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Abstract. This paper is concerned with the solution of systems of linear equations
TNXN = bN, where {TN} NElN denotes a sequence ofnonsingular nonsymmetric Toeplitz
matriees arising from a generating function of the Wiener dass. We present a technique .
for the fast construction of optimal trigonometrie preconditioners MN =MN(T~T N)
of the corresponding normal equation. Moreover, we prove that the spectrum of the
preconditioned matrix M!/T~T N is dustered at 1 such that the CG-method applied
to the normal equation converges superlinearly. Numerical tests confirm the theoretical
expectations.
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1 Introduction
Consider the system of linear equations

(1.1)

where TN E IRN,N denotes a nonsingular Toeplitz matrix. Toeplitz systems arise in
a variety of applications in mathematics and engineering (see [7] and the references
therein). While there exist fast direct Toeplitz solvers far Hermitian positive definite
Toeplitz matrices TN, such techniques are not available in the non-Hermitian case. It-
erative metods like GMRES and CG often provide a fast solution of (1.1) if they are
applied in connection with preconditioning techniques [7]. In particular, these meth- ..;
ods profit from the fact that the vector multiplication with the Toeplitz matrix TN

in each iteration step can be computed with O(Nlog N) arithmetical operations by
using the fast Fourier transform (FFT). Clearly, the multiplication with the precon-
ditioned matrix should have the same arithmetic complexity. Two types of precon-
ditioners are mainly exploited for linear Toeplitz systems, namely optimal (Cesaro)
circulant preconditioners MN = CN(T N) [5] and more simple so-called "Strang" cir-
culant preconditioners MN = SN(TN) [6]. One reason for the choiee of circulant
preconditioners is the fact that circulant matrices can be diagonalized by the Fourier
matrix FN := (e-21riik/N)N-l , where the multiplieation of a veetor with FN takes only

J,k=O
O(NlogN) arithmetieal operations. Moreover, under eertain assumptions on the gener-
ating function of TN (see [8]' [22]), it ean be proved that the singular values of M"i./TN"
are clustered at 1. For non-Hermitian TN, this results in a superlinear convergence of
the CG-method applied to the system

(M';/TN )*(M';/TN )XN = (M';/TN)* M'i/bN' (1.2)

To our knowledge, up to now, for non-Hermitian Toeplitz systems and Toeplitz least
square problems, only eireulant preeonditioners with respeet to Toeplitz matriees were
eonstrueted and used in some kind of normal equation as in (1.2) [8]' [11] or as so-ealled
displacement preeonditioners [12]. When we finished the paper, we became aware of
new results of E.E. Tyrtyschnikov et al. coneerning the convergence behaviour of the
preconditioned GMRES-method [23] whieh avoids the transition of (1.1) to the normal '.
equation. However, the preeonditioners are again (improved) circulants, which were
eonstrueted with respect to TN.

In this paper, we restriet our attention to nonsymmetrie real Toeplitz matrices TN.
Here, it seems to be natural, to replaee the cireulant matrices by matriees whieh are
diagonalizable by some real trigonometrie matrices. Of course, the commonly used
trigonometrie transforms are closely related to the Fourier transform. Indeed, for sym-
metrie Toeplitz matrices TN with positive continuous 27f-periodic generating fune-
tions, trigonometrie preeonditioning signifieantly aeeerelates the convergence of the
CG-method.
In this paper, we suggest the solution of (1.1) by applying the CG-method to the pre-
conditioned normal equation

M"i./T~TNXN = M'i/T~bN,
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where in eontrast to (1.2), MN = M N(T',vT N) denotes the optimal preeonditioner
with respeet to T',vT N. We demonstrate that the construetion of such optimal preeon-
ditioners ean be realized with only O(N log N) arithmetieal operations despite the fact
that T',vTN is no longer a Toeplitz matrix. We prove that under eertain assumptions
on T N the eigenvalues of Mf/T',vT N are clustered at 1. Although our approach works
in exaetly the same way for different trigonometrie transforms, we prefer to investi-
gate the DCT-II preeonditioner in detail and add only few facts eoneerning the other
trigonometrie preeonditioners. We hope that our notation makes the approach for other
trigonometrie preeonditioners immediately clear. Numerieal tests were performed for
the different trigonometrie preeonditioners. Note that in all examples, our preeondition-
ing was superior over the method (1.2) with an optimal trigonometrie preeonditioner
MN(TN) of TN.

This paper is organized as follows: Seetion 2 eontains the basic matrix notation. In
Seetion 3, we study the relations between trigonometrie transforms ,and Toeplitz ma-
triees. In partieular, we introduee a method for the fast veetor multiplieation with real
nonsymmetrie Toeplitz matriees based on real trigonometrie transforms. In Seetion 4,
we introduee optimal trigonometrie preeonditioners. Seetion 5 is eoneerned with the
proof that the eigenvalues of the preeonditioned matrix Mf/T',vTN are clustered at 1.
In Seetion 6, we present the fast eonstruetion of the optimal preeonditioner. Finally,
Seetion 7 eonfirms the theoretieal expeetations by numerieal tests.

2 Notation
For the sake of c1arity, we eolleet the matrix notation in this preliminary seetion.
Let aN := (ao, ... , aN-d', bN := (bo, ... , bN-1)' and let ON be the veetor eonsisting of
N zeros. Here A' is the transpose of A. By IN we denote the (N ,N)-identity matrix
and byek E IRN the k-th identity vektor. Todeseribe Toeplitz and Hankel matriees,
we use the following notation:

toeplitz( a', b') := (with ao = bo) ,
bN-2 bN-3 al

bN-1 bN-2 ao
stoeplitz a': symmetrie Toeplitz matrix with first row a',
atoeplitz a': antisymmetrie Toeplitz matrix with first row a', where ao = 0,

ao aN-2 aN-l
al aN-l bN-2

hankel(a'. b') :=
aN-2 b2 b1
aN-l b1 bo

shankel a': persymmetrie Hankel matrix with first row a',
ahankel a': antipersymmetrie Hankel matrix with first row a', where aN-l = O.
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Further, we introduce the matrices

,

0

1

o~. ) E IRN,N+l,". ~) E IRN,N+l , Z'rv,2 = ( ~
... 1

RN= (!: ; n E ffiN-l,N+l

Let diaga be the diagonal matrix with diagonal a and let b(A) := diag(ak,k)f';ol,
where ak,k is the (k, k)-th entry of A. By

and

N-l

trA:= L ak,k
k=O

we denote the trace of A. Moreovet, we need the following matrix norms:
SpectraL norm:
IIAI12 := (maximum of the absolute values of the singular values of A)I/2,
Frobenius norm:

N-l
IIAIIF:= Cl: aJk)I/2,

),k=O
I-norm:

N-l
IIAIIt := max{ l: aj,k : k = 0, ... ,N - I}.

j=O
If it does not make confusion, we use the same notation for the norm of absolute
summable sequences a = {ak hEll E LI, i.e.

Ilalit := L lakl.
kE71.

3 Trigonometrie transforms and_Toeplitz matriees
We introduce four discrete sirre transforms (DST) and four discrete eosine transforms
(DCT) as classified by Wang [24]:

DCT-I

DCT-II

DCT-III

DCT-IV

(
2 1/2 ( 'k ) NCl '= _) cJ:l cN cos J 7r E IRN+l,N+l

N+l' N ) k N" '
),k=O

(
2)1/2 ( '(2k + 1) )N-lcIl.= _ cJ:l cos J 7r E IRN,N

N' N ) 2N" '
),k=O

C~I := (cfJ)' E IRN,N,

cf,;:= (~)1/2 (cos (2j+l)(2k+l)7r)N-l EIRN,N,
N 4N "k-O), -
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and

DST-I

DST-II

DST-III

DST-IV

SI '_ (2) 1/2 (. (j + l)(k + 1)7r) N-2 N-l N-l
N-1'- i\f sm ------ E ffi ' ,

J N" k-O), -

SI! '_ (2.) 1/2 (cN . (j + 1)(2k + 1)7r) N-l
N.- N '-j+1 SIn ------.-- E IRN,N,

2N "k-O), -

SIJI := (SIJ)' E ffiN,N,

sIJ' := (2.) 1/2 (eos (2) + 1)(2k + 1)7r) N-l E ffiN,N,
N 4N "k-O), -

(3.1)

(2) + l)(k + l)7r)N-l .

2N "k-O), -

-I -[ N
CN+l CN+l = 2IN+l'

where cf := I/Vi (k = 0, N) and cf := 1otherwise. We refer to the eorresponding
transforms as trigonometrie transforms. It is well-known that the above matriees are
orthogonal and that the veetor multiplieation with any of these matriees takes only
O(N log N) arithmetieal operations. Fortunately, there exist implementations of algo-
rithms for the veetor multiplieation with the above sine and eosine matrices, for example
a C-implementation based on [3] and [19].
Moreover, we use the slightly modified DCT-I and DST-I matriees

( 'k )N ("k )N-l-[ N 2 J 7r -[ . J 7r
CN+l:= (c k) eos N . ' SN -1:= sm N "

),k=O ),k=l

and the slightly modified DCT-III and DST-III matriees

C-I!I '_ (( N)2 (2) + l)k7r) N-l S-[II._ (( N )2 .
N'- ck eos N ' N'- ck+l sm

2 j,k=O

It holds that

Theorem 3.1. There exist the following relations between trigonometrie transforms
and Toeplitz matriees:
i) DCT-I and DST-I:

I - [
SN-l R~ D CN+lRN

with

1. 12 stoephtz(ao, ... , aN-2) + 2 shankel(a2, .. ', aN-2, 0, 0) ,

1. 12 stoephtz(ao, ... , aN-2) - 2 shankel(a2,"', aN-2, 0, 0) ,

~ atoeplitz(O, al,"', aN-2) + ~ ahankel(a2,"" aN-I, 0) ,

-~ atoeplitz(O, al,' .. , aN-2) + ~ ahankel(a2,"', aN-I, 0)

D

(do, ,dN)'

(dl, , dN-d

.- diag(do, ... ,dN), iJ :=diag(0,d1, ... ,dN-l,0),
-[

'- C N+l (ao, ... , aN-2, 0, 0)' ,
-[

'- SN-l (al, ... ,aN-d .
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ii) DCT-II and DST-II:

(c;J)' Z'rv,2D Z N,2C;J
(s;J)'
(C;J)'
(s;J)'
with

- II
Z'rv,I D Z N,2CN

D

(do, , dN )'

(dI, ,dN-d

1 1
- stoeplitz(ao, ... , aN-d + - shankel(aI,' .. , aN-i, 0) ,
2 2
1 1
- stoeplitz(ao, ... , aN-d - - shankel(al"", aN-i, 0) ,2 2
1 1
- atoeplitz(O, al,"', aN-d + - ahankel(al"'" aN-I, 0) ,2 2
1. 1

-- atoephtz(O, al,"', aN-I) + - ahankel(al,"', aN-i, 0)2 2

.- diag(do, ... , dN) , iJ := diag(O, dl, ... , dN-l, 0) ,
-f

'- CN+l (ao, ... ,aN-i, 0)' ,
-f ,

'- SN-l (al, ... , aN-d .

iii) DCT-IV and DST-IV:

(do, , dN-d
(dI, ,dN-d'

s~ DS~

C~ iJ s~
SfV iJ Cf VN N

with

~ stoeplitz(ao, ... , aN-I) + ~ shankel(aI"", aN-I, 0) ,2 2
~ stoeplitz(ao, ... , aN-I) - ~ shankel(aI, ... , aN-I, 0) ,

1. 1-2 atoephtz(O, aI, ... , aN-d + 2 shankel(aI, ... , aN-I, 0) ,

~ atoeplitz(O, aI, ... , aN-d + ~ shankel(aI, ... , aN-I, 0)

D .- diag(do, ... , dN-I) , iJ := diag(do, ... , dN-I)
-llf

'- CN (ao, ... , aN-I)',
-llf

.- SN (al"", aN-I, 0)' .

Note that for fixed diagonal matrices D,D, the above decompositions into a Toeplitz
and a Hankel matrix are not unique.

Proof: We restrict the proof to the DCT -11. To simplify the notation, we drop the
index N and set C:= ZN,2CIJ,S:= ZN,ISIJ and D:= diag(do, ... ,dN). Then by

1 1
cosa cosß = 2 cos(a - ß) + 2 cos(a + ß) ,

the (u, v)-entry of the matrix C'DC is

, 1 2 ~l ( N) 2 d (u - v) kJr 1 2 ~l ( N) 2 d (u + v + 1)br
(CDC)u,v = -N~ ck kCOS N +- 7H~ ck kCOS ,

2 k=O 2 iv k=O N
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or equivalently, since -( -1)U-VdN = -( -1)u+v+ldN for arbitary dN E IR,

(C' DC) = ~~ ~ ( N)2 d (u - v)k1r + ~ ~ ~ (c-N)2 d (u + v + 1)br
u,V 2 Nk~_O ek kCOS N 2 NL .....k kCOS .

k=O N

Choosing dN E IR such that

N

L(ef)2 dk( _1)k = 0,
k=O

we get by symmetry properties of cosine function that

C'D C = 1 l' ( ) 1 h k l( )2" stoep ltz ao, ... , aN-l + 2" s an e al,"', aN-I, 0 ,

where
( )' 2 - I ( )'ao, ... ,aN-l,O = NCN+l do, ... ,dN ,

i.e. by (3.1)
(do, ... , dN)' = C~+l (ao, ... , aN -1, 0)' .

The other decomposition relations follow in a similar way by application of sin Cl! sin ß
~ cos( Cl! - ß) - ~ cos( Cl! + ß) and sin Cl! cos ß = ~ sin( Cl! - ß) + ~ sin( Cl! + ß) . •

Theorem 3.1 provides a new method for the fast multiplication of areal vector with
areal nonsymmetric Toeplitz matrix that avoids the complex arithmetic which comes
into the play if we exploit the usual FFT -based method for the fast vector - Toeplitz
matrix multiplication.

Corollqry 3.2. (Fast vector multiplication with nonsymmetric Toeplitz matrices)
Let

be given and let C:= ZN,2CIJ, S:= ZN,lSIJ. Then

T

where

~ (T + T') + ~ (T - T') = C'DC + S'DS + C'DS

D := diag(do, ... , dN) , b := diag(O, dl, ... , dN-l, 0) ,

S'DC ,

._ {/ ( tl + LI tN-l + L(N-l) 0)'
N+l to, 2 ' ... , 2 "

._ S-I (LI - tl L(N-l) - tN-l),
N-l 2 ' ... , 2 .

The vector multiplication with T requires except of O(N) additions
_ one DCT-I and one DST-I to build D and b in a precomputation step,
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- one DCT-II and one DST-II,
- four multiplieations of veetors with diagonal matriees, _ _
- one DCT-III and one DST-III of the veetors DCx + DSx and DSx - DCx,
respeetively, and takes therefore only O(N log N) arithmetieal operations.

Clearly, by Theorem 3.1, we ean formulate similar algorithms for the fast multiplieation
of veetors with Toeplitz or Hankel matriees with respeet to the other trigonometrie
transforms. Typewriting this paper, we got a ps-file of a paper of G. Heinig and K.
Rost [14]' whieh eontains results in a similar direetion as presented in this seetion.

4 Optimal trigonometrie preeonditioners
We are eoneerned with the solution of the system of linear equations

TNxN = bN

with a nonsingular nonsymmetric Toeplitz matrix TN E lRN,N. We intend to solve th~
normal equation

T'tvTNxN = T'tvbN (4.1)
by the CG-method. In Seetion 7, we will see that with a good preeonditioner at hand,
this ean be realized in a fast way. There are several requirements on a preeonditioner
MN of (4.1) resulting from the eonstruetion and the eonvergenee behaviour of the CG-
method as well as from the faet that the veetor multiplieation with TN requires only
O(Nlog N) arithmetical operations. Therefore, we are looking for a preeonditioner
with the following properties:

(PI) MN is symmetrie and positive definite sueh that the bilinear form

(XN,YN)MN := x'tvMNYN

arising in the left preeonditioned CG-method is symmetrie and positive definite, too.
(P2) The speetrum of Mt/T'tvT N is c1ustered at 1.
(P3) The veetor multiplieation with MN ean be eomputed with O(N log N) arithmeti-
eal operations.
(P4) The construetion of MN takes only O(N log N) arithmetieal operations.

Having property (P3) in mind, a straightforward idea eonsists in ehoosing MN from
an algebra

(4.2)
of matriees whieh are diagonalizable by some orthogonal matrix ON, where ON has the
additional property that its veetor multiplieation requires only O(N log N) arithmetieal
operations. As orthogonal matriees, we will use the trigonometrie matrices of the
previous seetion whieh are closely related to the Fourier matrix F N, but have the
advantage of purely real entries. Moreover, if we ehoose MN E AON as so-ealled
optimal preeonditioner of T'tvT N, then we will see that under eertain assumptions on
TN, the properties (PI), (P2) and (P4) are also fulfilled.
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For AN E IRN,N, the matrix M N(AN) is called an optimal preeonditioner of AN in
AON [5] if

If 0 N is one of the orthogonal matrices which correspond to the DST -I, DST -II , DCT-
II, DST -IV or DCT -IV, respectively, then MN is said to be an optimal trigonometrie
preconditioner of AN. The choice of the Frobenius norm in definition (4.3) results from
the fact that the Frobenius norm is induced by an inner product of IRN,N

'\, N-I

(AN, BN) := tr(A:VBN) = L aj,kbj,k'
j,k=O

(4.4)

In particular, it holds that

The following lemma describes the optimal preconditioner of T:VT N in two different
ways.

Lemma 4.1. Let AN E IRN,N and let AON be defined by (4.2) with respect to some
orthogonal matrix ON' Then the optimal preconditioner of AN is given by

(4.6)

(4.7)
N-I

MN(AN):= L akBk 1

k=O
where the coefficient vector Q := (ao, ... , aN-I)' is determined by

If {Bo, ... , BN-tl denotes a basis of AON1 then an alternative description of MN(AN)
reads as

Proof: 1. By (4.5), it follows for MN := O~ (diagd) ON E AON that

which implies (4.6) by the definition of the optimal preconditioner.
2. The computation of the optimal preconditioner of AN in AON is equivalent with the
computation of the element of best approximation of AN in the linear subspace AON

of the Hilbert space IRN,N equipped with the inner product (4.4). This can be done by
the Galerkin approach (4.7) .•

Now it is easy to verify that an optimal preconditioner ofT:VTN satisfies property (PI).
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Corollary 4.2. Let AN E RN,N be a symmetrie positive definite matrix and let AON

be defined by (4.2) with respeet to some orthogonal matrix ON' Then the optimal
preeonditioner MN = MN(AN) is also symmetrie and positive definite.

Proof: The symmetry of MN follows by definition of AON"

By (4.6), the eigenvalues of MN are given by the diagonal entries (ONAN0'rvkk (k =
0, ... ,N - 1) of ON ANO'rv. Sinee AN is positive definite, it holds that

. {x',vANXN ~o} . {Y',vONANO'rvYN. ~o}o < mm ----: x N r N = mm I • YN r N
X',vXN YNYN

< e~(ONANO'rv)ek = (ONANO'rv)k,k (k = 0, ... ,N - 1),

and we are done. _

In eonneetion with (4.6) and Corollary 4.2 see also [18].

5 Clusters of eigenvalues
Let C27r denote the Banaeh spaee of 27l"-periodie eomplex-valued funetions equipped
with the usual norm 11 . 1100' In this seetion, we are only interested in functions f =
fR + ifI E Ch with real Fourier eoefficients

tk := i:f(x)e-ikx dx (k E 7l) ,

where we suppose that the real and the imaginary part of f
00

fR to + L:(tk + Lk) eos kx,
k=1

00

fI = L:(tk - Lk) sin kx
k=1

do not vanish, respeetively. Moreover, we assume that {tdkEZ E ll, sueh that f belongs
to the Wiener c1ass. Consider the N-th Toeplitz matrix corresponding to the generating
function f

TN := toeplitz((to, LI,"" L(N-l)), (to, t1, ... , tN-1)) .

It is well-known that the singular values of TN are distributed as Ifl [20]. Note that
the above result was extended to funetions f E L~7r :J C27r in [22].
The following definition is due to E.E. Tyrtyshnikov [22]. Let {O'f }f=1 be a sequenee
of real numbers and let 'YN(e) denote the number of those among O'f (k = 1, ... ,N)
whieh are outside the e-ball centered at p. If 'YN(e) < K(c), where K(e) is independent
of N, then p is ealled a proper cluster. In this sense, we say that the values O'f are
c1ustered at p.
In the following, we restrict our attention to preconditioners of ACIl. By Theorem

N
3.1, the approach for the preeonditioners with respeet to the DST-I, the DST-II, the

10
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DST-IV and the DCT-IV follows the same lines. Let C = CN := ZN 2CIJ and
S = SN := ZN,lSIJ. Regatding Theorem 3.1 ii), we associate with the' sequence
{T N} NEINof Toeplitz matrices a sequence {H N} NEINof Hankel matrices

H N := hankel((t_l,"', L(N-l), 0), (tl,"" tN-l, 0)).

Let MN denote the optimal preconditioner of T'tvT N with respect to the DCT -II, i.e.

(5.1)

In this section, we prove that under certain assumptions on TN, the eigenvalues of the
preconditioned matrix Mf/T'tvT N are clustered at 1. We follow the lines of R.H. Chan.
First, we show that for all e > 0 and N sufficiently large, the matrix T'tvT N - MN splits
into a matrix of low rank independent of N and a matrix with spectral norm smaller
than e. Then we apply Cauchy's interlace theorem to verify that the eigenvalues of

are clustered at O. Again, we drop the index N, if the dimension of the matrices follows
from the context.

In preparation of Theorem 5.3, we provide the following two lemmata.

Lemma 5.1. Let a = {ad~o E hand b = {bd~o E LI' Then, for all e > 0, there
exists m = m( e) such that for all N 2:: 2m the Hankel matrix

splits as H = VH + WH, where

WH := hankel((ao, ... , am-I, ON-m), (bo, ... , bm-l, ON-m))

is a matrix of rank:::; 2m and where VH := H - WH satisfies IIVHI12 < e.

Proof: Since a, b Eh, there exists for all e > 0 an integer m = m( e) such that

00 00

L lakl < e/2, L Ibkl < e/2.
k=m k=m

Now the assertion follows from IIVHI12 :::; IIVHIlI< e/2 + e/2 .•

Lemma 5.2. Let t = {tdkEZ E h with IItlll = T be given. Further let T = TN
and H = H N be the corresponding N-th Toeplitz matrix and N-th Hankel matrix,
respectively. Then, for all e > 0, there exists m = m( e) such that for all N 2:: 4m

HT+T'H +H2 = V +W,

11
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where IIVI12 < € and

W := (Wj,k);'k-~O with Wj,k = 0 for 2m ~ j + k ~ 2N - 2 - 2m. (5.3)

Proof: By construction, it holds that IITI12 ~ T, IIHI12 ~ T. Since tELl, there exists
m = m(€) such that

(5.4)

Then
(5 ..5)

with

Te; '- toeplitz((Om+l, L(m+l)"'" L(N-l)), (Om+l, tm+l, ... , tN-l)),
TB '- toeplitz((to, ... , Lm, ON-m-l), (to, ... , tm, ON-m-l)) ,
He; '- hankel((Om, L(m+l),"" L(N-2), 0), (Om,tm+l, ... , tN-2, 0)),
H B .- hankel((Ll, ... , Lm, ON-m), (tl,"" tm, 0N-m)),

where we obtain by (5.4) that IITe;112~ 6e;r' IIHe;lb ~ 6e;r' Substituting (5.5) in (5.2),
we obtain the desired decomposition

HT+T'H+H2 (He; + HB)(Te; + TB) + (T: + T.~)(He; + HB) + (He; + HB)2
(HTe; +T:H + He;TB +T~He; + He;H + HBHe;)
+(T~HB + HBTB + H~).

•
Theorem 5.3. Let t = {tdkE71 E LI with IItlll = T be given and let T = TN be the
corresponding N-th Toeplitz matrix. Then, for all € > 0, there exists m = m(€) such
that for all N 2: 2m

T'T = C'DC+ V +W,
where D denotes some diagonal matrix,

W := (Wj,k);'k-~O with Wj,k = 0 for m ~ j + k ~ 2N - 2 - m,

and where IIVl12 < €.

Proof: Let H = H N denote the N-Hankel matrix associated with t. Then it follows
by Theorem 3.1 ii) that

T'T (T' + H - H)(T + H - H)
(C'DaC + S'DbC - H)(C'DaC + C'EhS - H),

12



where

a = aN+l .- (2to, LI + tl, ... , L(N-I) + tN-I, 0)' E JRN+I ,
b = bN-1 '- (LI - tl, ... , L(N-I) - tN-d E JRN-I

and
-[

Da = diag(do, , dN-I, dN) , (do, , dN)' := CN+la,

iJb = diag(O, dl, ,dN-I, 0) , (do, , dN-d := S~_l b.
By cfJ(cfJ)' = IN, we furt her obtain that

T'T =C'D~C + 8' iJ~8 + C'DaiJb8 + 8' iJbDaC - H(T + H) - (T' + H)H + H2

and by Theorem 3.1 ii) that

T'T = C'D2C + c'iJ
2
c - H -2 + iI - - (HT + T'H + H2) (5.6)a b Db DbDa

with

Set

(Uo, ... , UN)'

(VI,"" VN-d'

'- shankel(uI,"" UN),
2 - [ -2 -2 ,

.- NCN+l(O,dl, ... ,dN-l'O),

.- ahankel( VI, ... , VN-l, 0) ,
2 -[ - -

'- N 8N-l (d1d1, ... , dN-1dN-1)' .

iI := H D~ - iI DbDa = hankel(( Wl, ... ,WN), (W-l, ... ,W-N)) (5.7)

with WN = W-N = UN, Wk = Uk - Vk, W-k = Uk + Vk (k = 1, ... ,N - 1). Then we have
for all N E lN that

(5.8)

Moreover, we get by Theorem 3.1 i) for the first row w := (Wl,"" wN-d of iI that

2 -[ - - -[
w = N R~C N+l diag(O, d1, ... , dN-1, 0) RN8 N-l b

2 -[ -[
- N 8 N-IR~ diag(do, ... , dN) RN8 N-lb

toeplitz (( -to, -tl,"" -tN-2), (-to, -LI,' .. , -L(N-2))) b

+hankel ((L2, ... , L(N-2), bN-1, 0), (t2, ... , tN-2, -bN-1, 0)) b.

13



Thus, it holds for all NEIN" that

Similarly, we conc1ude that

Together with (5.8), we see that iI satisfies the assertion of Lemma 5.1. Hence, for
fixed e > 0, there exists m = m( e) > 0 such that for all N ~ 2m

(5.9)

with IIVI12 :::;e/2, W = hankel((wl"'" Wm, ON-m), (W-l"'" W-m, ON-m))'
Furthermore, by Lemma 5.2, there exists m = m(e) > 0 such that for N sufficiently
large

(HT + T'H + H2) = V +W (5.10)

with IIVII2 :::;e/2 and with a low rank matrix W of the form (5.3). Applying (5.9) and
(5.10) in (5.6), we obtain the assertion

T'T = C'(D~+ iJ~)C + (V - V) + (W) - W)

with m := max{m, 2m} .•

Lemma 5.4. For m > 0 and N > 2m, let V E IRN,N with IIVI12 < e/2 and

W := (Wj,k)fk-:O with Wj,k = 0 for m :::;j + k :::;2N - 2 - m,

N-l
be given. Set w:= L IWj,kl. Then it holds for N > 4w/e that

j,k=O

116(C~ (V +W) (C~),)lb < e.

Note that for fixed m, the value w does not depend on N.

Proof: On the one hand, we obtain that

116(C~V (C~),)112 :::;IIC~ V (C~)'Ib = IIVI12 < e/2,
and on the other hand that

1
2 ( N)2 ~1 n(2j + 1)11" n(2k + 1)11" Imax - en LJ Wj k COS ---- cos ----

n=O,...,N-l N .k-O' 2N 2N
J, -

< 2w/N < e/2 (N) 4w/e).

Now summation implies the assertion .•
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Theorem 5.5. Let t = {tdkE~ E II with IItl11 = T be given and let TN be the cor-
responding N-th Toeplitz matrix. Moreover, assume that the singular values of TN

are larger than "( > 0 for all NEIN". Let MN = M N(T~T N) denote the optimal
preconditioner of T~T N in ACif' Then the eigenvalues of M-;/T~T N are clustered at
1.

Proof: By Corollary 4.2, it holds that IIM;V1112< 1/"( for all NEIN". Let c > 0 be
fixed. Then we obtain by (5.1), Theorem 5.3 and Lemma 5.4 that for N sufficiently
large, there exists MEIN" independent of N sueh that

T~T N - MN = V N + W N - (cfJ)' 8( cfJ (V N +W N) (cfJ)') cfJ = UN + W N ,

where W N is of low rank M and where IIU NI12< c"(. Now

Mf//2 T~T N MN1/2 - IN MN1/2 UN MN1/2 + MfF2 W NM~1/2

-C:N + W N,
where IIVNI12~ c and where the rank of WN is at most M. Sinee VN and WN are
symmetrie matriees, we ean apply Cauehy's interlaee theorem [25]' whieh implies that
for N sufficiently large, at most M eigenvalues of VN +W N have absolute value greater
than c. Now the assertion follows sinee MN1/2 T~TN MN1/2 and M;V1 T~TN possess
the same eigenvalues .•

Remark. Under the above assumptions on TN it was proved that the eigenvalues of
(M;V1TN)*(M;V1TN), where MN = CN(TN) denotes the optimal cireulant precondi-
tioner of TN, are clustered at 1 [8, 22]. In general, the eigenvalues of
(M;V1TN)'(M;VlTN) are not clustered at 1, if MN is the optimal trigonometrie pre-
conditioner of TN. 1£TN = (tj-k)f.;;~O with to = 1 and tk = -Lk (k = 1, ... ,N - 1),
then the optimal trigonometrie preconditioners of T N are MN = IN, i.e. we have no
preconditioning. 1£, for example, Ll = -tl = 2 and tk = 0 (Ikl > 1), then the matrices
T2N+l (N E IN")satisfy the assumption of Theorem 5.5. However, the eigenvalues of
T;N+lT2N+l are given by 9 - 8 cos(j'rr/(N + 1)) (j = 0, ... ,N).

6 Construction of optimal preconditioners of T'T
In this section, we explain how optimal trigonometrie preeonditoners of T~T N can be
constructed with O(N log N) arithmetical operations. In eontrast to the eonstruction
of optimal trigonometrie preconditioners of TN, we are confronted with the fact that
T~TN is not a Toeplitz matrix. Again, we consider only CfJ-preconditioners. The
approach for the DST-I, DST-II, DST-IV and DCT-IV follows the same lines.
For the construetion of the optimal preeonditioner MN = M N(T~TN) we use the
representation (4.7) of MN with the basis {Br! : k = 0, ... ,N - 1} of ACif [2], [13]:

Br! := (cfJ)' diag(Uk(cl))~ol cfJ,
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where Cl := eos ~ and where Uk denotes the k-th Chebyshev polynomial of second kind

Uk(x) := sin((k + 1)arccosx)/ sin(arceosx) (x E (-1,1)).

Moreover, we apply that {Bk: k = 0, ... , N - 1} with

Bk '- (cfJ)' diag(Tk(cl))~o1 cfJ
stoeplitz e~ + shankel e~_1' (k = 1,... ,N - 1) (6.1)

e-1 := ON, and with the k-th Chebyshev polynomial of first kind

Tk(x) := cos(karceosx) (x E [-1,1]),

is another basis of ACII. Both bases are related by
N

BI! - I BI! - 2B10- , 1 - l'

B;~2 + 2B; (j = 2, ... ,N - 1), (6.2)

where the last equation follows by Uj = Uj-2 + 2Tj. Now we have by (4.7) that

N-1

MN = L O!kBf
k=O

with

Q =G-1 {3I! G:= ((BI! BI!))N-1 {3I!:= ((T' T BII))N-1.
, J' k . k-O ' N N, J .-0J, - J-

Clearly, we are not interested in MN itself, but in the diagonal matrix diag d with

MN = (CfJ)' (diag d) cfJ .
If Q is known, then we obtain diag d by

N-1 N-1
diag d = L O!kcfJ Bk! (cfJ)' = L O!kdiag (Uk(CI));:~1 ,

k=O k=O

i.e. by definition of Uk by

(6.3)

do

(~ )N-1O!k k=1

(k = 1, ... ,N - 1) , (6.4)

(6.5)

Thus the eonstruction of d from given Q requires O(N log N) arithmetieal operations.
It remains to find an efficient construetion of the coefficient veetor Q. Therefore we use
the following lemmata.
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Set

N-l
Lemma 6.1. Für G:= ((By,Bf)) , it holds that

J,k=O

3 0 -1
0 2 0 -1
-1 0 2 0 -1

G-1 = _1_
2N -1 0 2 0 -1

-1 0 3 -2
-1 -2 3N-2-----r:l

such that the vector multiplication with G-1 can be computed with O(N) arithmetical
operations.

Proof: We show that G-1 G = I. By definition, we have for the (k, l)-th entry of G
that

9k,1 (BrI , B{I) = tr ((B{I)' Bf)
N-1:L UI(Cj) Uk(Cj) .
j=O

Then we get for l = 2, ... ,N - 3 that

N-1:L Uk(Cj) (2UI(cj) - UI-2(Cj) - UI+2(Cj))
j=O

and further since

and by definition of Ul that

~1 . (k + l)j7f . (l + l)j7f 2N s:
29k,1 - 9k,I-2 - 9k,I+2 = 4 ~ sm N sm N = Uk,l

}=1

(k = 0, ... ,N - 1; l = 2, ... ,N - 3). Straightforward computation for l = 0,1, N -
2, N - 1 completes the proof .•

I (, I )N-1ß := (TNTN,Bj) j=O .

Then we obtain by the recurrence relation (6.2) that

ßf/ = ßb , ß[I = 2ß[ , ß£I = ß£~2 + ß£ (k = 2, ... ,N - 1) . (6.6)
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Thus we ean eompute {3Il from (31 with O(N) additions. The following eonstruetion of
{31 is based on an idea of E.E. Tyrtyshnikov [21]. We split T = TN = (tj-k)f,k;O into
a lower and an upper triangular Toeplitz matrix

T=TL+TR

with diagonal entries to/2. Then we obtain that

{3£= (T~TL, Bk) + (T~TR, Bk) + (T~TR + T~TL, Bk) (k = 0, ... , N -1). (6.7)

We eonsider the summands on the right-hand side. The matrix T~T R + T~T L is a
symmetrie Toeplitz matrix. The matriees T~T L and T~T R have lost their Toeplitz
strueture. For A E IRN,N, we introduee the veetors s(A) = (sk(A))~;ol, h(A)

N-l - - N-l(hk(A))k=O and h(A) = (hk(A))k=O by

sk(A) '- (A, stoeplitz((e:~)-2ek)) (k = 0, ... ,N - 1) ,
hk(A) := (A, hankel(ek, 0)) (k = 0, ,N - 2) ,
hk(A) := (A, hankel(O, ek)) (k = 0, ,N - 2) .

Set h_l := 0 and h_l := O. Then it follows by (6.1) that

(A, Bk) = (e:f)2Sk(A) + hk-l(A) + hk-l(A) (k = 0, ... , N - 1). (6.8)

Lemma 6.2. Let A:= T~TR+T~TL and let r := T~(to, tl, ... , tN-d. Then it holds
that

sk(A)
ho(A)
hk(A)
hk(A)

2(N-k)rk (k=0, ... ,N-1),
ro , hl (A) = 2 rl ,

2 rk + hk-2(A) (k = 2, ... ,N - 2) ,

hk (A) (k = 0, ... ,N - 2) .

Proof: Sinee A = stoeplitz r, the assertion follows by definition of s, hand h.•

Lemma 6.3. Let A := T~TR and let r := ((e:{;')2Lk)N-l. Then it holds that
k=O

where

s(A)
ho(A)
hk(A)
ho(A)
hk(A)

2 hankel(Nro, (N - l)rl,"', rN-r), (0, ... ,0, rN-I)) r,
Xo, hl(A) = Xl,
hk-2(A) + Xk (k = 2, ... ,N - 2) ,

Yo/2, hl(A) = Yl,
hk-2(A) + Yk (k = 2, ... , N - 2) ,

(6.9)

(6.10)

(6.11)

x '- T~r,

y '- hankel(2(ro, rl,"', rN-I), (-r2, -r3,"', -rN-I, 0, 2rN-l)) r.

18



Proof: Since T R is an upper triangular Toeplitz matrix, it holds that

aj,k = aj-l,k-l + TjTk (j, k = 1 ... ,N - 1) .

Consequently, we obtain that

N-k-l N-l-k

Sk = 2 L aj+k,j = L (N - j - k)Tj+kTj
j=O j=O

(6.12)

which yields (6.9). The recursions (6.10) and (6.11) follow by straightforward calcula-
tion from (6.12) .•

Lemma 6.4. Let B := T~TR and let J := shankeleN_l denote the N-th counteri-
dentity. Then it holds that

sk(B)
hk(B)
hk(B)

Sk(J B J) (k = 0, ,N - 1) ,
hk(JBJ) (k=0, ,N-2),
hk(JBJ) (k=0, ,N-2),

such that s(B), h(B) and h(B) can be computed by (6.9) - (6.11).

Proof: The relations for s(B), h(B) and h(B) follow by definition of J. By

J T~ TL J = (J TL J)' (JTL J)

and since
J TL J = toeplitz((to, ... , tN-d, (ta, 0, ... ,0))

is an upper triangular Toeplitz matrix, we can calculate s(B), h(B) and h(B) by (6.9)

- (6.11) with A = J B J and r = ((c:f)2tk)::a1. I
Theorem 6.5. Let TN := (tj-k)j,k-';O' Then the optimal preconditioner MN E Ac,!!'
of T~T N can be constructed with O(N log N) arithmetical operations.

Proof: We compute ßI by (6.7), (6.8) and by the Lemmata 6.2 - 6.4. Taking into
account that the multiplication of a vector with a Toeplitz matrix or a Hankel matrix
requires O(N log N) operations, the whole construction of ßI takes O(N log N) arith-
metical operations. iFrom ßI we compute ßll by (6.6) with O(N) additions. Using
Lemma 6.1, we get a := G-1ßll at the cost of O(N) arithmetical operations. Finally,
the DST-I in (6.4) to obtain d from a needs O(N log N) arithmetical operations and
we are done with an arithmetical complexity of O(NlogN) .•
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Remark. We can use similar ideas for the construction of the optimal trigonometrie
preconditioners with respect to the C;:, s~ -1' sfJ and s;:. For the corresponding
bases of AON

Bk .- O~im diag(Tk(cd)1~~-1 Odim

stoeplitz e~ + hankel( u~, v~),
Bk! .- O~im diag(Uk(cl))1~~-1 Odim

it holds that
3 0 -1
o 2 0 -1
-1 0 2 0 -1

G-1 = ~
K

0 2 0 -1-1
-1 0 91 92

-1 92 93
where

°dim Cl dirn Uk Vk K 91 92 93

cfJ cos 17r N ek-1 ek-1 2N 3 -2 3N-2
N --w-

C;: (1+l)I7l" N ek-1 -ek-1 2N 1 0 1eos 2N

S~_1
cos (1+l)7l" N-1 -ek-2 -ek-2 2N+2 2 0 3N

sfJ cos (1+l)7l" N -ek-1 -ek-1 2N 3 2 3N-2
N --w-

S;: (21+l)7l" N -ek-1 ek-1 2N 1 0 1eos 2N

Note that the eonstruction of the optimal preconditioner with respect to the C;: or
the S;: is especially simple.

7 Numerical Results
Finally, we present four examples of nonsymmetrie Toeplitz systems

(7.1)

for which the preeonditioning of the normal equation

(7.2)

by an optimal trigonometrie preconditioner MN = M N(T~T N) of T~T N significantly
aecerelates the convergence of the CG-method. We refer to the CG-method applied
to the normal equation (7.2) as NCG-method. The algorithms were realized for the
optimal preconditioners with respeet to the DCT-II, the DST-II, the DCT-IV and
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n ~ 1,
n=O,
n~l{

I \ log( 2 - n)
tn= 1\log(2-n)+1\(1+n)

l\(l+n)

i) (see [15])

\
I

\

the DST -IV, res~ecti vely. Clear ly, we can also use the DST - I precondi ti oner. Note
that for symmetrie Toeplitz matriees, the DST -I preeonditioned CG-method for the

I
solution of (7.1) shows a similar eonvergenee behaviour as the DST-II preeonditioned

I
CG-method. \ . . . . ...
The fast eomputaflOn of the preeondItlOners m the mItlaI step and the eomputation
of the preeonditioned NCG-method were implemented in Matlab and tested on a Sun
SPARCstation 20.\ The fast trigonometrie transforms appearing both in the initializa-
tion and in the NCG-steps were taken from the C-implementation based on [3] and
[19] by using the ebex-programm.
As transform leng~h we ehoose N = 2n. The right-hand side bN of (7.1) is the veetor
eonsisting of N on~s. The preeonditioned NCG-method starts with the zero veetor and
stops if IlrU)Ilzlllr(i) 112 < 10-7, where r(j) denotes the residual veetor after j iterations.
Our test matriees ,re the following four Toeplitz matriees TN = (tj-k)f,k-:;O:

\

\

ii) (see [15])

{

2 n=O,
tn = -0.7 tn+l n ~ -1 ,

\ 0.9 tn-1 n ~ 1 .

iii) Here we use the Foeplitz matrices TN arising from the generating function

j(x) = x2eix .

iv)

21

{

-1.5 n = -1 ,
2 n = 0,

tn = 05 n = 1,
\ Ö else.

As expeeted, also for\ large transform lenghts N, the initialisation and eaeh NCG-step
ean be eomputed ver}' fast whieh refleets the arithmetie eomplexity of O(N log N) for
these eomputations. [,he four last eolumns of the following tables show the number of
iterations requiredb~ the NCG-metod for the different trigonometrie preeonditioners.
The seeond eolumn edntains the number of iteration steps of the NCG-method without
preeonditioning. Thel\ eolumns 3 and 4 eontain the numbers of iterations required by
the CG-method appliJed to the equation

\
(Mi./TN)'(Mi./TN)XN = (M"}/TN)Mi./bN 1

I
where MN denotes tJe optimal preeonditioner of TN with respeet to the DCT-II and

I

the DST-II, respeetivte1y.
\

\

\

\



n IN DCT-II DST-II eIl SIl eIJ sIJN N

7 24 11 10 8 15 14 14
8 32 12 11 8 17 15 15
9 43 14 13 8 19 17 16
10 57 18 16 9 20 19 16
11 86 20 19 9 20 20 17
12 121 25 22 9 22 22 19
13 176 30 28 9 22 22 19

Table 1: Number of iterations for example i)

n IN DCT-II DST-II eIl sIl eIV SIV
N N N N

7 34 44 44 9 12 9 12
8 43 47 50 8 11 8 11
9 53 50 52 7 10 8 11
10 59 50 53 7 9 7 10
11 50 50 53 6 9 7 9
12 58 49 53 6 8 7 9
13 56 48 54 6 8 7 9

Table 2: Number of iterations for example ii)

n IN DCT-II DST-I eIl sIJ eIV SIV
N N N

5 84 72 68 29 21 47 37
6 311 124 176 52 26 84 74
7 1226 264 412 116 33 173 140
8 5220 626 980 256 40 405 302
9 ** 1741 3341 664 74 1031 846

Table 3: Number of iterations for example iii)

n IN DCT-II DST-II eIl sII eIV SIV
N N N N

6 88 21 37 21 9 25 24
7 201 31 67 27 8 31 30
8 435 45 125 36 8 39 38
9 929 66 294 47 9 72 65

Table 4: Number of iterations for example iv)

Although not all matrices in oUf examples fulfil the assumptions of Theorem 5.5, the
preconditioning with an optimal trigonometrie preconditioner of T',yT N accerelates the
convergence of the NCG-method significantly.
For all examples, the preconditioning with respect to the DCT-IV and the DST-IV
leads to similar numbers of iteration steps. It is easy to check that for symmetrie
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•

\

\

\

\

Toeplitz matriees ~ N the optimal preeonditioners MN(T N) with respeet to the OCT-
IV and OST-IV ebineide.
Exeept of the seeohd example, the number of iterations differs, if we apply the preeondi-
tioners with respedt to the OCT -II and the OST-lI. Heuristieally, this ean be explained
by the different sduetures of ACH and ASIl and how "good" our example matriees fit
into this strueture.\ A general eriterion for the ehoiee of the optimal trigonometrie pre-
eonditioner would \be interesting. In this direetion, it is remarkable, that the optimal
preeonditioner M1(TN) E Ac~ of the auto-eovarianee matrix TN := (plJ-kl)j~k-~O is
"asymptotieally eqhivalent" to T N if N ---t 00, p ---t 1, while the optimal preeonditioner
MN(TN) E As~ olfTN is "asymptotieallyequivalent" to TN if N ---t 00, p ---t 0 [16].

Acknowledgeme~t. The authors wish to thank M. Tasche for his valueable eomments
eoneerning the rela\tions between trigonometrie transforms and Toeplitz-plus-Hankel
matriees.
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