An infinite-dimensional analog of this result with K a compact Hausdorff space and x, y Radon measures over K, has been given by Ohtsuka [4], and motivated the present investigation.

References

[1] W. Bach: On constancy of potentials on supports of measures, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 15 (1967), 691-695.
[2] R. J. Duffin: Infinite programs, Annals of Mathematics Studies 38 (1956), 157-170.
[3] K. S. Kretschmer: Programmes in paired spaces, Canad. J. Math. 13 (1961), 221-238.
[4] M. Ohtsuka: Generalized capacity and duality theorem in linear programming, J. Sci. Hiroshima Univ. Ser. A-I Math. 30 (1966), 45-56.

Lehrstuhl für Mathematik VII
Universität Mannheim
Mannheim
Germany
and
Department of Mathematics
Shimane University
Matsue
Japan

[^0]: 1 Lehrstuhl für Mathematik VII, Universität Mannheim
 2 Department of Mathematics, Shimane University

