
Improved Algorithms
forthe Steiner Problem in Networks

Tobias Polzin 2e.: ~avash Vahda~i Daneshmand
[heoretIsche)InformatIk,

Universität Mannheim, 68'131 Mannheim, Germany
email: {polzin.vahdati}@informatik.uni-mannheim.de

Technical Report: Universität Mannheim, 06/1998

Abstract

We present several new techniques for dealing with the Steiner problem
in (undirected) networks. We consider them as building blocks of an exact
algorithm, but each of them could also be of interest in its own right.
First, we consider some relaxations of integer programming formulations
of this problem and investigate different methods for dealing with these
relaxations, not only to obtain lower bounds, but also to get additional
information which is used in the computation of upper bounds and in
reduction techniques. Then, we modify some known reduction tests and
introduce some new ones. We integrate some of these tests into a package
with a small worst case time which achieves impressive reductions on a
wide range of instances. On the side of upper bounds, we introduce the
new concept of heuristic reductions. On the basis of this concept, we
develop heuristics that achieve sharper upper bounds than the strongest
known heuristics for this problem despite running times which are smaller
by orders of magnitude. Finally, we integrate these blocks into an exact
algorithm. We present computational results on a variety of benchmark
instances. The results are clearly superior to those of all other exact
algorithms known to the authors.

Keywords: Steiner problemj reduction testsj lower boundsj heuristicsj
exact algorithm

Improved Algorithms
for the Steiner Problem in Networks

Tobias Polzin Siavash Vahdati Daneshmand

Theoretische Informatik,
Universität Mannheim, 68131 Mannheim, Germany

email: {polzin.vahdatiHinformatik.uni-mannheim.de

Abstract

We present several new techniques for dealing with the Steiner problem in (undirected)
networks.We consider them as building blocks of an exact algorithm, but each of them could
also be of interest in its own right. First, we consider some relaxations of integer program-
ming formulations of this problem and investigate different methods for dealing with these
relaxations, not only to obtain lower bounds, but also to get additional information which is
used in the computation of upper bounds and in reduction techniques. Then, we modify some
known reduction tests and introduce some new ones. We integrate some.of these tests into a
packagewith a small worst case time which achievesimpressive reductions on a wide range of
instances. On the side of upper bounds, we introduce the new concept of heuristic reductions.
On the basis of this concept, we develop heuristics that achieve sharper upper bounds than
the strongest known heuristics for this problem despite running times which are smaller by
orders of magnitude. Finally, we integrate these blocks into an exact algorithm. We present
computational results on a variety of benchmark instances. The results are clearly superior to
those of all other exact algorithms known to the authors.

Keywords:Steiner problem; reduction tests; lowerboundsj heuristicsj exact algorithm

1 Introduction

The Steiner problem in networks is the problem of connecting a set of required vertices in a weighted
graph at minimum cost. This is a classical NP-hard problem with many important applications in
network design in general and VLSI design in particular (see for example [15]).
The primary goal of the research presented in this paper has been the development of empirically
successfulalgorithms. In section 2, we study some relaxations of the problem and methods for
computing lower bounds using them; they are also heavily used in the following sections. In section 3,
some reduction techniques are discussed, which playa central role in our approach. These techniques
are also the basis of the reduction-based heuristics, which we introduce in section 4 on upper bounds.
In section 5, the building blocks from the previous sections are integrated into an exact algorithm,
which is shown to be successful empirically. Section 6 contains some concluding remarks.
Most of the material presented here originate from a joint work of the authors [20]. To achieve a
reasonable size, only a fraction of the material there is chosen for this paper. Furthermore, we had
to drop many technical details, giving priority to the main ideas and results.
Most of the background information relevant to this paper can be found in the book of Hwang,
Richards and Winter [15]; we have tried to keep the notation compatible with that book. The basic
definitions are repeated in the following section.

1

1.1 Definitions and Notations

For any undirected graph G = (V,E), we define n:= IVI, e:= lEI, and assume that (Vi,Vj) and
(Vj,Vi) denote the same (undirected) edge {Vi,Vj}. A network is here a weighted graph (V,E,e)
with an edge weight function e : E -t lR..We sometimes refer to networks simply as graphs. For
each edge (Vi, Vj), we use terms like cost, weight, length, etc. of (Vi, Vj) interchangeably to denote
e((Vi,Vj)) (also denoted by e(Vi,Vj) or Cij)' For any directed network G = (V,A,c), we use [Vi,Vj]
to denote the (directed) edge from Vi to Vj; and define a := lAI.
The Steiner problem in networks can be formulated as follows:Given a network G = (V, E, c)
and a non-empty set R, R <; V, of required vertices (or terminals), find a subnetwork Ta(R)
of G containing all terminals such that in Ta(R), there is a path between every pair of terminals,
and L(v;,v;)ETa(R) Cij is minimized.
We define r := IRI. If the terminals are to be distinguished, they are denoted by Zl,'" ,Zr' The
vertices in V \ Rare called non-terminals. Without loss of generality, we assume that the edge
weights are positive and that G (and Ta(R)) are connected. Now Ta(R) is a tree, called Steiner
minimal tree (for historical reasons). ASteiner tree is an acyclic, connected subnetwork of G,
spanning (a superset of) R. We call non-terminals in aSteiner tree its Steiner nodes.
The directed version of this problem (also called the Steiner arborescence problem) is defined
similarly (see [15]).Every instance of the undirected version can be transformed into an instance of
the directed version in the corresponding bidirected network, fixing a terminal Zl as the root. We
define: R1 := R \ {zI}.

For each terminal z, one can define a neighborhood N(z) as the set of vertices which are not closer
to any other terminal. More precisely, a partition of V is defined (d(v, w) denotes the length of a

shortest path between V and w): V = U N(z) with v E N(z) => d(v, z) ~ d(v, t) (for all t ER).
zER

If v E N(z), wecall z the base of V (written base(v)). Inaccordance with the parlance of algorithmic
geometry, we call N(z) the Voronoi region of z. We consider two terminals Zi and Zj as neighbors
ifthere is an edge (Vk,VI) with Vk E N(Zi) and VI E N(zj). Given G and R, the Voronoi regions can
be computed in time O(e + nlogn). Using them, a minimum spanning tree for the corresponding
distance network Da(R) (we denote this tree by Th(R)) can be computed in the same time [19].

1.2 About Empirical Results in this Paper

In each of the followingsections, we will report on the empirical behaviour of certain algorithms.
We do not claim that algorithms can be evaluated beyond doubt by running them on a set of test
instances. But when considering (exact) algorithms for an NP-hard problem, there is no satis-
factory alternative. Proving guaranteed performance ratios for certain components (like heuristics
for computing upper bounds) cannot be a complete substitute, because such results are often too
pessimistic due to their worst case character or lack of better proof techniques. From a comparative
point of view, a much sharper differentiation is neededj particularly in the context of exact algo-
rithms, where even marginal differences (smali fractions of apercent) in the value of the bounds
can have a major impact on the behaviour of the algorithm.
In addition, we consider the comparability of results a critical issue, which strongly suggests using
benchmark instances. There are two major benchmarks for the Steiner problem in networks: the
collection in the OR~Library [4] and SteinLib [16].The instances of OR-Library are much older,
with the advantage that morecomparative results exist on them. On the other hand, only one
type of instances is represented (sparse and random). The library SteinLib is much more extensive,
containing instances of all common types. But giving empirical results for all these instances in
each section would make this paper unreasonably long, so we chose a compromise option: For the
intermediary results (for example concerning upper bounds or reductions), we consider primarily
the instances of OR-Library; comparable results for these components for other instances are very
rare, anyway. For the final results of the complete algorithm, however, we give results for all types

2

of instances in SteinLib (except rectilinear instances, they are much better treated using their geo-
metrie characteristies).
Also it must be mentioned that for actual tests, we did not always implement the data structures
and algorithms with the best known (worst case) time bound, especially if the extra work did not
seem to pay off. So, statements concerning worst case time bounds for a component merely mean
the possibility of implementation of that component with that bound.
All results in this paper are produced on a pe with a Pentium 300 MHz processor and 64 MB
of main memory, using the operating system Linux 2.0.32. We always used the GNU g++ 2.7.2.1
compiler with the -04 Hag.

2 Relaxations and Lower Bounds

In this section we state some integer programming formulations of the Steiner problem and some
methods for computing lower bounds on the basis of these formulations. In the context of lower
bounds, (linear) relaxations ofthese formulations are ofprimary interest. Furthermore, the quality of
the linear relaxations is of great importance for the success of bound-based reductions (see section
3.2) and relaxation-based upper bound calculations (see section 4.3). In this paper, we confine
ourselves to those aspects whieh are relevant to the subject of obtaining good empirical results. An
extensive theoretical investigation of various formulations and their relaxations is presented in a
separate article by the authors [21].Also, much more empirical observations are included in a thesis
of the authors [20].

2.1 Formulations and Relaxations

In the following,integer programming formulations of both directed and undirected versions of the
Steiner problem in networks are considered. Given a solution T (T) in the underlying undirected
network G = (V,E) (respectively directed network G = (V,A)), for each edge (Vi,Vj) E E (respec-
tively [Vi, Vj] E A) the binary variable Xij (respectively Xij) indieates whether the edge is in the
solution (one) or not (zero).
For everyinteger program P, LP denotes the linear relaxation of P; and DLP denotes the dual of
LP. For any (integer or linear) program Q, v(Q) denotes the value of an optimal solution for Q.

2.1.1 Directed Cut Formulation

A cut in G = (V,A,c) is defined as a partition C = {W, W} of V (0 eWe v;v = wuW).
We use ö-(W) to denote the set of edges [Vi,Vj] E A with Vi E W and Vj E W (Ö+(W) and, for
the undirected version, Ö(W) are defined similarly). A cut C = {W, W} is called aSteiner cut, if
Zl E W and R1 n W :f. 0.
The directed cut formulation was stated for the first time in [28]. (The undirected version was
already introduced in [1].)

Ipel L CijXij -t min,
[v.,v;JEA

L Xij > 1 ({W, W} Steiner cut),
[v.,v;JEo-(W)

Xij E {O,l} ([Vi,Vj] E A).

(1.1)

(1.2)

3

2.1.2 Spanning Tree Formulation

Here a degree-constrained reformulation of the problem in an augmented network Go = (Vo, Eo, Co)
is used, which is produced by adding a new vertex Vo and connecting it through zero cost edges to
all non-terminals and a fixed terminal (say zd. This leads to the following integer programming
formulation, introduced in [3].

IPTo I L CijXij -+ min,
(v;,vj)EE

{(Vi,Vj) I Xij = 1} builds a spanning tree for Go, (2.1)
XOk + Xpq < 1 (Vk E V\R; (vp,vq) E 8({vd)), (2.2)

Xij E {0,1} ((Vi, Vj) E Eo). (2.3)

The requirement (2.1) can be expressed by linear constraints. In the following,we assume that (2.1)
is replaced by the followingconstraints.

L Xij = n,
(vi,vj)EEo

L Xij < IWI-1 (0 -::J W C VO).
(v;,Vj)EEo; Vi,VjEW

(2.4)

(2.5)

The constraints (2.4) and (2.5), together with the non-negativity of X, define a polyhedron whose
extreme points are the incidence vectors of spanning trees in Go (see for example [18]). Thus, no
other set of linear constraints replacing (2.1) can lead to a stronger linear relaxation.
In [21]'we prove a elear relation between the linear relaxations of the two presented formulations:

Lemma 2.1 For all instances of the Steiner problem holds: v(LPe) ~ v(LPTo)' The ratio :\~~l
can be arbitrarily elose to zero.

2.2 Using Relaxations for Computing Lower Bounds

To actually exploit the relaxations for computing lower bounds, two factors are of more or less equal
importance: How good the optimal values of the corresponding linear programs are, and how fast
these values can be determined or sufficiently approximated. In the following, we investigate both
questions for the stated relaxations.

2.2.1 The Spanning Tree Formulation and Lagrangean Relaxation

A Lagrangean relaxation LaPTo of the tree formulation PTo is described in [3], relaxing the degree
constraints (2.2). After this, a subgradient optimization of the Lagrangean multiplier problem can
be used, which involves calculating a minimum spanning tree in each iteration. Using this approach,
the valuev(LPTo) can be approximated fairly fast (this relaxation has the integrality property).
The problem here is the value V(LPTo) itself. Lemma 2.1 already indicates theoretically that LPTo
is not a generally tight relaxation. Empirically, we observed that usually the bound V(LPTo) is only
satisfactory for instances where the average distance between terminals is not too high in comparison
to the average edge length (e.g. random networks with many terminals). A bad situation for this
relaxation typically arises from instances modelling points in the plane with respect to a given
metric. For instances with Euclidean distances or grid instances with few terminals, gaps of more
than 50%are not exceptional. Nevertheless, we have further investigated the mentioned Lagrangean
relaxation, since it can be useful for some instances.

4

We obtained a minor improvement in the speed of the subgradient optimization by applying a
sensitivity analysis for the Lagrangean multipliers. Using data structures for efficient handling of
tree bottlenecks and alternative chords (see [22,24]) allows fast calculation ofthe quantities by which
each multiplier can be changed without affecting the validity of the calculated minimum spanning
tree. Modifying the multipliers by these quantities improves the lower bound immediately.
In [9]' some modifications for this relaxation are suggested, for example adding (and relaxing)
further constraints and using another structure for Go. In our experiments, these modifications did
not improve the overall results of the lower bound calculation: In situations where LaPTo leads to
a substantial gap, no decisive improvements could be achieved using these modifications.
In [5]' a relaxation constructed by adding the Steiner cut (and some other) constraints to LPTo is
used. This indeed leads to a stronger relaxation than LPTo' However, in [21] we prove that LPe
cannot be strengthened (i.e. v(LPe) does not change) by adding constraints like those present in
LPTo; this motivates concentrating on LPe itself.

2.2.2 The Cut Formulation, Dual Ascent and Row Generating

Considering the relaxation LPe, the situation is to some degree converse to the case of LPTo'
It is known that v(LPe) does not deviate from the optimum by more than 50% [13]. All our
empirical investigations strongly suggest that this is an extremely tight relaxation. As an example,
for all D-instances of the OR-Library v(LPe) is equal to v(Pc). Even for the instances where
there is a gap, the knowledge of a solution of LPe has been usually sufficient to solve the instance
exactly (without branching) through bound-based reduction techniques (section 3.2). So, the really
interesting problem is how to calculate (or sufficiently approximate) a solution for LPe.
The direct approach of solving the complete linear program using a standard LP-solver is not
practical, even for the equivalent multicommodity flow rela.xation [28]' which has approximately ra
variables and r(a + n) constraints: This is still too much for moderate and large instances; and the
resulting linear programs are often highly degenerated.
Therefore, we have investigated some alternative methods: dual ascent (and Lagrangean relaxation)
and a row generating approach.

Dual Ascent: A fast dual ascent algorithm that generally provides fairly good lower bounds was
described in [28] for the equivalent multicommodity flow relaxation. Below, we give an alternative
description of it as a dual ascent algorithm for LPe, which we call DUAL-ASCENT:

• Initialize the reduced costs (c .- c), the lower bound (lawer := 0) and assurne all dual
variables u as been set to zero .

• In each iteration, choose a terminal Zt E R1 not reachable from the root by edges of zero
reduced cost. Let W, Zt E W, be the smallest set such that {W, W} is aSteiner cut and
Cij > 0 for all [Vi,Vj] E 8-(W). Set the dual variable Uw to 6.:= min{cij I [Vi,Vj] E 8-(W)}
and let lawer:= lawer + 6. and Cij := Cij - 6. (for all [Vi,Vj] E 8-(W)).

• Repeat until no such terminal is left.

A good implementation of this algorithm has running time O(a. min{a,rn}) (see for example [8]).
Empirically, it is usually faster than this time bound would suggest.
The algorithm DUAL-ASCENT achieves already very good results. Out of the 20 D-instances of the
OR-Library, a DUAL-ASCENT run yields the optimum (i.e. v(Pe)) for 12 instances. The average
gap between lower bound and optimum is 0.4%, and the average running time is 0.4 seconds.
A critical point in this algorithm is the choice of Zt in each iteration and, for the undirected version,
the choice of the root Zl. Although it has been shown [14] that v(LPe) is independent of the
choice of the root vertex, the lower bound calculated by DUAL-ASCENT is not. For this reason
we start DUAL-ASCENT with different roots if a strengthening of the bound is needed. This

5

rnethod also improves the performance of the reductions and upper bound calculations that are
done in combination with DUAL-ASCENT (see sections 3.2.2 and 4.3). Again, for the D-instances,
considering up to five different roots improves the average gap to 0.07%j achieving the optimum for
16 instances. The average running time for this lower bound calculation (including the time for a
combined upper bound calculation) isO.8 seconds.
Even using this amplification, there are still cases where DUAL-ASCENT does not reach the value
v(LPe). We tested different criteria for the choice of Zt in each iteration. Our standard criterion is:
Choose Zt, so that W is smallest. We had some success with the following idea that tries to guide
DUAL-ASCENT with the help of a heuristically constructed Steiner tree: Assume that the upper
bound is already optimal. DUAL-ASCENT can reach the optimum only ifin each set 8-(W) there
is exactly one edge of the corresponding Steiner tree. Of course this criterion can not always be
realized, especially if the best known Steiner tree is not optimal or v(LPe) < v(Pe). Nevertheless,
it isa heuristic criterion that in many cases leads to better lower (and, indirectly, upper) bounds.

A natural alternative for a better approximation of v(LPe) builds upon a Lagrangean relaxation
of the multicommodity flow formulationj an approach already used in in [2] (but with the much
weaker undirected relaxationj see also [15]). Relaxing the constraints which bind edge and flow
variables together, the problem decomposes into (mainly) r - 1 single pair shortest path problems,
which can be solved in time O(r(e +n log n)). This relaxation has the integrality property, and can
be used in combination with subgradient optimization to approximate v(LPe). In [20], we have
investigated this approach and presented some improvements, particularly in combination with the
algorithm DUAL-ASCENT and with sophisticated reduction techniques. Although this approach
is quite effective in many cases, for large instances with many terminals it tends to be too slow. So,
it is not used in this paper and is replaced by the following approach.

Row Generating: To get an optimal solution for LPe, one can begin with a sub set of constraints of
LPe as the initial program, and successively solve the current program, find Steiner cut inequalities
violated by the current solution x, add them to the program, and iterate this process by reoptimizing
the program, until no Steiner cut inequality is violated anymore. This is an approach already used
by many authors (see for example [7, 5, 17]).
In order to find violated Steiner cut inequalities (or to establish that no such inequality exists),
one can compute a minimum capacity cut in each of the r - 1 flow networks constructed £rom G
by choosing the root (zd as the source, a terminal Zt E R1 as the sink and the current xi,-value '
as the capacity of the arc [Vi, Vj]. Although there are other (heuristical) ways to find such violated
inequalities, using those corresponding to minimum cuts usually leads to better overall results.
Indeed, it is even very advantageous to find in each case a minimum capacity cut with a minimum
number of cut edges, an idea already used in [17]. This can be realized by adding a small e to the
capacity of each edge before solving the minimum cut problem. Although this leads to much denser
flow networks, the linear programs obtained are easier to (re-)optimize (and the corresponding
constraints seem to be much stronger), so that the overall results (especially the total number of
needed reoptimizations) are clearly superior. It must be mentioned that in our implementation, the
time for finding all the r - 1 minimum cuts is dominated by the time for reoptimizing the linear
programs.
For computing minimum cuts, we implemented the highest-label preflow-push algorithm with several
auxiliary heuristics, including the global and the gap relabeling heuristics [6]. Although no better
time bound than O(n2y'e) can be given for this algorithm, using the mentioned heuristics the
empirical running times were much better described by O(n1.5). As long as only minimum cuts
from the sink-side are to be computed, only the first stage of the algorithm has to be performed.
Besides, in this context several additional heuristics can be used to improve the empirical times
furtherj for example, sinks which are reachable £rom the root (or another terminal) by paths of
capacity no less than 1 need not be considered.
For (re-)optimizing the linear programs, we use the dual simplex routine in the callable library of
CPLEX 5.0. Here the warm-start ability of the simplex algorithm can be particularly utilized.
We have achieved considerable speedups by inserting the cuts generated by the algorithm DUAL-
ASCENT into the initial linear program. In this case the lower bound provided by DUAL-ASCENT

6

(which is often very elose to v(LPe)) is reached already in the first iteration; and the number of
needed reoptimizations and the time needed per reoptimization are comparable to the case without
these cuts after reaching this lower bound value, so that the overall times are elearly improved.
In [17],someadditional groups of constraints are used to to strengthen the linear programs, ineluding
the followingones, which we call flow-balance constraints:

L: Xji ~ L: Xij
(v;,v;JEö-({v;}) (vi,v;JEÖ+({Vi})

(Vi E V \ R). (3.1)

In [21]'we prove that these constraints can indeed enhance the value of the relaxation. Empirically,
we found it advantageous in terms of running times to insert all the fiow-balance inequalities into
the initial program. Although the other additional constraints used in [17]cannot enhance the value
of the relaxation (see [21]), a group of them can speed the process up if its violated members are
added to the current program, these are constraints of the form:

L: Xki 2:: Xij

(Vk,ViJEA,Vk#V;

(3.2)

To save time and space, we do some garbage collectionevery ten iterations, purging the constraints
which have had large positive slack values in all the iterations since the last garbage collection.
Further we make sure that no constraint is present in a linear program more than once.
Another idea, which is promising at first sight, is pricing: To achieve further speedups one can begin
with a subset of variables as active variables and at certain stages (especially when a correct lower
bound is needed) add variables which do not price out correctly (have negative reduced costs) to
the program (activate them); a correct lowerbound is givenwhen all non-active variables have non-
negative reduced costs with respect to the current dual solution. We have tried several schemes for
using this idea, but could not achieve decisive additional improvements through these schemes.The
main reason is that, because of our massiveusage ofreduction techniques (see the next section), most
variables that could be priced out are eliminated anyway. It seems that the information provided
by the linear relaxations (like reduced costs) are more effectively used in bound-based reduction
techniques (see section 3.2).

3 Reductions

It has been known for some time that reductions can have a decisive effect when solving NP-hard
problems in general and the Steiner problem in particular, with the PhD thesis of Cees Duin [8]
being a milestone for the latter. Our work in this context has been threefold: Firstly, we designed
efficiE~ntrealizations of some classical tests, which would have been too time-consuming for large
instances in their original form, especially for application in heuristics. Furthermore, we designed
some new tests, filling some of the gaps the elassical tests had left. Notice that each test is specially
effective on a certain type of instances, having less (or even no) effect on some other ones, so it
is important to have a large arsenal of tests at one's disposal. Finally, we integrated these tests
into a packet, using some nontrivial techniques. It should be emphasized that the most impressive
achievements of reductions are mainly due to the interaction of different tests, achieving results
which are incomparable to those each single test could achieve on the same instance on its own.
We distinguish between two major elasses of reduction tests: The alternative-based tests use the
existence of alternative solutions. For example in case of exelusion tests, it is shown that for any
solution containing a certain part of the graph (e.g. a vertex or an edge) there is an alternative
solution of no greater cost without this part; the inelusion tests use the converse argument. The
bound-based tests use a lower bound for the value of an optimal solution under the assumption
that a certain part of the graph is contained (in case of exelusion tests) or is not contained (in case
of inelusion tests) in the solution; these tests are successfulif such a lower bound exceeds a known
upper bound.

7

3.1 Alternative-based Reductions

In this subsection we present a collection of alternative-based tests, including some new versions of
classical tests and some new tests, which can all be realized in time O(e + nlogn).
In the context of alternative-based reductions, the notion of bottleneck Steiner distances (also ealled
special distances) is often helpful. Any path P between two vertices Vi and Vj in a network G ean
be broken down into one or more elementary paths between Vi, successive terminals and Vj' The
Steiner distance between Vi and Vj along P is the length of the longest elementary path in P.
The bottleneck Steiner distance b(Vi, Vj) between Vi and Vj is the minimum Steiner distance
taken over all paths between Vi and Vj in G.

3.1.1 PTm and Related Tests

The test PTm (Paths with many Terminals) was introduced in [10]:

PTm test: Everyedge (Vi,Vj) with e(vi,Vj) > b(Vi,Vj) can be removed from G.

The PTm test is one of the most effective classical exclusion tests, but it is too time-consuming for
large instanees in its original form. Here we consider a fast realization of this test which also uses
inaccurate information. The modifications follow the same principal ideas as in [8]. Later we will
simply refer to this modified version as the PTm test. Empirically, one generally observes only a
marginal difference in the effectivenessof the original test and its modified version.
For two terminals Zi and Zj, one readily observes that the bottleneck Steiner distance b(Zi, Zj) ean be
computed by determining a bottleneck on the fundamental path between Zi and Zj in the spanning
tree Tb (R), which can be constructed in time 0(e+ n logn). Each such bottleneck can be trivially
computed in time O(r), leading to a total time O(mr) for m inquiries (m E O(min{e,r2})).Ob-
serving that one actually has a static-tree variant of the bottleneck problem, one can use a strategy
based on depth-first search (as described in [24]) to achieve time 8(r2) for all inquiries. One can
go further and solve the problem as an off-line variant for all m inquiries in time O(ma(m,r))
using the Eval-Link-Update data structure [22]. But this data structure is rather complex and
leads to relatively large eonstant factors, and this bound is dominated by the worst ease time of
other test operations' anyway. So we suggest another method to aehieve the desired worst case time
O(e + n logn) for the whole test: One can sort the edges of Tb(R) and then process them as links
in increasing cost order, building a binary tree (whose internal nodes represent the edges of Tb (R))
using a suitable auxiliary union-find data structure. This transforms the problem to an instanee
of the off-line nearest-common-ancestor problem,which is solvable, for example, in O(m) using a
depth-first search strategy [22].This leads to a total time O(m + r logr) for all m inquiries.
For non-terminals Vi and Vj, one can use an upper bound for the bottleneck Steiner distance b(Vi, Vj)
considering only paths of the form Vi - Zi,a - Zj,b - Vj, where Zi,a and Zj,b are the a-th respectively
b-th nearest terminals to Vi and Vj' The k (k constant, say 3) nearest terminals to all non-terminals
(forbidding intermediary terminals on the corresponding paths) can be computed using a modi-
fication of the algorithm of Dijkstra in time O(e + nlogn), as described in [8]. After that, one
works with the upper bound b(Vi,Vj):= mina,bE{l,...,k}{max{d(Vi,Zi,a) , b(Zi,a,Zj,b) , d(Zj,b,Vj)}}
instead of b(Vi,Vj). But we do not precompute the b-values,because veryoften not all the k2 eom-
binations have to be eheckedj for example if the test condition turns out to be already satisfied
during the computation (or, of course, if Vi or Vj were a terminal). More importantly, many ad-
ditional observations can be used to do without b(Vi,Vj) altogether. For example the lower bound
b(Vi, Vj) := max{d(vi, base (Vi)) , d(Vj, base(vj))} (which is readily available) is often helpful: H both
vertices Vi and Vj belong to the same Voronoi region, then we simply have b(Vi,Vj) = b(Vi,Vj).
H Vi and Vj belong to different Voronoi regions and e(vi,Vj) < b(Vi,Vj), then the test cannot be
successful for (Vi,Vj)' Furthermore, preeomputing the b-values (which can need time 8(n2)) would
destroy the total time 0(e+ n logn) for performing this test on all edges.
An additional observation leads to a simple, very fast test, which is sometimes extremely powerful:

8

Observation 3.1 Let iJ be the length of the longest edge in Tb(R). Every edge (Vi, Vj) with
e(vi,Vj) > iJ can be removed from the network.
Proof: Suppose there is aSteiner minimal tree T containing an edge (Vi, Vj) with Cij > iJ. Removing
this edge from T divides it into two components: Ci containing Vi and Cj containing Vj. In each
component, there is at least one terminal. Let Zk and Zl be two arbitrary terminals in Ci respectively
Cj. In G, there is a path between Zk and Zl, corresponding to the fundamental path in Tb(R), with
Steiner distance at most iJ. This path contains an elementary path P connecting Ci and Cj, whose
length is at most iJ. Reconnecting Ci and Cj by P yields a graph spanning all terminals and shorter
than T, a contradiction. 0

Notice that using this test, one can eliminate some edges which could not be eliminated by the
PTm test (even in its original form).
Since the tests above only consider paths with at least one terminal, they miss some of the edges the
simple test LE (Long Edges) [2, 15] would eliminate. On the other hand, after execution of other
tests the graph is often sparse. So a weakened version of LE, which simply searches for shorter
paths from both ends of an edge, can be effective. With the additional restriction that during
the examination of each edge not more than a constant number of edges are visited in search for
an alternative path, one gets the total time 8(e) for this modified test, which we call Triangle.
This test is sometimes a nice complement to the PT m test (as described above), especially if the
proportion of terminals to all vertices is not high.
A test like PT m can actually be extended to the case of equality, but removing edges in case of
equality can change the (restricted) bottleneck Steiner distances, which makes a recalculation of
these distances after each deletion necessary. We have observed that the few problematic cases
can be efficiently identified, so that in all other cases the test actions can be performed even in
case of equality (without recalculation). The details are rather technical, with a long list of case
differentiations, so they are dropped here. But it must be mentioned that this observation has a
greater impact than one would assurne, because in some cases the reduction process is blocked in
face of many alternatives with equal weights and can be reactivated only with a measure like this.

3.1.2 NTDk

The test NTDk (Non-Terminals of Degree k) was introduced in [10]:

NTDk test: A non-terminal Vi has degree at most 2 in at least one Steiner minimal tree iffor each
set D., ID.I ~ 3, of vertices adjacent to Vi holds: The sum of the lengths of the edges between Vi and
vertices in D. is not less than the weight of a minimum spanning tree for the network (D.,D. x D., b).
If this condition is satisfied, one can remove Vi and incident edges, introducing for each two vertices
Vj and Vk adjacent to Vi an edge (Vj,Vk) with length Cij + Cik (and keeping only the shortest edge
between each two vertices).

The special cases with k (degree of Vi) in {1,2} can be implemented with total time O(n) (for
examination of all non-terminals). For k E {3, ... , 7} we use the b-values instead of the exact bot-
tleneck Steiner distances, as described in section 3.1.1. Again, empirically only a marginal difference
of effectiveness is observed between the original and the modified version. As before, we do not pre-
compute the b-values, so the modified version has total time O(e + n log n).
Because addition of new edges can be a nontrivial matter and the needed b-values are already avail-
able, it is a good idea to check for each new edge if it could be eliminated using the PT m test, in
this case it need not be inserted in the first place.

3.1.3 NV and Related Tests

The test NV (Nearest Vertex) is a classical inclusion test [2, 15]:

9

NV test: Let Zi be a terminal with degree at least 2, and let (Zi, vD and (Zi, V~/) be the shortest
and second shortest edges incident with Zi. The edge (Zi, vD belongs to at least one Steiner minimal
tree, if there is a terminal Zj, Zj =P Zi, with C(Zi, vn ~ C(Zi, vD + d(v;' Zj).

The original version of the test NV requires the computation of distances, which is too time-
consuming for large instances. But one can accelerate this test without making it less powerful,
using an observation given below. For this purpose, we use Voronoi regions again, saving some
extra information while computing the regions. Let distance(zi) be the length of a shortest path
from Zi to another terminal Zj over the edge (Zi, vD, computed as folIows: Each time an edge (Vi, Vj)
with Vi E N(Zi), Vj E N(Zj), Zj =P Zi is visited, it is checked whether Vi is a successor of v~ in the
shortest paths tree with root Zi (simply done through marking the successors of vD. In such a case
distance(zi) is updated to min{distance(zi),d(Zi,Vi) +C(Vi,Vj) +d(vj,zj)}. Now we have:

Observation 3.2 The condition of the test NV is satisfied if and only if:
C(Zi, vn ~ C(Zi, vD + d(v;' base(vD)' if v~ fI. N(Zi), and
C(Zi, vn ~ distance(zi), if v~ E N(Zi)'
Proof: Assurne the condition formulated in the observation is satisfied for a vertex Zi: If v~ ~ N(Zi),
the NV test condition is satisfied for Zj = base(vD. If v~ E N(Zi), then there exists a terminal Zj
with C(Zi, vD + d(v;' Zj) = distance(zi) ::; C(Zi, vn. Hence, the NV test condition is satisfied.
Now assurne that the condition of the test NV, c(Zi, vn ~ c(Zi, vD + d(v~, Zj), is satisfied: If v~ ~
N(Zi), it follows from d(v;'zj) ~ d(v;'base(vD) that C(Zi,Vn ~ c(zi,vD +d(v~,base(vD). Ifv~ E
N(Zi), we could get C(Zi, vD+d(v~, Zj) ~ distance(zi), assuming that v~ is on a shortest path between
Zi and Zj. But the latter must be true, because otherwise we have c(Zi,V~/) ~ c(zi,vD + d(v~,zj) >
d(Zi,Zj) ~ C(Zi,Vn, a contradiction. 0

Using this observation, the test NV can be performed for all terminals in time O(e + nlogn). Note
that in inclusion tests, each included edge is contracted into a terminal.
The Voronoi regions can also be llsed to perform a related inclusion test, which we call SL (standing
for Short Links):

Observation 3.3 Let Zi be a terminal, and (vl,vD and (V2,V~) the shortest and second shortest
edges which leave the Voronoi region of Zi (Vl,V2 E N(Zi), v~,v~ fI. N(Zi)j we call such edges links).
The edge (Vl, vD belongs to at least one Steiner minimal tree, if c(V2, v~) ~ d(Zi, vd + c(Vl, vD +
d(v~,zj), where Zj = base(vD.
Proof: Suppose that the edge (Vl, vD is not in any Steiner minimal tree. Consider such a tree T
and the path between Zi and Zj in T. An edge on this path must leave the Voronoi region of Zi.
Removing this edge and inserting (Vl, v~) and two shortest paths to Zi and to Zj, we get a subgraph
that includes (Vl, v~), spans all terminals and is no longer than T, a contradiction. 0

This test can also be performed for all terminals in total time 0 (e + n log n) .

The classical test SE (Short Edges) [10, 15] is a more powerful inclusion test. We have observed
that even this test can be implemented with time O(e + nlogn). But although this test is more
effective than NV and SL in a single application, the difference almost vanishes when the reduction
tests are iterated. Therefore, we only use the much simpler, empirically faster tests NV and SL in
our actual implementations.

3.1.4 Path Substitution (PS)

We have designed another alternative-based reduction test that is more general than the previous
tests in two ways: The test PS examines several edges along a path, instead of examining elementary
graph objects (like single edges and vertices). If the test is successful, some of these edges can be
deleted at once. The other more general aspect is a consequence of the first: Searching for alternatives
for a path, it is not sufficient anymore to find one alternative, because the edges of the path can be

10

involvedin many different ways in aSteiner tree. As a consequence, such a test can only be efficient
if it has strong requirements as conditions.
The basic idea is to start with a single edge as the path and then try to find alternative paths for
the vertices adjacent to those on the path. If this is not possible for exactly one adjacent vertex,
the path is extended by the edge to this vertex and the search for alternative paths is restarted.
Such successiveextensions could finally lead to the desired situation.
We describe the observation that leads to the formal specification of the test in a simplified way:
We give only the description for deleting one edge of the path and define it only for the special case
that the starting vertex Vo has degree 3. The extensions to deleting many edges on the path and to
vertices with degree 2 or 4 are more or less straightforward.

Observation 3.4 Let P be a path (vo"",VI) with degree(vo) = 3 and Vi E V\R for an i E
{O, ... , l}. We denote by v}, vr, ... the vertices adjacent to each Vi on P which are not contained in
P. Let dO(Vi,Vj) be the length of a shortest path between Vi and Vj that does not contain (vo,vd,
and dp(Vi,Vj) (for Vi and Vj in P) the length ofthe subpath of P between Vi and Vj'
The edge (vo, Vl) can be deleted if for all i E {I, ... , l} there are functions fi and gi such that:
I) for all vf adjacent to Vi and for ko = fiCk): dp(vo, Vi) ~ da(v~O, vf),
11)for an v~o adjacent to Vo and for k = gi(ko): dp(VO,Vi) ~ do(v~O,vf), e(vo,v~O) ~ e(vi,vf).
Proof: Suppose all Steiner minimal trees contain the edge (vo, Vl). Consider such a tree T, and let
t ~ 1 be the smallest index such that there is an edge (vf, Vt) in T. Notice that the degree of Vo in
T must be greater than 1 and that all edges between Vo and Vt on P must be in T. There are two
cases:
1) In T, Vo has degree three. Choose k such that (vf , Vt) is in T. Let ko = P(k). Remove the edges
on the path (VO,Vl, ... ,Vt-l,Vt) from T. The resulting components can be reconnected without
reinserting (vo, vd by a path between v~o and vf which is not longer.
2) In T, Vo has degree two. Choose ko such that (v~O, vo) is in T. Let k = l(ko). Remove the edges
on the path (v~O, Vo, Vl, ... , Vt-l, Vt) from T. The resulting components can be reconnected without
reinserting (vo, vd by a path between v~o and vf and the edge (vf, Vt). Again the inserted edges
together are not longer than the removed edges.
In both cases, we have a subgraph that does not contain (vo, vd, spans all terminals and is not
longer than T, a contradiction. 0

One problem for an efficientimplementation of this test is the calculation of the distances da(Vi, Vj).
Since we do not want to have running times like 6(n3) for the calculation of shortest paths, we
work with a weakenedversion: To determine an upper bound for da(v~O, vf), we examine only those
paths that contain only vertices in {vf,' I 0 :5 tJ :5 t}. This makes it is easy to maintain shortest
paths trees for each v&, i E {I, ... , degree (vo) - I}, during the successive extensions of P. It is also
possible to determine up to which vertex Vs in P the edge (vs, vs+d can be deleted, under the
assumption that all edges between Vo and Vs have been deleted. H finally a situation is reached in
which - according to the observation above - (vo, vd can be deleted, then all edges of P between
Vo and Vs+l can be removed. Our implementation assures that each edge is considered as apart
of P not more than twice (once in each direction). We have observed that if the test is successful,
an involved,vertices have low degrees. If one fixes a small constant g, e.g. 9 = 10, and aborts the
successiveextension of P each time a vertex with degree larger than 9 is visited, a total running
time (for the whole network) of O(e) can be guaranteed, without impeding its reduction potential
noticeably.
This version of the test is usually effective only for some sparse graphs (including some VLSI-
instances). On such instances, 5-10% of edges could frequently be removed using this test alone.

3.2 Bound-based Reductions

Since one cannot expect solving all instances of an NP-hard problem like the Steiner problem
only through reduction tests with a (low order) polynomial worst case time (like the tests in the

11

previous subsection), the computation of (sharp) lowerbounds is a not generally avoidable phase of
usual algorithms for the exact solution of such a problem. But the information gained during such
computations can be used to reduce the instance further; and sometimes small running times can
be guaranteed even for this kind of tests.

3.2.1 Using Voronoi Regions

The Voronoi regions can be used to determine a lower bound for the value of an optimal solution
under some additional assumptions (for example, that the solution contains a certain non-terminal).
For any terminal z, we define radius(z) as the length of a shortest path from Z leaving its Voronoi
region N(z). These values can be easily determined while computing the Voronoi regions. For
convenience, we assurne here that the terminals are numbered according to non-decreasing radius-
values. For each non-terminal Vi, let Zi,l, Zi,2 and Zi,3 be the three next terminals to Vi, as described
in section 3.1.1. The followingobservation can be used to eliminate a non-terminal.

Observation 3.5 Let T be aSteiner minimal tree and assurne that Vi is aSteiner node in T. Then
d(Vi, zi,d + d(Vi, Zi,2) + L:;':~radius(zt) is a lower bound for the weight of T.
Proof: For each terminal ZI, we denote the path between ZI and Vi in T with PI' Among such paths,
there must be at least two (edge-)disjoint ones. For any path P, define ß(P) as the number of edges
on P which have their vertices in two different Voronoi regions. Let Pj and Pk be two disjoint pat,hs
such that ß(Pj) + ß(Pk) is minimal. Note that no path PI can have edges in common with both Pj
and Pk. For each terminal ZI f/. {Zj, Zk}, let P/ be the part of PI from ZI up to the first vertex not in
N(zd; P/ is well-defined,because otherwise PI would be the only path with ß(PI) = 0 (namely for
ZI = base(vi)) and would have been chosen as Pj or Pk' Obviously, all P/ are disjoint. Now suppose
that Pj has an edge in common with some pr Let VI be a vertex of this edge with VI E N(zl)' The
part of Pj between Zj and VI contains an edge with only one vertex in N(zd, so ß(PI) < ß(Pj),
which contradicts the choice of Pj. So Pj (or, similarly, Pk) has no edge in common with a path
P/. Since Pj, Pk and the r - 2 paths P/ are all disjoint, the sum of their lengths cannot be larger
than the weight of T. The sum of the lengths of Pj and Pk is at least d(Vi, zi,d + d(Vi, Zi,2). The
sum of the lengths of the r - 2 paths P/ is at least L:;':~radius(zt). 0

A non-terminal Vi can be eliminated if this lower bound exceeds a known upper bound. This method
can be extended for eliminating edges:

Observation 3.6 Let T be aSteiner minimal tree and assume that T contains an edge (Vi,Vj)'
Then e(vi, Vj) + d(Vi, zi,d + d(vj, Zj,l) + L:;':~radius (Zt) is a lower bound for the weight of T.
Proof: Analogous to the proof of observation 3.5.

One can also define a test performing the same aetions as NTDk when it is successful, using the
followingobservation:

Observation 3.7 Let T be aSteiner minimal tree and assurne that Vi is aSteiner node whose
degree in T is at least three. Then d(Vi, Zi,l) + d(Vi, Zi,2) + d(Vi, Zi,3) + L:~'::radius(zt) is a lower
bound for the weight of T.
Proof: Analogous to the proof of observation 3.5.

Intuitively, one expects that a better lower bound should be achievable through this line of argument,
because the paths between the terminals in aSteiner tree not only leave the corresponding Voronoi
regions, but also span all terminals. Indeed, one can use this idea:

Observation 3.8 Consider the auxiliary network G' = (R,E',d'), in which two terminals are
adjacent if and only if they are neighbors in the original network, defining:
d'(Zi,Zj) := min{min{d(zi,Vi),d(zj,vj)} + e(vi,Vj) I Vi E N(Zi),Vj E N(Zj)}.
The weight of a minimum spanning tree for G' is a lower bound for the weight of any Steiner tree
for the original instance (G, R).

12

.~

Proof: Wewill prove the observation by transforming aSteiner minimal tree Ta(R) into a spanning
tree T' in G' without increasing the cost. For guiding this transformation we construct an auxiliary
tree T" by contracting all edges of Ta(R) that are entirely in one Voronoi region. We consider T"
as a rooted tree with an arbitrary root Zr' Beginning with isolated terminals as T', each step of th~
transformation removes the path from one leave of T" to its parent and inserts an edge of G' into
T'. Throughout the transformation the followinginvariant (t) hqlds: In each componentof T', there
is exactly one terminal that has not been removed from T". In the beginning (t) holds trivially.
Each step of the transformation is performed as folIows:Choose any leave Zi of T" such that all
vertices Vi E N (Zi) \ {Zi} have at most one successor in T". Notice that there is always such a
Zi in T", because the number of leaves is greater than the number of non-terminals with more
than one successor. From Zi we move in the direction of the root until we reach a terminal Z/. The
path from Zi to ZI in T" is denoted by PI'- The corresponding path in Ta(R) is denoted by Pi.

Now we look at the bases of the vertices on Pi. Let Vj be the last vertex on Pi whose base Zj is
connected to Zi in T', and Vk the first whose base Zk is not connected to Zi in T'. The invariant
(t) guarantees that such vertices Vj and Vk exist, because not all bases Zi, ... , ZI of the vertices of
Pi can belong to the same component of T', since Zi and ZI have not been removed from T". We
denote with PI the part of Pi between Zi and Vk. The length of PI is at least d' (Zj, Zk), because
d'(zj, Zk) ~ d(zj, Vj) + e(vj, Vk) ~ d(Zi, Vj) + e(vj, Vk). Remove the subpath of PI' beginning from Zi
until a vertex in T" with degree greater than 2 or Z/ is reached. The edge (Zj, Zk) is inserted in T',
so (t) remains valid.
After all terminals except Zr have been removed from T", r - 1 edges have been inserted into T'
without creating a cycle, so T' is a spanning tree at the end.
We shownow that each two paths P~ and Pt corresponding to terminals Za and Zb are edge-disjoint
(in the followingsimply denoted as disjoint). There are two cases:
I) Za is a successor of Zb in T" (or vice versa): If there are common edges in P~ and Pt, there must
be common edges or (if they are contracted) at least common vertices in P~'and Pt'. But the paths
P~' and Pt' are disjoint and have at most one vertex in common, namely Zb. Hence, common edges
of P~ and Pt must Heentirely inside the Voronoi region of Zb and have been contracted in T" into
Zb. When Za is chosen, neither Za nor Zb has been removed from T". Because of (t), at this time Za

and Zb are not connected in T'. So, for Pa the vertex Vj (as defined above) must be outside N(Zb),

and there is no edge in P~ that is entirely inside N(Zb)' Therefore, the paths are disjoint.
II) Za and Zb are successors of a terminal Zc in T": Assurne that Za is chosen before Zb. There are
disjoint paths in Ta(R) from a vertex Vd to Za,Zb and Zc (Vd = Zc is possible). Let Zd := base(vd)'
Suppose that the paths P~ and Pt are not disjoint. So, they must both contain edges of the path
between Vd and zc. Thus, when Za is chosen, Zd must be connected to Za in T'. Because Za has not
been removed from T", it followsfrom (t) that Zd was removed from T" before. This is only possible
if Vd f= Zd' When Zd was chosen, Vd had only one successor in T". Thus, the path between Zd and
Zb has been removed even sooner. This means that Zb had to be chosen before Za, a contradiction.
Since each edge of T' corresponds to a path in Ta(R) with at least the same length and all these
paths are disjoint, the spanning tree T' is not longer than Ta(R), and the observation folIows. 0

This observation can be extended to a test condition; for example, for any non-terminal Vi, the
weight of such a spanning tree minus the length of its longest edge plus d(Vi, zi,d + d(Vi, Zi,2) is a
lower bound for the weight of any Steiner minimal tree that contains Vi. The resulting test is very
fast: The network G' can be determined without much extra work while computing the Voronoi
regions, and a minimum spanning tree for it can be computed in time O(e + r log r).
For computing upper bounds in this context, we use a modified path heuristic with time O(e +
n logn), which is described in section 4.1. So, all these tests can be performed in time 0 (e+n logn);
we call this combined test VR (standing for VoronoiRegions). With a heuristic solution available,
all these tests can be easily extended to the case of equality of lower and upper bound. As, the
intuition suggests, the VR test is most effective for sparse networks with relatively few terminals;
in this sense, it is a nice complement to the alternative-based tests, which are often specially
successful if the proportion of terminals to all vertices is high. Besides, this test was the basis for
the development of the strong PRUNE-heuristics, which are presented in section 4.2.

13

3.2.2 Using Dual Ascent

The information provided by the algorithm DUAL-ASCENT (section 2.2.2), namely the lower
bound lower and the reduced costs can be used to design another bound-based reduction test. Here
we use an extremely simple, but very helpful observation, which we will exploit frequently later on:

Observation 3.9 Let G = (V,A,c) be a (directed) network (with a given set of terminals) and
C ::; c. Let lower' be a lower bound for the value of any (directed) Steiner tree in G' = (V, A, c')
with c' := C - C. For each x representing a feasible Steiner tree for G, it holds: lower' + cT x ::;cT X.
Proof: cTx = dTx + cTx ~ lower' + cTx. 0

Now consider the reduced costs provided by DUAL-ASCENT as c: One can readily observe that
the lower bound lower' provided by DUAL-ASCENT in G' is the same as lower. So for any x
representing a feasible (directed) Steiner tree T, lower + L[Vi,ViJEA CijXij represents a lower bound
on the weight of T.
This observation can be used to compute lower bounds for the value of an optimal Steiner tree under
certain assumptions, for example, that the tree contains a certain non-terminal. The resulting tests
are basically identical to the tests IRA and IRAe, which are introduced in [8], using a somewhat
more tedious argumentation.
Let Vk be a non-terminal, and T any optimal (directed) Steiner tree containing Vk, represented by
X. The lowerbound L[Vi,ViJEA CijXij on the weight ofT minus lower can be further estimated from
below by the length of a shortest path (with respect to the costs c) from the root to Vk plus the
length of an (arc-disjoint) shortest path from Vk to another terminal; and the last value can be again
estimated from below by the distance of Vk to its nearest terminal, as described in section 3.1.1.
The non-terminal Vk can be eliminated if this lower bound exceeds a known upper bound. Similar
tests can be developed for the elimination of edges and for the elimination of vertices after replacing
incident edges (as in NTDk). All these tests can be performed in time O(e +nlogn) after a run of
DUAL-ASCENT (and computation of an upper bound). With a heuristic solution available, these
tests can be easily extended to the case of equality. We call this collection of tests DA (standing
for Dual Ascent).
Handling with the Steiner problem in undirected networks, it is a good idea to try different terminals
as the root. Although the optimal value DLPc is independent of this choice, the value of the lower
bound provided by DUAL-ASCENT is not, and, much more important, different roots can lead
to the elimination of different parts of the network, even if the value of the lower bound does not
change. Trying a constant number (at most 10) of terminals as roots, we have gained a substantial
improvement in the effectiveness of this test. Notice also that each repetition profits from the
reductions achieved by the previous ones.

The test DA is very effective,and usually it is fast empirically.But the time bound O(a. min{a, rn})
(resulting from DUAL-ASCENT) is, in comparison to the time O(e + nlogn) of the other tests
hitherto presented, somewhat unsatisfactory, especially because the other parts of the test can
indeed be performed in time O(e + nlogn).
One can try to achieve a better time bound by using a faster dual ascent algorithm, even if the
provided lower bounds are worse: The tests described above use jointly the reduced costs and the
lower bound, and a worse lowerbound can be compensated to some degree by larger reduced costs.
One successful variant with running time O(e + n logn) uses the observation that it is possible to
increase many dual variables around a terminal at once.

Observation 3.10 Choose a terminal Zt E RI. Deflne d'(Vi) := min{d(vi,Zt),d(ZI,Zt)}. For all
Steiner cuts {W, W} set the dual variable Uw := max{O,minVi(tw{d'(vj)} - maxViEw{d'(vj)}}.
Then LW,[vo,vblEo-(W) Uw = max{O,d'(va) - d'(Vb)} ::; Cab for all edges [Va, Vb] E A.
Proof: Let VI, V2, ..• , Vn be the vertices of V sorted by their distances to Zt in ascending order.
Consider aSteiner cut {W, W}. Obviously Uw = max{O,d'(Vh) - d'(Vi)} for h = min{j I Vj fj.
W}, i = max{j I Vj E W}. If there are two vertices Vh and Vi with h < i,Vh fj. W, and Vi E W,

14

then Uw = O.So if Uw > 0, there must be a vertex Vk with VI E W for all I ~ k and VI ~ W for all
I> ki so we can denote W by Wk: Wk = {VI,'" ,vdi UWk = d'(Vk+d - d'(Vk).
For any edge [Va, Vb] we have: LW,[va,vblEä-(W) Uw = Lb<k<a UWk = Lb<k<a(d'(Vk+d
d' (Vk)) = max{O,d'(va) - d'(Vb)} = max{O,min{d(va, Zt), d(ZI~Zt)} - min{d(Vb, Zt), d(ZI, Zt)}} <
max{O,min{Cab+ d(Vb, Zt), d(ZI, Zt) + Cab} - min{d(Vb, Zt), d(ZI, Zt)}} = Cab. 0

It followsimmediately that U is feasible for DLPc.
Since the dual variables U are not used explicitly in the reduction process, it is suffident to work
with the reduced costs and the calculated lower boundi so the updating process for one terminal
can be performed very fast, because wejust need a shortest paths tree rooted at Zt which spans ZI.

Then the reduced costs for an edge (Va, Vb] are decreased by max{O,d'(va) - d'(Vb)} and the lower
bound is increased appropriately. After each such updating there may still be terminals that are
not reachable from the root by edges of zero reduced cost, so the updating can be repeated with
other terminals, but then with respect to the remaining reduced costs. We guide this calculation by
the structure of a heuristic solution: The terminals are sorted according to non-decreasing distances
from the root in this solution and considered one at a time.
Note that using this method, an edge can be visited by several terminals. To limit the effort, we
simply abort the calculation of a shortest paths tree if it reaches a vertex which has already been
visited by 5 terminals. This way, the running time for setting the lower bound and reduced costs is
O(e + n logn). The other operations of the test can be performed in the same time, as described
before. To construct a heuristic solution, we use a heuristic described in section 4.1, which has the
same running time. So the whole test can be performed in total time O(e + nlogn). We call this
test LDA (Limited Dual Ascent). Despite its very small (worst case) time, it is fairly effective,
especially if the proportion of terminals to all vertices is not very high.

The modification above aimed at making the reduction technique based on reduced costs faster.
A legitimate question is if it is possible to make that technique stronger. Using a combination of
DUAL-ASCENT and the Lagrangean relaxation of the multicommodity £lowformulation (which
was brie£lydescribed in section 2.2.2), in [20]we devised a reduction method using a sensitivity
analysis on Lagrangean multipliers, which can also be used in combination with the row generating
strategy. Although the resulting test is sometimes quite effective,its details are rather lengthy and
technical, so we dedded not to include it in this article, and consequently did not use it for the
results reported here.

3.2.3 Using the Row Generation Strategy

Every iteration of the row generation method described in section 2.2.2 provides a dual feasible
solution for LPc (or LPc plus the additional constraints (3.1)) and appropriate reduced costs.
Using this information, the same reduction techniques as described in section 3.2.2 can be used.
The only enhancement here is that edgesare allowedto be deleted even in one direction temporarily.
Note that this can amplify the effect of subsequent reductions considerably. In the linear program
itself, the deletion of edges is realized by fixing the corresponding variables to zero.
In many cases the mentioned reductions during the row generation make further alternative-based
reductions possible. But it would be a bad idea to delay these reductions until the row generation
terminates, because they could possibly accelerate the computation and raise the optimal value
of the relaxation. On the other hand, it would be problematic to abort the row generation, do
the alternative-based reductions andthen start it again, because the constraints generated in the
meantime could not be used (directly) anymore. Our approach for dealing with this problem is to
perform alternative-based reductions in an undirected copy of the current directed instance (which
is not necessarilybidirected). After that, the reduced undirected instance is translated back into a
directed instance, with the performed reductions translated into fixing of variables.
We call the wholereduction method RG (for Row Generation).

15

3.3 Integration and Implementation of Tests

To study the effect of different combinations and orderings of the tests, we designed an interpreter
for command-lines, where each test is encoded by a character. We also implemented a direct control
of loops (through parentheses), their termination criteria, switching of parameters, etc. The main
observation is that the (alternative-based) tests are not very sensitive to the order in which they
are executed. On the other hand, the ordering has often an impact on the total time for reductionsj
in this sense the ordering cited in [15]is a suitable one (although not necessarily the only one, as
long as a fast version of PTm is performed first).
For the implementation, wehave chosen a kind of adjacency-list representation of networks (with all
edges in a single array), but we sometimes switch to other auxiliary representations (all linear in the
number of edges) for certain operations. For each test, we perform all actions in a single pass (and
do not, for example, delete an edge and start the test from scratch). The details of the realization
of the various actions are very technical and are omitted here; we merely mention that all actions
followingeach test can be realized in a time dominated by the worst case time 0 (e+ n logn) of the
fast tests.
With the additional postulation that in each loop of the selected tests a constant proportion (say
5%) of vertices and edges must be eliminated and that instances of trivially small size are solved
directly (by enumeration), one gets the same asymptotical time bound for the whole reduction
process as for the first iteration (O(e + n logn), if one confinesoneself to the fast tests).
Another technical aspect is the efficient reconstruction of a solution for the original instance out of
a solution for the reduced instance (which often consists of a single terminal). Saving appropriate
information during the reduction process, this can be done in time O(e). We always perform such
a transformation after each run of the program, checking the feasibility and value of the solution in
the original instance.

3.4 Empirical Results

In this subsection, we present some empirical results on the larger instances of the OR-Library for
a packet ofreduction techniques with the worst case time O(e+nlogn), namely PTm, NTDk, NV,
SL, VR and LDA. Using the same argument as in the previous subsection, the same time bound
can be given for the whole reduction process. Of course even more reduction could be achieved
using the other techniques in addition, especially those explicitly workingwith relaxations (like DA
and RG), but such a packet would have rather the character of an exact algorithm (and actually
it solves almost all instances of the OR-Library to optimality), so such results are reported in the
section 5 (exact algorithms). The results given here should underline the applicability of reductions
in fast heuristics, a subject which we will elaborate in the next section.
A stroke in the tables means that the instance has been solved to optimality by the reductions .

instance original alze •ize after reductions time

" r . " r . remalnlng e gel!!an ~ (in IIce.)

D1 1000 5 1250 0 0.1
D2 1000 10 1250 0 0.1
D3 1000 167 1250 0 0.1
D4 1000 250 1250 0 0.1
D5 1000 500 12 0 0 0.1
D6 1000 5 2000 0 0.1
D7 1000 10 2000 0 0.1
D8 1000 1.67 2000 140 63 I 230 11.5 0.1
D9 1000 250 2000 0 0.1
D10 1000 00 2000 0 0.1
DU 1000 5 5000 0 0.1
D12 1000 0 5000 0 0.1
D13 1000 167 5000 0 0.1
D14 1000 250 5000 0 0.1
D15 1000 500 5000 0 0.1
D16 1000 5 25000 0 O.
D17 1000 10 25000 0 0.3
DU 1000 167 25000 807 94 2430 9.7 0.3
D19 1000 250 25000 692 96 2017 8.1 0.4
D20 1000 500 25000 0 0.1

average: I 1.5 11 0.14

Table 1: Results of a fast reduction packet (OR-Library, D-instances)

16

in.tance original .ize eise after reductione time
n ~ . n ~ . remalnlng e gell In 70 (in sec.)

E1 2500 5 3125 0 0.1
E2 2500 10 3125 0 0.1
E3 2500 417 3125 91 I 56 139 4.4 0.1
E4 2500 625 3125 0 0.1
E5 2500 1250 3125 0 0.3
E6 2500 5 5000 0 0.2
E7 2500 10 5000 0 0.6
E8 2500 417 5000 359 I 144 618 12.3 0.3
E9 2500 625 5000 150 I 82 234 4.7 0.2
E10 2500 1250 5000 0 0.5
E11 2500 5 12500 0 0.6
E12 2500 10 12500 0 0.7
E13 2500 417 12500 608 I 189 1078 8.6 0.6
E14 2500 625 12500 0 0.3
E15 2500 1250 12500 0 0.5
E16 2500 5 62500 0 0.9
E17 2500 10 62500 0 1.1
E18 2500 417 62500 2031 I 247 6028 9.6 1.1
E19 2500 625 62500 1110 171 2867 4.6 1.2
E20 2500 1250 62500 0 0.6

average. I 2.2 0.54

Table 2: Results of a fast reduction packet (OR-Library, E-instances)

4 Upper Bounds

We have developed a variety of heuristics for obtaining upper bounds. Especially in the context of
exact algorithms, very sharp upper bounds are higWy desired. So, our main concern was achieving
very strong bounds, reaching the optimum as often as possible. On the other hand, the goal of
obtaining short total empirical running times prohibited us from using heuristics which achieve
good solution values only after long runs. In this section, we describe some of the methods we used
in our attempt to achieve both goals simultaneously.

4.1 Path Heuristics

The repetitive shortest paths heuristics belong to the empirically most successful classical heuristics
for the Steiner problem in networks ([15]' [27]' [25]). But naive implementation of these heuristics
(simply starting SPH from scratch every time) leads to intolerable running times. So, as a first
step, we designed an empirically efficient realization of such a heuristic and also a modified version
which guarantees short running times. We contrived these variants only as components of our other
algorithms, not as standalone heuristics.
Studying a repetitive shortest paths heuristic such as SPH-V [15] one readily observes that the
actions can be divided into two phases (see also [8, 11]): In the first phase, one can compute
shortest paths from each terminal to all vertices; this can be done e.g. in O(r(e + nlogn)). Using
the information from the first phase, each run of the SPH in the second phase (constructing a
Steiner tree by successively connecting the current tree (a single vertex at the beginning) to the
dosest terminal not in the tree by a shortest path) can easily be realized in time O(rn). Our concern
here is achieving further empirical acceleration.
With regard to the first phase, we observe that the shortest paths need not be always computed
completely:

Observation 4.1 Let P be a shortest path between a terminal z and avertex v, such that there is
a vertex v' on P with z' := base(v') # z and d(z, z') ~ d(z, v). H v, but not z, belongs to the current
tree T in the second phase, there exists at least one other path connecting T to a terminal not in
T which is not longer than P. So, when computing shortest paths from z, we need not consider v
and any vertex which would become a successor of v in the shortest paths tree.
Proof: There are two cases:
I) z' E T: Since d(z,z') ~ d(z,v), we can choose the path between z' and z.
II) z' ~ T: Since d(z', v) ~ d(z', v') + d(v', v) ~ d(z, v') + d(v', v) = d(z, v), we can choose the path
between v and z'. 0

17

As a consequence, one can stop computing the shortest paths tree from a terminal z in the first
phase as soon as the Voronoi region of z and the neighboring terminals (as defined in 1.1) have
been spanned, because the shortest path between z and every vertex v visited afterwards contains
a vertex Vi E N (z') with z' a neighbor of z and d(Z, Zl) ~ d(z, v), since z' has already been spanned
by the shortest paths tree. Furthermore, no shortest path via an intermediary terminal needs to
be considered. These observations often lead to a considerable reduction in the empirical times,
especially if the graph has many terminals and is not dense (the latter is almost always the case
after reductions). Note that for graphs with few terminals, repetitive SPH is fast anyway.
For building the Steiner trees in the second phase, we prefer a realization which uses the concept
of neighborhoods: Using the information from the first phase, we manage for each vertex v a list of
neighboring terminals, sorted by (increasing) distances to v. A priority queue manages candidates
for expansion of the tree, using the distance to the nearest terminal not in the tree as the key
for insertion. Each time a vertex v is extracted from the queue, two cases can arise: Either the
terminal corresponding to the key is not yet in the tree, in this case the tree is expanded by the
corresponding shortest path (and the queue is updated)j or it is already in the tree, in this case the
neighbor list of v is scanned further until either a terminal not in the tree is visited (which delivers
the key for reinsertion of v into the queue) or the end of the list is reached (meaning that v can be
ignored). Although the worst case time ofthis implementation (O(rnlogn)) is slightly worse than
O(rn) of the straightforward implementations, it is usually much faster, and the worst case time is
dominated by the first phase anyway.

In situations wher.ethe worst case time is the primary concern, we used a strengthening of the ideas
above to design a heuristic with time O(e+n logn). Motivated by the fact that the for SPH relevant
vicinity of each terminal often gets smaller with growing number of terminals, one can simply force
the first phase not to perform more than O(e + n logn) operations. But then it is not guaranteed
anymore that the relevant neighborhood of each terminal is really captured. To remedy this defect,
we simultaneously use the graph G' of Mehlhorn's fast implementation of DNH [15, 19]' which we
also compute in the first phase. In addition to the priority queue described above, a second priority
queue, offeringexpansion of the current tree through edges of G', is managed in the second phase.
For each expansion, the better offer is accepted and both queues are updated appropriately.
The information gained in the first phase can be used more economically if not only one, but a
(constant) number (say at most ten) of Steiner trees are computed in the second phase, using
different terminals as starting points.
This heuristic can be implemented with time O(e + nlogn) and guarantees a performance ratio
of 2. Although it was designed only to be used as a component of other algorithms (especially in
combination with reductions), it yields reasonable results even on its own: For the D-instances of
the OR-Library, the average gap from optimum is just 1.6%, much better than the 5% of DNH.
The average running time of 0,2 seconds for these instances shows that this improvement is not
paid with long running times.

4.2 Heuristic Reductions

Working with reductions, one often gets the impression that some of the tests are too cautious.
Sometimes one has nice ideas for strengthening a test, which turn out to be not universally valid. Of
course even the strangest exception is enough to make a reduction test completely useless for (direct)
integration into an exact algorithm. But with respect to heuristics, the situation is fundamentally
different: Here a much stronger orientation towards the frequent case can be adopted.
The idea used here is to support the normal (exact) reduction tests through some heuristic ones.
It must be emphasized that the goal is not reducing the graphs by brute force, but only giving an
impulse in situations where the exact reduction process is blocked, in order to activate it again. In
this context, it is particularly advantageous if it can be assumed that the performed actions could
have been carried out by a more powerful, but unknown exact test anyway.
A natural basis for such an approach is given by the test VR. This test is kept very cautious to

18

make a comprehensible proof possible. Furthermore, one observes readily that in case the used upper
bound is not optimal, the test could potentially perform more (exact) reductions if a better upper
bound were available. The idea is now to perform the usual actions of this test without an upper
bound each time the other tests are blocked. At each application, a certain proportion of vertices
is eliminated (directly or after replacing of incident edges) according to the same criteria as in the
exact version of the test (sum of distances to the next two or three terminals). Motivated by the
fact that for a large ratio r In the alternative-based reductions are very successful anyway and the
test VR is usually effective only for small rln, the proportion of the vertices being eliminated is a
function of n and r, getting smaller with growing r In.With the additional postulation that during
each application of the tests a constant percentage (say 5%) of vertices and edges is eliminated, the
asymptotical time for all iterations together is the same as for the first one, namely 0 (e+ n logn).
To make sure that the instance is not made infeasible by the heuristic reductions, we further forbid
direct elimination of vertices in the current tree Tb(R). The computation of Tb(R) yields also as a
side effect a guaranteed performance ratio of 2. We call this whole procedure PRUNE.
The idea of not eliminating the nodes of aSteiner tree can be further utilized by using a (good)
heuristic solution instead of Tb(R) for guiding the heuristic reductions. We use the implementation
of SPH-V described in section 4.1 (with a constant upper bound for the number of repetitions) for
this purpose, but any other good solution would do, too. On the other hand, we make the actions
of the heuristic reductions somewhat bolder, eliminating vertices only directly (without replacing
of incident edges). Note also that even Steiner nodes of the guiding heuristic solution may be
eliminated, but only by the exact tests; these tests are guaranteed not to deteriorate the optimum.
We call this variant of the PRUNE heuristic GUIDED-PRUNE.

4.3 Relaxations and Upper Bounds

Computing lower bounds is not the only motivation for dealing with relaxations; the gained infor-
mation can also be used (among other things) to obtain upper bounds.
Consider the (directed) cut formulation Pe of the Steiner problem: Given an optimal solution x
of its linear relaxation LPe, the complementary slackness conditions state that each edge [Vi, Vi]
with xii> 0 has zero reduced cost. Assuming that there is some similarity between some optimal
solutions of the integer program Pe and its linear relaxation LPe, its thoroughly motivated to
search an (optimal) solution in a subgraph containing the edges with reduced cost zero.
The algorithm DUAL-ASCENT, attempting to construct an optimal solution for DLPe, adjusts
the reduced costs favourably. So it is very natural to search for a solution in the set of edgeswhose
reduced costs are set to zero by this algorithm, an idea already used in [28, 25]. The auxiliary
graph to be searched for a good solution need not contain all these edges; we have experimented
with several schemesand gained the best overall results with a subgraph containing the (undirected
edges corresponding to) edges on zero-cost ways (with respect to reduced costs) from the root to
another terminal, although other variants are not inappropriate either.
Having chosen such an auxiliary graph, the key question is how to obtain an (optimal) solution for
the corresponding instance. The structure of such instances is very suitable for the application of
our PRUNE heuristics; in particular, there are often long chains of vertices which are replaced by
long edges through the NTD2 test, making other alternative-based reductions very effective; and
the heuristic reductions do the rest of the job. We call the whole procedure of doing fast reduc-
tions, calling DUAL-ASCENT, determining a subgraph and performing a PRUNE heuristic in the
subgraph ASCEND-AND-PRUNE.
Since we are working in a subgraph of G, the time bounds for the PRUNE heuristics (which are
dominated by the worst case time of DUAL-ASCENT) are guaranteed in any case. Empirically,
however, the PRUNE heuristics run extremely fast on the auxiliary graphs, so that this kind of
computation of upper bounds should be performed after each call to DUAL-ASCENT.
Although the empirical solution quality of this heuristic is striking, it still sometimes misses the
optimum. We found out that in almost all such cases the reason is simply that the auxiliary graph
does not contain an optimal solution (and not that the PRUNE heuristics do not find it). This ob-

19

servation suggests a supplementation of this heuristic: The Steiner tree found in the subgraph can be
used as the guiding solution for a call to GUIDED-PRUNE in the original graph. In the mentioned
cases, this approach often improves the solution value, leading frequently to the optimum.

By applying the idea of the PRUNE heuristics directly to the original graph, one can do without
the auxiliary graphs altogether. Let lower and e be the lower bound and the reduced cost vector
provided by DUAL-ASCENT and x an optimal solution of Pe with value optimum. The inequality
eT x ::;optimum-lower (seeobservation 3.9) strongly suggests that normally there can not be many
edges with large reduced costs in an optimal solution. This motivates another heuristic, SLACK-
PRUNE, which basically followsthe same scheme as GUIDED-PRUNE, but uses the criterion of
the test DA for eliminating vertices. The guiding solution is computed by a call of PRUNE in the
auxiliary graph described above, since the needed information is available after performing DUAL-
ASCENT anyway. The running time is dominated by the worst case time of DUAL-ASCENT.
Using the same arguments as in the case ofPRUNE, one gets the time bound O(e.min{e,nr}). But
in combination with reductions, the empirical times are much smaller than the above term could
suggest.

Like in DUAL-ASCENT, dual feasible solutions and corresponding reduced costs for LPe are
calculated during the row generating algorithm (section 2.2.2). This information can be used to
generate auxiliary graphs similar to those in ASCEND-AND-PRUNE. But in this case there are
not necessarily paths with reduced cost zero from the root to all terminals. The auxiliary graph
in this context contains all vertrces with the property that there is a path from the root over this
vertex to another terminal not longer (with respect to reduced costs) than the longest shortest path
from the root to another terminal. This auxiliary graph can be used as in ASCEND-AND-PRUNE.
A classical method for utilizing the information provided by linear relaxations is to use an ordinary
heuristic in the original network with modified edge costs <;j = Cij (1 - Xij) (where x is the primal
solution of the current linear program). But this is not a generally good idea, because the structure
of the primal solutions does not provide a good guide for a primal heuristic until the most advanced
stages of the row generating algorithm.
These latter approaches only work in combination with explicit solution of linear programs and are
therefore not suitable for fast, standalone heuristics. But as a complement to the row generating
strategy, they are frequently effective, especially in the advanced stages of the algorithm.

4.4 Combination of Steiner Trees

During the reduction process and especially while solving instances exactly, one usually gets several
distinct heuristic solutions. In general, it is not the best idea to simply keep the best solution and
forget the others. It is possible that solutions with a worse value are better locally, and one can try
to keep the best part of each solution.
We have developed several techniques for realizing the idea above. One simple and effective way
is to consider the graph consisting of the union of the edge sets of two (or more) Steiner trees. In
this graph, one can call a (powerful) heuristic again or even try an exact solution. Such graphs
have frequently several (nontrivial) biconnected components, which makes the (exact) solution
considerably faster. Using such schemes, we frequently get improvements in solution values (as
far as they were not optimal anyway). The instances generated through such combinations (in
the following called combination-instances) are almost always solved to optimality through (fast)
reductions, so that these improvements are gained at no significant extra cost.
For the results reported in this paper, we simply call a PRUNE heuristic in such combination-
instances; in particular, in the context of the heuristic SLACK-PRUNE we call the same heuristic
(only without combinations) again in each combination-instance.

20

4.5 Empirical Results

In this subsection, we present some empirical results for a selection of our heuristics on the large
instances of the OR-Library. These are all heuristics with a worst case time describable by a poly-
nomial of loworder, as explained in the previous subsections. We leave it to the reader to compare
the empirical running times and solution qualities given below to those of other heuristics in the
literat ure (for good results see [8, 11, 12, 23]).
In the table 3, the average gap from optimum (in %) and the average running time (in seconds) are
given.

algorithm D-instances E-instances
gap (%) time (sec.) gap (%) time (sec.)

PRUNE 0.11 0.3 0.46 1.2
GUIDED-PRUNE 0.08 0.2 0.13 0.9
ASCEND-AND-PRUNE 0 0.2 0.07 0.6
SLACK-PRUNE 0 0.3 0 2.8

Table 3: Results of the PRUNE heuristics on the large instances of the OR-Library

5 An Exact Algorithm

In this section we describe the synthesis of an exact algorithm from the components described in
the previous sections.

5.1 Interaction of the Components

A central feature of our exact algorithm is that the various components (reduction tests, lower
bounds and upper bounds) do not act independently of each other, as described in detail in previous
sections: The bound-based reductions depend on upper and lower bounds; and the computation of
upper and lower bounds profits from reductions, both in terms of running time and quality of
results. The idea behind reduction tests is also the central part of the reduction-based heuristics
for computing upper bounds. Further we use the structure of heuristic solutions (corresponding
to good upper bounds) to guide the computation of lower bounds; and the information gained
during the computation of lower bounds is used to guide the computation of upper bounds. All in
all, there is a mutual dependence between the three major components: reductions, upper bounds,
and lower bounds. This is not a drawback, but an advantage: The scenario is that performing
(alternative-based) reductions accelerates the computation ofupper and lower bounds and enhances
their qualities; the information gained during the computation of bounds is used to reduce the
instance further (using bound-based reductions), and then the whole pattern repeats. We call this
wholeprocess the reduction process, beginning with fast reductions and switching to more and more
powerfulones as the process advances. This strategy is not only a major reason for the short solution
times our algorithm very often achieves, but also allowssolving instances which we could not solve
in a reasonable time otherwise. Note especially that the value of the lower bound corresponding
to a certain relaxation can be enhanced through reductions; this helps to solve instances which
otherwise could not be solved (without branching) using the same techniques for computing upper
and lowerbounds.
For the empirical results given in this paper, weuse the followingcomponents: For computing lower
bounds, we use the relaxation LPc (see section 2.1) through the algorithm DUAL-ASCENT and,
in advanced stages, row generation (section 2.2.2) or, if the proportion of terminals to all vertices is
high, the Lagrangean relaxation LaPTo (section 2.2.1). To reduce the instances, we use all described

21

alternative-based techniques (section 3.1). Besides, we use the bound-based techniques DA (section
3.2.2) and, in combination with row-generation, the test RG (section 3.2.3). For computing upper
bounds we use our PRUNE heuristics (sections 4.2, 4.3), including the combination of Steiner trees
(section 4.4). As described above, the fast methods are applied first, with switching to more time-
consuming ones only if an instance has not already been solved to optimality. Apart from this
general principle, the exact ordering of the components has usually not been critica1.

5.2 Branch-and-Bound

The reduction process described in the previous subsection is an extremely powerful device, but it
is not guaranteed to solve every instance of the problem. To get an exact algorithm, we integrate it
into a branch-and-bound framework. But one should not be misled by the name branch-and-bound:
Branching is something we generally (and often successfully) try to avoid, it is only a safety net in
case the reduction process is blocked. This also means that we invest a lot of work in each node
of the branch-and-bound tree to keep the tree small, and do not try to gain speed by limiting the
work in each node.
We use binary, vertex-oriented forward branching. Both depth-first and best-first search strategies
are available in our implementation, with best-first as default, even though this strategy is more
memory-consuming: There are usually not many nodes in our branch-and-bound trees anyway;
moreover, only the currently processed node needs to be kept in the main memory.
As the branching variable, we choose the non-terminal with the largest degree in the best available
Steiner tree. The intuitive motivation for this choice is an intensification of the search in an area
where a good solution has been found (in case of inclusion) and a diversification of the search to other
areas (in case of exclusion). This strategy also supports the building of several blocks (biconnected
components). It is known [15] that in case several blocks exist, the problem can be solved by solving
the instances corresponding to each intermediate block separately, which generally reduces the total
running time substantially. Although it usually cannot be assumed that the original instance is not
biconnected, this often changes later during the reduction process and after branching. We use
this fact frequently in our algorithms: Whenever a more time-consuming part is to be performed,
we check whether the graph is biconnected. H this is not the case, we solve the corresponding
subinstances separately and transform the gained information back to information for the original
instance. Here one can use the following observation to identify the blocks which must be considered:

Observation 5.1 Let T be aSteiner tree with allleaves being terminals in a network G. A block
of G is intermediate if and only if it contains an edge of T.
Proof: For a block B to be intermediate, there must be two terminals Zk and Zl such that every
path between Zk and Zl contains an edge in B. Hence, every Steiner tree must contain an edge in
B. Conversely, consider aSteiner tree T with all leaves being terminals that contains an edge in a
block B. So there are two terminals Zk and Zl such that at least one path between Zk and Zl contains
an edge in B. H Zk (or Zl) is in B and it is not an articulation point, B is obviously intermediate.
Otherwise there must be two articulation points Vi and Vj of B such that a path between Zk and
Vi and a path between Vj and Zl contain no edge in B. Now suppose B is not intermediate. Then
there is a path between Zk and Zl that does not contain an edge in B. Hence, there is also a path
between Vi and Vj that has no edge in B, which contradicts the definition of B as a biconnected
component. 0

5.3 Empirical Results

Here we report on what the already presented components achieve together, acting as an "orchestra" .
As stated in section 1.2, results for different types of instances from the benchmark SteinLib are
presented, including the instances of the OR-Library. All results are produced by a single run of the

22

•

same program with the same parameter values. For each instance, we give the number of nodes in
the branch-and-bound tree (B) and the total time till the exact solution of the instance (see tables
5-9 on pages 24-25). We set a time limit of one hour on each run. Within this time, we have solved
almost all considered instances, including many which (to our knowledge) have not been soIved
before. Indeed, the largest time our program needed for a previously solved instance in these sets
has been 74 seconds (for E18 of the OR-Library). Only six instances have not been soIved within
one hour (see table 9); for these instances we give the gap (in percent) between the upper and the
lower bound after one hour. Two of them couId be solved allowing longer runs; for them we give
the time for the exact solution in brackets (although optimal Steiner trees were found already in
less than one hour). The other four could not be solved even in one day.
Again, we leave it mainly to the reader to compare the given running times to those of other exact
algorithms in the literature (see for example [3, 5, 7, 8, 17]). As an orientation, we compare the
average times (in seconds) of this algorithm for the exact solution of the 0R-Library instances (these
are the only instances used by the majority of the authors) to those of other exact algorithms in
the literature (table 4). Note that the differencesin the speed of the used computers almost vanish
when compared to the differences between the running times of our algorithm and the other ones.

instance- [3] [5] [7] [8] [17] here
group Cray X-MP SG Indigo VAX8700 i486 Sun Sparc 20 Pentium-II
C 67 2946 3066 16 16 0.2
D 556 3545 14260 176 117 0.3
E* - - 31504 - 1020 1.4

Table 4: Results of different exact algorithms on the instances of the OR-Library

6 Concluding Remarks

We have presented several algorithmic contributions for solving the Steiner problem in networks.
The empirical results strongly recommend the chosen approach based on reductions and underline
the utility of the techniques presented in this paper. In particular, the reduction-based heuristics
have proven to be extremely strong and robust. Also, the running times of the exact algorithm are
often surprisingly small; and for many instances, there is not much room left for improvements. But
this is not always the case:
On some instances, fast reductions come to a halt at a time when the used relaxations are still
not strong enoughj this is the case for some of the mc-instances (table 6 on page 24), where the
algorithm has gone into branching to solve the instances exactly. But the results on the other groups
of instances seem to indicate that such cases rarely arise naturally.
And there are of course the very large instances, like those VLSI-instances with more than 30000
vertices (see table 9 on page 25). Even for these instances, the methods in this paper are capable of
producing fairly good resuIts quite quickly (gaps of 2-4% between upper and lower bounds in 1-3
minutes). But if such instances have to be solved exactly, methods like row generation come to their
current limits, because even linear programs with a number of variables or constraints linear in the
number of vertices seem to be too large then to allow small running times. A natural approach for a
faster utilization of relaxations would be improving DUAL-ASCENT further; but our investigations
indicate that not much further progress is possible using heuristical criteria, and some basically new
ideas have to be developed.
In the short term, considerable empirical progress (at least for some groups of instances) could
be probably achieved by developing further reduction techniques. For some VLSI-instances, an
approach like that used in [26] for Euclidean and rectilinear Steiner problems can prove to be
fruitful.

Aeknowledgement: We would like to thank the referees for their comments.

*Excluding E18. This instance has been only solved by [17J(68000 seconds) and by us (74 seconds).

23

I instance I sille~ ~Itime
~(in8ec.)

Table 7: SteinLib, p-instances

p401 100 5 4950 155 1 0.03
p402 100 5 4950 ll6 1 0.02
p403 100 5 4950 179 1 0.03
p404 100 10 4950 270 1 0.01
p405 100 10 4950 270 1 0.03
p406 100 10 4950 290 1 0.02
p407 100 20 4950 590 1 0.04
p408 100 20 4950 542 1 0.03
p409 100 50 4950 963 1 0.02
p410 100 50 4950 1010 1 0.01
p455 100 5 4960 1138 1 0.06
p466 100 5 4950 1228 1 0.13
p457 100 10 4950 1609 1 0.03
p458 100 10 4950 1868 1 0.05
p459 100 20 4950 2345 1 0.04
p460 100 20 4950 2959 1 0.05
p461 100 50 4950 4474 1 0.04
p601 100 5 180 10230 1 0.02
p602 100 5 180 8083 1 0.01
p603 100 5 180 5022 1 0.01
p604 100 10 180 11397 1 0.01
p605 100 10 180 10355 1 0.01
p606 100 10 180 13048 1 0.01
p607 100 20 180 15358 1 0.01
p608 100 20 180 14439 1 0.01
p609 100 20 180 18263 1 0.01
p610 100 50 180 30161 1 0.01
p611 100 50 180 26903 1 0.01
p612 100 50 180 30258 1 0.01
p613 200 10 370 18429 1 0.03
p614 200 20 370 27276 1 0.03
p615 200 40 370 42474 1 0.03
p616 200 100 370 62263 1 0.02
p619 100 5 -180 7485 1 0.01
p620 100 5 180 8746 1 0.01
p621 100 5 180 8688 1 0.01
p622 100 10 180 15972 1 0.01
p623 100 10 180 19496 1 0.02
p624 100 20 180 20246 1 0.01
p625 100 20 180 23078 1 0.02
p626 100 20 180 22346 1 0.02
p627 100 50 180 40647 1 0.01
p628 100 50 180 40008 1 0.01
p629 100 50 180 43287 1 0.01
p630 200 10 370 26125 1 0.01
p631 200 20 370 39067 1 0.02
p632 200 40 370 56217 1 0.75
p633 200 100 370 86268 1 0.01

COl 500 5 625 85 1 0.01
C02 500 10 625 144 1 0.01
C03 500 83 625 754 1 0.01
C04 500 125 625 1079 1 0.02
C05 500 250 625 1579 1 0.02
C06 500 5 1000 55 1 0.03
C07 500 10 1000 102 1 0.03
C08 500 83 1000 509 1 0.04
C09 500 125 1000 707 1 0.06
Cl0 500 250 1000 1093 1 0.03
Cll 500 5 2500 32 1 0.06
C12 500 10 2500 46 1 0.04
C13 500 83 2500 258 1 0.10
C14 500 125 2500 323 1 0.04
C15 500 250 2500 556 1 0.03
C16 500 5 12500 II 1 0.10
C17 500 10 12500 18 1 0.08
C18 500 83 12500 ll3 1 2.99
C19 500 125 12500 146 1 0.16
C20 500 250 12500 267 1 0.06
001 1000 5 1250 106 1 0.03
002 1000 10 1250 220 1 0.02
003 1000 167 1250 1565 1 0.04
004 1000 250 1250 1935 1 0.06
005 1000 500 1250 3250 1 0.06
006 1000 5 2000 67 1 0.08
007 1000 10 2000 103 1 0.05
008 1000 167 2000 1072 1 0.19
009 1000 250 2000 1448 1 0.12
010 1000 500 2000 2110 1 0.12
Oll 1000 5 5000 29 1 0.08
012 1000 10 5000 42 1 0.08
013 1000 167 5000 500 1 0.14
014 1000 250 5000 667 1 0.13
015 1000 500 5000 1116 1 O.ll
016 1000 5 25000 13 1 0.26
017 1000 10 25000 23 1 0.21
018 1000 167 25000 223 1 1.90
019 1000 250 25000 310 1 1.55
020 1000 500 25000 537 1 0.18
EOl 2500 5 3125 III 1 0.07
E02 2500 10 3125 214 1 0.07
E03 2500 417 3125 4013 1 0.26
E04 2500 625 3125 5101 1 0.24
E05 2500 1250 3125 8128 1 0.45
E06 2500 5 5000 73 1 0.17
E07 2500 10 5000 145 1 0.16
E08 2500 417 5000 2640 1 0.53
E09 2500 625 5000 3604 1 0.51
E10 2500 1250 5000 5600 1 0.71
Ell 2500 5 12500 34 1 0.25
E12 2500 10 12500 67 1 0.61
E13 2500 417 12500 1280 1 4.34
E14 2500 625 12500 1732' 1 0.80
E15 2500 1250 12500 2784. 1 0.68
E16 2500 5 62500 15 1 0.71
E17 2500 10 62500 25 1 0.64
E18 2500 417 62500 564 1 74.1
E19 2500 625 62500 758 1 14.0
E20 2500 1250 62500 1342 1 0.71

Table 5: Instances of the OR-Library

I lnstance I eise ~Itime
~(in ••ec)

Table 6: SteinLib, mc-instances

mc2 120 60 7140 71 23 8.89
mc3 97 45 4656 47 25 16.2
mc7 400 170 760 3417 1 0.05
mc8 400 188 760 1566 1 0.10
mc11 400 213 760 ll689 1 0.04
mc13 150 80 ll175 92 8 11.7

Table 8: SteinLib, complete Euclidean

time
(in sec)

sizeI instance I

24

I inl!ltance I size
I r

~time
~(insec.)

gap1307 342 17 552 549 1 0.03
gap1413 541 10 906 457 1 0.04
gap1500 220 17 374 254 1 0.02
gap1810 429 17 702 482 1 0.06
gap1904 735 21 1256 763 1 0.11
gap2007 2039 17 3548 1104 1 1.26
gap2119 1724 29 2975 1244 1 0.24
gap2740 1196 14 2084 745 1 0.13
gap2800 386 12 653 386 1 0.03
gap2975 179 10 293 245 1 0.01
gap3036 346 13 583 457 1 0.11
gap3100 921 11 1558 640 1 0.09
gap3128 10393 104 18043 4292 1 23.3

diw0234 5349 25 10086 1996 1 1.57
diw0250 353 11 608 350 1 0.01
diw0260 539 12 985 468 1 0.02
diw0313 468 14 822 397 1 0.01
diw0393 212 11 381 302 1 0.01
diw0445 1804 33 3311 1363 1 0.29
diw0459 3636 25 6789 1362 1 0.99
diw0460 339 13 579 345 1 0.03
diw0413 2213 25 4135 1098 1 0.30
diw0481 2414 25 4386 1424 1 0.29
diw0495 938 10 1655 616 1 0.06
diw0613 918 10 1684 604 1 0.08
diw0523 1080 10 2015 561 1 0.04
diw0540 286 10 465 374 1 0.01
diw0559 3738 18 7013 1570 1 5.35
diw0118 7231 24 13727 2173 1 3.17
diw0119 11821 50 22516 4440 1 1298
diw0195 3221 10 5938 1550 1 0.90
diw0801 3023 10 5575 1587 1 0.59
diw0819 10553 32 20066 3399 1 2.56
diwOS20 11749 37 22384 4167 1 159

I instance I l!Iize
r

~time
~(insec)

I in8tance size time
(in sec)

dmxa02ge 233 12 386 344 1 0.02
dmxa0368 2050 18 3676 1017 1 1.12
dmxa0464 1848 16 3286 914 1 0.24
dmxa0628 169 10 280 275 1 0.02
dmxa0734 663 11 1154 506 1 0.06
dmxa0848 499 16 861 594 1 0.06
dmxa0903 632 10 1087 580 1 0.92
dmxa1010 3983 23 7108 1488 1 1.19
dmxal109 343 17 559 454 1 0.04
dmxa1200 770 21 1383 750 1 0.29
dmxa1304 298 10 503 311 1 0.03
dmxa1516 720 11 1269 508 1 0.08
dmxa1721 1005 18 1731 780 1 0.15
dmxalS01 2333 17 4137 1365 1 0.85

msm0580 338 11 541 467 1 0.08
msm06S4 1290 10 2270 823 1 0.16
msm0109 1442 16 2403 884 1 0.18
msm0920 752 26 1264 806 1 0.32
msm1008 402 11 695 494 1 0.17
msm1234 933 13 1632 550 1 0.10
msm1477 1199 31 2078 1068 1 0.20
msm1701 278 11 478 564 1 0.02
mam1844 90 10 135 188 1 0.01
msm1931 875 10 1522 604 1 0.10
insm2000 898 10 1562 594 1 0.09
msm2152 2132 37 3702 1590 1 0.55
msm2326 418 14 723 399 1 0.04
msm2492 4045 12 7094 1459 1 3.24
msrn2525 3031 12 5239 1290 1 0.47
msm2601 2961 16 5100 1440 1 1.69
msm2105 1359 13 2458 714 1 0.14
msm2S02 1709 18 2963 926 1 0.24
msm2846 3263 89 5783 3135 1 292
msm3217 1704 12 2991 869 1 0.27
msm3676 957 10 1554 607 1 0.11
msm3727 4640 21 8255 1376 1 1.02
mllrn3829 4221 12 7255 1571 1 4.56
msm4038 237 11 390 353 1 0.03
msm4114 402 16 690 393 1 0.04
mllm4190 391 16 666 381 1 0.03
rnllm4224 191 11 302 311 1 0.01
rnllm4312 5181 10 8893 2016 1 10.6
rnllrn4414 317 11 476 408 1 0.03
msm4S15 777 13 1358 630 1 0.10

instance size opt.
~

time
(ln sec.)

alue2087 1244 34 1971 1049 0.18
alue2105 1220 34 1858 1032 0.26
alue3146 3626 64 5869 2240 22.5
alue5067 3524 68 5560 2586 10.3
alue5346 5179 68 8165 3507 1136
alue5623 4472 68 6938 3413 1298
alue5901 11543 68 18429 3912 653
II.Iue6179 3372 67 5213 2452 4.17
II.Iue6457 3932 68 6137 3057 4.49
II.lue6135 4119 68 6696 2696 18.8
alue69S1 2818 67 4419 2386 22.1
alue7065 34046 544 54841 ::;23905 1.• %
alue7066 6405 16 10454 2256 1666
alue70S0 34479 2344 55494 ::;62553 1.9% !
alue7229 940 34 1414 824 0.10

instance sise
~

opt. ~I time
(in sec.)

alut0787 1160 34 2089 982 0.11
alut0806 966 34 1666 958 1.79
alut1181 3041 64 5693 2353 358
alut2010 6104 68 11011 3307 29.1
alut2288 9070 68 16595 3843 1078
alut2566 5021 68 9055 3073 604
alut2610 33901 204 62816 ::;12280 3.8%
alut2625 36711 879 68117 ::;35583 3.7% !
alut2764 387 34 626 640 0.01

instance size
~

time
r (in sec.)

taqOO14 6466 128 11046 5326 1 1556
taq0023 572 11 963 621 1 0.14
taq0365 4186 22 7074 1914 1 2.77
taq0317 6836 136 11715 6393 1 0.9% (6486)
taq0431 1128 13 1905 897 1 0.13
taq0631 609 10 932 581 1 0.07
taq0139 837 16 1438 848 1 0.53
taq0141 712 16 1217 847 1 0.41
taq0751 1051 16 1791 939 1 0.31
taq0891 331 10 560 319 1 0.01
taq0903 6163 130 10490 5099 1 1.,% (16056)
taq0910 310 17 514 370 1 0.02
taq0920 122 17 194 210 1 0.01
taq0978 777 10 1239 566 1 0.07

I instance l!Iize
r

~time
~(inl!lec)

Table 9: SteinLib, VLSI-instances

~Due to the memory requirements, we had to use a pe with 256 MB of main memory and a Pentium-II 450 MHz
processor for these two instances.

25

References
[1] Y. P. Aneja. An integer linear programming approach to the Steiner problem in graphs. Networks,

10:167-178, 1980.
[2] J. E. Beasley. An algorithm for the Steiner problem in graphs. Networks, 14:147-159, 1984.
[3] J. E. Beasley. An SST-based algorithm for the Steiner problem in graphs. Networks, 19:1-16, 1989.
[4] J. E. Beasley. OR-Library. http://graph.ms.ic.ac.uk/info.html, 1990.
[5] J. E. Beasley and A. Lucena. A branch and cut algorithm for the Steiner problem in graphs. Networks,

31:39-59, 1998.
[6] B. V. Cherkassky and A. V. Goldberg. On implementing the push-relabel method for the maximum

flow problem. Algorithmica, 19:390-410, 1997.
[7] S. Chopra, E. R. Gorres, and M. R. Raa. Solving the Steiner tree problem on a graph using branch

and cut. ORSA Journal on Computing, 4:320-335, 1992.
[8] C. W. Duin. Steiner's Problem in Graphs. PhD thesis, Amsterdam University, 1993.
[9] C. W. Duin and T. Voigenant. Some generalizations of the Steiner problem in graphs. Networks,

17:353-364, 1987.
[10] C. W. Duin and T. Voigenant. Reduction tests for the Steiner problem in graphs. Networks, 19:549-567,

1989.
[11] C. W. Duin and S. Voß. Efficient path and vertex exchange in Steiner tree algorithms. Networks,

29:89-105, 1997.
[12] H. Esbensen. Computing near-optimal solutions to the Steiner problem in a graph using a genetie

algorithm. Networks, 26:173-185, 1995.
[13] M. X. Goemans and D. J. Bertsimas. Survivable networks, linear programming relaxations and the

parsimonious property. Mathematical Programming, 60:145-166, 1993.
[14] M. X. Goemans <i.ndY. Myung. A catalog of Steiner tree formulations. Networks, 23:19-28, 1993.
[15] F. K. Hwang, D. S. Richards, and P. Winter. The Steiner Tree Problem, volume 53 of Annals of

Discrete Mathematics. North-Holland, Amsterdam, 1992.
[16] T. Koch and A. Martin. SteinLib. ftp://ftp.zib.de/pub/Packages/mp-testdata/steinlib/index.

html,1997.
[17] T. Koch and A. Martin. Solving Steiner tree problems in graphs to optimality. Networks, 32:207-232,

1998.
[18] T. L. Magnanti and L. A. Wolsey. Optimal Trees. In M. O. Ball et al., editor, Handbooks in Operations

Research and Management Science, volume 7, chapter 9. Elsevier Science, 1995.
[19] K. Mehlhorn. A faster approximation algorithm for the Steiner problem in graphs. Information

Processing Letters, 27:125-128, 1988.
[20] T. Polzin and S. Vahdati Daneshmand. Algorithmen für das Steiner-Problem. Master's thesis, Uni-

versität Dortmund, 1997.
[21] T. Polzin and S. Vahdati Daneshmand. A comparison of Steiner tree relaxations. Technieal Report

5/1998, Universität Mannheim, 1998. (to appear in Discrete Applied Mathematics).
[22] R. E. Tarjan. Applieations of path compression on balanced trees. Journal of the ACM, 26:690-715,

1979.
[23] M. G. A. Verhoeven. Parallel Local Search. PhD thesis, Eindhoven University of Technology, 1996.
[24] T. Voigenant and R. Jonker. The symmetrie traveling salesman problem and edge exchanges in minimal

1-trees. European Journal of Operational Research, 12:394-403, 1983.
[25] S. Voß. Steiner's problem in graphs: Heuristic methods. Discrete Applied Mathematics, 40:45-72, 1992.
[26] D. M. Warme, P. Winter, and M. Zachariasen. Exactalgorithms for plane Steiner tree problems: A

computational study. Technical Report 98/11, Dept. of Computer Science, University of Copenhagen,
1998.

[27] P. Winter and J. MacGregor Smith. Path-distance heuristics for the Steiner problem in undirected
networks. Algorithmica, 7:309-327, 1992.

[28] R. T. Wong. A dual ascent approach for Steiner tree problems on a directed graph. Mathematical
Programming, 28:271-287, 1984.

26

..•.

http://graph.ms.ic.ac.uk/info.html,

	00000001
	00000002
	00000003
	00000004
	00000005
	00000006
	00000007
	00000008
	00000009
	00000010
	00000011
	00000012
	00000013
	00000014
	00000015
	00000016
	00000017
	00000018
	00000019
	00000020
	00000021
	00000022
	00000023
	00000024
	00000025
	00000026
	00000027

