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Abstract:'

A skin made up by finitely many particles is a manifold passing through a finite
system of interacting partic1es. Thediscrete mediunias well as thecontinuum
are characterized by the virtual work. We study equilibrium configurations of
the discrete systemas well as of the skin and compute the vibrational modes.

Non-trivial equilibrium configurations only exist if the virtual wotk is non- ,
linear. Free energy, equilibrium configuration and. the vibrational modes cru-
cially depend on the structural capillarity. This sort of capillarity determines
the work caused by distorting the area of the skin: The free energyof the skin
is extracted from the virtual work by solving a boundary problem and is linked
to a Gibbs statistics of the finite system..This yields,various inter'plays between
geometry, topology, analysis and statistics.
AMS subject c1assification: 06B99, 53C80, 58A14, 73B05, 73B30, 73C50 .

o Introduction
The aim of this application of analysis, mainly of a' type o'fHodge theory and
of Neumann boundary problems, is the description of a discrete medium as a

. continuum. In doing so' we will not' pass to a limit' by .enlarging the partic1e
number, we rather will investigiüe how to fit a continuum through the given
partic1e system .

. The discrete medium consists of a large butfinite collection P of interacting
material partic1es. The coIitinuum is modeled on a compact nice manifold M
(without boundary, for simplicity), equipped with a smooth masS density; M is
called an idealized skin.

In cl1aracterizing the discrete deformable mediUmwe use the yirtual work
Ap(jp)(hp) re'sisting a distortion hp : p. ~ IRn at a configuration jp (cf.
Hellinger [19]). The conflguration space is a collection Op of injective maps
from P to IR n. 0 p shall pe open in the linear, finite dimensional space of all
maps fromP to IRn. The one-formAp on Op, is supposed to be smooth and to
be invariant under the action on Op of a neighbourhood of zero of the group of
all translations of IR n; in addition it is required that constant distortions cause
no virtual work .
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Thecontinuum is charaeterized accordingly by a s~ooth one-form A on
the configuration space 0, a coilection ofsmooth embeddingsof M into IR n

(cf. Binz [5] to [8] and Marsden & Hughes [23]). Again 0 is supposed to be
open in the infinite dimensional Frechet space of a11smooth maps from M to
IRn. Let P C M. We constructthe ~irtual work A out of Ap by sli~'ing0

. into slices W, each one diffeofuorphic to Op, via the restriction map r. Pulling
back Ap to each slice W byr and setting it(in addition)equal to zero on the
. normal bundle of W yields A. This virtual work A inherits the invarianc~ under
the translation group IR n and the property that constant distortion cause no
virtual work as weil, at any configuration.. The ladder fact yieldsa constitutive
. map'H. characterizing the continuum:' The force density <P(j)at j is of the form
<P(j)= ~(j)'H.(j), where Ll(j) is the Laplacian of the pull back of <, > by j.

The general goal is hence to deduce characteristics of A by those of Ap.
We do so e.g. by usinga Hodge type of splittingof A arid Ap to exhibit the
smoothmaps Fand Fp on 0 respectively on Op, relating them alld identifying
.them as the free energies in tespective Gibbs statistics. The choice of densities
Fp respectively F ofFp and F does not only determine Gibbs states,but also
refines thedescription of the above mentioned media. It links, moreover, our
description of a c~bntinuumto the op.epresented in Landau & Lifschitz [21].

-We call jo C 0 to be an equilibrium configuration if A(jo) = 0 and
1D F(jo) = 0 with 1D denoting the Ftechet derivative on function spaces. An
equilibrium configuration of the discrete system is defined according;Iyby using
Ap and Fp. , .,

The main tasks we head for in this paper is two fold. One is to show that. a
nop.-trivial equlibrium configuration jo for a non-trivial medium (A =I- 0) of the
skin only exists if A is non-linear near jo (lf F is constant on an open set, the
elements of this set are called trivialconfigurations ). The other is to deterriline
the spectrum of the medium forming the skin at an equlibrium.

Both rely on.the notion of the structural capillarity: Prom the virtual work
at j splits naturally off the amount proportional to the area deformation at
j.This proportionality factor a(j)is called the struttural capillarity. The free
energy F(j) at j contains in turn the amount !.a(j) .A(j) with A(j) being the
area at j. This quantity is the. free energy determined by the linearization of A
at j.

In addition a(j) contains apart which depends onthe curvature and the
topology in case of dimM = 2;' the Eulercharacteristics enters explicitly. Thus
both the equilibtium configuration and the spectrum are topology depehdent.

A rather large part of the paper is devoted to develop the formal~smneeded
to obtain the resultsmentioned. It is needed to express the interplay between
. analysis, geometry and statistics. In particular we show that the first trace
coefficient in the asymptotics of thepartition function adapted to the Gibbs state
in the discrete case, can replace the. free energy in the variation determining the
equlibrium configuration, provided the temperature is remained constant. The
other coefficients contribute to thestatistics.

"Veelose this note by introducing the notion of a configuration of the skin
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fitting the discrete medium up to first order (a specialsort ofequilibrium config-
uration) and present, at this kind. of.configuration, some descriptions of charac- .
teristics of A in terms of those of Ap and vice versa. In particular we express the
vibrational modes of the discrete medium in terms of the structural capillarity
and the area function both defined on O. The finitely many Fourier coeffidents
of a first order fit, determined by the discrete system, are computed. However,
the general verification of the existence of such a kind of fitting configuration
will be done elsewhere.

1 Description of discrete media
In this section we are given a finite set P of points, thought of as mean locations
of interacting material particles. We charactedze the discrete medium in this
generality via internal forces resisting distortion.

1~1 Discrete media
The configuratiön space of a .discrete medium is 0 p, some open set in the col-.
lection E( P, JRn) of a11injective maps from P to IR n.

By a distortion of the medium we mean a map hp : P ~ IR n. The
co11ectionof a11distortions of P is denoted oy<F(P, IRn), a finite dimensional
linear space. Aconfiguration jp distorted by hp E F(P, IRn) is jp + hp; this
explains the term distortion .. The maSs distribution of the discrete medium is
ca11ed

pp:P--+IR;

its total mass is m := .2::qEp pp(q).
The center z(jp) of mass of any configuration jp is determined by

J

.m. z(jp) = Lpp(q). jp(q).
qEP

Thusany hp E F(P, IRn) satisfies

(1.1.1)

(1.1.2)m.DJ z(jp )(hp) = L pp(q) . hp(q).
qEP

In the sequel we will assume that pp is a constant map with'value one. If
hence z(jp) = 0 then Lqjp(q) = O. Thus any distortion hp leaving the center
of mass fixed satisfies Lq hp(q) = O. .

-'The physical quality of the medium at a configuration jp is characterized
by the internal force <1>p(j p )resisting any distortion;<1>p issupposed to satisfies
the fo11owing:

(1.1.3)



v jp E Op and V hpE F(P, IRn).
.

Ap(jp )(hp) ,= '2: <: <pp(jp), hp(q) ,>
qEP

Introducing the metric Qp on E(P, IRn) by setting
(1.1.5) .

Qp(hp,kp) :=L < hp(q), kp(q) >
qEP

yields

(1.1.6)

,
V jp E Op and V hp E F(P, IRn).

If hence <Pp is a Qp-gradient of a smooth map Vp : 0 p ---+ IR theIi

. Ap(jp )(hp) = 1DVp(jp )(hp)

Denoting by u~ :P ---+ IR n ~he map given by

Vj COp,.

, UZ(q') = {z q,,-q'
q 0 q:j:. q' z E IR n fixed"

then Ap(jp)( uq) is,the work caused bydistorting only one particle by z, namely
the one at q.

1.2 Nearest neighbour interaction (n.n.i.)
We think of P as the collection of all null-simplices of a finite, one-dimensional
and oriented sirnplicial complex L. The collection of all zero- and one-simplices
is denöted by P and LI, respectively. Two particles at q and qi, say, interact,
Hf they bound tlie same one-simplex u E LI' Any qi E P interacting with q is
called a nearest neighbour (n.n.) of q. By nb( q) we' mean the total number of
n.n. of anyq E P. On the linear space Fl(L, IRn) of all one-cochains of L there
is thenatural sca1<i.rproductsQL

l
given by

GL
l

(CllC2) :=L:< CI(U),C2(U) >
uELl

(1.2.1)



.for all Cl;C2 E :F1(L, JRn). Thecoboundary 81 : :F(P, JRn) -+ :F1(L, JRn) has
an adjoint 61, the divergel1ce, defined by . , '

V hp E :F(P, JRn) V cE :F1(L,lRn).
I

We therefore have the Hodge Laplacian tJ.T := 61 0 BI on F(P, lRn) (cf. Binz
[4]and Eckmann [16]).

Due to (1.1.4) any internal force <PpE COO(O, F(P, lRn)) caused by dis-
torting a n;n.i. admits a constitutive map 1tp E Coo (0 p, :F(P, lR n)), satisfying

VjpE Op. (1.2.2)

We thus characterize this Hnd 0/ a medium bythe map 1tp,in the sequel. Since

, nb(q)

tJ.T1tp(jp)(q) = nb(q) .1tp(jp)(q) -I: 1tp(jp)(qd
i=l

v q E P (1.2.3)

(cf. Bien [4]) we immediately observe that 1tp(jp)(q) -1tp(jp)(qi) is the inter-
action force "off equilibrium" between the material particles ät jp(q) and jp(qi)'
It js alternatively described by (

,Vi=l, ... ,nb(q), (1.2.4)

with:i: according as to whether q = ut or q = ui, where +and -is given by the
orientation. Since <Ppsatisfies (1.1.4)'and K erBl = lR n we conclude that <Pp
factors to imBl. The quotient map is called <Ppagain. Similarly 1tp depends
only on Bljp forjp E Op. Moreover Ap(jp) = Ap(Bljp) for all jp E Op.
Forces of this kindmay be' determined by a' smooth potential '

VL : BIOp -+ lR
1 . ,\

such that,for all jp E Op

Hence the force is a QL
1
-gradient, Le.

<Pp(Bljp) = gradgL1 VL1 (B~jp) Vjp E Op.

Setting Vp(jp) := VL (Bljp), then the Qp-gradient is
. . . 1 .

gradGpVp(jp) = 6lgradgL1 VLJBljp) Vjp E Op. (1.2.6)

'Takin~ the component ofgradgL1 VL1 (Blj p) al(~ngBIj p yields the splitting
I •

v jp E Op (1.2.7)



where.,p : 8l0p -+ iR is a smooth map,and (}Ll (8
l(jp) is OLl-orthogonal to

8ljp. Hence VLI splits into '

'V jp E Op (1.2.8)

where VII is defined by (1.2.8).' Inanalogy to Hooke's law for aspring, we call
.,p(8ljp) the spring-constant, provided 'I/J is a constant map. '

Clearly the above splitting (1.2.7) yields '

'Vjp E Op, (1.2.9)

out of which the map 'l/J. can be determined. We will use this fact later on.

,2' The free energy

Given a discrete medium, we will split' Ap on Op via a 'Neumann boundary
problem into exact, and non-exact parts and show that the exact part can, be
identified as the differential of the free energy, associated with specific observ-
ables. To this end Öp will be the dosure of the open set 0 p and shall be further
specified below.

2.1 The free energy of the discrete medium
\

Let F(P, IRn) beoriented. Öp shall: be a dimF(P, IRn)-dimensional compact,
smooth and connected manifold with boundary. Given Ap on Öp then

Ap=lDFp + wp (2.1.1)

with divopAp =f/i.opFp and Ap(nop) = 1DFp(nop) for some smooth positive
mapFp : Öp -+ IR, determined up to a constant. Here divop and f/i.opon
F(P, IRn) are respectively the divergence operator and the LaplaciaI! of the
scalar product yp. nop denotes the positively oriented unitnormal of the
boundary of Öp. 1D denotes the Frechet derivativ on function spaces. Without
loss of generality we may assume that 1D Fp(jp)vanishes on any constant map
from P to IR n. If<I>pis caused by ().nearest neighbour interaction; then

- . 1 'Fp = Vp 0 a + const .. (2.1.2)

with Vpas in (1.2.6). Hence Fp admits a splitting(according to (1.2.8).
Next we will establish Fp asa free energy. To this end let the Boltzmann

constant be equ~ls to 1. For each jp E Op the positive real Fp(}p) is the free v'

energy (cf. Bamberg & Sternberg [3]) associated with an inverse temperature
map ß E C= (0 p, IR +) and astate pßibbs (j p) as seen as folIows: , .

Let Fp E C=(Op,F(P,IR+)) be such that Fp(jp) = L,qEpFp(jp)(q) for
all jp E Op. Each such density Fp is of the form

with L:~p(jp )(q)= 0
qEP

(2.1.3)



(2.1.4)'V jp E Op.

for a suitable {p e COO(Op,F(P,IR)). Here #Pdenotes the number ofpoints
in P. The state PbibblJ (jp) is defined by , .'

PP. (J').= Fp(jp) ~ Fp(jp) + {p(jp)
. G,bbs p. F, (') , #P. 'F '(' )p Jp '. p Jp

. , .

The observable Ip E COO(Op;F(P,IR)) associated with ß E COO(Op,IR+) and
p .' . .

~~ffi'
. - 1 . p.

Jp := Fp - ß .ln PGibbs (2.1.5)

and yields for each jp E 0 p

(
p . . . e-ß(jp)'[p(jp)

PGibbs(JP) = L' -ß(jp),[p(jp)(q)'
qEpe .

Hence Pbibbs(jP )is a Gibbs state for each jp E Op. Thisstate implies

(2.1.6)

- - 1-Fp = Ip ..;.ß- . S p (2.1.7)

! witb the 'QSual'notions

lp(jp) :- LPbibbs(jP )(q) . Ip(jp )(q)
qEP

and
8p(jp ):- L Pbibbs(jP )(q) .ln Pbibbs(jP )(q);

qEP
. .

henceF is a free energy. \lJ p =I S.lD ß unless \lJ padmits an integrating factor .
in which case Fp can be chosen such that \lJ p = S.lD ß holds indeed.
Specifying ß, ep and Fp ne~ded to interpret Fp as a free energy yields a finer

. characterisationof the discrete medium than the one determined by Ap only.
The partition function,

, Zp(jp) :=L e-ß(jp)[p(jp)(q)

qEP

(2.1.8)

of the state Pbibbs' defined for all jp E Op, satisfies Zp(jp) = e-ß(jp)'P(jp)

and admits the following interpretation: Let Qp(jp)E End :F(P,IR) be'the
operator havingthe characteristic function lq as eigen-vector with eigen-value
e-ß(jp)[p(jp)(q) for any q E P. Then thefollowing isobvious:

Lemma 2.1.1 ' Given Pbibbs := ~ and a positive map ß E Coo(Op, :F(P, IR))
then the partition function is of the form, . .'

, Zp(jp) = #P + ß(jp)' tr Qp(jp) + ß(j;)2 . tr Q~(jp)";' ...



Finally, let us introd~ce the concept of a (ratherstrong type of) equi-
librium conftguration jp E Op: We require from jp both to hold, namely
~p(jp) = 0 aswell as GradgpFp(jp) = 0, with Gradgp being the gradient
formedwith respect to Qp. The followingis rat her obvious:

Lemma 2.1.2 If jp E Op is an equilibrium configuration then the following
are equivalent provided that ß is kept constant

(i) ID Fp(jp) = 0,

(ii) lDlp(jp) =0, (iii) lDQp(jp) = 0;

thus trQ p serves aso. Lagrangian density to determine the stationary configu.
ration jp of Fp. The traces of Q(jp) and the higher order powe'rs of Q(jp) in
Z p reftect the s{atistics chosen and hence the ftuctuation about trQ pCip).

,
A first ratherobviousremark, based on,(1.2.5) arid (1.2.7), on the existence

cf an equilibrium configuration is the following: -

Proposition 2.1.3 An equilibrium configuration j~ in a n.n.i. medium with
non-vanishing spring cons.tant'l/J exists only if (}p(j~) i= o.

3 Characterization of an idealized skin

..

-Herewe describe an idealized skin, a continuum, as a connected, smooth, com-.
pact and oriented manifold M, equipped with a mass density and a constitutive
law, both configuration dependent. The constitutive law will be non-Iotal in
general. The reason for non-Iocality is two fold and will become apparent if
we treat on one hand the virtual work caused bY,area deformations and on the
other,if we formulate conditioris fcirequilibrium configurations. A relation to the
discrete structure will follow in section four.For thegeometric notions we refer
to Greub et al [18].'
3.1 An idealized skin

The configuration space is supposed to be an open subset 0 of the collection-,
E(M, lR'n) of all smooth embeddings of M into lRn endowed with the GOO.
topology, a prinCipal DiffM-bundle (cf. Binz & Fischer [12]). The tangent space
at each j E 0 is GOO(M, lRn), the collection of all smooth lRn.valued maps of
M into lR n. On lR n a fixed scalar product <, > is specified. '

A'mass density is a smooth map p : 0 ----+ GOO(M, lR) with positive values
for which the equation

. ( p(j)J.L(j) = cönst. '.. Vj E 01M .
holds. j.L(j)denotes the volume element of the metrie m(j). The above equation
iInplies (cf. Binz [6])

JM(1D pU)(h) + p(jr tr Bh)J.L(j) = 0 V hE GOO(M, !Rn). (3.1.9)



BJ denotes the differentiation on function spaces (on 0, here) in the sense of Binz
et al [15]or Frölicher& Kriegel [17].MoreoverBh is an element of End T.M; the
collection of all smooth bundle endomorphism of TM o~er the identity, equipped
with the COO-topology;it is defined as follows : Let m(j) := j* <, > be thepull
back metricof <, > by j on the manifold M. Given any other j' E E(M, IRn),
the metrics m(j) and m(j') are related by

m(j')(v,w) = rn(j)(J2(j')v,w) 'VqEM (3.1.10)

withj(j') E EndTMbeing smooth and pointwisepositive definite with respect
to m(j). The derivative of f at j in thedirection of his denoted by Bh. Equation
(3.1.9) implies the following: .

BJ p(j)(h) + p(j) . trBh = A(j)y(j,h)

where A(j) is the Laplacian of m(j), for which we refer to Matsushima [24] and
y(j, h) : M ---jo IR is a smooth function, uniquely determined up to aconstant'
(cf. Hörmander [20)). However, we choose p such that the coiltinuity equation'

1D p(j)(h) + p(j) . tr Bh = 0 Vj E 0 (3.i.11)

. holds. true; Densities of this type are determined as follows. Given a positive
Po E COO(M, IR), the solution to (3.1.9) is obviously

- p(j) = Po. det r:'l(j) jE 0 (3.1.12)

with f as above (cf. A1.5 in appendix one).
The constitutive entity which describes the quality of the" me4ium phe-

nomenologically, will he a special sort of a smooth force density map

<I>: 0 ~ COO(M, IRn)

whiclr will prescribe at each j E0 the force density <P(j) E COO( M, IR Tl) resisting .
an infinitesimal distortion h E COO,(M, IRn) of j(M)C IR n. The special quality

. we will impose on <I>is inherited frqm its virtual work (cf. Hellinger [19]), the
one':form A: 0 x.COO(M, IRn) ---jo IR givenfor all jE 0 by

A(j)(h) ,fM < <I>.(j),~ > j.t(j) (3.1.13)

The force density map<I>: 0 ---jo IR n is such that

<I>(j+ z) = <P(j)
"

'Vj E 0 and 'Vz near 0 E IR n '(3.1.14)

. and

~re satisfied.

r <I>(j)j.t(j) = 0 'Vj E 0 (3.1.15)JM .
(3.1.15), however, isthe integrability condition for the equation

A(j)'H.(j) =<I>(j) 'VjEO (3.1.16)



with 11. e Coo (0, Coo (M, .JR n» determined up to a map in COO(O,JR n). The
map 11., resulting trom (3.1.15), is referted to as a constitutive map 'in these
notes. Given 11., the force density' map ~ is determined and vice versa. We thus
reformulate:

An idealized ski"} with underlyingmanijold M is given by a mass density
pe Coo,(O, Ooo(M,lR» satisjying the continuity equation (3.1.11) and a smooth
constitutive map 11.e 000(0, Ooo(M,JRn». ,

In later sections 'Ye will base the description of an idealized skin'on a ref".
erence configuration jo e O. To this end we solve the following equation

Ll(jo)il(j) = det f(j) . ~(j) je 0 (3.1.17)

lor a constitutive map il (now adapted to the reference configuration)and set

~(j) := det f(j) . ~(j) ,'Vj E 0;

~ reproduces the virtual work A fO,rall j E 0, as seen by

(3.1.18)

A(j)(h) = g(jo)(~(j), h)= 9(jo)(Ll(jo)il(j), h)

Here

'V hE Coo(M, !Rn).
, (3.1.19)

9(j)(h, k) :~ J < h, k > j1.(j) -, 'Vj E 0 and V'h, k E Coo(M, IRn).

The map 'H(j)has a Fourier expansion

'VjEO (3.1.20)

where eI, e2, ... E Coo(M, ]Rn) form a complete system of eigen-vectors of6.(jö)
with respective non-vanishingeigen-values Al ::; X2 ::; •••

In appendix one the Diriehlet integral associated with Ll(j) and the L2- ,

metric 9(j) is p'resented and studied in a fashion suitable for the purpose in
view.
Remarks:
a) (3.1.15) allows to write

where a(j) : TM ---4 IR n is a smooth one-form smoothly dependent on j and
Dj denotes the divergence operator associated with the metric m(j). The Hodge
decomposition of a(j) yields (cf. Binz [5] and Wenzelburger [15]) , "

Vj E0 , (3.1.21)

where al(j) and a2(j) are some IRn-valued one-forms; al(j) is coexact, Le.
, 6jal(j) - 0 and a2(j) is harmonie. Hence a and d11. yield the same <P.However,
specifying a to be the constitutive part yieldsobviously a finer c1assification of
media then the one produced by specifying 1{ only:

. '

-.":r:" , "..



b) The geometrie foundation of media with ,micro structures are studied in
Ackermann [1] where configurations are embeddings of a principal bundleinto
another one.. The mechanisms used.here are generalized accordingly (cf.. Binz &
Ackermann [2]). > >

A word to the type of constitutive laws we use for the.continuum here: To
base the constitutive properties öf a continuuin on the notion of virtual work
in thesense (3.1.13) is a rat her naive approachfrom the continuum mechanics
point of view (cf. Marsden & Hughes [23] -and the remarks above). We do so,
however, b~cause it ison one hand convenient for discrete media and keeps on
the other the formalism simple ..

The relation of 11. with the first Piola-Kirchhoff stress tensor a is evident
by (3.1.21) ..We fefer to Binz [11] for a group theoretie justification for (3.1.15).

3.2 Structural capillarity
Let A: 0 c E(M, IRn) --+-IR be the area functional of a skin defined by

VjE O.

The virtual work AA caused by distorting the area is

AA(j)(h) := a(j) . ID A(j)(h) v j E 0 .and VhE COO(M, IRn) (3.2.2)

where 11.1(j) is not sensitive to area deformations (cf. Binz ,[5] to [7]), saying
that ~(j)j is g(j)-orthogonal to H{(j) for all j E 0. The virtual work A caused

. by H(j) in (3.2.3) yields the following equation for a: '.

where a, E COO(O, IR)i~ called the struetural eapillarity. The force density
of afly j E 0 caused by distorting the area is a(j) . ß(j)j. The map ß(j)j,
pointwise normal toTjTM with respect to <, >,ls called the mean eurvature
tensor (cf. Lawson [22]). It is the 9(j) - gradient' of.A at j.

It is easily verified that any 11.E Coo (0, Coo (M, IR n)) splits intö

11.(j) = a(j).j + 1:l1(j}

A(j)(j) = a{j) . dimM,' A(j)

VjE 0

VjE °

(3.2.3)

(3.2.4)

which in turndetermines adirectly' out of A, a fact which will be used later.
Clearly(3.2.4)showsthataECOO(O,IR): '.,

The not ion of structural capillarity will be crucial in determining the free
energy and the vibrational mO,desof the continuum (cf. sec. 5 and 6) describing
a finite collection of interacting partieles. The sort of virtual work given by
(3.2.2) justifiespartly' our non:..localapproach.

Let us study and illustrate the structural capillarity somewhat eloser in case
of dimM = 2 and IR n = IR 3. As we will see it is influenced by the Gaussian
curvature.To establish this~ we cpnsider the Ried tensor Ric(j) of m(j).
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Denoting by W(j) the Weingarten map of the smooth embedding i, then the
equation ofGauss (cf. Binz et al [15])yields for any i E E(M,IR3) immediately

\

Ric(j)(~, Y) == m(j)((H(j). W(j) - W2(j))X, Y) (3.2.5)

fo'r aIl smooth vector field X, Y on M. Here H(j) :== trW(j). Let R(j) denote
the symmetrie operator such that

Ric(j)(X,Y) == m(j)(R(j),X, Y). (3.2.6)

R(j), being an intrinsie object of m(j);ds expressedby the extri~ie obj~ct W(j) ,
as

R(j) == H(j) . W(j) - W2(j).
In partieular the scalar curvature >..(j), being the trace of R(j),is

>"(j) == H(j)2 - trW2(j).

(3.2.7) ,

(3.2.8)

,Using the Cayley Hamilton theorem for W (j) we easily derive £rom (3.2.7)

(' ') >"(j)
K.J ==--'2 (3.2.9)

where K.(j) :== ,det W(j) is the Gaussian curvature. (3.2.7) yields thus ,

R(j), == >..~). id,

a weIl known 1act. ' ,
Clearly " ~j) • dj is in general not a differential. It is easy to see (cf. Binz

[7]) that >..~j) . dj is a differential iff >..(j) is a constant map on M. Let us call
, the exatt part of djR(j) by dr(j)j it is obviously deterniined by

, ß(j)r ...:..Oj(~ . dj) == -gradm(j) >.. + >.. . ß(j)j.
, ,2 2 2.

To establish the inHuence of the curvature to the structural capillarity, we
have to ~etermine the component of djR(j)along dj formed with respect to L2- "
metrie OJ(j) on theFrechet space of all1R3-valued one-farms of M (cf. appendix
one for OJ(j)). This is to say we split ~ . dj ,into

>..~).dj == K(j) .dj + 'Yr(j) \ljEG (3.2.10)

with K(j)E 1R and 'Yr(j) a smooth 1R3-valued one-form satisfying ,
OJ(j)(Tr(j), dj) == 0 or reformulated, for which Q(j) (Oj'Yr(j)~j) = O. Hence

(3.2.11)

/.<
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'has to hold for each j E E(M, ]R3). Werefer toappendix one for ~j.Obvio~sly ,
. we ~ave IM A~j) • 2J.£(j) = 2. K(j)'. A(j) withA(J) being thearea of j(M). By .

the theorem ofGauss-Bonnet we conclude .

, 13
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1 '
- .X = 2. K(j). AU) "i/ jE E(M, ]R3)47r . (3.2.12)

withXthe Euler-characteristic of M. (3.2.12) determines the map
K : E(M, ]R3) --+]R and hence yields the following: .

Lemma 3.2.1 K"(j) = 81T,~(j)'X OT A(j) = 81T~(j) "i/ j E E(M, }R3) .

. Thus K.is not constant, in general. Thedensity .0/ K(j)on M is 2~ln)..
Using (3.2.1) the following is immediate as weIl:

Lemma 3.2.2 .The one-form K .1DA is exact on all of E(M, ]R3), in fact
. X .'

K . J[) A =S7r . J[) lnA. (3.2.13)

Hence K(j) =0 if X = 0, since J[) A(j) .;;.° fOT all j E E(M, }R3).

. .

Given a constitutive map H, we split dH at jE' E(M, ]R3) with re.,.
speet to O)(j) into a component along dr and a component dH2which is O)(j)-
perpendicular to it, yielding

(3.2.14)

with
ar : E(M, ]R3) --+ }R ,

being smooth. dr.(j) depends on dj -rather thanj itself and so doa, ar and H2'
The map ar . dr is the curvature sensitive part of dH.

The influence cf the curvature to the structural capillarity (cf. 3.2.4) reHes
on equation (3.2.14) and (3.2.10); It reads as

'a(j) =ar(j).K(j) + al(j) "i/ j E b (3.2.15)

for some smooth map al : E(M, }R3) --+ }R3. Here al(j) . dj is the O)(j)-
component of dH2(j) along dj. The part of the structural capillarity. affected by
the curvature is thus ar .K. Theeqtiation above reformulates hence as

('). ( ') X(j) ( ') \J' 0a J = ar J . 87r . A(j) + al J " ~ v JE. (3.2.16)

The structura.l capillarity is not affected by the curvature for any medium under
'consideration if M is a torus, since k = 0 for this kind of a surface.

The following is a direct consequence of (3.2.16) and (3.2.3):
. ( '-~

Proposition 3.2.3 I/ <P(j) = 0 then a(j) = 0 and hence

'ar(j) . K(j) = -al(j).

. "
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4 The discrete medium modeled as a
continuum

To describe the discrete medium as an idealized skin, consisting of a large number
of interacting material particles, we have to, assume that P e M and need to
construct out of the given data pp and <Ppa mass density p and a constitutive
map 1t on an open set 0 c: E(M, ]Rn), respectively. To do'so, we fix ja E O. Let
r : Coo(M, lErn) ~ F(P, lRn) denote the restrietion map. 'Clearly r.,..IOp e
E(M, lRn)for Op ,e E(P, ]Rn) small enough. The following lemma shbws that
the most obvioUs to do to construct A out of Ap, namely to set A := r*,Ap, is
useless for our purpose: '

Lemma 4.0.4 r*Ap admits no force density with respect to the metric 9 nor
9(ja), in general.

Proof:
Let us' assume that for any Ap the following holds:

r* Ap(j)(h) = ,'r < <p(j),h > j.L(j)JM v j E 0 and Vh E Coo (M, ]R Ti)

for some <P.Since Ap(jp)(hp)=L.qEP < <Pp(jp(q)),hp(q) > for any jp E Op
and hp E F(P, lRn) we conclude that .'

<Pp(jp) --:-L e~(jp)' <pr .
i,qEP ,

Here <pr is defined. by

<p{(q'): {~i ~# ~:
for any fixed q E P and a given basis ,Zi, ••• , Zn of ]R n. Setting

yields

A~(jp)(hp) :=< <pr,hp > Vjp E Op andV hE F(P, ]Rn)

A~(r(j))(r(h)) -< <pr,r(h) >
for any j,E 0 and any hE COO(M, ]Rn) and tnerefore

\~ ,

r* A~(j)(h) = 1M < <P(j), h > j.L(j) j E O. '
,

However, this means that the point evaluation r* A~ admi~s a density ':vhich is'
not true. The result of Course holds accordingly if 9 is replaced by Q(jo).

The constitutive laws we have chosen tocharacterize idealized skins are
based on force densities, hoW'ever.In these notes we prefer the followillg way out
of this dilemma: ' .
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I - ,The requirement of the existen~e of a force 4ensity ~ (cf.(3.1.18) and
(3.1.19)) implies t.he existence of aQ(jo)-orthogonal complement to ker r C

. COO(M,IRn). This, as we saw, does not exist, in general .. We therefore look
for a complement to kerr not Q(jo)-orthogonal but isomorphie to F(P, JR~) via
the restriction tilap r. This IPeans that we will choose a Hat connection on' the
trivial vector bundle 0 p x ker r of 0 p. This will' imply, however, that distortions

, in ker rmay cause non-vanishing virtual work, or expressed in an other fashion:
The choice of a connectionis ineffeet a choiceof an approximation ofr* Ap.

4.1 ,The construction of acomplement to ker r
, .

Let 0 C r-10p with jo E O. We require for each j E 0 that the maps
~(j) and il(j) in' (3.1.18) and (3.1.17) are in thecomplement to construct.
Hence the finit~ dimensional complement has to be invariant under ß(jo hand
thus has to be 'generated by eigen-vectorspf ß{jo),. But there is still a choice
involved. Here is how we prt>ceed: Let Zl, •••, znE JRn be a' <, >-orthonormal
basis. We choose Q(jo)-orthonormedeigen-yectors eil'"'' eib in COO(M,IRn)
of ß(jo) (cf. sec. 3.1) with respective eigen-values 0 < Ail ~ ••• ~ Aib such
that Zb"', Zn,r(eil)' ... , r(eib) fOrInSa basis'of F(P, IRn) and that 2::~=1Ai'. is
assmall as possible. The complementFOO(M"IRn) C COO(M,IRn) to ker r*, '
we look for, is the span of Zlt ••. , Zn, eil' ...,eib' For simplicity we write just es
instead of eis for s= 1, ... , b. Hence we concltide

J,

/S:

(4.1.1)

The Hat connection, mentioned in the previous section, isgiven by :FOO(M, IRn)
as horizontal subspace everywhere.Obviously the Q(jo)-orthogonal complement
:FOO(M, IRn).L c COO(M, IRn) to :FOO(M, IRn) is not ideritkal with ker r, but

COO(M,IRn)= :FOO(M, IRn) E& :FOO(M, IR n).L (4.1.2)

holds certainly true as weIl. 'Constructing FOO(M, IR) just accordingly,' yields .
the Q(jo)-orthogonal splitting

Let j~ := r{jo). We require 0 C r-10p tobe of the form'

o -'-jo= 0 kerf E&W'

(4.1.3)

(4.1.4)
, ,

withOker C kerr and W' C :FOO(M, IRn) beingneighbourhoods of zero, respec-
tively. Hence 0 slices into

0= U W(j)
jEEo

with (4.1.5)

,
\

where W(j) = j + W' for all j E r-l(j~) n O.From riow on 0 is as in (4.1.5).
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4.2 Th~constructiotts of p and A
Let jo E 0 and j~ = r(jo) again. Thediserete mass density pp (cf. sec. two)
yields by lemma A2.1. some positive map Po E :Foo( M, IR) satisfying

I

-, .1'po J.t(jo) =Lpp(q) =m
M, .' q,

(4.2.1)

where m is the total mass. Let f(j) as in (3.1.10) with f(jo) = id. Then

Vj E 0

determines a mass density on M in the sense of ('3.1.12). Clearly p(jo) = Po and
p(j) rt :Foo (M, IR ), in general. ,

The virtual work A on 0 is eonstrueted out of Ap as folIows: Let 1'00 :=
rIFoo(M, IRn) and aceordingly roo := rIW(j) for all j E r-l.u~) n O. We set
on eaeh slice W(j)

and I (4.2.2)

Clearly A admits aroree density on eaeh slice and A is eonstant along r-1 (j~)no.
Givenj E Oandk E kerrtheningeneraIA(j)(k) =j:. O. However,ifAp(r(jo)) ='0
then indeed A(j)(h) = 0 for all h E Coo(M, IRn) and for all j E r-l(j~) n 0, as

.. it is,easy to see. ' .-
A word to the structural capillarity: Due to(3.2.4) the struetural capillarity

exists for r* Ap but is of course not. identical to the one determined by Ain
(4.2.2). Ta deseribe the difference we split JE 0 into j = joo + j.L with joo E
:FOO(M, IRn) and j.L E :FOO(M, IRn).L. Sinee A(j)(j)'= A(j)(joo) it is clear that
the structural eapillarities mentioned above may differ. '

The constitutive map Hof the virtual work Ais given for each j E 0 by
H(j),= L:~=1~i(j) . ei whereKi(j) = Ai-I, . Ap (r(j) )(r(ed) for any i = 1, ... , b.

Due to (3.2.4), the struetural capillarity a of th.e medium at hand is obvi-
ously determined by

b

a(j) =L ~i(j) . / . Ai
.. i~1

Vj E 0

where j = L:~=1ji . ei 'and ~i is the itheigen-value ofD.(Jo) in the enumeration
chosen above.

4.3 The concept of free energy of the continuum

Let Pp on Öp be the free energy of Ap and j~ E Op be an equilibrium config- .
uration. Here Öp is as in sec. 2:1. We regard JD Pp as a virtual work by itself
and hence lift JD Fp by (4.2.2),to a one-form App on O. i.e. we set slicewise
App:= r~JDPp and ApplO x:FOO(M,JRn).L = O. Hence Applr-l(j~)nO = 0;,
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Clearly there is some F E COO(O,lR+) such.that lDF = App ~ear'any jE O .
Moreover . .

F(j) = Fp(r(j)) + const. Vi E W(j') with

setting const.=O yields
F = r';,,;,Fp on W(j').

The gradient Gradg(jI)F formed with respect to g(j') satisfies

roo(qradg(jI)F(j')) = IpP(j') . GradgpFp(j') . Vj' E r-l(j~) n0 (4.3.2)

for some IpP(j') E :F(P,IR+) as seen by lemma A2.1'in the second appendix.
Clearly A splits into

near any j' E r-1(j') n 0 (4.3.3)

I
!

I

. with \lf := A - lD Fand is the Neumann splitting formed slicewise with respect
to thescalar product r~gp. In determining the divergence divw(j,)A oneach
slice W(j'), formedwith respect to r~gp, the structural capillarity. a of A in
(3.2.4) plays a crucial role. To see this we let Ks C W(j') be a closed ball of
radius s centered about j E W(j'). Then the following holds true:

Theorem 4.3.1 For j E W(j')

!A w(jI)F(j) = . divw(jI)A(j) = (4.3.4)
dimM. fims_o S~vo}Ks . JaKs (a. A - CL' A(j))JL8Ks'

+ trr_gpID2 A(j)( .•. , ... )(j)

with trr*gp beingthe trace formed withrespect to, r~gp. The equation (4.3.4)
is reformulated as .

if ID 2A(j) = 0, in particular, then

divw(j,)ID A(j)(h) ..;. ~ '!A w(jl)(a. A)(j + h)

for any h E :FOO(M, IRn) with jo + hE W(j'). Therefore,

- 1 . - ( .,F = 2 .a.A- F2 +const. on W J) (4.3.6)

. (4.3.7)
- 1 .
F = - . a .A + const.2 . .

where !A w(jI)F2(j) = -~ . trr;.,gpID 2A(j). 11 A(j + h) islin~ar in h then
obviously
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Proof:
Let JE W(j') for j' E r;nj~) n0 be fixed. Moreover let Ks be a closeclball i~
W(j) centered about j.Its radiusisdenot~d by s. Then .

divA(j) = - lim.. /K" tA("')(T!( ..•»)J.La~s' . "(4.3.8)8-0 va 8 JaK. . 8

Here$.w(j') i5 the Laplacian on W(j'). The integrand takes the vaJue A(ja) (n(j~»)
for any ja e 8If8' Any ja e8K8 has the form \. ; .

ja = j + h for some h e ;:00 (P, IR n). (4.3,9)

A(ja)(n(ja» = ~ .A(ja)(h)
. . 8

and therefore for any ja e K8

(4.3.10)

.A(ja)(j) = A(j + h)(j) = A(j)(j) + 1DA(j)(h)(j) (4.3.11)'
+ ~.1D 2A(j)(h; h)(j) + higher order terms.

Due to (3.2.4) and (4.3.10) equation (4.3.11) implies

, .

A(ja)(n(ja»)= . l. (A(ja)(ja) - A(ja)(j»)'= dimM. ~. ((a. A)(ja) - (a. A)(j»)

/ ~. 1DA(j)(h)(j) - 2~8 .1D 2A(j)(h, h)(j)
higher ord terms in h. I (4.3.12)

. .

We reformula~e the terms on the right han~ side inseveral steps.
Step 1: To treat

weconsiderthe linear map iDA(j)( ... )(j) : Foo(M, IRn) -+-IR. Si~ce

div(lD A(j)( ... )}(j) = - lim . l~.flD A(j)( n( .•. )) (j)J1.aKs
. s-oo va s JaK. s , ..

and di:V(lD A(j)(.; .»)Cj) =0 (since lDA(j)(" .)(j) does not vary on 0). Thus
t4e linear term ~ .][j A(j)( ... )(j) ddes not cpntribute to divA(j). ..
Step 2: To study the influence of the term involving the second derivative of A .
atj in (4.3.11) we set



with SE EndFOO(M, lRn) a~d consider the one-form

"( : TO '"-+ IR

. given hy

/ .

"({j")(k) := r~gp(S(j)j", k)

which is linear in j". Setting h(ja) = ja':'" j we find

"((ja) (n(ja)) = "((j) (n(ja)) + J[) 2A(j) (h(ja), n(ja)).

By' the result of step one, we therefore observe that the quadratic term in (4.3.12)
contributes to (4.3.8) by the amount

1ims_o l~ . IaKJ[)2A(j)(h( ... ),n("'))J.LaKs
vo s. s .

= limr_o vo/Ks IaKs ."((... )(n("'))J.LaKs

- -div"((j) = trS(j). (4.3.13)

The higher order termson~the right hand side of (4.3.12) do not contribute to
div A. Hence (4.3.4) is established. Ta verify (4.3.5) we observe that

!((a .A)(ja) - (a ..A)U)) = ~.J[) (a. A)(j)(h) ~ 2~S.J[)2(a . A)(j)(h, h)
s ." .

+ terms of higher order. (4.3.14) .

Using step one we hence verify that

!. ( (li.A)( ... )-(a.A)(j)J.L8Ks = ~. r. J[)2(a.A)(j) (h( ... ),n(. "))J.LaKs's JaKs .2 JaKs

Applying the methodin step two hence yields (4.3.5). ,This comp1etes the praof.
Comparing (4.3.6) with (3.2.12) and (3.2.15) we observe the following:

Theorem 4.3.2 F splits in case of dimM = 2 into
- X al.-F -:. - .ar+ - .A - F2 + const.1671" 2 '.

(4.3.15)

with ar and al as in (3.2.15). The infiuenceof the topology of M on PU) is
given by the mq.p Ptop :Wur ---+ IRdefined by

- X
.Ftop := 1671"; ar + const..

.-
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From (3.2.4) we immedi~tely deduce that the structural capillarity' a is
determined by discrete data and dfr:n M only: a, as given by (3.2.4), can be
determined by the differential of the fr~eenergy F of Aas seen fromthe obser-
vation

lD F(j)(j) =.DJ F(j)(jOO) =a(j). dimM. A(j) VjE W(j'). (4.3.16)

To verify,this we assign to each j EW(j') the val~e !.~609p(r(j), r(j)) and
observe that for this map the r60 9p-gradient at j is jOO,therefore (4.3.3) implies
(4.3.16). Here jOOis the component ofj in FOO(M, IR"). We thus finddue to
(4.3.16), (4.3.1), (4.3.2) and(A2.1). the following:

Proposition 4.3.3 For any j' E r ....l(j~) n 0, eacft j E W(j') and some
<pP(j) E Coo(0 ,F( P, IR)) the structural capillarity a .of A is given by

a(j)'.dim M. L <pP{j)(q) = lD Pp (r(j))(roo(jOO)).
qEP

. If r(j) is an equilibrium configurationthen a(j) = O.

In case of an (n.n.i.)-medium equations (1.2.9) and (4.3.16) together with
(4.3.17) yield on the other hand:

Proposition 4.3.4 In case of an (n.n.i.)-interaction scheme the stT?J,ctural
capillarity is given by

a(j) = dimM. L <pP(j)(q) - 9L
1
(t/J(jp). a1jp,a1jp)

qEP

for any j E W(j').

5 On the nation of'equilibrium configuratian
Defining a (strong) equilibrium' configuration j( E 0 by A(j') = 0 and
lD P(j') = 0 we immediately deduce thatj'E 0 is an equilibrium configuration
provided r(j') E 0 p is one.' An equ~libriumconfiguration j' is trivial if P is
constant in a neighbourhood of j' E W(j'). Let jo E r:"'l(j~) n 0 for j~ E Op.
5.1 On the existence of an equilibrium "configuration far a

skin ~~
At first wederivea necessary condition for the eXistenceof ci non-trivial equi-
librium configuration.Differentiating both sides of (4.3.17) and representing
DJ 2Pp(j') by Qpvia lFp(j')EEnd :F(P, IR"), say, then by (4.3.2), proposition
4.3.3 and l~mma A2.1 the followingholds true:

Proposition 5.1.1 Let ja E 0 be an equilibrium configuration

( )('0) '. <pP(jo) 1Fi('o),o. (511)Too Gradg(jo)a Jp = d' M'" '.P(' )( ). p Jp Jp ... tm . L.JqEP <p Jo q .

where Gradg(jo)a is fOTmed with respect to Q(jo).

.',

2c
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'.Ta illustrate the notion of an equilibrium configuration in a simple example
we assume that jo is an equilibrium configuration for which

,J ,-

~olds. ,Then JDF(jo + h) is linear iA hand by theorem (4.3.1) the free energy
, F is of the form

- 1 ,', ,
F = 2' a. A + cOnSt. on W(jo).

Since a(jo) == 0 wededuce immediately lDa(jo)IFoo(M,JRn) = O. Hence propo-
sition 5.1.1 shows lD 2P(jd) == 0, implyingo that P is constant. We thus have
,that A has to be non-linear to admit a non-trivial equilibrium configuration :'

Theorem 5.1.2 A linear constitutive law only admits an equilibrium con-
figuration jo if divw(jo)A ,= 0 meaning that F is constant on W(jo). If hence jo
is anequilibrium configuration with F not coftstant on W(jo), the virtual work
A has be non-linear at jo, implying 1Da(jo)IFOO(M, JRn) i:. o.

5.2 Statistics and geometry
To link P of the prey,ious section with a,statistical set up let us'choose a smooth
map F : 0 ~ JR such that

, P(j).= 1M F(j)Jl-(j).

Since by assumption FU) i:. 0 (cf. sec. 4.3) we have

(5.2.2)

The solution to the assodated continuity equation (cf. 3.1.12) is
, . .

(5.2.3)on 0F = p. ~(jo) . detj-l
F(jo)

where f is determined by m(jH- .. , ... ) = m(jo)(f2(j) ... , ... ) as in (3.1.10) or
appendix one. The abmie equatioll has no discrete analogon. It relates the free
energy F via a density with the Riemannian, metric. (5.2.3) shows moreover

~ (jo + h) = ~(~o) . detf-l(j + h)
, F. F(Jo) /,

The influence of the geometry to F is therefore obtained by A1.24:

(5.2.4)
/
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Proposition' 5.2.1 /1 (5.2.3) holda, then the density, Fon W(jo) 01 P is
given b1lJ'

F(jo +h) = ~~~:r.P(jo +h). e-1oi

tr~;.Uo+"..h)il-r VhE W(jo) - ja ,(5.2.5)

with dh =ch(j).dj + dj(Ch(j) + Bh(j») lor f EO (cl.' appendix one).

An immediate consequence of (5.2;1) is }he following: Due to the fact that
trBh #0 forh E ~OO(M,IRn) in general,we deduce:

Lemma 5.2.2 ". Let (5.2.3) hold true. IllDP(jo) =,Oand trBh # 0 then

(5.2.6)ID F(jo)(h) = -F(jo)' trBh(jO) ,Vh E :P;;O(M,IR\n);

if hence both ID P(jo) " 0 and ID F(jo) = 0 then F(jo) = O.

In contrast to the discrete case expressed in lemma 2.1.2, y,retherefore can
not require that an equilibrium configurationjo EOnr~l(j~) hasto satisfyboth
ID P(jo) ~ 0 and ID F(jol =0. Hehce, F(jo) # 0 for a non-trivial equilibrium
configuration .jo, if 5.2.3 should hold true (compare with Fp in sec. 2.1).

5.3 A Gibbs stateassociated 'with F'
Let F> O. Setting for each j E 0

. ,F(j)
PGibbs(J):== P(j)

)

I(j) := P - ß-l(j) .lnp(j)

as an observable and hence

yields

e-ß(j)'/U)' e-ß(j)./(j)

PGibbs(j) = '-ßF(j) = J e-ß(j)./(j)J.L(j);e M '

Using (5.2.6) immediately yields the following:
;

Lemma 5.3.1 Let,jo+ h EO with h E FOO(M, lRn). Then (5.2.4) yields

( . h') . F(jo) -f trBh(jO+T.h)dT
PGibbs Jo + = F(jo) . e 0 " .'

••
. ~-- -------'
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6 The modes of the skin

6.1 The modes of a constitutive law '
Let ~, : 0 ~ Foo(M,IRn) be theforce density characterizing the skin as
considered in sec. four. jo E 0 shall be an equilibrhim configuration. Then

2.3

~(jo + k) = ID ~(jo)(k) +' higher order terms., (6.1.1)

Far k with small toom IIkH :=Q(jo)(k, k)t we may,omit the higher order terms
and set

. ~(jo + k) = ID ~(jo)(k)

(6.1.2) ,

The virtual work caus~d by ~ishence linear in k and the freeenergy F satisfies
by (4.3.7) for all h EFoo(M, IRn) the following:

ID 2F(jo)(h, h) " ~.ID 2(a . A)(jo)(h, h).

The eigen-values ofID 2F(jo) are called the modes of the skin. Thus the modes
are entirely determined by the structural capillaritya of the medium and the
geometricalmap A both defined near jo. '

, Expanding the term of the right hand side of (6.1.2) we observe for all
h E Foo (M, IR n) the followingequation: " ,

1D 2F(jo)(h, h) = ! .,A(jo).ID 2a(jo)(h,h) + ID a(jo)(h) .ID A(jo)(h). (6.1:.3)
, ,2"" '

If hence Üi is the ith eigen-vector of ][) 2F(jo) with eigen-value Vi, then for all
i = 1,'" ,b, we easily deduce by (6.1.2) the following:

Proposition 6.1.1 The' modes 0/ the medium are determined by the struc-
tural capillarity via the, following /ormula

In case' of dimM =2 the ith eigen-value is affected by the curvature due, to ,
(3.2.16), namely bythe Euler characteristic in the followingmanner

Proposition 6.1.2 For all i = 1,' .. ,b the value,o/ Vi is

.•

Vi == ~.][) 2ar(jo)(Üi, Üi) + ~ .A(jo) .][) 2a1(jO)(Üi,Üi)

+ (~ .][)ar(jo)(u1) + ][)al(jo)(Üi)) .][)A(jO)(Üi)

" \

(6.1.4)



i dimM. #P dimM.
LO= DJA(jO)(Üi) = DJInA(jo) (Üi)'

ii "

..,

( ,

" .
6'.2 Fit of first orders and their modes

, ,

Let us call an equilibrium configuiation,jo to be a fit of first order,'if <pP in
(5.1.1) is identically one. A first order fit jo satisfies~, '.

A(jo) =#P

by eorollary A2.2 in appendix two. If in additionjo == E L~ ~,Üi, then by (5.1.1) "
i '

DJa(jO)(üi) '= di~~~i#P

saying 1that Vi is determined by DJa(jo)( üd, if L~ =I O. The general formula for
Vi is derived from (6.1.3) and reads for eaeh i = 1, ... , b

,( Li )'#P , ' .
Vi' 1-dimM. #P " DJA(jO)(Ui) , = T .DJ2a(jO)(ÜhÜi).

Ir Vi = 0 th~n

Ir Vi i= 0 then '
i dimM .#P ',_

LO = , .DJ a(Jo)( ud.
Vi '

Sinee F = r':x,Fp we conclude byequation (2.1.8)

b

-lnßF = #P + 2:( -l)nßn . trQn.
n=l '

The moments J-L-m of PCibbs are related with the partition funetion Z by

I.,; . 1 'Qm, 1 I' amZ
1m J-Lm = #P . tr = #P' 1m, aß .

ß-O, , l; ß-O m
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APPENDIX 1
,

Here we will presentwhat is called the Dirichlet-integral in fashions different
trom the usual one (cf. Binz & Schwarz [14]) but adapted to the treatment of
deformable media as presented above (cf. Binz [10]). Let <, > be a fixed scalar
produet on IR n. At first 'weco~ider h E Coo (M, IR n )and a fixed embedding
j E E (M, IR n). The differential dh : TM ---. IR n can be represented via dj as,

2(

(A1.1)

, which applied to a.ny tangent vector vq E TqM for any q E M reads as

Here Ch : M ---. so(n) is a smooth map sending vectors in djTqM into vectors
in the orthogonaLcomplement (djTqM)J.. andvice versa for anyq E M; thus Ch

is an infinitesimal Gauss map.' The maps eh and Bh arehoth smooth (strong)
, bundle eridomorphisrns of TM, skew - respectively selfadjoint with respect to

the pull backmetric j*<, > denoted by m(j). For this ,representation we refer
to Binz [6] or Binz & Fischer [13]. For any q E Iv! the linear map c~(q) on lRn
,is a selfadjoint endomorphismof djTqM respectively of (djTqM)J... The part of
c~ mapping (djTqM) into itself is called (c~ (q)) T. For simplicity we will omit
the' variable j iIi the coefficients of ( A1.l) if uo confusion arises. For any two
h, k E COO(M, IRn) we define

t ,.

andobserve that

OJ(j)(dh, dk) := ',r dh ej dk j.L(j)~ r < ß(j)h, k > j.L(j)JM ," JM

(A1.2)

(A1.3) ,



'j ,.

a. •
whereJj(j) i8 the Riemannian volume ßlement, of m(j). The operator A(j) i8
the Laplacian associated with m(j). Thus the dot .; in (A1.2)'~ j~dependent. '
Fot (A.1.2)and (A;1.3) we referto Hinz [5]. Clearly the metric Q, given by

, ,

Q(j)(h, k) = IM < ~,k > J1.(j) VE(M, IRn),

. , \

is a weak Riemannian metric onB(M, IRrt).' The left hand side of (A1.3) is caIled
the Dirichlet int~gral usuaIly formulated via theHodge star operator. Clearlyey
is a weak Riemannian metric on {dj Ij E E( M, IR n)}.

Next we will represent the integral (A1.3) in a complete different way, based
on the second derivative of m(j) formed with respect to j.' To this end let
jo E E(M,]Rn) be 'fixed and let h E COO(M, JRn) be such that j := jo + h E
E{M, IRn). Then for any v, W E. TqM and any q EM '

,'2.1.

m(jo + h)(v, w) =
+

m(jo)(v, w)+ < djp v, dh w > + < dh v, djo w :>-
<dh v,dh w >

m(jo) +lD m(jo)(h) +~'.lD 2m(jo)(h,11,). (AIA)

According to (3.1.10) we write '

m(jo + h)(v, w) = m(jo)(f2(jo + h)v,w) (Al.5)
\

. .

I, '

for a weIl defined smooth strong bündle endomorphism f(jo +h)ofTM,fibre-
wise positive definite with respect to m(jo) and observe by (Al.4) th(1t

m(jo +- h)(v, w)= m(jo) (f2(jo +.h)v,~) (A1.6)

m(jo)(v,w)'+ m(jo)(lD j2(jo)(h}v,w) + ~.m(jo)(lD 2 f2(jo)(h, h)v, w)
;

for aIl v, w E TqM and for all qE M. U~ing(A1.3) we conclude
. .

< dh v,dh w >= «Ch + Eh + Ch) O(Ch + Eh + Ch.)* .djo v,djo w >

where C~. djo and Eh' djoare respeGtively defined by

Ch' djo = dio 0 eh and Eh' dio - dio 0 Bh

and the requirement that both Ch and Eh ~anish on the normal b~ndle' of '
. T joT M. By * we mean the adjoint. Therefore the following eqliations' hold
<: dh v, dh w> < -c~ . djo v,djo w > +< djo o(Bh +Ch)o(Bh + Ch)*v, dio w >

\ ' , ,

• . ," . = '.!.mUo)(1D2j2Uo)(h,h)v,w). "
"

Sinc~ c~ . dio = (c~) T . dio wefind for all h E COO(M,IRn)

, ~ . 1D2f2Uo)(h, h) = -diö! o,C~' dio - C~ + B~ + eh 0 Bh - Bh,o Ch(A1.7}
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j

and j2(jO+ h) computes by (A1.4) and(A1.7) to

j2(jO + h) = id +2. Bh - diö'l 0 c~. dio - C~ + B~ +Ch 0 Bh- Bh oCh.
. "

Using (A1.2) arid (A1.7) yieldsimmedh~tely
. 1 1 . .
dh eiodh = 2 . tr JI) 2j2(jO)(h, h) -:'2 . JI) 2,(tr f2(jo»)(h, h)

. linking the above integrand of the Dirichlet integral with the Taylor expansion
of the metric.' By polarization we obtain the following:

Proposition Al.l

dheio dk= ~ .tr JI)2f2(jo)(h,k) = ~. JI)2(trj2(jo»(h,k)

jorany io e E(M" lRn) andany two h, k eCOO(M, lRn).

Corollary. Al.2 The Dirichlet integral allows therefore the following interpre-
tation:

O](io) (dh, dk) = ~.JM JI) 2tr j2(jo)(h,k)J1.(jo) = 1M < fl(jo)h, k > J1.(jo)

for any io'E E(M,IRn) and for all h, k ECOO(M, JRn). Hence (Al.6) yields

1M tt f2(jo + h)J.L(jo) = dim S. A(jo) + 1M tr JI) P(jo) (h)J1.(jo) ,

+ IM < Ll(jo)h, h > J1.(jo). (Al.B)'

Our next aim is to express f in terms of the map Bh via the exponential
map. We first will do so for f2(j) in terms of Bh(j). Comparirig .

JI) m(j)(h) = m(jo) (JI) f2(j)(h) ... , ... ) ,

where JI) f2(j)(h) is m(jo)-selfadjoint, with

IDm(j)(h) =2. in(jO)(j2(j). Bh(j) ... , ... )

yields iminediately
. '

In particular (A1.6) yields for j:= jo + t . h

(Al.9)

(Al.I0)

(Al.ll)

(Al.12)

To prepare commutativity relations in orderto solve (Al.ll), we compare
for j = jo + t . h the equation

(Al.13) ,

. , ,.'',:,. ',' ....::t.
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with

m(jo) = m(j) - t. JD m(j)(h) +t; .115 2m(jo)(h, h)
~.

and conclude for j= jo + t. h

JDm(j)(h) = JDm(jo)(h) + t. JD2m(jo)(h; h).
. , '!..

In turn we derive by (Al.lO), (Al.U) ~nd (Al.l2)

2 '12(j) . Bh(j) = 2 c. Bh(jO}+ t . JD2 j2(jo)(h, h) = JDP(j)(h).

(Al.14) .

(Al.15)

(A1.16)

Here all terms are m(jo)-selfadjoint and Bh(j) is m(j)-selfadjoint.
BiH'erentiating (A1.16) with respect to j at j in thedirection of hand using

(Al.U) as weIl as (Al.13) yields therefore .

(A1.17)

showing that JDBh(j) is m(j)-selfadjoint. Differentiating onee more yields
I

4. j2(j) . B~(j)+ 2. j2(j)Bh(j) .JD Bh(j)(h) + 2 ; j2(j) .1D B~(j)(h)
+ ' j2(j) .1D 2Bh(j)(h,. h) = 0 (A1.l8)

showing

4: B~(j) +2. Bh(j)'10 Bh(j)(h) +lD B~(j)(h) +2.1D 2Bh(j)(h, h) = O. (A1.19)

Since Bh(j) as weH as 1I) Bl(j)(h) and lD 2Bh(j)(h, h) are m(j)-selfadjoint we
find inunediately the foIlowing

•
Bh(j) .1D Bh(j)(h} = lD Bh(j)(h) . Bh(j).

Setting j = jo in (A1.l7) we observe that

lD 2 j2(jo)(h, h) = 2. ][) Bh(jO)(h) + 4 . B~(j)

(A1.20)

(A1.2l)

where the operators at the right h;:mdside commute,due. to (A1.20). (Ac-
cordingly the operator Bh(jo) commutes with ][) 2 /2(jo)(h; h». Thus (A1.U)
reformulates as .

(
/2(jO + t •h) = id+ 2. tBh(jo) + t2 • (ID Bh(jo)(h) + 2. B~(jo»). (A1.22)

Due to.(A1.22) /-2(j) can be expanded in terms Ofpowers ofBh(jo),][) Bh(jo){h)
and t. Due to(Al.16) ][) J2(j)(h) and by (A1.U) the bundle endomorphism .

o. Bh(j) both expand in terms 6£ these pow~rs, tao. Therefore, J; Bh(jO +T' h)dr
commutes with Bh(j + t. h). Thusthe fol1owingtheorem is true: ;
Theorem A1.3

..

/(

0 + h) ,[1Bh (jo+roh)dTJo = eJo '

for any h E COO(M, JRn) for whichjo + hE E(M, JRn).'

(A1.23)
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"' .The followhig is.an immediate consequence (or use directly Al.U):
Corollary AL4

(Al.24)

APPENDIX 2 .

Herewe will link Qp with Q(jo).
Let P C M. On :F(P,lR) the discrete L2~scalar product 1s giveIi by

, ,

Qp(r(h), r(k)):= L'r(h)(q) ; r(k)(q), Vr(h), r(k) E :F(P, lR).
qEP

On the' the other hand, given a Riemannian metricg, on M with volume element
J1.(g) the associated L2~metric is defined by, ," ' .

. j .

Q(g)(~, k) ~1h. k J1.(g)
. M

Vh, k E COO(M, lR). '.

,where the product '-ho k Is taken pointwise., The relation between' r*Qp and Q(g)
on a completnent L C COO(M; lR) of ker r is as follows:

L~trima A2.1 Given a positive map cpP E :F(P, lR) there is a unique positive
map' cp(g) E L smoothly depending on 9 such that

Q(g) (cp(g) 0 h, k) = Qp(cpP . r(h),r(k)) Vh,k E L (A2.1)

•
and viCe versa any cp(g) yields some cpP in'a unique manner. The multiplication
h 0k forh, kEL isgiven by h 0 k:= s(r(h) 'r(k)) }vhere 8: :F(P, IR) -+ L is
such that r 0 8 =id. Given cpP then" . "

1 .
ßJcp(g)(S) = -2' prdcp(g) . trgS) .

for any, smooth symmetrie two-tensor S on M; moreover pr L :=; 8 0 r.
Proof: Obviously

(A2.2)

Q(g)(Qh, k) = Qp(cpP . r(h)"r(k)) Vh, k EL

for some weIl definedselfadjoint (JE End L. Let:hq := 8(lq)for all q E P where
'lq is the, characteristic function of q. Since for any two q,q' E P

Q(g)(Qhq, hq, ):- Qp(cpP .lql~/) == cpP (q) . Dq,q'
. • • • I'

we conclude Qhq - ~ (q) .h~ for some ~(q)E IR +. This shows '"

9(g)(h, k) ~ gp(~-l . cpP . r(h), r(k)) V h, k E L.

Setting cp(g) :=8(0 yields
, ' \

Q(g)(cp(g)0h, k) = gp(~-l.cpP .~.r(h), r(k)) = yp(cpP .r(h), r(k)) Vh, k EL.

," ....:;. ..•...
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Thus Qh = lf'(g} 0 h for all heL; hence lf'(g} ja liniquely determined. On
, the otherhand given lf'(g) then lf'~obviously exist~and i8 unique 88 wellt To
showthe continuity equation (A2.2) we choose some Riemanman metric g' in
the FreChet manifold M of a11Riemannian metrics on M 'and observe that

g'(v,w) = g(J(g')2. v,w) 'Vv,w e TqM' 'Vq E M

for some weIl defined g-selfadjoint strong bundle isomorphism j(g') of TM.
Hence

prL(lp(g') . det j-1(g'» = lp(q).

Differentiating this in the Frechet space of all smooth Riemannian metrics with
respect 1;0g' in thedirection of S at 9 yields A2.2. . .

SinceFOO(M,IRn) ~ ;::OO(M,lR) @ JRn the restrictionn = 1 in lemma
A2.1 can be dropped.'

Ch60sing h = k = 1 E IR in(A2.1) yields

/ lp(q) J.t(q) = g(g)(lp(g). 1,1)= gp(lpP.1,l)-L lpp(q)
JM '" qEP

'Vg EM.1lp(g)Jj(g) = LlpP(q)
M qEM

imp~ying the following:

Corollary A2.2 Given a positiye Eunction lpP E F(P,1R) then lp(g) inA2.1
satisfies,

Hence g~ := lp(g) di.:i M. • 9 yields

A(g') =r #P, -J

. provided lpP = 1. Here #P denotes the number oEpoints in P and
A(g') := JM p,(g') is the area oEM defined by g" and the given orientation.

•
~..
'.'
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