Mannheimer Manuskripte 213/96
June 1996

EXTERIOR DOMAIN PROBLEMS AND
DECOMPOSITION OF TENSOR FIELDS "

IN WEIGHTED SOBOLEV SPACES

G. SCHWARZ

- Lehrstuhl fiir Mathematik I
- Universitat Mannheim
D - 68131 Mannheim
Germany

 ABSTRACT

The Hodge decomposition is a useful tool for tensor analysis on compact manifolds
~with boundary. This paper aims at generalising the decomposition to exterior domains
G C R™. Let L2Q’°(G) be the space weighted square integrable differential forms with
weight function (1 + |z|?)?, let d, be the weighted perturbation of the exterior derivative
and 8, its adjoint. Then L3Ok (G) splits into the orthogonal sum of the subspaces of ‘the
dq-exact forms with vamshmg tangential component on the boundary, of §,-coexact forms
‘with vanishing normal component, and harmonic forms, in the sense of d,A = 0 and
"~ 8\ = 0. For the respective components regularity results are given and corresponding
a-priori estimates are shown. : :
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1. Introduction

‘The method of 'Hod'ge deeomposition ofbdifferential forms pro‘}ided a useful tool for the

analysis on manifolds with boundary, in partlcular for solving boundary value problems.
For the case of a compact manifold G with boundary it has been shown in [M] that the .-

“space Lzﬂk(G) of square integrable k-forms sphts into

L2Q5G) = L2€’°(G) P L2C’°(G) ® L2H’°(G) | s ‘(1.1)‘ |
where | "SR | - o o & t |
L26%(G) = {da € L2Q*(G) |ta = 0} , L2C’°(G = {88 € L*0*(G) | nﬁ o
and L*H*(G)={)€ L2o’°(G)|dA 0,6A=0}. | S (1 2)

Here d is the extension of the exterior denva_tlve d: Q’“‘l(G) — QF(G) and § : Ok (G) —
Q%(G) is its adjoint, the co-differential. The conditions ta = 0 and nf = 0 indicate that
the tangential respectively normal component on the boundary dG of the differential forms

- have to vanish. For precise definitions see Section 2. Ideutifying the 1-forms w € QY(G) "
‘with vector fields X, € X(G) this Hodge-Morrey decomposition (1.1) generalises the well

known Helmholtz decomposition, by stating that each vector field uniquely splits into the
gradient of f € C*°(G), the generalised curl of a vector field W € X(G) and a harmonic

(i.e.curl- and dlvergence-free) field. Here f and W have to satlsfy the given boundary - |
- conditions. '

‘In the case of G being a ‘non-compact manifold (w1th boundary) a complete gener-

alisation of that result is missing. A number of partial results have been obtained by

several authors, see [B-S], [C], [D] [P], [W1] and [W-W]. This paper aims at filling the gap
for arbitrary exterior domains G C IR"™. Its main purpose is to prove the correspondmg _

Hodge-Morrey decomposition N

L2Q’°(G) L2£’°(G)®LZC’°(G)69L2H’“(G) = | -(1'3)

~ where Lgﬂk(G) is the Hllbert space of weighted square 1ntegrable d1fferent1al forms with
- the norm : : -

leolZz = /¢<w,w>'exp(2aa)d"x where o= jlog(l+fel®). (149

In order to do so the exterior derrvatlve and the co-drfferentlal operator need to be modlﬁed

. by a term correspondlng to the ch01ce of the weight. With

‘daw =dw + ada\/\.‘w mapping d, Qk () —>Qk(G) and

1.5’
Saw 1= bw —a (igrad ow) mapping &, Qk"'l(G) . Qk(G) (1.5)

for the ‘weighted exterior derlvatlve and its adjoint, the spaces L2€ ’“(G) L2C*(G) and

L2’H’°(G) are replace by -

Lgsk(G) = {daa € L2Q*(G) [ta = 0} , L2Ck( ) = {88 € Lzﬁ’“(G) | nB = o}
and L2H*(G) = {xe L2QF(G) | da =0,6a _0} L (1.6)
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Let H!_ Q"(G’) denote the weighted Sobolev space [K] of differential forms normed by
||w|| = Nl + EJ 1. IV; w||L2 The essential object needed to show ‘the de-

‘composmon (1.3) i 1s the weighted Dirichlet integral

D, : H_O%G)x H_,Q%(G) — R

" Da(w,n) =<K daw, dgn >, '+ < 8w, 8an >>a” (1.7)

. The aim is to identify a subspace of H!_,QF (G) on Wthh this contmuous b1hnear form

gives an upper bound for the welghted Sobolev norm, that is

”“‘)”Hl -1 S C(G,G) 3 a(w’w) : . ’, (18)

\

with a constant depending only on a and the geometry of G. We prove that this inequality
holds for each a # (1-n/2) on the space of all differential forms w; which have a vanishing

‘tangential component tw = 0 and are orthogonal with respect to the L2_; norm to the

space
(G) {/\|t/\-0 and ’D(/\ /\)—0} . (1.9)

Having established this essential estimate, the approach of - [S2] towards a proof of the

Hodge-Morrey decomposition generalises.

This paper is divided into 8 sections: In Section 2 some basic notatlons are introduced.
The main analytlc arguments are found in Section 3 and 4. There a weighted generalisation
of the Poincaré inequality [O-K] for differential forms on exterior domains is given. More-

“over, it is shown that the weighted Dirichlet mtegral D, satisfies the estimate (1.8) modulo

a contribution of order ||w||3, . In Section 5 the proof of estimate (1.8) is completed and
s ,
it is shown how this relates to solving the elliptic boundary value problem

(6ad_a 4 dgba)w = - onG

, 1.1
- tw=0 and téaw=0_ on 0G . ( 0).

This allows to prove in Section 6 the Hodge-Morrey decomposition (1.3) for exterior do-
mains, and give corresponding regularity results and estimates for the components. Section
7 is devoted to the decomposition on the subspace of differential forms satisfying boundary -
conditions. Finally, in Section 8, a short discussion is given about solving boundary value

" problems for differential forms on exterior domains by means of the Hodge decomposition..

The author likes to thank Viola Mitterer and Jan Wenzelburger for helpful discussions
and valuable critics. :

2. Weighted Sobolev spaces of dxﬁ'erentlal forms

Throughout this paper all differential forms and dxstrlbut1ons are defined on an exterior

domain G = IR™\G with a:smooth boundary 8G. Here G c R™ is an open bounded

domain so that 0G C G is compact and G is closed. Let N (B ) be the exterior algebra
then the space of smooth differential forms of degree k is Q"(G) C°°(G /\ (]R



.By Q"(G) the subspace drfferentral forms on G w1th compact support in R™. Let F
(Ey,...En ) be a local orthonormal onU C G We deﬁne a ﬁbrewrse product on Q*(G ) by

1

=g 2 Y (B ) By By ,_(_2‘.1>

11—1 n o ge=l.n

where the vector fields E;; run through F. The product. (,) is independent of 'the choice
of the frame used for. its definition. This give rise to define the Hodge (star) operator,
* 1 Q¥(G) — Q" *(G), such that (n,w)d"z = n A (kw) for all n € Q¥(G). Here d"z is
‘the standard volume form in R" The contraction of w € Ok (G) with a vector ﬁeld Y is
deﬁned by : o ‘
‘ ‘ (lyw)(Xl, ‘Xk 1) = w(Y Xq,.. Xk 1) o ' : (2 2)

v Followmg the approach of [R} we write for the derivative of a dlfferentral form in the_

: drrectlon of a vector field Y

\,(VYW)(Xla o X)) := D(w((Xy,. .. Xp))(Y) - Z ’-l"(Xi", : Oy X, Xp) , | "'(2'3)
. o ) . j=1l..k b . : }

if £ = 0 we identify Dw(Y) = Vyw. Then the exterior derivative reads

dw(Xb,Xl,; = 3 (-1)(vs, w)(Xo, R X, @
L j=0..k ‘ I ‘

" where X; means to omit this vector field. For co—differential operator § = xdx we have

5w(Xi,...Xk_1) = - Z (VE w)(Ej,Xl,. .Xkl_l) , (25)

;)ln

where the ﬁelds E; run through an arbltrary orthonormal frame .7—' The Laplace operator h
A = 6d + db on Qk(G) can be written as

Aw = — Z (VE (VE w) VVEjij)"‘ o _‘ '(2.6)
“oj=lln O . . » B

The space QI(G) can be identified with the space X(G) of (smooth) vector ﬁelds on G

‘by means of the flat map. That is, each vector field Y on G defines a 1-form Y* € Q}(G)

by demanding (Y, w)=w(Y) forallw e _Ql(G) By direct computatlon :

| ((Yb Aw),m) = (w, (i), | | @)

and | | ' | |

|;l2 (ly (Yb A w) +Y" A (1yw\)) =w. (2 8)

_Moreover, the flat map allows to express the co-differential by the dlvergence and the 3
‘exterior derivative of 1-forms by the generahsed curl of the correspondmg vector ﬁeld that

- is

divy =6Y* and (curlY)’ = xdY” S . (2.9)
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To descrlbe the boundary behavior let J: 8G — G be the inclusion’ of the boundary
We denote by w|sg the restriction of w € Q%(G) to G, and by j*w € Q’“(&G) its pull
back. If N is the outward pointing unit vector field on 9G, each point y.€ G has an open
nelghborhood U, C G such that -~ .

fN—{(Fl,Fg, . )|F1|y—Ny R (F lkal >—6Jk V.’L‘EU} v (2 10)

‘deﬁnes a local orthonormal frame The restnctlon of (Fy;...F,) to &G then is a local
‘orthonormal frame on U N 8G. In slight ‘abuse of notation we will identify N with its
extension Fi.In a nelghborhood U of G each X € X(QG) can be split into X |y = X+ N +
XT, where X" |sc is a vector field along 0G. For w € Qk(G) we deﬁne the tangentlal
* respectively the normal component by .

tw (X1, .. Xk)—wlaG(Xl ... X7) and n¢u=w|5G —tw; (2 11)

ifk = 0 ‘we set tw = wlog. The spaces of smooth dlﬁ”erentlal forms with vamshmg tangentlal
respectlvely normal components we denote by ‘

(G) {w € QF(G) | tw = 0} and QF% (G) {w e Q’“( ) |nw = 0} '(2-12)'

One easily shows that the Hodge operator * mtertwmes the normal and the- tangentlal
prOJectlon that is x#t = nx. Hence, for each w € Qf(G) there is a unique n € Q” d(e)
such that w = »n and vice versa. For 1-forms this can be described in terms of vector ﬁelds
by means of the flat map, i.e. tY” = (YT) and nY? = YL N®. .

To get access to the notion of weighted Sobolev spaces, let r = |z| be the radial d1stance
from z € G to the origin in JR"™, and denote by R, = Z the radial unit vector. Then

p2 := exp(2ao) ‘where o =1 log(l + r?) : , (2.13):
defines a family of Weight functions, and ,
“grad (exp(2aa)) =2a exp(2aa)(8 )R, where 8r0 = reéxp(—20) . E | (2.14)

- Using this, the space Q’“(G) can be equlpped with a famlly of Welghted scalar products
. deﬁned by . :

<K w,n >>a:=/exp(2aa)(w,n)d":v. . : (2.15) '
The completion of Q5(G) with respect to the corresponding norm [jw||rz is denoted by

LIOk(G). If . = (eq,:..ep) is the canonical basis on G C IR™, the weighted H; Sobolev
norm, 1nduct1ve1y defined by ‘ : s

b= IIwIILz + Z IVesllfyems - - © (2.16)

j=l..n

Ilwl

The respective completions of Qk HG) in these norms, that is the weighted Sobolev spaces
.of dlfferentlal forms, are denoted by H SQk(G) The space 'HOQF(G) is identified with



|
|
is

L2Q%(G). Of special interest is the spaces H, 10F(G). The corresponding norm is easily

shown to be independent of the choice of the frame used for: 1ts deﬁmtlon That is

nwnm—nwnm Zquwan' - | (2:17)

i=l.n

- for an arbitrary (local) orthonormal frame F = (Ey,... E,). In the general case s > 1 this
" frame independence fails. However, any choice of a frame F on G induces an equivalent
topology on H SQ%(G). From the respective definitions it is clear that the exterior derivative

and the co-differential extend to bounded linear operators d : H:QF(G) — H:I1Q*1(G)

and § : H2Q¥(G) — H2719F~1(G). For corresponding concepts for general (non-compact)

Riemannian manifolds see [C], [D] and [E].

To obtain a generalisation of Green’s formula for the L2 scalar product we observe that
each y € G has a neighborhood Uy, such that :

Fr={(F1,Fs,...Fa)| File = Ry , (Fjl, Fila)= 8¢ Yz € U, } (2.18)

defines a local.orthon‘ormal frame. Here’ R, = Z. For the vector field F} we will write also

R. By definition of the weight function Vg, exp(aa) =0 for j >.2. From (2 4) and (2 5)‘

we then 1nfer that

(exp(aa)n) = exp(ac) dn + (VR exp(ag))R’ A= exp(aa) (dn + a(8,0)R" A 77)

(exp(aa)n) = exp(ao) 6n — (Vg exp(aa))an = exp(ao)(6n — a(d- 0)1317) §2.19)
In view of this, we define the weighted exterior derlvatlve as
- dan:=dn + a(o, a)Rb A . - (2.20)
-and the welghted co-differential operator as )
8an :=6n — a(8,0)ign . ' o (@221)

These d1fferent1als extend to bounded linear operators on the correspondmg we1ghted‘

Sobolev spaces, that is d, : H“’Qk(G) - H;_'_%Qk-i-l(G): and 8, : H:QKG) —
H;71QF1(G). Since’ . | |

exp(aa)d dan = d(exp(ac)d,n) = dd(exp(aa)n) 0, o (222)

~ the welghted differentials are mlpotent that is d2 = 0 and 82 =0. Moreover, |

d(expL(Zaa)(w A *n)) = exp(2a0) (daw Axn = w A *6a77) o (2.23)
so that Stokes theorem yields the weighted generalisation of Green’s formula, reading
K dqw, ) =<K w, 647 > +/'ex'p(2aa)j* (w A*m) - (2.24)
G : 2

»



For the usual Laplac1an A =4d actmg on scalars ge€ QO(G) th1s 1mphes

t /Gexp(2a0)(Ag) ‘/G('Aex.p@aa))gd”x

C+ / exp(2a.0)j*(2ag(<9rd) * R’ — *dg) :
, v 8G \ _
F1nally we need to mtroduce the welghted Laplace operator _
) A = Sada + daba o_(G)—ﬁok(G) o (226)

| Thls is an elhptlc operator on ¥ (G), Wthh is clear by observmg that A dlffers from
" the unwelghted Laplac1an A only by lower order terms Boundary value’ problems for-

o elliptic operator are called elliptic, if the boundary operator satisfies the Lopatinskii-Sapiro-

condition, cf. [H2] [R-S] In the context cons1dered here the followmg results is relevant:

Lemma 2.1
: The boundary value problem ‘ _
| ",_-Aaw—n' R on G

tw = 0 and’ t6,w = 0 on 8G (2.27)

" on Q’“(G) is elhptxc in the sense’ of Lopatinskii- Sap1ro

- ind For the. unwelghted case a detailed computation can be found in [82] Since 6, differs

~ from the unwelghted co—dlfferentlal 5 by lower order terms only, that result generalises to
- ‘the boundary value problem (2. 27) for the welghted operators. - '

‘3 A generahsed Pomcare 1nequahty ‘

The scalar theory of welghted Sobolev spaces is extenswely studied in the literature, cf.
[K]. Here we need a special generahsatmn of the weighted Pomcare 1nequahty We start
with a modified versron of the Ha.rdy—thtlewood estlmate ' : -

Prop051t10n 3.1
’ Let p.> 0 and e 76 -1, Then there exists for ¢ > 0 a constant C’e/ >0 such that

|h(t)|2tedt< 2+¢ |a h(t)|2t6+2dt+C€:‘ p+1|h“(vt)|2dtl B ‘(3‘.1)4, |
 [oreas (355)° [ [

| for all compactly supported he C°°([p, 00)). For e > -1 this holds with C’eri_:O./fIfe <.-—1
"the estimate (3.1) also hold for h € C*°([p, 00)), which are not compactly supported. '

o (225)




Proof v
For e< -1 the classical Ha.rdy-thtlewood inequality reads

I |F(t)|"’tedt<( i‘11>2/0°°_“lf<t->|2t?+2'dt o   <3.2>. }

w1th F(t) = fo |£(s)|ds, which holds for all p1ecew1se contlnuous I [0 o0) — R Given
he C’°°([p, oo)) let fx be defined by -

fh(t) = 3th(t) for t € [p, and fh(t) = .0 forte(0,p). = (3.3), - |

| Then Fh t) = f 10s h(s |d3 and

|h(t)|2 / 9, h(s)ds| (|h(p) | + IFh(t)|)2 for t ‘E‘[p,oo) . (3.4)

' Sincé Fp(t)=0fort< Py a welghted mtegratlon 1mphes by usmg (3 2)

oo N

/ |h(t)|2tedt<(1+e2)/ Fa(t) |2tedt+(1+ : )/ e, )|2t at

- (3.5)
<(Z22) [inwreras bl |

.e+1

To estimate the second term let I > =[p,p + 1]. Since the émbedding HY(I,) = C°(1,) is
' compact, there exists by 'Ehrling’s inequality a constan’t C, such that - B

Ci1|h(p )|2 <G Sélp h|? < 6“h”Hl(I )T C2||h”L2(1 yooo o (38)
By deﬁnltlon of fh thlS proves that _ v
o 2 oo P+1 L ‘ ,
/ P < (£ ) [ e )l2te+2dt v [T mPa. (3
p et+1 p ' '

For e > —1 the Hardy-thtlewood inequality (3. 2) holds with F (t ft |f(s |ds By' ‘
‘assumption h(t) has compact support so tha.t we get by usmg the same notation as above

|h(t

/ dsh(s ds| < |Fh( )|2 fort € [p,oo); - (38)

Then (3.2) 1mp11es

/ CFR()Peedt < ( 2 1>2 / ) P2t < (—2—1)2 /,, ~ iath(.tj|2ffl+é,dt . (39)

Since Fx(t) = 0 for t < p, this proves the result R o - 0




Lemma 3. 2 - .
Ifa ;é (1- —) there eXJSts for each >0 a constant C 2> 0 such that

1 . o
||g1|L§f1ska_\li;/2)2 > v, gan+cnganl Voele). (10

ji=l..n

Proof : . ’ ' S o 3
1If BT denotes the (open) ball of radxus T in R” let B be its complement and ST the
corresponding sphere. For g € Q%(G) we use polar coordinates and write g(z) = g(r,0) =:
" hg(r). Fixing p sufﬁc1ently big, such that B C G we have :

| /ﬁ ,. [g(x)|2r?7‘2d"ac= J( /,, ‘|Lh9(r)|2r.2“+’?x‘3dr)d9. _A -3(3.11)?

Witn Proposition 3.i

/ lho 7')|2 2a+n—3dr <i>2/‘_30]6r’;0'(7“)!27'2a+n—1d7'+C4/p+1|h9(r)|éTn;ldr‘
2a+mn—2 . I ) ‘ . |
(3.12) .

3 Ué'ing a ;adial frarne,fR, cf. (2.18)? |0rho ()P = [VRg(®)|2 < X010 [VE9(z)|?. Thus

[ lot@)Priedna -
Be o
) .2 + € a m | | \ n,
< (2—+—n_—) / 2 IVz,0() |2 2ag x+c4 /( l9(x) 2"z

BPnBP+1)

(3.13)

Moreover for each power b and each p> 0 there ex1st constants cb and Cf such that
cb r?b < exp(2ba) < CPr?b 'Vr >p. s 14)

, By chosing p suﬂimently big le_l/ ¢, < (1 + ¢') we can estimate

”9”1,2 (G) < C5”g”L2(BPﬂG)+Ca 1/ lg(x) |2 2a- 2dn . . N : (3.15). N

1 + € n .
Z / IVE g(:c)l eXP(2¢10)d z+ (C4 + CS)”Q”Lz(BPHnG)'

= T+ nf2)? -

Finally, since (BP0 G) is bounded

Ilglle(Bp+1nG) <'Cs /B i |g(x)|2exp(2(a ~2)o)d"z < CllgllZz_ () (316)
_ whlch proves the generahsed Poincaré 1nequa11ty (3 10), , ' ' =

Since dlfferentlal forms on G also can be- cons1dered as vector valued functlons on G this
estlmate genera.hses to QF(G). By completlon in the H;_; norm on Q’“(G) we then get:

\



Theorem 3.3 | _
If G C IR™ is an exterior domam and a # (1 —n/2), there exists for each € >0 some C.
such that T '
1+e€
2, <
el € T

77 > IV w|[L2+C lele L, YW e H [ 05G). . (3.17)

j=lL.n

4. The weighted Dirichlet integral
The vweighted Dirichlet inﬁegral we define as the map

D, : Hy 1Q%(G) x H;_1Q%(G) — R

: » | : (4.1)
Da(w,n) =K dow, do >4 + K fw,ban >4 .

By construction, D, is a symmetric continuous bilinear functional for each a € IR. Our
aim is to prove the H, 1_1 ellipticity of D,, that is to show that.

ol , =Nl + 3 1V80l; < Ola,6)Dufe, ) (42)
. j=1l..n

on an appfopriate subspace of H 1 9%G). First we show :

- Lemma 4.1
(a) If w € Q%(G), then’

Jln'

3 IVs,wl2s = Dalw, 9 +eally, - _c2“w||§3_2+/6as(w), (@3

Where c1 = (a? ¥ (n - 2)a) c2 = (a? — 2a), and
B(w) = expf(2aa)3 (—5 * d{w, w) + dw A *w = 6w A xw + a{w, w)(8,0) * Rb) o (4.4)

(b) There exists a constant C-> 0 such that

lwliZ S'C’(’D@(w,w) +lwli  + |v/ B(w,)[) Ywe QKG) . (4.5)
a-1 ‘ a—2 G . o .
Proof :
(a) The 1dent1ty (2.6) for the Laplace operator 1mphes that
(ww)—2(Aww—22(VEwVEw).- | - (4.6)
ji=l..n )




By welghted mtegratlon over G and Eq. (2 25) we get

- = / Aexp(2aa)(w w)d":z:+/;9 Bl(w))+ X Aw w >>a Z HVE wHLz

Cj=l.n _ (4_‘7) ~ ’

. where Bl(w) =exp(2aa)' (2o(w o))(ara)*Rb — xd{w, w)) . . L ’

To rewrite Aw = (6d + d&)w in terms of the welghted differentials d, and 6 we, observe

that :
bdw = 6, (daw - a(a a)Rb A w) + a(8; O‘)IR (daw - a(a o)R’ A w)

dbw =d, (5aw + a(a a)lRw) - a(B a)R" (6aw — a(8,0)ipw) .
Using Green s formula (2.24) we get ' D

| '(4.8‘)

< 6dw WSS, = K daw daw .- a < (a a)R" Aw, daw >q +a < (O, a)deaw WS

—alx (@, o)YiR(R’ Aw),w >, +/.6' By(w) ,(49)

& dbw,w >>a =< 6aw 6aw > +a << (8 a)an 6aw >>a —a << (0, a)R /\ baw,w S>q |

—a < (0, 0)2Rb/\13w w>>a / Bs(w ) », ,(4 10)
o e

3 where the boundary,terms read

' Bg(w) = exp(2oo)j*(do) A *w) ‘and Bg(w) = exp(Zaa) (6w /\ *w) = ;'v(4‘.11) |

-'_W’ith‘(2.7) and (2.8) we then get

K Aw,w >, = Da(w,w) - a2 < (8,0)?w,’cu >.>a~+/" (Bz(w) + Bs(w)) . (4.12) o
, JoG a :

As far as (4.7) is concerned, we also have to control the. contrlbutlon of the 1ntegral of
A exp(2a0){w, w). From (2 14) we., obtaln

_EA exp(2aa) =—2- ( - » )"eXp(2a0') i o
= (a(820) + 202 (a o) +am 1o, 0')) exp(2aa) (4.13)
(2a +(n— 2)a) exp(2(a - 1) ) — (2a — 2a) exp(2(a - 2)0) ;
W1th the constants ¢y and co glven above thls yields =
. . { . )
——'/ Aexp(2aa)(w w)d r= '(cl +a )||w]|L2 L (c2 +a2)||w||2‘2 L (4.14) '

| Addlng the contnbutlons of (4 12) and (4. 14) then Eq. (4. 7) 1mp11es the 1dent1ty (4 3)

10



(b) The contribution of order ]|w||22 in (4.3) can be estimated by Poincaré’s inequality
o \ -1 .

(3.17) as . |

- ClllwIILz < > Vg wllm + C'||w||L2 .

j=l.n

(4.15)
(49t (=20 a
- R P Y |
For n > 2 and € is sufﬁc1ently small one has (a—1)<Oforalla € R, and (4 3) yields
0<(-7) 3 IV, ol < Pl w)+C'||wHLz 4 |/ . (416)
' j=l.n - _
The estimate (4.5) follows by usmg the Poincaré 1nequa,11ty (3 17 ) once more. - O

' «Lemma 4.2 ‘ -
' The boundary integra] of Lemma 4.1 satisﬁes the estimate

'/ B(w)l<C||wHL2(3G) Vweok(G) @

where Q’“(G) is either of the spaces k(G p(G)N QE(G) or Q’fv(G) N Q’g(G) define 1_'n (2.12).

Proof :
If N is the unit norma,l ﬁeld on 6G and d" T = 1Nd”:v is the associated volume form
- the kernel of the boundary integral of (4.4) can be ertten as

K

: B(w) - exp(2aa)(—— I w)](N) (1Ndw W) — ((5w ivw) + afw,w) (9, e;rjR**(Nj)d"—l

(4.18)

cf. [S2]. Usmg the frame Fn, cf (2. 10) the boundary condltlon tw =0 1mphes that '
O windw)y=0 - (4.19)

D[@,w)](V) = (Viw),w) = (in(Viw),ivw) . (4.20)

Moreover it follows from (25) that
(6w, inw) = (6o, inw) - Gn(Vaw)ive) , e 21)

with 85 as the co-differential on the boundary manifold 8G. The second term on the right
‘hand side of Eq. (4.21) cancels with (4.20). Thus we are left with (5w, iyw), where

6aw(Ej'2,‘ Ejk).—— Z (VE,( (Ez,En, E,,;))‘ o (422)
I=1..(n-1) : .

+w(aE,El, 20 Jk +Z El’ 2 - 8E1Eji""'EjIc))
1=2..k" .
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: that

such that

Since tw = 0, the first term on the rlght hand side vanishes, and from the derlvatlves
OE,; E; only. the normal components will contribute. These are described by the second
fundamental form K of 8G — G. Since G is smooth and compact, IC is uniformly bounded,
and it follows that : :

‘/aGexp 2aa)(6aw 1Nw)d" xi < C’1||w||Lz(3G) S - (4..23) |
For the remammg term of (4.18) we get
|a /| exp<2aa><w,w)(&a’)R"(N)dg-lx} < Calolfgac - (120)

This' proves,(4 17) for Qk b(G). As far as the boundary condltlon nw =.0 is concerned, we
observe that * intertwines the action of n and t. Thus each w € Q4 (G) writes as w = %7
with n € Q% *(G). Since B(xn) = B(n) the estimate (4. 17) for Qk (G) follows from the

correspondmg result on Q7 k(G). N a
From this we 1mmed1ately infer Gaffney’s mequahty '

Theorem 4. 3 . . .
IfG C R™ is an exterzor domam and a # (1 —n/2), there exists a constant C, > 0 such

||w||H1 » < Co(Da(w, w)+”w|| 2 ,) \%wé ngf'(G? . - . (4.25)

Here H 1Q"(G) is the completwn of either of the two spaces Q5 (G) or Q% (G) in the HL
norm. ‘ L

Proof : : ’
Since 8G is compact, the restrlctlon w — wlsg is a compact map from H! [9%G) to

L%2Q*(G)|sg. The Ehrling lemma then implies that for each € > 0 there is a constant C.

“W |lL2(aG) < ellw “Hl Nt Cellw 172 _,(G) Vwe H) 1Qk(G) (4-26)

Chosing € sufficiently small, (4.25) for smooth dlﬁ'erentlal forms follows as a d1rect con-
sequence of Lemma 4.1 and 4.2. The assertion then follows by a completion in the, H!

. norm. : _ . : O

© For differential forms on a compact mamfold with boundary the estimate (4 25) has

“first been shown in [G] and hence is referred to as Gaffney’s inequality. In the notation

of functional analysis [S1] it states in particular that the weighted Dirichlet integral is -
coercive on the Sébolev H 1 QF(G). For our approach on exterior domains it is essential

- that Do(w,w) estlmates the H,_, norm modulo a contribution of order ||w||?, . Since

' the embeddlng 1 QkG) — L2 Q’“(G) is compact cf. [L], implies also coerc1v1ty in

the sense of calculus of variation on an appropnate subspace This is shown in the next’
sectlon
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5. Potentlals of the welghted Dmchlet mtegral
Harmonic fields in H! 1Q’“(G) are cha,racterlsed by the condltlon ’D ()\ /\) = 0. We wrlte

HeB(G) = (A € Hy10B(G) | Da(A, X) = 0} (5.1)

for the harmonic fields in H!_;Q%(G). which satlsfy the boundary condition tA = 0. Since
- D, is continuous, this is-a closed subspace of H!_,Q%(G). By Theorem 4.3 it is also a .

closed subspace of L2_;Q*(G). The orthogonal complement of H®D(G) in HL_,0%(6)
 with respect to the weighted L2_1 scalar product <<, a1, cf. (2 15) we denote by

 (MHPE6) = {we HL_,056)| <w, rc>>a._1=0 'V/ce'Hle} (5. 2)
Then H; ,9p(G) = (H'L) Peye 'Ha_l(G) and both components are Hilbert spaces.

Lemma 5.1

The Dirichlet integral D, is H -1- e111pt1c on the space (HJ-) (G) That fs, there are
positive constants ¢ and C such that ‘ Y

ellwllfn, £Da(ww)<Cllwlin | Ywe®)Zh(©@ @ (53)
Proof : . ‘ \ S ‘
Let n; be a minimising'sequence for D,(w,w) in the unit sphere
S = {w e (HHEE(0)| lwllez_, =1} . | (5.4)

By (4.25), the sequence ||n;|| m1_, is’bounded, and there exists a subsequence m; such that -

nj, — n weakly in H] 1Q’°(G) By its construction n € (HL)5P (G) Since Da(w,w) is
weakly lower semicontinuous on H 1 19%(G) we 1nfer that

Dafin) 2 Dalm)- [l vue MA@,  (59)

As shown in [L] the embedding H;_;Q*(G) — L%_,Q*(G) is compact. Therefore n; — 0
~ (strongly) in L2_,0%(G), up to the selection of a subsequence The uniqueness of the weak -

‘limit then 1mphes that n = 7 € Sy, so that, ||n]|Lz ,=landD ( ) > 0. Wlth (5.5) we
then get from (4 25) -

< \ (e L\k,D | .
ol < Co(1+ o) Palens) Vo GR@) . Gy
'Since D, is continuous on H!_,Q*(G) this prove the H!_ -eiiipticity o o

In the language of calculus of varlatlons this means that Dy (w,w) is a coercive quadratic
functronal on the subspace (Hl) b)) c H ! 19%(G). Then we have:
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Proof :

' ary value problem

Theorem 5.2

!

 IfG C R™ is an exterior domain and a 96 (1- n/2), there exzsts for eachin € L2+1Q (G) "
' ‘satzsfymg the mtegrathty condxtzon ‘ , A

| L AD= 0 Vé\EHf’_Ll(G). _— D (5.7)
a umque potent1a1 6D E (’H'L)a_l(G) C H3-1Q%(G), sn‘ch that v
D (¢D, £) = <<vn,§ >, VE‘E Hj’f'IQ_’,g(G) L (5.8)

Since D is elliptic on the H1lbert space (’H-L) 1(G) the Lax-Milgram lemma, [Sl] guar- |
antees for each ‘bounded linear functional .7-' ('HJ-) (G) — IR the ex1stence of some

. ¢p €. ('Hi')a_l(G) such that ‘

F(§) = Da(90,). veemﬂ @ . 69

~In partlcular we can choose .7-'( ) =KL n;. >>q with n € La+19’°(G) Then $D solves (5. 8)
- but only for £e (’H'L) (G) An arbltrary Ee H:_ (G) sphts into

§= §+/\5 where {E(’HJ‘) (G) and /\5 E’H (G) - | (510)

If n € L~ 1Q’“(G) satisfies the 1ntegrab1hty condition (5.7), then

- Da(¢D.€) = Da(4p,8) =< n,£>>a—<< n,£>>a'.' (1)

B ThlS \proves the existence of the potentlal ¢D € (HJ“) P(G) sat1sfy1ng (5 8) "To s_how
uniqueness lét ép €. (H‘L) (G) be another solutlon of (5.8). Then Du((¢p — ¢ ) £) =
* for allE € H IQ (G) Therefore, (¢p—d) € HEE(@), wh1ch proves that (¢D ¢D) =0.

O ‘ .
By u'sing (formally) Green s formula (2_.24) we get frOm Eq. (5.8)

b

<< :7),§->>a=<< Ad(ﬁp,é >, +_/ exp(2aa) (E/\*d ¢D ba ¢D /\*.f) \ (5.12)
BG .

| holdlng for all £ € H!_ 0k (G). Here A, is the weighted Laplace operator (2.26). Since

] (E ~nm) = (§*€) A (§*n) the first boundary integral vanishes. Since H! Q%(G) c
Qk(G) is dense, this shows that ¢D € ('H‘L)a_l(G) is weak solut10n of the bound—-- :

a¢D—TI o 'onG

: ' L - (5.13
td)D—O and t6a¢D—O onBG o '-‘4 { ) ‘

By’ Lemma 2. 1 th1s is an_ elliptic problem in the sense of Lopat1nsku-Sap1ro Although

" . the standard theory, for elliptic systems does not apply to exterior domain problems, cf. *

- [N-W], it hasa welghted generalisation, wh1ch does. More pre01se if H (G5 V) denotes the




- Corollary 5.4 - | - S

weighted Sobolev space of distributions on an exterlor domam G w1th values in a vector
space V, then [L-M] have shown: -

: Theorem 53. L | .‘ SR
Given a differential operator A : C=(G;V) — C>(G; V) of order 2 and a boundary -

operator B such that the system (A, B) is Lopatinskii-Sapiro e111pt1c Ifa d1str1but10n X

satisfy the homogeneous boundary condition Bx 0, then

€ HF} G V) <= Aer“H(G vy, - (514)

preassumed that the weight parameter a is not exceptional, that is (a — n/2) ¢ Z or
a € (=% +1,% — 1). Moreover, an elliptic a-priori estimate is satisfied, that is :

Ixlmgs < © (n Axla;

st lixlez,) VxeH ““‘?(G V). (5.15)
If Ax'is smooth then x € C=(G; V), too. ' ‘

One might observe that though for even dlmensmn n the mtegers a € Z are typl-
cally exceptional welght parameters. However, @ = 0 is in any case not exceptional. Since
Q5G) = C(G; /\ (R™)) we infer from this and the ellipticity of the boundary value
problem (5 13): : . o o

s /

Let a be not exceptional. For each j € L _,_IQ’“ (G) sat1sfy1ng the 1ntegrab111ty condition
(5.7) the potential ¢p constructed in Theorem 5.2 is a classical solution of the boundary
value problem (5.13), i.e. ¢D € H? IQ'“(G’) Moreover, ifn e H, ,Q%(G), then

||¢D||1};j§SC(”U“H;H+||¢p|.|L§_l), 6w

and if is smooth‘ then ¢p € Qk(G) too.

The correspondlng results can be obtamed on. Qk (G) ‘that is under the boundary con- |
dition nw = 0. With ‘ : ‘

Hk;j\{(G):_—..{A'eHl_IQ’Ii,,(G)}Da'(/\,'/\)=‘0} o (5.1%)

J

and the orthogonal complement (Hl)a_l(G) satlsfymg .
CHLOK(G) = (N eHENG) . Co(s18)

Then all constructions bas;ed on Theorem 4.3 can be literally repeated to prove:
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Theorem 5.5

. IfGCR"isan exterror domam and a ;é (1- n/2), t:here exists for eacb nelL +1Q’“(G)
sat1sfymg the 1ntegrab111ty condition

B < n,/\ >>a..o Ve H’;v_{‘{(o) S (519)
a umque potentral ¢N € (HL)E! (G) such that 7 7 |
Da(@n,£) =< 0,6 >0 VECHLQ5G). (520

Moreover ¢N € ’HZ_IQ (G) and it is a cla.ssrcal solutron of the ‘boundary value problem

Aapy =1 on G
(5.21)
noy =0 and nda¢N =0 on 6G . :
If n e Ha +1(2"(6') and a is not except1ona1 then '
" lénllyz < C (||nuH;+1 +lowllia 1)’ N 22 N

and ifn is smooth then én € QF(G), too.

We - finish this study of potentlals correspondmg to the D1r1chlet mtegral D, Wlth the.
followmg observatlon

Lemma 5 6

(a) Ifn = §ow withw € H, 1Q’“‘”(G’), then n satisfies the mtegrab1]1ty condition ( 5.7) of

Theorem 5.2 and the corresponding potentra] ¢p € (HL) (G) is co-closed, i.e. opp= -
0.
(b) If n = dow with w € HXQ*" 1(G) then 7 satisfies the mtegrabﬂrty condition (5. 19) of

Theorem 5.5 and the correspondmg potent1a] ¢>N € (’HL)G 1(G’) is c]osed ie. da¢> N =0.

Proof :
From Green s formula (2. 24) we-infer that

< 6aw A >>,,—<<w da) >>a =0 VA eHa 1(G) _ i (‘5.23) 7 .

- Hence there exists by Theorem 52 a (umque) potentlal ¢p € H2_ 1Q"(G) for 77A: Sow.
‘Since d 6a¢D € La+lﬂk(G) c L2Q*(G) we get from (5. 13) .

ldabadpl2s = < dabad, (w dodp) >a . (5.24)

- Wlth (2 24) and the boundary condltlon téad)D = 0 thls 1mphes that dg 6 «®p = 0. Since
top =0, then also - _
||<5a¢D||L2 = K dy6 ¢D,¢D >.=0. , (5 25)

_ThlS proves the assertion of (a). Part (b) is shown in literally the same way with the roles -
of d, and 4, respectlvely of t and n interchanged. - . ' , O
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" 6. The Hodge decomposntlon

To formulate the Hodge decomp031tlon we consider the subspace & ’“(G) c QF (G) of smooth
k-forms which are the weighted exterior derivative of some o € QF~1(G) with vanishing
tangential component and a finite H._, norm, that is -

£5(G) 1= {doa|a € &*71(G) L ta =0, [lallm_, <o} . o (6.1)

Correspondingly we denote by C’“(G) as the space of smooth 0a -coexact forms with van-
- ishing normal ‘component, i.e. '

CHO) = (8BIBERNG), mB=0, Wil <0k (62

The space of smooth (da, 6a)-harmonic and weighted S(juare integrable fields we denote by

NEG) :={A € Q*(G) |dar =0, 6aA =0, Al <00} . (6.3)

Proposition 6.1

The spaces £f(G),;C¢'f (G) and N*(Q), are mutual orthogonal to each other with respect
to the weighted scalar product <<,>>,. Moreover, Nf(G) is the orthogonal complement
of EF(G) & CX(G) in the space of smooth weighted square integrable k-forms, that is

Nk( G) = {x € Q*(G) | |[&]| 2 <o , K1 E>>e=0Yn¢€ (Sf(G) ®Ci(G))}.  (64)

Proof
~As an 1mmedlate consequence of the boundary conditions ta = 0 and ng = 0 and the

nilpotence of d, and 6, we infer from Green’s formula (2.24) and the deﬁmtlon of the
space N¥(G) that

< doo 6 B>,=0, <Kdaa,A\>,=0 and << §;8,)>,=0 (6.5)

for all dya € £X(G), 6.0 € CE(G) and A € N*(G). This proves the mutual L2 orthogonality
of the spaces. In particular N¥(G) is a subset of the L2 orthogonal complement of £5(G) &
CX(G) in the space of smooth k-forms. On the other hand, let x beé an arbitrary smooth
square integrable form in that complement. Orthogonality to £X(G) implies that

0 = K K,daa >>g = K §ok,a >, Vae Q5 YG) with [lallg  <oo- (6.6)
Since these differential forms o constitute a dense subspace of LZ_,Q*~1(G), this shows

that 6, = 0. Slmllarly it follows from << &, 6aﬁ >>,= 0 that d k = 0. Therefore s €
N, k(G) Wthh proves Eq. (6. 4) : 0
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'Theorem 6. 2
Let G C'IR™ be an exterwr domain and L2Q’°(G) the space of Wnghted square 1ntegrable o
k-forms, with @ non-exceptional, i.e. (a — n/2) Qf Zordae (-%+1, ’2‘ 1). Then L2Q*(G)
splits into the dn'ect sum , o
L2Q’°(G) L2E5G) LZC"(G) ® L2N’“(G) N (X

8

" of the L2-closure of the spaces £ "(G) ckG a(G ) and N¥(G ) In particular, each w € L2Q%(G) K -

_un1que1y decomposes into - .
W= datty + 8o + Ay with N E HL lo’c 1(G) b e HIL0YG),  (68)
such that laully_, S CanLz and Ilﬂwllm L <Ol o

Proof : - o
IfweQkG)isa smooth drfferentlal form w1th ]|w]|H1 < 00, then

‘6aweLa+IQk l(G) and << bow, n>>a—0 Ve HY (G) C(6.9)

- Hence bqw satisfies the 1ntegrab1hty condition’ (5. 7) of Theorem 5. 2, and there ex1sts a
potentlal ép € (H"') PG c H_ Qk L) such that.

€ a5 0= Daldp,€) VECH lﬂk @y, (5'710)

By Corollary 5.4, ¢D is. smooth Slmlla,rly, by Theorem 5.5, the exterior derivative dau)
determines a smooth potential ¢y € (HL)5! (G) C H}_ 1Q’“*”I(G) such that - :

<< daw, §>>a Da (¢N, ) Ve € H! 1(2’°+1(G) . (6 11)

..Choosmg ay = ép and By, = ¢N, then d aw €. Ek(G) a.nd 8.0 € C"(G) and we may set H

| ‘ A= (w datr, — 8af) € Q4(G) . 61
By constructlon, |l/\ || Lz < oo. With Theorem 5.2 we get for an arbltrary doa e £ ’“(G)

< /\w,daa >>q = << (w d, aw) daa >>a = D, (¢>D,a) ~xd aw,d &>, . (6.13)

: Smce a, = qSD and 6 ¢D = 0 by Lemma 5 6, thls 1mphes that /\w 1s orthogonal to Ek (G) |

~Similarly

~ From Propos1tlon 6.1 we then infer that A, € N, *(G), and hence w € Qk(G) splits into -

<</\w,6ﬂ>>a—0 vweck(a) LT (614)»"

w—daw+5aﬂw+)\ W1th daa, € EX(G) mweck(a) Ao e/\/k( ). (615)_ o

- Now consider w E Lzﬂ’“(G) There exists a sequence wj € Q’“(G) w1th ||wJ||H1 < oo such
that wJ — win Lzﬂk(G) We split w; = dan +8q BJ +)\ By Lemrna 5:6;; € (H ) (G)

Y
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and 6an =0. From Lemma 5.1 and the orthogonahty of the decomposmon we mfer that

ey = O‘z“H1 - < CID (( a; al)’(al'—‘ai)) 1 < (d O‘J das), (Wj — z') >>q,
' ' , - (6.16) °

: and by the Cauchy-Schwarz mequahty

-

llex; _az”Hl o S Collws —wiHLz o (6.17)

~ Therefore a; is a Cauchy sequence, and ‘hence a; — a, in H} lﬂk 1(G) such that
Nawllg_ < C |[w|| L2 Similarly the construction above determmes a sequence f§;-— (3, in

H! 1S?.k'*'l(G) such that 6,0, is the C’° component of w, and satisfies 1Bullgi_ < C ||w||L3..

- Then also the convergence of A\; — A, in LZN¥(G) is guaranteed o O

As far as the higher order Sobolev spaces H, sQF(G) are concerned we have the following
regularity result for the Hodge—Morrey decomposmon '

Lemma 6.3. o - .

If w € H:QKG), then the components of the decomposmon (6.8) are determined by
differential forms _oz“J H 3+IQ 1(G) and B, € ’“Qk'*'l(G) which sat1sfy

and. ”@.:”HH—I < C||w|le : (6:18)

Proof :

| The differential form o, € (HJ‘) (G). which determines the component of w in L2 (G)

is by construction the unique solution of Eq. (6 10). For w € H:Q* (G) this is equivalent
to the boundary value problem ' SR

-

A aw—éaw | on G

6,19)
tay, =0 and téaaw-O on BG ( 19)

The elhpmc estimate (5 16) of Corollary 5.4 then 1mp11es that |
lowllygry € CQlwllrsy +llollzz ) - (620

' Moreover by Theorem 6.2, lawllzz_, < llwllzz, wh1ch proves the estlmate (6.18) for ay,.

The result for 3 is shown correspondmgly : - ~ : a

Conversely, the Hodge-Morrey decomposition allows to estimate the differential form w
belonging to certain subspaces of H:QF(G) umformly by the1r extenor der1vat1ve and its

- co-differential. As the first result of thls type we have:
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Lemma 6.4 _

If s> 1 and a is not exceptional, then
lwlla < c(udawn,,.-l +lBawllges) Vo€ HiEXG) @ HICHG),  (621)

' ] w1th a umversal constant; C dependmg on 3, a and the geometry of 6G

Proof : ‘ '
Since we H Q8 (G) is L2-orthogonal to the space N*(G), the decomposmon (6.8) y1e1ds

IIwIIH~ < |lda owllmz + |l5aﬁwlIH~ < llowwll o + IIﬂwIIH=+1 . (622) o

~ By construction a,, is solutlon of the boundary value problem(6 19) and the corresponding
_elhptlc estimate (6. 20) implies that ‘

“CYw”Ha+1 < Cl(”éawan 1 + “awan ) . Ny (623)

a— 1

By construction, a,, € ('HJ') (G) and 6aaw = 0. From the estlmate (5.3) of Lemma 5.1
and the L2 orthogonahty of (6. 8) we then infer that

Hawllm S0, (aw,aw) = Cz K da@u,w > . (6.24)
, Therefore, by Green'’s formula (2 24) |

, “aw“LZ S Cs < aw,éaw >>a < 03||aw||Lz ||6awl|L3+1 , (6.25)
which proves that llow || Lz_, < Csl|bawl| H";} . ’_Slmllar apply to 8., so that
IBullzz_, < Calldawsllgzzy - (6:26)

" In view of (6 22) thls proves the result. - : ' ' . m|

The estimate (6.21) provides us with a special version of What is called Korn s inequality
in continuum mechanics. In the differential form calculus such type of inequalities we first
studied by Friedrichs [F], who’s own-investigations into-the Hodge decomposition was
motivated by this problem. For exterior domains G ¢ R? a recent result is found in (W2},
where the corresponding estimate for the unweighted' LP norm on the spaces Ol p(G) and
0k (G) is given, cf. also the following section.
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7. Decomposxtlon results under boundary condltlons

- Corresponding decomposition results can be established also for the spaces Q5 (G) and
Q% (G) of differential forms satisfying the boundary COl’ldlthIlS tw = 0 and nw = 0,
respectlvely We start w1th defining the spaces

- NEP(G) = Nk(G)nQ (G) and N’“’N(G) - k(G)nQ’“ (G) (7.1)

of smooth harmonic fields in Q’“(G) Wthh satisfy the respective boundary conditions.
Their completions in HIQ*(G) are denoted by HIN®P(G) and HIN®N(G). The in-
clusion H1Q*(G) ¢ HL_ lﬂk(G) implies that these spaces are contained in the spa,ces

HED (@) respectively ’Ha_l(G),_dlscussed in section 4, that is HINED(G) ¢ HEE(G)
and H(}/\/'f'N(G) c HEN(G). - SRR

Theorem 7.1

If G ¢ R™ is an exterior domain and a # (1 - n/2) the spaces HlN"CD( G) and
HIN*N(G) are finite dimensional. Moreover if a is not except1onal all the1r elements
are smooth differential forms. :

Proof : ’ : o
Let Dy = {A € H=F (G) | ||)\||H1 <1} be the unit disk in HEP(G). By Gaffney’s
inequality (4.25) the H!_ norm and the L2_, norm are equlvalent on DH, that is

IIAIIHI L SCallNf:, VAeDy. (7.2)

Thus Dy is closed in the L2_,topology. Since the embedding H. '1QE(G) - L2 QQ’“(G)v
~ is compact, this implies that Dy, is compact. Therefore the space Ha 1(G) is finite di-

mensional, and so is its subspace HIN®D(G). Moreover, each A € HIN®D(G) (weakly)
) satisfies the elliptic boundary value problem ' 3

Aa/\=0 ‘ ) on G . 73)
tA=0 and t6,A=0 onaG’ (.

By Theorem 5. 3 this is also a strong solutlon, which hence is smooth. For H JNEN(G) the
same argument applies. : ' |

For the basic weight parameter a = 0 the spaces of harmomc fields in Q% (G) on exterior
domains with (possibly non-smooth) boundary have been studies extensively in [D] and [P].
In particular, these authors show, how to relate the dimensions of N*°(G) and N, kN(G)
to the Betti number of the domain G, cf. also [S2].

Turning toward the Hodge decomposmon under boundary conditions we need to define. -
the space

CH(G) = (6,818 € Q¥(G) , tB=0, t8.8=0, |Blg <oo}. . (74)
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IS’

N’“D(G {neQ (G)IHKHLz <oo < K >>a_0Vne(£’°(G)eB .(C.?))}.; (75)

" and‘the space @“(G) is orthogonal with respect to the L2 scalar product to EXG), as

-deﬁned by (6.1).
6.

Theorem 7.2 - L

IfG ¢, IR™ is an exterior domam anda is not except1onal the space H, 10k £ (G) of differential

forms sat1sfy1ng the boundary condition tw = 0 splits mto the dn'ect sum

(G)=H S’“(G)GBHC( ) @ HANED( _). o | .(7.6)

- This decompos1t10n is L2 orthogonal If wE H; sQk (G) th_en w =dga, + éaﬁw + Xw, and ,;

. d1fferent1al forms a,, and ﬂw sat1sfy the estzmate

||aw||Hs+1 <C||wl|H. “and . |lﬂw||H,+1 <C||w||Hs )

Proof : ‘ ' : :
Given w e H, IQ (G) the component daw is constructed as in Theorem 6.2:. From the
boundary condition tw = 0 we 1nfer that - :

7

, ,Therefore daw has a potentlal ¢D € ( )J'( ) in- the sense of Theorem 5. 2 Wthh is, by

‘ Corollary 5.4, the umque solutlon of the boundary value problem

| aqSD—-daw o , onG.'
t¢D—O and t(SqSD—O on 0G .

Moreover <K dgbg ¢D,6 dad)D >>a—- 0, whlch follows from t¢D = 0. Argulng as in the
' proof of Lemma 5.6, this implies that d, ¢ p =0. Now we set

A\

B,:=ép and /\ (w daw 6ﬁw). = _(710)

‘ Since, by construction, daﬂw = 0, the argument of (6 13) apphes accordmgly, that is

< Aw,éaﬂ >>a = << - (w— 6aﬁw) B >, = Da (¢>D, ) < § Bw, ﬁ >a=0 (7.11)7

for all 6,1[3 € Ck(G) Therefore Ao is L2 orthogonal to the space Ck(G) Slnce also ‘_

< N, dadi >>a_ 0 Vdaa € E’“(G) (11

-."thlS proves that Xo € N k,D (G) Thus the decomp051t10n (7 6) is established. The regulamty

result and the estlmate (7 7) then follow hterally as in Lemma 6.3. = o
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- The the arguments of PrOp,osition 6.1 apply literally to the case under consideratiOn. That. :

< daw, rs>>a K W, 6K D>e=0 VK e‘H’“’D(G) L ,'(7.8) -

(7.9) "




It is obvious that under the boundary condltlon nw =0 a correspondlng result holds
- true. Defining _

8’°(G) = {d alae ok LGy, | =0, nd,a=0, -||'a||H;_11 < oo} (7.13)
we have O - )
' Th.eo'x_'em 7.3 | , . 3 . . .
IfGC R™ is an exterior domain and a is not exceptional ‘the space H1OK(G) splits into
HlQk (G) H1£’°(G) @ H C’“(G) SHNY N(G) | | (7.14) |

Th1s decomposmon is L2 orthogonal. If w € H 05 (@), then w =da0, +6 B+ o, where -
Y € HINEN (G), and differential forms &, and B, sat1sfy the estimate

Nl < Cllollmy  and  Woullgees < Cllwll .~ (7.15)

"On thé basis of the decomposition results_of Theorem 7.2 and 7.3 the proof of Lenima
6.4 literally generalises to the case of differential forms in Q8 (G) and QF,(G). ‘We have: .

Lemma 7.4
Ifs>1anda.is not exceptuonal then

'.||w||Hs<c(||daw||-Hs-1+||5awu,,,_1) Vwe HiE(G) @ HiCH(GY . (716) .

with a universal constant Cc depending on s, a and the geometry of 8G. Correspondmg]y,’
the estimate (7.16) holds on the spaces HSS’“(G) @ H:CK(@G).

~ This version of Korn’s mequahty for differential forms satisfying the boundary condition
tw =0 or nw = 0 is more common in the literature then the result of Lemma 6.4. It is of
-particular importance that by Theorem 7.1 the spaces NEDP(G) and NN (G) are finite

~ dimensional. Consequently Korn’s inequality holds true for all dlfferentlal forms satisfying

either of the homogeneous boundary conditions above, modulo a finite dimensional sub-

space. Moreover, one can show that an estlmate of the form (7.16) also hold true on the -

space » .
H!Q(G) :={we Hlﬂ’“(G) Itw =0 and nw= o} o (7.17)

: ThlS is due to the fact that NED ( ) NNFN(G) = 0. For a precise argument, see Lemma
2.4. 10 in [S2] o '
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~ 8. Boundary Vveilue problems l'or differential‘ forms

It has been discussed in [S1] that the method of Hodge decomp031t10u provides a useful tool
to solve boundary value for differential forms. Here will illustrate the Hodge decomposition
technique at the example of two special exterior domain problem, and restrict ourselves -
for sake of simplicity — to homogeneous boundary condltrons

Lemma 8.1

- Let p € H71Q*}(G) and x € H10Y(G) sat1sfy the mtegrab1l1ty conditions

Sap=0 , KpR>.=0 V& er 1D(G) . (8.1)
dax =0 , tx=0 and K XK Sap1=0 ‘v’neN’““D( G) . " (8.2)

‘Then the boundary value problem

,d,;w=x aud‘éaQJ:p' on G

tw=0 . . | “on G (8.3) -

has a unique solut1on wo € H 2Q%(G), which is L2-orthogona1 to N *D(@G). This solution
‘can be estimated by '

ool < € (lcs + e N O
Any other -so]ution,of (8.3) diﬂ"ers_frOm wo by‘an _elem_ent of N¥P(G). .
Proof: . . : ‘

- By assumptron pis orthogonal to the space ’H'c LD (G) w1th respect to.the pairing << S>>,
* Hence there exists a unique potential ép € (’HJ')'c LD(@) in the sense of Theorem 5.2. By

Corollary 5.4 it is a strong solut1on of the boundary value problem

a = BN ’ I' S G

. ~,¢D P nG (8.5)
t¢D = 0 and t6a¢D =0 ondG, ,_
which satisfies ”¢D”Ha+l | C1(||p||Hs ! + ||¢D||Lz 1) Using Green’s formula (2. 24‘) we |

then infer from the boundary condition t6 ¢D = 0 and the integrability condltlon 6a p= 0
that '
=46 da¢D”L2 Lo dabadp, (P— ) da¢D) ap1=0. - (86)

Therefore Wy 1= d qSD € H ’Q’“(G) is a solutiorn of the problem
| Sawp=1p , dowp=0 and tw,=0. | (8 7)

Moreover, by (2.24) w, is orthogonal to N k,D (G) and satisfies the estimate ||wpl| oy <
Cz”PHH*’ 1. - '



On the other hand; the Hodge—Morrey decomposmon (6. 8) apphed tox € H . +%Qk“(G)
ylelds ‘ _ ' |
: | L x = dax+6aﬂx+nx. : (8.8)

o From the integrability conditions dox =0 we infer that 6aﬁx = 0. Hence the COIldlthIl |
| tx = 0 implies that &, € N k"'l b (G) By assumption, x is orthogonal to N k"'l P@) so

that x, = 0 and hence x = daax € Hj;ié’ff_ll((}’) From the construction of the Hodge
component oy, cf. ‘Theorem 6.2, we infer that §,a, = 0 and < ax,)\ >>,=0 for all
X e N:D(@). Therefore, w := Wp oy is a solution of the problem

5aw—p, dow=x and tw—-O, : : - (8.9)

which is orthog.o'nal to NoD(G). By the estimate for lwoll £ and Lemma 6.3 this solution
satisfies the demanded inequality (8.4). Finally any other solution of (8.3) has to be a
harmonic field with vanishing tangential component, i.e. an. element in N*P(G). . O

In the context of the Atiyah-Singer index theorem, the problem (8.3) may be understood
as a Dirichlet boundary value problem for the Dlrac type operator

d+6) : P QK(G) —> QC(G)EBQ"(G) (8.10) -
k=0..n S ‘

on the exterlor algebra bundle. Here Q¢(G) and Q°(G) denote the algebra of dlfferentlal |
forms of (ar}ntrary) even and odd degree, respectively. Hence @ Q%(G) = Q¢(G) @ 2°(G)
can be considered as the space of sections in a Zj-graded vector bundle. .

' Lemma 8. 2

Let n € H:QF(G) and nn be its normal component on BG Then there exists a d1ﬂ"erent1a1
form o € H;““%Qk 1(G) such that ,

olog=0 and n(do)=ny. . .(8.11)

It satisﬁes’Ha_||Hs+11 < Cllnl

Hs, where C only depends on s, a and the geometry of o0G. .

Proof :

Given a normal frame in the sense of (2 10) in a nelghborhood of the boundary, that isa
local frame of the form Fy = (N, Fy,...F,)onU C G. If 5 € QF(G) is smooth, the compo-
-nent nn on dGNU is uniquely determined by the set smooth functions n(N Fo@), - Fy k))

“where the permutations ¢ run over all the (271) shuffles of the fields (Fy,...F,). From ‘
olag = 0 and (2.4) we infer that : B

n(da)(N F, (2), .. F (k 1)) = D[O’( (2)»- F(p(k 1))](N) © (8.12)
Hence, the extension problem (8.11) reduces to solve locally on U the system |

(Fo@) - Foy)logru = 0

and  D(o(Fy), ... Fom)](N) = (NF@), Fo) (8.13)
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construct1on

" for each permutatlon <p Usrng the tubular nelghborhood theorem, [H1], one shows that '

n-—1

- each of these ( *~1). scalar problems allow for a smooth extension (Fp2ys -+ Fyry) to

UcCQg, wh1ch is compactly supported in U These extensions. can be chosen such that

”0’( ‘ (2), e ‘p(k))”Ha+1 (U) S Cllln(N’ F¢(2), e F(p(k))llHﬂ—l/""(UnzBG)‘,, : (8.14)

 with Cy. dependlng only on s, a and the geometry of 8GNU. Besxdes (8. 13) the boundary'

condition olag = 0 ylelds another set of problems, namely

(N Fyr2)s: E,, (k— 1))|8GnU =0, o B ST (8.15)

which are solved by the trivial extension o(N, Fui (), -« Fpr(e—1)) = 0 on U. Since all the'
problems of (8. 13) and (8.15) are mutually rndependent of each other, one can construct a

-smooth compactly supported o € QF~1(U). By compactness of G there is a finite number

of neighborhoods U, covering the boundary such that on which the'construction above
can be performed on each U,. By a partition of unity argument. the respective (locally
defined) differential forms glue together to a global solution o € Q- 1(G) of (8 11) By

llallH"H(G) < C2ll77”H-'—1/2(6G) < C3|l77llH°(G) o B ¢ 16)

/

where the last 1nequahty follows from the trace. theorem Fmally, if 17J — nin H SQ’c(G)' '

and each n; is smooth, then there exists a sequence o; of ‘smooth compactly supported ;

- forms satrsfymg (8. 11) and the statement of the Lemma follows from (8 16) v Lo

Theorem 8 3

" Let G-be an exterior domam and a not exceptronal Ifx € Hj +%Q’°‘”(G) Asatisﬁle‘s the
‘integrability conditions ‘ SR o

’da'X:'O S tx—O and << x,fc>>a+1—0 VnENk'HD( Gy, - (8:17)

then the boundary Value problem

~ f-vdaw='x‘ » on G

8.18)
tw—O and nw—O on8G ( )

has a , solution W € HSQ’“(G) This solution can be chosen such that ||wHHs < C’||x||Hs .

'Wrth a un1versal constant C.

Proof :

 The Hodge—l\/lorrey decomposmon (6.8) of x € H ; +}Q’““‘l(G) ylelds

x dax+6aﬁx+nx T . (819)

As in the proof of Lemma 8.1 the integrability condrtlons d oX = 0, tx = 0 and the
orthogonality of x to N kj_'ll ‘P (@) imply that X = daoy w1th ay € H SQ b(G). Moreover :

a
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lloex |l e C1||X|| HeH by Theorem 6.3. Havmg fixed ax, there ex1sts by Lemma 8. 2a
— differential form o, € H :"'%Qk }(@) such that

Al
g

leaG—O and n(dax)-nax, AR (8.20)

~ which can be chosen so that, “"’x”H'“ < CgIIaXHH. Then wy 1= ax + d a0y € HSQ’“(G)
satlsﬁes the equatlon dew = X and the bounda.ry .condition nwx = 0. Moreover, since

=0 1mphes that td,o, = 0, th1s proves that w, solves the problem (8 18). O

By the *-duahty we have:

. Corollary 8.l4

The boundary value problem

baw =.:p. L Q,n:G (8 21)
| tw=0 and nw=0 .on G T
 is solvable in H:Q*(G) for each pE H:;}Q’“ 1(G) satzsfymg
-6ap'— 0, np= 0 and K pK >>a+1— 0 \ GN:Hl N( ) . (8.22)

We note that elliptic techniques are not approprlate to treat the problems (8.18) and

(8. 21) since the exterior derivative d, is not an elliptic operator. In fact, these problems

are to be considered as an underdetermlned system, cf. [R-S]. The study of this partlcular :

type of equations is is motivated by its importance for applications.
As a special example the Stokes equation in hydrodynamics should be mentioned. In
order to solve the related static problem a precise knowledge is needed about the range

of the d1vergence operator acting on vector fields Y € X(G) subject to the boundary’

’,condltlon Ylac = 0. That is, one has to solve the boundary value problem |
| | d1vY - p and Yloe = 0 N | (8.23)

in a certa,m Sobolev space and control the norm of this solution. By means of the equiv-
alence between vector analysis and the differential form calculus on Ql(G) discussed in
Section 2, the divergence corresponds the' co-differential operator. §,. Hence the problem
(8.23) is solved by Corollary 8.4. The same problem has been treated recently in [W3]
where qu1te drfferent ‘techniques are applied.
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