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’ - . "Abstract:: ' R

A skin made up by finitely many partiéles is a manifold passing through a finite
system of interacting particles. The discrete medium as well as the continuum

are characterized by the virtual work. We study equlhbrlum configurations of
- the discrete system as well as of the skin and compute the vibrational modes.

' Non-trivial equilibrium configurations only exist if the virtual work is non- .
* linear. Free energy, equilibrium configuration and the vibrational modes cru-

cially depend on the structural capillarity. This sort of capillarity determines
the work caused by distorting the area of the skin. The free energy of the skin
is extracted from the virtual work by solving a boundary problem and is linked
to a Gibbs statistics of the finite system. This ylelds various mterplays between
geometry, topology, analysis and statistics.

AMS subJect classification: 06B99 53C80, 58A14, 73B05 73B30 73050

0 Introducti'on

" The aim 6f this applicatioh' of analysis, mainly of a type of Hodge theory and |

of Neumann boundary problems, is the description of a discrete medium as a

- continuum. In doing so we will not pass to a limit by enlargmg the particle
number, we rather will investigate how to fit a cont1nuum through the given

partlcle system. :
" The discrete medium consists of a large but finite collectlon P of mteractmg
material particles. The continuum is modeled on a compact nice manifold M

(without boundary, for s1mpl1C1ty) eq’uipped with a smooth mass density; Mis
.. called an idealized skin.

In characterizing the discrete deformable medium we use the virtual work

Ap(jp)(hp) resisting a distortion hp : P — IR™ at a configuration jp (cf.
Hellinger {19]). The configuration space is a collection Op of injective maps
- from P to R™. Op shall be open in the linear, finite dimensional space of all

maps from P to IR™. The one-form Ap on Op, is supposed to be smooth and to
be invariant under the action on Op of a neighbourhood of zero of the group of
all translations of IR" in addition it is required that constant distortions cause

" no virtual work.



v The continuum is characterized accordlngly by a smooth one-form A on
the configuration space O, a collection of smooth embeddings of M into R™
- (cf. Binz [5] to [8] and Marsden & Hughes [23]). Again O is supposed to be

open in the infinite dimensional. Fréchet space of all smooth maps from M to -
R™. Let P C M. We construct the virtual work A out. of Ap by shcmg (0]
~ into slices W, each one diffeomorphic to Op, via the restriction - map 7. Pulling
back Ap to each slice W by r and setting it.(in addition) equal to zero on the
" normal bundle of W yields A. This virtual work A inherits the i invariance under
the translation group IR™ and the property that constant distortion cause no
virtual work as well, at any configuration. The ladder fact yields a constitutive
- map H characterizing the continuum: The force density ®(j) at j is of the form
®(j) = A(j)H(5), where A(j) is the Laplacian of the pull back of <,> by j.
The general goal is hence to deduce characteristics of A by those of Ap.
We do so e.g. by using a Hodge type of splitting of A and Ap to exhibit the
smooth maps F' and Fp on 0 respectlvely on Op, relating them and identifying
‘them as the free energies in respectxve Gibbs statistics. The choice of densities
Fp respectively F of Fp and F does not only determine Gibbs states, but also
refines the description of the above mentioned media. It links, moreover, our
description of a continuum to the one.presented in Landau & Lifschitz [21]. ,
“We call jo C O to be an equlhbnum configuration if A(jo) = 0 and
ID F(jo) = 0 with ID denoting the Fréchet derivative on function spaces. An
equilibrium configuration of the discrete system is deﬁned accordmgly by using
AP and F P- B
_ The main tasks we head for in this paper is two fold. One is to show that a
non-trivial equlibrium configuration jo for a non-trivial medium (A # 0) of the

skin only exists if A is non-linear near jo (If F is constant on an open set, the .

elements of this set are called trivial configurations). The other is to determine -
the spectrum of the medium forming the skin at an equlibrium. :

Both rely on the notion of the structural capillarity: From the virtual work
at j splits naturally off the amount proportional to the area deformation at
j. This proportionality factor a(j) is called the structural capillarity. The free
energy F(j) at j contains in turn the amount - a(j) - A(j) with A(j) being the
area at j. This quantlty is the free energy determmed by the hneanzatlon of A
at j. :

In addition a(j) contains a-part which depends on the curvature and the
topology in case of dim M = 2; the Euler characteristics enters explicitly. Thus
~ both the equilibrium configuration and the spectrum are topology dependent.

A rather large part of the paper is devoted to develop the formalism needed
to obtain the results mentioned. It is needed to express the mterplay between
" analysis, geometry and statistics. In particular we show that the first trace
coefficient in the asymptotics of the partition function adapted to the Gibbs state
in the discrete case, can replace the free energy in the variation determining the
equlibrium configuration, provided the. temperature is remained constant. The
other coefficients contribute to the statistics. :
We close this note by introducing the notion of a conﬁguratlon of the skin



fitting the discrete medmm up to ﬁrst order (a special sort of equxhbnum config-

- uration) and present, at this kind of configuration, some descriptions of charac- .

teristics of A in terms of those of Ap and vice versa. In particular we express the
vibrational modes of the discrete medium in terms of the structural capillarity
and the area function both defined on O. The finitely many Fourier coefficients
of a first order fit, determined by the discrete system, are computed . However,

~ the general verification of the ex1stence of such a kind of ﬁttlng configuration.

will be done elsewhere :

1 Descrlptlon of discrete medla

In this section we are given a finite set P of pomts, thought of as mean locatlons
of interacting material particles. We characterize the discrete medlum in this
generahty via internal forces resisting distortion.

1.1 Discrete media

~ The configuration space of a discrete medium is Op, some open set in the col-

lection E(P,R") of all injective maps from P to R™.

By a distortion of the medium we mean a map hp : P — R" The ,

collection of all distortions of P is denoted by F(P,IR™), a finite dimensional
- linear space. A~ conﬁguratlon jp distorted by hp € F (P,IR™) is jp + hp; this
- explains the term dlstortlon The mass d1str1butxon of the discrete medlum is
called :
pp:P— R;

its total mass is m : =Y qep PP(Q).
_ The center z(jp) of mass of any conﬁguratlon jp is determined by

= rp(q )-gp(@). C(111)
, qEP . o '
Thus any hp € F(P, R™) satisfies
m-D 2(jp)(hp) = Z pp(q) - hp(q) (L1.2)
q€P '

‘ In the sequel we w111 assume that pp is a constant map with value one. If
hence z(jp) = 0 then }__jp(q) = 0. Thus any distortion hp leavmg the center
of mass fixed satisfies Z hy(q) = 0.

"The physical quahty of the medium- at a conﬁguratlon jp is characterized e

by the internal force ®p(jp). resxstmg any dlstortlon, ®pis supposed to satisfies
the following: .

@) plip+2)=Bp(ip) Vir€OpCE(RRY)  (113)



‘and for all z in a zero neighbourhood of R™, as Well as

Z < <I>P(.7P)(q),z >=0 Vjp€OpC E(P,R") and Vze R™
oy o , . .
(1.1.4)
(a) expresses the invariance of the force ®p under the natural action of the
translation group R™ of R™ on E(P,JR™) and (b) manifests that constant
distortions cause no virtual work. This relates to (1.1.2) for DZ(]F)(hP) =0.
We refer to Binz [1 1] for a group theoretical explanation of (b).

The virtual work caused by an arbitrarily given distortion hp at a config-
- _uration jp 1s defioted by Ap(j p)(hp) and is deﬁned by

Ap(jp) (hp > < @p(jp) hr(g)> va € op and Vhp € F(P,R™).
q€P . o .
| - - (1.1.5) .
Introducmg the metric Gp on E(P IR™) by setting :

gp(hp,kp) = E < hp(q kp(q) > ;Vkp,,hp € f(P;Rn) | (1.1.6)
: © q€EP : . ‘
| >yields |
Ap(jp)(hp) = Gp(®p(jp),hp) Vjp €O0p and Vhpe F(P,R").
If heiice' ®p is a Gp-gradient of a smooth map Vp : Op —> R then
Ap(jp)(hp) = DVp(jp)(hp) VJ COp..

Denoting by uj : P — R" the map given by

z 4 q—‘q o
ug(q) = {o q#q  z€R" fixed,

then Ap(j p)(’u ) is the work caused by dlstortmg only one partlcle by z, namely
- the one at gq. : :

1.2 Nearest nelghbour interaction (n.n.i. )

We think of P as the collection of all nu11-31mphces of a finite, one—d1mens1onal
and oriented simplicial complex L. The collection of all zero- and one- -simplices
is denoted by P and L, respectively. Two particles at ¢ and ¢;, say, interact,
iff they bound the same one-simplex o € L;. Any ¢; € P interacting with ¢ is
called a nearest neighbour (n.n.) of ¢. By nb(¢q) we mean the total number of
n.n. of any ¢ € P. On the linear space F1(L, IR™) of all one-cochains of L there
is the natural scalar products. g L given by ‘

GL (cl,cz) = Z< c1(o), cz(a) > - (12.1)
0€L1 . .



for all 1) ¢ € .7-'1(L R™). The coboundary 8! : F(P, R") — F(L, R") has
an a.djomt 61, the dxvergence, deﬁned by o ;

ng(alhp,c) gp(hp,51 ) Vhp € F(P,R™) Ve e FYL,R™).

We therefore have the Hodge Laplac1an At i= 610 0! on F (P,R" ) (cf. Binz
(4] and Eckmann [16]).

Due to (1.1.4) any internal force &p € C*°(O, F (P,R™)) caused by dis-
torting a n.n.i. a.dmlts a constitutive map 'Hp € C>=(0Op, F (P IR ), satisfying

ATHP(JP) ®p(jp) V_JP € Op. (1.2.2)
We thus characterize this kind of a medium by the map Hp, zn the sequel. Since

nb(q) '
ArHp(ip)(g) = nblg) - Hr(iP)() - Z Hp(]p ¢) VgeP (123)

(cf. Bien [4]) we immediately observe that ’Hp(jp)(q)v 'Hp(jp)(q,) is the inter- =

~action force " off equilibrium” between the matenal partlcles at jp(q) and jp(g;).
It is alternatlvely described by o

HP(JP)(‘I)’ Hp(ip)(a:) = ialﬂp(ap)(az) " rVi’_=:1,ﬁ-~,nb('q)-,v (124)

with + according as to whether ¢ = o7 or ¢ = o], where + and — is given by the
orientation. Since ®p satisfies (1.1.4)'and Kerd! = IR™ we conclude that ®p
factors to imol. The quotient map is called ®p again. Similarly Hp depends
only on 8'jp for jp € Op. Moreover Ap(jp) = Ap(8'jp) for all jp € Op.
Forces of this kind may be determined by a srho_oth potential ’

| Vg, :0'0p — R
‘such that,for vall ip e Op '

Ap(ip)(hp) = Ap(algp)(a hp) = DVL (algp)(alhp) Vhp € op (1.2.5)
Hence the force isagr, -g'radlent ie.
| ®p(8'jp) = gradgy VI, (8 JP) Yjp € Op.
Settmg Vp(] p) = VL (8'jp), then the Gp- gradlent is | |
gradGPVp(Jp) = §! grngL VL, ~(8 ir) Vyp e€eOp. (1.2,6)

‘Takmg the component of gradg L, VL, (85 p) along 61 jp yields the sphttmg

‘

gTadgL VL, (31319) P(8'jp) - 51]P +9L1(3 JP) VjP € Op (1-277)"‘,




where ¥:8'0p — Risa smooth map and 6 (31(_7p) is QL -orthogonal to
a'j jp. Hence VL sphts into- | *

‘VLl(ale) == 'ng(w(alJ’P)' ljp,alJ'P)+V11-, (8*jp) VJP € Op (1.2.8)

where VL is deﬁned by (1.2.8). In analogy to Hooke’s law for a sprmg, we call

¥(8'jp) the sprmg ‘constant, provided ¢ is a constant map.
Clearly the above sphttmg (1.2.7) yields

Ap(jp)(Jp) = GL1 (v(p) - aIJPﬁlJP) Vip€Op, -  (1.29)
out of which the map 1/) can be determined. We will use thxs fact later on.
2 The free energy

Given a discrete medlum, we w1ll split' Ap on Op via a Neumann boundary
problem into exact and non-exact parts and show that the exact part can be

identified as the differential of the free energy, associated with specific observ-
ables. To this end O p will be the closure of the open set Op and shall be further

specified below.
2.1 The free energy of the discrete medlum -

Let F (P,IR™) be oriented. Op shall be a dim F (P,R )- dlmen_sione,llcompact,
smooth and connected manifold with boundary. Given Ap on Op then

Ap=DFp+¥p | (2.1.1)

with divo,Ap = Ao, Fp and Ap(no,) = D Fp(no, ) for some smooth positive
" map Fp : Op — IR, determined up to a constant. Here divp, and 4 o, on
F(P,IR™) are respectlvely the divergence operator and the Laplacian of the
scalar product Gp. mo, denotes the positively _or1ented unit normal of the

boundary of Op. ID denotes the Fréchet derivativ on function spaces. Without

" . loss of generality we may assume that ID Fp(jp) vanishes on any constant map

from P to R™. If ®p is caused by a nearest neighbour 1nteract10n, then
' Fp = Vp 09 + const... L (212)

w1th Vp as in (1.2.6). Hence F P admlts a splitting according to (1 2.8).
“Next we will establish Fp as a free energy. To this end let the Boltzmann
constant be equals to 1. For each jp € Op the positive real F; p(] p) is the free

energy (cf. Bamberg & Sternberg [3]) associated with an inverse temperature

map 3 € C®°(Op,R™") and a state szbbs(]P) as seen as follows:

Let Fp € C°(Op, F(P, R*)) be such that Fp(jp) = zqeppp(jp)(q) for

all jp € Op. Each such density Fp is of the form

FP(JP)

o) = 0 ) wih Teeln@ =0 (219)

qEP



for a suitable ¢p € CM(OP, (P R)). Here #P denotes the number of .points
in P. The state pByy, (jp) is defined by T T e ot porit

Fp(jp) - FP(JP) + Ep(ip)

FP(JP #P FP'(J'P)

thbbs (JP)

The observable Ip € C°(Op; (P R)) associated with B e C°°(Op, R+) and

szbba is

. _ 1 :
) _IP = FP - 'B' -ln szbbs . S o : (2.1.5)
and yields'v for each jp € Op o ‘

e—BUPr)Ip(ir)

P (i
PoiunsUP) = S5 G TrGm@ (2.1.6)
'He_nc‘e pg,.,,,,s (jp) is a Gibbs state for each jp € Op. This state implies
' Fp=Ip=p815p o (217)

with the usual notions _ o
Ip(jp) : Zszbbs (7p)(q) - IP(.?P)(Q)
i _ , qEP

and

(JP) =5 PBitna (Gp)(@) -1n PEitns(dP)(2);
q€P

- hence F is a free enérgy. Up#S -D ,B unless ¥p admits an integrating factor '

in which case Fp can be chosen such that Up = S - ID 3 holds indeed.

Specifying 8, £ép and Fp needed to interpret Fp as a free energy yiélds a finer
- characterisation -of the discrete medlum than the one determlned by Ap only
The partition functlon

ZP(JP) — Z e—B(JP)IP(JP)(Q)
qu

, ‘
of the state pE.be» defined for all jp € Op, satisfies Zp(]p) = e=Plr)Flir)
and admits the following interpretation: Let Qp(jp) € End F(P,IR) be' the
operator having the characteristic function 1, as eigen-vector with eigen-value
e=Alir)r(r)(9) for any g€ P. Then the following is obvious:

Lemmé 2.1.1 ° Given szbbs := =& and a positive map 6 € C’oo(Op, F(P,IR)) |

then the partztzon functzon is of the form

B(JP)

(Jp)—#P+B(JP) “tr QP(J )+ =t QP(J )= (218)

Vip € Op. - (2.1.4)

~;




Finally, let us introduce the concept of a. (father strong type. of) equi-

librium configuration jp € Op: We require from jp both to hold, namely

®p(jp) = 0 as-well as Gradg,Fp(jp) = 0, with Gradg, bemg the gradlent_

formed with respect to gp The following is rather obvious:

Lemma 2.1.2 Ifjp € Op is an equzlzbmum configuration then the followzng
are equzvalent promded that 3 is kept constant :

| (z) tDFP(]p)—O,
(i) DIp(jp) =0, (i) DQp(jp) = 0;
thus trQp serves as @ Lagrangian density to determine the stationary configu-

ration jp of Fp. The traces of Q(jp) and the higher order powers of Q(jp) in
Zp reflect the statistics chosen and hence the fluctuation about trQ p(j p) '

A first rather obvious remark, based on:(1.2.5) and (1.2.7), on the ex1stence
of an equilibrium conﬁguratlon is the following:

©

Proposition 2.1.3  An equilibrium configuration j$ in a n.n.i. medz’um with
non-banz’shing spring constant Y exists only if 0p(j?,) # 0.

3 Characterlzatlon of an 1deahzed skin

‘Here we descnbe an idealized skm a continuum, as a connected smooth com-
pact and oriented manifold M, equipped with a mass density and a constitutive
law, both configuration. dependent. The constitutive law will be non-local in
general The reason for non-locality is two fold and will become apparent if
we treat on one hand the virtual work caused by area deformations and on the

. other if we formulate conditions for equilibrium configurations. A relation to the

discrete structure will follow in section four. For the geometric notions we refer
to Greub et al [18]." | : :

3.1 An 1dea11zed skln

The configuration space is supposed to be an open subset O of the collection .
E(M, R") of all smooth embeddings of M into R™ endowed with the C*°-

topology, a principal DiffM-bundle (cf. Binz & Fischer [12]). The tangent space
at each j € O is C°(M, IR"™), the collection of all smooth IR "-valued maps of
M into R™. On IR™ a fixed scalar product <, > is specified. ‘

A 'mass density is a smooth map p: O — C®°(M, R) with p031t1ve values
for which the equatlon : :

| / Pli)uli) = const. 'f vieo
M

holds. u(j)-denotes the volume element of the metric m( 7)- The above equatlon
implies (cf. Bmz [6]) ‘ :

/M.(JD p()(h) + p(3)*tr Bu)u() =0 ¥h e_c*?°<M, R™.  (3.1.9)

o,



and_

D denotes the diﬁ"ei'entiat'ion on function spaces (on O, here) in the sense of Binz :
et al [15] or Frolicher & Kriegel [17]. Moreover By, is an element of End T M, the

collection of all smooth bundle endomorphism of TM over the identity, equipped . -

with the C*°-topology; it is defined as follows : Let m(j) := j* < > be the . pull
back metric of <,> by j on the manifold M. Gwen any other j' € E(M,R™),
the metrics m( 7) and m(j) are related by

(), w) = m(G) (£ ) w) vae:rM VeeM ‘(3'110)‘

- with f(j') € End ™ being smooth and pomtw1se p051t1ve deﬁmte with respect

tom(j). The derivative of f at j in the direction of h is denoted by Bh Equation

. (3.1.9) implies the followmg

D o))+ ) trBr = AiJy(ish) V5 €O and Vhe C=(M,R")

~ where A( ] ) is the Laplacian of m(j), for which we refer to Matsushima [24] and

y(j,h) : M — IR is a smooth function, uniquely determined up to a-constant
(cf. Hérmander {20]). However, we choose p such that the continuity equation’

DoG)(h)+p()- rBa=0 VjeO (3Ll11)

s

- holds, true! Densities of this type are determined as follows. Given a positive'

po € C=(M, R), the solution to (3.1.9) is obviously

—.P(j)?Por°detfél(j) j€0 . - (3112)

" with f as above (cf. A1.5in appendix one).

The constitutive entity which describes the quality of the medium phe-
nomenologically, will be a spec1a1 sort of a smooth force density map

<I> 0——>C°°(MR )

Wthh will prescnbe at each J € O the force density ®(j) € C*(M, R") resisting
an infinitesimal distortion h € C*(M, R™) of j(M) C IR™. The special quality

- we will impose on @ is inherited from its virtual work (cf. Hellinger [19]), the-

one-form A : O x.C®(M,R™) — IR given for all j € O by .

AG)(R) = /<‘I>,(j,h>u(j) VhEC=(MR™.  (3113)

The force density map &: 0 — R" is such that

-0+ 2) = 2(4) VjieO andVz near 0€ R™ ~(3.1.14). |

[ stmy =0 vieo @)
are satisfied. (3.1.15), however, is the integrability condition for the equation

AGHG) =0(G) Vieo  (3116)

J



- AG)(R) = g(ao)@(a) B) = GUo)(AGR)AG)K)  Yh € O®(M, R").
o , (3.1.19)

thh H e C°°(O C°°(M ]R")) determmed up to a map in C°°(O R") The -
- map H, resulting from (3.1.15), is referred to as a constitutive map in these

notes. Given H, the force density map <I> is determined and vice versa. We thus
reformulate: |

An idealized skin with underlymg ‘manifold M is given by a mass denszty/ '
- p€ C®(0,C®(M, IR)) satisfying the continuity equation (3.1.11) and a smooth

constitutive map H € C°(0,C®(M,R™)).
In later sections we will base the description of an idealized skin'on a ref-
erence configuration jo € O. To thlS end we solve the followmg equatlon

AGo)HG) = det £(G)-8(G) . jeO (3117)'

for a constitutive map H (now adapted to the reference conﬁguration) and set

CB(j)i=det (5)-2() Vi€ O; (L)

& reproduces the virtual work A for all j € O as seen by

Here

G(j)(h, k) :'=-/ <hk>pj) - Vi€O and VhkeC®(M,R™).

- The map H(7) has a Fourier expansion

AG) =S k() e Vieo (3.1.20)

. where e, eg, - e C® (M,R™) form a complete system of elgen-vectors of A( Jo)

with respective non-vanishing eigen-values A\; < Ay <

| In appendix one the Dirichlet integral assocxated w1th A(j) and the Lo-
metric G(j) is presented and studied in a fashion suitable for the purpose in

view.
Remarks: :
a) (3.1.15) allows to write
' B(j) = 5 je(J)

where a(j) : TM — R™ is a smooth one-form smoothly dependent on j and
§; denotes the divergence operator associated with the metric m(j). The Hodge

decomposmon of a(j) y1elds (cf Binz [5] and Wenzelburger [25]) -

a(J) = dH(j) + 1) + a2(j) Vi€ 0 | '(3-1§21)'

~ where a;(7) and aa(j) are some IR™-valued one—forms, a1(7) is coexact, i.e.
6ja1(7) =0 and az(j) is harmonic. Hence a and d’H yield the same ®. However,

spec1fy1ng a.to be the constitutive part yields obviously a finer clasmﬁcatmn of
media then the one produced by spec1fy1ng H only

A



'b) The geometric foundation of media with micro structures are studied in

Ackermann (1] where configurations are embeddings of a principal bundle into
another one. The mech_amsms used here are generahzed accordmgly (cf. Binz &
Ackermann [2]). ‘

A word to the type of constitutive laws we use for the‘continuum here: To
base the constitutive properties of a continuuin on’ the notion of virtual work
in the sense (3.1.13) is a rather naive approach from the continuum mechanics
point of view (cf. Marsden & Hughes (23] and the remarks above). We do so,
however, because it is on one hand convenient for discrete media and keeps on
the other the formalism simple. . S

The relation of H with the first Plola-Klrchhoff stress tensor o is evident

by (3 1.21). We refer to Binz [1 1] for a group theoretic Justlﬁcatlon for (3 1. 15)

: 3 2 Structural caplllarlty

Let A:0C E(M,R™) — R be the area functlonal of a skin deﬁned by
A) = /-M W) vie 0. . (@21
The virtual work A4 caused by disf'orting the area is -

A4(j)(h) = a(j)- DAG)K) V€O and VheC®(M,R™ (3.22)

where a.€ C*®(0, R) is called the structural capillarity. The force density
of any j € O caused by distorting the area is a(j) - A(j)j. The map A(j)j,
pointwise normal to TjT M with respect to <, >, is called the mean curvature
tensor (cf. Lawson [22]). It is the G(j)—gradient of A at j.

It is easily verified that any H € C*°(0,C*(M,R™)) splits into

@H(J')="a(3) J+Hi(G) VJ'GO' o (3.2.3)

where Hy(j) is not sensitive to area deformatlons (cf. Bmz [5] to [7]), saying
that A(j)j is G(j)-orthogonal to Hi(j) for all j € O. The virtual work A caused

' by ’H( ]) in (3.2.3) yields the following equation for a:

A(])(J)—-a(]) dim M - A() Vjeo (3.2.4)

which in turn determines a dlrectly out of A a fact which will be used later. .
Clearly (3.2.4) shows that a € C*(0, R):

The notion of structural capillarity will be crucial in determining the free
energy and the vibrational modes of the continuum (cf. sec. 5 and 6) describing
a finite collection of interacting particles. The sort of virtual work given by
(3.2.2) Justlﬁes partly our non-local approach. ' ~ :
, Let us study and illustrate the structural capillarity somewhat closer in case -
of dimM = 2 and R™ = IR®. As we will see it is influenced by the Gaussian
curvature. To establish this, we consider the Ricci tensor Ric(j) of m(])




Denoting by W (j) the Wemgérten map of the smooth embeddmg J, then the
equa.tlon of Gauss (cf Bmz et al [15]) yields for any ] € E(M R?®) immediately

Ric(j)(X,Y) = ()(-(H()'W(J)— W)XY) (29

for all smooth vector field X,Y on M. Here H ( _7) tTW(]) Let R(j) denote
the symmetric operator such that . .

Ric(j)(X,Y) = m(j)(R(), X, Y). . (336)

R(j), bemg an mtrlnsrc object of m(j),is expressed by the extrinsic object W ( J) '
as

. R(j) = H(j)- W(J) W2(j). | - (327,
In particular the scalar curvature A(j ) being the trace of R(3), is 7
AG) = HG ~ W), . (329
'Using the Cayley Hamllton theorem for W( )) we easrly derive from (3 2. 7)
N A - - . *
k(j) = (2]) o (329)
where &(j) := det W( Jj) is the Gaussran curvature (3 2.7) yields thus

a well known fact. : : c
Clearly - J— -dj is in general not a dlfferentlal It is easy to see (cf. Binz

[7]) that ’—\-@- d] is a differential iff A(j) is a constant map on M. Let us call
" the exact part of djR(j) by dr(j); it is obv1ously determmed by

A A
CAG)r = 5;(5 -dj) = —grad,gy= 5+ (J)J

, , 2 .
"To establish the influence of the curvature to the structural capillarity, we

have to determine the componént of dj R(j) along dj formed with respect to Lo-

metric O](]) on the Fréchet space of all ]R3-valued one-forms of M (cf. appendix

one for a(j))- This is to say we split 5 A d] into

’»A(2]) d]-— K@) dj+%-(~j) \ Yjeo N ‘(3.2.10>)

with K(j) € R and 7,(j) a smooth IR3-valued one-form satisfying |
a(3) (7-(5), dj) = 0 or reformulated, for which G(5)(8;7+(4),5) = 0. Hence -

a0)(* L) = [ 2 gje; dinti) = KG)- [ dies i)
| | T o (3211)



v'has to hold for each jeE (M R?® ). We refer to, appendlx one for ¢;.Obviously

* we have [, =5 AG) | 2u(j) =2+ K(5) A(j) with A(j) belng the area Of](M) By .
- the theorem of Ga.uss-Bonnet we conclude

L X =2K()-AG) vJeE(MJR ) (21 v

w1th X the Euler-characterlstlc of M. (3.2. 12) determines the map
K: E(M R3®) — IR and hence yields the following:

‘Lemma 3.2.1 K(]) 87”‘(]) X or A() = 8«115(5 V] € E(M, R )

AG)

Thus K is not constant, in general The denszty of K (]) on M is TAG)

Using (3 2.1) the followmg is 1mmed1ate as well: _ ‘
Lemma 3.2.2  The one- form K- A is ezact on all of E(M R?® ), in fact

S K-DA-—-"-é)-f-;-]DlnA. ,. ©(3.2.13)

" Hence K(j)=0if X = 0, since D.A(j)jé 0 for dllj € E(M;RS).

Given a constitutive map H, we split dH at j EE(M IR3) with re-
spect to g(j) into a component along dr and a component dHy which is g(7)-
’-perpendlcula.r to it, yielding :

dHG) = ar(j) - dr + dHa(G) (3214
with | o o ’
r:E(M,R3 — R _
: bemg smooth dr( 7) depends on dj rather than j itself and so do a, ar and Ho.
The map ap - dr is the curvature sensitive part of dM.

‘The influence of the curvature to the structural capillarity (cf. 3.2.4) relies
on equation (3.2. 14) and (3.2.10): It reads as :

“a(i) = ar()- K(G) +aa(s) vieo <3-.2.1s)f

for some smooth map a; E(M,Ra) — IR3. Here a1(j) - dj is the g(j)-
component of dH2(j) a.long dj. The part of the structural capillarity affected by
-the curvature is thus ap - K. The equation above reformulates hence as

( J) o o
a(j)=a + a1 J ,Vy € 0. 3.2.16
~ The structural capxllanty is not affected by the curvature for any medium under 7

- .consideration if M is a torus, since K =0 for this kind of a surface.

The followmg is a direct consequence of (3.2. 16) and (3:2. 3)
Proposxtlon 3 2.3 If <I>(j) =0 then a(y) =0 and hence

ar(7) - K(j) = —a1(9)- -



4 The dlscrete medlum modeled as a
contlnuum

To describe the discrete medium as an idealized skin, consiSting of a large number
of interacting material particles, we have to assume that P C M and need to
construct out of the given data pp and ®p a mass density p and a constitutive
- map H on an open set O C E(M, IR"), respectively. To do'so, we fix j, € O. Let
r: C®(M,R") — F(P,IR™) denote the restriction map.  Clearly r—10p C
E(M,R™) for Op C E(P,IR™) small enough. The following lemma shows that -
-the most obvious to do to construct A out of Ap, namely to set A := r"Ap, is
useless for our purpose:

| Lemma' 4.0.4 r*Ap admits no forc'e_ dénsity with respect to the metric G nor
- G(Jo), in general. o : al Y

’Proof
Let us assume that for any Ap the followmg holds: .

* Ap()(h) = /M <o)k pl) Vi E o and Vh‘e C°°(M,1Rﬁ)

 for some &. Since Ap(jp)(hp).= Dgep < <I>p(]p(q)) hp(q) > for any jp € Op
a.nd hp € F (P R") we conclude that

JP) Z Ep JP

,qu ‘
Here ® is defined- by =

. L . (ﬁ? ’ :={in q—q

| | @) =10 4 Py

for any fixed ¢ € P and a given be,sis‘ Ziyeeey zn of R” Settmg |

AL(jp)(hp) =< ®%,hp > vgp € OpandVhe F(P,R") -

- yields . | | ’ : L o ‘ |

, A% (r(7)) (r(h)) =< @], 7(h) >

for any J€O0 and any he C°°(M IR™) and therefore

AL () () = / <B(j),h> W) deo.

However, ‘this means. that the point evaluatlon r*A% admlts a density which is”
- not true. The result of course holds accordingly if Q’ is replaced by G( ]0)
The constitutive laws we have chosen to characterize idealized skins are.
based on force densmes, however. In these notes we prefer the followmg way out
of this dilemma:




The requxrement of the existence of a force density & (cf.(3.1. 18) and
(3.1.19)) implies the existence of a G(jo)- orthogona.l complement to ker r C

- C®(M,R"). This, as we saw, does not exist, in general. We therefore look
for a complement to kerr not G(jo)-orthogonal but isomorphic to F(P, R") via

the restriction map r. This means that we will choose a flat connection on the

trivial vector bundle Op x kerr of Op. ‘This will imply, however, that distortions
" in ker r may cause non-vanishing virtual work, or expressed in an other fashion:

The choice of a connection is in effect a choice of an approximation of r*Ap.

4.1 .The construction of a fcomplement to kerr

Let O C r 1Op with _70 € O. We requxre for each j o0 that the maps
&(5) and 'H( ) in' (3.1.18) and (3.1.17) are in the complement to construct.
Hence the finite dimensional complement has to be invariant under A(jg), and
thus has to be generated by eigen-vectors of A(jo). But there is still a choice

" involved. Here is how we proceed: Let zi,...,2, € R™ be a <, >-orthonormal

basis. We choose G(jo)-orthonormed eigen-vectors e;,,...,e;, in C®(M, R™)

of A(jo) (cf. sec. 3.1) with respective eigen-values 0 < A;; < ... < /\,b such

that z1,".., s, 7(€s, ), ..., 7(e;;) forms a basis of F(P,IR™) and that S A, s

- as small as possible. The complement Fo(M;R"™) C C®(M, R™) to ker r*

we look for, is the span of z;, .. vy Zny €4y y -y €4, FOr simplicity we write Just es

‘instead of e;, for s = 1,...,b. Hence we conclude , ‘
C®(M,R™) = ker r & F°(M, R™) = kerr @ }"(P R™). (4.1.1).

The flat connectior’i,. mentioned in the pfeVious section, is given by F*(M,R") .
as horizontal subspace everywhere. Obviously the G(jo)-orthogonal complement.
..7:°°(M IR")J' C C*(M,R™) to F>°(M, R") is not 1dent1ca.l with kerr, but

C°°(M R™) = F°(M,R" )@]—'“’(M R™* : (4.1.2)

vho'lds certainly true as well. Constructing F*=(M, R) just accordinglyJ /yields A

the g(]o) orthogonal sphttmg - ,
C>(M, JR) Fo(M,R)® F>(M,R)*:. - (4.1.3)

- Let 7%= r(jo). We require o - r‘iOP' to be of the form

0- jo = Okerr @ W' a  (414)

with Oker - kerr and W' C Fo(M,R™) bemg nelghbourhoods of zero, respec-

- tively. Hence O slices into

0= U W(]) with | Eo = r"l(j%),ﬂQ o l'(4.1.5)‘

JEE,

‘where W(j) =7+ W for all j € r~1(j$) N O. From now on O is as in (4.1.5).

/5




4.2 The constructions of p and A

Let jo € O and ’j?, = r(jo) again. The discrete mass density ppv\(cf.. sec. two)
yields by lemma A2.1 some positive map pg € F°(M, R) satisfying -~ -~ °

) / po u(Jo pr(q) A (421)

where m is the totdl mass. Let f(j) as in (3.1.10) with f(jo) = id. Then

p(j) = po- det f7YG)  VYieo

determines a mass den81ty on M in the sense of (3. 1 12). Clearly p( Jjo) = po and .

p(j) € F*(M,R), in general. )
The virtual work A on O is constructed out of Ap as follows : Let Too 1=
r|F°(M,R™) and accordingly 7o := ’I‘|W(]) forall j € r— (yP) N O. We set

on each slice W(j)

“A—r*A,;  and’ A|0xf°°(M'1R"l= 0. (422)

Clearly A admits a force density on each slice and A is consta.nt along r 1( J P)ﬂO
Given j € O and k € kerr then in general A(j)(k) # 0. However,if Ap(r(jo)

) =
~ then indeed A@G)(h) = 0 for allh € C*(M,R") and for all j€ 'r‘l(jp) 0, as

it is 'easy to see.’

A word to the structural capillarity: Due t0.(3.2.4) the structural capllla,nty v'

exists for 7*Ap but is of course not identical to the one determined by A in
(4.2.2). To describe the difference we split j € O into j = joo + j1 With jo, €
Fo(M,R™) and j, € F°(M, R™)*. Since AG)G) =A@ )(]oo) it is clear that
the structural capllla.ntles mentioned above may differ.

The constltutlve map H of the virtual work A is given for each j € O by

H(G) = Yoo_, £'(§) - e; where k'(j) = A1+ Ap(r(5)) (r(e:)) for any i =1,---,b.

- Due to (3.2.4), the structural caplllanty a of the medium at hand is obv1—- |

ously determmed by

b . . .
)= R0 X Vieo

where j = S 7 e and A is the i** eigen-value of A(jo) in the enumeration -

chosen above.

4.3 The concept of free energy of the continuum

Let Fp on Op be the free energy of Ap and 52 p E€E0p be an ethbnum config- -
uration. Here Op is as in sec. 2.1. We regard ID Fp as a virtual work by itself
and hence lift ID Fp by (4.2.2), to a one-form A Fp ON 0. i.e. we set slicewise
App =T} *IDFpand Ag,|O x.7-' (M IR™)* = 0. Hence AFP|'r 1(i%)n0o = 0
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Clearly there is some F € C°°(O R*) such that DF = App nea.r any _7 € 0.
Moreover

F(J)‘FP(T(J))+C°nSt SVieW() with jer(®)no

.settmg const.=0 yields ‘ ’ :
: F=r Fp on W(j’). o ' (4.3.1)

The gradient Gradg(J )F formed with respect to G(j') satisfies _
roo(GTadg(j')F(J")) = (")'GmdchP(j')' vj'e r-l(gp)no (4.3.2)

for some <pP (") € F (P, R+) as seen by lemma A2.1in the second appendlx
Clearly A splits into \

A=DF+V neax'any»j'ér 1Y 0 (4.3.3)

. w1th ¥:= A—IDF and is the Neumann sphttmg formed shcew1se with respect

to the scalar product r3,Gp. In determmmg the divergence divyy(;:)A on each
slice W(j'), formed with respect to r% Gp, the structural capillarity a of A in
(3.2.4) plays a crucial role. To see th1s we let Kg C W(j') be a closed ball of
radius s centered about j € W(j'). Then the following holds true:

Theorem_ 4.3.1  For j € W(j)

- d'imM‘l‘im»s_»o‘_s—:hJ'_Ks'faKs (a'A_a'A(J))I"LaKs
+ | treegp D 2AGG)(- -+, )(4) |

with tre-g, being'~the trace formed with respect to, r’;oGp. The equation (4.3.4)
is reformulated as 3 :

p—t
\

B FG) = 5 - Bt (8- AG) + 5t e DA 100 (439
sz 2A(J) =0, in partzcular, then | |
vy D AG)(R) = L Aol A + S

for any h € .?-"°°(M, R™) with jo + h-€ W(]’). Therefore,

F‘:% “q - .A F2+const on W( "N | -(4.3.6)
where 4& W )Fg(]) = —1 trpgpID 2A(j). If A(j + h) s linear in h theﬁ'

obmously

5]
Il
[SER

-a - A+ const. on W>=(5'). | - (4.3.7)



" oy

‘ Proof: : : - :
' Letj € W(j') for j' € r“(gg) NO be ﬁxed Moreover let Kgbea closed ball in
» W( j) centered about j. Its radius is denoted by s. Then

leA(J) = = hm A(.. )(Q(---))Mah:;;- : ‘(4.3.;8)

—0 vol Ks 3K3

‘Here AW(J 1y is the Laplaman on W(j' ) The integrand takes the value A( Ja)( ( ))
~ for any jg € 8K3 Any ]a € 9K g has the form L :

J_a—]+h_ forsome hef“(P,B"'). o - (4.3.—9)‘F
'Henee . . | o o o~ | |
| MG)(nGo) =2 A )
and therefore for any ]a € Ks ' -
"'-A(ja)'<j)‘= AGERG = ADDADAGMG) (311
' ' | + 3 DZA( ) (R h)(])+h1gher order terms

Due to (3 2.4) and (4 3. 10) equatlon (4 3.11) 1mphes

G

| A(J'a)(n(j'a)‘) = '(A(je)(ja) Aje)(5)) = dlmM ((a A)(Ja) — (a- A)H))
- 3 DAGRG) - P51 2A(J)(h h)(5)
— - ' hlgher ord terms in h. . (4.3.12)
We reformula.te the terms on the rlght hand side'i m several steps .
Step 1: To treat ‘
lemq—»oom oK DA(J)("( : '))(J)Haxs )

- we consider'the linear map 'DA(j)(-, . )(J) : ;7-'°°(M R™) — 'R’.'Sin.ce'

div (DA(J)( ))(-7) = _s;ﬁgo vole oK

DA(J)( () (o

~ and dlv(D A(])( ) 3G) = 0 (sxnce DAG)(- )(]) does not vary on 0). Thus
the linear term % - ID A( (- )(7) does not contribute to divA(j).

- Step 2: To study the mﬁuence of the term 1nvolv1ng the second derivative of A
'at]m (4311)weset . o

D AG)(, h)A(j) =‘r;g;a(5h, N




with S € Endf (M, R™) aod consider the one-form
B v:TO — R . |
" given by - |
VG"Y(R) = r3Gp(S(G)I" K) Vi" €0 and Vk € FX(M, R")
_ | which is linear'in j". Setting h( _75) = Ja —j we find |

(ja)(n(Ja)) = 7(1)(n(Ja)) + DzA(J)(h(Ja) n(Ja))

By the fesult of step one, we therefore observe that the quadra.tlc term in (4.3.12)
contrrbutes to (4.3.8) by the amount

lims—o }K Jotcg D*AG) () worcs

lime_.og —— vole faK_g '7( )(n( ))”3K8 ‘
= —divy(j) =trS(G). (4.3.13)

- The higher order vterrns-on. ‘the right hand side of (4.3.12) do not contribute to
divA. Hence (4.3.4) is established. To verify (4.3.5) we observe that

2@ A - (@ @) = D AGB + 75 D*e- AG)AE)
I + terms of hlgher order . (4.3. 14).

. iUsing step one we hence verify that o o :

%./3'1'(8(@.,4)(..)-_(a.A)(j)uaké ;'%./é;{s ]D?(a-A)(j)(h(. L), m(-- -))uaxé.

Applying the method'vin s‘tep' two hence yields (4.3.5).. This completes the proof.
‘Comparing (4.3.6) with (3.2.12) and (3.2.15) we observe the following:

Theorem 4.;3:2 F splits in case of dim M = 2 into

X

F=1er

Cap + .“—‘ . A—Fy + const.  (4.3.15)
with ar and ay as in (3. 2. 15). The influence of the topology ofM on F(]) is
~ given by the map Ftop W(j) — IR defined by '

X
-+ Fyop := =—— :ap + const..
\ P 167!' i - o



From (3.2.4) we immediately deduce that the structural capillarity a is

determined by discrete data and dim M only: a, as given by (3.2.4), can be
determined by the drfferentral of the free energy F of A as seen from the obser-

vatlon _ L
D F(5)(j) =DF<vj)(j°°)‘= a(j)-dimM-A(j)'; ¥j e W('). (4 3.16)
‘To verify this we assign to each j € W(j’) the value 3 - 15.Gp(r(4), r(_7)) and

observe that for this map the 3 Gp-gradient at j is j*°, therefore (4.3.3) implies.
(4.3.16). ‘Here j*° is the component of j in F*°(M,R™). We thus find due to )

(4.3.16), (4.3.1), (4.3.2) and (A2.1). the following:

Proposrtron 4.3.3 Foranyj € r“l(JP) N O, each j € W( 'Y and some

oP(5) € C>(0, f(P IR)) the stmctural capzllarzty aof Ais gwen by

a(j) -dim M - Y o)) = - D Fi(r(7))(res(s ). s

qu :
Ifr(j) isan eqﬂilibrium conﬁgumtibn then a(j) =0.

 In case of an (n.n.i.)-medium equations (1.2.9) and (4 3. 16) together with
(4.3.17) yield on the other hand: :

Proposition 4.3.4 In case of an (n n.i.)- mteractzon scheme the structura.l
'capzlla.rzty is given by :

a(j) = dim M - Zso (¢) = ng(df(Jp) JP,aljp)
' © - q€P :

for any 5 € W)

5 On the notion of equilibrium configuration
-Deﬁ_nihg a (strong) equilibrium’ configuration j/ € O by A(j') = 0 and
ID F(j') = 0 we immediately deduce that j' € O is an equilibrium configuration
provided r(j') € Op is one. An equilibrium conﬁguration J' is trivial if F' is
constant in a neighbourhood of 7/ € W(j'). Let jo € r‘l(jp) N O for j$% € Op.
5.1 On the existence of an equlhbrlum configuration for a

skm :

At ﬁrst we denve a necessary condition for the existence of a non-tr1v1a.1 equi-

* librium conﬁguratron Differentiating both sides of (4.3. 17) and representing -
ID?*Fp(j') by Gp via FFp(j') € End F(P,IR™), say, then by (4.3. 2) proposition -

4.3.3 and lemma A2.1 the followmg holds true:

. Proposition 5._1.1 Let jo € O be an equilibrium configuration

| 0y _ ¢F (Jo)
roo(Gradg(s,)2)(72) ~dim M -3 0 p 9P (o) (9) P(7F)

. where Gradgjq)a is formed with respect to G(jo)-

(5.1.1)




To illustrate the notion of an equilibrium conﬁguratxon ina 31mple example
we assume that jo is an equxhbrmm conﬁguratxon for which

F(jo + h) = F(jo) + —D’F(jo)(h h) - Vhe Fo(M,R")

“holds. - Then ID F(jo + h) is linear ih A and by theorem (4. 3, 1) the free energy
* F is of the form }

‘- 1 - . ‘ . "
F= 5-a-.A+cons’t on W(jo).

Since a(jo) = 0 we deduce immediately D a(jo)|F*°(M, R™) = 0. Hence propo-

sition 5.1.1 shows ID 2F(j5) = 0, implying that F is constant. We thus have

‘that A has to be non-linear to admit a non-trivial equilibrium configuration :

Theorem 5.1.2 A linear constitutive law only. admits an equilibrium con-’ :

figuration jo if divyy(j,)A = 0 meaning that F is constant on W(jo). If hence jg
is an equilibrium configuration with F not constant on W(Jo), the virtual worlc
A has be non-lmear at jo, implying Da(JO)IF“(M R ) 7& 0.

5. 2 Statistics and geometry

"To link F of the previous section with a stat1st1ca1 set up let us choose a smooth
-map F O— R such that

/ FG)uti). | (5.2.1)
Smce by assumptlon F (]) 76 0 (cf. sec. 4. 3) we have |
1= ?EJ; detf(])ﬂ(]o) . | o ’(5-2-2). |

The solution to the associated continuity equation (cf. 3.1.12) is

F (Jo)
F(jo)

where f is determined by m(j)(- -+, ) = m(Go)(f%(4)+-+,--*) as in (3.1.10) or
appendix one. The above equation has no discrete analogon. It relates the free
, energy F via a density with the Riemannian metrlc (5 2.3) shows moreover

F=F.

.detf~ O  (5.23)

f,%(”bfh) _ FEJO; detf~ 1(J+h) Yhe Fo(M,R"). ,’ (5.2.4)

The influence of the geometry to F is therefore obtained by Al1.24:

21
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PropositionVS.Z.l_ If (5.2.3) holds, then tl.:e_"der‘wity, F‘on W(jo) of F is

- given by

. . F B . ) 'I. | . ‘ ) ‘. . ) \ . o . ) P '
- F(jo+h) = ng; . F(JO +h)-e f; t €5(10+ h)dr Yh € W(jo) - Jo - (5.2.5) ,
with dh = eu(§) - & +dj(Cn(3) + Ba(4) for j € O (cf. appendiz one).

An 1mmed1ate consequence of (5.2.1) is the followmg Due to the fact that
trBy #0 forhe F °°(M R" ) in general, we deduce:

Lemma 5. 2.2 " Let (5. 2 3) hold true. IfDF(]o) = 0 and trB;l # 0 then
DF(jo)(h) = —F(]o) tTBh(]Q) Vh € .7-'°°-(M R" )», o (5.2.6)
' zf hence both IDF(JO) 0 and DF(JO) = 0 then F(]o) =0.

In contrast to the dlscrete case expressed in lemma 2.1. 2 we therefore can
not reqmre that an equlhbrmm configuration jo € ONr (%) has to satlsfy both
D F(jo) = 0 and ID F(jo) =0. Hence, F(jo) # 0 for a non-trivial equilibrium
configuration jo, if 5.2.3 should hold true (compa.re with Fp in sec. 2. 1).

;

: 53 A Gibbs state,_asso,clated w1th F '
Let F' > 0. Setting for each j € O

_(j)' |
F(j

'171

PGibbs(J) =

v

yields | : "
I1(j) = F -8~ 1(J) Inp(3)

as an observable and hence L

- | eBONIG) - mBGIIG)
PGivhs (J) = e—BFG) f e—ﬁ(J) I(J)#(J)

| Usmg (5. 2 6) 1mmed1ately ylelds the followmg _
_Lemma 5.3.1 Let\jo-_+ h € O with h € .'F'°°(M R'.‘) Then (5.2.4) yields

Pszbs (Jo + h) ng; ‘f tt'Bh (Jo+‘r h)dr




6 The modes of the skm .

6.1 The modes of a constrtutlve law

Let & : 0 — F>(M,R"™) be the force densxty characterizing the skin as

considered in sec. four. ]o € O shall be an equxhbrlum configuration. Then
d(jo + k) = D <I>(Jo)(k) + hlgher order terms © (6.1.1)

For k with small room ||k|l = G(jo)(k, k)z we may omlt the higher order terms
and set ' , : S

' <i>(jo +k) = Dé(jo)(k) ke Fo(M, JR"') and ||.k|| small.

The virtual work caused by & is hence linear in k and the free energy F satxsﬁes-“ ‘

by (4 37 forallh e .7-'°°(M IR™) the followmg

2F(Ju)(h h) =5 Dz(a -A)(JO)(h h) - (6L 2)

The elgen-values of D 2F( ]o) are called the modes of the skin. Thus the modes

are entirely determined by the structural capxllarrty a of the medlum and the
geometrical map A both defined near Jo-
" Expanding the term of the right hand side of (6.1. 2) we . observe for all

heF (M, R") the following equatlon

D2F_(J'o)(h., h) ‘=‘" '~«4(J'o)"'D ‘G(J'o)(hrh) + .Da(jo)(h) : DA,(Iio)(h)-v (6.1.3) |

If hence ; is the ith h eigen-vector of D%F (Jo) Wlth exgen—value v;, then for all
i=1,---,b, we easily deduce by (6 1.2) the following:- '

Proposition 6.1.1 The modes of the medium are determmed by the struc-

tural capzllarzty vig the followzng formula

vi =3 - Aljo) - ID a(joxm,.ai) + D a(jo)(®) - DAGo)(@) i=1,,b

In case of dimM = 2 the it h eigen-value is affected by the curvature due to .

(3.2.16), namely by the Euler characteristic in the followmg manner

Proposition 6.1.2 For alli = 1‘, E ,‘b the value of v; is

vi= & Do) @, )+ § - Alo) - D ax(jo) (8, %)
+ (X Dar(yoxu,)-x-zbal(ao)(uz)) - ID A(jo) (@) (6.1.4)
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6.2 * Fit of first orders and i‘.heir modes
Let us call an equilibrium conﬁguratxon Jjo to be a fit of first order, if P
(5 1. 1) is 1dentxcally one. A first order ﬁt Jo satxsﬁes

(Jo)
by corolla.ry A2, 2 in appendxx two If in addltlon ]0 = E ¢ -, then by (5.1.1)

saying that v; is determined by D a(j0)(;), if ¢ ;é 0. The general formula for
vi is denved from (6.1.3) and reads for each i =1,:--,b

~

Vi .‘ (1 - dim']\L;. #p,' DA(JO)(ﬁi)) = ﬁz— -.D 20(‘7-0)(’_1—‘.""%_)' :

'If 5 = O then
i _dimM-#P  dmM
| | . T DAGo)(w)  DinAGo) (@)
If v; # 0 then o -
| | . dimM-#P
b= Dalo)@).

Since F = r, Fp we conclude by equation (2.1. 8)
—InBF = #P £ Z(—1)”[3ﬂ rQr.
‘ . ' n=1 _ " a

The moments pp, of pGi},ba are related with the partition funétiOn Z by

R 1 omz
l.' m = =0 't ' m =
pphm = p QT = 2 é‘i% o™
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APPENDIX 1

Here we will present what is called the Dirichlet-integral in fashions different
from the usual one (cf. Binz & Schwarz [14]) but adapted to the treatment of
deformable media as presented above (cf. Binz [10]). Let <,> be a fixed scalar
product on JR™. At first we consider A € C*°(M,R") and a fixed embedding

j€eEM,R™. ‘The differential dh TM — IR"™ can be represented via dj as -

dh=c() i+ GO +BG) (ALY

- which apphed to any tangent vector vg €Ty M for any q € M reads as

" ah vy = en(7)(a) (6 %)) + 4 (Chl3) + Bl

‘Here cp : M — so(n) is a sinoot‘h map sending vectors in djT,M into vectors

in the orthogonal complement (djT,M)* and vice versa for any g € M; thus cs

_is an infinitesimal Gauss map. The maps Cj, and B}, are both smooth (strong)

bundle endomorphisms of T M, skew - respectively selfadjoint with respect to
the pull back metric j*<, > denoted by m(j). For this representation we refer

‘to Binz [6] or Binz & Fischer [13]. For any ¢ € M the linear map c?(q) on R™
‘is a selfadjoint endomorphism of djT, M respectwely of (djT;M)*. The part of

¢ mapping (djT, M) into itself is called (ch(q)) For simplicity we will omit
the variable j in the coefficients of ( Al.1) if no confuswn arises. For any two
h,k € C°°(M IR™) we define ‘

dh e; dk --—tr( noce)T —tr ChoCr+1tr BhoBy  (AL2)

and observe that

al)dhdk)= [ dhesdk )= [ <AGE>uG)  (aL3)




where u(j) is the Riemannian volume element of m(j). The operator A(f) is
the Laplacian associated with m(j). Thus the dot ; in (A1.2) is j-dependent.

. For (A.1. 2) and (A.1.3) we refer to Binz [5]. Clearly the metric g, given by

G(3)(h, k) - / <hk> ) VB, IR")

is a weak RJemanman metrlc on E(M IR™). The left hand side of (Al 3)is called

the Dirichlet integral usually formulated via the Hodge star operator Clearly g
is a weak Riemannian metric on {dj|j € E(M, R™)}.
~ Next we will represent the integral (A1.3) in a complete dlﬁ'erent way, based

" on the second derivative of m(j) formed with respect to j.  To thlS end let .

jo € E(M,IR™) be fixed and let h € C°°(M R™) be such that ji=jo+he

E(M,R™). Then for any v,w € T,M and any q € M

m(jo + h)(v,w) _ m(]o)(v w)+ < djo v, dh w>+< dh v, d]o w>
' o+ ' <-dh v, dh w > v -
= i)+ Dmi)h) + - DImGo) (bR, (AL4)

Accordlng to (3 1. 10) we write -

mGiot W) =) (PGt e (ALg)

for a well deﬁned smooth strong bundle endomorphxsm f (jo + h) of TM fibre- "

- wise positive definite with respect to m( ]Q) and obser,ve‘by (A1.4) that

| o + B) (v ) = (Jo)(f2(30+h)v w) O (ALe)
= m(]o)(v w)' +m(]o)(Df2(Jo)(h)v w) 2 m(Jo)(]D fz(go)(h h)v w)

for all v,w € T M and for all q € M Usmg (Al 3) we conclude

<dhv dhw>=< (ch+Bh+Ch) (ch+Bh+Ch) djo v, djo w >
where Ch djo and B - d]o are respectlvely deﬁned by | .

Ch d]o = djo [o} Ch and Bh d]o = djo (o} Bh

| and the requlrement that both Ch and B, vanlsh on the normal bundle of
T ]oTM By we mean the adJoxnt Therefore the followmg equat1ons hold

< dh v,dh w>= <-—ck- d]o'v d]o’w>+<djoo(Bh+Ch,) (Bh+C'h) v, d]o’w>

= bmlo)(D o)k v, w).

" Since ch djo = (c})" djo we ﬁnd for all h € C°°(M JR")

5 . D2f2(jo)(h, h) = -—djo_ o;ch . djo - Ch ‘+ B} + Ch oBp—BroCh (ALT)

L
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and f2(jo+ h) computes by (Al.4) and (A1.7) to A
fz(.70+h) —td+2 Bh—djo °ch d]o—Ch+Bh+ChOBh—BhoCh
Usmg (Al 2) and (Al 7 ) yields 1mmed1ately

dh ojo dh = -tr D2f%(jo)(h, ) =_l -.IDz(tr' £2(0)) (h, k)

linking the above mtegrand of the D1r1ch1et 1ntegral w1th the Taylor expansion

of the metric. By polarization we obtain the following:

Proposmon All
dh ejy dk-— trD2f2(Jo)(h k) = »_.mz(tr £2(j0)) (h, k)

for any jo € E(M IR™) and any two h k€ Ce(M, R" )

Corollary Al.2 The Dirichlet mtegml allows therefore the following znterpre-
tation: ' :

aljo)(dh, dk) = / D%r fz(Jo)(h B)uio) = / ‘<A<jo)h,k>u<jo)

- for any jo € E(M, R") and for all h,k € C°°(M IR™). Hence (A1 6) yzelds i

/Mtr Plio+ Wulio) = dim S AGi) + g tr D A io)(Wuli)

o+ fM<AJo)h h > u(jo)- (A18'

Our next aim is to express f in terms of the map B}, via the exponentnal
map. We first will do so for f2(j) in terms of B (j). Comparmg

Dm(])(h) m(Go) (D f2(5)(R)---,- - ). - (AL.9)
where D F2G)(R) is m(o)- selfadjomt; with ’

Dm(j)(h) =2 m(ao)(f?-(a) BaG)r)  (AL10)
y1elds 1mmed1ately o S
: B f"2(j) . £2(5)(R) = 2 Ba(s). - (AL1D)
' In pa.rti"cular (A1.6) yields for j = jo+1t - h
2 v '
' f2(10+t Ay=id+2.t. Bh(ao)+"— D2P(hh.  (AL12)

To prepare commutativity relatlons in order to solve (Al. 11) we compare
for j = jo+t- h the equa.tlon

) = m(io) +t- Drn(io)(h) + & - D mGih) (ALI3)
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with

and conclude for J=jJo+t-h B
D)) = Dm(G)(h) +¢- D *mio)(h, ). (AL15)

In turn we derive by (A1.10), (A1.11) and (A1.12) -
2. f2(j) - Ba(j) = 2- Bh(jo) +1- D2f2(jo)(h, h) = IDF(J)(h) (A1.16)' |

Here a.ll terms are m(4o)- selfadjomt and Bi(j) is m( j)- selfadJomt
Differentiating (A1.16) with respect to j at j in the d1rect10n of h and using
(A1.11) as well as (A1.13) yields therefore

o

2. f2G) - BAG)+ £0) DB R = 1 D2 PGy (ALY

2
showmg that ID By (5) is m(j )-selfa,djomt Dlﬂ'erentlatmg once more yields

4-£2G)- Bh(3)+ 2 fz(.?)Bh(]) D Bi(j)(h) +2- fz(J) DBE(J)(h-)

+ ) 2Bh(])(h h) - (Ar18)

showing

4fBz(j)+2-Bh(j)-DBh(j)(h')HD Bﬁ(j)(fi)+'2 JD?Bh(’j)(h h) = 0. (A1.19)

Since Bx(j) as well as DB2(])(h) and ID 2By (5)(h, h) are m(j)- selfadjomt we

find 1mmed1ately the following ‘ ‘
Bi(j) - D Bx(j)(h) = DBh(])(h) Bu(j). (A1.20)

- Settmg J=Join (Al 17) we observe that

D22 (o) (b)) =2- DBa(io)(h) +4- B2G)  (AL21)

where the operators at the nght hand side commute, due. to (Al. 20) (Ac-
cordmgly the operator Bj(jo) commutes with D2 fz(]o)(h h)). Thus (Al.11)

f2(o+t+h) =id+2-tBx(jo) + - (D Baljo) (h) + 2 B}(d0).  (AL.22)
Due to (A1.22) f~2(j) can be expanded in terms of powers of Br(jo), ID Br(j0)(h)

. reformulates as

. and t. Due to (A1.16) ID f%(j)(h) and by (Al.11) the bundle endomorphism .
" Bi(j) both expand in terms of these powers, too. Therefore, fo Bh(jo +7- h)dr

commutes w1th Br(j +t - h). Thus the followmg theorem is true

Theorem A1.3 . v
f(Jo rh)= el BrGiotrmyar - (A1.23)

for any h € C°°(M R") for which Jo +he E(M R™).

m(io) =m(j)-t-mm(j)“(h>f+§-"ﬂj’m(jo)(h;’h) (Al
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t : :
X
.  The followmg is.an 1mmed1ate consequence (or use dxrectly Al 11)
Corollary Al 4 : ' o ,
‘ g detf(]o +t h) = ef "B"(”'H h)dr o | (A1;24)
| 'APPENDIX 2
Here we will lmk Gp w1th g( ]o) '
' Let PCM. On F(P, IR) the discrete Lz-scalar product is given by
Gp(r(h) r(k)) = Z (h)_(‘I)"‘(k)( ) Vr(h) r(k) E7"(1’ R).
. [' qep .
On the the other hand, glven a Riemannian metric g on M w1th volume element
y,(g) the associated L2 metnc is deﬁned by
- G(a)(h k) /h ko) VhkeC=(ML,R).
. where the product h kis taken p01ntw1se The relatlon between r"g p and g (9)
on a complement LcC®(M,R) of kerr is as follows: |
g Lemma A2.1 Gwen a positive map oPeF (P R) there is a unique positive
map cp(g) €L smoothly dependmg ong such that ' : ‘ '
; G(9)(¢(9) © b k) = Gp(s” - (h) k) VhkeL (A21)
| and vice versa any cp(g) y1e1ds some ¢F in a unique manner. The mu1t1phcat10n
e h®k for h,k € L is given byh@k = s(r(h) -r(k)) where s : f(P E?.) — L is
: ‘ such that r o s =id. Gwen ©F then - o
Dcp(g)(S) = —5-prr(<p(g) tf‘gs) (A2.2)

for any smooth symmetnc two-tensor S on M; moreover prL =Ssor.
 Proof:  Obviously

G(g)(Qh k) Gp(e” - (h) r(k)) Vhke L

for some well deﬁned selfa.djomt Q € End L Let by := s(1, ) forallg e P where )

1, is the charactenstlc functlon of q Since for any two .4 €P

| G(6)(@hor hg) = Gp(0” 1,1, )—] (9) - bq.q
 we conclude Qh —-E(q) h for some §(q)€R+ This shows '

Glo)(ho k) = GP(E‘ P - r(h ),r‘(k))  VhkeL.
Setting o(g) := s(£) ylelds ‘ '

- Go)(p(9)Oh, k) = Gp(6 0P -E7(h), (k) = Gp(o” (W) 1K) VhEEL.

e



, \'Thus Qh = <p(g) ©h for all h € L hence <p(g) is uniquely detetmmed On
_the other hand given ¢(g) then P obvxously exists and is unique as well. To

show the continuity equation (A2.2) we choose some Riemannian metric ¢’ in
the Fréchet mamfold M of all Rmemanman metncs on M and observe that

9’ (v, w)—g(f(g’)2 v,w) Yy, wETqM Vge M

for some well deﬁned g-selfa.djomt strong bundle 1somorphxsm f (9") of TM. |
- Hence _ ,

pri(p(g’) - det £~ 1(9’))-<p(q)

' leferentlatmg this in the Fréchet space of all smooth R,lemanman metrics with

respect to ¢’ in the d1rect10n of Satg ylelds A2.2.

Since F>(M, R") o .7-'°°(M R)® RR™ the restriction n = 1 in lemma
A2.1 can be dropped. v
Choosing h k= 1 € R in (A2 1) ylelds

qGP

| / #(9) 1(a) = Glg)((9)  1,1) = GP(soP 1L1)= Z¢P (a)

1mplymg the followmg

Corollary A2.2 szen a poszt:ve functmn oF e F(P, R) then ¢(g) inA2.1

‘satisfies,
/ sp(g).#(g =Y Pl VgeM
. 9EM ‘
Henceg —cp(g)dumM gy1elds '
(g)_,#p o -

. provided ¢ = 1. Here #P denotes the number of points in P and
A(g) = [y, wlg’ ) is the area of M defined by ¢’ and the given orientation.
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