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Abstract. A differential calculus for random fields [s developed and combined
with the S-transform to obtain an explicit strong solJtion of the Cauchy problem

du(t, x) (Lu + cu)(t, x) dt + f:Ju(t, x) dy!,
i=l

u(O,x)
Here L is a linear second order elliptic operator, hi and c are real functions, and
~i = JJ 'lji(s) ds +Wl, where Wt is a Brownian moJion. An application of the
solution to non-linear filtering and mathematical fin~nce is also considered.

1 Introduction
Let Wl and W? be independent Brownian motions on the probability space (0, F, P),
and suppose the one-dimensional diffusion

dXt = b(Xt) dt + a(Xt) dwl

is observed by

The real-valued functions band aare assumed to be Lipschitz continuous and of linear
growth, and his assumed to be bounded and measurable.IThe non-linear filtering problem
is to find the conditional expectation E[f(Xt) 1Ft], where 1Ft is the a-algebra generated by
{~; 0 ::; s ::; t}, and f is some bounded measurable funbtion. From general probability
theory, we know that I

E[f(Xt)IFtJ(w) = !IRf(x)P[Xt E dxIFt](w) = !kf(x)p(t,x,w)dx,

if the conditional prob ability P[Xt E BIFt] is absoluJely continuous with respect to
Lebesgue measure. From the Fujisaki-Kallianpur-Kunita ~quation (see e.g. [1]), we obtain
the following stochastic partial differential equation for the conditional density p(t, x, w):

dp(t, x, w) = A'p(t, x, w) dt + p(t, x.' w) [h(X) - IR hly)p(t, y, w) dy] dv,(w). (1.1)
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A* is the adjoint of the infinitesimal generator of Xt and Vt is the so-called innovation
process defined by dVt = dyt - E[XtiFtl dt. Since (1.1) is difficult to solve, M. Zakai (see
[2]) introduced the so-called unnormalized conditional density in the following manner:
Define the probability measure P by dP = AT dP, where T > 0 is fixed, and

Under P, (yt)09~T becomes a standard Brownian motion. Let Ep denote the expectation
with respect to P. The unnormalized conditional density u(t, x, w) is now defined as

u(t,x,w) = Ep[AtIFt](w)p(t,x,w).

This relation readily implies

( )
u(t,x,w)

p t, x, w = f ( )d 'IRut,y,w Y

which explains the name of u. It also shows that the original problem of finding EU (Xt) IFtl
can be reduced to finding the density u. But this latter problem is less difficult to treat,
because u must satisfy the following linear (in contrast to (1.1)) stochastic partial differ-
ential equation (see [2]),

du(t,x,w)
u(O,x,w)

A*u(t, x, w) dt + h(x)u(t, x, w) dyt(w)
uo(x).

(1.2)

Here Uo is the density function of the initial condition Xo. (1.2) is known as the Zakai
equation. We will construct an explicit strong solution for this type of Cauchy problem.
By a strong solution of (1.2) on [0,Tl x IR, we mean a random field u : [0,Tl x IR x n ~ IR
which has the following properties:

(81) There is an N E F with P(N) = 0 so that u(., .,w) E CO,2([0, Tl x IR) for all w in
the complement Ne of N.

(82) For all X E IR the process (t,w) t---+ u(t,x,w) isjointly measurable, u(t,x,.) is Fr
adapted and It6-integrable over [0,T].

(83) For all (t, x) E [0,T] x IR the following equation is satisfied:

u(t, x) = uo(x) + fot A*u(s, x) ds + fot h(x)u(s, x) d~ a.s.

The concept of strong solutions is extended to higher space dimensions and time-dependent
A * and h in the obvious way.

Existence and uniqueness results for (1.2) have been found by many authors. 8ee e.g.
the works by 1. Gyöngy and N. V. Krylov [3,4] and the references therein. Explicit formu-
las for the solution of equations closely related to (1.2) have been derived by E. Pardoux
[5, 6], H. Kunita [7] and F. E. Benth [8].
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u(O,.) = uo.

The present work extends those results of Benth whidh deal with deterministic initial
conditions. Our main improvement is that we obtain stJong solutions. (The "generator
definition" of A used by Benth in [8] essentially avoids tlifferentiability considerations.)
Pardoux derives a formula for the solution similar to ourJ, but he considers the backward
equation related to (1.2), and his solution concept is we.frer than ours. He uses Sobolev
spaces with the associated not ion of weak derivatives. Id principle, it should be possible
to prove that his formula provides a strong solution by Jpplying the Sobölev embedding
theorem. But this would require to increase the smoothhess of hand of the coefficients
in A * considerably (depending on the dimension of the ~pace variable x). On page 308 -
in [7]' Kunita gives a general formula for' the solution inl the strong sense. This formula
also applies for equations of type (1.2) which contain stochastic drifts in addition. Our
formula can be derived from the one in [7], if one setJ the drift terms equal to zero,
transforms the backward integrals into forward integralJ (with respect to the Brownian

- I
motion Bs := Bt-s - Bt, s E [0, t]), and rewrites the resuhing formula from Stratonovich
to Itö form. We noticed this non-obvious relation after h~ving finished the main body of
the present paper. I

The main rationale for the present paper consists in thf following: The most important
point is that our result applies for a dass of unbounded, degenerate diffusion and drift

I
coefficients. (The example discussed in Section 5 is of this type.) It is also stronger than
the corresponding result by Pardoux (but we should mJntion that Pardoux can handle

I
related filtering problems which are beyond our method), and it covers Kunita's result
u~der weaker conditions (e.g., we require e2 instead of er differentiability för coefficients
at).) Moreover, our proof is much more elementary than ~he method of inverse stochastic
flows used by Kunita. Our proof is based essentially on Holmogorov's continuity theorem
for random fields. . I

Beside these mathematical reasons we believe that the formula for the solution can be
of some practical, numerical interest, in particular in applications of non-linear filtering.
(The statement of the conditions and the results in Pard6ux [5, 6] and in Kunita [7]may
be not so weIl suited for this purposes. ) We tried to st~te our main theorem (Theore~
2.7) in such a way that it is accessible without too much effort for those who are interested
in concrete applications.' I

The paper is organized as follows. After preparations and the statement of the main
I

result in Section 2, we develop a differential calculus (with respect to space-time param-
eters) for random fields in Section 3. As far as we knoJ this has not been done before.
For instance, it can not be found in the standard refer~nces [7, 9], although the main
techniques are provided there. This calculus mayaiso beluseful in other related contexts.
In Section 4 we prove the main result. The final Section 5 is devoted to an application in
mathematical finance. We point out how one can use oJr solution numerically to obtain
optimal estimates of the parameters arising in the log-pormal model for stocks. As a
by-product we obtain an existence and uniqueness result, and a Feynman-Kac formula
for the (deterministic) Cauchy problem

Bu 1 2 2 B2u Bu ( )
Bt = 2a x Bx2 + J.lxBx - q t, x u,
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2 Preparations and statement of the main result
We will consider the following spaces of real valued functions:

Co (JR+): Infinitely differentiable functions on IR+ with compact support.
C~,ß(JRd): n times continuously differentiable functions on IRd wjth all derivatives
bounded, and highest derivative Hölder continuous of order 0 < ß ~ l.
cn,m(JR+ x IRd): Continuously differentiable functions 1(n times in t E IR+, m times
in x E IRd). An index b denotes that 1and all derivatives are bounded.
Cn+ß(JR+x IRd): The space of functions on IR+ x IRd for which there exists a constant
K such that

ID~1(t,x) - D~1(t',x')1 ~ K(lt - t'Iß/2 + Ix - x'Iß),

for all (t, x), (t', x') E 1E4X IRd
, 'Y E INg with 0 :::;Irl :::;k, and 0 < ß ~ l.

Function spaces with JR+x IRd substituted by DT := [0,T] X JRdare defined analogously.
Let vw be the usual scalar product for vectors v, w E IRd

, and II~II~:= Joooe(t)dt
for ~ E L2(JR+)m. Let (Wt)t>o be an m-dimensional standard Brownian motion on a
probability space (nI, :F1, PI), define (Fr)t := a{Ws, 0 :::;s :::;t}, and

£E. := exp (hOO ~(s) dWs - ~II~II~).

We suppose that F1 is the a-algebra generated by the Brownian motion. Recall that under
this assumption the algebra of functions generated by {£E.; ~ E Co(JR+)m} is dense in
L2(n1,F1,p1). For 1E L2(P1) we define the S-transform of f, ßf: Co(JR+)m -+ IR, as

Sf(~) = E [1£E.] .
Remark. Usually the S-transform is defined (and applied) in the context of white noise
analysis. In [10] this transform is discussed (and its usefulness demonstrated) in the
general setting of probability theory. In the present paper - except for the S-transform
- we do not refer to white noise techniques at all. The few elementary facts about the
S-transform which we need are collected in the following two examples, and can be found
in [10].

Example 2.1 Fix t 2:: 0 and h E L2(IR+)m. Let £f := £h1[O,tj denote the exponential
martingale. Then the S -transform of £f reads

s£f(~) = expht h(s)~(s) ds. (2.1)

Example 2.2 The S-transform of an It6 integral is given by Theorem 3.3 in [10]' I/
Xt = (Xl, ... , X;n) is It6 integrable over the interval [0, T], then
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Next we consider problem (1.2). Since our result will1:Je independent from the filtering
context we write L + c instead of A*. (A*, in contrast to 14., usually contains a zero order

I
term c, cf. the example in Section 5.) For (t, x) E JR+ x JRd let

1 d"" 82 d"1 8
. L(t, x) = -2L aZJ(t, x) 8 8 +L bZ~t,x)-8' . (2.2)

" "-i Xi xJ" "-i 1 XiZ,J- z-

where a(t, x) = cr(t, x)cr(t, xf and crij, bi : JR+ x JRd -7 IRd are continuous, bounded, and
globally Lipschitz continuous in x with a Lipschitz constant which does not depend on
t. (Different conditions will be used in Theorem 2.7.) Sluppose that c E Cb(JR+ x JRd),
h = (h1, ... , hm) E Cb(JR+ x JRd)m, Uo E Cb(JRd), and consider the stochastic partial
differential equation

u(t, x) = uo(x) + fat {L(s, x) + c(s, x)}u(s, x) ds + ~t h(s, x)u(s, x) d~, (2.3)

" t" " Iwhere ~z = Jo 'l/J~ds + Wtz, 1~ i ~d, and the (F1 )radapted process 'l/Jt(Wl) is such that

1/J ( rt
1 rt

. )£t := exp Jo 'l/Js dWs - "2 Jo j'l/Jsl2 ds (2.4)

is a martingale. Fix T > 0, then Girsanov's theorerp. ilffiplies that (lt)O<t<T is an m-
dimensional Brownian motion with respect to the measute Pi given by - -

Let us assurne for a moment that u is continuously x-differentiable in the L2(P1)-

sense up to the second order, that the L2(Pd-norm IIDiu(t,x)ll, 0 ~ 11'1 ~ 2, is bounded
on every strip (s, T] x JRd C [0,T] X JRd, and that u ~atisfies (2.3). To determine a

I
representation formula for u(t, x) we proceed as follows. iWe apply the S-transform with
respect to Pb i.e., we multiply both sides of (2.3) by the normalized exponential,

tE := exp (1000

~(s) d~ - ~II~II~), ~E C~(JR+)m,

and compote the expectation with respecl to PI- Becale of L'(P.)-continuity we can
interchange the S-transform with the integrals and wit~ the partial derivatives. From
Example 2.2 we obtain

v(t, x;~) = uo(x) +lt{L(s, x) + c(s, x) + h(s, x~~(s)}v(s, x;~) ds, (2.5)

where v(t, x;~) = EE!l [u(t, x)tE]. Since the r.h.s. of (2.5)11 is t-differentiable we find

8v8t = (L + c+ h~)v, v It=o= Uo. (2.6)
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v(t, x;~)

Thus v(t, x;~) can be represented by the Feynman-Kac formula (see [11]' p. 132)

EP2 [uo(Xi'X) exp fot (c(t - s, X;,X) + h(t - s, X;,X)~(t - s)) ds]

EP2 [uo(Xi'X) exp fot (c(s, xi::s) + h(s, xi::s)~(s)) ds] , (2.7)

for (t, x) E IR+ x IRd and ~ E Cü(IR+)m. Here the d-dimensional process (X~,X)s~o solves
the Itö equation

dXt,X = b(t - s Xt,X) ds + a(t - s Xt,X) dBs , s , s s, Xt,Xo = x, (2.8)

where we have extended the coefficients to negative times by defining b( -s, x) := b(s, x),
(/( -s, x) := (/(s, x) for (s, x) E IR+x IRd

, and (Bs)s>o is a d-dimensional Brownian motion
defined on an auxiliary probability space (02, .r2, P2). We are thus led to consider the
probability space 0 = 01 X O2, .r = .rl @ .r2, and P = PI @ P2. In the following the
processes Xt,x and Y will be extended to processes on the product space (O,.r, P), via
Xt,X(Wl' W2) = Xt,X(W2), Y(Wl, W2) = Y(Wl).

In view of Example 2.1 one expects that v(t, x;~) is the S-transform of

Proposition 2.3 Let (t, x) E IR+xIRd, (X~,X)o<s<t be a measurable process on (02, .r2, P2),
c, hi E Cb([O, t] x IRd) for 1 ~ i ~m, and Uo E Cb(IRd). Then u(t, x) defined by (2.9) is
in V(P1) for all p 2: 1, and the S-transform of u(t, x) is given by (2.7).

Proof: By Schwarz' inequality and Fubini's theorem

EpJlu(t, x) IP] < lIuoll~ePtllcllooEp2Epl [ePf; h(s,X::.."s)dYs-! f; Ih(s,X::.."sWdS]

lIuoll~ exp (pt(lIclloo + ~(p - l)llhll;,)) < 00,

where the equality follows from (2.1). Similarly we obtain for every ~ E Cü(IR+)m the
estimate EpJlt~IP] = exp{~(p2 - p)II~lln < 00 for all p 2: 1. These estimates show
that one can interchange the expectations EP1 and EP2 which arise in the S-transform
of u(t, x). Example 2.2 concludes the proof. 0

To derive (2.7) we assumed that (2.3) has a solution. In this paper we will assume
that (2.6) is solved by (2.7) and we will give a straightforward proofthat the random field
u defined in (2.9) is the unique strong solution of (2.3): We will verify that the random
fields on the r.h.s. of (2.9) are sufficiently smooth and that the standard rules of calculus
hold. These rules applied to (2.5) will finally allow us to derive (2.3).

We remark that this method generalizes the direct methods which work for non-
stochastic parabolic equations, such as Kolmogorov's backward equation, cf. [13]' [14].
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To simplify the notation we introduce the difference operators D..i for i = 1, ... , d, for
functions defined on JR+ x JRd by

i _ dD..(t,x,y)f - f(t, x + yei) - f(t, x), tE JR+, f E JR , Y E JR,

where ei denotes the ith unit vector in the Euclidean basis for JRd. In the sequel statements
involving coordinate numbers i, j are implicitly understoo~ to hold for all possible values.
Most of the random fields X : JR+ x JRd x fl -+ JR (or JRm) considered in this paper will
satisfy the following condition:

Condition 2.4 There exists eS E (0,1] such that the following holds: For all R,T > 0,
and p > 2 there exists a constant C > 0 such that

< C(lt - t'IP"/2+ Ix - x'jP" + Iy - y'IP"), (2.12)

E [IX(t, x)IP]
E [IX(t, x) - X(t', x)IP]

[11 . 1. IP]E YD..(t,X,y)X - y' D..(tl,Xl,yl)X

< C
< Clt - t'IP6/2, and

(2.10)
(2.11)

for t,t' E [0, Tl, x,x' E [-R, R]d, and y,y' E [-R, R]\{O}.

Notice that when X satisfies Condition 2.4, then X also satisfies this condition for all
eS' E (0, eS], with an appropriate change of the constant C.I

Let X = {X(t, x); t ~ 0, x E D} be a random fielö with D c JRd. We say that
X is continuous (resp. continuously differentiable W.r.t. b), if there exists N E F with
P(N) = 0 such that for all w E Ne the functions (t,x) H X(t,x,w) are continuous (resp.
all first order partial x-derivatives are continuous).

The following lemma is basic for the rest of the paper. Its assertions are essentially
I

contained in [7, 9]' but detailed proofs are omitted. For the convenience of the reader, we
therefore give a proo£.

Lemma 2.5 Let X be a random field on JR+x JRd which
l
is continuous for every wEM,

P(M) = 1, and which satisfies Condition 2.4. Then there is a subset Mo c M with
P(Mo) = 1, such that (t, x, w) H X (t, x, w) is continurusly differentiable in x for all
w E Mo and all (t, x). Moreover, the pointwise defined lijit (i.e., w E Mo is fixed)

X ( )'-1' X(t,x+yei,w)-.r(t,x,w)
x. t, x, w .- 1m --'-------+-----'-
, y-tO y

also exists as an V(P)-limit, for any p ~ 1.

Proof: For simplicity of notation let d = 1. Fix R > 1 a:nd let ~(t, x, y) := D..(t,X,y)X/y if
Y =1= O. In view of (2.12) the sequence n H ~(t, x, l/n) is C~uchy in V([O, R] x [-R, R] x fl).
Let ~p(t, x, 0) denote the limit as n tends to infinity anel let ~p(t, x, y) := ~(t, x, y) when
y =1= O. From (2.12) we obtain

E[I~p(t, x, y) - ~p(t', x', y') IP] ::; C(lt - t'IP"/2+ Ix - x'lpa + Iy - y'IP")
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IX(t,O)

(2.13)

for all t, t' E [0,R] and all x, x', y, y' E [-R, R]. For sufficiently large p, Kolmogorov's
continuity theorem (see [9]) ensures that ~p has aversion Ep which is continuous for
(t,x,y) E [O,R] x [-R,R]2 and w E N:,R' where P(Np,R) = O. Moreover, for y i= 0 we
have ~(t,x,y,w) = Ep(t,x,y,w) for all w E Mp,R:= Mn N:,R' Define

X(t, x) := X(t, 0) +1x
Ep(t, s, 0) ds

for all (t, x) E [0,R] x [- R, R]d. X is clearly continuous and continuously differentiable
with oxX(t, x, w) = Ep(t, x, 0, w), for all w E Mp,R' Since ~(t, x, y) = Ep(t, x, y) when y i= 0
we can estimate IX(t,x) - X(t,x)1 by

+ (X [Ep(t, s, 0) - ~(t, s,.!.)] ds + n (x[X(t, s + .!.) - X(t, s)] ds - X(t, x)JJo n Jo n
{X _ 1 1 (l/n

< Jo J~p(t, s, 0) - ~(t, s, ;)1ds + IX(t, 0) - l/n Jo X(t, s) dsl

1 lx+1/n+1-/- X(t, s) ds - X(t, x)l.
1 n X

The limit on the r.h.s. for n ~ 00 vanishes for every w E Mp,R (use uniform continuity
of Ep(t,.,.) for the first term). Thus X and X coincide on Mp,R, and therefore also on
Mo := np,REINMp,R' So 0xX (t, x) exists and is continuous for every w E Mo and all (t, x).

Finally consider (2.12) with t' := t, x' := x, y' ;= l/n and y :- I/rn. It follows that
the sequence

~
X(t, x + l/n) - X(t, x)

nH /1 n

is a Cauchy sequence in Y (P) for any p > 2. Since it converges to 0xX (t, x, w) for every
w E Mo it follows that the Y(P)-limit coincides with oxX(t, x) almost surely. The claim
for p ~ 1 follows now by Hölder's inequality. 0

Remark. When X satisfies Condition 2.4, then X has a continuous version X. This
follows immediately from the estimate (3.2) below and Kolmogorov's continuity theo-
rem. Henceforth we will therefore implicitly ass urne that a random field X satisfying
Condition 2.4 is continuous.

In order to state our main result (Theorem 2.7) we have to assurne smoothness prop-
erties of the process X:~swhich appears in the solution (2.9). It is convenient to define

zt,x '= {X:~s if 0 ~ s ~ t
S' x ifs>t

and ß~s,t,X,y)Z z~,x+yei - Z~,x for (s, t, x, y) E IR+ x IR+ x IRd x IR. The required
smoothness properties are formulated in the conclusion of the next proposition.
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(2.14)

(2.15)

I

Proposition 2.6 Let K > 0, abbre'iJiatebi,aij E C2,2(mj x md) by 9 and suppose that
!

lD:ig{t, x) - DJg(t', x') I :S K(lt - t'l.(l71J + IIX - x'I.(171J),

for (t, x), (t', x') E m+ x md, 0 ::; 11'1 ::; 2, where a(O) = f.¥(1)= 1 and a(2) = a E (0,1].
Then for any (t, x) E m+ x IRd, there is a unique strong solution (X~,X)s~o of (2.8). For
Z~,x defined by (2.13) the foltowing conclusion holds:

FoT-any R,T > 0, and p > 2, there is a constant C such that

E [IZ;,xIP] < C

E [IZ;'x - Z:;xIP] < Cis - S'IPO/2,and

E [1;L>l"t,x,y)z - :,L>(",t',x',y')zil < C(ls 1s'I""/2 + It - t'I""/2

+,xi - x'IPO+ Iy - y'IPO), (2.16)

with 8 = 1 for s,s' E [O,T]' (t,x), (t',x') E [O,R] X [-R,R]d, and y,y' E [-R,R]\{O}.
Moreover, Z~,x is continuously differentiable with respect Ito x, and the first order partial
x-derivatives of Z;'x satisfy (2.14-2.16) with 8 = a. i

Proof: The Lipschitz continuity and boundedness of bi, laij ensure that for any (t, x) E
IR+ x IRd, there is a unique solution (X~,X) s~o of (2.8). fhe results in Chapter II of [9]
imply that for any R, T > 0, and p > 2, there is a constaJnt C such that (2.14-2.16) hold
with 8 = 1. I

With the same arguments as in the proof of Lemmal 2.5 it follows that there exists
N with P2(N) = 0 such that for all w E Ne, OXjZ~'X(t') exists and is continuous for
(s, t, x) E m+ x IR+ x md. Furthermore, from Chapter I[ in [9] we obtain a constant C

- I

for any R, T > 0, and p > 2 such that Z;'x := OXjZ;'x satisfies (2:14-2.16) with 8 = a, for
s, s' E [0,T], (t, x), (t', x') E [0,R] x [-R, R]d and y, y' E j[-R, R]\{O}. 0

We can now state our main result. Sufficient conditions which imply the assumptions
(A) - (D) of the following theorem are stated and discus~ed below.

Theorem 2.7 Let T > 0, and L(t, x) be given by (2.2) lith a = aaT. Assume that

(A) aij and bi are measurable, localty bounded functions on m+x md such that (2.8) has
a weak solution (X;,X)s~o.

(B) Z;'x given by (2.13) satisfies the conclusion in ProRosition 2.6.

(0) 'l/Jt is such that (Et)O<t<T, defined in (2.4), is a mahingale.
-- I

(D) c, hj E C~,2(m+ x md) n c2+ß(m+ x IRd), and Uo E c;,ß(md) with ß E (0,1]. For
any ~ E cgo(m+)m a solution v of the Cauchy proD11lem(2.6) is given by (2.7), and
v is unique in a subspace C C C1,2(DT).

Then u defined in (2.9) is a strong solution of (2.3) on DT, and u(t, x) E V(P1) for alt
I

p 2: 1, (t, x) E DT. 1f u is another strang solution of (2.3) which is twice continuously
x-differentiable in the L2(P1)-sense, and whose S-transf~rm Su(~) belongs to C for every
~ E cgo(m+)m, then u(t, x) = u(t, x) P1-a.s., for alt (t, xV.

9



(2.17)

Notice that for non-linear filtering, the theorem states roughly the following: 1f the sig-
nal process X;'x is suffieiently smooth and bounded in every V, and if the S -transformed
Zakai-equation admits a Feynman-Kae solution, then the Zakai-equation is solved by the
stoehastie Feynman-Kae formula (2.9).

Remarks. Let us comment on the the conditions (A) - (D) in more d~tail:
In (A) it is sufficient to impose the local boundedness for the t-variable, for every

fixed x, because in the proof of the theorem we only need an argument to interchange
the t-integration with the expectation Ep1' We remark that we do not need to impose
uniqueness of the weak solution Xt,x. This may be useful, for example in the Cox-
Ingersoll-Ross model of interest rates [15],where a weak solution can be given explicitly,
but whether uniqueness holds is an open question (at least for us).

Assumption (B) holds whenever the conditions in Proposition 2.6 are satisfied. This is
the case, for example, if bi, (J"ij E Ct,3 (JR+ x JRd). But sometimes (e.g. explicit) solutions
Xt,x are more regular than the coefficients in the differential equation indicate. Because of
such cases it is useful to require (A) and (B) separately. It would be desirable to find less
restrictive conditions on band (J" which imply (B), in particular conditions which allow
for unbounded band (J". The example in Section 5 indicates that it should be possible to
find such conditions.

Assumption (C) holds, for example, if the Novikov-condition is satisfied, i.e. if
1 fT 2EP1 [e2 Jo .,psds] < 00.

Related conditions can be found in the literature, cf. [16]and references given there. When
(2.17) holds, the conclusion u(t, x) E V(Pr) in Theorem 2.7 can be improved: Then one
has u(t, x) E V(PI), for all p :2: 1. This follows from Rölder's inequality (for q = 1+ 1/4
and q' such that l/q + l/q' = 1) applied to the r.h.s. of

Ep1 (Iu(t, x) IP] = jlu(t, x) IPe- JOT .,psdWs+t JOT l.,psl2ds dPI.

Notice that (2.17) holds in particular for bounded processes 'ljJ. In the filtering context
'ljJs = h(s, Xs) is such a bounded process.

Assumption (D) will usually be the hardest to verify in applications to non-linear
filtering, because the coefficients in A* are often non-linear, unbounded or degenerate.
Conditions which imply that a Feynman-Kac representation (2.7) is valid can be found in
[13] and in [16]. (To apply the result in [16] one has to transform the backward equations
and integrals into forward equations and integrals. This is straightforward. ) (D) holds,
for example, if band (J" are Rölder continuous and L is uniformly elliptiC, i.e. there are
A2 :2: Al > 0 such that, for all (t, x) E JR+ x JRd and y E JRd:

d

A21Yl2:2: L aij(t,x)YiYj:2: Aljyl2.
i,j=l

(2.18)

In this case the space C can be chosen, e.g., as the space of CI,2-functions on Dr which are
exponentially bounded W.r.t. x, uniformly W.r.t. t. The example in Section 5 illustrates
that (2.18) is not a necessary condition. ein this example will be the space ofpolynomially
bounded functions in CI,2(Dr).

10



(3.1)

3 A differential calculus for ran<lom fields
In this section we prove that differentiable random fields Lhich satisfy Condition 2.4 also
satisfy the standard mIes of calculus. These mIes are p:otentially useful when one has
to verify (by direct calculation) that some given expression, e.g. (2.9), solves a stochastic
differential equation. We shall frequently use the elementkry inequality-

which holds for real ai and p, nEIN. Also we shall use

(a + b)C S 2C(aC + bC), a, b, c 2: O.

Lemma 3.1 Suppose the random field X satisfies Condition 2.4. Then for any R, T > 0,
and p > 2 there is a constant Cl > 0 such that

E [1~~it,X,y)xll S Cl

for alt tE [0,Tl, x E [-R, R]d and Y E [-R, R]\{O}. Moreover, there is a constant C2 > 0
such that for alt t, t' E [0, T] and x, x' E [- R, RJd:

:1

(3.2)

Proof: Let R, T > 0, p > 2, and i E {1, ... , d}. Then we obtain from (2.10) and (2.12)

E [I~it~y)X Il S 2' E [I~it,;y)X - ~iO,;,l)X I'] +rE [IX (0, e;) I' + IX (0,0) I']

s 2PC(p, R V 1, T)(TP8/2 + RP8 + (' + 1)P8)+ 22p+1C(p, 1, 1),

where C(p, R, T) denotes the constant in Condition 2.4, f0r given p, R, T. To prove (3.2),
define Yi E [-R,R] by x' = x + E1=1 Yiei. Then I~XIP l= IX(t',x') - X(t,x)IP can be
estimated as

d

I~XIP = IX(t', x') - X(t, x') + X(t, x + LYiei) - X(t, x)IP
i=l

d

IX(t', x') - X(t, x') +L{X(t, x + LYiei) - X(t, x + L Yiei)}IP
n=l i~n i~n-l

d

< (d + l)P(IX(t', x') - X(t, x')IP + L IX(t, x + ILYiei) - X(t, x + L Yiei)IP).
n=li~n i~n-l

With (2.10) and (3.1) this yields

d

E[lX (t', x') - X (t, x) 1'1 S (d + 1)'[C (p, R, T) It' - tl""/l + ; C (p, 2R, T) IYnl"].

Now (3.2) follows from IYnl S Ix - x'l and C2 := (d + l)P[C(p, R, T) + dC(p, 2R, T)]. 0
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Proposition 3.2 (Product rule) Suppose that the random fields X and Y satisfy Con-
dition 2.4. Then the product XY satisfies Condition 2.4, too. Moreover,

(XY)Xi (t, x) = XXi(t, x)Y(t, x) + X(t, x)YXi(t, x) a.s.

for (t, x) E JR+ x JRd, and the exceptional set does not dependon (t, x)"

(3.3)

Proof: Let X and Y satisfy Condition 2.4 with the same band C. Fix R, T > 0 and
p> 2. Then (2.10) follows from

E(lX(t, x)Y(t, x) IP] :::; E[IX(t, x)12pF/2E[IY(t, x)12P]1/2 :::;C(2p, R, T),

and (2.11) follows from

E[IX(t, x)Y(t, x) - X(t', x)Y(t', x)IP] < 2PE[IX(t, x) - X(t', x)12PF/2E(lY(t, x)12PF/2

+2PE(lX(t', x)12PF/2E(lY(t, x) - Y(t', x)12PF/2

< 2P+lC(2p, R, T)lt - t'IPc5/2'.

It remains to prove (2.12). Fix i E {I, ... , d} and write ~ and ~' for ~~t,X,y) and
~~t',X',y')' respectively. Then

I
~(XY) _ ~'(XY) IP

y y'

I
~X ~Y ~'X ~'Y p< -Y(t,X+yei) + -X(t,x) - -Y(t',x' +y'ei) - -X(t',x')
y y y' y'

< 4P (I(6.: - 6.~;)Y(t, x + yo,)I
P

+ I6.~;(Y(t, x + ye,) - Y(t', x' + y'e,))I
P

+ I(6.; - 6.~nX(t, x)r + 16.~;(X(t,x) - X(t', x'nD '
for t, t' E JR+, x, x' E JRd, and y, y' E JR\{O}. We denote the terms on the r.h.s. by Iii) to
I~i) and estimate their expectation separately.

From Cauchy's inequality, (2.11) and (2.12) we obtain

EIlj')] ~ E [I6.: - 6.} I'T'E [IY (t, x + ye,) I'Pt'
:::; C(2p, R, T)(lt - t'IPc5/2 + Ix - x'lPc5 + Iy _ y'IPc5),

for t, t' E [0,T], x, x' E [-R, R]d and y, y' E [-R, R]\{O}.
We estimate E[I~i)] using Cauchy's inequality, (3.1) and (3.2):

EIl;')] < E [ 6.~; l2pr' EIIY (t, x + yo,) - Y (t', x' + y' 0,) I'P]I/'
< Const (It - t'IPc5/2 + Ix - x'lPc5 + Iy _ y'IPc5),

12



for t, t' E [0,Tl, X, x' E [-R, R]d, and y, y' E [-R, R]\ {O}, where the constant depends on
p, Rand T.

Because of symmetry I~i) and I~i) can be estimated similarly. It remains to show
(3.3). Since all the derivatives in (3.3) exist, we only nave to show the equality. Let
i E {I, ... , d} be arbitrary, then for almost every wEn Jnd all (t, x) E JR+ x JRd:

1

.6.~t,X'Y)XY 1y - XXi(t, x)Y(t, x) - X(t, x)YXi(t, x)

< 1 (.6.~t,X'Y)X - X (t x)) . Y(t x) 1 + 1.6.~t,X'Y)X . ~i ylY Xi , , y (t,x,y)

+IX(t,x).("'k~y)Y -Yx;(t,x))I-+ 0 asy-+o. 0

Notice that when X and Y satisfy Condition 2.4 wi,th constants 8x =I 8y, we can
choose 8 = min {8x, 8y}. The foregoing proof shows that ~lso XY satisfies Condition 2.4
with this 8. In the sequel we denote by \1xf(t, x) = (oxJ(V

I

I

, x), ... , oxdf(t, x)) the gradient
of a function f(t, x) w.r.t. x.

. Proposition 3.3 (Chain rule) Suppose that the random field X satisfies Condition 2.4
an~ f E C!1+ß(JR+ x .1E!d) with? < ß ::; 1. Then (t, x) H

1

1 f(t, X(t, x)) is a random field
whzch satzsfies Condztwn 2.4 wzth 8' = ß8. Moreover,

oxJ(t,X(t,x)) = ('Vxf)(t,X(t,x)). XXi (I' x) a.s. (3.4)
for (t, x) E JR+ x JRd, and the exceptional set does not depend on (t, x).
Proof: To see that f(t, x) := f(t, X(t, x)) satisfies (2.10)llet R, T > 0 and p > 2. Then

E [If<t,xli'] :0: 2'E II/(t, X (t, x)) - /(0, ~lI' + 11(0,0)1']
::; 2P (2pKP(Tpß/2 + C(p, R, JI')ß) + If(O, O)IP) ,

for tE [0,T] and x E [-R, R]. Using the Hölder continuiJy of f we obtain

E [If(t,x) - j(t',x)n ::; 2PKPE [It - t'lpß/2 + IX(t,x) - X(t',x)IPß].

Since X(t,x) satisfies (2.11) it follows that f(t,X(t,x)) satisfies (2.11) with 8' = ß8.
Fix i E {I, ... ,d}. To show (2.12) we proceed as fOllOw

l

1s

l

.6.j .6.'j I
P

1 1 .6.X- - - ::; r 'Vxf(t, X(t, x) + v.6.X) dv- .
y y' Jo I Y

11 .6.'X IP- 'Vxf(t', X(t', x') + v.6.' X) dv-
o I y'

< 2' 1J,\VxJ)(t,X(t,x) + v"'X) dvl' I"': - "'~;'T
+2' 11,' [(Vx/)(t,X(t,x) + lx)
-(Vx/)(t', X(t', x') + v""j dvl' I"'~~r,
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for t, t' E lR+, x, x' E lRd, and y, y' E lR\{O}. Fix T, R > 0 and p > 2. We now take the
expectation on both sides and estimate the two resulting terms on the r.h.s., 11 and 12,

separately.
From the Hölder continuity of V'xf, we obtain that 11 is bounded,

11 < 2PE[Il(\7rfl (t, X (t, x) + vL\X) dvl'r' E [I~ - L\~;r r
< 2Pd?(K V I(V'xf) (0, O)I)PE [11

(1+ tß/2 + IX(t,x) + lI.6.XIß) d1l2P]1/2

.C(2p, R, T)1/2(lt - t'IPO/2+ Ix _ x'lPO+ Iy _ y'IPO),

for t,t' E [O,T]' x,x' E [-R,R)d and y,y' E [-R,R)\{O}. It remains to show that the
integral is bounded. This follows from the estimate

E [(.10
1

IX(t, x) + lI.6.XIß dll)2P] < E [.10
1
(IX(t, x) I + 1I1.6.XI)2Pßdll]

< 22pßE [IX(t, x) 12Pß+ I.6.XI2Pß] ,

for tE [0,T], x E [-R, R)d, and y E [-R, R). This expression is bounded since X satisfies
(2.10). Thus to complete the proof it suffices to show that 12 has a similar upper bound.

Using the Hölder continuity of V'xf, we find that

12 :s; 2Pd?KP E [.10
1
(It - t'Iß/2 + {(I - lI)IX(t, x) - X(t', x')1

+vIX(t, x + yei) - X(t', x' + y'ei)I}ß) dv2pt' E [IL\~;TPr' (3.5)

(3.1) implies that the second expectation is bounded for t' E [0,T], x' E [-R, R)d, and
y' E [-R, R)\{O}. The first term is also bounded,

E [(.101 ... dll)2Pf/2 :s; 3P (It - t'lpß + 2pßE[IX(t, x) - X(t', x') 12Pß)1/2

+ 2pßE[IX(t, x + yei) - X(t', x' + y'ei)12PßP/2) . (3.6)

Jensen's inequality and (3.2) give

E [IX(t,x) - X(t',x')12Pßf/2 :s; E [IX(t,x) - X(t',x')12P]ß/2
:s; 2ß/2C2(2p, R, T)ß/2(lt - t'IPoß/2 + Ix - x'IPoß), (3.7)

for t, t' E [0,T) and x, x' E [-R, R)d. A similar estimate holds for the last term in (3.6).
Thus combining (3.5), (3.6), and (3.7) we find that f(t, X(t, x)) satisfies Condition 2.4.

14



It remains to show (3.4). Recall that X is continuous. Let f be as above, and fix
i E {I, ... , d}. Then, alm ost surely

I /';.~t,tj- (V'xf)(t, X(t,x)) . XxJt, x)

.11 lAi XI. u~x~
< 0 1(\7xJ)(t,X(t,x) + lIß{t,x,y)X) - (\7xJ)(X(t,xHl dll ';

+ I(V'x/)(t, X(t, x)) . ('l~t,;y)X ~ xx, (t, X)) 1-+ 0 os y -+ O. 0

Proposition 3.4 (Differentiation under the integrajI sign) Let (Bt)t'~o be a d-dimen-
sional Brownian motion. If X is Ito integrable and satis1es Condition 2.4, then

{t (tl.f(t, x) := Jo X(s, x) dBs, g(t, x) := Jo X(s, x) ds

satisfy Condition 2.4 with the same O. Moreover, the ßontinuous versions of fand 9
satisfy

Bx. (t X(s, x) dBs = {t Xx. (s, x) dBs and 0x. rt X(s, x) ds = rt Xx. (s, x) ds
t Jo Jo ' t Jo I Jo t

almost surely, for (t, x) E IR+ x IRd, and the exceptional set does not depend on (t, x).
Proof: We only prove the result for f. The prooffor 9 is bimilar. (2.10) and (2.11) follow
immediately from Burkholder's inequality and the assu~Ptions on X. To prove (2.12),
suppose R, T > 0, p > 2. Assurne without loss of generality that 0 ::; t ::; t' :::;T, then

E [I/';.~t,;,y)/ - /';.~"~,dn
~ 2PE [11.' (/';.~,,;y)X - /';.(,,~:y')X) dB,ll + 2

1
E [11" /';.(,,~:y')XdB, n .

From Burkholder's inequality and (3.1) this expression is bounded by

T [Ißi X.6,i X IP
] I t' [1.6,i X IP]2PTP/2-11 E (S,~y) - (S,~;y') ds + 2Plt - t'IPY2-1 1 E (S,~;y') ds

~ C(p,R, T)(lt - !'Ip512 + Ix - x'l'" + 1-y'I"'),
I

for t,t' E [O,T], x,x' E [-R,R]d, and y,y' E [-R,R]\{ffi}, which shows that f satisfies
Condition 2.4. I.

Fix i E {1, ... , d}. Let ~i be a continuous version of (t, x, y) f---t ßCt,x,y)X/y and "li be
a continuous version of (t, x, y) f---t JJ ~i(S, x, y) dEs' Thus for a.e. wEn we have

ß~t ) 1t 1t 1t
lim ,x,y XdEs="li(t,x,O)= ~i(s,x,O)dßs= XXi(s,x) dEs,
y~O y 0 0 0

for (t, x) E IR+ x IRd, which concludes the proof. 0

Remark. In the following we will always choose continuous versions of stochastic integrals
which depend on (t, x).
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4 Proof of the main theorem
In this section we study the smoothness of the random field u defined in (2.9) and finally
we prove Theorem 2.7. Recall that (0" F,P) = (0,1 x 0,2,F1 0 F2, PI 0 P2).

We first show that the random field

U(t,x):= uo(Xi,X)eI;c(s,X:~s)dS+I;h(S,X:~s)dYs-~I;lh(S,X:~sWdS - (4.1)

and its first order x-derivatives satisfy Condition 2.4 (which implies that U is twice con-
tinuously differentiable). Notice that xi'x = zg'x, by (2.13).

Suppose that Z;'x is a continuous random field which satisfies the conclusion in Propo-
sition 2.6 and that Uo E C;,ß(JRd) with ß E (0,1]. According to the chain rule the
random field (t, x) H uo(zg,X) is continuously x-differentiable with xi-derivative giv-
en by (V'uo)(zg,X)Z;~X(O). Moreover, the product rule and the chain rule imply that
(t, x) H (V'uo)(zg,X)Z;'iX(O) satisfies Condition 2.4 with 8 = a. Thus, the first factor in
(4.1) and its x-derivatives satisfy Condition 2.4. By the product rule it remains to study
differentiability of the exponential term in (4.1).

Lemma 4.1 Let 0 < ß :s 1. Suppose that 9 E C1+ß(JR+ x JRd) n LOO(JR+ x JRd), and
that Z;'x satisfies (2.14-2.16) with 8 E (0,1]. Let Ms stand for Yj or for 8. Then
f(t, x) := exp IJ g(8, Z;'X) dMs satisfies Condition 2.4 with 8' = 8ß. 1ts continuous Xi-

derivative is given by

for (t, x) E JR+ x JRd, and the exceptional set does not depend 01?- (t, x).

Proof: We only give the proof for the exponential of the stochastic integral

The proof for exp IJ g(8, Z;'X) d8 is similar. Note that

Ep [leX(t,X)n = Ep2Ep1 [ePX(t,x)] = EP2 [exp(p; Io
t
g(s, Z;,x)2 dS)] :s eP2TI1911;.,/2, (4.2)

for p ~ 1, tE [0, T], and x E JRd.
Propositions 3.3 and 3.4 imply that X(t,x) satisfies Condition 2.4 with 8' = 8ß. The

remainder of the proof is similar to that of the chain rule. But since the exponential
function fails to be globally Hölder continuous we have to modify the estimates of 11and
12 (defined in the proof of Proposition 3.3), where this assumption was used. Fix T, R > 0
and p > 2. Then to estimate 11it suffices to show that

[

1 . 2P]1/2
MI := Ep 110 eX(t,x)+/.I~(t.x.y)X dvl :s C(p, R, T),
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for t E [0,R]' x E IRd, Y E IR, and to estimate 12 it suffices to show that

[111 . I ,I 12P] 1/2
M '- E X(t,x)+v.6.'(t)X X(t ,x )+v.6.'(tl I I)Xd2.- P e ,x,y - e ,x ,y V

o

is bounded from above by

C(p, R, T)(lx - x'Ip6ß + Iy - y'Ip6ß + It - t'IP6ß/2),

for t, t' E [0,R]' X, X' E [-R, R]d, y, y' E [-R, R)\{O}.
Since Jo1eu+v(b-u) dv :::;eU + eb for all a, b E IR, we find that

M2 < E [leX(t,X) + eX(t,x+yei) 1
2P

] < 22Pl2P2TI1911~.
1 - p - I

Since leU - ebl :::; (eU + eb)lb - al for a, bE IR we obtain

M, < fo' Ep [leX(',x)+''', .....,x + ex(t'X')+'''i.,.•L,xl'P] dv'/'

. 101 Ep [IX(t, X) + V~~t,X,y)X - X(t', X') + V~~tl,XI,yl)xI4P] dv1/4

:::; Const (Ix - x'IP6ß + Iy - y'IP6ß + It - ~'IPr/2),
where the last inequality follows from (4.2) and Proposition 3.4.

Now fix i E {I, ... , d}. Proposition 3.4 states that ther~ is a set Ni E :F with P(Ni) = 0
such that XXi (t, x) = J~('Vxg)(t, Z;,X)Z;t(s) dYj for all eh E N{, and (t, x) E IR+ x IRd.
Since f satisfies Condition 2.4 it is continuously x-differehtiable .. Therefore, it suffices to
show that if w E Nie, then ~~t,x,y)f /y converges to f(t, x)JxXi (t, X) as y tends to zero.

Note first that

for y =1= O. We will show that the second term converges vo zero as y tends to zero. Let

F(s) = { ~(e' - 1) - 1 if s E lR~{O}
o If s = 0,

then

1

1 . I I ~i XI I~i X Iy( e"' •.•."x - 1) - Xx.( t, x) ~ f (ßi,,x,y)X) (,~y) r (t,~y) - Xx; (t, x). (4.3)

If w E NL then ~{t,:C,y)X -7 0 and ~(t,X,y)X/y -7 XXi (t, x~ as y -7 0 for all t and x. Using
that IF(s)1 :::; IsieB /2 for s E IR, it follows that the right !hand side of (4.3) tends to zero
as y tends to zero. 0
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Corollary 4.2 Let c, h1, ... , hm E Ct,2(IR+ X IRd) n C2+ß(IR+ x IRd
), and suppose that

z;,x satisfies the conclusion in Proposition 2.6. Then U, given by (4.1), and '\lxU satisfy
also Condition 2.4. In parlicular, U is twice continuously differentiable in the pointwise
sense and in the V -sense, for alt p 2: 1.

t t . t tProof: The continuous random fields (t, x) t---+ exp Johj(s, Zs'X) dYl, e.xpJo c(s, Zs'X) ds,
exp{ -~ J~hj(s, Z;,x)2 ds} satisfy Condition 2.4 with <5= 1. Therefore they are contin-
uously x-differentiable. Moreover, from Propositions 3.2, 3.3, and 4.1, their derivatives
satisfy Condition 2.4. Lemma 2.5 concludes the proo£. 0

We can now prove the main result. .

Proof of Theorem 2.7: Proposition 2.3 states that u(t, x) E V(Pl) for all p 2: 1, and
v(t, x;~) = EP1 [u(t, x)t~] = Ep1 Ep2[U(t, x)t~].

Moreover, it is obvious that u(t, x) is (.rl)radapted for every x E IRd. Assumption (D)
states that v(t, x;~) is the solution of (2.6) for (t, x) E DT. Integration of (2.6) gives

v(t, x;~) - uo(x) - fot {L(s, x) + c(s, x) + h(s, x)~(s)}v(s, x;~) ds = O. (4.4)

To prove that u(t,x) satisfies (2.3), we will verify that (4.4) can be rewritten as

Ep1 [( u(t,x) - uo(x) - fot{L(S,x) + c(s,x)}u(s,x) ds - fot h(s,x)u(s,x) d~) t~] = O.

Since the term in front of t~ is in L2(P1), and the algebra generated by {t~;~ E
Cü(IR+)m} is den se in L2(P1), it follows from this equation that u(t, x) satisfies (2.3)
P1-a.s., and therefore also P1-a.s. It thus remains to prove that one can rewrite (4.4) as
claimed.

Since (4.2) holds uniformly in t, and t~belongs to V(Pd for every p 2: 1, the map
(s,w) t---+ g(s)U(s,x)t~(w) is in V(A[O,t] 0 P) for any bounded measurable function g.
Thus one can apply Fubini's theorem in the following.

We consider each term under the integral sign in (4.4) separately.

fot c(s,x)Ep1Ep2 [U(s,x)t~] ds EP1 [fot c(s,x)Ep2 [U(s,x)]dst~]

EP1 [fot c(s,x)u(s,X)dst~]. (4.5)

From Example 2.2 we obtain for the next term

fot h(s, x)~(S)Epl EP2 [U(t, x)t~] ds fot Ep1 [h(s, x)Ep2 [U(s, x)] t~] ~(s) ds

EP1 [fot h(s,x)u(s,X)d~t~]. (4.6)

Finally we consider the derivative terms in (4.4). Let i E {I, ... , d}, R, T > 0 and
p > 2. Since U satisfies Condition 2.4 with <5= 1 there is C > 0 such that

. . P . . P

Ep, W"(t,;,y} U _ 1'>(",;,y'}U I] < Ep [II'>(t~yp _ I'>k ,~:y'P I ]
< C(lt - t'IP/2 + Ix - x'IP + Iy - y'IP)

18
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for t, t' E [0,Tl, X, x' E [-R, R)d, and y, y' E [-R, R)\{O}. Therefore, u(t, x, Wl) is contin-
uously differentiable with respect to Xi for all (t, X) E DT1 and W E Nie, with PI (Ni) = O.
Fix (t, x) E DT and let c > 0 be arbitrary. Since bt is locally bounded we may choose
y' =f 0 such that

Ifatbi(S,x)8xiV(S,x;~)dS-Epl [fatbi(S,x)UXi(S,X)ds£~]1 - _

1

t !:li [ It !:li u ] 1= 10 bi(s,x)lim (s,X'Y)E-Ep2[Ut~]ds-E- ~ bi(s,x)lim (s,x,y) dst~

< r: Ibi (s, x) I
Y

::: E pP [1''''l,,x,yP _ "'("x,:'~Il]ds y~O Y
Jo y-tO Pl 2 Y . y' . I

[

t [I!:lt U !:lt ljJ I] ]+E- r Ibi(s, X) llim EP2 (s,x,y') - (s,x,y) I ds t~ :::;C.
PI Jo y-tO y' y

Since c > 0 was arbitrary, it follows for all (t, x) E DT:

rt
bi(S,x)8x.v(s,x;~) ds = Ep [rt

bi(s,x)ux.(s,x) dst~] . (4.7)
Jo' I Jo I'

To see that a corresponding equation holds for the second order derivatives, fix (t, x) E DT

and note that from above we have

We may argue as above once more, to show that when w E N0, 8xj UXi (t, x, w) exists and
is continuous for (t,x) E DT, where P1(Nij) = O. It follows that.

fat aij (s, X)8XiXjEpl [u(s, x)t~] ds = EPI [fot aij(s, x)UXiXj (s, x) ds t~] , (4.8)

for any (t, x) E DT.

Finally, let N be the union of all Ni and Nij. Then P(N) = 0, and the foregoing
considerations show that u is twice continuously x-diffe~entiable for all (t, x) E DT and
w E Ne. Substituting (4.5), (4.6), (4.7), and (4.8) into ~4.4) shows that u(t, x) satisfies
(2.3). I

Consider equation (2.3) with another solution U. Because U is twice continuously
differentiable in the L2(P1)-sense, we can calculate thel S-transform of (2.3) by inter-
changing the expectations and integrals with the derivatires. It follows that the resulting
S-transformed function v = Su(~) satisfies the same deteFministic Cauchy problem as the

I
function v = Su(~), for all ~ E cgo (JR+). Since v, v E « these functions coincide. The
injectivity of the S-transform concludes the proof. 0
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(5.1)

5 An applieation to mathematieal finanee
In mathematical finance, assets are frequently modeled as stochastic diffusions. In prac-
tice, one isinterested in fitting the parameters of such diffusions to given data series
from the market. For example, in order to calculate an option price by the well-known
Black-Scholes-formula one must know the value of the volatility parameter of the under-
lying diffusion model. Filtering theory may be one possible way for obtaining "optimal"
parameter values. In this section we shall describe how the results derived above can be
used to estimate the parameters in the log-normal diffusion model for stocks.

Remark. We have chosen this example for several reasons: From the practical point
of view it may be used for actual parameter estimations. Its numerical treatment is
comparatively simple because the process X;'x is known explicitly. Since one can compare
the parameters estimated by filtering with those obtained by the traditional methods one
can evaluate whether OUf new approach is useful. It is not necessary in this example to
calculate the conditional density immediately after the observation. (But this is the case
in many applications in engineering, and therefore non-linear filtering, in contrast to linear
filtering, is seldom used by engineers.) From the mathematical point of view this example
is interesting because the coefficients of the diffusion are unbounded and degenerate. As
far as we know, there is no other method available which solves this filtering problem.

Geometrical Brownian motion (sometimes called log-normal diffusion) is the most
common model for the value St of a stock at time t. Based on a data series from the stock
market for t E [0, Tl, one is interested in estimating the appreciation rate J.l and volatility
(J in the model

We assurne that we have some knowledge about J.l and (J at time t = 0, so that we
can treat J.l and (J as stochastic quantities J.la and (Ja (e.g. independent quantities with
Gaussian distributions). The estimation of the constants J.l and (J may then be formulated
as a non-linear filtering problem as follows. Consider the 3-dimensional diffusion

[
~~:] = [ J.l~St ] dt + [(J~St ~ ~]. [ ~~~ ] .
d(Jt 0 0 0 0 dWl

This gives J.lt = J.la and (Jt = (Ja for all t, so at first sight we obtained nothing new. But since
we improve OUf knowledge about J.l and (J by observing (a function of) {St,O ::; t ::; T},
we obtain the conditional distributions of J.la and (Ja based on this observation. (This
yields the best estimate of J.la and (Ja with respect to the L2-norm.) Let us ass urne that
OUf observations can be described by

l'

•

(5.2)

We have to suppose that h : IR --+ IR is smooth and bounded, so that we can apply our
formula. (Other choices for h may be more reasonable, cf. the remarks given below.)
To calculate the conditional densities for J.la and (Ja we first have to compute the

unnormalized conditional density u for the filtering problem (5.1) and (5.2), given the
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joint density uo(x, J.L,0") of (So, J.Lo,do). Recall that u has to satisfy the Zakai-equation
(1.2) which contains the adjoint A* of the generator of (5.1). This generator is given by

1 2 2 02 0
A = '20" X ox2 + J.Lxox'

and A has the adjoint

* 1220
2

(2 )02A = -0" X - + x 20" - J.L- + a - J.L
2 ox2 ox I '

which we wri[ted0A]* = [L(:a;' _T:~);~e]rator L[ i;,;O:iT] to[ad:~]diffUSion,namely

dJ.Lt = 0 dt + 0 0 0 . dWt .
do-t 0 0 0 b dW?

Given (So, flo, 0-0) = (x, J.L,0") we obtain flt = J.L,o-t = 0" anl

~ = x exp ((202 - /1-) - ~02jt + oWt') = xexp (f~02 - /1-)t + OW,') .

Now observe that (1.2), for the present problem, can be considered as a Cauchy problem
in the variables (t, x), while (J.L,O") are fixed parameters ih (1.2). Therefore the function
e(J.L,0") = 0"2 - J.Lis a constant with respect to this ("reduced") Cauchy problem. It is easily
checked that Z;'x := 5f-s satisfies condition (B) in The6rem 2.7. Moreover, conditions
(A) and (C) are obviously satisfied, and (D) is satisfied in view of the lemma given at the
end of this section.

We can thus apply our solution (2.9) to obtain the uDmormalized conditional density

u( t,x, /1-,0, w) = E [uo(Sf, /1-,0 je("-u')t-lf: h(SI-')l d,+ J: h(SI_,) dY,(W)] , (5.3)

where the expectation is taken with respect to {Wl; t ~ O}.
Notice that when we know one of the parameters exJctly, say J.L, then we can do the

same calculation with the 2-dimensional diffusion (dSt, d&t) which is obtained from (5.1)I ~

by erasing the dJ.Lt-part. The result (5.3) would differ only by the new density uo(S;, 0")
which is independent of J.L. I

Remarks on the model. At first sight the observation process yt for the stock price
might appear somewhat unrealistic. Of course, (St)O<t<T Jr equivalently yt = J~Sudu (t E
[0, T]), describes the theoretically best possible obse;'~tioh. However, in real observations
{Sti' 1 :::;i :::;n} the decimal number for Sti is not given lin full length. This means that
the observed value S(ti) for the stock price can be written as S(ti) = Sti + 6i, where the
6i can be considered as random errors with zero mean dnd identical distributions. But
then the sum L::i::;i(t) 6i (i(t) is the largest index so thatl ti :::;t) behaves approximately
as a (small) multiple of a Brownian motion Wb according to the central limit theorem.
Therefore we can think of

(5.4)
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as a continuous model for the quantity

t = L S(Si)(Si+1 - Si),
i<i(t)

which can easily be computed from the observed stock prices. (The value of € has to be
fixed according to the accuracy of the stock price.) The process yt = ¥i/€ satisfies (5.2)
with h(x) = x/€. Unfortunately this h is not a bounded function, so we tannot directly
apply our formula. Instead of h we choose a smooth bounded function hn, such that
hn(x) = x/€ for all x E [-n,n], where n is chosen greater than the maximal observed
stock price. (It should be verified numerically that the estimated parameters /1-and CJ do
not depend significantly on such a choice of n. Otherwise, this procedure would not be
appropriate for the estimation of parameters. )

Remarks on numeries. In order to actually estimate the parameters above using data
series; one has to compute the expectation in (5.3) numerically. This can be done with
the methods found in the book by Kloeden and Platen [17]. Here we sketch how CJ can be
estimated, given data up to time t, and assuming that /1-is exactly known: The estimation
of CJbased on the observation (yt(w))O~t~T reads

E[CJ!FT](w)= r CJ.p(T,x,CJ,w)dCJdx= r CJ.J ~f,x,CJ'~)d d dCJdx.
} IR2 } IR2 IR2 U .' y, p, w p y

The two integrals must be approximated by first restricting to a bounded domain in IR2,
and then applying standard numerical integration recipes. The major problem is thus to
calculate values for u(t,x, CJ,w): For each given point (x,CJ) on a grid in IR2, simulate a
suitable number of realizations of Sf. Techniques for such simulations can be found in
[17]. Notice that the increments dyt(w) are given by S(ti) (ti+1 -ti). Computing the mean
of all our realizations of Sf, we end up with a numerical value für u(T, x, CJ, w).

Finally, we prove a lemma which immediately implies that (D) holds for our example.
This result mayaiso be useful in related problems on the log-normal diffusion, but we did
not find it in the literature.

Lemma 5.1 Let CJ,/1-, TE IR with CJ,T > O. Suppose Uo E C;,ß(IR), q E C;,ß([O, T] x IR).
Then the Cauchy problem

8u 1 2 282u 8u
8t = "2CJ x 8x2 + /1-x8x - q(t, x)u, u(O,.) = uo,

has a bounded solution u E C1,2([0, T] x IR), given by

u(t, x) = E[uo(Sne- J; q(t-s,S;)ds], (5.5)

where Sf = x exp{(/1- - CJ2/2)t + CJBt}, and Bt is a one-dimensional standard Brownian
motion. This solution u is unique in the dass of functions f E C1,2([0, T] x IR) for which
there exist M > 0 and m ~ 1 such that

sup If(t,xJI:::; M(l + lxi2m).
09~T

Moreover, U(t,.) E Cl(IR) for every t E [0, T].

22



Proof: It is obvious that u defined by (5.5) is a well-1defined and bounded function
on [0,T] x IR. Moreover, as a special case of the resul,ts proved in Sections 3 and 4

I
(choose hi = 0), u(t,.) is twice continuously differentia~le for every t E [0,T]. It is
straightforward to check (with the calculus derived in Sect~ons 3 and 4) that x t-+ 0xu(t, x)
and x t-+ o;u( t, x) are bounded functions for every t E [0, Til]' Because of this the generator
A of the Itö diffusion Sf acts as a differential operator on u, i.e. .

( )
1 2 202U ou

Au t, x = -(J' x ~ 2 + j.Lx-;:;-2 . uX uX
(5.6)

(see [18]' Theorem 7.9 and Definition 7.7). Moreover, THeorem 8.6 in [18] shows that u
is t-differentiable and satisfies

OU
8t = Au - qu, u(O..) = Uo. (5.7)

(We remark that Theorem 8.6 is stated and proved in [18] only for time-independent
functions q and for Uo E C5(IR). However, a trivial ext~nsion of the proof shows that
u defined by (5.5) satisfies (5.7) for time-dependent q ~nd for Uo E C;,ß (IR).) Thus
u E C1,2([0,T] x IR), and (5.6) combined with (5.7) s~ows that u solves the Cauchy
problem, as claimed. I

To prove uniqueness, define v(t, x) := u(T - t, x). This function solves the backward
Cauchy problem

Acknowledgements: One ofus (J. P.) is very grateful to M. Hazewinkel for his proposal
I

to use techniques from white noise analysis - such as the S-transform - for problems
in non-linear filtering. T. Deck received financial suppoh from the project "Processos
Estocasticos" (PRAXIS XXI-FEDER-CITMA) during wdrk with this paper.

v(T,.) = Uo.

•

8v- = -Av+qv8t '

Now we obtain uniqueness from Theorem 7.6 in [16]. D
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