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1. Introduction

Minimally interaeting Yang-Mills and Dirae fileldswith homogeneous bag boundary
eonditions have been studied in [1]and [2].In this p~per we extend the results on the finite
time existenee and uniqueness of solutions for inhotnogeneous boundary data. In this way
we get a eomplete deseription of solutions of the evdlution equations for minimally eoupled
Yang-Mills and Dirae fields in bounded domains. I

We eonsider the Yang-Mills system with a eompaet strueture group G on a spatially
bounded region IR x M of the spaee-time, where iM is a eontraetible bounded domain in
IR3. The 3+1 splitting of the spaee-time yields a splitting of the Yang-Mills potential All

into its spatial eomponent A (treated as a time dependent veetor field on M with values
in the strueture algebra 0)) and the time eomponenit A0. This leads to a representation of
the field strength FILI/ in terms of the "eleetric" eomlponent E = Eidxi and the "magnetic"
field B = Bidxi, where

Ei = FOi and Bi I ~EijkFjk. (1.1)

The Dirae field is deseribed by time dependent 4-spinors W with values in the veetor spaee
VG of the fundamental representation of G. Let

(1.2)

be the free Dirae operator in M C lR3. The minimally eoupled Yang-Mills and Dirae
equations split into the evolution equations

8tA = E + gradAO - [Ao,.14.] ,
8tE = -curIE - [Ax, B] + [AO, E] + J ,
8tw = Vw - (lOrk Ak + A0)w ,

and the eonstraint equation
div E + [A; E] = JO

•

(1.3)
(1.4)
(1.5)

(1.6)

L

With {Ta} denoting a basis of 0),

B = eurlA + .lAx, A] , JO = wt (I (9 Ta)WTa , Jk = wt (T°rk (9 Ta)WTa . (1.7)

The strategy for investigating the system (1.3)1 through (1.6) is as follows. Observing
that the scalar potential A° is not fixed by the eqfations, we ean eliminate it by means
of an appropriate gauge fixing. Then we study the evolution equations in the spaee of the
Cauehy data I

(A, E, w) E P = H2(M, 0)) x H1(MI, 0)) x H2(M, VG (9 a:4) (1.8)

where Hk (iVI, V) is the Sobolev spaee of fields (eit~er O)-valuedvector fields or VG-valued
spinors) which are square integrable together with their derivatives up to order k, [3].
Finally weshow that the constraint (1.6) is preserJed under the classieal evolution.
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(1.9)

(1.10)

(1.11)

Since the domain IR x M is contractible, we need not be concerned about the topology
of the principal bundle of the theory. Gauge transformations can be described by maps
~ : IR x M -+ G. The corresponding right action on the fields (A °,A, E, w) is given by

AO ~ AO = ~-1 AO~ + ~-18t~ ,

A ~ A = ~-lA~ + ~-lgrad~, E ~ E = ~-lE~, W ~ ~ = ~-lW .

For the scalar potential A° the following gauge fixing can be established :

Theorem 1.
a) For each E E H1(M, C!J) one can chose AO E H2(M, C!J) as the unique solution of the

Neumann problem

ß AO = -div E , n(grad AO) = -nE with 1M AO d3x = 0 .

Here n denotes the normal component on the boundary 8M. For this gauge fixing
there exists a constant C > 0 such that IIAoIIH2 ~ CIIEIIHl. If the fields (A, E, w) E P
satisfy the constraint equation (1.6), then AO E H3(M, C!J).

b) If a curve of configurations (A(t), E(t), w(t)) E P satisfies the constraint (1.6) and
AO(t) is a differentiable curve in H3(M, C!J), then there exists a maximal T > 0 and a
unique gauge transformation ~ such that :
i) ~(O, x) = id for all x E M,
ii) for all t E (-T, T) the scalar potential AO, determined from AO by (1.9), satisfies

the gauge condition ßAo = -div E, n(gradAO) = -nE and IM AO d3x = o.
Moreover (A(t), E(t), ~(t)), obtained by the gauge transformation (1.10), is a curve of
configurations in H2(M, C!J)x H1(M, C!J)x H2(M, VG@a;4), which satisfy the constraint
equation (1.6).

In order to describe the boundary conditions we introduce the following notation.
For every vector field X on M, we denote by nX and tX the normal and the tangential
component of X on 8M, respectively. For the spinor fields we set

(1.12)

where nk is the k-component of the outward pointing unit normal vector of 8M in IR 3.

The boundary conditions considered here consist of specifying t( curl A), f(W) and f('DW),
where 'D is the Dirac operator (1.2). The existence and uniqueness result of [2] extends to
the case of these inhomogeneous boundary conditions as follows :

Theorem 2.
a) Let a differentiable curve of boundary data

(A(.), fL(.), v(.)) : [0, To) --t H1/2(8M, C!J)x H3/2(8M, vG@a;4) x H1/2(8M, vG@a;4)
(1.13)
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be given such that

(i-lnk + Id)J.L = 0 and (i"/nk + Id)v = 0 . (1.14)

For every (Ao, Eo, Wo) E H2(M, 0)) x H1(M, 0)9x H2(M, Ve Q9(E4) satisfying
I

t(curlAo) = -\(0) , r(wo) = J.L(O) and r(vwo) = v(O) (1.15)

there exists a unique classical solution

(1.16)

of the evolution equations (1.3) through (1.5), defined for t E [0,T) with a maximal
T E (0, To], which satisfies the initial conditions A(O) = Ao, E(O) = Eo and w(O) = Wo,
the boundary conditions

t(curlA(t)) = -\(t) , r(w) = J.L(t) an(l r(Vw) = v(t) 'Vt E [0,T). (1.17)

b) Iftheinitialcondition (Ao,Eo, Wo) E H2(M,0))xH1(M,0))xH2(M, VeQ9(E4) satisfies
the constraint equation (1.6), then

div E(t) + [A(t); E(t)l] - JO(t) = 0 (1.18)

for all t in the interval [0,T) of the existence o!fthe dynamics.

By the trace theorem, [3]' we conclude from A E H2(M, 0)) and W E H2(M, Ve @ (E4)
that t(curlA) E H1/2(fJM,0)) and that r(w) E H3/2(fJM, Ve Q9(E4) and r(Vw) E
H1/2(fJM, Ve Q9(E4). This implies that the choice of boundary eonditions (1.17) is eon-
sistent, provided eondition (1.14) is satisfied. Our result gives a eomplete (loeal in time)
eharacterisation of solutions of the Yang-Mills and Dirae equations (1.3) through (1.6) in
the spaee P speeified in (1.8).

In [2]we used the theory of Lipsehitz perturbat1ions of strongly continuous semigroups
to obtain the existenee and uniqueness theorems for the evolution equations under the
homogeneous boundary eonditions

nE=O, nA=O , teurlA=O , rw=o , rDw=o. (1.19)

In the present paper we observe that our gauge eondlition enables us to drop the restrietions
on nA and nEo Moreover, using the result of [4] allows for less regular perturbations and
makes it possible to eonsider also inhomogeneous bbundary eonditions. It should be noted
that the invariant subspaee determined by the bouhdary eonditions (1.19) is eontained in
a bigger invariant subspaee characterized the extra conditions nA = 0 and nE = 0 on the
boundary.

The proof of Theorem 1will be given in section2. In section 3 we study the influenee
of the boundary conditions imposed by Theorem 12and the linearized Cauchy problem
corresponding to (1.3) through (1.5). In seetion 4 we state a generalization of Segal's
theorem on non-linear semigroups in the singular case, cf. [4]. This implies the proof of
Theorem 2.
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2. Proof of Theorem 1.

The proof of this result, as weH as some arguments in the context of Theorem 2 rely
on a special version of the Helmholtz decomposition. The foHowing has been shown in [5] :
Theorem 3.

Let M be a simply connected bounded domain in IR3. A vector field Y E Hk+l(M, C!J)
uniquely splits into

Y YL +yT h {yL = grad 8v with 8v E Hk+2(M, C!J) (2.1)= w ere .yT = curl Wv wlth Wv E Hk+2(M, C!J) , tWv = 0 .

The scalar function 8v is unique up to a constant, which can be chosen so that
JM 8Vd3X = O. The boundary condition on Wv implies that nyT = O. The maps

JrT : Hk(M, C!J) ~ Hk(M, C!J)

JrL : Hk(M, C!J) ~ Hk(M, C!J)

are continuous projections, and

JrT(y) = yT
JrL(y) = yL

(2.2)

(2.3)

Applying the decomposition (2.1) to the field E, determines a function BE such that
grad8E = EL. Then AO:= -8E is a unique solution ofthe boundary value problem

D. AO = -div E , n(grad AO) = -nE and 1M AOd3x = 0 . (2.4)

From the estimate (2.3) we infer that

1£ (A, E, '11) satisfy the constraint equation (1.6), we can estimate

Ildiv EIIHI ::; C(IIAIIH21IEIIHI + IlwIIJ-J2) .
With (2.5) this implies that AO E H3(M, C!J). This proves part a) of Theorem 1.

In view of the transformation law

(2.5)

(2.6)

(2.7)

we have to find a gauge transformation cI> : [0, T) -4 H3(M, G) which satisfies the initial
value problem

cI>(0) = id and ßt cI>(t) = 9(cI>(t), A°(t), E (t)) .

5
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Here id : M -,+ G maps all x E M to the identity in G and

9 (<I>,AO, E) = -A°<I> + <I>GE
where ßGE = -div (<I>-1E<I» and n~grad GE) = -n( <I>-1E<I» . (2.9)

Considering the structure group G as matrix grouJ, <I>E H3(M, G) becomes a map from
M to the space gl(k) of k x k matrices. Since Mahd Gare compact, there exists a finite
cover of open sets Ui of H3(M, G) in H3(M, gl(k)) such that

Therefore

11<I>-1- (1;-11IH3= 11<I>-1(1;- <I»(1;-111~[3:S C 11(1;- <I>IIH3 and

Iigrad (<I>-1- (1;-1) IIH2 :S C 11(1;- <I>11J3 ,

(2.10)

(2.11)

where 1I<I>-(1;IIH3is understood as the distance in H3(M, gl(k)), and C depends on 11<I>-11IH3
1I(1;-1I1H3.

As far as the initial value problem (2.8) is concerned, we fix (AO, E) E H3(M,0]) x
H1(M,0]) and consider the map 9(<I>,AO,E) as almap from H3(M,G) to H3(M,0]). In
order to show that 9 has a fiow, we have to prove thaJt it is Lipschitz. We can do so, provided
that the fields (A, E, w) satisfy the constraint equ~tion (1.6). For the gauge transformed
field E the constraint equation reads I

div (<I>-1E<I» = (grad <I>-1). E<I>+ <I>-1(-[A; E~ + JO)<I>+ (<I>-1E) . grad <I>. (2.12)

Using (2.11), the estimate (2.6) yields

Ildiv (<I>-1E<I>- (1;-1E(1;) IIHl :S IIdiv (( <I>-1- (1;-])E<I» IIHl + jldiv (1;-1 E(1; - <I»)IIHl

:S CII<I>- (1;IIH3(1IAIIH2I1EI1Hl+ IIwllH2+ 211EIIH1) , (2.13)

where C = C(II<I>IIH3,11<I>-1I1H3,11(1;IIH3,11(1;-1I1H3}.Using (2.3), the Lipschitz estimate
(2.13) for div(<I>-lE<I» implies a Lipschitz estimate for the term <I>8E of 9. Using fur-

thermore (2.5) to estimate the term IIAO(<I>- (1;)IIJ3 we obtain

119(<I>,AO, E) - 9 (1;, AO, E) IIH3 :S C11<I>- (1;IIH3 (2.14)

where C = C(II<I>-11IH3,1I<I>IIH3,11~IIH3,1I~-11IH3, IIAIIH2, IIEIIH1, Ilwll;'[2) .
I

This proves that 9 (., A0, E) is (locally) Lipschitz. Therefore the Picard proof on the exis-
tence and uniqueness of solutions of initial value pr~blems, cf. [6]' applies to the case under
consideration. This proves that there exists T > 0 kuch that the gauge fixing (2.4) can be
achieved by a gauge transformation I

<I>(t) E Cl ([-T, T), H3(M, G)) , (2.15)
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provided that the fields (AO(t), A(t), E(t), w(t)) are of Sobolev dass H3(M,0)) x
H2(M,0)) x H1(M, 0)) x H2(M, Va Q9(E4) and satisfy the constraint equation (1.6). The
continuity of the gauge transformation (1.10) then follows from the standard estimates.

This proves Theorem 1.

3. Boundary conditions and linearisation.
Let A(t) be a differentiable curve in H1j2(ßM,0)). Then there exists a differentiable

curve a(t) E H2(ßM, 0)) of solutions of the boundary value problem

.6.a(t) = 0 and t(curla(t)) = A(t) Vt E [0,To) . (3.1)

This is a direct consequence of the solvability of a Neumann problem for vector fields on
a simply connected domain M, [5].

As far as boundary data for the Dirac field are concerned we observe that a spinor
field p on ßM can be in the range of the boundary operator r~(Id - i,knk)wl8M only if

(3.2)

Hence (1.14) give necessary conditions on the existence on an extension far the boundary
data (M, v). By means of the trace theorem [7] for each differentiable curve (M( t), v( t)) in
H3j2(ßM, VaQ9(E4) x H1j2(ßM, VaQ9(E4) there exist respective extensions 'lh(t) and 'l/J2(t)
in H2(M, Va Q9(E4) such that

and (:3.3)

Using this, it is an easy algebraic construction to find for given M(t) and v(t) satisfying
(3.2) an extension 'l/J(t) in H2(M, Va Q9(E4) such that

r('l/J(t)) = M(t) and r(D'l/J(t)) = v(t) . (3.4)

With the fields a and 'l/J, constructed above, as a background we consider the £leIds

A := (A - a) E H2(M, 0)) and (3.5)

(3.6)

as the dynamical degree of freedom. By construction, these satisfy the boundary conditions
(1.15) of Theorem 2 with homogeneous boundary data. Rewriting the Yang-Mills equations
(1.3) and (1.4) in term of A and splitting (A, E) by means of the Helmholtz decomposition
(2.1) into the longitudinal and transversal components we obtain

ßtAL = EL + gradAO + ßtaL - 1l"L([AO, A + a]) ,

ßtAT = ET + ßtaT - 1l"T([AO, A + a]) ,

ßtEL = -1l"L(curlB) -1l"L([(A + a)x, B] + [AO, E] + J) ,
ßtET = -1l"T(curIB) -1l"T([(.4+ a)x,B] + [AO,E] + J) .
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The Hodge decomposition implies that curl (curL4) = 7T"T(.6.A?). Moreover .6.a = 0, and
hence ~ I ~

7T"T (curl B) = .6.F + 7T"T (curl [(A + a) x, (A + a)]) and

1fL(curIB) = 7T"L(curl[(A+a)x,(A)a)]) . (3.7)

The gauge fixing of Theorem 1 implies that EL = -grad A o. Linearising the equations
(3.6) and (1.5) in such a way that we also do not consider the affine contributions from
the background fields (a, 'ljJ) we obtain three uncoupled linear systems:

8t (~:) = (~) 8t (~~) = T ( ~~) = (_0.6. ~) (~~) 8t ~ = D~. (3.8)

I
In [1] and [2] we have shown the following : The operator T with domain

~ I AT
D(T) = {(AT, ET) E H2(M, 0)) x Hi(M, 0)) I t(curlA ) = O} (3.9)

is the infinitesimal generator of a one-parameter group of continuous transformations in
the Hilbert space I

HT = {(AT, ET) E HI(M, 0)) x L2(M, O))} . (3.10)

The (eree) Dirac operator V, considered as an ope1ator with the domain

D(D) = {~ E H2(M, Ve 129 (/)4) I r(W) = ° and r(D~) = o} (3.11)

is the infinitesimal generator of a one-parameter Jroup of continuous transformations in
the Hilbert space I

H(D) = {~ E HI(M, Ve 129 ([J4) I r(~) = o} . (3.12)

4. Proof of Theorem 2.

Using the results on the linearized dynamics given above, the coupled non-linear sys-
tem can be tackled by using the following generalisltion, [4]' of Segal's result on non-linear
semigroups in the singular case:
Theorem 5.

Let BI and B2 be Banach spaces and eXP(lS) : B2 -> B2 be a continuous one-
parameter semigroup of bounded linear operators generated by an operator S with
domain D(S) C B2• Assurne that : . I

i) FI : BI x D(S) -> BI is a map, which is continuous and locally Lipschitz with
respect to the norm

III(VI, V2)IIII = IIVIIIB1 + IIV211B2+IISV21IB2 where (VI, V2) E BI x D(S) . (4.1)

ii) F2 : BI x D(S) -> B2 is a map, whicJ is continuous and differentiable with
respect to the norm (4.1).
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iii) The following derivative K : BI x D(S) X B2 -+ B2 of F2 given by

K(VI, V2,V2):= KI(V1, V2) + K2(VI, V2,V2) (4.2)
KI(VI,V2) = DF2(VI, V2)(F1(VI, V2),0) and K2(V1, V2,V2) = DF2(V1, V2)(0,V2)

is locally Lipschitz with respect to the norm

Then, for every initial condition (V1(0), V2(0)) E BI X D(S) there exists a maximal
T > 0 such that the differential equation

(4.4)

has a unique dassical solution (VI(t), V2(t)) E BI X D(S) in the interval [0,T), satis-
fying the initial condition.

To apply this theorem to the case under consideration we set

(4 ..5)

The generator of the linear semigroup we choose to be S := T + V. The Banach space
B2 = HT X HD is normed by

~T T T . ~T T ~II(A , E , '1' )IIB2 = IIA IIHI + IIE IIL2+ 1I'1'liHl . (4.6)

In view of the equations (3.6), (3.7) and (1.5) the components F1 = ((FI)A, (F1)E)
and F2 = ((F2)A, (F2)E, (F2)w) read as

(F1)A ((AL, EL),(AT, ET, ~)) = ßtaL - 1I"L([AO, (A + a)])
~L L AT T ~ )(FdE((A , E ),(A , E , '1') =

_1I"L(curl [(A + a)x, (A + a)] + [(A + a)x, B] + [AO,E] + J)
(F2)A ((AL, EL),(AT, ET, ~)) = ßtaT - 1I"T([AO, (A + a)]) (4.7)

~L L AT T ~(F2)E((A , E ),(A., E , '1')) =

-1I"T(curl [(A+a)x,(A+a)] + [(A+a)x,B] + [AO,E] + J)
(F2)w ((AL, EL),(AT, ET, ~)) = ßt'l/J- f'0f'k(Ak + ak)~ - AO~

By assumption, the background fields a(t) and 'l/J(t) as wen as their time derivatives are
of Sobolev dass H2. By Theorem 3, the projections 1I"Land 1I"Tto the components of the
Heimholtz decomposition are continuous with respect to the Sobolev topology. The results
of [1] and [2] then imply the following :
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(A) The map F1 : BI x D(S) --10 BI is continuous an Lipschitz with respect to the norm
given by (4.1).

(B) The map F2 : BI x D(S) --10 B2 is continuous and differentiable with respect to the
norm (4.1).

(C) The norms (4.1) and (4.3) are in the case un<fter consideration equivalent to the re-
spective norm I

111 ((AL, EL), (AT, ET, ~)) 1111 = IIillH2 + IIEIIHI + 11~IIH2 (4.8)

111
~L L ~T T ~ T T 11I((A ,E ),(A ,E ,w),(a ,E ,ep)) 2= (4.9)

1II
~L L ~T T ~ 11I T T((A ,E ), (A , E , w)) 1 + Ila IIHI + IIE IIL2+ IlepllHl ,

where (aT, ET, ep) E HT X HD be an arbitrary infinitesimal variation of (AT, ET, ~).
In view of later differentiation we observe that A° is a linear functional of EL, and set

(4.10)

The respective differentials of B = curl (AT +aT)+[(IA+a), x(A+a)] and ofthe components
Jt of the matter current read I ~

81B := DB(AL, AT)((F1)A, 0) = 2[(FdAl' (A + a)J
82B := DB(AL, AT)(O, aT) = curlaT + 2 [aT x, (A + a)J (4.11)

(82J)~ := D7fT (Jt(~))( ep) = 7fT (~t ('"Y0)'k 0:9 b)ep + ept ('"Y0)'k 0:9 n)~) .

Using these notations, the differential IC1((Al, , E LLAT, ET, ;j'i») of :F2 is the sum of the
following terms

T ° ~ ° )(K1)A = - 7f ([81A, (A + a)] + [A , (F1)A]

(K1)E = - 7fT (2 curl [(F1)A x, (A + a)] + [(FdA x, B] + [(A + a) x, 81B])
- 7fT ([81AO, E] + [AO, (F1)E])

(K1)w = - )'o)'k(Fl)~ - 81Ao~

. . ~L L ~T L ~ T T )SlmI1arlywehaveforK2((A,E ),(A ,E ,w),(a"E ,ep) :

(K2)A = - 7fT ([AO, aT])
(K2)E = - 7fT (2 cur1[aT x, (A + a)] + [aT x, B] + [(A + a)x, 82B])

_ 7fT ([AO, ET] + 82J)
(K2h = - )'O)'kar~ - )'o)'k(Ak + ak)ep - AOep

10
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Lemma 6.
If Wi be finite dimensional vector spaces and * : W1 x W2 -+ W3 is an algebraic
product, then * : H1(M, W1) x H2(M, W2) -+ H1(M, W3) such that

and (4.14)

(4.19)

Proo£.
By definition of the H1-norm

The first two terms on the right hand side can be estimated by IIV111H11IV211H2
since H2(M, W2) c CO(M, W2) by the Sobolev embedding theorem. Moreover, since
H1(M, Wi) c L4(M, Wi), the third term can be estimated by IIV111H111(gradV2)IIH1. This
proves the inequality (4.14). Since VI * V2 - U1 * U2 = (VI - U1) * V2 - U1 * (U2 - V2), the
estimate (4.15) follows from the triangle inequality. Q.E.D.

To derive the Lipschitz estimate for 7C1we let (A, E, ~), (A, i;,~)E BI X D(S) and
understand

Using this we apply Lemma 6 to estimate (7C1)A in the norm (4.6) as

11 (lCdA ((AL, EL), (AT, ET, ~)) - (7C1)A ((AL, i;L), (AT, i;T, ~)) IIHl (4.18)

::; C(II(hAO - 81AoIIHl + IIA - AIIH2 + IIAo - AO11H2 + II(F1)A - (j\)AIIH1) ,

where the constant C depends on the norm in BI X D(S) of all the fields involved. \JVith
ßAo = -div EL and ß(81AO) = -div (F1)E, the estimate (2.5) implies that

IIAo - AOIIH2 ::; CIIEL - i;LIIHl and

1181Ao - 81AoliHl ::; CII(F1)E - (F1)EIIL2 .

Moreover, Property (A) above states that the nonlinearity F1 : BI X D(S) -+ BI is locally
Lipschitz. Therefore (4.18) implies that

As far as the estimate for (7C1)E is concerned we get from (4.15)

Ilcurl ([(F1)A x, (A + a)]-[(F1)A x, (A + a)]) IIL2
::;C(II(F1)A - (F1)AIIHl + IIA - AIIH2) .

11
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(4.26)

,

Similarly,

II[(A + a)x, 81B] - [(A + a)x, 81.8]IIL2 :S C(1I81B - 81.8IIHl + IIA - AIIH2), (4.22)

- - - Iwhere 81B = 2 [(FdA x, A + aJ. With Lemma 6 we ean estimate
I

1181B - 81.8I1Hl :S C(II(FdA - (F11)AIIHI + IIA - AIIH2) . (4.23)

Taking (4.19) into aeeount, similar arguments as above apply to the remaining terms of
(KdE. With the Lipsehitz property (A) of F1 we ~hen obtain

I
II(KdE((AL, EL), (AT, ET, ~)) - (K1)A((AL, EL), (AT, ET, ~)) IIL2
0; C(II(F1)A - (i\)AIIH' + 111 - ÄIIH' + 11(FljE - (j'.)EIIL' + IjE - BIIH') (4.24)

:::; Clll ((AL, EL), (AT, ET, ~)) - ((AL, EL), (Arr, ET, ~)) 1111.
The estimates for (K1)w ean be performed in the same way so that we end up with the
loeal Lipsehitz estimate

IIIKI ((AL, EL), (AT, ET, ~)) - K1 ((AL, EL), (ATI ' ET, ~)) IIIB
2 (4 25)

:S CIII((AL,EL), (AT,ET, ~)) r ((AL,EL), (AT,ET, ~))1I11 . .
The terms of K2 ean be taekled in literally the same way as we have done this for

I

K1. The eorresponding estimates are even more direet, sinee one need not use Lipsehitz
argument for the nonlinearity F1. That is, we ean teplaee IIF1 - 3\ IIB2 by

IlaT - (iTIIHl + IIET - ZTIIJ + 1I<p - <P'IIHI ,
where ever it appears. Doing so, we end up with

IIK2 ((AL, EL), (AT, ET, ~), (a, E, 1/J)) - K2 ((AL, EL), (AT, ET, ~)((i, z,;j;)) IIB2~L L ~T T ~ -L - L -T -T - __ - (4.27)
:S CIII((A ,E ),(A ,E ,w)(a,E,1/J)) - ((A ,IE ),(A ,E ,'lJ))(a,E,1/J))1111

Together with the properties (A)-(C), stated ~bove, this proves that the nonlinearity
of the theory given by (4.7) all the prerequests of Theorem 5.

This proves part a) of Theorem 2. I

The proof of part b) of Theorem 2, stating that the eonstraint equation is preserved
under the classical dynamics is given in [2]. The atgument literally applies to the ease of
inhomogeneous boundary eonditions.
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