Memoryless distributions revisited

Klaus D. Schmidt and Gerd Waldschaks
124/1991

Abstract

The present paper discusses the memoryless property of distributions on the real line. The main result asserts that every distribution Q which is memoryless on a set containing 0 must be concentrated on $\{0\}$ or $(0, \infty)$. It is then shown that this condition is necessary and sufficient for Q to be either the Dirac distribution in 0 or an exponential distribution. Corresponding results for the geometric distribution are given as well.

1 Introduction

The present paper discusses the memoryless property of distributions on the real line. The main result asserts that every distribution Q which is memoryless on a set containing 0 must be concentrated on $\{0\}$ or $(0,\infty)$. It is then shown that this condition is necessary and sufficient for Q to be either the Dirac distribution in 0 or an exponential distribution. Corresponding results for the geometric distribution are given as well.

2 Memoryless distributions

Throughout this paper, let $Q: \mathcal{B}(\mathbf{R}) \to [0,1]$ be a distribution and consider a set $S \in \mathcal{B}(\mathbf{R})$. The distribution Q is memoryless on S if

- -Q(S)=1 and
- the identity $Q((x+y,\infty)) = Q((x,\infty)) \cdot Q((y,\infty))$ holds for all $x,y \in S$.

Thus, if X is a random variable satisfying $P_X = Q$, then Q is memoryless on S if and only if

- $-P(X \in S) = 1$ and
- the identity $P(X > x + y) = P(X > x) \cdot P(X > y)$ holds for all $x, y \in S$.

The preceding identity has an obvious interpretation in terms of conditional probabilities.

2.1 Examples.

- (a) The Dirac distribution δ_0 is memoryless on \mathbb{R}_+ and on \mathbb{N}_0 .
- (b) Every exponential distribution $\text{Exp}(\alpha)$ is memoryless on \mathbb{R}_+ .
- (c) Every geometric distribution $Geo(\vartheta)$ is memoryless on N_0 .

Note that all distributions of Example 2.1 are concentrated on (a subset of) \mathbf{R}_{+} , and that none of them is memoryless on \mathbf{R} .

2.2 Theorem. Let Q be memoryless on S and assume that $0 \in S$. Then Q satisfies either $Q(\{0\}) = 1$ or $Q((0,\infty)) = 1$.

Proof. Assume that $Q((0,\infty)) < 1$. Since $0 \in S$, we have

$$Q((0,\infty)) = Q((0,\infty)) \cdot Q((0,\infty)),$$

hence

$$Q((0,\infty)) = 0,$$

and thus

$$Q((x,\infty)) = Q((x,\infty)) \cdot Q((0,\infty))$$

= 0

for all $x \in S$. Define now $z := \inf S$ and choose a sequence $\{x_n\}_{n \in \mathbb{N}} \subseteq S$ which decreases to z. Then we have

$$Q((z,\infty)) = Q\left(\bigcup_{n\in\mathbb{N}}(x_n,\infty)\right)$$
$$= \sup_{\mathbb{N}} Q((x_n,\infty))$$
$$= 0$$

and hence $-\infty < z$. Since Q(S) = 1, the definition of z together with the previous identity yields

$$Q(\{z\}) = 1,$$

and thus $z \in S$. Finally, since $0 \in S$, we have either z < 0 or z = 0. But z < 0 implies $z \in (2z, \infty)$ and hence

$$Q(\{z\}) \leq Q((2z,\infty))$$

$$= Q((z,\infty)) \cdot Q((z,\infty)),$$

which is impossible. Therefore, we have z = 0, as was to be shown.

3 The exponential distribution

The exponential distribution can be characterized as follows:

- 3.1 Theorem. The following are equivalent:
- (a) Q is memoryless on $(0, \infty)$.
- (b) $Q = \mathbf{Exp}(\alpha)$ for some $\alpha \in (0, \infty)$. In this case, $\alpha = -\log Q((1, \infty))$.

Proof. Assume that (a) holds. By induction, we have

$$Q((n,\infty)) = Q((1,\infty))^n$$

and

$$Q((1,\infty)) = Q((1/n,\infty))^n$$

for all $n \in \mathbb{N}$. Thus, $Q((1, \infty)) = 1$ is impossible because of

$$0 = Q(\emptyset)$$

$$= \inf_{\mathbf{N}} Q((n, \infty))$$

$$= \inf_{\mathbf{N}} Q((1, \infty))^{n},$$

and $Q((1,\infty)) = 0$ is impossible because of

$$1 = Q((0,\infty))$$

$$= \sup_{\mathbf{N}} Q((1/n,\infty))$$

$$= \sup_{\mathbf{N}} Q((1,\infty))^{1/n}.$$

Therefore, we have

$$Q((1,\infty)) \in (0,1).$$

Define now $\alpha := -\log Q((1,\infty))$. Then we have $\alpha \in (0,\infty)$ and

$$Q((1,\infty)) = \exp(-\alpha),$$

and thus

$$Q((m/n, \infty)) = Q((1, \infty))^{m/n}$$
$$= (\exp(-\alpha))^{m/n}$$
$$= \exp(-\alpha m/n)$$

for all $m, n \in \mathbb{N}$. This yields

$$Q((x,\infty)) = \exp(-\alpha x)$$

for all $x \in (0, \infty) \cap \mathbf{Q}$. Finally, for each $z \in (0, \infty)$ we may choose a sequence $\{x_n\}_{n \in \mathbb{N}} \subseteq (0, \infty) \cap \mathbf{Q}$ which decreases to z, and we obtain

$$Q((z, \infty)) = Q\left(\bigcup_{n \in \mathbb{N}} (x_n, \infty)\right)$$

$$= \sup_{\mathbb{N}} Q((x_n, \infty))$$

$$= \sup_{\mathbb{N}} \exp(-\alpha x_n)$$

$$= \exp(-\alpha z).$$

Since $Q((0,\infty)) = 1$, it follows that $Q = \mathbf{Exp}(\alpha)$. Therefore, (a) implies (b). The converse is obvious from Example 2.1(b).

The previous proof follows Barlow/Proschan [1; Theorem 3.2.2].

- 3.2 Corollary. The following are equivalent:
- (a) Q is memoryless on \mathbf{R}_+ .
- (b) Either $Q = \delta_0$ or $Q = \text{Exp}(\alpha)$ for some $\alpha \in (0, \infty)$.

Proof. The assertion is immediate from Theorems 2.2 and 3.1.

With regard to the previous result, note that the Dirac distribution δ_0 is the limit of the exponential distributions $\text{Exp}(\alpha)$ as $\alpha \to \infty$.

3.3 Corollary. There is no distribution which is memoryless on R.

Proof. If Q is memoryless on \mathbb{R} , then either $Q = \delta_0$ or $Q = \operatorname{Exp}(\alpha)$ for some $\alpha \in (0, \infty)$, by Theorem 2.2 and Corollary 3.2; see also Nelsen [2]. On the other hand, none of these distributions is memoryless on \mathbb{R} .

4 The geometric distribution

The results on the memoryless property of the exponential distribution presented in the previous section have a complete counterpart for the geometric distribution:

- 4.1 Theorem. The following are equivalent:
- (a) Q is memoryless on N.
- (b) $Q = \mathbf{Geo}(\vartheta)$ for some $\vartheta \in (0,1]$.

In this case, $\vartheta = 1 - Q((1, \infty))$.

The verification of Theorem 4.1 is straightforward. With regard to Corollary 3.2 and the subsequent remark, note that $Geo(1) = \delta_1$.

- 4.2 Corollary. The following are equivalent:
- (a) Q is memoryless on No.
- (b) Either $Q = \delta_0$ or $Q = \text{Geo}(\vartheta)$ for some $\vartheta \in (0,1]$.

To complete the discussion, we recall the following well-known relation between exponential and geometric distributions: If $Q = \text{Exp}(\alpha)$ for some $\alpha \in (0, \infty)$ and if Q' denotes the unique distribution satisfying $Q'(\{n\}) = Q((n-1, n])$ for all $n \in \mathbb{N}$, then $Q' = \text{Geo}(1 - \exp(-\alpha))$.

References

[1] Barlow, R. E., and Proschan, F.: Statistical Theory of Reliability and Life Testing. Silver Spring: To Begin With 1981. [2] Nelsen, R. B.: Consequences of the memoryless property for random variables. Amer. Math. Monthly 94, 981-984 (1987).

Klaus D. Schmidt and Gerd Waldschaks Fakultät für Mathematik und Informatik Universität Mannheim A 5 6800 Mannheim Germany