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: _ Abstract
We give a necessary alternation condition for uni

que local best approximation

from Sy, i, the set of splines of degree m with k free l;mots. This result is related to
a conjecture of L.L. Schumaker. Moreover, we give a characterization of functions

from the interior of the strong unicity set for S}n’k,

‘the set of splines of degree m

with k free simple knots, and show that this set is dense in the unicity set. Then
we give a general characterization of suns for strong unicity and show that 57171,1:

is a set of this type, although it is not a sun.
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Introduction

Best uniform approximation by Sk, the set of splines of degree m with k free knots, is a

highly nonlinear problem. In this paper we investigate uniqueness problems in connection

with the structure of Sy, x and of general nonlinear famili‘es.

In Section 1 we give a necessary alternation condition f?r unique local best approximations

from S, x (Theorem 1.1). Schumaker [21] conjectured t!hat for each function f in Cl[a,b],

there exists a best approximation sy from S;x such th%at f — sy has at least m + 2k + 2
alternating extreme points. Later in [22], he gave a coun!terexample. Our result shows that
Schumaker’s conjecture holds for the case when f has a%ﬁnique (local) best approximation
with k simple knots (Corollary 1.2). |

In [15] we gave an alternation characterization of stro?ngly unique best approximations in
S}n’k, the set of splines of degree m with k free knots. By abplying this result and Theorem 1.1
we show that the strong unicity set is a dense subset of ti}é unicity set for S,ln,k (Theorem 1.5).
Moreover, we give an alternation characterization of the functions from.the interior of the
strong unicity set for S} , (Theorem 1.4).

In Section 2 we investigate the structure of S,ln'k. The known results on the structure of
Smkand S }n’ . are negative. These sets are not suns; local and global best approximations are
not the same; and best approximations cannot be characterized by alternation properties for
the linear tangent space — in contrast e.g. to rational apprioximation (see e.g. Schumaker [21],
Braess [3], [4]). We show that all thése properties hold 1f we consider the class of stfongly
unique best approximations from S} , (m > 2). In particula,r, Sp.x is a sun for strong
unicity, although it is not a sun. In this context we give a result on érbitrary nonlinear
families: A nonlinear family is a sun for strong unicity if z;‘md only if local and global strongly
unique best approximations coincide, respectively strongﬁy unique best approximations can
be characterized by alternation properties for the linear tangent space (Theorem 2.2). We
finally note that the set S,ln,k which plays an important role in our investigations is a dense

open subset of S, . Some of the results in this paper were announced in (14].
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1. Splines with Free Knots

The space of all r-times continously differentable real-valued functions on an interval [a,}]
is denoted by C"[a,b). Let points @ = 79 < 71 < -+- < 3|:, < Zr41 = b and integers m > 1,
1<m;<m+1,i=1,...,r, be given. We denote byS,, (;i::f,:‘r) the space of polynomial
splines of degree m with r fixed knots z1,...,z, of mulitiplicities my, ..., My, and by Sy &
the set of polynomial splines of degree m with k fre«ja (multiple) knots, where £ > 1
(see e.g. Braess [4], Niirnberger [16], Schumaker [23]). Ij{ere we use the conveﬁtion that a
Sp]ine has a knot of multiplicity m + 1 if for this spline no continuity is required at the knot.
We investigate best approximation in the uniform norm x||h|| = sup [h(t)] (h € C[a,b]). A
function sy € Sy, is called uniq.ue local best approxiimatioxtleglf’ b,]f € Cla,b] from S, x if
there exists an ¢ > 0 such that for all s € U(sg,e) = {s € Smi | ||s— sgll < €}, s # 85, we
have

W —sll > Ilf = sl
We call points @ < ¢; < -+ < t, < b alternating ektreme points of a function h € C[a,bd] if

there exists a sign o € {—1,1} such that
0’(—1)ih(t,‘) = ”h” ,t=1,1..,p.

The number of alternating points of h on a subinterval [c,d] of [a, b] is denoted by A(h)|[ q)-

First, we give a necessary alternation condition for unique local best approximations from
Sm k. We néte that tangent methods which are applied in the description of best and strongly
unique best approximations do not work in this case (see e.g. Braess [4], Mulansky [11],

Niirnberger [15]).

Theorem 1.1 Let a function f € C|a,b] and a spline s; € Sy (%" )N CY a, b]\Sm k-1 be

TN yereyMiy

.
given, where k = Y m;. Moreover, leta < y; < -+ < Ytk < b be the knots of s; counting

=1
each knot z; (m;+ 1)-times,i=1,...,r,andlet y_, <|---<y_1<Pp=a, b=yrjr41 <
Yrsks2 <+ < Yr+k+m+1 e arbitrary points. If sy is a unique local best approzimation of f

from S, then for every interval [¥i, Yism+j] C [Y=m, Yrtkims1), J 2 1, we have

A(f- 'sf)l[ynyi+m+j] 2Jj41. (1)

Proof: Suppose that there exists an interval [yi, Yitm+;] such that

A(f - sf)l[y,',y,-+m+j] = d S]‘ ] . . (2)
{ .
|

|
l
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We will show that there exists a sequence (8,) C Sm,x such that s, # sy forall n, s, — s;
‘and ||f = sn]| < ||f — s4|, i.e. ss is not a unique local best approximation of f from Sy k-

This is done as follows. There exist unique sets T3, ..., 7y such that
E(f - sf) n [yi, yi+m+j] = U Tu

and for all g € {1,...,d =1}, t, € T, and 2,41 € Ty41, we have t, < 1,41 and

(160 = 51 (1Furr) = 51 < 0.

I ~
We choose arbitrary points ¢; < -+ < t4—; such that for all p € {1,...,d -1}, t, € T, and

1,41 € Tuy1, we have 1, < t, < t,41. First, we show that we may assume that

i>2, A(f- sf)'[y;,y.'+m+,'] = j and every interval
C .
(ypv yu+m+u)#(yiayi+m+j)’ v 2 1 - ' (3)
contains at least v points from {t,...,t;-1}.
We only consider the case j > 2, since the case j = 1 is similar and even simpler. Now,

if there exists an interval (y,, Yu4m+v) a8 in (3) with less than v points from {t;,...,t4-1},

then by definition of the sets T,, and the points ¢, we have

A(f - sf)llv;nywmw] S

Then we consider [y,,Yu+m+s] instead of [yg,y;+m+j];and go to further subintervals, if
|

necessary. This process ends after finitely many steps. Therefore, we may assume that

|
(3) holds, except that we may have ' |

A(S = 3y wismas] <lj,

ie. d < j. But, since (¥, ¥i+m+j~1) contains at least|j — 1 points from {tl,...,id-l}, it

follows that d > j which implies d = j. This shows that we may assume that (3) holds.

Next, we set

S = {s € Sm(zl’ Y z,.) |s=0on [a’b]\(yi,!/i+m+j)} .

mji +1,...!mr+l

Moreover, we define

Kn(z,t)=(t-2)T , (21)€ [a,b] X [a,b]




and denote by Ky [z1,...,2141,t] the divided difference of order I of the function z = Kyn(2,1)

with respect to the points 21,...,2141. It is well known that
§ =span{B,...,B7; 1},
where for all u € {i,.v..,i+j— 1},
B;T(t) = (‘l)m“Km[ym ceesYutm4ls t]

is the B-spline of degree m associated with the knots g, < -+ < yu4m41, and that S is a j-

dimensional weak Chebyshev subspace of C[a,b] (see e.g. Niirnberger [16], Schumaker [23]).

Now, it follows from Jones & Karlovitz [9] (see also De:utsch, Niirnberger & Singer [6]) that

i+5-1

there exists a nontrivial function s= ), a,B} €S sich that

u=t

(=1)**'s() 20, t€[tu-1,t]N|a

where tg = y; and ¢; = Yi4m+;. Obviously, we have

yblv y':l’-”ajv (4)

s(t,)=0, p=1,...,5-1.

Let any point ¢ € (%i, Yi+m+;)\{t1,. .., tj—1} be given.

It follows from (3) that the points

t,...,tj-1,t satisfy the Schoenberg-Whitney-condition with respect to the basis B{",..., B}, ;,

i.e. the determinant D (B'm Bl ) # 0 (see e.g. Niirnberger [16]). Since s # 0, it follows

tyy.ntyjm1,t

that s(t) # 0.. Therefore, it follows from (4) that

(-1)**1s(t) >0 , t€ (ty-1,t,)N]a

i.e. s changes sign at the points #,...,%;-;.

b}, p=1,...,7, (5)

We now perturb the points from {¥iy---s¥i+m+;} N (a,b) and denote the resulting points by

Yies- - -2 Yitmtje- This is done as follows. Let i

{Zpy-- s Zptq} = {Vir- -2 Yitm

such that z, < -+ < ZTpye. Let € = (£p,-..1Eptq) e

associate to each number ¢, a sign o, € {-1,1}, p =

+.i} N (a,b)

given, where ¢p,...,6p4q > 0. We

p,..-,Pp+4q. Forye {p,...,p+ q},

we count each point z, m,-times and add a further point z, + 0,¢,. Moreover, we add the

points ¥;,...,Y%i+m+; € (a,b) and denote the resulting points by i < -+ < Yitmije-

i




Then we set
t+5-1

E:a# p,e’:

u=t

where for all p € {¢,...,i+ 5 - 1},

B;’:e(t) = (_1)m+1Km[yp.,ea cesYudm41,e, t]

is the B-spline of degree m associated with knots y, . <

li_r%(yi,m ) yt'+m+j,€) = (yiv .o

< Yutmel,e. dince

s yi+m+j)

and since the B-splines B™,..., BT ._, are continuous, it follows that for all u € {s,...,i +
P t +7-1 H

m+3},
lim |B] - B[l = 0
which implies

lim ||s — .|| = 0.
e—0 :

Let a sufficiently large natural number = be given. We will

small £(" such that

1
Sp = 85 + -7;85(1.) € Smi-

First, we set

Zup =2, , v=1,...,m,+1,

Then sy can be written as

(6)

show that there exists a sufficiently

sy(t) = zb t+ Zzb“’ Km[z,,

u=0 pu=1rv=1
Moreover, s can be written as

ptg mu+l

s(t) Z Z Cuv m[zp,l,

p=p v=1
and s, can be written as

ptq

Se(t) = Z (Z cu,u, m[zu,h zy.,u’ t] + Cp.,m,,+1,e'Km [Zu,ls sy Zu.,m,n zu,e, t]) b)

w=p \vm1
where

Zue =2y +O0E, , U=D,..

Sptq.

,17 3 %uwy t] .

s Zuws B




Note, that ¢, — ¢, and
K,, [Zu,l yeers Zumys Zues t] - m[zy.,la cely Zumys Zpmutls t]
for ¢ — 0. Let p € {p,...,p+ ¢} be given. By definition we have

Km[zu15- 05 Zumys Zyert] =
Kmlzpas-- s Zumpr t] = Km[2,2,! s Zumus Zues i)

Zumy = Fue
Knlzu1,-- s Zum, 1] = Konlzu2,) -3 2u,m 0 Zues U]
~Ouéy

Now, let a sufficiently large n be given. We may choose e = (s,(p"), .. .,sg_)q) sufficiently

small and appropriate signs U,(,"), e ,a},’fq such that for all u € {p,...,p+ ¢},

1 1 |
n (C“W‘") — || = ~bum - | (7
utp ‘

We note that for all z € {p,...,p+ ¢}, Cpamp41,e(™) # 0. This follows from the fact s n) is

from the j-dimensional weak Chebyshev space

—_— m m
Se(") = span{Bi'E(,,) ge ey Bi+]-—1,€(")}

and has 7 — 1 sign changes, since s has j — 1 sign cha|nges. Heymrem =0 for some
p € {p,-..,p + ¢q}, then s n) would be from a weak lChebyshev space of dimension less
than j and would have at most j — 2 sign changes. E:’inally, it follows from (7) that for
all u € {p,...,p+ q}, the spline s, has a knot of muitiplicity m, — 1 at z, and a knot
of multiplicity one at z, + o,¢,. This implies that s,:€ Spy x for all n. Since s changes
sign at the points t1,...,t;_1, for sufficiently small ¢, tfhe spline s, changes sign at éoints
t16,-.->tj_1,¢ such that :

.
]
1

li_%|t“—t,‘,5l=0 , p=1,...,5—-1. (8)
Therefore, s, € S, has no further sign change which implies knot
(-1)"*s, ()20 , t€ [tu—testuelNlad] , p=1,...,5. (9)

Moreover, we have

Se(t) =0 , te [a’b]\(yi,sa yt+m+j,e) -‘ (10)




By the choice of the points #;,...,¢j—1 and by (8), there
o € {—1,1} such that

o(-D*(f@) =ss@) S f—ssll—¢c , t€ [tu-1,e5 s

We may assume that ¢ = 1. Then it follows from (9) an

U E {1,...,j} and t € [tu-l,s(")’ty,e(")] N [a, b},

=llf = sl < (CVHU@) —8s) < (FDAUQ)
= (D)
< |If—ssll
< Nf -4l

Then it follows from (10) that ||f — sa]| < ||f — s7]|. Fina
I |= lim =
Tim [lsg = sall = Jim —ls,c
This proves Theorem 1.1.

Schumaker [21] conjectured that for each f € C[a,}]
84 € Sm such that A(f—sf)|jas) = m+2k+2. Laterin [
following result which follows directly from Theorem 1.1

is true for unique (local) best approximations in

S,ln,k ={s€ Smi\Smki-1|shasks

Corollary 1.2 If f € Cla,b] has a unique (local) best

85 € S 4 then
A(f = 3f)jap) 2 m+ 2k -

We can compare Theorem 1.1 with known results on s
is called strongly unique best approximation of f ¢

constant Ky > 0 such that for all s € Sk

If = sll 2 If — ssll + Kslls

It was proved in Niirnberger [15] that a necessary cond

approximations is given by replacing the closed interval i

8

exists a constant ¢ > 0 and a sign

<N a,b] Cu=1,...5. ()

d (11) that for sufficiently large =,

— (1) = (-1 s im(®)
~ sa(t))
e+ ~lsiml

lly, it follows from (6) that

|=0.

, there exists a best approximation
22], he gave a counterexample. The

shows that Schumaker’s conjecture

imple knots} .

'approzimation sy from Sp, ;. with

2.

trong unicity. A function sy € Smx

= Cla,b] from Sy, i if there exists a

= sl -

tion for strongly unique local best

n (1) by the open interval.




‘Moreover, condition (1) for open intervals is a sufficient condition for strongly unique
best approximations if the knots of the best spline approximation are counted with double

multiplicity. Therefore, in the case of simple knots, the following alternation characterization

holds which we use in the subsequent investigations.

LY guenyd

Theorem 1.3 Let f € C[a,b], m > 2 and s5 € Sm | 1

Moreover, let a < y1 < -+ < yar < b be the knots of

*)\Sm k-1 be given.

s¢, counting each knot twice, and

let yop < ++- < Y-1 < Y = @, b = yor+1 < Y242 < o0 < Y2h4mti- Then the following

statements are equivalent:
(i) sy is a strongly unique best approzimation of f from
(ii) For every interval (i, Ym+i+i) C (Y=ms Y2ktm+1), J 2

A(f - 3f)|(y£,yi+m+j) 2

It was shown by Braess [3] that best approximations fr¢
alternation properties. A first alternation characterization

is given by Theorem 1.3. Next, we give a further result o

SUY(Smx) = {f € Cla,b] | f hasastrongly u

sy from Sy, x and

" The interior of a set is briefly denoted by int. |

S -

> 1, we have

<L

+1.

om Sy, x cannot be characterized by
of a subclass of best approximations

f this type. We define the set

nique best approximation

Sf € S;z,k} .

Theorem 1.4 For m > 2 the following statements are equivalent:

i

(i) f € int SUN(Smk)-

(ii) There ezists a function sy € Sp, (’i’,::”‘f") such that,

)

A(f ~ 8 )y = 2k + m + 2 and

A(f - Sf)l[xp’zp+q+l] < 29+ m+ 2 for every interva'l [zp,zp+q+1];cﬁ[a,b], g>0.

Proof. (ii)=>(i). Suppose that (ii) holds, but (i) fails. Si
shows that the condition in Theorem 1.3 is satisfied,
approximation of f from Sy x. Since (i) fails, there exi
that for all n, f, € SUY(Smx)- It follows from Schumaker
spline s, € Ps,, ,(fn)NCla,b]. Since by Niirnberger [17] ¢

nce (i) holds, a sifnple computation
i.e. sy is a strongly unique best
sts a sequence (fy) in Cla,b] such
- [21] that for each n, there exists a

he metric projection Ps, , is upper




-3

semicontinuous at f and Ps,, ,(f) = {s7}, we have sp — s;. We denote by z; < -+ < T

(respectively T30 < --- < Zk,n) the knots of sy (respectively s, ).

Since s, — sy, it follows that

Tin > T , t= 1,...,k.

Let a natural number n be given. Since s, € Ps,, ,(fs), it follows from Braess (3] that there

exists an interval{Z,, n, Zpn+gn+1,n] C [@,0]; gn > 0, such that

A(fﬂ. - sﬂ)'[rpnmvzpn-l—qn-}-l,n] Z m '+ 2qn + 2 ) (12)

where T, = @ and Zg41,n = b.

By going to a subsequence, we may assume that for all n| p, = p and ¢, = q.

Case 1. [Zpn, Tptot1n] # [a,0]

By taking limits, it follows from (12) that
A(f - s-f)![‘”pvxp#qﬂl 2 m+2¢+2

which contradicts (ii).

Case 2. [zpn, Tptet1n] = [a, 0]
In this case, v »
A( fa -sﬂ)l[a,b] >m+2k4 2. (13)

We denote by '

4<Yn< < Yokn <

the knots of s,, counting each knot twice and choose arbitrary points
Yo < < Y10 < Yon =@

i
and g
b= yokt1n < Y2h42n < - < y'|2k+m+1,n .

Since s, is not a strongly unique best approximation of fi from Sy, , it follows from Theorem

1.3 that there exists (¥i,.n,Yin+mtinm) C (Yomms> Y2ktm+in)y J 2 1, such that

A(f"' - Sn)l(yfn."Yy‘n+m+jn,ﬂ) < j + 1' (14)

10




Again by going to a subsequence, we may assume that for

computation shows that by (13) and (14),

A(fn - sn)l[a,y."n] 2m+ (Z -

or i

all n, 4, = 7 and j, = j. A simple

1)+ 2 | (15)

Alfn = 50y msmt] 2 ™+ 2K = (i;;+ m+j)+2. (16)

There exist indices ¢ and v such that y;, = 2, and y,-.‘:_m.,.j,,, = Z, . Since the knots y; ,
i

are double knots, it follows from (15) and (16) that |

Alfa = sn)lfazyn] 2 M+ 2w 1) +2

or
A(fn = $a)l[zy,n 9] 2 T+ 2k -

By taking limits, it follows that
A(f = 8 )[az,] 2 M+ 2(k —

or

v)+2.

1) +2

A(f = 3 )z, gy 2 m+2(k—v) +2

which contradicts (ii). -

(i)=>(ii). Suppose that (i) hold, but (ii) fails. Since

f € SUYSmyx), it follows from

Theorem 1.3 that for the strongly unique approximation sy € Spm x of f we have

A(f = sp)l[ap) 2 m + 2% 4

2. (17)

Since (ii) fails, there exists an interval [z, zp+q+1]§[a,b] such that

A(f = 3 zpzprqn] 2247

Then we may choose m + 2k + 2 alternating extreme poi

f — sy such that [z, 2p4441] contajns at least m+2¢+2p

We will show that there exists a sequence (f,) in Cla,b] ¢

E(fn—slx)-:Mk.

11

n+2. (18)

nts a <t < - < tpp2ks2 < b of
oints from M := {t1,...,tm+2k42}-

~onverging to f such that for all n,




Let (V,) be a neighborhood basis of M. For each n, there

exists a function h, € C[a,b] such

that

ha(t) = 1 , ifteM

ha(t) = 1—% Cifte [a,b\V,
and

1—-71;<h,,(t)<1 , fte V,\M.

Moreover, for each n, we set f, = hn(f — 55) + s5. Then
property. Now, it follows from Schumaker [21] that s; €

the choice of the points t1,...,tm+2k+2 We have
A(fﬂ - sf)'[a,:z:p) < 2p+

or
A(fn = 3l (zproprt] <2k =P

Therefore, it follows from Theorem 1.3 that for all =,

approximation of f, from Sp k. This proves Theorem 1.4.

1 the sequence (f,) has the desired
= Ps,, . (fn) for all n. Moreover by

[u—

-q)+1.

sy is not a strongly unique best

Condition (ii) in Theorem 1.3 was developed by Schumaker [21], and it was shown by

several authors (Schumaker [21], Arndt [1], Schaback [20]) that this condition implies that

sy is a unique respectively strongly unique best approxi

;mation of f from Sy, x. A class of

functions which satisfy this condition are functions f € C!""“[a,b] with f(m+1)(t) # 0 for all
t € (a,b). (see Johnson (8], Schumaker [21], Braess (3], Schaback [20)).

By applying Theorem 1.1 and Theorem 1.3 we obtain

of unique and strongly unique best approximation. For t

UY(Smi) = {f€Cla,b}| f has a unique

best approximation s; from
Theorem 1.5 For m > 2, SUY(Smk) is a dense subset

Proof: Let a function f € U'(Sm k) be given. We wil
(fn) in SUY(Sm k) which converges to f. Let sy € S (

12

ta density result on the relationship’

:his we define the set

i
f

Sm,k and sy € S,ln’k} .

of UY(Sm.k)-

show that there exists a sequence’

L1,y

1"_'_":’1”") \Sm k-1 be the unique best




approximation of f from Sp . By using the notation of Theorem 1.1, it follows from this

result that for every interval [, Yi4m+;] C [Y-m, Y2k+m41], J > 1, we have
A(f - 3f)|[!lh!1-‘+m+j] >J3#+1. (19)

We set
Z={z1,...y2p} = {z1,.. ., 2k} N E(f — 35).

Let (V,,) be an open neighborhood basis of Z. For each n, we define

hat) = { sgn(f(t) = ss(0)- If — syl |, ifteVa

-

f(t) —ss(2) , ifte€[a,b\Vy
and extend h, linearly on V, _1\—17,,{ Then the sequence (h,) C C[a,b] converges to f — sy
which implies that f, = h, + s; converges to f. Moreover, it follows from (19) and the
definition of f, — sy = hn that for every interval (Yis Yiltm+3) C (Y=msY2k4m+1), J 2 1, we
have
A(fn - 3f)|(y,-,y,-+m+,-) 27+ 1.

Then by Theorem 1.3, (f,) C SUY(Sm,x). This proves Theorem 1.5.
2. The Structure of Nonlinear Sets

In this section we investigate the structure of nonlinear sets in connection with strong unicity
and give applications to splines with free knots and rational functions.

We denote by C(T') the space of all continuous real-valued functions on a compact space
T, endowed with the uniform norm |k|| = fgglh(tﬂ Let V be an open subset of R".

Moreover, let A : V — C(T) be given such that the mapping
(t,z) — (_——BA(“)(‘) ———aA(z)(t)) | (Lz)eTxV,

0z, ' Oz,
is continuous, and let G = A(V). For g = A(Z) € G, we denote by

TG(Z) = span { 6:94;515) ey aglz(j) }

the tangent space of §. We consider best uniform approximation of functions in C(T) by
elements of G. A function g; € G is called strongly unique best approximation of

f € C(T) from G if there exists a constant Ky > 0 such/that forall g € G,

If—gll>11f - gsll + Ksllg — 95l

13
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Moreover, g¢ is called strongly unique local best approximation of f from G if there

exists € > 0 and Ky, > 0 such that for all
9€Ulgpe)=1{9€G|llg—g

Nf—all > 1If — 951l + Ky.llg

We now introduce the notation of a sun for strong unicit;

Definition 2.1 A4 subset G of G is called a sun for tc

satisf ies the following property: if g5 € Gisa strongly u

f” < 5} ’
- g5l
V.

) strong unicity if each f € C(T)

nique best approzimation of f from

G, then gy is a strongly unique best approzimation of f, = gs + p(f — g5) from G for all

pu2>0.

Next, we give a characterization of suns for strong un

icity.

Theorem 2.2 Let G be a subset of G such that dim TG(z;) = N, if g5 = A(zy) € G is

a strongly unique best approzimation of f € C(T)\G.

equivalent: .

(i) G is a sun for strong unicity.

Then the following statements are

(ii) For every f € C(T), g5 € G is a strongly unique best approzimation of f from G, tf g5

is a strongly unique local best approzimation of f fhom G.

(iii) For every f € C(T), g5 = A(zy5) € G is a strongly uinique best approzimation of f from

G if and only if 0 is a strongly unique local best appiro:cimation of f — g5 from TG(zy)

and dimTG(z5) = N.

Proof. (i)=(ii). Suppose that (i) holds and let g5 €

l§’ be a strongly unique local best

{
approximation of f € C(T) from G, i.e. there exist ¢ > 0 and K. > 0 such that for all

g € U(gs,¢),
Nf—gll > IIf —gsll + Kyscllg

— gglf - (20)

First, we shows that for all u with 0 < 2 < 1, gy is a strongly unique local best approximation

of fu = g5+ u(f — gy) from G.

Let g € U(gy,¢) be given. Then by (20) and 0 < g < 1, it follows that

Wfu—gll 2 Nf=gll=If = full
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> (1f—gsll+ Kse-llg = gsll|= I f = full
Nf—gsll = (@ = If —gsll + Kge - llg — 95l
= | fu —gsll+ Kye - llg — g5l] - (21)

i

Next, we show that for all g with 0 < g < min {;"Ti—;n,l}, gs is a strongly unique best

approximation of f, from G

Let u as above be given. If g € G\U(gy,¢), then

Nfu=gll > llg—gsll =l fu— 95l
> %-H%-Hg—yﬂl*ﬂlf—gfll

1
2ullf = gsll + 5 - llg — 951l = pll f ~ gl

v

1
pllf = g5l + 3 lg — g5l

- 1
= lfu—9sll+5-llg - gsll- (22)
If we set Ky = min {Kj.,3}, then it follows from (21) and (22) that for all g € G,
W fu—gll 2 1 fu — 951l + Ksllg|— 9l - - (23)

It follows from (23) and (i) that gs is a strongly unique best approximation of f = gy +
2(fu — 95) from G. This shows that (i)=(ii).

(ii)=(iii). Suppose that (ii) holds. We first note that by Satz 4.2.2 in Hettich & Zencke [7],
g5 = A(zy) € Gisa strongly unique local best apprommatxon with respect to the parameter
of f € C(T) (i.e. there exist ¢ > 0 and Kje > 0such that'for allz € U(zy,¢), ||f-A(z)ll 2
|f— A(zg)|| + K|z — zg||) if and only if dim TG(zy) ——; N and 0 is a strongly unique best
approximation of f — g5 from TG(zy).

Moreover, since A : V — C(T') is Fréchet differentable, it follows from the mean value theérem
and the inverse function theorem that if dim TG(zy5) = N , then gy is strongly unique local
best approximation of f from G if and only if g is a stronély unique local best approximation
with respect to the parameter of f from G. By using the!se statements and our assumption,
it is easy to see that (ii)=>(iii).’

(iii)=(i). Suppose that (iii) holds and let g; = A(zy) € G be a strongly unique best
approximation of f € C(T) from G. Then it follows from (iii) that 0 is a strongly unique
best approximation of f, — g5 = p(f — g5) from TG(zy) for all p > 0 and dim TG(zs)=N
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This implies that g; is a strongly unique best approximation of fu from G. This proves

Theorem 2.2.

We note that in [14], statement (iii) in Theorem 2.2 was formulated incorrectly, since the

condition that dim TG(zs) = N was omitted.

Remark 2.3 The proof of Theorem 2.2 shows that the implication (i)=(ii) of Theorem 2.2

holds for arbitrary sets G in a normed linear space.

By using Theorem 1.11 on p. 55 in Braess [4], it follows from the proof of Theorem 2.2

that Theorem 2.2 holds for C1-manifolds G in a normed Iifnea,r space by replacing the tangent
. C
space by the tangent cone and omitting the assumptions on the dimension of the tangent

|

It is well known that if we replace in the statements o:f Theorem 2.2 strongly unique best

spaces.

. e ol . . .
approximations by best approximations and if we omit the assumptions on the dimension of
|
the tangent spaces, then (i) and (ii) are equivalent, but (i) and (iii) are not equivalent (see

Braess [4]). |

4

Exarhples 2.4 It follows from Theorem 1.3 in this paper @nd the characterization of strongly
unique best spline approximations with fixed knots in Nifirnberger [12] (see also Niirnberger
et al. [18]) that (iii) in Theorem 2.2 holds for G= Sk arffld G = Sm k- (The tangent space of
a spline in S, ; is §m (*}773*).) Therefore, by Theorem 2.2, S1  is a sun for strong unicity.
On the other hand, it is well known that S} , is not a sun (see e.g. Braess [4D.

A further prototype of a sun for strong unicity is the set G = R, of rational functions.

This follows from the well-known alternation characterization of strongly unique best rational

approximations. Moreover, G = R, is also a sun (see e.g. Braess [3] and Meinardus [10]).
In addition, it follows from Theorem 3 in Barrar & Lcs)eb [2] that the subset G of normal
functions (i.e. functions whose tangent space has ma.ximial dimeﬁsion) of a set G satisfying
|
the local and global Haar condition is a sun for strong unicity. Moreover, the set G is also a

sun (see e.g. Braess [3] and Meinardus [10]).
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