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of the first Piola-Kirchhoff-stress tensor of a
discrete medium forming a skin

E. ‘Binz

0. Introduction

Deformable continua in an Euclidean space are characterized by the first Piola-Kirchhoff
stress tensor a. In doing so it is assumed that the continuum forms a connected, smooth
and oriented Riemannian submanifold M of IR™ with boundary M. Taking (covariant)
divergence V* of the tensor a (assumed to be smooth) yields the internal force density @
on M. The internal force density ¢ caused on M is a(n) with n the oriented unit normal

of OM in M.

The question arises as to whether a is the only tensor causing ® and ¢ via the mathematical
procedure just mentioned. This tensor is not unique at all, as we see as follows: Given any
a with @ := V*a and ¢ := a(n) we may pose the Neumann problem

®=AH  with ¢ =dH(n).

Here A is the Laplacian of the Riemannian submanifold M C IR™. This elliptic boundary
value problem admits a unique smooth solution H in C§°(M,R™), the collection of all
IR™-valued maps, Ly-orthogonal to the constants. Hence dH is (in general) another type
of a first Piola-Kirchhoff stress tensor causing the same force densities as a does. It satisfies

a=dH+8,

where 3 := a — dH is divergence free and vanishes on n. This decomposition is unique. We
call dH hence the irredundant part of a. Since H is smooth the medium is called smooth.
The whole mathematical setting is based on a Dirichlet form, the theorem of Stokes and
the solution theory of Neumann problems. We present this formalism in section two based
on geometric preliminaries in section one.

In a series of papers (cf. References) we studied dH in various phenomenological aspects
and showed how to set up a dynamics within the frame work of symplectic geometry. What
was only hinted at, was the physical nature of H.

Here we present a physical interpretation of H in a special situation: We. consider skins
only, expressed by the assumption &M = (. These skins are supposed to consist of finitely
many particles, each reacting only with its nearest neighbours. We call this kind of media
discrete media forming a skin or just discrete media in these notes.
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In doing so we introduce in section 3 a connected graph V on an abstract manifold M
of which the vertices mark the mean location of massive material particles. We do not
specify what sorts of material particles are considered. They can be molecules, clusters
etc. Edges are thrown if the particles at the two bounding vertices interact with each
other. This graph together with the types of interactions describes the physical nature of
the discrete medium. (It hence makes no sense to refine the graph in order to approximate
the continuum!) This configuration is kept undisturbed at first.

This situation on the discrete level resembles the physical situation of having a continuous
medium on M at a fixed configuration jo (a smooth embedding from M to R™). The
next step is hence to imitate the mathematical technique on V and to write internal force
densities on V as AyHy, where Ay is the Laplacian and Hy is the constitutive IR ™-valued
map on V describing the discrete medium at the fixed configuration. In fact the discrete
geometry (cf. [Ch,St]) on V allows to construct a Dirichlet form gy, a metric Gy and a
Laplacian Ay on V.

Now we represent any internal force density. @y on V as AyHy for a uniquely determined
map Hy : V. — R™ in Fo(V,IR™), the space of all IR™-valued maps of V which are
Gy-orthogonal to the constants.

Within this frame work Hy allows the following physical interpretation: Let g; be one of
the nearest neighbours of q. Hy restricted to V is then a IR™-valued potential such that
the difference H(q) — H(g:) is the interacting force density of the particle at g with the one
at ¢;, a nearest neighbour of g. The force density ®v = AyHy(q) is hence the resulting
force density of the interacting force densities of the particle at ¢ with all its neighbours.

The physical quality of the discrete medium is therefore determined if both the graph V
and the constitutive map Hy, the interaction potential density, are specified.

Next we link the smooth and the discrete setups as follows: We exhibit a subspace
F(M,R™) of C§°(M,IR™) being La-orthogonal to the constants in IR™ together with a

map ¥ onto it and obtain in turn the following commuting diagram

Aoy
Coo(M,R™) — F°(M,R"™)
’I'l l’r
Fo(V,R™) Av, Fy(V,R™)

where r is the restriction map onto the space Fo(V,IR™). The finite dimensional space
F(M,R™) is the continuum version of Fo(V,IR™) which is stable under A, i..
A(F(M,R™)) C F&(M,IR™). The map ¢ reflects the geometry of the graph V ex-
pressed in terms of the geometry of the Riemannian manifold M. Moreover A o ¢ on
FP(M,R™) and Ay on Fy(V,IR™) have the same eigen vectors and eigen values, i.e. the
Laplacian Ay expressed on M is the operator A o). Let sq be the number of vertices of
V. The number of all non vanishing eigenvalues of Ay on Fo(V,IR™) is sg. Moreover we
express the metric on V by means of the bundle endomorphism ¢ on TM. The geometric
ingredients on V are hence all expressed on M. These constructions allow us to link the
description of the smooth and the discrete media.
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In fact Hy has a unique counterpart H € F&(M,IR™) on M, namely H¥ := ¢oHy. The
map AH € F§°(M,IR™) is the force density on M. Thus it makes sense to talk about a
discrete medium on the manifold M.

If the graph and its geometry are given each constitutive map splits uniquely into
its discrete part in F5°(M,IR™) and continuum part in the Lj-orthogonal complement
F&(M,R™)* of F&(M,R™) in C*(M,IR™). The discrete part is called the discretiza-
tion of the smooth medium. This shows that there are media on M of which the dis-
cretization on a given graph is trivial, namely those of which H(jo) € F®(M,R™)*. In
this context one might consider the problem of discrete approximations, for computational
purposes e.g., a task not headed for in these notes.

If we regard Hy as the constitutive entity deduced from knowledge on the microscopic
level then HY = pHy describes the resulting macroscopic structure on M. In this way
we pass from the microscopic to the macroscopic level by geometric means rather than
statistical ones. It’s Hy which links the levels. What is missing is to find a "best fit”
through a graph V in order to obtain a working formalism. We will deal with this much
harder problem elsewhere.

Having looked at a discrete medium at a fixed configuration we develop a formalism in
section four which allows deformations. These deformations, however, have to be small
enough in order to preserve the interacting pattern among the particles. Thus we vary the
configuration j only in a small neighbourhood W(3j,) C Fo(V,IR™) of a fixed configuration
jo- The constitutive map 'f(v(] ) is hence defined for any 7 € W(jo) and characterizes the
discrete medium with respect to a reference configuration jo. Its physical interpretation is
of the same nature as the one for Hy; it only depends on an additional parameter, namely
j. Its counterpart on M is called H¥(j).

For any configuration j € W(jo) C Fo(V,IR™) the map ﬁv(]) : V — IR admits a Fourier
decomposition

Hy (i) = Y wi (i)

with respect to a complete eigen system uj,...,us, of Ay. Hence the virtual work func-
tional Fy(j) is represented by

Fy(j) =) v'&'(j)-dxi ,
=1

where x; is the coordinate on the axis JRu; and d denotes its differential. v* is the eigen
value of Ay at u;.
d,Fy(7), the symmetric differential of Fy at j, is expressed by

N B
d,Fv(3) = 521/ de*(7) v dx; ,

=1
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with V the symmetric product. d,Fy(j) is of of physical relevance: As an example we
consider a medium given by Hook’s law. Its eigenvalues at an equilibrium configuration j
of internal force densities i.e. Fy(j) = 0 form the vibrational spectrum (cf. [C,St]).

Introducing a thermodynamical (equilibrium) setting (cf. [L,L] and [Str]) in section five,
we can represent the Fourier coefficients thermodynamically as

T 8S

vt Ox;

k(j) = 1=1,...,8 .
Here T is the absolute temperature and S is the entropy. At j with d7'(j) = 0 these sorts
of coefficients can be obtained by

P 1 8Fr(5)
KIZ(]):;TX{_ 1=1,...,8
with Fr the free energy. In this case the differential dFr coincides with the exact part of
Fy in the sense of Hodge theory. Using the partition function Z for the Gibbs distribution
in statistical mechanics (at an equilibrium state and constant temperature) the coefficients

k%(5) are of the form

... T dlogZ
N(J)Z; B

1= 1, 00980
J
out of which one immediately obtains the modes o; of dFr at constant 7. The modes of
dFr are called the modes of Fy or the modes of the medium. In fact

1 Okt T 8%log Z
() ex; (V)2 O%x

o; 1=1...,8 .
This spectrum determines a linearized model of the medium with exactly the same spec-
trum. '

At this point let us repeat, in other terms, that the spectrum of the discrete medium
at constant temperature and at an equilibrium configuration of internal force densities
is entirely determined by the exact part of the virtual work form Fy. This exact part
dL is extracted via Hodge theory (with Neumann data e.g.) on Fo(V,IR™). No further
thermodynamical entity is needed.

1. Geometric preliminaries and the Fréchet manifold E(M,R")

Let M be a compact, oriented, connected and smooth manifold (without boundary) and
IR™ be equipped with an orientation and a scalar product < , >, both fixed throughout
the note.

For any j € E(M,IR™) we define a Riemannian metric m(j) on M by setting

m(§)(X,Y) =< TjX,TjY >, VX,Y e (TM). (1.1)
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(More customary is the notation j* <, > instead of m(j).) We use I'(E) to denote the
collection of all smooth sections of any smooth vector bundle E over a manifold Q with
nQ : E — @ the canonical projection. Let pu(j) be the Riemannian volume on M defined
by the given orientation and the metric m(j).

The Levi-Civita connection V(j) of (M,m(j)) is obtained as follows: TIR™|j(M) splits
into Tj(TM) and its orthogonal complement (77(TM))* (the Riemannian normal bundle
of j). Hence any Z € I'(TIR™|j(M)) has an orthogonal decomposition Z = Z7T + Z1,
where the tangential component Z T is of the form ZT = T35V for a unique V € I(TM).
For any Y € I'(TM) the function TjY : M — TIR™ is smooth. The vector field V(j)xY
on M, the covariant derivative of Y in the direction of X, is defined by the equation

Ti(V(5)xY) = d(T5Y)(X) - (Vx(T5Y))* (1.2)

for all X,Y € I'(TM). Instead of (VX(TjY))J' we write S(7)(X,Y) and call S(j) the

second fundamental tensor of j.

It is well-known that the set C*°(M,R™) of smooth maps from M into R™ endowed
with Whitney’s C*-topology is a Fréchet manifold (cf.e.g.[Bi,Sn,Fi] or [Fr,Kr]). For
a given f € C®(M,IR"™), the tangent space TyC®(M,R™) is the Fréchet space
CP(M,TR"):={l€ C®(M,TR")|tr» ol = f} 2 (f*TIR™) and the tangent bundle
TC>(M,R") is identified with C*°(M,TIR™), the topology again being the C'*°-topology.

The set E(M,IR"™) of all C*-embeddings from M to R™ is open in C®(M,R™) and
thus is a Fréchet manifold whose tangent bundle we denote by Cg(M,TR™). It is an
open submanifold of C*(M,TIR™), fibred over E(M,IR™) by “composition with mg=".
Moreover, the Fréchet manifold E(M,IR™) is a principal Diff M-bundle under the obvious
right Diff M-action and the quotient U(M,R™) := E(M, R™)/Diff M is the manifold of
“submanifolds of type M” of R™ (cf. [Bi,Sn,Fi], ch.5, and [Bi,Fil]).

The set M(M) of all Riemannian structures on M is a Fréchet manifold since it is an
open convex cone in the Fréchet space S%(M) of smooth, symmetric bilinear forms on M.
Moreover, the map

m:EM,R™) — M(M)
is smooth (cf.[Bi,Sn,Fi]).
The Riemannian metric <, > of IR™ induces a “Riemannian structure” G on E(M,R™) as

follows: For any j € E(M,R™) and any two pairs of tangent vectors li,l> € C°(M,TR™)
we set '

G\l l) = /Mal,zzm(j) . (1.3)

It is clear that G(j) is a continuous, symmetric, positive-definite bilinear form on
C(M,TR™) for each j € E(M,R™). Next we point out some invariance properties
of G: Let Difft M be the group of orientation-preserving diffeomorphisms of M. As a
subgroup of Diff M, it operates freely on the right on E(M,R™) by

¢: E(M,R™) x Difft M — E(M,RR™)

(y0) — G0 . (L14)

)




Similarly, any group J of orientation-preserving isometries of JR™ operates on the left on
E(M,R™) by
J xEM,R™) — E(M,R™).
(9,5) —goj
One immediately verifies the following (cf. [Bi,Fi2]):

(1.5)

Proposition 1.1
G is invariant under both Difft M and J.

Associated with a deformable medium is a mass distribution on M, a so called density
map
p:E(M,R™) — C®(M,R)

with total mass m = [}, p(5) p(7)- It is supposed to satisfy
p(7)(p) >0 Vi€ E(M,R™) andVpe M , (1.6)

yielding the positivity of mass and which, in addition, is required to obey the continuity
equation

dp(5)(k) = —%jltrm(,-)dlm(j)(k) ¥j € E(M,R™) and Yk € C°(M,TR™) . (1.7)

trm(;j) denotes the trace formed with respect to m(j). The symbol d denotes the differential
of maps of which the domain is a Fréchet manifold of maps and which take values in a
Fréchet space.

In what follows, we will construct a density map by solving (1.7). Let jo € E(M,IR™) be
fixed. For any j € E(M,IR™) we express m(j) via an uniquely determined smooth, strong
bundle endomorphism B(j) of TM (selfadjoint with respect to m(jo)) by

m(j)(vp, wp) = m(jO)(B(j)(P)'”mwp) Vvp,wp € TyM and Vp € M (1.8)
and observe that the Riemannian volume forms u(jo) and p(j) are linked by
p(3) = det f(7)n(do) (1.9)
with f(4) = +4/B(j). Fixing a map p(jo) € C®(M, R) satisfying (1.6) then
p: E(M,R™) — C®(M,R)
given for any j € E(M, R™) by
p(3) = p(do)det ()" (1.10)

satisfies both (1.6) and (1.7). Due to (1.7) the mass [ p(7) u(7) is j-independent.
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We close this construction of a density map by revisiting it with respect to technics used
in statistical mechanics (cf. sec.5). Equations (1.7) and (1.10) allow us to write

dlog p(j)(h) = —tr FAG)AFG)R)  Vh € (M, R™) (111)
for any j € E(M,R™). Let j be near jo. If b(j) € EndTM is such that expb(j) = f(5)

and if we write
b(5) = log £(4) (1.12)
then
p(3) = p(jo) - €™ 8 1) = p(jo) - det f2(j) , (1.13)
a well known type of formula (cf. (5.21)).

Associated with a density map p on E(M,IR™) is a natural, j-independent metric B given
by

B(ll,lz) = /M p(]) < ll,lz > u(]) (114)

for each j € E(M,R™) and for each pair l;,l € C®°(M,TRR™). This metric depends

smoothly on all of its variables. For its covariant derivative and its geodesics see [Bi2].

2. The principle of virtual work and the first Piola-Kirchhoff
stress tensor

In this section we will repeat the characterization of a medium via a first Piola-Kirchhoff
stress tensor. Moreover, in the absence of external force densities, we will investigate the
virtual work depending on any configuration and any infinitesimal virtual distortion. This
work is a one-form on E(M,IR™), denoted by F. However, not all one forms on E(M,R™)
will serve as virtual works.

We assume that the medium moves and deforms in IR™, equipped with a fixed scalar
product. The configuration of the medium may vary rapidly.

At each configuration 7 € E(M,IR™) we characterize the quality of the medium by the
smooth first Piola-Kirchhoff stress tensor (cf. [M,H], p.135)

a(j): TM — TR™ = R"xR™.

Clearly a(j) is a smooth IR™-valued one-form if the values will be projected onto the
second factor (which is done throughout the paper).

Let us assume from now on that
a:EM,R") — AY(M,R™)

is smooth (the range carries the C®-topology). The medium characterized by a is thus
called a smoothly deformable medium. The virtual work determined by a and an
(infinitesimal) virtual distortion ! will be nothing else but the classical Dirichlet integral:




Given any two form a,8 € A(M,R™) we can both represent uniquely as

a = clo,dj)-dj + dj - Ao, dj)

B = cB,dj) di + dj-Ala,dj) , (2.1)
cf [Bi2].

Now we set

a-f = —Lirc(a,dj)oc(B,di) + tr A(a,dj) o A*(8,d))

with x denoting the adjoint of A(8,dj) : TM — TM formed fibre wise with respect to
m(j) and

a(@)e,f) = [ a-pui)  VaBeAM,R™).

In fact G(dj) is the Dirichlet integral.
Any (infinitesimal) distortion I € C®°(M,R™) yields the one-form

dl:TM — R™
which admits according to (2.1) the representation
dl = c(dl,dj)-dj + dj - A(dl,dj) . (2.2)

The virtual work F' at j is then given by the Dirichlet integral

FG)) = [ ali) e dlu(i) = a(di)(a(i),d) (23)
for any virtual distortion ! € C*°(M,R™). A routine calculation shows (cf. [Bi2])

FGO = [(9°ai), 1) i)

with V* the covariant divergence given by the Levi Civita connection V(j).

Remark:
(i) If we fix a reference configuration jo € E(M,R™) then u(j) = det f(j) u(jo) and

/ a(i) o dlu(s) = / (det £(5)a(7)) » dl p(io)
M M

for all j € E(M,IR") and all | € C°(M,TIR™). In fact a(j)det f(j) is usually
called the first Piola-Kirchhoff stress tensor. However, since we work in this formalism
without reference configurations in general, we call a the first Piola-Kirchhoff stress
tensor.




(ii) For the sake of shortness we will frequently use the term “stress form” for a(7) rather
than “a first Piola-Kirchhoff stress tensor”.

Next let us investigate the virtual work
F:EM,R™)x C®(M,R™) — R

from the point of view of translational invariance. To see what one-forms on E(M,RR™)
are virtual works, in absence of the external force densities, we first point out the following
observation: Any virtual work F' enjoys two special independent properties reading for any

j € E(M,R") and any l € C°(M,TRR™) as
FG+2(0) = FG)I) Ve R

etz = PG Vze R™.

(2.4)

The first one is certainly the invariance under the obvious action on E(M,R™) of the trans-
lation groups IR™ of the vector space JR™. Factoring out this action on E(M,R™) yields
again a Fréchet manifold, called E(M, R")/Rn (the reduced configuration space). It
admits a natural visualization via the center of mass as seen as follows (cf. [Bi2]):

Specifying a density map p (cf. section 2) on E(M,R™) we introduce the center z, of
mass by

SON W OrOE WO (25)
for any j € E(M,IR™). Fixing the center of mass at zero, then
{3 eE(M,R"Hzm(j):p} —»E(S]J,B")/Rn (2.6)
J >

is a diffeomorphism. Here [j] denotes the equivalence class of j formed with respect to the
action of the translation group R™ on E(M,RR™).

Clearly the differential
d: E(M,R™) — {dj | j € E(M, R™)}
(the second factor carries the C*°-topology) induces a diffeomorphism

d: E(M,R™)/ g~ — {dj|j € E(M,R™)}

2.7
Bl — 4 20

since [j]={j+z|z€ IR™} for any [j] € E(M,R")/Bn. Obviously the differential

(€ E(M,R™) | 2m(j) =0} -2 {dj | j € E(M,R™)}
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is a (smooth) diffeomorphism too. Therefore, the reduced configuration space of the action
of the translation group R™ on E(M,R™) can be described in either way by

E(M,R™)/pn or {j€EM,R")|2m(j)=0} or {dj|jec E(M,R™)}.

Consequently we identify all the three and will use either symbol according to our conve-
nience. The reduced phase space is hence

E(M,Rn)/Rn X Cw(M,Rn)/Rn ;

the second factor being the usual factor space of C*°(M, R™) modulo IR™ (identified with
{dl|le C®(M,R™)}) endowed with the C*-topology.

The second property in (2.4) means that constant virtual distortions cause no virtual work.
The two properties in (2.4) allow our work F, defined on TE(M,R™) = E(M,R™) x
C®(M,R™) to factor to F, as shown in the following diagram:

E(M,R™) x C®(M,R™) PR
dxd l /F
{djlj € E(M,R™)} x {dl|l € C=(M,R"™)}

(In the sequel we will write F instead of F) These considerations reversed yield immedi-
ately those one forms on E(M,R™) which are virtual works(cf. [Bi2]):

Lemma 2.1

There is a surjection from C® (E(M, R™), A'*(M, R™)) to the collection Ay (E(M,R™), R)
of all one-forms F : E(M,IR™) x C®(M,IR™) — IR characterized by the following prop-

erties:
1) F is invariant under the action of the translation group R™ on E(M,R™).
2) F()(l+2)=F@G)Il) Vi€ E(M,R"™), Vle C®(M,R™) andVz € R".

3) F admits an integral representation of the form
FGO = [ oli) edlut) = a(d)ali), ) (28)
for all variables of F where a: E(M,R™) — A*(M,IR™) is a smooth density.

The characterization by a of the medium is rather general. However, the question arises
from (2.8) as to whether the virtual work is uniquely represented by the stress form a or
not. In fact it 1s not:
Solving

V*(i)ali) = AGIHG) Vi€ B(M,R™)

such that G(7)(H(j),2) = 0 for all z € R™ shows immediately the unique decomposition

a(j) = dH(j) + B(G)  with V*(§)B() = 0.

10
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dH(7) is therefore called the irredundant part of the first Piola-Kirchhoff stress tensor
for any j € E(M,IR™). This yields now the following main theorem in this section:

Theorem 2.2

Any deformable medium can be uniquely characterized by a smooth map H : E(M,R™) —
C>(M,RR™) with G(5)(H(j),2) = 0 for any z € R™. The internal force density ®(5)

causing the virtual work against a deformation is
A(GHG) =2(F) Vi€ E(M,R™). (2.9)

Moreover

FG)O) = adi)dr(),d) = [ ani)-aiuti) = [ @GHGODuG)  @210)
holds for any j € E(M,IR"™) and any (virtual) deformation | € C°(M,R™).

The question we will partially answer in the next section is: What is the physical nature of
H? The answer will be given only for media which consist of finitely many particles each
interacting only with its nearest neighbours.

3. A discrete model with nearest neighbour interaction and a
discretization formalism

Here we will develop a physical interpretation of the irredundant part of the first Piola-
Kirchhoft stress tensor within the frame work of the nearest neighbour interaction in a
graph.

To this end let jo € E(M,IR™) be fixed throughout the rest of the paper. We fix a finite
collection V' C M of points and form jo(V) C IR™. These points are the mean location of
the material particles in IR™. (These material particles could be molecules, clusters etc.)
The total number of all points in V is denoted by sg. If two of these particles interact
the underlying locis in jo(V) C IR™ are connected with an edge. In this way jo(V) is
turned into a graph (a one dimensional complex) in IR™, assumed to be connected. We
will generalize this situation in the following way:

The collection V' C M will be turned into a graph in M as follows: Let U, be a neigh-
bourhood of g on which equ_1 is bijective. Let 8¢, the number of points in V', be such that
U Ug =M. If ¢ € VNU, then ¢' and g are connected by a geodesic segment (with respect
to m(jo)) provided jo(gq) and jo(q') are connected by an edge in JR™. In this way V C M is
a one dimensional complex in M. In addition we require that the graph is connected and
oriented, i.e. the geodesic segments are directed. We moreover take a triangulation t of M
subordinated to the covering {U, | ¢ € M } and such that each simplex contains exactly
one vertex in its interior.

The vertices in V are considered as the mean loci of the material particles in M, too.

11




We now will make some assumptions of physical nature on this triangulation and this
graph:

The volume |o| of any simplex o € t given by the Riemannian volume form u(jo) restricted
to o4 shall be a given small constant. This assumption is not very restrictive if the number
of edges of the graph is very high and the largest cell is very small, a scenario which we
assume to hold.

Let us specify the number of vertices V' somewhat further. Let p be a density map (cf.

sec.1) and call p(jo) restricted to V' by pv(jo). Both p(jo) and py(jo) determine respective
masses:

m = /Mp(jo)mo) and  myi= Y pv(o)(a) - |og

gev

where o, is the simplex containing q in its interior and |og| is the volume of oy.
We require ‘ '
m — my is very small .

Next we will introduce the Dirichlet-form g and the Laplacian Ay of V. For the sake
of simplicity we will often write ! instead of its restriction »(I) = l|y to V for any [ €
C>(M,RR™) (if no confusion will arise). By F(V,IR™) we furthermore denote the finite
dimensional vector spaces of all IR "™-valued maps of V. The dimension of this vector space
is 89 + n. Clearly the restriction map r : C*(M, R™) — F(V,IR™) is surjective.

We define
gy : F(V,R™)x F(V,R™) — R
by
k(q)

gv(h,D) = > (h(q) — h(a:),Uq) — 1)) o] (3.1)

qeV i=1

with k(g) the number of nearest neighbours g; for any pair h,l € F(V,IR™). The number
k(q) is called the degree of V in q. gy is called the Dirichlet form. Let

Gv(h,1) == (h(a),l(q))log|  Vh,l€ F(V,R™). (3.2)

gev

Gv is a positive-definite bilinear form on F(V,IR™). The Gy-orthogonal complement of
R™ in F(V,R™) is called Fo(V,IR™). Clearly gy is a positive-definite scalarproduct on
Fo(V,R™). We define

Ay : F(V,R™) — F(V,R™)

by
k(q)
Avh(q) := k(q) - h(q) — Z h(g:) g € Vy(5), Yhe F(V,R™) (3.3)
(ct. [B)).
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For any h € F(V,IR™) we deduce the following analogue of (2.10):
Gv(Avh,D) = gy(h,l)  Vh,le F(V,R™). (3.4)

To see that the equation (3.4) is satisfied it is enough to remark that both kinds of the
sums

((h(a) = h(@), Ua) + .- + (h(a) — hlgec), Ha))) ol

and

(((gr) = h(@),1a)) + - - + (blance)) — hlg)s Haxc)) ) o]

appearing on the right hand side of (3.2) exhaust the double sum of (3.4). |
Clearly Avh =0 if h € R™, i.e. if h is a constant map. Moreover all eigen values of Ay
are non negative.

By the above constructions the following is now obvious:

Proposition 3.1
Ay is a linear automorphism of Fo(V,IR™). Hence

AvHy = &y

has a unique solution in Hy € Fo(V,IR™) for any &v € Fo(V,R™).

An immediate consequence of the above proposition is a first description of the physical
nature of Hy within our frame work:

Theorem 3.2

Let Fy : Fo(V,IR™) — IR be the linear functional of which Fy(l) is the virtual work

caused by the distortion |l € Fo(M,IR™), assumed to vanish on the constant maps. Then
there is a uniquely determined (internal) force density ®y € Fo(V,IR™) such that

Fy(l) = Gv(®v,l) . (3.5)

This force density hence determines via the equation AyHy = ®y a unique map
Hy € Fo(V,IR™), called the constitutive map. Moreover any Hy € Fo(V,IR™) determines
uniquely the force density ®vy(q) which evaluated at any g € V is

dv(g) = AvHv(g) = k(q)Hv(q) — Z Hv(g:) (3.6)

where q1,...,qx(q) are the nearest neighbours of q. Hence Hy is a potential for which
Hv(q) — Hv(g:) is the interaction force density of the material particle at q; with the one
at q. Therefore ®v(q) is the resulting force density at q of the interaction force densities
of all the nearest neighbours of q acting upon the particle at q. Let edfl € T,M be such
that exp edfl is the geodesic segment connecting q with q;. The differential d'r_l'Hv(q)ed;
at g along the geodesic segment exp ed; approximates the interaction force density of the
particle at g with the one at g;.

13




Remark

A medium on V defined by a constitutive map Hy is called a discrete medium. Based on
the observations just made Hy is called the interaction potential of a discrete medium

onV.

In order to link Ayh with A(jo)h for any h € C®(M,R™) we introduce the following
notion: -

Let Cg°(M,IR™) be the G(jo)-orthogonal of R™ in C®(M,R™). The map r
Ci°(M,IR™) — Fo(V,IR™) is surjective, too. Clearly Gy is a scalar product on Fo(V,R™)
and dimker Ay = 0.

In order to work on M instead of V' we will construct next a finite dimensional subspace

Fso(M,IR™) of C§°(M,IR™) stable under A(jo) and such that
r: o (M,R"™) — Fo(V,R™)

1s an 1somorphism. We do this as follows:
Let {e;}i=1,.. be a G(jo)-orthonormal complete system of eigen vectors of A(jo). Any
g € C®(M,R"™) has thus the Fourier expansion

g:ZEiei (€ R forali=1,....

The right hand side converges uniformly. Equipping C§°(M,R™) with the topology of
uniform convergence yielding C§°(M, R ™)¢, the restriction map

r: Cgo(M’Rn)Co - ‘FO(V,R”)

is a continuous surjection. Thus {re; |7 = 1,...} generates Fo(V, R™). Out of this set we
construct a basis of Fo(V,IR™) as follows: We take the smallest z such that re; # 0. Next we
look for the smallest 3’ such that re; and re;s are linearly independent. Continuing in this
way we obtain a linearly independent system called e{,..., ego for which ref,... ,'r'eg0 1s a
basis of Fo(V,IR™). The vectors €},...,e) , all eigen vectors of A(jo), generate a subspace
F(M,R™) of C§*(M,R™).

By construction A(jo) is a linear automorphism of F§*(M,R™) and r : F§*(M,R™) —
Fo(V,IR™) is an isomorphism. Since A(jo) and Ay are invertible on F§°(M,R™) and
Fo(V,IR™), respectively, we immediately conclude the following technically convenient
proposition:

Proposition 3.3

A(jo) is a linear automorphism on F§°(M,R™). Moreover there is an unique linear map
$(jo) : Co~ (M, R™) — Fo°(M, R™)

‘such that
(i) kerv(jo) is G(jo)-orthogonal to F§P(M,R™)
(i) ¥(jo)lre(m,mm) is an isomorphism of F5°(M,R™).
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(iii) AV‘: rA(jo)¢(jo)r™! withr : Fg°(M,IR™) = Fo(V,IR™) the restriction map being
an isomorphism. Hence ¥(jo)|reo(m,mm) = A7 (Jo)r 1 Ayr.
(iv) For any ®y € Fo(V,IR™) there is a unique solution Hy € Fo(V,IR™) such that

AyHy = oy = TA(jo)’l,b(jo)'l‘—l'HV . (3.7)
Remark
Given a sequence e, ..., e} of eigen vectors of A(jo). Then there is a graph V with enough
vertices such that the e;,..., e are among the €, ..., ego.

On F§°(M,IR™) the scalar products r*Gy and G(jo) are linked by a linear isomorphism
©(jgo0) of F§°(M, R™) meaning that

PGy(h D) = G(io)(pliolhnl)  Vhil€ FX(M,R™) . (33)
For any choice of h,l € F$°(M,R™) the following equations hold:

Gv (Avrh,rl) = G(50)((30)A(G0)P(Jo)h, 1)
Gv (rh, Avrl) = G(5o) (R, ¥(jo)* Aldo ) (do)l)

with 9¥(jo)* the G(jo)-adjoint of ¥ (o).
Each of the maps 9(jo) and %(jo)* link the discrete geometry on V with the Riemannian
geometry on the continuum M.

For any eigen vector u of Ay the vector is also a G(jo )-orthonormed eigen vector

T Tallog)
of ¢(jo). Thus p(jo) commutes with A(jo)¥(jo) = r 1 Ayr and hence ¥(jo)*A(jo) =
(r~*Ayr)*. Therefore the following proposition holds:

Proposition 3.4

The following relations hold
(i) #(30)AH0)¥(do) = Aljo)b(do)p(do) on F5°(M, R"™).
(ii) Av =r9(jo)* Aljo)r™" = rA(jo)p(jo)r™" on Fo(V,R™).

As a consequence of 3.3 and 3.4 we obtain immediately a smooth description on M of a
discrete medium specified on V:

Corollary 3.5
Any force density &v € Fo(V,IR™) with Hy as its constitutive map satisfies

r . dy = r T AvHy = AGo)Y(Go)r T Hy . (3.9)

Hence H¥ (jo) := ¥(jo)¢(jo)or " Hy is the constitutive map on M describing the medium
on V as a smooth medium on M, for which

Fy(1) = G(j0) (AGo ¥ (o) p(jo)r Hy, 1) = Gv(AvHy,rl) = g(jO)(SD(jO)T_l‘PV’(Q 10
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holds for any l € F§°(M,R™).

Remark

(1) Following the above theorem the quality of the physical model of a discrete medium
is thus determined by the graph V and the specification of Hy. Given a graph V
any internal force density in Fo(V,R™) determines uniquely Hv € Fy(V,R™). What
sorts of graphs V' and constitutive maps Hy are useful has to be decided on physical
grounds. A microscopic view point is thus needed to specify the physical meaningful
Hy.

(ii) However, given V any microscopic theory yielding a force density ®y on V determines
some Hy, i.e. yields a microscopic setting in a prescribed nearest neighbour geometry.

Based on the observations made so far, a discretization procedure in terms of V of a
smooth medium is defined as follows: Suppose we have a force density ®(jo) on M causing
a virtual work F'(jo) in the sense of (2.10). The discretization of ®(j,) is by definition the
map 7¢(jo)r 'r®(jo) : V —» R™ with r : C®°(M,R™) — F(V,IR™) the restriction map
and v~ : Fo(V,R™) — Fg°(M,IR™) the inverse. The background of this definition is the
requirement that the virtual work F on the continuum is identical with the virtual work
Fy on the discrete medium: Let I € F§°(M,R™). Assuming some ¥ € F§°(M,IR™) such
that

F(j0)(1) = G(30)(2(40),1) = G(do) (Pr 8(jo), 1) = Gv(¥,1) = Fy(rl) (3.11)

where Pr : C°(M,R™) — F>°(M,R™) is the G(jo)-orthogonal projection Hence ¥ =
r9(jo) 7' Pr ®(jo). Setting ®'(jo) := ¥(jo) — r 1 r®(jo) yields

g(jo)(@'(jo),l) = g(jo)(r_qu)'(jo),r_lrl) =0 Vie Fg°P(M,R™)

showing Pr = r~!r. Transforming Gy into G(jo),i.e. using (3.8), yields the desired expres-
sion for the discretization. The force density ®(jo) on M is described by a constitutive
map H(jo) € C(M,R™) as

®(jo) = A(jo)H(jo) -

Using proposition 3.1 there is hence a unique map H(jo)v € Fo(V,IR™) such that
r@(d0) T r®(Go) = AvH(jo)v

implying
r¢(jo) T r T rAGo)HGo) = AvH(Go)v -

Rewriting Ay with the help of 3.3 (iii) yields
AvH(Go)v = rA(Go )P (Go)r ™ H(jo)v
and using 3.4 (i) implies
rAjo)H(do) = r¢(Go) Ao )b (o )r " Hijo)v = rA(jo ) (do)e(Go)r ™ H(jo)v -
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Therefore ‘
H(jo)v = re(jo) " ¥(jo) e rH(jo) -
This yields the splitting

H(Go) = $(Go)p(jo)r™ Hijo)v + H(jo) " (3.12)

with H(jo)* := H(jo) — ¥ (jo)e(jo)r ™ H(jo)v-

We call H(jo)v the discretization of H(jo) on V and ¢(j0) 4 (jo) tr~1rH(jo) the
discretization of H(jo) on M.

In view of corollary 3.5 we thus state:

Theorem 3.6

Given the graphV and its geometry each constitutive map H(jo) on M splits at j, uniquely
into

H(j0) = (jo)p(do)r ™ H(jo)v + H(jo)™" (3.13)
with Hv (jo) € Fo(V, R™) being defined by
AvHv(jo) = r(jo)r " A(Go)H(jo) (3.14)
and hence being of the form
H(Go)v = ro(0) " % (jo) ' rH(Go) - (3.15)
Moreover H(jo)M = ¥(o)p(Go)H(Go)v is in F°(M,IR™) while as H(jo)* is in

the orthogonal complement Fo(M,R™)* of Fo(M,RR™) in C(M,R™). Therefore
¥(Jo)p(do)H(jo)v is the smooth description of the discretization of the medium on M.

Remark

We call a smooth medium on M to be of discrete nature if H(jo) = ¥ (Jo ) (jo)r 1rH(jo)v,
i.e. if H(jo)* = 0. Clearly the discretization of H¥(jo) : M — IR™ in corollary 3.5 is Hy
again.

As example of a discretization let us consider the volume map V : E(M,R™) — IR given
by V() := [, (). Then for jo € E(M, R™)N C5*(M,R™)

Do) = [, 1) o) -
Our one form F is thus dV(jo). Hence H(jo) = jo and

H(jo)v = jov = r(jo) " %(do) v Tja -
If F°(M,IR™) and Fo(V,IR™) are identified by r, then

H(jo)v = Jov = ¢(jo) " ¥(jo) " Jolv - ' (3.16)
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Due to (3.7) the derivative dV(jo) at jo of the volume map V rewrites hence as

dV(so)v(l) = gV(AV‘P(jO)_l'/’(jO)_leV’l) .

As we introduced capillarity in [Bi2] we proceed accordingly in the discrete case: We
omit the identification by r. Given Hy, a constitutive map for a discrete medium on V,
we take the g-orthogonal component of d('gb(jo)(p(jo)’l‘_l?‘(v) along d(’tﬁ(jo)cp(jo)r_ljov).
This component is a multiple ay - d(z,b(jo)(p(jo)r_ljov) of d(1/1(j0)<p(j0)7'_1jov). Hence

Hyv =avjoy + HIV (3.17)

with H, := Hv — avjoy. The real number ay is called the capillarity of the discrete
medium.

The interpretation of Hy as presented in theorem 3.2 is obviously supplemented by the
following interpretation of the force density at locations of material particles:

Proposition 3.7

Letv; € F(V,IR™) be the map assigning to q the r** basis vector in IR™ and zero otherwise
then {vy, |7 =1,...,n; s =1,...,80} C F(V,IR™) is a basis. Representing AyvHy in
this basis reads as

AvHy =) wivy . (3.18)

T3

Thus wy, is the work against the resulting interaction force densities of all its nearest
neighbours needed to lift up the particle at g, by one unit length in the direction of vy, .

Clearly a physically more real picture would be obtained by starting with a graph and
then pass to a good fitting smooth surface through it (characterized by special kinds of
¥(jo) and ¢(jo)). We will study this much more difficult situation elsewhere.

4. Deformation of the graph

Let jo € Eo(M,IR™) be fixed. We call j; a reference configuration. Here we study the
deformations of the medium of which the material particles are at the vertices of V C M.
We describe these deformations with respect to a reference configuration in order to involve
a fixed Laplacian, namely Ay. The first goal is to give a definition of what is meant by
the medium on V at the configuration j € Eq(M,IR™) near jo.

We study the analogous situation for a continuum first: Suppose we are given a medium on
M characterized at the configuration 7 by a constitutive map H(j). We will describe the
medium at the configuration j € E(M,IR™) with respect to the reference configuration j.
Since we use the Laplacian at a fixed reference configuration jo we need to pull back H(j)

to jo. This pull back 7"\(( 7) is defined as the solution of the following equation

det f(7)AGYH(G) = AGoYH(F) Vi € Eo(M,R™) (4.1)
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where p(7) = det f(5)u(jo) and m(5)(X,Y) = m(4o)(f3(4)X,Y) holding for each pair
X, Y e T(TM) (cf. sec.1). Hence we verify immediately

FO)D = [ (et SOAGHGD i) = [ (8GR0 o)

The medium on M at the configuration j is hence characterized by 7"2(] ) with respect to
the geometry of the reference configuration jo. In the analogous way we treat the discrete
situation.

To do so we need the following notions: Let Eo(V,IR™) := {rj | j € Eo(M,R™) }. Clearly
Eo(V,IR™) is open in Fo(V,R™) and r(E(M,R™) N C(M,R™)) = Eo(V,R™).

A physical remark is necessary here: Stretching a physical configuration of material par-
ticles with prescribed nearest neighbours interactions may change this interaction com-
pletely. If the type of the graph has to be preserved then only embeddings very close to
Jo € Eo(V,IR™) ought to be considered, i.e. we vary j in an open neighbourhood W (jo) of
jO € EO(V7Rn)'

Assuming a given virtual work Fy(j) characterizing the discrete medium on V at the
configuration j € W(jo), then

Fy(j) =Gv(@v(i),)) Vi€ F(V,R™) (4.2)

for some well defined force density ®v(j) in Fo(V,IR™). Hence by proposition 3.1
ov(j) = AvHv(j) - (4.3)

for some well defined Hy(j) € Fo(V, R™). This map Hy describes the medium on V at
the configuration 7 € W(jo) C Eo(V, R™). The description of the force density (4.3) on V
is expressed on M (again with the help of proposition 3.2) as

r Oy (§) = AGo)$(Go)r M Hv () -

To describe the work caused by @y on V in a continuous fashion on M and hence with
the metric G(jo) we need to modify r*®y(5) by applying »(jo) to it:

0(G0)r 1@y () = ©(jo) AlGo)¥(jo)r  Hv(5)
= A(Go)¥(jo)p(Go)r ™ Hy

showing N
Fy(5)(1) = G(30)(AGo)d (o) (do)r  Hy (), 1) -
Let j' € E(M,IR™) N CE(M,IR™) be such that r(j') = j and H¥(j) be the solution on
M of
det £1(3")AGo)$(Go)p(Go)r T H(T v = AGHHY (5) (4.4)
which is assumed to be G(j)-orthogonal to the constants IR™. Then
AGo)b(o)e(do)r H(GW = det f(3") - A (") -
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Thus det (5 )A(F'YH¥(5') is the force density ®¥(5') on M at the configuration j' of the
medium on V' described on M with respect to the reference configuration jg. It causes the
same virtual work as ®y does. Moreover A(3'YHM(5') is the force density on M of the
medium on V at the configuration j' described with respect to j§.

The basic equation of the virtual work Fy at any configuration j € »~1 (W(jo )) caused by .
a distortion v~ € F°(M, R™)with I € Fo(V, R™) is

Fv(G)(1) = Gv (AvHv(5),1) = 6" (AGYHM ("), »720)

for any j' € E(M,R™).

We therefore have

Lemma 4.1

The discrete medium on V' at the configuration j € W(jo) C Eo(V,IR™) is characterized
by a map Hvy(j), smoothly depending on j. The same medium is characterized on M by
H(5')M, smoothly depending on j' € r=1(W(jo)) C E(M,IR™) too. Its force density on
M with respect to G(jo) is

oY (5') = det F(5YAGYHGHY

while as the force density on V is dy(j) = Avﬁ(]) The virtual work of the medium on
V at the configuration j is expressed either on M or V by

Fy(5)(1) = Gv (AvH(i)v,1) = 66" (AGHGW v ) Ve F(V,R™) . (45)

To get a more physical approach we need to answer the following question: Given Fy on
Fo(V,IR™) can we determine a collection of irredundant configurational variables near jo?
This question will be relevant with respect to a thermodynamical description as well as
with respect to determine the spectrum of the medium.

We study this problem as follows: Decomposing Hy with respect to the eigen basis
U1,...,Un Of Ay yields

80
Hy(§) =) s'(ui  V¥j€W() C Eo(V,R™) . (4.6)
=1
The Fourier coefficients «*(§) are called the coefficients of Fy-. Let &2, ..., k% be those coef-

ficients which do not identically vanish on W(jo). Then ut,...,ul span R™ C Fo(V,R™).
We assume moreover that Hy(jo) € R¥ isa regular value of Hy. Hence there is a neigh-
bourhood W1 (jo) C W(jo) C Fo(V,IR™) of jo such that

Wl(jO) =MxPF

with M = Hy' (Hv(jo)). Thus F is spanned by the elements in {1, ..., us, \{ul,...,uk% }.
In studying Fy we may therefore restrict us to M. Since the one-forms Gy (u;, - ) with
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1 =1,...,K are exact on M and hence are of the form dxi,...,dxx (after a renum-
bering), the coordinates x1,...,xk form a collection of irredundant variables. In terms of
these variables Fy is represented by ‘

Fy(j) = Zuini(j)dlx,- Vi e M (4.7)

with v* the eigen value associated with u®. These eigen values are all positive. If all but one
of the k* vanish identically the corresponding Fy is called an elementary constitutive
law.

To simplify the notation let us assume K = s and W1(j0) = W(jo).

If the distortions are very small then Fy can be linearized at j,. To do so we introduce
the linearization of Fy: Differentiating Fy at jo yields for all h,l € F(V,IR™)

Fv(30 + h)(1) = Fv(jo)(I) + dFv(j0)(h)(!) + higher order terms .
We write dFy(j)(h,l) instead of dFy(5)(h)(I).

Clearly dFy splits into a symmetric and skew symmetric part d,Fy and d, Fy, respec-
tively. Evidently 2 - dq Fy(h,l) is identical with the exterior differential of Fy at j.

Representing d;Fyv(j) via Gv yields the endomorphisms b(j) of F(V,IR™). The eigen
values of b(j) are called the modes of Fy or the modes of the medium. The totality
of the modes is called the spectrum of the medium. If Fyy = dL for some smooth map
L : W(jo) — IR then the modes are the eigen values of the Hessian d®L of L.

Fy at j € W(jo) is said to satisfy Hook’s law if
Fy(j + h)(h) = Fv(§)(h) + ds Fv(j)(h, k) (4.8)

for all small distortions h € Fo(V,R™) (cf. [L,L], [C,St]).

If Fy(3) = 0 for some j € M we call j an equilibrium configuration of the internal
force density or just an equilibrium configuration. If Fy satisfies Hook’s law at this kind
of configurations then

Fy(j + h)(h) = d,Fv(j)(h, k) (4.9)
and d,Fy = 0. Not any virtual work admits equilibrium configurations of the above sort;

e.g. dV, where V is the volume function on E(M,R™) does not.
The following is now obvious:

Proposition 4.2

Let jo be an equilibrium configuration of internal force densities of a linearized constitutive
law Fy satisfying a Hook law on W (jo). The force density ®(jo + h) causing the work
Fv(jo + h)(h) for any small distortion h € F(V,IR™) satisfies
®(jo + h) = Z vim -h; with h; = Gv(h,u;) . (4.10)
c ox; ’

=1
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J—ng?‘“ are hence the "spring constants” with respect to the coordinate axis given by

T

Uly..., UK ON W(]o)

Let us pause the general discussion of the coefficients k* made so far and illustrate it at
a special type of situation. At first we point out that these spring constants mentioned in
proposition 4.2 have nothing to do with the spring constants along edges of the graph used
in some models in solid state physics (cf. [C,St]).

Hook’s law used to describe bond stretching is as follows: Let Fy(jo) = 0. To each distortion
h there is associated a potential energy, called pot (cf. [C,St]). Its quadratic approximation
(cf. [C,St]) reads as

pot(jo +h) = qu,q‘ (=G o) hig)) 1o(g)

|Jo(q _JO(Qz)|R

wggr are the spring constants in the direction of the edge g, ;. The work Fy(j + h)(h)
caused by the distortion k is then

Fy(j + h)(h) = dpot(jo + h)(h) (4.11)

and hence

Flio+W(8) = 3 3 wgge{ D3 o) mig)) oyl (aa2)

\jo(q) — jo(gs)|m~

On the other hand :
Fy(j + h)(h) = Gv(dHv (jo)(h), k) .

In particular we have for each r = 1,..., 89

Ok" (Jo)

Fy(i +u)(ur) = 2.2

(4.13)

and therefore

Bn (Jo) ZZ q/ Jo(q) — Jo(@:) u r(q)~ur(qi)>2

\ |Jo(q - Jo(q )|1R

or

oK (J") Zzw% 2, (4.14)

where

o (XD TG o)y g)

|Jo(<1) - JO(Qi)|Rn
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5. Thermodynamical interpretation of the coefficients and the
modes of Fy

As we learned in the last section any discrete medium on V is given by the collection
{k*]i=1,...,80} of the coefficients. These can be expressed in any thermodynamical
equilibrium as follows:
The collection of equilibrium states in thermodynamics is given by W(jo) x IR (cf. [Str] and
[B,St]). Call the projection of W(jo) x IR to W(j,) by 7. Then the following decomposition
1s supposed to hold:

' Fy = —dU + TdS (5.1)

with U, S,T : W(jo) x R — IR the internal energy, the entropy and the absolute temper-
ature, respectively. xi1,...,%Xs,,U are the coordinates on W(jy) x IR. The differentiation
in (5.1) takes place on W(jo) X IR. Only the partial differentiation along W(j,) influences
Fy, however. We omit n* in (5.1) therefore if no confusion arises.

The free energy Fr is defined to be

Fr . =-U+TS. (5.2)

This thermodynamical function will provide us below with a simple interpretation of our
constitutive map H at constant temperature.

Suppose Fy admits in addition a splitting of the form (5.1) near 5 € W (o) . The following
equations are obvious

Fy = dFr — SdT = Z vigidx; (5.3)
i=1
1 IS .
d,Fy = —d?U + 5levCller:r-dFs = §Zu’cw V dx; (5.4)
i=1

as well as ) )

doFy = SdT AdS = 3 Vi A dix; (5.5)
and in particular

Fy(j)=dFr(y) ifdT({G)=0. (5.6)

Equation (5.1), (5.2), (5.3), (5.4), (4.6) and (4.7) yield a thermodynamic interpretation of
the coefficients and the modes of Fy, stated in the following;:

Theorem 5.1

On W (jo) x IR the coeficients k' for i = 1,...,s0 of any constitutive law Fy are thermo-

dynamically expressed by
, T oS

k' =

= Las), (5.7)

vi Ox; vt

where 8 denotes the partial derivatives on M x IR. Moreover
1 388
— -2 5.8
T 88U (5-8)
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holds as well. The functions Fr,S,T and div F are related on W(j) x R by
2-div Fy = AFr + (TAS — SAT). ' (5.9)

Here div and A are the divergence and Laplace operators formed with respect to Gy on

Fo(V,R™). If dT(j) = 0 then

i 10Fr(j) 1 . :
R = o~ Er()(w) =180 (5.10)

and thus the constitutive map evaluated at j reads as

~ . X 10Fr(j
Hv(3) = Z i 8x(- )'U"i ; (5.11)
i=1 *
the force density is hence
K .
C N OFr :
A(Fo)Hv(s) = —% = Grad g, Fr(j) (5.12)
i=1 *

with Grad Fr being the gradient of Fr with respect to Gy.

Proof: We only verify (5.9) for arbitrary j € W(jo) since the other claims are immediate.
Equation (5.2) implies '

Fy(3)(ui) = dFr (5)(us) = S(5)dT(5)(us)
and in turn
dFy (5)(ui)(ur) = d*Fr (5)(us, ur) — dS(5)(us) - AT()(ur) — S(G)AT(5)(ui, ur) -
(5.7) on the other hand yields

ZO v (5)(ur )dx,(us) = o7 - di"(5)(ur) = AT(5)(ur)AS(5) (i) + T(5)d* S (5 ) (ur, i)

g=1

and thus
2 - do F(5)(ui)(ur) = A°Fr (5)(ur)(ws) + T(5)d* S(5)(wr, wi) — S(G)A2T(5) (wry us) -

Taking traces we find

2.div Fy = AFr + (TAS — SAT) .
O

To understand d,Fy and dFr from the point of view of Hodge theory we decompose Hy
on a closed ball K, C W(jo) centered about jo € Eo(V,IR™) as follows:

dv(j) = AvHy = Grad g, L + 8%(j) V] € K, (5.13)
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with the boundary condition
dL(5)(njo) = Fv(5)(nj,)  and  (Y(§)I0Kj,m50) =0 (5.14)

where L : K;, — IR™ is a smooth map and where nj, is the outward directed Gy -unit
normal of the sphere 0Kj;,. This is done by solving the elliptic boundary problem

trg, d,F = AL (5.15)

with the boundary conditions mentioned in (5.14). Clearly L pulled back onto W (j,) x IR
is not independent of the variables in W(jo) as e.g. the coordinate U is. Solving

Av'}:\f = Gradg, L (5.16)

yields a constitutive map for dL. We have shown:
Proposition 5.2
Fy on Kj, splits uniquely into
Fy =dL + Gv(9%,...), (5.17)

where dL and @9, satisfy the boundary (5.14). Both dL and Gy (®%,...) admit constitutive
maps Hy and HY,, respectively. If jo is an equilibrium configuration of internal force

densities and Fy satisfies a Hook law on W (jo) then Fy = dL and hence d,Fy = d?L

showing

Fr( + ) = Y 22D ey

with h € F&(M,R™) and h = Y ¢ - u;.

The relation between the thermodynamic decomposition (5.1) and the Hodge one (5.16)
is immediate: The equations (5.9) and (5.15) combined together yield immediately:
Corollary 5.3

The smooth real valued functions L,Fr,T and S on W(jo) x R™ are related by

A(Fr —2L) = (TAS — SAT) . (5.18)

If T is kept constant near j then we can interpret the map L in (5.17) in proposition 5.2
via (5.6) and the system consisting of (5.13) and (5.14) immediately as follows.

Corollary 5.4

If T is constant on a closed ball centered about j, then
Fr =1L (5.19)

on K;, up to an additive constant.
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The above corollary motivates us to interpret L for a fixed j € K, by means of statistical
mechanics. The formalism we adopt here is the one presented by [B,St]. We will make
constant use of the identification of F§°(M, R™) and Fo(V,R™), and this in fact not only
for R™ being the ambient space of our embeddings, but also for any R™ with m > 1.

We quickly repeat this formalism adopted to our situation. At first we specify some R™
and a functional v € (IR™)*. (The formalism works also if JR™ is replaced by an infinite
dimensional vector space.) Let J € F§°(Kj, x M,JR™) be any observable. K;, is the set
of auxiliary variables. The partition function Z(vy, J) associated with v and Z is defined
by

20,9 = [ e utio) (5.20)
An equilibrium state is then
1
Pry = e V7, 5.21
" 20,9 (521
The expectation value E(J,p.) for J with respect to py abbreviated by J is
J = / Jp% u(jo) - (5.22)
M
The entropy S(J, py) reads as
$(3,09) == [ pylog oy (i) (5.23)
and hence is expressed as
S(J,py) =log Z(J, ) +v- T . (5.24)

All maps J, py, S(J, py) and Z(J,7) depend smoothly on j € Kj,. (Any mass density p with
mass m (cf. (1.13)) can be regarded as an equilibrium state, with v = tr and J = log f.
The continuity equation follows from (5.24) above from the fact that the entropy of an
equilibrium state has to be maximal.)

If now 7 := -,_},— with T the absolute temperature (which is a fixed parameter), m = 1 and

J = H, an energy, then
1
TlogZ(J,=)=-U+TS=Fr (5.25)

with U := E(H, —;:) Let H depend smoothly on j. Hence U is smooth on Kj;,. We now
vary j in a very small neighbourhood W' of j and observe that T, being a constant, does
not depend on j. Therefore we have at 3

Tdlog Z(J,%)(j) = —dU(j) + TdS(j) . (5.26)

Now we apply these considerations to our map Fr in (5.6). For simplicity we omit the
variables J,v and py in Z and S if no confusion will arise. Since J depends on j € Kj, it
can be expressed by the coordinates x1,...,X,,.

26




Looking at (5.1), (5.6) and (5.19) we therefore obtain for our fixed j and constant T the

(%Eescript’i\on of the coefficients x% of Fyy = dL where i = 1,..., s of the constitutive map

Theorem 5.5

Let j € K, be fixed and T' kept constant in a small neighbourhood of j. Then with respect
to the state py = %e—il"H the virtual work Fy(j) can be expressed as

Fy(j)=dL =) v'sidx; = Tdlog Z(j) , (5.27)
=1

with H an energy. At a fixed temperature T the coefficients k% (j) fori = 1,..., s, satisfy
the equations
f_Z"_alogZ(j) _ 1 8Fr(y)

v;  Ox; vt 0%

k() = —rlog 2(7)(ws) = (5.28)

with Fr the free energy. More explicitly and differently written the above formula may be
stated as

. . T _ 8H(
() = =509 ) (5.29)
with .
OH St mere T u(Go)

B( Vi=1

pr) = .
BXi, T fMe_%H,U‘(]O) ’

The constitutive map ﬁpr = 'fZL in Fo(V,R™) of dFr = dL = Fy evaluated at j is hence

e y80 . (5.30)

() = Flee () = > £ 282U (5.31)

vt 0%y
=1

The Hessian of the free energy is the sum of all

(. 2 . 2 . 2

ax.,; 32 Xi 32 X3 3X,;

i=1,...,5 . (5.32)

If j is an equilibrium configuration of internal force densities the coefficients k% (j) vanish
foralli=1,...,s0.

Next we describe the modes of F' at a constant temperature 7' in the light of corollary 5.4.

Since d?>L = d,F (cf. (5.6)) in a neighbourhood K, we have

d,F(5)(h, k) = Gv (AAvHL(F)(R), k)

1 (5.33)
= Gv (AvdHL(j)(R), k) .

On F&°(M,R™) the quadratic form Gyv(Av ...,...) is a scalar product called G&7. (The

eigen values of Ay are all positive on this space.) We hence find a gé"—orthonormed basis
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v1,...,Vs, in which the endomorphism dHr(j) of F§o(M,R™) diagonalizes. Let us call
the respective eigen values by o1,...,0,,. then

gé" (dlﬁL(j)(v,-),v,) = 0','5,;,1. = O'igv(Av'Ui,’U,.) . (5.34)

If hence o; # 0 then v; is an eigen vector of Ay of Gy-length (v™)~7. With the help of
(5.10) and theorem 5.6 we then may immediately formulate the description of the modes
of Fy at constant temperature as follows:

Theorem 5.6

Let j be an equilibrium configuration of an internal force density. The modes of d,F(j)
at constant temperature are the eigen values a1,...,05, of d*L(j) = d®Fr. If o; # O then
the eigen vector of o; is an eigenvector u, of Ay. Hence

~ . 1 Ok%(j
g, = gV(AleHL(])(ur)ur, ur) = —_NL_O) (535)
vt Ox,
and hence o ) ,
1 0ki(g) T 8logZz
7T L ox;  (vi)? 0%x; (5.36)
after a renumbering of the eigen values of d*L.
If A denotes the Laplacian on K, then
v Okt _ > (vH)? i :
Z T o _Z =0 = (Alog 2)(j) - (5.37)

=1 =1

Given the graph V and its geometry the theorem above allows to construct (mathema-
tically) out of the spectrum o3,...,0,, a linear nearest neighbour interaction model (i.e.
satisfying Hook’s law) at constant temperature causing the same spectrum oy,...,0,,.
This is done as follows:

Let the configuration of the medium in IR™ be called by 7,. We then are in then realm of
sec.3. Moreover we assume that jg is an equilibrium configuration of internal force densities.
We set in accordance with (4.1) in proposition 4.2 for any h € F(V,IR™) the virtual work
it causes as

Fy(h) = Gv(®(jo + h),h) = Y (v))*'hl,

where h = ) h;u;. The medium hence can be characterized by the constitutive map
Hy = Z(Vi)zaiuihi .
=1
Clearly Fy(u;) = (v*)%a;.

Combining corollary 5.4 with theorem 5.6, we immediately obtain
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Theorem 5.7

At constant temperature the spectrum of a discrete medium at an equilibrium configuration
of internal force densities is entirely determined by d?L, the derivative of the exact part
(with Neumann datum e.g.) dL of the virtual work.

Finally let j be an equilibrium configuration of internal force densities and assume moreover
that Fv is linear and satisfies a Hook law on K. In treating this situation we may need
to generalize the setting of statistical mechanics somewhat. The variables on which the
energy H shall depend are j, a tangential vector to it, g and the edges, geodesic segments
connecting ¢ with any of its neighbours g;. Obviously this generalization is carried out in
a straight forward manner.
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