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1. IIntroduction

In this paper we derive a symplectic deescription for systems in continuum mecichanics and
a representation of the coresponding dgynamics by exact one forms on a body -+ manifold.
In order to formulate the weak balances laws for the motion we start with thee principle
of virtual work and obtain thereby a g generalization of the Hamiltonian apprizoach. This
makes it possible to include also non-hyyperelastic media into the Hamiltonizndeescription.
For our considerations the virtual work: functional is given in a very general formrm, i.e. we
need not impose any restrictions on the < constitutive laws. It allows in particularr to include
an arbitrary non-linear and non-local cconstitutive behavior of the material i viview.
In the symplectic framework we study thhe effect of the group of rigid translations:s by means
of the Marsden-Weinstein reduction witith respect to that group. Thereby the deteformation
gradient appears as a natural geometric - object on the reduced phase space. On: the other
hand the existence of a stress tensor can = shown to be a consequence of a (rigid} iraanslational
invariance for a general virtual work. Inn1 contrast to the classical approaches to ¢c:continuum
dynamics, we need not to impose any loocality assumptions to find the stress iensisor of such
a system. _ . .
On the reduced phase space the balanare law for the system turns into a wezk < equation,
which relates the dynamics of the deformmation gradient to the stress tensor. Remmarkably we
can describe this balance law by a differecential equation on the level of exact IB™ —valued one
“forms on the body manifold. By a furthe=r differentiation this implies the classcali equations
of continuum dynamics as well as approopriate boundary conditions for the sresss.

The mathematical framework for the kminematics of a continuous medium is preresented in
section 2. We describe its dynamical beehavior in terms of smooth curves of e=mbeddings

and consider
E(M,N):={J:M — N|J isa C— embedding } (1.1),

as the configuration space. Here the boody Af is a smooth orientable compact-- manifold
with boundary and the smooth Riemannnian manifold N describes the ambieat s-space, the
body moves in. The set E(M, N) is endaowed with the C'®°-topology and henre zzn infinite
dimensional manifold. v

A Riemannian structure on M is induceed from a fixed metric (,) on N via pu? boack of the
configuration J and yields a corespondinng Riemannian volume form p(J). Wizhs a density
map p: E(M,N) —» C>®(M, R), which = satisfies the continuity equation with ressspect that
induced volume form we obtain a (configzuration independent) weak Riemanrian s structure
on E(M, N) written by o , I

B(J)(L,K) := /M p(JHLZ.K)u(J) VLK €Ty E(M,N) (12

The symplectic form wy on TN, deterrmined by the metric {,), yiélds a s%m:p’iéxectié?orﬁn
on TE(M, N), which coresponds to the : metric B and reads as

we(Ly)(X,Y) = /Mp(J)wN(XéJ).}.Y(J)),u(.]) VX,YéF(TE(M,;V))%} (1.3).




A remarkable properties of these geometric quantities on the configuration space E(M, N)
is to be invariant under all isometries of the ambient manifold N.

In section 3 we formulate the principle of virtual work, in the context of (the infinite-
dimensional manifold) E(M,N). Therefore we define the work functional as a smooth
map F : TE(M,N) — IR such that the restriction F[J] = F|r, g(m,n) is a linear map for
each configuration J. Its value on some L; € T;E(M, N) has the physical interpretation
as the work done by the system under that virtual displacement.

For the special case N = R" one has TyE(M,R") = C*(M,R") and the virtual work
principle [Mau,AnQOs] determines the motion via

diT B(J)(V, L) = FIT(L) VL€ C®(M, R") (1.4),
where V; € T;,E(M,IR") is the velocity field, coresponding to the curve J;. We present
a generalization of this dynamics to an arbitrary manifold N can be given and show how
it can be understood as a generalized Hamiltonian motion on the symplectic manifold
(TE(M , N ),wB). Therefore we need not restrict ourselves to a hyperelastic medium; for
that special case the motion becomes Hamiltonian in the usual sense, with DU(J)(L) =
—F[J](L) for a smooth potential U : E(M,N) - R. B

In all further investigations we consider N = IR"™, equipped with a fixed scalar product,
and restrict the form of the virtual work by demanding a special L2-representation for the

linear functional given by

r=t

FIINL) = /M (BL7], L) u(J) + / pl) Dy ol7) (1.5).

The physical interpretationof ® : E(M,R") — C>=(M,R") is to represent the sum of the
external body forces and the unbalanced constitutive force density and ¢ : E(M,R"™) —
C>°(0M,R™) characterizes the traction force density, caused by internal effects on bound-
ary of the embedded body, and the external contact force density. We remark that such
a description of F allows for an arbitrary non-linear and non-local constitutive behavior.
On a real motion J; the boundary force densities have to cancel each other, i.e. (1.4) is
consistent only for ¢[J;] = 0.

In section 4 we study the effect of the group IR™ of rigid translations acting by J — J+ Z.
To characterize the system under this group action we call a virtual work functional IR "-
invariant, if

FlI)(2)=0 . VJeEWM,R") (1.6a)
FIJ +2)(L) = FIIL) VJe€ E(M,R") VLeC®(M,R") (1.6b)

holds for all Z € IR™: (1.6a) points out that the (integrated) total force on the embedding
body vanishes for any configuration and (1.6b) expresses the homogeneity of the ambient-
space IR ™. Since the constitutive quality of a material should only depend on the internal
distances (and orientations) between the points of the embedded body, it is a physically
reasonable assumption that (at least) the internal part of any virtual work is IR "-invariant.



Applying the Marsden-Weinstein reduction with respect to the action of the translation
group on the phase space TE(M,IR") we get for the momentum map

TVy) = /M () Vs u(J) (1.7).

Considered physically J (V) represents the total momentum II of the moving body. To
divide out the isotropy group, which is IR™ for each orbit, we introduce the center of mass

Syi= /M p(J)-T w(T) (1.8),

such that [J] € E(M,R™)/R" is visualized by the relative configuration Jo = J — S.
Hence an IR "-invariance of the virtual work determines the dynamics on the reduced phase
space J~}(ITI)/R"™ by fixing the center of mass and the total momentum of the moving

continuum.

The geometric foundations, needed to describe the dynamics on J~}(II)/IR", are studied
in section 5. For each tangent vector L € TyE(M,IR"™) one has a decomposition =~

L=Ly+C,  with CL€R"™ and /p(])(Lo,Z)p(J)=0 VZeR" (1.9),
M

such that an element of J~!(II)/R" is (uniquely) represented by a the pair (Jo, Vo).
Alternatively such points are determined as pairs of differentials by (dJ,dV'), where dJ
can be identified with deformation gradient in classical continuum mechanics and dV is its
time derivative. The metric B on TE(M,R"™) induces on J~'(II)/R™ a metric

B(K,dL) = [ fdD) (Ko Lopuid]) VLKeImW) — (110)
M

and a coresponding symplectic form, denoted by «wp . For an alternative description of B
we observe that the boundary value problem
p(dN)Koy=6x , de=0 and &(WN)=0 (1.11),

has a unique solution, with § : AY(M,R") — C>®(M,R") for the co-differential on M
and N for a the normal vector on M. Using Stoke’s theorem we then obtain

B(dK’d.L)=/ M(x,dL) p(dJ) 12),

were M is a C°(M, R )-valued product on the space of all IR "-valued one forms on M.
In view of the virtual work functional on the reduced phase we prove that any IR "-invariant.
one form I' : TE(M,IR"™) — IR, obeying (1.5) accordingly, can be represented by

T{dJ)(dL) = /M M(dH[dJ], dL) u(dJ) (1.13).




M[dJ] € C=(M;RR™) is an IR "-valued function, solving thie Neumann problem AH = &

with dH(N) = ¢, wwhich has an integrability condition equirivalent to (1.6a).

Section 6 is concerzned with the dynamics on the reduced pbhase space. We apply (1.13) to
the internal virtual:! work F° and by this establish the nosionn of the stress form a®[dJ] :=
dH[dJ]. Neglectingz the effect of external body forces the :1nduced Hamiltonian dynamics
on J~I(I)/R" yieelds

di B (dV,.ddL) = / M(a™[dJ),dL) u(dJe) — / (=" [d T, L) pa(dJs) (1.14)
T | r=t M M :

for the equation of f motion, with (°°*[dJ] denoting the demasity of external contact forces.

Comparing this duynamics to the classical formulation. thee stress form o H[dJ] is to be
identified by settineg AM*[dJ] = a®[dJ]o(TJ)~? with the Caauchy stress tensor in a material
representation. -

In contrast to standdard approaches to continuum dynamics. ~which need to use some locality
arguments to estabblish the notion of a stress tensor, our consstruction allows for an arbitrary

.non-locally constititutive behavior of the system. Another rremarkable feature of (1.14) is

to allow for a gauuge freedom in representing the stress idn terms of different one form
a[dJ] = a™[dJ] + B[dJ} on TM or by the coresponding - Cauchy tensor A[dJ] without
changing the physisical content of that equation.

In section 7 we grive up the covariant formulation and cderive a local balance law on

J~HI)/R™. To ~do so we solve the elliptic problem (1..11) for the inertia force field
p(dJ )Vo, accompa,nnwntr a motion and denote the solution oy w(dJ). Representing IB ap-
propriately, i.e. by + (1.12), we obtain with a standard localizzation procedure

Cw(ddy) = a’'[dJy] (1.15)

for the dynamics oon the reduced phase space. The divergernce of this equation — rewritten
it in the spatial reppresentation — then yields

p(dJy) (—f; V., = DivAM[dJ,] + AT [dJ)(AT,) (1.16).
r=t
For simple bodies tithe term AJ vanishes and (1.16) coincide=s with the standard equation of
continuum dynamidcs; for shells or rods, however, this term rreflects — as the mean curvature
~ the special geomeetry obtained by embedding a body witkh a nonvanishing co-dimension.
Finally we observe= that the global equation (1.14) also charracterizes the behavior on M,
by enforcing the sy¥stem to obey traction boundary conditirions

dH[dT(N) = oMt dI . (1.17).

In section 8 we illusistrate our results by an apphcatlon to rxwo simple cases :
First we study line=ar elasticity by writing for the virtual wsork functional

Fin[dJ)(dL) = /M M(C o dJ oc.dLL) u(dJ)
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where the map C : M — GL(n) and the bundle endomorphxsmceE;ld(TM ) both are

smooth and configuration independent. The coresponding dynamics is given by

w(dJ) = (CodJyoc)™ (1.19),

where (C o dJy o ¢)* denotes the exact part of the one form in view. For a homogeneous
material this yields a modified wave equation of the form

Ve = A°J, (1.20),
T=t
where AC denotes the Laplacian, with respect to the induced metric (CodJoc)*{,) on M .
On the other hand we consider the virtual work form

d
pldJi) 7

Fo[dJ)(dL) = /M pldJ] M(dJ, dL) u(dJ) (1.21),

where p[dJ] : M — IR is a smooth map. JF}, can be understood as the continuum analogon
of the Gibbs form 7 dV in classical thermodynamics. We note that it need not be integrable,
but the analysis on E(M,JR™) presents a simple criterion to check this. In any case the-
generalized Hamiltonian formalism, yields for the dynamics on the reduced phase space

d

dr T=t

We terminate the paper by two appendices :
One, presenting details on the topology and geometry of the bundle AL(M,TN) of TN

valued differential forms on M, which gives the analytic base for our studies.

The second refers to the Laplace operators and the associated Neumann problem for func-
tions on M, which is needed for the construction of wp as well as for the representation
of the virtual work in terms of dH[dJ].

pldJ:]

2. Kinematic of bodies on the manifold E(M,N)

In this paper we describe the mechanical properties of a continuous medium in terms of
embeddings of a Riemannian manifold, as presented e.g. in [HuMa). For the the ambient
space of these embeddings we take a connected oriented C'°*°-manifold N which carries a

" Riemannian structure -

S {;):TNXxNTN—R . . o (2.15;

With Ty : TN — TN for the tangent map of ‘the c¢anonical projection we define by

V(TN) :=kern(T 7wn) C T?N the vertical bundle of N. Then the covariant derivative with
respect to the Levi-Civita connection of the metric {, ) yields a smooth projection from
T?N to V(TN), which allows to determine the vertical component YV'* of any vector

Y € T?N.




The manifold N plays the role of the physical space, in which the deformable medium
moves; it will be either an Euklidean space IR" or some constraint set in R".

On the other hand we describe the material properties of the medium on a compact C°°-
manifold with boundary, called the body manifold M. Points of M are referred to as
material points; they manifest themselves by their configurations in the ambient physical
space N. By a configuration (or placement) of the body we then mean a smooth embedding
J: M — N (where dimN >dimM = r ) and call

EM,N):={J:M - N|J isa C®- embedding } - (2.2)

the configuration space of the system. Since the set C°(M, N) of smooth maps from M
into N, endowed with Whitney’s C'™°-topology, is a Fréchet manifold (cf.[BSF]) and since
E(M,N) is open in C*(M, N), the configuration space is a Fréchet manifold, too.

Via pull-back by an embedding J we get an induced Riemannian structure on M, given

by

m(J)(X,Y):= (TJ(X),TI(Y)) VXY € (TM) @3),

which also yields a Riemannian volume element u(J) on M. Furthermore it makes sense
to introduce the positively oriented (outward pointing) unite normal field - denoted by
N - on the boundary 8M C M and observe that us(J) := ixu(J) becomes a naturally
induced volume element on M. Clearly N depends on the configuration J.

We call a smooth map L : M — TN withayoL = f € C°(M, N) a "vector field along
the map f”. For a fixed f, the set of all such "vector fields along f” is a Fréchet space,
also equipped with the C'*°-topology, which is denoted by C2°(M,TN). This is precisely
the tangent space TyC°°(M, N), hence the tangent bundle TC*(M, N) is identified with
C>®(M,TN). _
Then the tangent bundle TE(M, N) becomes an open submanifold of C®°(M,TN), fibred
over E(M,N) by ”composition with 7x”, i.e.

TE(M,N)=2CgZ(M,TN)={L:M — TN |nrnyoLe€ E(M,N) } (2.4).
For the special case N = R™ the bundle TN is trivial and we have

TE(M,R") = {(J,L)|Je E(M,R™), Le C*(M,R")} (2.5).

For the notion of the tangent space of any manifold - finite or infinite dimensional —

we remark that there are two constructions-possible; either by linearization of maps or

by differentiation of curves on this manifold. Physically this reflects the observation that
points in TE(M, N) will appear under two different circumstances :

Either in the context of variational principles, where L € TyE(M, N) receives the physical
interpretation of a virtual displacement of the configuration J € E(M, N), or as velocity ——
fields describing the evolution of embeddings. Therefore we consider J, : (=A,A) = E(M,N)asz
smooth curve of embeddings and obtain




—_— Jr =2 Vi €eT5,E(M,N) (2.6)
dr r=t¢t
as the time depeendent velocity field on the deformable body. Usually in continuum dynam-
ics such kind of - velocity field, given in terms of a vector field over a map (the configuration
J¢) is referred tao as the velocity in the Lagrangian description. In the spatial (Eulerian)
pictures, the copresponding field is a (proper) vector field on this image space J{(M) C N,
given by V; :=11;0 J; ! and the convective velocity v; € I'(T'M) becomes v; := (TJ¢) YoV,
with TJy : TM — TN for the tangent map of J;.

As a further entitity to describe the kinematics of a body we need to introduce the notion
of a (Frechet-) ssmooth density map p : E(M,N) — C=(M, R). By assumption p(J) is a
positive valued f-function and its integral over M yields the total mass m of the body, i.e.

[ o =m | (2.7)
M .

for any configurration J € E(M, N). Fixing a reference configuration Jp € E(M,N) we

may identify sonme positive valued function ¢ € C=(M, R ), obeying Jyrep(Jr) = m

~ with the referennce density, i.e. p(Jr) := o. To extend this density onto all of E(M,N)
we observe that.- there is for any J € E(M,N) a bundle map f : TM — TM such that
m(J)(f2X,Y) = m{Jr)(X,Y)forall X,Y € I(TM). Then we chose p(J) := det(f)-p(Jr)
We remark that.: for classical approaches to continuum mechanics a description in terms of
the reference deensity p(Jr) is preferred. Here we use the configuration dependent density
p(J) since it is . of an intrinsic geometrical nature and therefore is accessible to discuss
deformations of ( densities analytically. Denoting by D the derivate on the Frechet-manifold
E(M, N) such i . J j balances the configuration dependence of the volume p(J) by requiring

WITYDp(I)(L) = = p(7) Dp(I)L) = ~ 5 p(Dr mnPm(INL)  (28)

where L € T;EL(M.N) is arbitrary and tr ,(s) denotes the trace formed with respect to
the metric m(J)... If dim N = dim M this yields the continuity equation

Dp(J)(L) = —p(J)div un L (2.9).

The Riemanniann volume u(J), the coresponding density p(J) and the metric {, ) on N
induces a (weak}: ] Rxemanman structure B on E(M N ) by settmg for any J 6 E(M N )

BUN(LK) = [ p)(LK)uI)  VLEET BOMN)  (210)

'Clearly B(J) is is .a ccontinuous,-symmetric, positive-definite bilinear form. An Jmportant___

feature of that mmetric B is its (rather obvious) invariance property :




Proposition 2.1
Let G be a group of orientation-preserving isometries of N. Then B(J) is invariant under
the left action of G on the E(M, N) given by

G x E(M,N) —s E(M, N)
(9,J)—goJ (211).

Proof :
From the continuity equation it is clear that p(g o J)u(g o J) = p(J) u(J) and hence we
obtain for any isometry g € G :

" B(I)L,K) = /M ({90 LTgoK)u(J) = BUNLK) DO

To equip TE(M, N) with a symplectic structure we construct a one-form g on TE(M, N),
naturally induced from this metric: Denoting by ng : TE(M,N ) — E(M, N) the projec-

tion, mapping any Ly € TE(M,N) to J, we define
!

Os(L,)Y) := B(J)(L,TrgY) VY € Ty, TE(M,N) (2.12).

The symplectic form wg on TE(M, N) is minus the exterior derivative of Opg, i.e.
. LI }

ws(L1)(X,Y) = D(Os(Ls)(Y)) (X) — D(Os(L)(X)) (V) + Os(Ls)(X,Y]) (213),

where X,Y € T, TE(M,N). Since T*’E(M,N) = CF(M,T?N), we obtain, cf. [BSF], for
any two vector fields X,Y € I(T?E(M,N)) and any L; € TE(M,N) *©

D(05(Ls)Y)) (X) = B(J)Y"",Trg X) + B(J)(Ls, (T(Tr Y)(TreX))"™") (2.14)
and hence
ws(L7)(X,Y) = B(J)(Y"", Trg X) — B(J)(X*",TrgY)
- /M oI wn(X,Y) u(J)

where wy is the metric-induced symplectic structure on the finite dimensional manifold
TN. This construction equips the phase space TE(M, N) of a system in continuum me-
chanics with a weak symplectic structure.-From proposition 2.1 it is obvious that ©g and
wpg inherit from B(J) its G invariance, if G is a group of isometries on the manifold N.

(2.15),

For an appropriate description of continuum mechanics in the context of the configuration
space E(M, N), we also need the notiofi of tensors in that framework. Therefore we consider
two-point tensors [Eri,HuMa] over the body manifold M, as the natural generalizations of
the vector fields over maps. Restricting the general definition to the case of our interest




we define a two-point tensor T of type (S g), shortly denoted as a (r, 3)-type two-point
tensor, at p € M over an embedding J € E(M, N) as a multilinear mapping
T:(T,M x...x T,M) x (T}(p)N X ... X T}(p)N) — R (2.16).

o ~

r—times s—times

One can think of such a tensor having r+s legs, r on M and s on N.
Of special interest in continuum mechanics are (1, 1)-type two point tensors; e.g. the de-
formation tensor and the 1** Piola-Kirchhoff stress tensor are of that kind. We define

§

A(M,TN):={a:TM — TN |rnvoa =J, alp: ToM — Ty, N linear Vpe M }

as the space of all linear bundle maps, which sit over a fixed embedding J € E(M, N).
A remarkable feature of this space is to fit as well into the notion of (1,1)-type two point
tensors as into the framework of bundle valued (one)-differential forms on M. For detaJl
on the topology and geometry of Al (M TN) we refer to appendix A.

3. The principle of virtual work and the symplectic dynamics on E(M,N)

In order to formulate the (weak) balance laws of a system in continuum mechanics we start
with the principle of virtual work [AnOs,Mau]. Its appropriate version in the framework of
(the infinite-dimensional manifold) E(M, N) as the configuration space is due to Epstein
and Segev [EpSe], who introduced a one form F on E(M,N) as the constitutive entity
which determines the mechanical behavior of a system. We define such a one form as a

smooth map

F:TE(M,N) — R
Ly — FJKL)

where the restriction F[J] = F|r,g(m,n) is a linear map for each J € E(M, N). Recalling
from (2.4) that at each configuration J the tangent space TyE(M, N) can be identified
with the space C5°(M,TN), F[J] is a continuous linear form on this fibre, i.e. an element
of the topological dual C°(M,TN) = T'(J*TNY)'. Loosely speaking, then, F is a smooth
section of the ”co-tangent bundle” of E(M, N), but this will not be pursued here. .

(3.1),

We will refer to this one form as the virtual work functional of the system. Its value

on some tangent vector L € TyE(M, N) has the physical interpretation as the work done
by the system under the virtual displacement L. The principle of vzrtual work claims
that the dynamics is determined by F as follows :

A smooth curve of embeddings J. : (=X, A) — E(M,N) with V; € T; E(M,N) as its
velocity field describes a motion of the system, iff it solves the equation

21 BUIVL) - BUNVTLV)™) = FIRILI)  (32)

r=t

BRRC- A B LI




for all vector fields L : E(M,N) — TE(M, N). This equation is the natural generaliza-
tion of the classical principle of virtual work, ¢f. [AnOs,MuHa], which is restricted to the
dynamics on a trivial ambient manifold, i.e. to N = IR". Since in that case the tangent
bundle becomes TE(M,IR") = E(M,R") x C*(M,R"), one gets
d
p B(J.)(Vs,L) = FJ)(L) VLe C*(M,R"™) (3.3)
=t

for the equation of motion, instead of (3.2). If TE(M, N) is nontrivial, however, the field
L has to sit over the embedding J; and we need to chose L = L(J;) at any instant of time.
Hence we have to subtract the extra term, coresponding to the time derivative of L.

The central result of this section will be to show, how the dynamics, obtained from the
principle of virtual work — for a general ambient manifold N - can be understood as a sym-
plectic motion. Therefore we first observe that the Hamiltonian description of continuum
mechanics, cf. [Mar], appears as a specialization of (3.2) :

On the symplectic manifold TE(M,N) we have a Hamiltonian system, if there is a

(conserved) energy functional H : TE(M,N) — IR, such that the dynamics is determined

from its Hamiltonian vector field X g7, defined by

DH(J,Vs)Y) =ws(Xm,Y) VY e I(T?*E(M,N)) (3.4),
. and the evolution of an observable K, i.e. of any smooth function K TE(M ,N) - R,
is given by

d

dr =t
Clearly the existence of the Hamiltonian vector field X g is not guaranteed a priori. In
particular, however, H(Vy) = £(Vi) - with (V) = § B(J)(V1, V) denoting the kinetic
energy — yields a well defined vector field X = SoV; where § : TN — T?N is the spray
of the metric {, ) on N.

Proposition 3.1

Let a system in continuum mechanics be determined by a virtual work principle, such that
F is an exact one form on E(M,N), i.e. there is a smooth potential U : E(M,N) — R,

obeying
DU()L).= =FUL) . VI€EMN) VLeTE(M,N)" (36).

If the energy functional H(Vy) = E(Vy) + % U(Vy) - with 73U(Vy) = U(xs Vy) - is
such that the Hamiltonian vector field X exists, the-equation-(3:2) is equivalent to the
Hamiltonian dynamics. :

10

-— K(VJJ:DK(XH)=LUB(XK,XH) (3.5).




Proof :
With (2.15) for the symplectic form the Hamiltonian vector field of - if it exists — obeys

B(J)(Y*™ Trg Xp) — BU)XE, TreY) = B(I)(Vy,Y') + DU(rg Vi)(TreY)

where the first term on the right hand side comes from the kinetic energy £(V;) by using
the continuity equation. Then we get
B(J) (Tng Xm,Y™™) = B(J) (Vs,Y",)
-B(N)(XF",TreY) = DU(JXTrgY)

Considering the observable K¥(V)) := B(J)Vs,L(J)), where the vector field L €
I(TE(M, N)) is arbitrary but fixed, we obtain

(3.7).

DK (V,)(Xm) = B(J)(XF"L) + B) (Vs (TL(T7g Xm))") (3.8).

The coresponding Hamiltonian equation of motion

p - ST

—|  K“(Vi) = - DUU)(L() + BU)(V:, (TLW)™)  (39)
T=t

coincides with the equation for the virtual work principle (3.2), since by assumption we

have DU(J) = - F[J]. o

By demanding (3.6) we restrict ourselves to a hyperelastic medium, for which the equiv-
alence of the virtual work principle and the Hamiltonian description is shown. It is crucial
to observe, however, that the hyperelasticity, i.e. the integrability of the one form F was
redundant to derive the Hamiltonian form of the equations of motion in the proof above.
Hence the dynamics of a system, subjected to a general virtual work functional F instead
of a Hamiltonian HH, can be determined from a vector field X5 given by

(DEVy) = np FIIN(Y) =ws(X5,Y) VY eTD(T2E(M,N)) . (3.10).

As in the Hamiltonian case the existence of X is not guaranteed a priori, but from (3.5)
and (3.7) the following is obvious :

Proposition 3.2 -
Let be £(V) the kinetic energy and F[J] be a virtual work form on TE(M, N). A vector
field solving (3.10) exists, iff the one form F lies in the range of the metric B, i.e. there is
afield Z5 € T(TE(M,N)), such that B(J)(ZF,Y) = F(J)(Y) for all Y € I(TE(M, N)).
In that case the dynamics of a system, determined by the principle of vxrtual work (3.2),
becomes a genemhzed Hamzltonzan system in the sense that

o IK(VJr) = - (Dg(VJ,) - W.Ef[Jt])(XK) (3.11)
for any K : TE(M N) — R with X as the coresponding Hamiltonian vector field and

vector field X is given by X5(L) = So L — Z¥™(L) for L € TE(M,N), where Z}
means the vertical lift of Z .

r=t
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Having shown the symplectic character of>f the motion (3.2) — with a general virirtual work
functional F : TE(M,N) — IR", which mmay characterizes a hyperela,stlc systerm or not —
we limit ourselves in a twofold way
First we choose N = R™ for the ambient mmanifold, such that we are in the framewwork of the
classical virtual work principle (3.3). We ao so to make the notion of translation izinvariance
— which will be of central importance for 1:zhe sequel — meaningful. A generalizaticon of that
concept to an arbitrary manifold is possibiele, by considering this a constraint setz: N C IR k
, but requires much more effort. For the : boundaryless case see [Bi2], boundarisies will be
considered elsewhere.
On the other hand we assume for the one foform F on E(M,IR™) a special L?-represesentation
— over the bounded manifold M - given box

N = [ @ULD D) + [ (ol L) ol 312)
_ oM
where ® : E(M,R") - C®(M,R") ancd ¢ : E(M,R") — C™(0M,R") are: {Fréchet)

smooth maps. The functions ®[J] and -i...J] represent the density of forces, affesecting the .
" body and its surface. This representation= is less restrictive then it seems : Firsst the as-__

sumption on ®(J) and y(J) to be of class ¢ C> oen-M was made for sake of simplidicity only.
All result, derived below, also holds in the:e C*-class or even for functions of Sobavlev class.
Secondly, derivatives of L which may appeear for a general F[J] can be integrate=d cut :

Z / J1ye Jr Jl "'erL)p(.J\ = Z (_I)T/M<ij "'leejl,--Jr{J}“‘L} y(J)

J1yedr Ji-edr )
+ boundary terms 3.13).

Only for the effective boundary integral we== really make a physical assumption in (.{3.12), by
demanding that it does not depend on derzrivatives of the virtual displacement. Tao compare
our representation with standard formuiaiations for the virtual work, we spht :the force
densities into their internal and externai omarts :

®[J] = @™ [J] - @] and  @[J] = "™ [J] - <[] (3.14).
Here the term ®°**[J] is the density of exxternal (long distance) forces affecting t:the body
- often also denoted by p(J)®*'[J] — and 3 z*°**[J] describes the (external) contmact forces
on OM. Then the maps ™ : E(M,R"") — C®(M,RR") and ¢™ : E(M.,R") —
C>®(0M, R ™) reflect the constitutive beaaavior of the ma,tenal described by (unhbalanced)
body and boundary forces, respectively:- o _ A
It is essential to remark that this represezematlon of .7:' a]lows for an arbxtrarv _.non—local

and non-linear constitutive behavior of smeé systemn. The form (3:12) for the virtual work™ ~~+ "

F[J] furthermore differs from the one, wizich is studied in the literature, by the=fact that
we need not to specify the explicit form oz the force densities a priori. Instead of 1 choosing
$™t[J] as the divergence and ¢'"*[J] as :1me normal component of a stress teasorr {AnOs],
or starting with a internal work including r based on n*®-order gradients [Mau], wee are less
restrictive. The tensorial character appearss in our description as a consequence obf a global

12



- group invariance of the functional F, which also need not to refer to locality assumptions,
like Cauchy’s tetrahedron construction or the Hamel-Noll theorem [Tru].

Finally we observe that the force fields ®(J) and #(J), respectively, are densities with
respect to the configuration dependent measure p(J) and not with respect to a fixed
reference volume p(Jg).

4. Translational invariance and the reduced phase space

The purpose of this section is to study the effect of symmetries on the configuration space
E(M,R™) on the form of the balance laws in continuum mechanics. We are motivated for
doing so by considering classical field theories where symmetries cause the system to subject
conservation law, e.g. of momentum and angular momentum, via Noether’s theorem.

- The symmetry group in question here is the group IR " of rigid translations on the ambient
space N = IR", which naturally acts on the configuration space E(M,R") from the left

by pointwise addition :

o "R"x E(M,R") — E(M,R"™)
i« AL i (4.1).
(2,]) —» J+2 ,

To characterize the behavior of a system in continuum mechanics under the action of
this group we introduce the notion of IR "-invariance of the virtual work, which will be

fundamental to obtain a simplified description of the balance laws.
Definition a

If the virtual work functional, i.e. the one form F : E(M, R™) x C®(M,R") — R obeys
for all Z € R™ the condition

FIIN(Z)=0 VJe E(M,R") (4.2q)
F[J + Z)(L) = FJ)(L) VJe E(M,R") VLeC®M,R") (4.2b)

then F is called an R"-invariant virtual work form.

We have to remark that the conditions (4.2a) and (4.2b) are independent physical demands:
The vanishing of the virtual work functional on all constant virtual displacements, (4.2a),
means that there is no total force acting on the-embedding body in any configuration,
while (4.2b) expresses the homogeneity of the space R", as far as this can be checked out
with that body. It is not possible te understand (4.2a) as-a consequence of (4.2b) — one
easily constructs conter-examples — but for a hyperelastic system we can obtain (4.2a) as
a consequence of (4.2b) by a Taylor expansion of the potential function U(J).

13




Even if a given virtual work functional is not IR "-invariant, but is representable by (3.12),
- we can proceed by subtracting the (integrated) total force

M

¥[J)= /Mémﬂw) " / o1 po(J) (43),

which is constant on M. This way we obtain :

Proposition 4.1

Let the virtual work functional F be of the form (3.12) and obey the homogeneity condition
(4.2b). Then we (4.3) determines an IR "-invariant functional given by '

FlIND) = FUNL) - /M(\II[J],L)u(J) VIEeT,E(M,R") | (44).

On the other hand it is physically reasonable to postulate that
PN = [ (@D % [ (D)t (@5

describes an IR "-invariant virtual work. This is a natural demand, since the constitutive
qualities of a material are assumed to depend only on the internal distances (and orienta-
tions) between the points of the embedded body, and hence should not respond on rigid
translations. The functional F°[J] will be of central importance in section 6 to obtain a
physical interpretation for the reduced dynamics, coresponding to (3.3) by ruling out the
IR ™-invariance.

To perform the Marsden-Weinstein reduction on the phase space TE(M,IR ™) we construct
the momentum map J, cf. [AbMa], with respect to the action (4.1) of the group R".
Therefore we consider Z € IR"™ as an element in the coresponding Lie algebra and observe
that its action on TE(M,R") is given by a vector field Z, which is of the local form
Z = (J,V;,Z,0). Since the one form Og and also the symplectic structure wg are invariant
under rigid translation — what is an immediate consequence of Proposition 2.1 — we obtain
with (2.12)

< T(V1),Z >= Os(Vi)Z) = /M o(7)(V2,Z) w(J) (4.6),

where <, >, denoted the dual pairing on JR". Hence we can investigate the system on the
reduced phase space with the constraint set

T = { LV eTEMRY | [ syVoun=1) @),

This is a smooth submanifold of TE(M,R™). Since JR™ is Abelian it equals its isotropy
group G for each IT € (IR™)* and we can consider the equivalence classes of configurations

[J1e E(M,R"™)/R" given by
J'e[J] & 3Ze€ R"™ suchthat J'=J+2 (4.8).
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These are visualizeed by introducing the center of marass

1 | |
Syi=— /M ATy 7w J) (4.5.9)

uch that an R "-iznvariant system only depends on = the relative configuration

n

Jo=J—-8; (4.100).

It is a remarkable #feature of the harmonic decomposisition of E(M,R") C C*®(M, R "}, cx{.
. gppendix B, that ::the center of mass component Sy ;. describes the unique E(M, R™}/HR"™
drthogonal compopnent of the configuration J, whersre orthogonality is understood in thhe
mnetric B(J). A 4

On this base we -apply the Marsden-Weinstein recxduction of a mechanical system witith
symmetries to the case under consideration : -

Theorem 4.2

ILet a system in copntinuum mechanics be determined d by the principle of virtual work (3.33),
With an R ™-invarmiant virtual work functional F : TCE{M.R") — R. Then the dynamicics
dan be described oon the reduced phase space J “HIIm)/R™ by

AT Vep((Jd]) =11
M

4 B L) = DD

Vte (=20 (4111)

with the reduced virtual work functional _

F : EM,R")/R"xC(M,“R")/R" — R
F (DAL = FILI(L)

Here Jo € [J] is thee relative configuration (4.10) ancd L' is some representant of the dlasss
I} € C®(M,R"); /R formed as in (4.8), accordingigly. ‘

Proof : : v

We consider Z €= IR™ as an element of the Lie aialgebra of the translation group acmd
investigate the dymnamics of the observable Jz(Vj) ==< J( V), Z >.. Having a generalizezed
Iiiamiltonia.n systeem (3.11) we have

(4.122).

Py

A e pomy

| ) v = —(DEV) -TEeFUN@) = FIUNZ) (4183)

drr

=t

from the definitionn of the momentum map. We comnclude from the IR"-invariance of 7 F
that the dynamics s leaves the level sets of the momersntum map invariant, i.e. the motion 11s
constraint to the ssubset J~}(II) C TE(M,R™).

Finally we divide cout the translation group by coasicidering F as functionally dependen: con

fhe relative configemration Jo. g
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The physical content of that theorem is easily understood by observing that
I = [ wnviun) (4.14)

is the total momentum of the body moving in R™, which is conserved since the total
force vanishes by assumption (4.2a). On the other hand we can consider - by means of the
assumed homogeneity of IR ™ — all constitutive properties as depending only on the relative
configurations.

5. Geometry on the reduced phase spa'ce

According to the Marsden-Weinstein reduction the set J~!(II)/IR" forms a symplectic
manifold. Therefore we remark that the IR "-action (4.1) induces a free and proper action
on TE(M,R"™) and Lénce also on the submanifold 7 ~(II); thus the symplectic reduction
theorem [MaWe] applies to the case under consideration.

To obtain an intrinsic description of the dynamics on the reduced phase space J — 1(H) / R "
we observe that we have for each L. € T 7E(M, R™)-a-unique decomposition:

L=1Lo+C;, with Cpe€R" and /p(J)(Lo,Z),u(J)zo VZeR" (5.1).
M .

Hence the component Ly is B(J )-orthdgonal to all constants. We remark that this decom-
position does not depend on the configuration J, as easily can be seen from the continuity

equation (2.8).

Proposition 5.1

Let J~1(II)/R™ be the reduced phase space of an IR "-invariant system. Fixing II, each

of its elements is uniquely described as follows :
(1) By a pair (Jo, Vp) of maps Jo € E(M,IR") and Vp € C*°(M,R") obeying

/ p(NJou(J) =0  and / p(J) Vo p(J) =
M M

(ii) By the pair of differentials
(dJ,dV) where J € E(M,R") and V € C*(M,R")

Proof :
Since TE(M,RR") = E(M,IR™) x C®°(M, R")-is a product bundle and the translation

group R™ only acts on the ﬁrst factor, we have from section 4
JHI/R™ = { (1], V) | /1€ E(M, IR")/R" and V€ C°°(M R" )
with / p(NVu(J)y=1}
M

(5.2).
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For each representant J' € [J] and the component V of each point in J ‘I(Iﬁ \Va;'ei-:;ﬁf;ly
the decomposition (5.1), yielding

J'=Jo+Sy and V=VO+$H (5.3)
with Sy € R™ for the center of mass (4.9), Il € R" for the total momentum (4.11) and
m for the total mass (2.7) of the moving body.

Observing that the values of I and S are redundant to describe points within J ~!(II)/R "

proves (i).
Since the exterior derivative d : C®(M,R") — A'(M,R") vanishes exactly on those
IR "-valued maps on M, which are constants, this also shows (ii). O

Both representations for J~!(II)/IR ™ allow for a clear the physical interpretation : Using
(i) we describe each point by the relative configuration and velocity, taken with respect to

the center of mass and the average velocity II/m. _
For (i) we observe that the differential dJ coresponds to the deformation gradient
appearing in the usual treatment of continuum mechanics, cf. [HuMa], if we consider the

* one form dJ € AY(M,IR") as a two point tensor in the sense of section 2. Hence we'are’

- in the standard framework of elastodynamics with dV denoting the time derivative of the

deformation gradient, i.e. dV; = %-'r: ,dJr
With respect to the Riemannian structure we observe that the decomposition (5.1) is

B(J)-orthogonal and obtain .

BUI)(LK) = /M o(J) (Lo, Ko) (J) + m-(C1.Cx) (5.4)

for all fields K,L € C®(M,R"™) over J € E(M,IR"). By construction the volume form
1(J) and the density map p(J) only depend on the differential dJ. Identifying via propo-
sition 5.1 the components (Ko, Lo) with their respective differentials (dK,dL) we get

B (dK,dL) = [ p(d]) (Ko, Lo) u(d]) (5:5)

for the Riemannian structure on the reduced phase space J ~!(II)/RR". With (5.1) and
the continuity equation this metric clearly becomes configuration independent. For an
alternative representation of IB we observe that for each (relative field) Ko admits a
unique one form k € A'(M,R™) which is exact, i.e. d& = 0, and solves the boundary

value problem

p(dJ)Ko =6k with k(N)=0 - (5.6).

Here 6 : AY(M,R™) — C°(M,IR") denotes the co-differential taken with respect to the
metric m(J) on M and AN is the outward pointing unite normal field on OM. This can
be shown from the theory of elliptic operators on manifolds with boundaries [Hor,Mor] by
observing that for k = dk equation (5.6) becomes a usual Neumann problem. For more

details we refer to appendix B.
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Using Stoke’s thémeoremr(B._G) we then obtain
B(dK,dL) = /M M(r.c.dL) p(dJ) (5.7),

where the produuct M on A'(M,R™) computes i:in terms of a local m(J)-orthonormal
frame {E;,...,EE.,} on TM as

M(11,m) =Y _ (n(EE;), 72(Ej)) (5.8).
=1
Since TE(M,IR™") is a trivial bundle, cf. (2.5), any-= vector field Y € [(T?E(M, R")) has
a global represe=ntation Y = (J,V,Y1,Y?) - with= Y, Y2 € C®(M, R"). Denoting by
([X],[Y]) 2 pair cof arbitrary vector fields on J~}II:/R ", the induced symplectic form on
the reduced phasse space, reads in terms of the metriric B as .

wp (dJ,dV)([X},[Y]) = B (dX',ddY?) — B (dY',dX?) (5.9).
In view of the rezpresentation of the reduced virtuaizi work form IF' we now prove that any
IR ™-invariant linsear functional on TE(M, IR ") admmits an integral representation, similar
to (5.7), on J ¥ (IO)/R".
Proposition 5.22 _ {
Let T be a one foorm on E(M, R "), which can be re=presented by a pair of smooth densities
(®[J],»[J]) on ML and OM, respectively, as '

b on e £

-
I

oD = [ @D~ | (AT L ke) (5.10).

If it is IR "-invaririant in the sense, that (4.2) holds ameccordingly, I turns into a linear func-
tional on the redduced phase which can be expressed : in terms of a differential dH[dJ] as

r[dJ|(dL) = /M M(dH[dET}. L) p(d]) (5.11).

The function H[ddJ] € C=°(M,IR") is unique up to azan additional constant.

Proof :
The invariance ccondition (4.2a) applied to I'[J] readsis as

[ enun+ [ diasn=o (5.12),
Mo oM o I =
since Z € IR" is zarbitrary. This is the integrability cicomndition for the Neumann problem
AH[J]=®[J] = with  dBHIT|(N) = o[J] (5.13),
18




where A = 6 d is the Laplace operator ;ifrl‘i}ésbect to the Riemannian metric m(J)on M.
The solution H[J] € C*(M,R") is unique up to an additive constant [Hér]. Replacing
®[J] = AH[J] and using Stoke’s theorem (B.6) we then get

(L) = /M M(dH[J), dL) u(J) (5.14)

and with proposition 5.1 the invariance (4.2b) yields the desired result. O

6. The equations of motion and the stress tensor

Applying proposition 5.2 to the internal part F°[J] of some virtual work functional, cf.
(4.5), which is IR "-invariant from physical arguments we obtain

F[dJ)(L) = /M M{dH[d]),dL) u(dJ)
(6.1).

3

+ [ @mannyu— [ (o=, 1)no(dd)

The one form a™[dJ] := dH[dJ] € A}(M,R"), determined from the internal body and
boundary forces is called the (integrable) stress form of the system [Bin,Sch]. Its physical
significance will become clear after establishing the symplectic dynamics on the reduced
phase space. For sake of simplicity we neglect the effect of external body forces from now
on, i.e. we set ®**[dJ] = 0. With :

1 1
E(dV) = 3 B(dV,dV) = &V) - ™ (11, IT) (6.2)
for the kinetic energy on the reduced phase space we then obtain :

Theorem 6.1

Let the motion of a system in continuum mechanics be determined by an IR "-invariant
virtual work F which admits a generalized Hamiltonian description in the sense of propo-
sition 3.2. Given an integral representation (3.12) for the F (with ®*** = 0), the motion
becomes a generalized Hamiltonian system on J ~'(II)/R". The Hamiltonian equation of
motion demands for any L € C*°(M,R") '

2| Bavdn) = [ MMl dn)uar — [ (o) Lu(dl) (63)
=t M e B
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Proof :
With the symplectic form wp and the kinetic energy IE (dV) the (generalized) Hamiltonian
vector field [X ] on J~}(O)/R™ is determined from the reduced virtual work IF' by

B (dXk,dY?)-B (dY*,dX%) = B (dV,dY?)-F (dJ)(dY') VY Y?e C®(M,R").

This yields dX}. = dV, and considering the observable KL(dJ,dV) := B(dL,dV) - with |
L € C*®(M,R") arbitrary but fixed (and time independent) — we get from (3.5) :

4 K*"(dJ,,dV;) = F(dJ,)(dL) (6.4)

dr|__,

Representing JF by (6.1) then proves the assﬁmption. 0

Comparing the (weak) equation (6.3) with classical approaches to the principle of virtual
work, cf. [AnOs,Mau], we observe that the stress form a™[dJ] is measured with respect
to the induced volume form u(dJ), while the 1** Piola-Kirchhoff stress tensor appears in
the virtual work functional measured with respect to a fixed reference volume p(dJg).
Observing, however, that dJ : TM — IR" is a (pointwise) isometry with respect to the
metrics m(J) on M and (, ) on IR™ the stress form inherits the physical interpretation of
the Cauchy stress tensor, represented on M.

‘To see this we pull a®[dJ] back by J~! and define a coresponding tensor on J(M) by

AM[dJ): TI(M)x R" —» R

6.5).
AMdI(X,Y) = (o™ o (TJ)"H(X),Y) (6.5)
holding for all X € T(TJ(M)) and all Y € I(TR™). From this we immediately get
/ M(aﬂ[dJ],dL)u(dJ) = / (AM[dJ): A)pre (6.6)
M J(M)

where A denotes the tensor coresponding to the one form dLodJ ™! on J(M) and (A : A)
stands for the trace over the product of the two tensors. Using this representation for the
first term of JF' (6.1) and transforming the (external) contact force p°"t[dJ] appropriately,
equation (6.3) coincides with the principle of virtual work in terms of the Cauchy stress
tensor A*[dJ], which can be found in the literature.
The Cauchy stress is given by a proper tensor, i.e. AM[dJ)(X,Y) is local with respect to
the fields X and Y. We remark, however, that our construction of the stress tensor allows
for an arbitrary non-locally dependence ‘on’ the configuration. This mieans that for pEM
fixed, the value of A™[dJ](p) can depend on the deformation gradient globally and not
only on its point value dJ(p) and its derivatives at p. This is a remarkable fact, since all
standard proves of the tensoriell nature of stress need to use some locality argument — like
Cauchy’s tetrahedron construction — whereas we obtain the same in a non-local framework
by demanding just a rigid R "-invariance.
~ Another interesting feature of (6.3) as the equation of motion is that the stress form
is integrable, i.e. it is given as the differential of a function by a™[dJ] = dH[dJ]. This
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integrability, however, is not naecessarily needed for an appropriate description : We may
apply the transformation

a™iddJ] — aldJ] = a®[dJ] + B[dJ] (6.7),

where § € AN (M, R") obeys 6683[dJ] = 0 and B[dJ)(N) = 0, without changing the physical
content of equation (6.3). This ;means that a[dJ] determines the same dynamics as a™[dJ]
does. That property, which is eeasily seen, since we have from Stoke’s theorem (B.6)

[, MBlas,an) uan = o (63),
expresses a remarkable gauge fireedom in choosing the stress for each system in continuum
mechanics. On the other hand: our result shows, that for any given stress form a[dJ] only
its exact part a?[dJ] contribuutes to the dynamics.

Obviously the integrability anad the gauge freedom of the stress form induce coresponding
properties on the level of the CCauchy stress tensor. It has to be mentioned, however, that
the (integrable) tensor A*[dJ] ~will, in general, not be symmetric. To symmetrize it without
changing its physical content, onne can use the gauge freedom and construct an appropriate
BldJ], such that a®[dJ] o dJ " becomes symmetric, cf. {Sch].

7. Luocalization of the Dynamics

We now give up the covariant - description of the system by deriving from the variational
equation of motion a local balannce law. To compare in (6.3) the stress term with the dynam-
ical one, we first get rid of itz cexplicit time derivative by observing from the configuration
independence of the metric B that '

2| B@vnan= [ 0. L)) (7.0)

=t

Furthermore we can represent :the metric via (5.7) by applying solving the elliptic problem
(5.6) for the field p(dJ)V;, whnich coresponds to the (relative) inertia force of an actual
motion J;. This determines (umiquely) a one form w(dJ) € A'(M,R™) which obeys

Sw(dT) = p(dI)Vey , dw(dJ)=0 and w(dJ)N)=0  (7.2)
and the (weak) equation of mootion on the reduced phase space transforms into- .. - .

/ ""'H(J(dj)'-lm[dj]‘, d"L') u(d]) = / (55 [dJ], L) pa(dJ) (7.3).
M oM . IR

Since by assumption all quantiziies are smooth we can localize (7.3) as follows : We restrict
the support of L to an arbitrarrv (connected) subset U C M with UNOM =  and observe
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that the integral of M over U yields a Riemannian structure on the subset of exact forms
in AY(U, R"™), cf. (B.11). This yields as the local equation of motion

w(dJy) = dH[dTy] (7.4)

for any point in the interior of M. This local representation of the dynamics may give some
new insight into the nature of the theory : It is a balance law on the level of exact one forms
and hence stronger then the usual balance of local forces. To make such an observation
applicable, however, a clear physical interpretation of w(dJ) has to be worked out.

The classical description of dynamics is encoded in (7.4) as the trace over its spatial
derivatives, i.e. by acting with the co-differential § on it. For éw(dJ) we re-obtain the
inertia force and from the definition of the Cauchy stress tensor we have :

(6dH[dJ),X) = 6(AM[dJ]odJ)(X) VXeDI(TR") (7.5)

Using the product rule (B.5) for the operator é and writing V5, = V;0 J;! for the velocity
field on J¢(M) the equation of motion reads in its spatial representation as
p(dJ;) ;; V. = DivAY-+ A®dS)(ag) - (7.6)
r=t :

 Here Div denotes the divergence, taken with respect to the restricted metric {(, Y aay

on J(M) C R™. Compared to the usual description of continuum mechanics, we see that
(7.6) coincides for simple bodies, i.e. for embeddings of co-dimension zero, with the classical
equations, since AJ = 0 in that case. In the general situation we have AJ; = trace S(J),
where S(J) means the second fundamental form [BSF] of the embedded hypersurface J(M),
cf. (B.4). Then the term AM[dJ,](AJ;) reflects a force acting on the embedded surface in
the normal direction, which is proportional to a characteristic geometric quantity on J(M),
e.g. for dim M = n—1 to its mean curvature H(J) = (S(J), n) with n denoting the normal
field on J(M) C R". :
Finally we observe that the global equation of motion (7.3) also characterizes the behavior
of the system on its boundary M. To see this we apply Stoke’s theorem what yields

/ (6w(dT)— AM[dJ], L) p(dJ) = / ((dH]dT)—w(d))(N) = [dT], L) pa(dJT) (7.7).
M oM

Since we are in a smooth situation by assumption, the body integrals cancel up via (7.4).
Furthermore we have w(dJ)(A) = 0 and hence the system is enforced to obey on M

traction boundary conditions

aMdT)(N) = ¢=dT] (7.8).

In turn we remark that this is exactly the condition on the virtual work functional, repre-
sented by (3.12), to admit a generalized Hamiltonian description in the sense of proposition
3.2. In principle it is also possible to include boundary conditions of placement into this
framework what, however, requires a modification of the configuration space E(M,R").
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8. Two special Applications

We finish this paper by illustrating our formalism on the reduced phase space J~1(I[}/ /R "

for two simple examples : S
First we study linear elasticity by writing for the reduced virtual work functional

Fyn|dJ)(dL) = /M M(CodJoc,dL) u(dJ) (88.1),

where the map C : M — GL(n) and the bundle endomorphism ¢ € End(TM) botha are
smooth but configuration independent. The pair (C, ¢) determines the material propesrties
of a linear elastic medium in the same way, as this will be done by the 4t order elasstic-
ity tensor, say C, in the classical tensorial description. Even though the material iss-not :
hyperelastic, a property which can be read off from the pair of maps (C, ¢), the gene=ral- N
ized Hamiltonian formalism, presented above, can be applied. Doing so we obtain for- the ;
equation of motion on the reduced phase space

w(dJy) = (CodJioc)™ - (889,

where the superscript "ex” means to consider only the exact part of the one form m view.
Rewriting this in the form given by (6.11) the coresponding equation coincides mh__ the
well established representation of linear elastodynamics. o

If the material is homogeneous, i.e._.C and c are constant maps — the later in the se=nse-
that Vxc =0 for all X € I'(TM) - there exists a diffeomorphism C : M — M, such tithat ~

CodJoc=d(CoJo(). In that case (8.2) turns into a modified wave equation of the faorm
v

d
pldJi) —| Vi = A(CoJioC) = A®J,
dr =t
where A€ denotes the Laplace operator coresponding to the Levi-Civita connecticn cof a
metric g on M, which is the pull back of the scalar product {,) under the one form CaddJoc.

Explicitly this metric is given by

(ﬁ‘.

$3.3),

g(X,Y) = (CodJoc(X), CodJoc(Y)) foralX,Y e T(TM) (&24).
In the non-homogeneous case a similar construction is possible. Repr&sehting the dynammics
of a linear elastic medium by such a wave equation might be of some interest for applicatizons :
and will be studied elsewhere. o
On the other hand we consider the (reduced) virtual work form—- e e e

[dJ](dL)_r /M [dJJM(dJ dL) wdsy (83:3),

where p[dJ] : M — R is a smooth map. Domg so is motwated by the fact th&t the
functional V[dJ] = f,, u(dJ) measures the volume of the embedded body J(M) and haas

VidJ] = /MM(dJ, dL) u(dJ) i£5.6)
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as its differential, cf. [Bin]. Considering - as a motivation - classical thermodynamics, a
system affected by pure volume work is determined by the Gibbs form 7 dV, where the
pressure m is a IR -valued function of all variables of state. Based on the description of a
state (in the sense of thermodynamics) by an element of the (reduced) configuration space

E(M,R™)/IR", the functional

FaldJ)(dL) = [dJ] /M M(dJ,dL) u(dJ) (8.7)

represents the component of a total Gibbs form of any system, which coresponds to pure
volume work.
The natural continuum analogon for wdV is the virtual work form JF,, where - from the
thermodynamical point of view — the total volume V[dJ] (as only one degree of freedom) is
. replaced by the volume form u(dJ) as the relevant field of extensive variables. Then (8.6)
presents the well defined kernel coresponding to Du[dJ]. The function p[dJ] € C*°(M, R)
is supplied with the physical interpretation of the pressure field on the body in configuration
dJ, such that (8.5) may be identified with the Gibbs form of that system.
A system described by that virtual work Fp need not be hyperelastic, what means in turn
that Gibbs form will not be integrable. The analysis on the Frechet manifold E(M, R" )
however, presents a simple criterion to check the integrability of the linear functlonal F

Iff one has B

D(F,(dL))(dK) - D(Fp(dK))(dL) =0  VK,LeTE(M,R")  (88),
what can be expressed in terms of a relation on the constitutive dependence of the pressure
p: ElIM,R"™")/R"™ — C®(M, R) the material is hyperelastic and the coresponding Gibbs

form is integrable.
In either case the generalized Hamiltonian formalism yields for the equation of motion

w(dJ;) = (pldJi]dJy)" (8.9).
Acting as in (6.11) with the co-differential é on this equation and using (B.5) yields
d .
pldJy] . V; = dJ; (gradp[dJi]) + pldJe] A J, (8.10).
r=t

From the differential geometry of J(M) one has A J = trace S(J), which equals the mean
curvature of the embedded manifold. Since in the co-dimension zero case the second funda-
mental tensor vanishes, i.e. A J = 0, this model covers the classical theory of (non-viscous)
fluids. In a general situation (8.10) shows, how to include geometnca.l effects in a descrip-
tion of fluid dynamics, e.g. on deformable shells.

A remarkable specializations of this dynamics is the case, where the system is (approxi-
mately) determined by pure volume work (8.7), i.e. one has p[dJ] = n[dJ] € IR. Then
the gradient term vanishes and the motion is given by a wave equation. Even if the pure
volume work is no good approximatlon such term with a constant pressure w[dJ] is always
present via the evaluation #[dJ] = dJ](B(deJ)) Similarly p[dJ]dJ can be obtained
as a pointwise projection from any I such that 7[dJ] may be understood as an average.
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Appendix A : Topology and Geometry of A (M TN)

Let IE be some vector bundle over the compact Riemannian manifold N and define the
set of all JE -valued one forms on M as

AM;E):={B:TM — [E | 8 smooth and Blr,m linear Vpe M} (A.1).

The requirement that 8 € A'(M; IE ) should be linear along the fibres of TM means that
there is a (smooth) map f : M — N such that 3 |T,M is a linear map into the fibre Fyip)
sitting over f(p), i.e. that § is a bundle map TM — IE over f. In reverse this shows that

AME) = |J o(MSFE) | (A.2),
fEC™=(M,N)

where Q! (M, f*E ) is — for fixed f - thev Fréchet space of one forms with values in the
pull-back bundle f*IE over M It is clear from the construction that there is natural

surjection -
T4t AYM,E) — C®(M,N) (A.3)
which is (set-theoretically !) locally trivial: Each f € C*®°(M, N) has an open neighbour-
hood Uy such that there exists a fibre-preserving, fibrewise linear bijection

gyl (Uy) — Uy x Q' (M, £ E) | (A.4)

which also is topological on each fibre; thus, for each g € Uy, the restriction of 5 to 73 1(9)
is a linear and topological isomorphism onto Q! (M, f*IE ). For all this we refer to [BiFi].
Restricting ourselves to JE = TN we define

AL(M,TN)={B¢c AA(M,TN)|nnoB € E(M,N)} (A.5)

as the subset of all T N-valued one forms covering embeddings J : M — N. The identifi-
cation of a (1,1)-type two point tensor 3 € AY(M,TN) with a one form in AL(M,TN)
is obvious. Since this set is in the inverse image of E(M, N) under the projection m 41,
ie. AL(M,TN) C i (E(M,N)), it is an open submanifold and 1tse1f a (Fréchet) vector
biundle with fibre .A1 Y(M,TN) at J.

The bundle AL(M,TN) can be equipped with a fibre metric as follows:

Let m be a Riemannian metric on M and { E;,..., E, } a coresponding local orthonormal
frame on TM. With (, ) for the metric on N we deﬁne the product

M(.,.) : AY(M,TN) x AYM,TN) — C®(M, R)

M(ﬁl,ﬂz Z(ﬂl(E ), 32(E ))

(A.6).

This definition is frame independent [Mat] Since M is compact M(B1,5:2) can be inte-
grated, what yields a Riemannian structure on AL(M,TN), given by

[ M(662) (A7), ‘
M
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where u is the Riemannian volume form accompanyiring the metric m. Obviously (A.7) isis
only meaningful for pairs (8;, ;) which cover the samm=e embedding, i.e. 1nf8; = tnf2 = J.
Finally we observe that for the special case N = 2R " the bundle AL(M,TN) beoomese

trivial, i.e.

AIE(M,TR") — E(M,B"’ . AI(A'I,R") (.4.8) |

Appendix B : The Laplace operator on M anad the related Neumann problerm:

Via pull back by an embedding J € E(M,R") the scalar product (, ) on N determines a =
Riemannian structure on M given by

m(JYX,Y):=(dJ(X),dJ(Y)} = VX,Y e (TM) (B.1). .

Denoting by V the coresponding Levi-Civita conmnection, the exterior derivative € : -
C®(M,R") — A (M,R") is defined by

dF(X) = Vxf ¥ XU £ I(TM) (B2).

Let { E1,..., E, } be alocal frame on TM which is orzthonormal with respect to m(J), the.-
co-differential operator § : A'(M,R") — C®(M.E"™" ) becomes

= - zr:(VEkv)(ﬁ;c) - Zd (HE:S WEr) — 7(VE, Ek)) (B3).

The operator é explicitly depends on the metric m J 7. but not on the choice of the frame
[Mat]. In particular if ¥ = dJ one has with S(J) for - zhe second fundamental form of ihe -

embedded manifold J(M) C R"

§(dJ) = — Y S(Ji{EE:. Ex) (BA).
k=1

since d(dJ(X))(Y) = dJ(VyX)+S(J)X,Y) for all 25.Y € I'(TM). The field S(J)(X,¥)
is normal to J(M) subsetlR™ and vanishs for teh spee=cial case of dimM = n. Considering .
furthermore y = AjodJ, with Ay : J(M) — Hom: HR ™) we get as

5(Ajod)) = - id(A HAI(Ee i d2T(Ee)) + A (8(dT)) (B3).
k=1

The first term on the right hand side coincides wwith the divergence Div Ay, taken.
with respect to restriction of the metric (,)| on IT.7{M} C TIR"™. This is clear sincre
(J7Y)*m(J) = (,)|sm) by construction and hence &.J.”{ E;) determines a (local) orthoner-
mal frame on J(M). ' )
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In an appropriate Sobolev extension of C®°(M,R"™) the operators d and § are adjoint to
each other up to boundary terms via Stoke’s theorem

/ ErDyuD) = [ M) ) + [ .y u) (B.6),
M M oM

with M given as in (A.6) accordingly, v € AY(M,R") and L € C®(M,R"™).

For the Laplace operator, acting on zero forms on M, we set
A:=46d : C°(M,R") — C*(M,R") (B.7)
and consider the following two subspaces of C*(M,R") :
! 3
C3=(M, R") = {K € C=04,R") | [ Ku())=0)
M
CR¥(M,R"):={keCs>(M,R")|dk(N) =0}

(BS8).

Then the existence and uniqueness theorem [Hor] concerning the Neumann problem
“Ak =K and  Tdk(N) = 0 ' (B.9)

shows that the operator A is invertible for _any k € CP(M,R"). Since the solution of
that problem becomes unique by fixing an'additive constant, the Laplac1an acts as an
isomorphism A : CP(M,R") —» C§°(M,R"). Then for « := d(A™1K) the following is

obvious :

Proposition B.1
The problem to find a one form « € A'(M,R") obeying

b = K , de=0 and kWN)=0 (B.10)

has a unique solution, provided that K € C§°(M,R™).

Let us further remark that the range of A, i.e. the space C?(M,R"), admits some base
of eigen-maps of A implying a Fourier expansion of any k € CR(M,R™), which is or-
thonormal with respect to the L2-structure B(J).

The metric B, introduced in section 5, defines a scalar product on C§°(M, R ™), cf. (5.5),
as well as on AY(M,R"), cf. (5.6). With respect to the later representation of B we
observe, however, that the map

b: A\ M,R") — R

o [ Madun (51D
prrtot S Mrrrman o Do - 2T

has as its kernel the space of all one forms, which are co-exact, i.e. obey §v = 0, and vanish
in normal direction (y(A') = 0). The solution theorem of the Neumann problem (B.9) then
shows, that the kernel of b becomes {0} if one restricts A'(M, R™) to the subsets of those

one forms, which obey (B.10).
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