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ABSTRACT

Finite time existence and uniqueness of solutions of the evolution equations of mini-

mally coupled Yang-Mills and Dirac system are prov
ditions. A characterization of the space of solutions
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1. Introduction

Minimally interacting Yang-Mills and Dirac fields with homogeneous bag boundary

conditions have been studied in [1] and [2]. In this p‘aper we extend the results on the finite

time existence and uniqueness of solutions for inhox‘nogeneous boundary data. In this way

we get a complete description of solutions of the evolution equations for minimally coupled
Yang-Mills and Dirac fields in bounded domains.
We consider the Yang-Mills system with a compact structure group G on a spatially

bounded region IR x M of the space-time, where M is a contractible bounded domain in
IR3. The 3+1 splitting of the space-time yields a sﬁlitting of the Yang-Mills potential A
into its spatial component A (treated as a time dependent vector field on M with values
in the structure algebra @) and the time component A°. This leads to a representation of

the field strength F),, in terms of the ”electric” com‘ponent E = E;dz* and the "magnetic”
field B = B;dx*, where -

E; = Fy; and B; = %fiijjk . (1.1)

The Dirac field is described by time dependent 4-spinors ¥ with values in the vector space
Vg of the fundamental representation of G. Let

D = —7°%(v*8; +im) (1.2)

be the free Dirac operator in M C IR®. The minimally coupled Yang-Mills and Dirac
equations split into the evolution equations

O A=F+grad A° - [A° 4], (1.3)
8tE:—curlB—[Ax,B]—}[AO,E]+J, )
8T = DU — (%4F A% + AT | , (1.5)

and the constraint equation
divE + [A; E] =|J° . (1.6)

With {T%} denoting a basis of g,

B=curlA+[4x,4] , P=vl(1eT)er, , JF =0 ery)eT,. (17

The strategy for investigating the system (1.3) through (1.6) is as follows. Observing
that the scalar potential A° is not fixed by the equations, we can eliminate it by means
of an appropriate gauge fixing. Then we study the evolution equations in the space of the
Cauchy data

(A,E,¥) e P = H*(M,q) x H'(M,q) x H*(M, Vg ® C*) (1.8)

where H*(M, V) is the Sobolev space of fields (either g-valued vector fields or Viz-valued

spinors) which are square integrable together with their derivatives up to order k, [3].

Finally we show that the constraint (1.6) is preserv‘ed under the classical evolution.




Since the domain R x M is contractible, we need not be concerned about the topology
of the principal bundle of the theory. Gauge transformations can be described by maps
®: R x M — G. The corresponding right action on the fields (A%, A, E, ¥) is given by

A% A% =3~ 14% + ©719,0 , (1.9)
A A=0"140+ 0 'grad®, E~E=90"'E®, '~ ¥ =06"1T. (1.10)

For the scalar potential A° the following gauge fixing can be established :

Theorem 1.

a) For each E € H'(M, g) one can chose A° € H2(M, g) as the unique solution of the
Neumann problem

A A= ~divE , n(grad A°) = —nE with / A°PBr=0. (1.11)
M

Here n denotes the normal component on the boundary M. For this gauge fixing
there exists a constant C > 0 such that ||A®|| g2 < C||E|| . If the fields (A4, E,¥) € P
satisfy the constraint equation (1.6), then A° € H3(M, g).

b) If a curve of configurations (A(t), E(t), ¥(t)) € P satisfies the constraint (1.6) and
A%(t) is a differentiable curve in H3(M, @), then there exists a maximal 7 > 0 and a
unique gauge transformation ® such that :

i) ®(0,z) =id for all z € M,
i) for all t € (—T,T) the scalar potential A°, determined from A° by (1.9), satisfies
~ the gauge condition AA? = —div E, n(grad A°) = —nE and T A% @3z = 0.
Moreover (A(t), E(t), ¥(t)), obtained by the gauge transformation (1.10), is a curve of
configurations in H2(M, @) x H'(M, @) x H*(M, Ve®C*), which satisfy the constraint
equation (1.6).

In order to describe the boundary conditions we introduce the following notation.
For every vector field X on M, we denote by nX and tX the normal and the tangential
component of X on M, respectively. For the spinor fields we set

L(¥) := (1(Id - iv*ne) ) |om (1.12)

where ny, is the k-component of the outward pointing unit normal vector of &M in R3.
The boundary conditions considered here consist of specifying t(curl A), T'(¥) and I'(DV),
where D is the Dirac operator (1.2). The existence and uniqueness result of [2] extends to
the case of these inhomogeneous boundary conditions as follows :

Theorem 2.
a) Let a differentiable curve of boundary data

(AC), (), v() : [0, To) — HY2(OM, q) x H2(OM, Vo C*) x HY?(aM, VG%@G‘*;
1.13




be given such that
(iv*n, + Id)p=0  and

For every (Ao, Eo, ¥g) € H2(M,qg) x HY(M, g

t(curl Ag) = A(0) , I'(¥o) = n(0) and I[(D¥y) = v(0)

there exists a unique classical solution

(A(t), E(t), ¥(t)) € HX (M, q) x HY(M,q) x H*(M,Vg @ C*)

of the evolution equations (1.3) through (1.5),

T € (0, To}, which satisfies the initial conditions
the boundary conditions

t(curl A(¢)) = At) , T(¥)=p(t) an

the constraint equation (1.6), then

div E(t) + [A(t); E(t)] - J°(t) =0

(i’yknk+1d)l/=0 . (1.14)

) x H3(M, Vg ® €*) satisfying
(1.15)
(1.16)

defined for ¢t € [0,7") with a maximal
A(O) = Ao, E(O) = EO and \I’(O) = \I’(),

d T(DY) = v(t) Vte[0,T). (1.17)

If the initial condition (Ag, Eo, o) € H2(M, g)x HY (M, @) x H*(M, Vo®C*) satisfies

(1.18)

for all ¢ in the interval [0,T') of the existence of the dynamics.

By the trace theorem, [3], we conclude from A
that t(curlA) € HY2?(OM,q) and that ['(¥) €
HY2(dM,Vg ® €*). This implies that the choice
sistent, provided condition (1.14) is satisfied. Our
characterisation of solutions of the Yang-Mills and
the space P specified in (1.8).

In [2] we used the theory of Lipschitz perturbat‘

to obtain the existence and uniqueness theorems
homogeneous boundary conditions

nE=0, nA=0, tcurlA=0 |,

In the present paper we observe that our gauge cond
on nA and nE. Moreover, using the result of [4] all

makes it possible to consider also inhomogeneous b

€ H*(M,q) and ¥ € H*(M, Ve C*)

H3/2(0M, Vg ® €*) and T(DVT) €
of boundary conditions (1.17) is con-
result gives a complete (local in time)
Dirac equations (1.3) through (1.6) in

ions of strongly continuous semigroups
for the evolution equations under the

Tt=0, ITD¥=0. (1.19)

’

ition enables us to drop the restrictions
ows for less regular perturbations and
oundary conditions. It should be noted

that the invariant subspace determined by the boundary conditions (1.19) is contained in

a bigger invariant subspace characterized the extra
boundary.

conditions nA = 0 and nF = 0 on the

The proof of Theorem 1 will be given in section 2. In section 3 we study the influence

of the boundary conditions imposed by Theorem

corresponding to (1.3) through (1.5). In section ¢

theorem on non-linear semigroups in the singular
Theorem 2.

2 and the linearized Cauchy problem
4 we state a generalization of Segal’s
case, cf. [4]. This implies the proof of




2. Proof of Theorem 1.

The proof of this result, as well as some arguments in the context of Theorem 2 rely
on a special version of the Helmholtz decomposition. The following has been shown in [5] :

Theorem 3.
Let M be a simply connected bounded domain in IR®. A vector field V € H k1M, g)
uniquely splits into

VL =grad®y with Oy € H**%(M, g) (2.1)

_ /L T
V=Vi+V" where {VT =curl Wy with Wy € H*2(M,q) , tWy =0 .

The scalar function ©y is unique up to a constant, which can be chosen so that
/ v ©vdaz = 0. The boundary condition on Wy implies that nV7T = 0. The maps

nl  HY(M,q) — H*(M,q) «7(V)=VT 22)
=t HYM,q) — H*(M,q) «*(V)=V*F '
are continuous projections, and
1Oy || gr+e < ClldivVE| e < CIVE| e . (2.3)

Applying the decomposition (2.1) to the field E, determines a function © g such that

grad O = EL. Then A° := ~Of is a unique solution of the boundary value problem
A A°=—divE , n(grad A°) = —nE and / A%dzz =0 . (2.4)
M

From the estimate (2.3) we infer that

4% gese < Clldiv Bl g < CIE | gss (2.5)
If (A, E, V) satisfy the constraint equation (1.6), we can estimate

ldiv Ellg < C(1 ALl Bl + 191%) (2.6)
With (2.5) this implies that A® € H3(M, g). This proves part a) of Theorem 1.

In view of the transformation law
A% — d714%0 + 0715, (2.7)

we have to find a gauge transformation ® : [0,T) — H3(M, G) which satisfies the initial
value problem

®(0)=1id and  8,8(t) = G(®B(t), A°t), E(t)) . (2.8)




Here id : M — G maps all x € M to the identity in
G(®,A%E)=-A"®+®0;
where AOz = —div (#7'E®) and n
Considering the structure group G as matrix groug

M to the space gl(k) of k x k matrices. Since M ar
cover of open sets U; of H3(M,G) in H3(M, gl(k))

[|§‘1|[Ha < oo for all

Therefore
187!~ & e = [|271(2 — @)@
llgrad (=" = 1|l g2 < C | - |
where ||®—®|| 5 is understood as the distance in H3
12~ |- |
As far as the initial value problem (2.8) is cor
HY(M,q) and consider the map G(®, A% E) as a
order to show that G has a flow, we have to prove tha

that the fields (A, E, ¥) satisfy the constraint eque
field E the constraint equation reads

div (07 1E®) = (grad®!)- E® + &7 (—[4, E

Using (2.11), the estimate (2.6) yields
|div (3 E® — 8 E®) |, < [ldiv (@71 — &7
< Cl® = o (ANl Bl + 12112 +2

G and

2.9
grad ©z) = —n(®~'E®) . (29)
, ® € H3(M, G) becomes a map from

nd G are compact, there exists a finite
such that

5 e | Ju: .

(2.10)

<Cld—d and
s < CJ| || ers (2.11)

w

I

(M, gl(k)), and C depends on ||®~!|| g3

1cerned, we fix (A%, E) € H3(M, g) x
map from H3(M,G) to H3(M,q). In
t it is Lipschitz. We can do so, provided
1tion (1.6). For the gauge transformed

|+ J)® + (®7'E) -grad® .  (2.12)
VE®) || g + ||div (B71E(® — @)l

llEllm) : (2.13)

where C = C(||®|lgs, 1@ |z, 1@l g, 1@~ o
(2.13) for div(® 'E®) implies a Lipschitz estim

thermore (2.5) to estimate the term ||A%(® — ?)||

)

H

1G(®, A% E) — (8, A%, E)|lmrs < C||® ~ @||us
C = C(1& Y us, 1@/l as, 18]l are,

where

This proves that G(., A%, E) is ( ‘

tence and uniqueness of solutions of initial value problems, cf.

ate for the term ®O

. Using (2.3), the Lipschitz estimate
7 of G. Using fur-

3 we obtailn

(2.14)
1B~ | zze, Al | Ell e, 191 F2) -

locally) Lipschitz. Therefore the Picard proof on the exis-

(6], applies to the case under

consideration. This proves that there exists T > 0 such that the gauge fixing (2.4) can be

achieved by a gauge transformation

®(t) e CY([-T.7),H

(M, G)) , (2.15)




provided that the fields (A°(t), A(t), E(t), ¥(t)) are of Sobolev class H3(M,q) x

H*(M,q) x H'(M,q) x H*(M,V; ® €*) and satisfy the constraint equation (1.6). The

continuity of the gauge transformation (1.10) then follows from the standard estimates.
This proves Theorem 1.

3. Boundary conditions and linearisation.

Let A(t) be a differentiable curve in H/2(8M, g). Then there exists a differentiable
curve a(t) € H2(OM, g) of solutions of the boundary value problem

Aa(t) =0 and t(curla(t)) = A(t) YVt €[0,Tp) . (3.1)

This is a direct consequence of the solvability of a Neumann problem for vector fields on

a simply connected domain M, [5].
As far as boundary data for the Dirac field are concerned we observe that a spinor
field p on &M can be in the range of the boundary operator I‘%(Id — 471, ) U |5ps only if
(iv*n, + Id)p=0. (3.2)

Hence (1.14) give necessary conditions on the existence on an extension for the boundary
data (u,v). By means of the trace theorem [7] for each differentiable curve (u(t),v(t)) in
H32(0M, V@ C*) x HY/2(OM, Vg ®@C'*) there exist respective extensions ¥, (t) and ¥(t)
in H*(M, Vg ® €*) such that

Yilom = Onh1 =0 and Uolomr =0 Ot =p . (3.3)

Using this, it is an easy algebraic construction to find for given u(¢) and v(t) satisfying
(3.2) an extension 9(t) in H?(M, Vg ® €*) such that

L(¥(t) =p(t) and  T(DyY()) = v(t) . (3.4)
With the fields a and v, constructed above, as a background we consider the fields
A:=(A—a)e H¥M,q) and T:=(¥—¢)e HAM, Vg®C" (3.5)

as the dynamical degree of freedom. By construction, these satisfy the boundary conditions
(1.15) of Theorem 2 with homogeneous boundary data. Rewriting the Yang-Mills equations

(1.3) and (1.4) in term of A and splitting (A4, E) by means of the Helmholtz decomposition
(2.1) into the longitudinal and transversal components we obtain

8, AL = EL + grad A® + 8,a” — 72([4°, A + q) ,

AT = ET + 8,aT — T ([A°, A+ al) ,

O EL = —nl(curl B) - WL([(A\'{' a)x,B]+ [A% E] + J) ,
OET = —xT(curl B) — WT([(A\'*- a)x, B] +>[A0, El+1J).

(3.6)



The Hodge decomposition implies that curl (curl A) = #T(AAT). Moreover Aa = 0, and
hence
77 (curl B) = AAT + 7T (curl[(A + a)x,(A+4a)])  and
-~ ~ 3.7
wF(curl B) = 7% (curl [(A + a) x, (A +’ a)]) . (3.1

The gauge fixing of Theorem 1 implies that EX
(3.6) and (1.5) in such a way that we also do not
the background fields (a,1)) we obtain three uncou
AL AT

0 AT

~grad A°. Linearising the equations
consider the affine contributions from
pled linear systems :

AT

o

1 ~ ~
(-0 +(E)-7(E)-(h D(E) sa-s on
In [1] and [2] we have shown the following : The operator 7 with domain
D(T) = {(A",E") € H*(M,q) x H{(M,q) | t(curl AT) = 0} (3.9)

is the infinitesimal generator of a one-parameter g
the Hilbert space

r={(AT,ET) e H'(M,q

The (free) Dirac operator D, considered as an oper

D(D) = {¥ € H*(M, Vg ® €*) | I(¥) = 0 and ['(D¥) = 0}

roup of continuous transformations in

) x L*(M,q)} .

ator with the domain

(3.10)

(3.11)

is the infinitesimal generator of a one-parameter group of continuous transformations in

the Hilbert space

H(D)

4. Proof of Theorem 2.

={U e HY (M, Vg ® C*) | T(¥) =

0} .

(3.12)

Using the results on the linearized dynamics given above, the coupled non-linear sys-

tem can be tackled by using the following generahsa

semigroups in the singular case:
Theorem 5.
Let B; and By be Banach spaces and exp(t
parameter semigroup of bounded linear opera
domain D(S) C B,. Assume that :
i) F1: By x D(S) — B, is a map, which is
respect to the norm

11V, Va)llh = [Valls, +1iValle, +[SVall

ii) 72 : By x D(S) — B3 is a map, which
respect to the norm (4.1).

tion, 4], of Segal’s result on non-linear

S) : By — Bz be a continuous one-
tors generated by an operator & with

continuous and locally Lipschitz with

B, where (V1,V2) € By xD(S). (4.1)

is continuous and differentiable with




iii) The following derivative K : By x D(S) x By — By of F; given by

K(V1, V2, v2) i= K1(V1, Va) + Ko (V1, Va, v2) (4.2)
’Cl(Vl, Vg) = D.7-'2(V1, Vg)(fl(vl, Vg),()) and ’CQ(Vl, V2,'U2) = ng(Vl, VQ)(O,'U2)

is locally Lipschitz with respect to the norm

(V1, Vo, va)lllz = IVallB, + IV2llB, + ISV2llB, + llv2]lB, - (4.3)

Then, for every initial condition (V1(0),V2(0)) € B; x D(S) there exists a maximal
T > 0 such that the differential equation

(i) = (i) + (i) =
has a unique classical solution (Vy(t), V2(t)) € B1 x D(S) in the interval [0,T), satis-
fying the initial condition.

To apply this theorem to the case under consideration we set
B; = H, = {(AY, EL) € HY(M,q) x H'(M, q)} . (4.5)

The generator of the linear semigroup we choose to be S := 7 + D. The Banach space
B; = Hr x Hp is normed by

I(AT, BT, 07|, = [|AT g2 + | ET|lze + 1 T)|gn . (4.6)

In view of the equations (3.6), (3.7) and (1.5) the components 71 = ((F1)a, (F1)£)
and 7, = ((F2)a, (F2)E, (F2)w) read as

(}—I)A((AL’ EL)’(A\T’ ET? {I\/)) = ataL — WL([AO, (A + a)])
(F)&((AY, BY),(AT,ET, ¥)) =

—rL (curl [(A+a)x,(A+a)] + [(A+a)x,B] +[4° E] + J)
) = 80T — 7T ([A% (4 + a)]) (4.7)
)

- (curl [(2+ a)x, (A + a)] + [(A\+ a)x,B] + [A° E] + J)
(fz)q:((A\L, EN),(AT,ET, \/I})) = 8,9p — YOV*(A* + a*)T — A°F

By assumption, the background fields a(¢) and %(t) as well as their time derivatives are
of Sobolev class H2. By Theorem 3, the projections 72 and 77 to the components of the
Helmholtz decomposition are continuous with respect to the Sobolev topology. The results
of [1] and [2] then imply the following :




(A) The map F; : B; x D(S) — B is continuous
given by (4.1).

(B) The map F» : B; x D(S) — B, is continuous
norm (4.1).

(C) The norms (4.1) and (4.3) are in the case un
spective norm

o~

||| (A%, E®), (AT, ET, ®))|||, = |14
||| ((A"\L’ EL)’ (A\Ta ET7 {I\I)’ (aT, ET’
| ((AL, E%), (AT, BT, B)) ||, + lla

where (aT, €T, p) € Hr x Hp be an arbitrary
In view of later differentiation we observe that

§1A% := DA°((F,

The respective differentials of B = curl (AT +aT)+](
JE of the matter current read

an Lipschitz with respect to the norm
and differentiable with respect to the

ler consideration equivalent to the re-

U2 + | Ell s + 19| 2 (4.8)
P)ll, = (4.9)
e + 1€l e + @l e

infinitesimal variation of (AT, ET, ¥).

A® is a linear functional of EL, and set

)E) - (4.10)

A+a), x(A+a)] and of the components

§1B := DB(AL, AT)((F1)4,0) = 2[(F1) ax, (A + a)]

6B := DB(AY, AT)(0,aT) = curla” + 2|
(6:7)5 = DT (FE())(9) = 77 (T (4" &

Using these notations, the differential KC; ((A%, EX
following terms

(K1)a = — 77 ([6:4° (A + a)] + [A°, (F1) 4))
(K1) = — 7T (2curl [(F1)ax, (A + a)] + [(F1

— 71 ([614°% E] + [A°, (F1)E])
(K1)y = — 175 (F)f — 6,4°0

T %, (A + a)] (4.11)
T)e+ ¢l (1°7* ® Tb)\ff) :

(AT ET, \Tl)) of F; is the sum of the

)AX,B]-*-[(AZ—F a)x,élB]) (412)

Similarly we have for Ky ((AL, EL), (AT, EL,9), (aT, €T, ) :

(K2)a = — 77 ([4% aT])

(K2)g = — 77 (2curl [of x, (A + a)] + [T
— a7 ([A% 7] + 627)

(K2)w = — Y°7*af ¥ — 4275 (A" + a*)p -

10

<,B]+[(E+a)x,523]) (4.13)

A0<p




Lemma 6.
If W; be finite dimensional vector spaces and * : Wi x Wy — Wj is an algebraic
product, then * : HY(M, W;) x H2(M,W,) — H'(M, W3) such that

Vi * Va|lg < ClVAllma||Vallgz and (4.14)

VL% Vo = Uy * Us|lmr < C(IVallmz + 10l ) (V2 — Uil + ||V — Ul =) (4.15)

Proof.
By definition of the H-norm

”V1 * V2”H1 S ||V1 * V2”L2 -+ ||(gradV1) * V2”L2 -+ “Vl * (grad V2)||L2 . (4.16)

The first two terms on the right hand side can be estimated by ||[Vi|lg||Vallg2
since H2(M,W,) C C°(M,W;) by the Sobolev embedding theorem. Moreover, since
HY(M,W;) C L*(M,W;), the third term can be estimated by ||V ||z ||(grad V3)|| 1. This
proves the inequality (4.14). Since Vi x Vo — Uy % Uy = (V4 — Uy) x Vo — Uy % (Uy — V3), the
estimate (4.15) follows from the triangle inequality. Q.E.D.

To derive the Lipschitz estimate for Ky we let (A, E, ¥), (4, E, ¥) € By x D(S) and
understand -

Fi=Fi(AE, V) , Fi = Fi(AE,¥) and 6;4° = DA®((Fy)E) - (4.17)
Using this we apply Lemma 6 to estimate (K1) in the norm (4.6) as
(K1) a ((AE, EF), (AT, ET, 0)) - (K1) 4 ((AF, EF), (AT, ET, 0)) ||, (4.18)
< C(I624° = 5180 g + 1A~ Al +[14° = DYl + [(F)a ~ (F)allar)
where the constant C' depends on the norm in B; x D(S) of all the fields involved. With
AA® = —div E* and A(6,A%) = —div (F1)E, the estimate (2.5) implies that
14° — A% g2 < C||E" = EX|lin and

- z (4.19)
1614° = 6: 4% g1 < C(F1)e — (F1)EllLe -

Moreover, Property (A) above states that the nonlinearity F; : By x D(S) — Bj is locally -
Lipschitz. Therefore (4.18) implies that

(K1) 4 (A", ER),(AT, ET, ) - (K1) a((A%, ER), (AT, ET, 9))|| ,1n

~ -~ ~ ~ o~ e e~ 4.20
< C|||((A*, ER), (AT, ET,0)) — (A", EF), (AT, ET, 0))|||, - 420

As far as the estimate for (K;)g is concerned we get from (4.15)
“curl ([(fl)Ax, (A\+ a)]—[(.%l)Ax, (ﬁ—i— a)])‘ Lo (4.21)

< C(I(Fa = (Fallm + 1A~ Allm2) -

11



Similarly,

I(A+a)x,8.B] = [(A+a)x,6:1B]|| ., < C(I6,B — 6Bl + | A - Allg2) ,  (4.22)

where §; B = 2[(%1)A><, A+ a]. With Lemma 6 we

1618 — 6:1Blu: < C(I|(F1)a — (F1

can estimate

Jalle + |4 = Allg) . (4.23)

Taking (4.19) into account, similar arguments as above apply to the remaining terms of

(K1) E. With the Lipschitz property (A) of 1 we ¢

(K1) e (A%, EL), (AT, ET, 0)) — (K1) a ((AL, BD), (AT, ET, 0))

< C(I(F)a = Fo)alls + 1A= Alls + I

hen obtain

Iz

File = (Fellee + 18 - Bllm ) (424)

< C[[| (A", BY), (AT, BT, 1)) — (A%, E*), (AT, ET, ©)) ||, -

The estimates for (K1)g can be performed in the
local Lipschitz estimate

I”’Cl((A\L’ EL)’ (*ZT, ET’ (I}» - ’Cl((‘Z{L’EL)’ (Ar
< C|||((A%, E), (AT, ET, )

The terms of Ky can be tackled in literally tl
K1. The corresponding estimates are even more di
argument for the nonlinearity F;. That is, we can 1

o™ — &l + [le” — 27l
where ever it appears. Doing so, we end up with

[ K2((A, BY), (AT, BT, 9), (o, e,0)) = Ka (A",
< C|||((A%, E*), (AT, ET, ¥)(a, 6, %)) — ((AF,

LET, D),

same way so that we end up with the

i 5Ly (47,57, 9 (4.25)
— ((AY, E"), (A" E ||[1.

he same way as we have done this for
rect, since one need not use Lipschitz
replace || F1 — Fi|lB, by

+lle = @llm (4.26)

EL), (AT ET,0)(&,%¥))lB,

o 4.27
EL), (AT, ET,0))(&,¢9)) DR (4.27)

Together with the properties (A)-(C), stated above, this proves that the nonlinearity
of the theory given by (4.7) all the prerequests of Theorem 5.

This proves part a) of Theorem 2.

The proof of part b) of Theorem 2, stating the‘at the constraint equation is preserved
under the classical dynamics is given in [2]. The argument hterally applies to the case of

inhomogeneous boundary conditions.
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