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A physical interpretation of the irredundant part
of the first Piola-Kirchhoff-stress tensor of a

discrete medium forming a skin
E. Binz

o. Introduction
Deformable continua in an Euclidean space are characterized by the first Piola-Kirchhoff
stress tensor a. In doing so it is assumed that the continuum forms a connected, smooth
and oriented Riemannian submanifold M of IRn with boundary 8M. Taking (covariant)
divergence \7* of the tensor a (assumed to be smooth) yields the internal force density <I>
on M. The internal force density c.pcaused on 8M is a(n) with n the oriented unit normal
of8M in M.

The question arises as to whether a is the only tensor causing <I>and c.p via the mathematical
procedure just mentioned. This tensor is not unique at all, as we see as follows: Given any
a with <I>:= \7*a and c.p:= a(n) we may pose the Neumann problem

with c.p= dH(n) .

Here 6. is the Laplacian of the Riemannian submanifold M C IR n. This elliptic boundary
value problem admits a unique smooth solution H in Cü(M, IR n), the collection of all
IRn-valued maps, L2-orthogonal to the constants. Hence dH is (in general) another type
of a first Piola-Kirchhoff stress tensor causing the same force densities as a does. It satisfies

a=dH+ß,

where ß := a - dH is divergence free and vanishes on n. This decomposition is unique. We
call dH hence the irredundant part of a. Since H is smooth the medium is called smooth.
The whole mathematical setting is based on a Dirichlet form, the theorem of Stokes and
the solution theory of Neumann problems. We present this formalism in seetion two based
on geometrie preliminaries in section one.

In aseries of papers (cf. References) we studied dH in various phenomenological aspeets
and showed how to set up a dynamics within the frame work of sympleetic geometry. What
was only hinted at, was the physical nature of H.

Here we present a physical interpretation of H in a special situation: We consider skins
only, expressed by the assumption 8M = 0. These skins are supposed to consist of finitely
many particles, each reaeting only with its nearest neighbours. We call this kind of media
discrete media forming a skin or just discrete media in these notes.
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In doing so we introduce in section 3 a connected graph V on an abstract manifold M
of which the vertices mark the mean location of massive material particles. We do not
specify what sorts of material particles are considered. They can be molecules, clusters
etc. Edges are thrown if the particles at the two bounding vertices interact with each
other. This graph together with the types of interactions describes the physical nature of
the discrete medium. (It hence makes no sense to refine the graph in order to approximate
the continuum!) This configuration is kept undisturbed at first.

This situation on the discrete level resembles the physical situation of having a continuous
medi um on M at a fixed configuration jo (a smooth embedding from M to lRn). The
next step is hence to imitate the mathematical technique on V and to write internal force
densities on V as !::J.v'Hv,where!::J.v is the Laplacian and 'Hv is the constitutive lRn-valued
map on V describing the discrete medium at the fixed configuration. In fact the discrete
geometry (cf. [Ch,St]) on V allows to construct a Dirichlet form qjv, ametrie gv and a
Laplacian !::J.v on V.

Now we represent any internal force density<I>v on V as !::J.v'Hvfor a uniquely determined
map 'Hv : V -+ lRn in :Fo(V,lRn), the space of alllRn-valued maps of V which are
gy-orthogonal to the constants.

Within this frame work 'Hv allows the following physical interpretation: Let qi be one of
the nearest neighbours of q. 'Hv restricted to V is then a lR n-valued potential such that
the difference 'H(q) -'H(qi) is the interacting force density of the particle at q with the one
at qi, a nearest neighbour of q. The force density <I>v= !::J.v'Hv(q) is hence the resulting
force density of the interacting force densities of the particle at q with all its neighbours .
The physical quality of the discrete medium is therefore determined if both the graph V
and the constitutive map 'Hv, the interaction potential density, are specified.

Next we link the smooth and the discrete setups as follows: We exhibit a subspace
:Fgo(M,lRn) of Cgo(M,lRn) being L2-orthogonal to the constants in lRn together with a
map'l/; onto it and obtain in turn the following commuting diagram

Cgo(M,lRn)
r 1

:Fo(V, lRn)

1l01/J
---t :Fgo(M , lR n)

r
~ :Fo(V,lRn)

where r is the restriction map onto the space :Fo(V, lR n). The finite dimensional space
:Fgo(M,lRn) is the continuum version of :Fo(V,lRn) which is stable under !::J., i.e.
!::J.(:Fgo(M,lRn)) C :Fgo(M,lRn). The map 'I/; reflects the geometry of the graph V ex-
pressed in terms of the geometry of the Riemannian manifold M. Moreover !::J. 0 'I/; on
:Fgo(M, lR n) and !::J.von :Fo(V, lR n) have the same eigen vectors and eigen values, i.e. the
Laplacian !::J.vexpressed on M is the operator !::J. 0 '1/;. Let So be the number of vertices of
V. The number of all non vanishing eigenvalues of !::J.von :Fo(V,lRn) is So. Moreover we
express the metric on V by means of the bundle endomorphism cp on TM. The geometrie
ingredients on V are hence all expressed on M. These constructions allow us to link the
description of the smooth and the discrete media.
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In fact Hv has a unique counterpart H E Fü(M,JRn) on M, namely Hf! := 'l/JcpHv. The
map !::J..HE Fü(M,.IRn) is the force density on M. Thus it makes sense to talk about a
discrete medium on the manifold M.
If the graph and its geometry are given each constitutive map splits uniquely into
its discrete part in Fü(M,.IR n) and continuum part in the L2-orthogonal complement
Fü(M,.IR n).l- of Fü(M,.IR n) in Cü(M,.IR n). The discrete part is called the discretiza-
tion of the smooth medium. This shows that there are media on M of which the dis-
cretization on a given graph is trivial, namely those of which H(jo) E F=(M,.IRn).l-. In
this context one might consider the problem of discrete approximations, for computational
purposes e.g., a task not headed for in these notes.

If we regard Hv as the constitutive entity deduced from knowledge on the microscopic
level then Hf! = 'l/JcpHv describes the resulting macroscopic structure on M. In this way
we pass from the microscopic to the macroscopic level by geometrie means rather than
statistical ones. It's Hv which links the levels. What is missing is to find a "best fit"
through a graph V in order to obtain a working formalism. We will deal with this much
harder problem elsewhere.

Having looked at a discrete medium at a fixed configuration we develop a formalism in
section four which allows deformations. These deformations, however, have to be small
enough in order to preserve the interacting pattern among the particles. Thus we vary the
configurationj only in a small neighbourhood W(jo) C Fo(V,.IRn) of a fixed configuration
jo. The constitutive map Hv(j) is hence defined for any j E W(jo) and characterizes the
discrete medium with respect to a reference configuration jo. Its physical interpretation is
of the same nature as the one for Hv; it only depends on an additional parameter, namely
j. Hs counterpart on M is called Hf! (j).

For any configuration j E W(jo) C Fo(V,.IRn) the map Hv(j) : V ---+.IR admits a Fourier
decomposition

So

Hv(j) =L ~i(j)Ui
i=l

with respect to a complete eigen system Ul, ... ,USo of 6.v. Hence the virtual work func-
tional Fv(j) is represented by

So

Fv(j) =L vi ~i(j) . Chi ,

i=l

where Xi is the coordinate on the axis .IRUi and dI. denotes its differential. vi is the eigen
value of 6.v at Ui.
d1.sFv(j), the symmetrie differential of Fv at j, is expressed by

d1.sFv(j) = ~t vidl.~i(j) V d1.xi ,

~=l
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with V the symmetrie produd. dlsFv(j) is 01 of physical relevance: As an example we
consider a medium given by Hook's law. Its eigenvalues at an equilibrium configuration j
of internal force densities i.e. Fv(j) = 0 form the vibrational spectrum (cf. [C,StJ).

Introducing a thermodynamical (equilibrium) setting (cf. [L,L] and [StrJ) in section five,
we can represent the Fourier coefficients thermodynamically as

i = 1, ... , So •

Here T is the absolute temperature and S is the entropy. At j with dlT(j) = 0 these sorts
of coefficients can be obtained by

i = 1,... ,so

i = 1,... ,so

i = 1... ,So •

with Fr the free energy. In this case the differential dlFr coincides with the exact part of
Fv in the sense of Hodge theory. Using the partition function Z for the Gibbs distribution
in statistical mechanics (at an equilibrium state and constant temperature) the coefficients
""i(j) are of the form

""i(j) = ~ 8log Z I
v~ 8Xi .

1

out of which one immediately obtains the modes Ui of dlFr at constant T. The modes of
dlFr are called the modes of Fv or the modes of the medium. In fact

1 8""i T 82logZ
Ui = -- . - = -- . ---

(vi)2 8Xi (vi)2 82xi

This spectrum determines a linearized model of the medium with exactly the same spec-
trum.

At this point let us repeat, in other terms, that the spectrum of the discrete medium
at constant temperature and at an equilibrium configuration of internal force densities
is entirely determined by the exact part of the virtual work form Fv. This exact part
dlL is extracted via Hodge theory (with Neumann data e.g.) on Fo(V,IR.n). No furt her
thermodynamical entity is needed.

1. Geometrie preliminaries and the Freehet manifold E(M,IR.n)
Let M be a compact, oriented, connected and smooth manifold (without boundary) and
IR. n be equipped with an orientation and a scalar product < , >, both fixed throughout
the note.
For any j E E(M, IR.n) we define a Riemannian metric m(j) on M by setting

m(j)(X, Y) :=< TjX, TjY >,

4
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(More eustomary is the notation j* < , > instead of m(j).) We use r(E) to denote the
eolleetion of all smooth sections of any smooth vector bundle E over a manifold Q with
7[Q : E -+ Q the eanonieal projection. Let p,(j) be the Riemannian volume on M defined
by the given orientation and the metrie m(j).

The Levi-Civita eonnection \7(j) of (M,m(j)) is obtained as follows: TIRnlj(M) splits
into Tj(TM) and its orthogonal eomplement (Tj(TM)).L (the Riemannian normal bundle
of j). Henee any Z E r(TIRnlj(M)) has an orthogonal deeomposition Z = ZT + Z.L,
where the tangential eomponent ZT is of the form ZT = TjV for a unique V E r(TM).
For any Y E r(T M) the function TjY : M -+ T IR n is smooth. The veetor field \7(j)x Y
on M, the eovariant derivative of Y in the direction of X, is defined by the equation

Tj(\7(j)x Y) = d(TjY)(X) - (\7x(TjY)).L (1.2)

for all X, Y E r(T M). Instead of (\7 x(TjY)).L we write S(j)(X, Y) and eall S(j) the
seeond fundamental tensor of j.

It is well-known that the set COO(M,IRn) of smooth maps from M into IRn endowed
with Whitney's COO-topology is a Freehet manifold (cf.e.g.[Bi,Sn,Fi] or [Fr,Kr]). For
a given f E COO(M, IR n), the tangent spaee TfCOO(M, IR n) is the Freehet spaee
Cj(M,TIRn) := {l E COO(M,TIRn)ITJRn 01 = f} t"V r(f*TIRn) and the tangent bundle
TCOO(M, IR n) is identified with COO(M, T IR n), the topology again being the COO-topology.

The set E(M,IRn) of all Coo-embeddings from M to IRn is open in COO(M,IRn) and
thus is a Freehet manifold whose tangent bundle we denote by CE(M, T IR n). It is an
open submanifold of COO(M,TIRn), fibred over E(M,IRn) by "eomposition with 7[JRn".
Moreover, the Freehet manifold E(M, IR n) is a prineipal Diff M-bundle under the obvious
right Diff M-action and the quotient U(M,IRn):= E(M,IRn)/Diff M is the manifold of
"submanifolds of type M" of IR n (cf. [Bi,Sn,Fi], eh.5, and [Bi,Fi1]).
The set M (M) of all Riemannian structures on M is a Freehet manifold sinee it is an
open eonvex eone in the Freehet spaee S2(M) of smooth, symmetrie bilinear forms on M.
Moreover, the map

m: E(M,IRn) --+ M(M)

is smooth (cf.[Bi,Sn,Fi]).

The Riemannian metrie < , > of IR n induees a "Riemannian structure" Q on E(M, IR n) as
follows: For any jE E(M,IRn) and any two pairs oftangent vectors h,12 E Cj(M,TIRn)
we set

(1.3)

It is clear that Q(j) is a eontinuous, symmetrie, positive-definite bilinear form on
Cj(M,TIRn) for eaeh j E E(M,IRn). Next we point out some invarianee properties
of Q: Let Diff+ M be the group of orientation-preserving diffeomorphisms of M. As a
subgroup of Diff M, it operates freely on the right on E(M, IR n) by

'"

4J: E(M,IRn) x Diff+ M --+ E(M,IRn)
(j, ip) t---+ j 0 <p.

5

(1.4)



Similarly, any group J of orientation-preserving isometries of IR n operates on the left on
E(M,IRn

) by
J x E(M,IRn) -+ E(M,IRn).

(g,j) t---+ go j

One immediately verifies the following (cf. [Bi,Fi2]):

Proposition 1.1
9 is invariant under both Dijj+ M and J.

(1.5)

Associated with a deformable medium is a mass distribution on M, a so called density
map

p: E(M,IRn) -+ C=(M,IR)

with total mass m = IM p(j) JL(j). It is supposed to satisfy

p(j)(p) > 0 Vj E E(M,IRn) and Vp E M , (1.6)

yielding the positivity of mass and which, in addition, is required to obey the continuity
equation

dlp(j)(k) = -p~)trm(j)dlm(j)(k) Vj E E(M,IRn) and Vk E Cj(M,TIRn). (1.7)

trm(j) denotes the trace formed with resped to m(j). The symbol dl denotes the differential
of maps of which the domain is a Frechet manifold of maps and which take values in a
Frechet space.
In what follows, we will construd a density map by solving (1.7). Let jo E E(M,IRn) be
fixed. For any j E E(M, IR n) we express m(j) via an uniquely determined smooth, strong
bundle endomorphism B(j) of TM (selfadjoint with resped to m(jo)) by

(1.8)

and observe that the Riemannian volume forms JL(jo) and JL(j) are linked by

JL(j) = detj(j)JL(jo)

with j(j) = +JB(j). Fixing a map p(jo) E C=(M, IR) satisfying (1.6) then

p: E(M,IRn
) -+ C=(M,IR)

given for any j E E(M, IR n) by

p(j) := p(jo) det j(j)-l

satisfies both (1.6) and (1.7). Due to (1.7) the mass I p(j) JL(j) is j-independent.

6
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We elose this construetion of a density map by revisiting it with respeet to technics used
in statistical mechanics (cf. sec.5). Equations (1.7) and (1.10) allow us to write

clllogpU)(h) = -tr f-1U)cllf(j)(h) (1.11)

for any j E E(M,IRn). Let j be near ja. If bU) E EndTM is such that expbU) = f(j)
and if we write

then

bU) = log f(j) (1.12)

(1.13)pU) = pUa) . e-tr logICj) = pUa) . det f-l U) ,

a weIl known type offormula (cf. (5.21)).

Associated with a density map p on E(M, IR n) is a natural, j-independent metric B given
by

(1.14)

""

for each j E E(M,IRn) and for each pair 11,12 E C=(M,TIRn). This metric depends
smoothly on all of its variables. For its covariant derivative and its geodesics see [Bi2].

2. The principle of virtual work and the first Piola-Kirchhoff
stress tensor
In this section we will repeat the charaeterization of a medium via a first Piola-Kirchhoff
stress tensor. Moreover, in the absence of external force densities, we will investigate the
virtual work depending on any configuration and any infinitesimal virtual distortion. This
work is a one-form on E( M, IR n), denoted by F. However, not all one forms on E( M, IR n)
will serve as virtual works.
We assurne that the medium moves and deforms in IR n, equipped with a fixed scalar
produet. The configuration of the medium may vary rapidly.
At each configuration j E E(M, IR n) we charaeterize the quality of the medium by the
smooth first Piola- Kirchhoff stress tensor (cf. [M,H], p.135)

o:U) : TM ----+ TIRn = IRn x IRn .

Clearly o:U) is a smooth IR n-valued one-form if the values will be projected onto the
second faetor (which is done throughout the paper).

Let us assurne from now on that

is smooth (the range carries the C=-topology). The medium charaeterized by 0: is thus
called a smoothly deformable medium. The virtual work determined by 0: and an
(infinitesimal) virtual distortion I will be nothing else but the elassical Dirichlet integral:
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Given any two form a,ß E A(M,IRn) we can both represent uniquely as

a = c(a,dj). dj + dj. A(a,dj)
ß = c(ß,dj). dj + dj. A(a,dj) ,

cf [Bi2].

Now we set

(2.1)

a.ß = -ttrc(a,dj)oc(ß,dj) + trA(a,dj)oA*(ß,dj)

with * denoting the adjoint of A(ß, dj) : TM ---7 TM formed fibre wise with respect to
m(j) and

In fact 9(dj) is the Dirichlet integral.
Any (infinitesimal) distortion 1 E COO(M, IR n) yields the one-form

dl: TM ---+ IRn ,

which admits according to (2.1) the representation

dl = c(dl,dj). dj + dj. A(dl,dj) .

The virtual work F at j is then given by the Dirichlet integral

F(j)(l):= 1M a(j). dlp(j) == OJ(dj)(a(j),dl)

for any virtual distortion 1 E COO(M, IR n). A routine ca1culation shows (cf. [Bi2])

F(j)(l) =1Cv* a(j), 1)p(j)

with \7* the covariant divergence given by the Levi Civita connection \7(j).

(2.2)

(2.3)

'.

Remark:
(i) If we fix a reference configuration jo E E(M, IR n) then p(j) = det f(j) p(jo) and

1M a(j) • dl p(j) = 1M(det f(j)a(j)) • dl p(jo)

for all j E E(M,IRn) and all 1 E Cf'(M,TIRn). In fact a(j)detf(j) is usually
called the first Piola-Kirchhoff stress tensor. However, since we work in this formalism
without reference configurations in general, we call a the first Piola-Kirchhoff stress
tensor.
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(ii) For the sake of shortness we will frequently use the term "stress form" for a(j) rat her
than "a first Piola- Kirchhoff stress tensor" .

Next let us investigate the virtual work

from the point of view of translational invariance. To see what one-farms on E(M, IR n)
are virtual works, in absence of the external force densities, we first point out the following
observation: Any virtual work F enjoys two special independent properties reading for any
jE E(M,IRn) and any l E Cj(M,TIRn) as

and
F(j + z)(l)
F(j)(l + z)

F(j)(l)
F(j)(l)

(2.4)

The first one is certainly the invariance under the obvious action on E(M, IR n) of the trans-
lation groups IRn of the vector space IRn. Factoring out this action on E(M,IRn) yields
again a Frechet manifold, called E(M,IRn)/ IRn (the reduced configuration space). It
admits a natural visualization via the center of mass as seen as follows (cf. [Bi2]):

Specifying a density map p (cf. section 2) on E(M, IR n) we introduce the center ZTn of
mass by

ZTn(j) . 1M p(j) p,(j):= 1M p(j) j p,(j)

for any j E E(M, IR n). Fixing the center of mass at zero, then

{j E E(M, IR n) I zm(j) = O} -----t E(M, IR n)/ IRn

J r--+ [j]

(2.5)

(2.6)

is a diffeomorphism. Here [j] denotes the equivalence dass of j farmed with respect to the
action of the translation group IRn on E(M,IRn).

Clearly the differential

d: E(M, IR n) -----t {dj I j E E(M, IR n) }

(the second factor carries the COO-topology)induces a diffeomorphism

d: E(M,IRn)/IRn -----t {dj Ij E E(M,IRn)}

[j] r--+ dj
(2.7)

"

since [j] = {j + Z I Z E IRn} far any [j] E E(M,IRn)/ IRn. Obviously the differential
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is a (smooth) diffeomorphism töo. Therefore, the reduced configuration space of the action
of the translation group IRn on E(M,IRn) can be described in either way by

Consequently we identify all the three and will use either symbol according to our conve-
nience. The reduced phase space is hence

the second factor being the usual factor space of C=(M, IR n) modulo IR n (identified with
{dlll E C=(M, IR n)}) endowed with the C=-topology.

The second property in (2.4) means that constant virtual distortions cause no virtual work.
The two properties in (2.4) allow our work F, defined on TE(M,IRn) = E(M,IRn) x
C=(M, IR n) to factor to F, as shown in the following diagram:

E(M,IRn) x C=(M,IRn) ~ IR

dxd 1 /' F

{djlj E E(M,IRn)} x {dlll E C=(M,IRn)}

(In the sequel we will write F instead of F.) These considerations reversed yield immedi-
ately those one forms on E(M,IRn) which are virtual works(cf. (Bi2]):

Lemma 2.1
Thereis a surjeetion from C=(E(M, IR n), A1(M, IRn)) to the colleetion A~(E(M, IR n), IR)
of all one-forms F : E(M,IRn) x C=(M,IRn) -t IR charaeterized by the following prop-
erties:
1) Fis invariant under the action ofthe translation group IRn on E(M,IRn).

2) F(j)(l + z) = F(j)(l) Vj E E(M, IR n), Vl E C=(M, IR n) and Vz E IR n.
3) F admits an integral representation of the form

F(j)(l) = J a(j). dlp,(j) = OJ(dj)(a(j),dl)

for all variables of F where a : E(M, IR n) -t A1(M, IR n) is a smooth density.

(2.8)

The characterization by a of the medium is rat her general. However, the question arises
from (2.8) as to whether the virtual work is uniquely represented by the stress form a or
not. In fact it is not:
Solving

\j*(j)a(j) = t:,.(j)'H(j) Vj E E(M, IR n)

such that Q(j)('H(j),z) = 0 for all z E IRn shows immediately the unique decomposition

a(j) = d'H(j) + ß(j)

10
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d1i(j) is therefore called the irred undant part öf the first Piola- Kirchhoff stress tensor
for any j E E(M, IR n). This yields now the following main theorem in this seetion:

Theorem 2.2

Any deformable medium can be uniquely charaeterized bya smooth map 1i : E(M, IR n) ---+

C=(M,IRn) with Q(j)(1i(j),z) = 0 for any z E IRn• The internal force density iP(j)
causing the virtual work against adeformation is

~(j)1i(j) = iP(j) (2.9)

Moreover

F(j)(l) = O](dj)(d1i(j),dl) = 1M d1i(j). dlj1.(j) = 1M (~(j)1i(j),l) j1.(j)

holds for any j E E(M, IR n) and any (virtual) deformation l E C=(M, IR n).

(2.10)

The question we will partially answer in the next section is: What is the physical nature of
1i? The answer will be given only for media which consist of finitely many particles each
interaeting only with its nearest neighbours.

3. A discrete model with nearest neighbour interaction and a
discretization formalism
Here we will develop a physical interpretation of the irredundant part of the first Piola-
Kirchhoff stress tensor within the frame work of the nearest neighbour interaetion in a
graph.
To this end let jo E E(M, IR n) be fixed throughout the rest of the paper. We fix a finite
colleetion V c M of points and form jo(V) c IR n. These points are the mean location of
the material particles in IR n. (These material particles could be molecules, clusters etc.)
The total number of all points in V is denoted by so. If two of these particles interaet
the underlying locis in jo (V) C IR n are conneeted with an edge. In this way ja (V) is
turned into a graph (a one dimensional complex) in IR n, assumed to be connected. We
will generalize this situation in the following way:
The colleetion V C M will be turned into a graph in M as follows: Let Uq be a neigh-
bourhood of q on which exp;-l is bijeetive. Let So, the number of points in V, be such that
Uq Uq = M. If q' E V nUq then q' and q are conneeted by a geodesic segment (with respeet
to m(jo)) provided jo (q) and ja (q') are conneeted by an edge in IR n. In this way V C M is
a one dimensional complex in M. In addition we require that the graph is conneded and
oriented, i.e. the geodesic segments are direeted. We moreover take a triangulation t of M
subordinated to the covering {Uq I q E M} and such that each simplex contains exaetly
one vertex in its interior.
The vertices in V are considered as the mean loci of the material particles in M, too.
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We now will make some assumptions of physical nature on this triangulation and this
graph:
The volume 10"1 of any simplex 0" E t given by the Riemannian volume form p,(jo) restricted
to O"q shall be a given small constant. This assumption is not very restrietive if the number
of edges of the graph is very high and the largest cell is very small, a scenario which we
assume to hold.

Let us specify the number of vertices V somewhat further. Let P be a density map (cf.
sec.1) and call p(jo) restrieted to V by pv(jo). Both p(jo) and pv(jo) determine respeetive
masses:

m:= 1M p(jo) p,(jo) and mv := L pv(jo)(q) . 100ql ,
qEV

where O"qis the simplex containing q in its interior and 100ql is the volumeof O"q'
We require

m - mv is very small .

Next we will introduce the Dirichlet-form OJ and the Laplacian ~v of V. For the sake
of simplicity we will often write 1 instead of its restrietion 1'(1) = Ilv to V for any 1 E
C=(M,IRn) (if no confusion will arise). By F(V,IRn) we furthermore denote the finite
dimensional veetor spaces of all IR n-valued maps of V. The dimension of this veetor space
is So+ n. Clearly the restrietion map l' : C=(M, IR n) -+ F(V, IR n) is surjeetive.

We define

by
k(q)

OJv(h,l):= L L(h(q) - h(qi),l(q) -l(qi))IO"ql
qEV i=l

(3.1)

with k(q) the number of nearest neighbours qi for any pair h,l E F(V,IRn). The number
k(q) is called the degree of V in q. OJv is called the Dirichlet form. Let

Qv(h,l):= :E(h(q),l(q)) jO"ql
qEV

Vh,l E F(V,IRn) • (3.2)

Qv is a positive-definite bilinear form on F(V, IR n). The Qv-orthogonal complement of
IR n in F(V, IR n) is called Fo(V, IR n). Clearly OJv is a positive-definite scalarproduet on
Fo(V, IR n). We define

by

(cf. [B]).

k(q)

~vh(q) := k(q) . h(q) - :E h(qi)
i=l

12

(3.3)



~--------~
For any hE F(V,IRn) we deduce the following analogue of (2.10):

9y(t:.yh,1) = OJy(h,1) (3.4 )

To see that the equation (3.4) is satisfied it is enough to remark that both kinds of the
sums

and
((h(qI) - h(q), l(qI)) + ... + (h( qk(q)) - h(q), l( qk(q)))) laqI

appearing on the right hand side of (3.2) exhaust the double sum of (3.4).

Clearly t:.yh = 0 if h E IRn, i.e. if his a constant map. Moreover all eigen values of t:.y
are non negative.

By the above constructions the following is now obvious:

Proposition 3.1
t:.y is a linear automorphism of Fo(V, IR n). Hence

t:.yHy = epy

has a unique solution in Hy E Fo(V, IR n) for any epy E Fo(V, IR n).

An immediate consequence of the above proposition is a first description of the physical
nature of H y within our frame work:

Theorem 3.2
Let Fy : Fo(V, IR n) -+ IR be the linear funetional of which Fy(l) is the virtual work
caused by the distortion 1E Fo(M, IR n), assumed to vanish on the constant maps. Then
there is a unique1y determined (internal) force density epy E Fo(V, IR n) such that

Fy(l) = 9y(epy,1) . (3.5)

This force density hence determines via the equation t:.yHy = epy a unique map
Hy E Fo(V,IRn), called the constitutivemap. MoreoveranyHy E Fo(V,IRn) determines
unique1y the force density epy(q) which evaluated at any q E V is

(3.6)

where ql, ... , qk(q) are the nearest neighbours of q. Hence Hy is a potential for which
Hy(q) -Hy(qi) is the interaetion force density of the material partic1e at qi with the one
at q. Therefore epy(q) is the resulting force density at q of the interaetion force densities
of all the nearest neighbours of q aeting upon the partic1e at q. Let ed~ E TqM be such
that exp ed~ is the geodesic segment connecting q with qi. The differential dr -lH y( q)ed~
at q along the geodesic segment exp ed~ approximates the interaetion force density of the
partic1e at q with the one at qi.

13



Remark

A medium on V defined by a constitutive map Hv is called a discrete medium. Based on
the observations just made Hv is called the interaction potential of a discrete medium
on V.

In order to link ~vh with ~(jo)h for any h E COO(M, IR n) we introduce the following
notion:
Let Cgo(M,IRn) be the 9(jo)-orthogonal of IRn in COO(M,IRn). The map r
Cgo(M,IRn) ---+ Fo(V,IRn) is surjective, too. Clearly Qv is a scalar product on Fo(V,IRn)
and dimker ~v = o.
In order to work on M instead of V we will construct next a finite dimensional subspace
Fgo(M, IR n) of Cgo(M, IR n) stable under ~(jo) and such that

r : F;:O(M, IR n) ---+ Fo(V, IR n)

is an isomorphism. We do this as follows:
Let {edi=l, ... be a Q(jo)-orthonormal complete system of eigen vectors of ~(jo). Any
9 E COO(M, IR n) has thus the Fourier expansion

e E IR for all i = 1, ...

The right hand side converges uniformly. Equipping Cgo(M, IR n) with the topology of
uniform convergence yielding Cgo(M, IR n)co the restrietion map

is a continuous surjection. Thus {rei li= 1, ... } generates Fo(V, IR n). Out of this set we
construct a basis of Fo(V, IR n) as follows: We take the smallest i such that rei -=I O. Next we
look for the smallest i' such that rei and reil are linearly independent. Continuing in this
way we obtain a linearly independent system called e~, ... , e~o for which re~ , ... , re~o is a
basis of Fo(V, IR n). The vectors e~, ... , e~o' all eigen vectors of ~(jo), generate a subspace
Fgo(M, IR n) of Cgo(M, IR n).
By construction ~(jo) is a linear automorphism of Fgo(M, IR n) and r : Fgo(M, IR n) ---+

Fo(V, IR n) is an isomorphism. Since ~(jo) and ~v are invertible on Fgo(M, IR n) and
Fo(V, IR n), respectively, we immediately conclude the following technically convenient
proposition:

Proposition 3.3
~(jo) is a linear automorphism on Fgo(M, IR n). Moreover there is an unique linearmap

such that
(i) ker'lp(jo) is Q(jo)-orthogonal to Fgo(M, IR n)
(ii) 'ljJ(jO)IF3"(M,lIP') is an isomorphism of Fgo(M, IR n).

14



(iii) ~v = r~(jO)'l/;(jo)r-l with r : FO'(M, IR n) -4 Fo(V, IR n) the restrietion map being
an isomorphism. Hence 'l/;(jO)IF;'CM,lRn) = ~ -1(jo)r-1 ~vr.

(iv) For any 1'v E Fo(V,IRn) there is a unique solution 1-lv E Fo(V,IRn) such that

(3.7)

Remark
Given a sequence e~, ... , e~ of eigen veetors of ~(jo). Then there is a graph V with enough
vertices such that the el, ... , ek are among the e~, ... , e~o'

On FO' (M, IR n) the scalar produets r* 9v and 9 (jo) are linked by a linear isomorphism
rp(jo) of FO'(M, IR n) meaning that

r*9v(h,l) = 9(jo)(rp(jo)h,I) (3.8)

For any choice of h, I E FO'(M, IR n) the following equations hold:

9v(~vrh,rl) = 9(jo)(rp(jo)~(jo)'l/;(jo)h,l)
9v (rh, ~vrl) = 9(jo) (h, 'l/;(jo)*~(jo )rp(jo)l)

with 'l/;(jo)* the 9(jo)-adjoint of'l/;(jo).
Each of the maps 'l/;(jo) and 'l/;(jo)* link the discrete geometry on V with the Riemannian
geometry on the continuum M.

-1

For any eigen veetor u of ~v the veetor IIr!"I'UI~(j) is also a 9(jo)-orthonormed eigen vector
of rp(jo). Thus rp(jo) commutes with ~(jo)'l/;(jo) = r-1 ~vr and hence 'l/;(jo)* ~(jo)
(r-l~vr)*. Therefore the following proposition holds:

Proposition 3.4
The following relations hold
(i) rp(jo)~(jo)'l/;(jo) = ~(jo)'l/;(jo)rp(jo) on FO'(M, IR n).
(ii) ~v = r'l/;(jo)* ~(jo )r-1 = r~(jo )'l/;(io)r-1 on Fo(V, IR n).

As a consequence of 3.3 and 3.4 we obtain immediate1y a smooth description on M of a
discrete medium specified on V:

Corollary 3.5
Any force density 1'v E Fo(V, IR n) with 1-lv as its constitutive map satisnes

(3.9)

Hence 1-ltf (jo) := 'l/;(jo)rp(jo) or-l1-lv is the constitutive map on M describing the medium
on V as a smooth medium on M, for which

15



holds for any I E Fü(M, IR n).

Remark

(i) Following the above theorem the quality of the physical model of a discrete medium
is thus determined by the graph V and the specification of 1iv. Given a graph V
any internal force density in Fo(V, IR n) determines uniquely 1iv E Fo(V, IR n). What
sorts of graphs V and constitutive maps 1iv are useful has to be decided on physical
grounds. A microscopic view point is thus needed to specify the physical meaningful
1iv.

(ii) However, given V any microscopic theory yielding a force density ll>von V determines
some 1iv, i.e. yields a microscopic setting in a prescribed nearest neighbour geometry.

Based on the observations made so far, a discretization procedure in terms of V of a
smooth medium is defined as follows: Suppose we have a force density ll>(jo)on M causing
a virtual work F(jo) in the sense of (2.10). The discretization of ll>(jo) is by definition the
map rrp(jo)r-1rll>(jo) : V -7 IRn with r : C=(M,IRn) -7 F(V,IRn) the rest riet ion map
and r-1 : Fo(V, IR n) -7 Fü(M, IR n) the inverse. The background of this definition is the
requirement that the virtual work F on the continuum is identical with the virtual work
Fv on the discrete medium: Let I E Fü(M, IR n). Assuming some W E Fü(M, IR n) such
that

F(jo)(l) = Q(jo)(ll>(jo),l) = Q(jo)(Prll>(jo),l) = Qv(w,l) = Fv(rl) , (3.11)

where Pr : Cü(M,IRn) -7 F=(M,IRn) is the Q(jo)-orthogonal projeetion Hence W =
rrp(jo)-lPrll>(jo). Setting ll>'(jo) := ll>(jo)- r-1rll>(jo) yields

showing Pr = r-1r. Transforming Qv into Q(jo),i.e. using (3.8), yields the desired expres-
sion for the discretization. The force density ll>(jo) on M is described by a constitutive
map 1i(jo) E Cü(M,IRn) as

ll>(jo)= ~(jo )1i(jo) .

Using proposition 3.1 there is hence a unique map 1i(jo)v E Fo(V,IRn) such that

rrp(jo)-lr-1rll>(jo) = ~v1i(jo)v

implying
rrp(jo)-lr-lr~(jo)1i(jo) = ~v1i(jo)v .

Rewriting ~v with the help of 3.3 (iii) yields

and using 3.4 (i) implies

r~(jo)1i(jo) = rrp(jo)~(jo)1/;(jo)r-l1i(jo)v = r~(jo)1/;(jo)rp(jo)r-l1i(jo)v .
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'X:::::-----------

Therefore

This yields the splitting

1i(jo) = 'l/J(jo)cp(jo)r-l1i(jo)v + 1i(jo).L (3.12)

with 1i(jo).L := 1i(jo) - 'l/J(jo)cp(jo)r-l1i(jo)v.

We call 1i(jo)v the discretization of 1i(jo) on V and cp(jo)-1'l/J(jo)-lr-1r1i(jo) the
discretization of 1i(jo) on M.
In view of corollary 3.5 we thus state:

Theorem 3.6

Given the graph V and its geometry each constitutive map 1i(jo) onM splits at jo unique1y
into

1i(jo) = 'l/J(jo)cp(jo)r-l1i(jo)v + 1i(jo).L

with 1iv(jo) E Fo(V, IR n) being denned by

ßv1iv(jo) = r'l/J(jo)r-1 ß(jo)1i(jo)

and hence being of the form

(3.13)

(3.14)

(3.15)

Moreover 1i(jo)¥ := 'l/J(jo)cp(jo)1i(jo)v is in FOO(M,IRn) while as 1i(jo).L is in
the orthogonal complement Fo(M, IR n).L of Fo(M, IR n) in Cgo(M, IR n). Therefore
'l/J(jo)cp(jo )1i(jo)v is the smooth description of the discretization of the medium on M.

Remark

We call a smooth medium on M to be of discrete nature if1i(jo) = 'l/J(jo)cp(jo)r-1r1i(jo)v,
i.e. if 1i(jo).L = O. Clearly the discretization of 1i¥(jo) : M -----t IRn in corollary 3.5 is 1iv
agam.

As example of a discretization let us consider the volume map V : E(M, IR n) -----t IR given
by V(j):= JMJL(j). Then for jo E E(M,IRn) n Cgo(M,IRn)

cllV(jo )(1) = J (ß(jo)jo, I) JL(jo) .

Gur one form F is thus cllV(jo). Hence 1i(jo) = jo and

1i(jo)v = jov = rcp(jo)-1'l/J(jo)-lr-1rjo .

If Fgo(M, IR n) and Fo(V, IR n) are identified by r, then

1i(jo)v = jov = cp(jO)-l'l/J(jo)-ljolv .
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Due to (3.7) the derivative dlV(jo) at jo of the volume map V rewrites hence as

As we introduced capillarity in [Bi2] we proceed accordingly in the discrete case: We
omit the identification by r. Given 1iv, a constitutive map for a discrete medium on V,
we take the q]-orthogonal component of d('lj;(jo)cp(jo)r-l1iv) along d('lj;(jo)cp(jo)r-1jov).
This component is a multiple av. d('lj;(jo)cp(jo)r-1jov) of d('lj;(jo)cp(jo)r-1jov). Hence

1iv = avjov + 1i'v (3.17)

with 1i'v := 1iv - avjov' The real number av is called the capillarity of the discrete
medium.

The interpretation of 1iv as presented in theorem 3.2 is obviously supplemented by the
following interpretation of the force density at locations of material particles:

Proposition 3.7

Let v;. E F(V, IR n) be the map assigning to q the rth basis vector in IR n and zero otherwise
then {v;. I r = 1, ... ,n; 8 = 1, ... ,80 } c F(V, IR n) is a basis. Representing 6.v1iv in
this basis reads as

(3.18)
r,s

Thus w;. is the work against the resulting interaction force densities of a1l its nearest
neighbours needed to lift up the partic1e at qs by one unit length in the direction of v;..
Clearly a physically more real pieture would be obtained by starting with a graph and
then pass to a good fitting smooth surface through it (charaeterized by special kinds of
'lj;(jo) and <p(jo)). We will study this much more difficult situation elsewhere.

4. Deformation of the graph
Let jo E Eo(M, IR n) be fixed. We call jo a reference configuration. Here we study the
deformations of the medium of which the material particles are at the vertices of V C M.
We describe these deformations with respect to a reference configuration in order to involve
a fixed Laplacian, namely 6.v. The first goal is to give adefinition of what is meant by
the medium on V at the configuration jE Eo(M,IRn) near jo.

We study the analogous situation for a continuum first: Suppose we are given a medium on
M characterized at the configuration j by a constitutive map 1i(j). We will describe the
medium at the configuration j E E(M, IR n) with respeet to the reference configuration jo.
Since we use the Laplacian at a fixed reference configuration jo we need to pull back 1i(j)
to jo. This pull back R(j) is defined as the solution of the following equation

det f(j)6.(j)1i(j) = 6.(jo )R(j)

18

Vj E Eo(M, IR n) (4.1)



where p,(j) = det f(j)p,(jo) and m(j)(X, Y) = m(jo)(j2(j)X, Y) holding for each pair
X, Y E r(TM) (cf. sec.l). Hence we verify immediately

The medium on M at the configuration j is hence charaeterized by R(j) with respeet to
the geometry of the reference configuration jo. In the analogous way we treat the discrete
situation.

To do so we need the following notions: Let Eo(V, IR n) := {rj I j E Eo(M, IR n)}. Clearly
Eo(V,IRn) is open in Fo(V,IRn) and r(E(M,IRn) n C[f'(M,IRn)) = Eo(V,IRn).
A physical remark is necessary here: Stretching a physical configuration of material par-
tieles with prescribed nearest neighbours interaetions may change this interaetion com-
pletely. If the type of the graph has to be preserved then only embeddings very elose to
jo E Eo(V,IRn) ought to be considered, i.e. we vary j in an open neighbourhood W(jo) of
jo E Eo(V,IRn).

Assuming a given virtual work Fv(j) charaeterizing the discrete medium on V at the
configuration j E W(jo), then

Fv(j) = Qv (<Pv(j), I) VI E F(V, IR n) (4.2)

for same wen defined force density <Pv(j) in Fo(V, IR n). Hence by proposition 3.1

<pv(j) = ~vRv(j) (4.3)

showing

for some wen defined Rv(j) E Fo(V, IR n). This map Rv describes the medium on V at
the configuration j E W(jo) c Eo(V, IR n). The description of the force density (4.3) on V
is expressed on M (again with the help of proposition 3.2) as

To describe the work caused by <Pv on V in a continuous fashion on M and hence with
the metric Q(jo) we need to modify r-1 <pv(j) by applying cp(jo) to it:

cp(jo)r -1<Pv(j) = cp(jo )~(jo )'l/J(jo)r -1R v(j)

= ~(jo)'l/J(jo)cp(jo)r-lRv

Fv(j)(l) = Q(jo)(~(jo)'l/J(jo)cp(jo)r-lRv(j),r-ll) .

Let j' E E(M,IRn) n C[f'(M,IRn) be such that r(j') = j and 1i¥(j) be the solution on
Mof

det f-l (j')~(jo )'l/J(jo)cp(jo )r-1R(j')v = ~(j')R~ (j')

which is assumed to be Q(j)-orthogonal to the constants IRn. Then
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Thus det fU')~U')1it! U') is the force density <I>t!U') on M at the configuration j' of the
medium on V described on M with respeet to the reference configuration ja. It causes the
same virtual work as <I>vdoes. Moreover ~U')1ilf U') is the force density on M of the
medium on V at the configuration j' described with respeet to jb.
The basic equation of the virtual work Fv at any configuration j E 1'-1 (W(ja)) caused by
a distortion 1'-11 E Fgc'(M,.IRn)with I E Fa(V,.IRn) is

FvU)(I) := Qv (~vHvU), I) = QU') (~U')Hlf U'), 1'-11)

for any j' E E(M,.IRn).
We therefore have

Lemma 4.1

The discrete medium on V at the connguration j E WUa) C Ea(V,.IR n) is characierized
bya map HvU), smoothly depending on j. The same medium is characierized on M by
HU')lf, smoothly depending on j' E 1'-1(WUa)) C E(M,.IRn) too. Its force density on
M with respeci to QUa) is

<I>lf (j') = det f(j')~(j')H(j')lf ,

while as the force densityon V is <I>vU) = ~vHU). The virtual work of the medium on
V at the connguration j is expressed either on M or V by

FvU)(I) = Qv(~vHU)v,l) = QU')(~U')HU')lf,1'-11)

To get a more physical approach we need to answer the following question: Given Fv on
Fa (V, .IR n) can we determine a colleetion of irredundant configurational variables near ja?
This question will be relevant with respeet to a thermodynamical description as weIl as
with respeet to determine the speetrum of the medium.
We study this problem as follows: Decomposing Hv with respeet to the eigen basis
U1, ... ,Un of ~v yields

So

HvU) =L y;,iU)Ui
i=l

(4.6)

The Fourier coefficients y;,i(j) are called the coefficients of.Fv. Le~ y;,L ... , y;,E be those coef-
ficients which do not identically vanish on WUa). Then ul, ... , u'K span.IR C Fa (V, .IRn).
We assume moreover that 1i vUa) E .IRK is a regular value of 1i v. Hence there is a neigh-
bourhood W1Ua) C WUa) C Fa (V, .IRn) of ja such that

W1(ja) = M x F

with M = 1i"V1(1iv(ja)). Thus Fis spanned by the elements in {U1, ... ,uso} \ { uL ... ,uk }.
In studying Fv we may therefore restriet us to M. Since the one-forms QV(Ui, .) with
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i = 1, ... ,Kare exaet on M and henee are of the form cllXI,... , cllXK (after a renum-
bering), the coordinates Xl, ••• , XK form a eolleetion of irredundant variables. In terms of
these variables Fv is represented by

K

Fv(j) =L ViKi(j)cllxi
i=l

Vj EM (4.7)

with vi the eigen value assoeiated with ui. These eigen values are all positive. If all but one
of the Ki vanish identieally the eorresponding Fv is ealled an elementary constitutive
law.

To simplify the notation let us assurne K = Soand WI (jo) = W(jo).

If the distortions are very small then Fv ean be linearized at jo. To do so we introduee
the linearization of Fv: Differentiating Fv at jo yields for all h,l E F(V, IR n)

Fv(jo + h)(l) = Fv(jo)(l) + cllFv(jo)(h)(l) + higher order terms .

We write cllFv(j)( h, 1) instead of cllFv(j)( h)( 1).

Clearly cllFv splits into asymmetrie and skew symmetrie part cllsFv and cllaFv, respee-
tively. Evidently 2 . cllaFv( h, 1) is identieal with the exterior differential of Fv at j.

Representing cllsFv(j) via YV yields the endomorphisms b(j) of F(V, IR n). The eigen
values of b(j) are ealled the modes of Fv or the modes of the medium. The totality
of the modes is ealled the speetrum of the medium. If Fv = cllL for some smooth map
L : W(jo) ---t IR then the modes are the eigen values of the Hessian cll2L of L.

Fv at j E W(jo) is said to satisfy Hook's law if

Fv(j + h)(h) = Fv(j)(h) + cllsFv(j)(h,h) (4.8)

for all small distortions hE Fo(V,IRn) (cf. [L,L], [C,St]).
If Fv(j) = 0 for some j E M we eall j an equilibrium configuration of the internal
force density or just an equilibrium configuration. If Fv satisfies Hook's law at this kind
of configurations then

Fv(j + h)(h) = cllsFv(j)(h, h) (4.9)

and dlaFv = O.Not any virtual work admits equilibrium configurations of the above sort;
e.g. cllV, where V is the volume funetion on E(M,IRn) does not.
The following is now obvious:

Proposition 4.2
Let jo be an equilibrium connguration of in ternal force densities of a linearized constitutive
law Fv satisfying a Hook law on W(jo). The force density cI>(jo + h) causing the work
Fv(jo + h)( h) for any small distortion h E F(V, IR n) satisnes

(4.10)
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8 i(. )
K.8/o are hence the "spring constants" with respeet to the coordinate axis given by

Ul, ••• ,UK on W(jo).

Let us pause the general discussion of the coefficients /'i,i made so far and illustrate it at
a special type of situation. At first we point out that these spring constants mentioned in
proposition 4.2 have nothing to do with the spring constants along edges of the graph used
in some models in solid state physics (cf. [C,St]).
Hook's law used to describe bond stretching is as follows: Let Fv(jo) = O. To each distortion
h there is associated a potential energy, called pot (cf. [C,St]). Its quadratic approximation
(cf. [C,St]) reads as

. 1~ (jo(q) - jo(qi) )2
pot(Jo + h) = -2L Wq,qi I' () . ()I ' h(q) - h(qi) lu(q)/.

Jo q -Jo qi lRnq,qi

Wq,qi are the spring constants in the direction of the edge q, qi. The work Fv(j + h)(h)
caused by the distortion h is then

Fv(j + h)(h) = dlpot(jo + h)(h)

and hence

On the other hand
Fv(j + h)(h) = 9v(dl'Hv(jo)(h),h) .

In particular we have for each r = 1, ... , So

and therefore

or

8/'i,;~:0)=L L Wq,qi . L; ,

q qi

(4.11)

(4.12)

(4.13)

(4.14)

where
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5. Thermodynamical interpretation of the coefficients and the
modes of Fv
As we learned in the last section any discrete medium on V is given by the colleetion
{y;,i I i = 1, ... , so} of the coefficients. These can be expressed in any thermodynamical
equilibrium as folIows:
The colleetion of equilibrium states in thermodynamics is given by W(jo) x IR (cf. [StrJ and
[B,StJ). Call the projeetion of W(jo) x IR to W(jo) by 7r. Then the following decomposition
is supposed to hold:

71"*Fv = -dl.U + Tdl.S (5.1)

with U, S,T : W(jo) x IR -+ IR the internal energy, the entropy and the absolute temper-
ature, respeetively. Xl, •.. , Xso' U are the coordinates on W(jo) x IR. The differentiation
in (5.1) takes place on W(jo) xIR. Only the partial differentiation along W(jo) influences
Fv, however. We omit 71"* in (5.1) therefore if no confusion arises.
The free energy Fr is defined to be

Fr:= -U +TS. (5.2)

This thermodynamical funetion will provide us below with a simple interpretation of our
constitutive map 'H at constant temperature.

Suppose Fv admits in addition a splitting ofthe form (5.1) near j E W(jo) . The following
equations are obvious

as weIl as

(5.3)

(5.4)

(5.5)

and in particular
Fv(j) = dl.Fr (j) if dl.T(j) = 0 . (5.6)

Equation (5.1), (5.2), (5.3), (5.4), (4.6) and (4.7) yield a thermodynamic interpretation of
the coefficients and the modes of Fv, stated in the following:

Theorem 5.1
On W(jo) x IR the coefIicients y;,i for i = 1, ... ,So of any constitutive law Fv are thermo-
dynamically expressed by

where adenotes the partial derivatives on M X IR. Moreover

1 as
T au
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bolds as well. Tbe funetions Fr, B, T and div F are related on W(jo) x IR by

2. div Fv = AFr + (TAB - BAT) . (5.9)

Here div and Aare tbe divergence and Laplace operators formed witb respect to Qv on
Fo(V, IR n). If dlT(j) = 0 tben

i 1 ßFr (j) 1
K = -:- ß = -dlFr (j)(Ui) i = 1, ... ,80 (5.10)

v~ Xi Vi

and tbus tbe constitutive map evaluated at j reads as

-u (') _ LSo
~ ßFr (j) .'

/LV J - . ß U~ ,v~ X'
i=l ~

tbe force density is bence

(5.11)

(5.12)

witb Grad Fr being tbe gradient of Fr witb respeet to Qv.
Proof: We only verify (5.9) for arbitrary j E W(jo) since the other claims are immediate.
Equation (5.2) implies

and in turn

(5.7) on the other hand yields

So

L VSdlKs(j)(ur)dlxs(Ui) = vr . dlKr(j)(Ur) = dlT(j)(ur)dl5(j)(Ui) + T(j)dl2 B(j)(Ur,Ui)
s=l

and thus

Taking traces we find
2 . div Fv = .6.Fr + (T.6.5 - 5.6.T) .

o
~

To understand dlsFv and dlFr from the point of view of Hodge theory we decompose 1iv
on a closed ball Kio C W(jo) centered about jo E Eo(V,IRn) as follows:

(5.13)
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, .
with the boundary condition

and (5.14)

where L : Kjo -+ IR n is a smooth map and where njo is the outward direeted 9v-unit
normal of the sphere ßKjo' This is done by solving the elliptic boundary problem

(5.15)

with the boundary conditions mentioned in (5.14). Clearly L pulled back onto W(jo) x IR
is not independent of the variables in W(jo) as e.g. the coordinate U iso Solving

yields a constitutive map for dlL. We have shown:

Proposition 5.2
Fv on Kjo splits uniquely into

Fv = dlL + 9v(<I>~, ... ) ,

(5.16)

(5.17)

where dlL and <I>~satisfy the boundary (5.14). Both dlL and 9v( <I>~,... ) admit constitutive
maps HL and H~, respeetively. If jo is an equilibrium connguration of internal force
densities and Fv satisnes a Hook law on W(jo) then Fv = dlL and hence dlsFv = dl2L
showing

with h E ;:go(M,IRn) and h = L:~i. Ui.

The relation between the thermodynamic decomposition (5.1) and the Hodge one (5.16)
is immediate: The equations (5.9) and (5.15) combined together yield immediately:

Corollary 5.3
The smooth real valued funetions L, Fr , T and B on W(jo) x IR n are related by

A(Fr - 2L) = (TAB - BAT) . (5.18)

If T is kept constant' near j then we can interpret the map L in (5.17) in proposition 5.2
via (5.6) and the system consisting of (5.13) and (5.14) immediately as follows.

Corollary 5.4
If T is constant on a c10sed ball centered about jo then

on Kjo up to an additive constant.

Fr =L
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•

The above corollary motivates us to interpret L for a fixed j E Kjo by means of statistical
mechanics. The formalism we adopt here is the one presented by [B,StJ. We will make
constant use of the identification of Ffr(M, IR n) and Fo(V, IR n), and this in fact not only
for IR n being the ambient space of our embeddings, but also for any IR m with m ~ 1.

We quickly repeat this formalism adopted to our situation. At first we specify some IR m

and a functional, E (IRm)*. (The formalism works also if IRn is replaced by an infinite
dimensional vector space.) Let J E Ffr(Kjo x M, IR m) be any observable. Kjo is the set
of auxiliary variables. The partition function Z(" J) associated with , and Z is defined
by

An equilibrium state is then

(5.20)

'_ 1 --y.J
p-y.- Z("J/ .

The expectation value E( J, P-y) for J with respect to p-y abbreviated by J is

The entropy S( J, P-y) reads as

and hence is expressed as

(5.21)

(5.22)

(5.23)

(5.24)

All maps J, P_p S( J, P-y) and Z (J,,) depend smoothly on j E Kjo' (Any mass density p with
mass m (cf. (1.13)) can be regarded as an equilibrium state, with, = tr and J = logf.
The continuity equation follows from (5.24) above from the fact that the entropy of an
equilibrium state has to be maximal.)

If now , := ~ with T the absolute temperature (which is a fixed parameter), m = 1 and
J = H, an energy, then

1
TlogZ(J, T) = -U + TS = Fr (5.25)

with U := E(H, ~). Let H depend smoothly on j. Hence U is smooth on Kjo' We now
vary j in a very small neighbourhood W' of j and observe that T, being a constant, does
not depend on j. Therefore we have at j

Tdllog Z( J, ~)(j) = -dlU(j) + TdlS(j) . (5.26)

Now we apply these considerations to our map Fr in (5.6). For simplicity we omit the
variables J" and p-y in Z and S if no confusion will arise. Since J depends on j E Kjo it
can be expressed by the coordinates Xl, ... , xso'
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Looking at (5.1), (5.6) and (5.19) we therefore obtain for our fixed j and constant T the
~script~on of the coefficients Ki of Fv = ellL where i = 1, ... , So of the constitutive map
HFr = HL:

Theorem 5.5

Let j E Kio be nxed and T kept constant in a small neighbourhood of j. Then with respeet
to the state P'Y= ~e-tH the virtual work Fv(j) can be expressed as

So

Fv(j) = ellL = 2:yiKiellxi = Tell log Z(j) ,
i=l

(5.27)

with H an energy. At a nxed temperature T the coeflicients Ki(j) for i = 1, ... , So satisfy
the equations

i (') _ Telll Z( ')( .) _ T 8logZ(j) _ ~ 8Fr(j)KL J - . og J u~ - ---- - . ---
y~ Yi 8Xi y~ 8Xi (5.28)

with Fr the free energy. More explicitly and differently written the above formula may be
stated as

i ( ') _ T E( 8H(j) )KLJ ---: ,Pl
y~ 8Xi T

(5.29)

with

(5.30)Vi = 1, ... , So •
8 J 8H -lH (')

E( H ) _ M 8Xi e T J.L Jo
,Pl - 1.

8Xi T JM e-"TH J.L(Jo)

The constitutive map HFr = HL in Fo(V, IR n) of ellFr = ellL= Fv evaluated at j is hence

(5.31)

The Hessian of the free energy is the sum of all

(5.32)i=l, ... ,so.yi8Ki(j) =TE(82H(j) pl) =T82Fr(j) =T82logZ
8Xi 82Xi ' "T 82xi 8Xi

If j is an equilibrium connguration of intern al force densities the coeflicients Ki(j) vanish
for all i = 1, ... , So.

Next we describe the modes of F at a constant temperature T in the light of corollary 5.4.
Since ell2L = ellsF (cf. (5.6)) in a neighbourhood Kio we have

ellsF(j)(h,k) = gV(ell~VHL(j)(h),k)

= gV(~vellHL(j)(h), k)
(5.33)

On Fü(M,IRn) the quadratic form gv(~v ... , ... ) is a scalar produet called g~v. (The
eigen values of ~v are all positive on this space.) We hence find a g~v -orthonormed basis
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VI, ••• , vso in which the endomorphism dlHL(j) of Fü(M, IR n) diagonalizes. Let us call
the respeetive eigen values by CTI, ••• , CTso' then

(5.34)

If hence CTi i- 0 then Vi is an eigen veetor of ~v of 9v-length (vr)-t. With the help of
(5.10) and theorem 5.6 we then may immediately formulate the description of the modes
of Fv at constant temperature as follows:

Theorem 5.6

Let j be an equilibrium configuration of an internal force density. The modes of dlsF(j)
at constant temperature are the eigen values CTI, ••• , CTSo of dl2L(j) = dl2Fr. If CTi i- 0 then
the eigen veetor of CTi is an eigenveetor Ur of ~v. Hence

and hence
1 8K1(j) T 82 log Z

CTi = - --- = -- ----
vi 8Xi (vi)2 82Xi

after a renumbering of the eigen values of dl2L.
If ß denotes the Laplacian on Kjo then

So i 8 i So ( i)2
'" V K

L
'" v iL...J - - = L...J - CT = (ß log Z)(j) .. T8xi . T

~=l ~=l

(5.35)

(5.36)

(5.37)

•

Given the graph V and its geometry the theorem above allows to construet (mathema-
tically) out of the speetrum CTI, ••• , CT80 a linear nearest neighbour interaetion model (i.e.
satisfying Hook's law) at constant temperature causing the same speetrum CTI, ••• , CT80'

This is done as follows:
Let the configuration of the medium in IR n be called by ja. We then are in then realm of
sec.3. Moreover we assume that ja is an equilibrium configuration of internal force densities.
We set in accordance with (4.1) in proposition 4.2 for any h E F(V,IRn) the virtual work
it causes as

where h = L: hiUi. The medium hence can be charaeterized by the constitutive map

Clearly FV(Ui) = (Vi?CTi.

Combining corollary 5.4 with theorem 5.6, we immediately obtain
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Theorem 5.7

At constant temperature the speetrum of a discrete medium at an equilibrium connguration
of internal force densities is entirely determined by cTI?L, the derivative of the exaet part
(with Neumann datum e.g.) dlL of the virtual work.

Finally let j be an equilibrium configuration of internal force densities and assume moreover
that Fv is linear and satisfies a Hook law on Kjo' In treating this situation we may need
to generalize the setting of statistieal meehanies somewhat. The variables on whieh the
energy H shall depend are j, a tangential vector to it, q and the edges, geodesie segments
eonnecting q with any of its neighbours qi. Obviously this generalization is earried out in
a straight forward manner.
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