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Explicit Strong Solutions of SPDE’s with
Applications to Non-Linear Filtering

F. E. Benth, Th. Deck?!, J. Potthoff!, G. Vige?

Abstract. A differential calculus for random fields is developed and combined
with the S—transform to obtain an explicit strong solution of the Cauchy problem

du(t,z) = (Lu+cu)t,z)dt+ Y hu(t,z) dY},

i=1
uw(0,z) = uo(z), z€ R
Here L is a linear second order elliptic operator, h; and c are real functions, and

Vi = [t4i(s) ds + W{, where W, is a Brownian motion. An application of the
solution to non-linear filtering and mathematical finance is also considered.

1 Introduction

Let W} and W? be independent Brownian motions on the probability space (Q,F,P),
" and suppose the one—dimensional diffusion

dXt = b(Xt) dt + O'(Xt) thl
is observed by _
dY; = h(X;) dt + dW2.

The resl-valued functions b and ¢ are assumed to be Lipschitz continuous and of linear
growth, and h is assumed to be bounded and measurable. [The non-linear filtering problem
is to find the conditional expectation E[f(X;)|F:], where [F; is the o-algebra generated by
{Y,; 0 < s < t}, and f is some bounded measurable function. From general probability
theory, we know that

Elf(X)|F)(w) = [ f@PIX: € dolFw) = [ f@)p(t,2,0) da,

if the conditional probability P[X; € B|F] is absolut!ely continuous with respect to

Lebesgue measure. From the Fujisaki-Kallianpur-Kunita equation (see e.g. [1]), we obtain
the following stochastic partial differential equation for the conditional density p(t, z,w):

dp(t,z,w) = A*p(t, z,w) dt + p(t, a{,w) [h(x) - /Rh y)p(t, y,w) dy] dyy(w). (1.1)
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A* is the adjoint of the infinitesimal generator of X; and v, is the so-called innovation
process defined by dv; = dY; — E[X,|F,| dt. Since (1.1) is difficult to solve, M. Zakai (see
[2]) introduced the so-called unnormalized conditional density in the following manner:
Define the probability measure P by dP = Ar dP, where T > 0 is fixed, and

A, = exp (/Oth(Xs) dy, — %/Oth(xsf ds) .

Under P, (Yt)o<t<T becomes a standard Brownian motion. Let E denote the expectation
with respect to P. The unnormalized conditional density u(t,z,w) is now defined as

U(t, z, UJ) = Eﬁ[At'ft] ((d) p(ta z, U))
This relation readily implies

u(t, z,w)
Jru(t,y,w)dy’

which explains the name of u. It also shows that the original problem of finding E[f(X})|F|
" can be reduced to finding the density u. But this latter problem is less difficult to treat,
because u must satisfy the following linear (1n contrast to (1.1)) stochastic partial differ-
ential equation (see [2]),

p(t,z,w) =

du(t,r,w) = A*u(t,z,w)dt+ h(z)u(t,z,w)dY(w)

u(0,7,w) = uo(z). (1.2)

Here ug is the density function of the initial condition X,. (1.2) is known as the Zaka:
equation. We will construct an explicit strong solution for this type of Cauchy problem.
By a strong solution of (1.2) on [0, T] x IR, we mean a random field v : [0, T} x RxQ — R
which has the following properties:

(S1) There is an N € F with P(N) = 0 so that u(-,-,w) € C**([0,T] x R) for all w in
the complement N°¢ of N. '

(S2) For all z € IR the process (t,w) + u(t,z,w) is jointly measurable, u(t,z,-) is Fi-
adapted and It6-integrable over [0, T].

(S3) For all (¢,z) € [0,T] x IR the following equation is satisfied:
u(t, z) = uo(z +/A* sx)ds+/ u(s,z)dY; as.

The concept of strong solutions is extended to higher space dimensions and time-dependent
A* and h in the obvious way.

Existence and uniqueness results for (1.2) have been found by many authors. See e.g.
the works by I. Gyongy and N. V. Krylov [3, 4] and the references therein. Explicit formu-
las for the solution of equations closely related to (1.2) have been derived by E. Pardoux
[5, 6], H. Kunita [7] and F. E. Benth [8].



The present work extends those results of Benth which deal with deterministic initial
conditions. Our main improvement is that we obtain strong solutions. (The “generator
definition” of A used by Benth in [8] essentially avoids differentiability considerations.)
Pardoux derives a formula for the solution similar to ours, but he considers the backward
equation related to (1.2), and his solution concept is weaker than ours. He uses Sobolev
spaces with the associated notion of weak derivatives. In principle, it should be possible
to prove that his formula provides a strong solution by applying the Sobolev embedding
theorem. But this would require to increase the smoothness of A and of the coefficients
in A* considerably (depending on the dimension of the Ispace variable z). On page 308
in [7], Kunita gives a general formula for the solution in the strong sense. This formula
also applies for equations of type (1.2) which contain stochastic drifts in addition. Our
formula can be derived from the one in [7], if one sets the drift terms equal to zero,
transforms the backward integrals into forward integrals (with respect to the Brownian
motion E’s := B,_s — B;, s € [0,]), and rewrites the resulting formula from Stratonovich
to Itd form. We noticed this non-obvious relation after having finished the main body of
the present paper.

The main rationale for the present paper consists in the following: The most important
point is that our result applies for a class of unbounded, degenerate diffusion and drift
coefficients. (The example discussed in Section 5 is of this type.) It is also stronger than
the corresponding result by Pardoux (but we should mention that Pardoux can handle
related filtering problems which are beyond our methodl), and it covers Kunita’s result
under weaker conditions (e.g., we require C? instead of C{* differentiability for coefficients
o%.) Moreover, our proof is much more elementary than the method of inverse stochastic
flows used by Kunita. Our proof is based essentially on Kolmogorov’s continuity theorem
for random fields.

Beside these mathematical reasons we believe that the formula for the solution can be
of some practical, numerical interest, in particular in ap%)lications of non-linear filtering.
(The statement of the conditions and the results in Pardbux [5, 6] and in Kunita (7] may
be not so well suited for this purposes.) We tried to state our main theorem (Theorem
2.7) in such a way that it is accessible without too much effort for those who are interested
in concrete applications. ‘

The paper is organized as follows. After preparations and the statement of the main
result in Section 2, we develop a differential calculus (with respect to space-time param-
eters) for random fields in Section 3. As far as we know this has not been done before.
For instance, it can not be found in the standard references [7, 9], although the main
techniques are provided there. This calculus may also be useful in other related contexts.
In Section 4 we prove the main result. The final Section 5 is devoted to an application in
mathematical finance. We point out how one can use our solution numerically to obtain
optimal estimates of the parameters arising in the log-normal model for stocks. As a
by-product we obtain an existence and uniqueness result, and a Feynman-Kac formula
for the (deterministic) Cauchy problem

du 1 , ,0°
g _ —0'2.'172——u + Hf"'?i - q(t, )y, w(0, ) = uo.
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2 Preparations and statement of the main result

We will consider the following spaces of real valued functions:
Cs°(IRy): Infinitely differentiable functions on IR, with compact support.

c;"f’ (R%): n times continuously differentiable functions on IR with all derivatives
bounded, and highest derivative Hélder continuous of order 0 < 8 < 1.

C™™ (IR, x IR%): Continuously differentiable functions f (n times in ¢t € R, m times
in z € IR%. An index b denotes that f and all derivatives are bounded.

C"B(IR,x IR%): The space of functions on IR, x IR* for which there exists a constant
K such that
|DYf(t,z) — DIf (', 2)| < K(jt = ¢|°7 + |z - 2')f),

for all (¢,z), (¢, 2") € Ry x R%, v € N with 0 < |y| < k,and 0 < B < 1.
Function spaces with IR, x IR? substituted by Dz := [0, T] x IR? are defined analogously.

Let vw be the usual scalar product for vectors v,w € R% and ||£||2 := [5° £2(t)dt
for ¢ € L?(IRy)™. Let (W;)i>o be an m-dimensional standard Brownian motion on a
probability space (1, F1, P,), define (F1), := o{W,,0 < s < t}, and

ES = exp (/0006(8) dW, — %“f”g) .

We suppose that F, is the o-algebra generated by the Brownian motion. Recall that under
- this assumption the algebra of functions generated by {£%; £ € C§°(IR4+)™} is dense in
L*(Qy, Fi, P)). For f € L?(P,) we define the S-transform of f, Sf : C§°(IR4+)™ — IR, as

5f(6) = E[f£°].

Remark. Usually the S-transform is defined (and applied) in the context of white noise
analysis. In [10] this transform is discussed (and its usefulness demonstrated) in the
general setting of probability theory. In the present paper — except for the S-transform
— we do not refer to white noise techniques at all. The few elementary facts about the
S-transform which we need are collected in the following two examples, and can be found
in [10].

Example 2.1 Fiz t > 0 and h € L*(IR,)™. Let £} := £Mwoa denote the exponential
martingale. Then the S-transform of E! reads

SEME) = exp /Ot h(s)&(s) ds. (2.1)

Example 2.2 The S-transform of an Ité integral is given by Theorem 3.3 in [10]. If
X, = (X},...,X™) is It6 integrable over the interval [0,T), then

s [ x.awi(e) = [ ($X)(©8) dr
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Next we consider problem (1.2). Since our result will b

e independent from the filtering

context we write L + c instead of A*. (A*, in contrast to /A, usually contains a zero order
term c, cf. the example in Section 5.) For (¢,z) € R, x IR* let

d

> a'(te

2,7=1

L(t,z) = |

+3p

=1

N | b

B 3:1:J

where a(t,z) = o(t, 2)o(t, 2)T and ¥, b : R, x R* — IR?
globally Lipschitz continuous in x with a Lipschitz const

t. (Different conditions will be used in Theorem 2.7.) S
h= (hi,...,hm) € Co(Ry x RY)™, ug € Cyp(R?), and
differential equation

u(t, ) = uo(z) + /Ot{L(s, z) + c(s, z) }u(s, z) ds +
where Y}

e = exp ([ wo W, — 5 [ 1.l

is a martingale. Fix T > 0, then Girsanov’s theorem 1

dimensional Brownian motion with respect to the measur

dP, = EXdP,.

Let us assume for a moment that u is continuously

/Ot h(s,z)u(s, ) dYs,

t:z:)a

e (2.2)

are continuous, bounded, and
ant which does not depend on
uppose that ¢ € Cy(IRy x IR?),
consider the stochastic partial

(2.3)

= [{ids+ Wt’i, 1 <1 < d, and the (F;);-adapted process 9;(w;) is such that

(2.4)

"

mplies that (Y})o<i<r is an m-

e P, given by

z-differentiable in the L2(P,)-

sense up to the second order, that the L2(P;)-norm ||DZu(t, z)||, 0 < || < 2, is bounded
on every strip (s,T] x R? C [0,T] x R?, and that u satisfies (2.3). To determine a

representation formula for u(t, z) we proceed as follows.
respect to P1, i.e., we multiply both sides of (2.3) by the

E¢ :=exp (/:of(s)d

and compute the expectation with respect to P,. Becau
interchange the S-transform with the integrals and wit!
Example 2.2 we obtain

v(t, z;€) = uo(z) + /Ot{L(s,:r) +c(s,z) + h(s,z

where v(t, z;§) = Ep, [u(t, x)é_'f]. Since the r.h.s. of (2.5)

ov

5 (L+c+h§)v VU |t=0=u

1 ~
Y- 5N, €€ G

C’

We apply the S-transform with

normalized exponential,
(R+)m 3

se of L?(P,)-continuity we can

) the partial derivatives. From

&(s)}u(s, z;€) ds (2.5)

is t-differentiable we find

(2.6)




Thus v(¢, z; ) can be represented by the Feynman-Kac formula (see [11], p. 132)

v(t,7;€) = Ep, [uO(Xf’”‘) exp /Ot (c(t — 5, X5®) + h(t — s, X27)E(t — s)) ds]
= Ep, [uo(Xtt’z) exp /Ot (c(s, X))+ h(s,Xt’fs)f(s)) ds] , (2.7)

for (¢, x) € R, x IR® and £ € C°(IR,)™. Here the d-dimensional process (Xﬁ”‘) s>0 solves
the It6 equation

dX5® = b(t — 5, X*) ds + ot — 5, XI) dBs,  Xg® =1, (2.8)

where we have extended the coefficients to negative times by defining b(—s, z) := b(s, z),
o(—s,7) := o(s, ) for (s,z) € Ryx R?, and (B;)s»o is a d-dimensional Brownian motion
defined on an auxiliary probability space (Q2, F2, P2). We are thus led to consider the
probability space @ = Q; x Qp, F = F; ® Fp, and P = P, ® P,. In the following the
processes X%* and Y will be extended to processes on the product space (2, F, P), via
Xt,x(w17w2) = Xt""(wz), Y(wl,wz) = Y(wl).

In view of Example 2.1 one expects that v(¢, z;§) is the S-tra.nsform of

u(t,z,w) := Ep, UO(XtI)efo (s, X{5,) dst [§ hls,X[%,) dYa(1)=} [y IA(s,X05,) |2ds} . (2.9)

Proposition 2.3 Let (t,z) € RyxIR?, (X5%)o<s<: be a measurable process on (Qa, Fa, Pa),
¢, hi € Cy([0,8] x R%) for 1 <i<m, and up € Cy(IR?). Then u(t,z) defined by (2.9) is
in L?(P,) for all p > 1, and the S—transform of u(t,z) is given by (2.7).

Proof: By Schwarz’ inequality and Fubini’s theorem

Bp [[ut,2)f] < |luoll,e?l> Ep, B5. [e” Jo h(s,XE2,) dY= B [ Ih(s, X5 )lzdS]
1 ? —_—

1
= Juollz, exp (pt(lclloo + 5~ DIRIZ)) < o0,

2
where the equality follows from (2.1). Similarly we obtain for every { € C§°(IR4)™ the
estimate Bp [|£¢P] = exp{3(p® — p)l[¢|l3} < oo for all p > 1. These estimates show
that one can interchange the expectations E5 and Ep, which arise in the S—transform
of u(t,z). Example 2.2 concludes the proof. ]

To derive (2.7) we assumed that (2.3) has a solution. In this paper we will assume
that (2.6) is solved by (2.7) and we will give a straightforward proof that the random field
u defined in (2.9) is the unique strong solution of (2.3): We will verify that the random
fields on the r.h.s. of (2.9) are sufficiently smooth and that the standard rules of calculus
hold. These rules applied to (2.5) will finally allow us to derive (2.3).

We remark that this method generalizes the direct methods which work for non-
stochastic parabolic equations, such as Kolmogorov’s backward equation, cf. [13], [14].



To simplify the notation we introduce the difference o

functions defined on IR, x IR? by

f(t,:z:), t€R+,

‘ét,x,y)f = f(ta T+ ye‘i) -

where e; denotes the sth unit vector in the Euclidean basis 1
involving coordinate numbers ¢, j are implicitly understoo

Most of the random fields X : Ry x R* x Q — R (or RT"
satisfy the following condition:

Condition 2.4 There erists 6 € (0,1] such that the fol
and p > 2 there ezists a constant C > 0 such that
- X(tl’ iL‘) 'p]

i ]

[0,T), z,2' € [-R, R]%, and y,3' € [-R, R\{0}.

C
Clt—t

C(‘t _ tllp5/2

E[|X(t )]

<
< Cle-tp

E[|X(t2)

(t,z,y)X - ?A(tlr,ﬂl’yl)X S

fort,t' €

Notice that when X satisfies Condition 2.4, then X al
' € (0, 4], with an appropriate change of the constant C.

Let X = {X(t,z);t > 0,z € D} be a random fiel
X is continuous (resp. continuously differentiable w.r.t.
P(N) = 0 such that for all w € N° the functions (t, z)
all first order partial z-derivatives are continuous).

perators Al for i =1,...,d, for

r € R%, ye R,
for IR?. In the sequel statements

d to hold for all possible values.
) considered in this paper will

owing holds: For oll R,T > 0,

(2.10)
and (2.11)
+lz— 2P + |y - y'7), (212)

so satisfies this condition for all

1 with D c IR?. We say that
), if there exists N € F with

| X (¢, z w) are continuous (resp.

The following lemma is basic for the rest of the paper. Its assertions are essentially
contained in [7, 9], but detailed proofs are omitted. For the convenience of the reader, we

therefore give a proof.

Lemma 2.5 Let X be a random field on IR x IR® which

is continuous for every w € M,

P(M) = 1, and which satisfies Condition 2.4. Then t

P(M,) = 1, such that (t,z,w) — X(t,z,w) is cont’mu|

w € My and all (t, ). Moreover, the pointwise defined lums

X(t,z+ ye;,w) —

X

here is a subset My C M with
|ously differentiable in = for all

t (i.e., w € My is fized)

(t,z,w)

X, (t,z,w) = lim

y—0 Y

also ezists as an LP(P)-limit, for any p > 1.

Proof: For simplicity of notationlet d=1. Fix R>1 a
y # 0. In view of (2.12) the sequence n + &(¢,z,1/n) is C
Let &,(t,z,0) denote the limit as n tends to infinity and
y # 0. From (2.12) we obtain

E[l&(t,2,y) — & ¢ + |

2,y < C(ft =

nd let £(t,z,y) ==
auchy in LP([0, R]x [ R, R] x ).

A(t,x,y)X/y if

let &, (¢, z,y) := &(t,,y) when

— 2P+ |y —yP)




for all t,¢' € [0,R] and all z,2,y,y’ € [~R, R]. For sufficiently large p, Kolmogorov’s
continuity theorem (see [9]) ensures that &, has a version & which is continuous for
(t,z,y) € [0,R] x [-R, R]? and w € N{p, where P(N,r) = 0. Moreover, for y # 0 we
have £(t,z,y,w) = Ep(t, z,y,w) for all w € My, g :== M N NS p. Define

X(t,z) = X(t,0)+/oz§~p(t,s,0) ds

for all (t,z) € [0, R] x [-R, R]%. X is clearly continuous and continuously differentiable
with 9; X (¢, z,w) = &(t, 7, 0,w), for all w € M, g. Since &(t,x,y) = &(t,7,y) wheny # 0
we can estimate | X (¢,z) — X (¢, z)| by

X(0) + [Elts,0) -6t %)] ds+n (X 5+ %) — X(t,5)]ds — X(t,)]

z 1 1 qin
< [16lt50) ~ ks Dlds + 1X(6,0) = g7 [ X(t,9)ds

1

X, s) ds — X(t
Hm [ X9)ds—X(t,a)l

The limit on the r.h.s. for n — oo vanishes for every w € M, g (use uniform continuity
of &,(t,,-) for the first term). Thus X and X coincide on M, g, and therefore also on
My := Ny rewMp.r- So 0; X (t,z) exists and is continuous for every w € My and all (¢, z).

Finally consider (2.12) with t' := ¢, ' := z, ¢ := 1/n and y := 1/m. It follows that
the sequence

ES

X(t,z+1/n) - X(t,z)
1/n

n v

is a Cauchy sequence in LP(P) for any p > 2. Since it converges to 0; X (t,z,w) for every
w € M, it follows that the LP(P)-limit coincides with 9, X (¢, z) almost surely. The claim
for p > 1 follows now by Holder’s inequality. O

Remark. When X satisfies Condition 2.4, then X has a continuous version X. This
follows immediately from the estimate (3.2) below and Kolmogorov’s continuity theo-
rem. Henceforth we will therefore implicitly assume that a random field X satisfying
Condition 2.4 is continuous.

In order to state our main result (Theorem 2.7) we have to assume smoothness prop-
erties of the process X% which appears in the solution (2.9). It is convenient to define

(2.13)

A Xtt’_zs Hfo<s<t
s T ifs>t

and Al ,, 2 = Zg*Hve — Zp® for (st 1, y) € Ry x Ry x R* x R. The required
smoothness properties are formulated in the conclusion of the next proposition.



Proposition 2.6 Let K > 0, abbreviate b',0Y € CY? (R4 x IRY) by g and suppose that
[D3a(t,2) ~ DYg(#, )] < K(lt = ¢]*0D + |z = 2[2(0),

for (t,z), (,2') € Ryx R% 0 < |y| <2, where a(0) = (1) =1 and a(2) = a € (0,1].
Then for any (t,z) € IRy X Rd there is a unique strong solution (X%*)s>o of (2.8). For
Zt* defined by (2.13) the following conclusion holds: ' '

For any R,T > 0, and p > 2, there is a constant C such that

E[jzt*P| < C (2.14)

E [|Z§’”" - Z¥P] < Cls—|s']P2, and (2.15)
.

1 . 1.,
E H; zs,t,x,y)Z— JA(S’,t',r’,y’)Z

IA

C(ls = s'|P5/? + |t — t'|PO2

Ho -2+ ly—y'P),  (2.16)

with § = 1 for 5,8 € [0,T], (t,z), (¢,z') € [0,R] X [-R, R]?, and y,y' € [—-R, R]\{0}.
Moreover, ZY* is continuously differentiable with respect 3
z-derivatives of Zb* satisfy (2.14-2.16) with 6 = a. i

Proof: The Lipschitz continuity and boundedness of b,|c¥ ensure that for any (¢,z) €
IR, x IR%, there is a unique solution (X%*) >0 of (2.8). ‘The results in Chapter II of [9]
imply that for any R, T > 0, and p > 2, there is a constant C such that (2.14-2.16) hold
with § = 1.

With the same arguments as in the proof of Lemma
N with Po(N) = 0 such that for all w € N¢, &, th(aid) exists and is continuous for

(s,t,z) € Ry x Ry x IR, Furthermore, from Chapter Il in [9] we obtain a constant C
for any R, T > 0, and p > 2 such that 7 =0, L Zb* satisfies (2:14-2.16) with ¢ = o, for

s,s' €[0,T), (¢t,%), (t,2') € [0, R] x [RR]dandyye[RR]\{O} O

We can now state our main result. Sufficient condltlo?s which imply the assumptions
(A) - (D) of the following theorem are stated and discuss

‘2.5 it follows that there exists

sed below.

Theorem 2.7 Let T > 0, and L(t,z) be given by (2.2) with a = ooT. Assume that

(A) 0¥ and b* are measurable, locally bounded functions|on IR, X IR® such that (2.8) has
a weak solution (X5%)s>o.

(B) Z%* given by (2.13) satisfies the conclusion in Proposition 2.6.

(C) ¥ is such that (E7)o<t<r, defined in (2.4), is a martingale.

(D) ¢, h; € CPA(Ry x RY) N C**#(R, x R?), and u !e CHP(R?) with B € (0,1]. For
any € € C'0 (R;)™ a solution v of the Cauchy problem (2.6) is given by (2.7), and

v is unique in a subspace C C CY*(Dr).

Then u defined in (2.9) is a strong solution of (2.3) on Dr, and u(t,z) € LP(Py) for all
p > 1, (t,z) € Dr. If i is another strong solution of (,|2 3) which is twice continuously
x-diﬁerentzable in the L*(P,)-sense, and whose S-transform Su(§) belongs to C for every

£ € C(R,)™, then a(t,z) = u(t,z) Pi-a.s., for all (t,x .

9




Notice that for non-linear filtering, the theorem states roughly the following: If the sig-
nal process Xt* is sufficiently smooth and bounded in every LP, and if the S—transformed
Zakai-equation admits a Feynman-Kac solution, then the Zakai-equation is solved by the
stochastic Feynman-Kac formula (2.9).

Remarks. Let us comment on the the conditions (A) — (D) in more detail:

In (A) it is sufficient to impose the local boundedness for the ¢-variable, for every
fixed z, because in the proof of the theorem we only need an argument to interchange
the ¢-integration with the expectation E . We remark that we do not need to impose
uniqueness of the weak solution X**. This may be useful, for example in the Cox-
Ingersoll-Ross model of interest rates [15], where a weak solution can be given explicitly,
but whether uniqueness holds is an open question (at least for us).

Assumption (B) holds whenever the conditions in Proposition 2.6 are satisfied. This is
the case, for example, if b, 6% € C}° (IR, x IR?). But sometimes (e.g. explicit) solutions
X% are more regular than the coefficients in the differential equation indicate. Because of
such cases it is useful to require (A) and (B) separately. It would be desirable to find less
restrictive conditions on b and o which imply (B), in particular conditions which allow
for unbounded b and o. The example in Section 5 indicates that it should be possible to
find such conditions.

Assumption (C) holds, for example, if the Novikov—-condition is satisfied, i.e. if

117 2
Ep,[e? I ¥sB] < 0. (2.17)

Related conditions can be found in the literature, cf. [16] and references given there. When
(2.17) holds, the conclusion u(¢,z) € LP(P;) in Theorem 2.7 can be improved: Then one
has u(t,z) € LP(P,), for all p > 1. This follows from Hoélder’s inequality (for ¢ =1+ 1/4
and ¢’ such that 1/g + 1/¢' = 1) applied to the r.h.s. of

B fu(t,2)P] = [ lu(t,o)pe o #ea%td fy 1l s g,

Notice that (2.17) holds in particular for bounded processes 1. In the filtering context
s = h(s, X;) is such a bounded process.

Assumption (D) will usually be the hardest to verify in applications to non-linear
filtering, because the coefficients in A* are often non-linear, unbounded or degenerate.
Conditions which imply that a Feynman-Kac representation (2.7) is valid can be found in
[13] and in [16]. (To apply the result in [16] one has to transform the backward equations
and integrals into forward equations and integrals. This is straightforward.) (D) holds,
for example, if b and ¢ are Holder continuous and L is uniformly elliptic, i.e. there are
A2 > ); > 0 such that, for all (¢,z) € R, X R? and y € R*:

d
Xlyl? > > @7t x)yay; = Myl (2.18)

1,j=1
In this case the space C can be chosen, e.g., as the space of C?-functions on Dr which are
exponentially bounded w.r.t. z, uniformly w.r.t. ¢. The example in Section 5 illustrates

that (2.18) is not a necessary condition. C in this example will be the space of polynomially
bounded functions in C*?(Dr).

10



3

In this section we prove that differentiable random fields ¥
satisfy the standard rules of calculus. These rules are P
to verify (by direct calculation) that some given expressio

differential equation. We shall frequently use the element
lay + - +anlf < 7P H(jagfP + -+
which holds for real a; and p,n € IN. Also we shall use

(a+b)° < 2°(a®+ 0%, a,bc>

Lemma 3.1 Suppose the random field X satisfies Condit
and p > 2 there is a constant C1 > 0 such that

1

p
E||=AL X ]SCl

forallt € [0,T), z € [-R, R]* andy € [-R, R]\{0}. More
such that for all t,t € [0,T] and z,z' € [-R, R]*:

E[|X(t,z) - X(¢,2)]"] < Co(lt = ¢'P"* + |z — 2'I”).

Proof: Let R,T >0,p>2,and i € {1,...,d}. Then we
P Z&i X zﬁi X p
E l: ] (t,z,y) _ (0,0,1) :l 4
Y 1

2°C(p, RV 1,T)(T"? + R* + (k
where C(p, R, T) denotes the constant in Condition 2.4, fc
define y; € [-R,R] by 2’ = z + =&, yie;. Then |AX|?
estimated as

%t,z,y)X
y

75 |

<

d
IAX]P = |X(t,2) - X(t,2)+X({tz+ ) vie) — X(t

=1

d
= | X, z) - X(t,2)+ D Xtz + D viei) —
n=1 i<n

d

< @d+1P(X(t,2) - X))+ 1 X(tz+

n=1

With (2.10) and (3.1) this yields
E[X(t,z") - X(t,z)P) < (d+ 1)P[C(p, R, T)It' - £|P/7

Now (3.2) follows from |y,| < |z — 2’| and Cy := (d + 1)°

11

A differential calculus for ranc

dom fields

vhich satisfy Condition 2.4 also
otentially useful when one has
n, e.g. (2.9), solves a stochastic
ary inequality-

a.["),

0.

on 2.4. Then for any R, T > 0,

(3.1)

over, there is a constant Co > 0

(3.2)

obtain from (2.10) and (2.12)

2% E | X (0, e + X (0,0)")

+ 1)7%) 4+ 2%41C(p, 1, 1),

or given p, R, T. To prove (3.2),
= | X (¢,z') — X(t,z)|P can be

z)P

X(t,z + Z yie;) HP

i<n-—-1

Soyie) — Xtz + Y yie)l).

i<n i<n—1

d
+ Z C(pa 2Ra T)Iyn'pé]

n=1

C(p,R,T) +dC(p,2R,T)]. O




Proposition 3.2 (Product rule) Suppose that the random fields X andY satisfy Con-
dition 2.4. Then the product XY satisfies Condition 2.4, too. Moreover,

(XY)s,(t,2) = Xz, (8, 2)Y (¢, 2) + X (¢, 2)Yo, (8, 2)  as (3.3)
for (t,z) € Ry x IR, and the exceptional set does not depend on (t,z)..

Proof:- Let X and Y satisfy Condition 2.4 with the same ¢ and C. Fix R, T > 0 and
p > 2. Then (2.10) follows from

E[|IX (¢, 2)Y (t,2)FF) < E[|X (t,2)*]*E[|Y (t,2)*]'* < C(2p, R, T),
and (2.11) follows from

E|X(t,2)Y(t,7) - X(,2)Y(,2)F] < PE[X(t,z) - X(¢,)[*)*E[|Y (t,2)[*]"/*
+PE[|X (¢, z)*]PE(Y (t,2) - Y (¢, 2) ]2
< 9P*1C(2p, R, T)Jt — /P72

It remains to prove (2.12). Fix i € {1,...,d} and write A and A’ for Af, , and
Aft, respectively. Then

z'y')?
‘A(XY) _ A(XY) P
Yy Yy’ .
AX AY A'X ! d
< I—Y(t,x +ye) + —X(t,z) - —Y(t',z' +y'e;) — A ,YX(t’,:c’)
Y Y Y Yy
AX A'X ? ! P
< 4P ( (T - ) Y(t,z+ye)| +|— Y (t,z+ye) Yt 2" +¢e))
AY AY POAY P
(5 - ) x.a) + |3 e - xea) ).

for t,t € Ry, z,2' € R® and y,y' € R\{0}. We denote the terms on the r.h.s. by Ifi) to
Iél) and estimate their expectation separately.

From Cauchy’s inequality, (2.11) and (2.12) we obtain
1/2

2p
B[tz +ye)] "

AX _AX
Yy y

< C@p, R T)(t =t + |z — /PP + |y — /),

EIP) < E

for t,¢' € [0,T], 2,2’ € [-R, R}® and y,v' € [-R, R\{0}.
We estimate E[I{"] using Cauchy’s inequality, (3.1) and (3.2):

1/2
; A'X [P
E[Ié )] < E [ —_— ] E[|Y(t,z +ye) - Y(t',z2' + y'e,-)lz”]l/2

< Const (|t — '[P + |z — 2'|P° + |y — ¥/ IP°),

12



for t,t' € [0,T)], z,z' € [-R, R)% and y,y’ € [-R, R]\{0},
p, Rand T.

Because of symmetry Iéi) and If) can be estimated
(3.3). Since all the derivatives in (3.3) exist, we only h
i € {1,...,d} be arbitrary, then for almost every w € {} a

A%t,z,y)X Y
y
(G,

y T

#xca)-(

- X, (t, )Y (t,z) — X (¢, 2)Ys, (¢, 2)

1 Aét:z’y) X N

+ Al

(t,x)) -Y(t,z)

At Y
Loy Yxi (ta .’II)

)|—>0 asy —
Y

Notice that when X and Y satisfy Condition 2.4 wi
choose § = min{dx, dy}. The foregoing proof shows that
with this 6. In the sequel we denote by V, f(¢,z) = (O, f(
of a function f(t,z) w.r.t. z.

t

n

" Proposition 3.3 (Chain rule) Suppose that the rando |

and f € C*P(Ry x R*) with 0 < 8 < 1. Then (t,7)
which satisfies Condition 2.4 with ' = 36. Moreover,

B, f (2, X (t,2)) = (Vo f) (2, X (8, 7)) - Xai(

for (t,z) € Ry x IR®, and the ezceptional set does not depend on

Proof: To see that f(t,) := f(¢, X (¢, 7)) satisfies (2.10)

—

where the constant depends on

similarly. It remains to show
ave to show the equality. Let
nd all (t,z) € Ry x R%

(t,z.y)

d

©

th constants dx # dy, we can

Lczlso XY satisfies Condition 2.4

,T),...,05,f(t z)) the gradient

n field X satisfies Condition 2.4
f(t, X (t,z)) is a random field

t,T) a.s. (3.4)

(t,x).
let R,T >0 and p > 2. Then

E[lft.o)f] < ZEfEX(¢2) -

<
<
. for t € [0,T] and z € [—R, R]. Using the Holder continuit
EB[|f(ta) - ft, )] < PK?E[jt—tP2+

Since X (¢, z) satisfies (2.11) it follows that f(t, X (t,z)) s

Fix i € {1,...,d}. To show (2.12) we proceed as follows

2 (KP(T? + C(p, R, T)°) +|£(0,0)

0,0)[ +1£(0,0)7)

| Y

y of f we obtain
X (t,2) = X (¢, 2)P7] .

|atisﬁes (2.11) with ¢’

B4.

l%—ifp < /OIVIf(t,X(t,x)+z/AX)d1—A—y)—{—-
- /0 YV X (7)) + vA'X) dyA—;E ’
1 PlAX  AXFP
< or /0 (VaD)(t, X (t2) + vAX) do| | == = =
[ VL)t X (b 7) + VAX)
A'XIP

—(Vo.)(t, X(t,z") + vA'X)

13
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fort,t € R, z,z' € R% and y,y' € R\{0}. Fix T,R > 0 and p > 2. We now take the
expectation on both sides and estimate the two resulting terms on the r.h.s., I; and Iy,

separately.
From the Holder continuity of V. f, we obtain that I; is bounded,
1 1/2
< PP(KV |(Vef)(0,0)))°E [ J @+ 41X (t,2) +vaxPp) dz/z”]
0

C(2p7 Ra T)l/z(lt - t,|p5/2 + 'III - mllpé + |y - yl|p6),

AX &K

E !
y oy

1 2p71/2
I, < %E “ /0 (Vaf)(t, X (£, ) + vAX) dv }

for t,¢ € [0,T), z,2' € [-R,R]® and y,y’ € [-R, R]\{0}. It remains to show that the
integral is bounded. This follows from the estimate

E [(/0]l IX(t,2) + vVAX|P d)?| < E [/01({X(t, )| + v|AX ()8 dz/]

< PE[IX(t ) + |AX (),

fort € [0,T), z € [-R, R]% and y € [—R, R]. This expression is bounded since X satisfies
(2.10). Thus to complete the proof it suffices to show that I, has a similar upper bound.
Using the Holder continuity of V. f, we find that

L < P&PK'E [/ol(lt—t’|ﬂ/2+{(1—u)lX(t,x)—X(t',x')l

A'X

!

X (62 + ye) — X(E, 2!+ e)}) ] B

2p] 1/2
} . (35)

(3.1) implies that the second expectation is bounded for ¢ € [0,T], ' € [-R, R]?, and
y' € [-R, R]\{0}. The first term is also bounded,

1 1/2
E [( /0 . dy)'@] < 3 (|t — ¢ + PPE(|X (t,3) — X (¢, o) [PF]?
+ 2PB(|IX (¢, 7 + ye;) — X (.2’ + /e PP]'?) . (3.6)
Jensen’s inequality and (3.2) give

B/2

IN

E[|X(t,z) - X(¢,2)[*]
< 2°P2Cy(2p, R, TP (|t — P12 + |z — ' [P%%),(3.7)

E[X(t,2) - X(¢,2)*]"

for t,# € [0,T] and z,z’ € [-R, R]®. A similar estimate holds for the last term in (3.6).
Thus combining (3.5), (3.6), and (3.7) we find that f(t, X (¢,z)) satisfies Condition 2.4.

14



It remains to show (3.4). Recall that X is continuot

i€ {1,...,d}. Then, almost surely

A%t,z,y) f _
y

< [ UTD) X 0,2) + iy X) = (V)X (1,2)

(sz) (t7 X(t7 x)) . Xxi (t7 ‘T)

y i

¥ |(vzf)<t,x<t,x)> 1 (t,x))’ 0

Proposition 3.4 (Differentiation under the integral

5. Let f be as above, and fix

Ai X .
) | dl/ (tyz)y) ‘

asy — 0. O

1 sign) Let (B;)¢>o be a d-dimen-

sional Brownian motion. If X is Ité integrable and satz'sfiies Condition 2.4, then

flt,z) == /OtX(s,a:)st, g(t,z) == /Ot

satisfy Condition 2.4 with the same 6. Moreover, the ¢

satisfy
t t oot
8, [ X(s,2)dB. = || Xuls.z)dB. and 2, [ x

almost surely, for (t,z) € Ry x R?, and the ezceptional
Proof: We only prove the result for f. The proof for g is

X(s,z)ds

continuous versions of f and g

t
5, ) dsz/ Xz, (s,z)ds
0

set does not depend on (t,).
similar. (2.10) and (2.11) follow

immediately from Burkholder’s inequality and the assumptions on X. To prove (2.12),

suppose R, T > 0, p > 2. Assume without loss of general;
Y Yy
[ Al X A X
(5,2,y) (s,%".y")
< 2°FE - ;
From Burkholder’s inequality and (3.1) this expression is
Aés’z7y)X — A%s72’1y1)X

i ) p
E H Alpagyf  Blrww)f }
¢ D
/ ( )st }+2Z
o y y
y Y’

et [ "E
0

P
] ds+ 2P|t = ¢'|P

S é(p’ R7 T)(lt - tllp6/2 + liE - mltpé -+ I

for t,t' € [0,T], z,z' € [-R,R}%, and y,y’ € [-R, R]\{(
Condition 2.4.
Fix i € {1,...,d}. Let & be a continuous version of

a continuous version of (¢,z,y) — [ &(s, ,y) dBs. Thus

. Azta: ) t !
hm——-”—y/ Xstzm(t,:lI,O):/ &i(s,z,0) di
y—0 Y 0 0

for (t,z) € R, x R?, which concludes the proof.

Yy

ty that 0 <t <t <T, then
t, A’(s,xl’yl)X

P
E )
bounded by

' 3 D
2-1 /t E H Azs,z’;y’)xl ] ds
t Yy

- y']”‘s),
}, which shows that f satisfies

dB;

t,2,y) = Al ;) X/y and 7; be
for a.e. w € £ we have

t
3, =/0 Xe,(s,z)dBs,

O

Remark. In the following we will always choose continuous versions of stochastic integrals

which depend on (¢, z).
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4 Proof of the main theorem

In this section we study the smoothness of the random field u defined in (2.9) and finally
we prove Theorem 2.7. Recall that (2, F,P) = ({4 x (22, -1 ® F, Py ® P,).
We first show that the random field

U(t, z) == up(X)e S cls, X2 dst [ h(s,XE2,) dYe—} [ h(s, X(2)P ds (4.1)

and its first order z-derivatives satisfy Condition 2.4 (which implies that U is twice con-
tinuously differentiable). Notice that X{* = Z¢°, by (2.13).

Suppose that Z%* is a continuous random field which satisfies the conclusion in Propo-
sition 2.6 and that uo € C2*(IR%) with 8 € (0,1]. According to the chain rule the
random field (¢,z) — uo(Z°) is continuously z-differentiable with z;-derivative giv-
en by (Vuo)(Zy®)Z4*(0). Moreover, the product rule and the chain rule imply that
(t,x) = (Vuo)(Z¢)ZE7(0) satisfies Condition 2.4 with 6 = a. Thus, the first factor in
(4.1) and its z-derivatives satisfy Condition 2.4. By the product rule it remains to study
differentiability of the exponential term in (4.1).

Lemma 4.1 Let 0 < 3 < 1. Suppose that g € CYA(IR, x R*) N L®(Ry x R, and
that Zb° satisfies (2.14-2.16) with § € (0,1]. Let M, stand for Y7 or for s. Then
f(t,z) == exp ff g(s, Z4%) dM satisfies Condition 2.4 with &' = 6(. Its continuous ;-
derivative is given by

t
8,.f(t,2) = f(t,) /0 (Vog)(s, Z5%)25%(s) AM, a.s.
for (t,z) € Ry x IR®, and the ezceptional set does not depend on (t, z).

Proof: We only give the proof for the exponential of the stochastic integral
t .
X(t,x) = / g(s, Zt%) dY7.
0

The proof for exp [} g(s, Z4%) ds is similar. Note that

2

t 2
] = BrEp, [#t7)] = En, [GXP(’—”—/O s, 2t ds)] < TR, (42)

Ep [leX(t,z) 5

forp>1,t€[0,T],and z € R"

Propositions 3.3 and 3.4 imply that X (t,z) satisfies Condition 2.4 with §' = 6. The
remainder of the proof is similar to that of the chain rule. But since the exponential
function fails to be globally Holder continuous we have to modify the estimates of I; and
I, (defined in the proof of Proposition 3.3), where this assumption was used. Fix T,R>0
and p > 2. Then to estimate [; it suffices to show that

1 ; 2p71/2
M, :=Ep [/ XAz X dy :l <CR,T),

0
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fort € [0,R], z € IR%, y € IR, and to estimate I it suffice

i

—_

1 i vt
M, := Ep U/ X B2 FVA )X X (T Huiy
0

is bounded from above by
Clp, R, T)(jo = 2'PP + Iy — /P + [t {

for t,t' € [0, R), z,2' € [-R, R)¢, v,y € [-R, R)\{0}.
Since [, e**(t=9) dy < €2 + € for all a, b € IR, we find

M i [ 4 K
Since |e® — €®| < (e® + €b)|b — a] for a, b € IR we obtai

1 . i .
M2 < / EP UeX(t,:c)+uA(t,z,y)X +'eX(t/’xl)+VAEt’,z’
— Jo

i
(t.z.y

1
/0 Ep [yX(t,a:)+yA X - X(t,7)

!

2
p] < 2%

s to show that

X 2p 1/2
=" dy ]

),

that
2p*Tllgll3,
n

4p
yI)X } dV1/4

. 4
+ VAzt' yl)Xl p} dl/l/4

!
Ty

< Const (|z — o' + |y — o/ + [t — £ PP7%),

where the last inequality follows from (4.2) and Propositi

on 3.4.

Now fix ¢ € {1,...,d}. Proposition 3.4 states that therk is a set N; € F with P(N;) =0
such that X, (t,z) = [§(Veg)(t, Z5%)Z5%(s) dY] for all b e N¢, and (t,z) € Ry x R

Since f satisfies Condition 2.4 it is continuously z-differe
show that if w € NY, then Al f /y converges to f(t,z)
Note first that

1 .
z; —(eAzt,z,y)
Y

< f(t,z)

(t,z)f (¢t 2)

for y # 0. We will show that the second term converges t

{

[ Yee—1)-1 ifse R\

F(s)

ntiable. Therefore, it suffices to
X, (t, z) as y tends to zero.

-1) - X;, (¢, 2)],

o zero as y tends to zero. Let

{0}

o if s =0,
then
; . AL X Y. ¢
%( Been® — 1) — X,.(t,2)| < ‘ F(AL 4 X) ‘t’y’” 1+ “’y’y) — X, (7). (43)

If w € Nf, then A, X — 0and Al X[y — Xai(t, 2
that |F(s)| < |s|e/2 for s € IR, it follows that the right
as y tends to zero.

17
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hand side of (4.3) tends to zero
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Corollary 4.2 Let c, hy,...,hn € Ci?(Ry x R*) N C*A (IR, x IR%), and suppose that
Z'* satisfies the conclusion in Proposition 2.6. Then U, given by (4.1), and VU satisfy
also Condition 2.4. In particular, U is twice continuously differentiable in the pointwise
sense and in the LP-sense, for all p > 1.

Proof: The continuous random fields (t,z) — exp JEhj(s, Z5%) dY?, exp f3 (s, Z4%) ds,
exp{—1 J§ hj(s, Zt%)? ds} satisfy Condition 2.4 with § = 1. Therefore they are contin-
~ uously z-differentiable. Moreover, from Propositions 3.2, 3.3, and 4.1, their derivatives
satisfy Condition 2.4. Lemma 2.5 concludes the proof. a

We can now prove the main result.
Proof of Theorem 2.7: Proposition 2.3 states that u(t,z) € L?(P,) for all p > 1, and
o(t,2;€) = Bp, u(t, 2)E¥] = Bp, En[U(t, 2)EY)
Moreover, it is obvious that u(t, z) is (Fi1)-adapted for every z € IR, Assumption (D)
states that v(t, z; &) is the solution of (2.6) for (t,z) € Dr. Integration of (2.6) gives

o(t,7;8) — uo(a) — | {L(s,) + (s, ) + h(s, 2)E(s)}uls, z: €) ds = 0. (4.4)

To prove that u(t,z) satisfies (2.3), we will verify that (4.4) can be rewritten as

Es, [(u(t,x) — up(z) — /Ot{L(s,x) +c(s,z)}u(s,z)ds — /Ot h(s,z)u(s,x) dYs) 55] = 0.

Since the term in front of £¢ is in L?(P;), and the algebra generated by {£%; ¢ €
CP(R4)™} is dense in L2(P,), it follows from this equation that u(t,r) satisfies (2.3)
P,-as., and therefore also Pj-a.s. It thus remains to prove that one can rewrite (4.4) as
claimed.

Since (4.2) holds uniformly in ¢, and £ belongs to LP(P,) for every p > 1, the map
(s,w) = g(s)U(s,z)€¢(w) is in LP(Ajp, ® P) for any bounded measurable function g.
Thus one can apply Fubini’s theorem in the following.

We consider each term under the integral sign in (4.4) separately.

| " ¢(5,2)Bp, Br, [U(s,2)E] ds = Ep, [ / " o(5,2) Ep, [U(s, 7)] ds éf]
= B [/Otc(s,x)u(s,x)dséf]. (4.5)
From Example 2.2 we obtain for the next term
[ 1o, 2)e(5) Bp, B [U (6,208 ds = [ Ep, [h(s,0)Er, [U(s,2)] &%) €(s) ds
=Eﬁuﬁwmm@&wﬁ (4.6)

Finally we consider the derivative terms in (4.4). Let i € {1,...,d}, R,T > 0 and
p > 2. Since U satisfies Condition 2.4 with § = 1 there is C' > 0 such that

P Al U A, UP

EFI[ } Ep U (t,zy) U ,zl,y) ]
Yy

< Ct—tPP+lz -2 P+ly—y)

Ait,z,y)u _ Aft’ )Y
(] Yy’
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for t,t' € [0,T), z,z' € [-R, R]% and 3,4’ € [-R, R\{0}.

uously differentiable with respect to z; for all (t,z) € Dr
Fix (t,z) € Dr and let £ > 0 be arbitrary. Since b* is |

y’' # 0 such that

t t L
I/o -b’(s,x)aziv(s,x;f) ds — Ep, [/0 b (s, z)ug,(s,z)ds &

Therefore, u(t, z,w,) is contin-
and w € Nf, with P;(HV;) = 0.
ocally bounded we may choose

5”

AY

t A - t A u
— 2 M (s,z,y) T E — v 7 3 (Sﬂ,y) _g
= /0 b*(s, ) zlzl—r{(lJ — Eg Ep, [Ué' ]ds Ep, [/0 b*(s, z) 1111_5.’((1) — dsé']
t Al U Al Ul L
i . = (s,z,y) (s,z,y') 13
< /0 |b (S,:E)I!llgl‘(l)EplEpz [ ” 16 }ds
+Bs | [ 1 lim E Bleart¥_ Alszal ds&¢| <
| 10,2 i B, | =2 =0l s8¢ < e

Since ¢ > 0 was arbitrary, it follows for all (¢,z) € Dr:

/Ot b'(s,x)05v(s, z; €) ds = Ep, [/Ot b (s, z)ul

To see that a corresponding equation holds for the second
and note that from above we have

r

We may argue as above once more, to show that when w

a? (s, )0z, Ep, [u(s,x) 55] ds = /t a“(s,z)0,

0

is continuous for (¢,z) € Dr, where P;(N;;) = 0. It folloy

/Ot a (s, )0z, Fp, [u(s,x)é'_‘f] ds = Ep, [/Ot a (s,

for any (¢,z) € Dr.
Finally, let N be the union of all N; and N;;. Then

considerations show that u is twice continuously z—differ
4.4) shows that u(t, x) satisfies

w € N°¢. Substituting (4.5), (4.6
(2.3).

Consider equation (2.3) with another solution . B
differentiable in the L?(P,)-sense, we can calculate the
changing the expectations and integrals with the derivat:
S-transformed function 7 = S (&) satisfies the same deter

), (4.7), and (4.8) into

function v = Su(€), for all £ € C{°(IR,). Since v,v € €

injectivity of the S-transform concludes the proof.
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(s,2) ds 5‘6] . (4.7)

order derivatives, fix (t,z) € Dr

BB [uzj (s,x) gg] ds.

€ N},

(¥} 7
¥s that.

Oz, Uz, (t, T, w) exists and

Z) gz (S,2) ds 5_5] , (4.8)

| P(N) = 0, and the foregoing
entiable for all (¢,z) € Dr and

ecause @ is twice continuously
S-transform of (2.3) by inter-
ves. It follows that the resulting
ministic Cauchy problem as the

these functions coincide. The
0




5 An application to mathematical finance

In mathematical finance, assets are frequently modeled as stochastic diffusions. In prac-
tice, one is interested in fitting the parameters of such diffusions to given data series
from the market. For example, in order to calculate an option price by the well-known
Black-Scholes-formula one must know the value of the volatility parameter of the under-
lying diffusion model. Filtering theory may be one possible way for obtaining “optimal”
parameter values. In this section we shall describe how the results derived above can be
used to estimate the parameters in the log-normal diffusion model for stocks.

Remark. We have chosen this example for several reasons: From the practical point
of view it may be used for actual parameter estimations. Its numerical treatment is
comparatively simple because the process X5* is known explicitly. Since one can compare
the parameters estimated by filtering with those obtained by the traditional methods one
can evaluate whether our new approach is useful. It is not necessary in this example to
calculate the conditional density immediately after the observation. (But this is the case
in many applications in engineering, and therefore non-linear filtering, in contrast to linear
filtering, is seldom used by engineers.) From the mathematical point of view this example
_ is interesting because the coefficients of the diffusion are unbounded and degenerate. As
far as we know, there is no other method available which solves this filtering problem.

Geometrical Brownian motion (sometimes called log-normal diffusion) is the most
common model for the value S; of a stock at time t. Based on a data series from the stock
market for ¢ € [0, T, one is interested in estimating the appreciation rate p and volatility
o in the model

dS; = uS;dt + 0S; dB;.

We assume that we have some knowledge about p and o at time ¢ = 0, so that we
can treat u and o as stochastic quantities uo and oq (e.g. independent quantities with
Gaussian distributions). The estimation of the constants x4 and ¢ may then be formulated
. as a non-linear filtering problem as follows. Consider the 3-dimensional diffusion

dSt ,LLtSt . O’tSt 00 thl
due |=1] 0 |dt+| 0 00| -|dw?|. (5.1)
do, 0 0 00 dW?

This gives p; = o and oy = o for all ¢, so at first sight we obtained nothing new. But since
we improve our knowledge about i and o by observing (a function of) {S;,0 <t < T},
we obtain the conditional distributions of py and oo based on this observation. (This
yields the best estimate of yo and oy with respect to the L2-norm.) Let us assume that
our observations can be described by

dY, = h(S,) dt + dW;. (5.2)

We have to suppose that A : IR — IR is smooth and bounded, so that we can apply our
formula. (Other choices for A may be more reasonable, cf. the remarks given below.)

To calculate the conditional densities for po and oo we first have to compute the
unnormalized conditional density u for the filtering problem (5.1) and (5.2), given the

20



joint density uo(z, i, o) of (So, o, 50). Recall that u ha
(1.2) which contains the adjoint A* of the generator of (5

s to satisfy the Zakai-equation
.1). This generator is given by

1 0?
A - = 2,2 Y -
27 7 Br? +‘”’ax’
and A has the adjoint
1 o2 d
A* == 2,2 Y 2 _ il 2 _
59 % 5 +z(20 u)ax +a0°—u,

which we write as A* = L + ¢. The operator L is associat

dS; (262 — 1) Se 5:5; 0
die | = 0 d+| 0 0
dé 0 0 0

Given (S’O,ﬂo, 60) = (z, p, o) we obtain fi; = u, 6t = 0 an

5% = zexp (((202 —p) = %02)75 + aW}) = T exp (

Now observe that (1.2), for the present problem, can be ¢

ed to a new diffusion, namely

07 [ aw:
0 |- | aws
0 dW3

d

202 - p)t+ an) :

onsidered as a Cauchy problem

in the variables (t,z), while (1, 0) are fixed parameters in (1.2). Therefore the function
c(u, o) = 0° — p is a constant with respect to this (“reduced”) Cauchy problem. It is easily
checked that Z%* := S7 , satisfies condition (B) in Theorem 2.7. Moreover, conditions

(A) and (C) are obviously satisfied, and (D) is satisfied in
end of this section.

We can thus apply our solution (2.9) to obtain the un

~

t Gz
u(ta z, U, o, U)) =F ’Ulo(Stz, U, o—)e(#—az’)t_% fo B(S7_

where the expectation is taken with respect to {W}; t >

Notice that when we know one of the parameters exa

2ds+ [T h($7_,) dYs(w)
b

view of the lemma given at the

normalized conditional density

(5.3)

0}.

ctly, say u, then we can do the

same calculation with the 2-dimensional diffusion (dS;, do) which is obtained from (5.1)
by erasing the dug-part. The result (5.3) would differ only by the new density uo(S¥, o)

which is independent of p.

Remarks on the model. At first sight the observation process Y; for the stock price
might appear somewhat unrealistic. Of course, (St)o<t<T Or equivalently Yy = fot Sudu (t €
[0,T7), describes the theoretically best possible observation. However, in real observations

{8:;,1 <'i < n} the decimal number for S, is not given
the observed value S(t;) for the stock price can be writte
8; can be considered as random errors with zero mean a
then the sum Y ;c;) 0 (¢(t) is the largest index so that
as a (small) multiple of a Brownian motion W, accordir
Therefore we can think of

- t
Y, = / S, du + €W,
0
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in full length. This means that
n as S(t;) = S, + 6;, where the
nd identical distributions. But
t; < t) behaves approximately
1g to the central limit theorem.

(5.4)




as a continuous model for the quantity

Yi= Y S(si)(sit1— i),
i<i(t)

which can easily be computed from the observed stock prices. (The value of € has to be
fixed according to the accuracy of the stock price.) The process Y; = ¥;/e satisfies (5.2)
with k() = z/e. Unfortunately this h is not a bounded function, so we cannot directly
apply our formula. Instead of h we choose a smooth bounded function h,, such that
ho(z) = z/e for all z € [—n,n], where n is chosen greater than the maximal observed
stock price. (It should be verified numerically that the estimated parameters u and o do
not depend significantly on such a choice of n. Otherwise, this procedure would not be
appropriate for the estimation of parameters.)

Remarks on numerics. In order to actually estimate the parameters above using data
series. one has to compute the expectation in (5.3) numerically. This can be done with
the methods found in the book by Kloeden and Platen [17]. Here we sketch how o can be
estimated, given data up to time ¢, and assuming that y is exactly known: The estimation
of o based on the observation (Y;(w))o<i<T reads

u(T,z,0,w)

Elo|Fr)(w) = /B2 o -p(T,z,0,w)dodr = /IR o do dz.

2 [reu(T,y,pw)dpdy
The two integrals must be approximated by first restricting to a bounded domain in R?,
and then applying standard numerical integration recipes. The major problem is thus to
calculate values for u(t, z,o,w): For each given point (z,0) on a grid in IR?, simulate a
suitable number of realizations of S¥. Techniques for such simulations can be found in
[17]. Notice that the increments d¥;(w) are given by S(¢;)(ti+1 —¢;). Computing the mean
of all our realizations of S7, we end up with a numerical value for u(T, z, 0, w).

Finally, we prove a lemma which immediately implies that (D) holds for our example.
This result may also be useful in related problems on the log-normal diffusion, but we did
not find it in the literature.

Lemma 5.1 Let o, u, T € R with o, T > 0. Suppose uo € Cy*(R), g € C2([0,T) x R).
Then the Cauchy problem

du 1 , ,0% Ou -
o =50 T g TS~ qt,z)u,  u(0,-) = uo,

has a bounded solution u € C**([0,T] x IR), given by
u(t, z) = Elug(SF)e™ Jo 9-95Dd5] (5.5)

where S? = rexp{(x — 02/2)t + 0B}, and B, is a one-dimensional standard Brownian
motion. This solution u is unique in the class of functions f € CH*([0,T] x IR) for which
there exist M > 0 and m > 1 such that

sup |f(t,z)] < M(1+ |z|*™).
0<t<T

Moreover, u(t,-) € CZ(IR) for every t € [0,T].
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Proof:

It is obvious that u defined by (5.5) is a well-

defined and bounded function

on [0,T] x IR. Moreover, as a special case of the results proved in Sections 3 and 4

(choose h; = 0), u(t

straightforward to check (with the calculus derived in Secti
and & — 02u(t, ) are bounded functions for every t € [0, 7]
A of the It6 diffusion S7 acts as a differential operator on

2

1
—a :1:2

Au(t, z) =

(see [18], Theorem 7.9 and Definition 7.7). Moreover, Th

is t-differentiable and satisfies

ou

a5 u(0.+) = ug.

= Au — qu,
(We remark that Theorem 8.6 is stated and proved in
functions ¢ and for uy € CZ(RR).
u defined by (5.5) satisfies (5.7) for time-dependent g ¢

,-) is twice continuously differentiable for every ¢ € [0,T].

It is
ons 3 and 4) that z — J,u(t, z)
|. Because of this the generator
u, l.e. :

(5-6)

eorem 8.6 in [18] shows that u

(5.7)

(18] only for time-independent

However, a trivial extension of the proof shows that

and for ug € C2*(IR).) Thus

u € CY%([0,T] x R), and (5.6) combined with (5.7) shows that u solves the Cauchy

problem, as claimed.

To prove uniqueness, define v(t,z) := u(T — t,). This function solves the backward
Cauchy problem
%1; = —Av + qv, (T, ) = up.

Now we obtain uniqueness from Theorem 7.6 in [16].
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