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Abstract

The present paper discusses some aspects of the role of the Cantor set
in prob ability theory. It contains a simple construction of the Cantor
set which is used to construct a singular-continuous distribution and a
singular martingale.



1 Introduction
The present paper discusses some aspeets of the role of the Cantor set in probability
theory. In Seetion 2 we present a simple construetion of the Cantor set which
is probably known but hard to find in the literat ure. This construction proceeds
'without dots' and yields some structures which are useful for further purposes. In
Section 3 we construct a singular-continuous distribution which, in turn, shows that
the Cantor set is uncountable, and in Section 4 we produce an increasing sequence of
a-algebras whose union is only an algebra and a singular positive martingale whose
limit measure is countably additive.

The point that we wish to make is that one single concept yields important examples
in different areas of probability theory: If singular-continuous distributions did not
exist, then every distribution would be a mixt ure of a continuousand a discrete one;
similarly, if singular martingales did not exist, then every positive martingale would
be a sequence of successive conditional expeetations.

General background on measure theory, prob ability theory, and martingale theory
may be found in the monographs~ byAliprantisjBurkinshaw [1], Bauer [2,3], Bil-
lingsley [4], Chung [6], Halmos [7], and Neveu [8].

2 The construction of the Cantor set
Let C denote the collection of all subsets of the interval [0,1] which are the union of
finitely many disjoint compact intervals of [0,1] and define a map W : C ----4 C by
letting

w (t.[a;, b;l) := t. ([a;,2a;: b;] + [a;~ 2b;, b;]) .
Then, for each A E C, the sequence {Wn(A)}nEN is decreasing and we have

A(wn(A)) = (~) n . A(A)

for all n E N.

For each n E N, define

Then Cn is compact and satisfies
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For later reference, let Cn denote the collection of the 2n compact intervals partitio-
ning Cn and define afunction In : R ---+ R by letting

In(X) := (£) n . XCn(X)
and a set function Qn : B(R) ---+ [0,1] by letting

Qn(A) :=L In d>'.
Then Qn is a continuous distribution with density In and, by identity (1), each
J E Cn satisfies .

hIn d>. = (~) n . >'(J)

(£) n+k . >'(\lik(J))
. r In+k d>.
JiIlk(J)

h In+k d>.

and hence

Qn(J) Lind>'

Lln+k d>.

- Qn+k(J)
for all k E N.

Define now

C .- n Cn'
nEN

Then C is compact and satisfies

>'(C) - o.
The set C is called the Cantor set.

(2)

(3)

(4)

It is weIl-known that the limit of a pointwise convergent sequence of Riemann inte-
grable functions may fail to be Riemann integrable unless convergence is uniform.
Since a function is Riemann integrable if and only if it is almost surely continuous,
each XCn is Riemann integrable, and the same argument shows that the pointwise
limit Xc of the sequence {XCn}nEN is Riemann integrable as weIl although conver-
gence is not uniform. This is an example of the insufficiency of Riemann integration
theory~
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3 A singular-continuous distribution
A distribution Q : ß(R) -+ [0,1] is singular-continuous if it satisfies
- Q(R \A) + .\(A) = 0 for some A E ß(R), and
. - Q ({x }) = 0 for all xE R.
Due to a famous decomposition theorem, every distribution has a unique represen-
tation as a mixt ure of a continuous distribution, a singular-continuous distribution,
and adiscrete distribution; see Chung [6]. This shows the importance of the fo11o-
wing result:

3.1 Theorem. There exists a singular":'continuous distribution.

Proof. For each n E N, let Fn denote the distribution function of Qn' We claim
that {Fn}nEN is a uniform Cauchy sequence. To see this, consider n, k E N.
For x E R\[O, 1], we clearly have

IFn+k(X) - Fn(x) I = O.

For x E [0,1] \ Cn, identity (3) yields

L Qn+k(J) - L Qn(J)
. JECn,JQ-oo,x] JECn,J~(-OO,x]

L (Qn+k(J) - Qn(J))
JECn,J~(-OO,x]

O.
For x E Cn, there exists a unique J(x) E Cn satisfying x E J(x), and identity (3)
yields

IFn+k(x) - Fn(x)1 - IQn+k(( -00, x]) - Qn(( -00, x]) I
- IQn+k(J(x) n (-00, x]) -:- Qn(J(x) n (-00, x]) I
< Qn+k(J(x)) + Qn(J(x))
- 2. Qn(J(x))

2 . (~) n • .\(J(x))

2.~.
2n

Therefore, we have
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for all x E R, which proves our claim. It now follows easily that {Fn}neN converges
uniformly to a continuous function F : R -+ [0,1] and that F is a distribution
function.
Let Q : 8(R) -+ [0,1] denote the distribution of F. For each n EN, the continuity
of Fand Fn yields

Q((a, b)) F(b) -P(a) .
lim (Fn(b) - Fn( a))n ...•oo

lim Qn((a, b))n ...•oo
o

for each open interval (a, b) ~ [0,1]\ Cn, hence Q([O, l]\Cn) = 0, and thus

This implies

Q(C) - 1,

and identities (4) and (5) yield

Q(R\C) + -\(0) - o.

The continuity of F also yields

Q({x}) = 0

for all x E R. Therefore, Q is singular-continuous.

(5)

o

The funetion Fand the distribution Q constructed in the proof of Theorem 3.1 are
called the Cantor funetion and the Cantor distribution, respectively. The construc-
tion of F is similar as in Rudin [10]; see also AliprantisjBurkinshaw [I), Billings-
ley [4], Chung [6], and Halmos [7].

3.2 Corollary. The Cantor set C is uncountable.

This is obvious from the fact that the Cantor distribution Q is continuous-'-singular
and has all its mass concentrated on the Cantor set C.

4



4 A singular martingale

Let (0., F, P) be a probability space and let {Fn}neN be an increasing sequence of
sub-CT-algebrasof F. Define Foo := UnEN Fn and let Poo denote the restriction of P
to the algebra F00.

If {Xn}neN is a martingale with respeet to the filtration {Fn}nEN, then the map
/l-oo: Foo -+ R, given by

/l-oo(A) := lim r Xn dP,
n-+oo JA

is a finitely additive set funetion which is positive if and only if the martingale is
positive. The setfunetion /l-oois calledthe limit measure of {Xn}neN (although it
may happen to be neither countably additive nor positive).

A positive martingale {Xn}neN is continuous if its limit measure /l-oois continuous
(in the sense that for each c > 0 there exists some 8 > 0 such that /l-oo(A) < c holds
for each A E F 00 satisying P00 (A) < 8), and this is the case if and only if there exists
an integrable random variable X satisfying Xn = E:FnX for all n E N. A positive
martingale {Xn}neN is singular if its limit measure /l-oo is singular (in the sense
that for each e > 0 there exists some A E Foo satisfying /l-oo(n\A) + Poo(A) < c),.
and this is the case if and only if the martingale converges almost surely to o. The
previous remarks indicate that many properties. of a positive martingale are refleeted
by its limit measurej for furt her details, see Neveu [8] and Schmidt [11,12] and the
references given there.

Due to the Lebesgue decomposition, every positive martingale has a tinique repre-
sentation as the sum of a continuous martingale and a singular martingalej see e. g.
Schmidt [11,12]. This shows the importance of the following result:

4.1 Theorem. There exists a singular positive martingale.

Proof. Define (0., F, P) := ([0,1], B([O, 1]), >'18([0,1))). Also, for each n E N, define
Fn := CT(Cn) and let Xn. denote the restriction of in to [0,1]. Then the sequence
{Fn}neN is strictly increasing, and it follows from identity (2) that {Xn}nEN is a
positive martingale with respeet to {F';}nEN.
Since the Cantor distribution Q satisfies

Q(A) - lim Qn(A)n-+oo
lim r in d>.n-+ooJA
lim r XndPn-+ooJA
/l-oo(A)
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for all A E UnEN Cn and hence for all A E F 00' it is plain that the restriction of Q
to F 00 is precisely the limit measure /-loo of {Xn} nEN . Furthermore, since each of
Q and ,\ is countably additive and since the sequence {Cn}nEN ~ Foo decreases to
C E O"(Foo), we have

Ji.~(/-loo(n\Cn) + Poo(Cn)) Ji.~(Q([O, l]\Cn) + '\(Cn)) .
- Q([O,l]\C)+'\(C)

O.
This implies that the martingale {Xn}nEN is singular. o

The singular martingale coIistructed in the proof of Theorem 4.1 is called the Cantor
martingale. While the limit measure of the Cantor martingale is countably additive,
a singular martingale whose limit measure is purely finitely additive can be found in
Neveu [8]. In view ofthe Yosida-Hewitt decomposition of finitely additive set fun-
ctions and the examples provided by the Cantor set, one is tempted to ask whether
every positive martingale has a (necessarily unique) representation as the sum of
a continuous martingale, a singular martingale whose limit measure is countably
additive, and a singular martingale whose limit measure is purely finitely additive.
Such a result would be acomplete formal counterpart of the decomposition of dis-
tributions mentioned in Section 2, but it is not known whether it is true. However,
it is easily seen from the results in Schmidt [12] that such a decomposition obtains
if all martingales are replaced by asymptotic martingales (amarts).

As a final remark, let us note that the algebra F00 determined by the filtration
{Fn}nEN related to the Cantor martingale cannot be a O"-algebra. This is due to the
fact that {Fn}nEN is strictly increasing; see BroughtonJHuff [5]' OverdijkJSimonsJ
Thiemann [9], and Stoyanov [13]. In the present situation, the argument is parti-
cularly simple: Since each Fn is finite, F00 is countable. On the other hand, there
exists an uncountable number of strictly decreasing sequences {Jn}nEN satisfying
Jn E Cn for all n E N, each of these sequences decreases to a nonempty compact set
in O"(Foo), and any two such sets are disjoint. Therefore, O"(Foo) is uncountable and
hence strictly larger than Foo• Incidentally, this is another argument showing that
the Cantor set is uncountable.
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