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Abstract

In dealing with denotational semantics of programming languages partial orders
resp. metric spaces have been used with great benefit in order to provide a meaning
to recursive and repetitive constructs. This paper presents two methods to define
a metric on a subset M of a cpo D such that M is a complete metric spaces and
the metric semantics on M coincides with the cpo semantics on D when the same
semantic operators are used. The first method is to add a ’'length’ on a cpo which
means a function p : D — INgU{oo} of increasing power. The second is based on the
ideas of [9] and uses pseudo rank orderings, i.e. monotone sequences of monotone
functions 7, : D — D. We show that SFP domains can be characterized as special
kinds of rank orderded cpo’s. We also discuss the connection between the Lawson
topology and the topology induced by the metric.
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1 Introduction

In dealing with semantics of programming languages partial orders resp. metric spaces
have been used with great benefit in order to provide a meaning to recursive and repetitive
constructs. There have been various attempts to reconcile or to relate the two approaches
[10, 19, 27, 29]. The observation that the Scott topology associated with a cpo D is not
Hausdorff and consequently cannot be obtained by a metric on D led some authors to
search for weaker notions of metric as the partial metric [19] and the quasi uniformities
[27]. The most promising approach is based on generalized metric spaces as proposed by
Lawvere [15]. Both partial order and metric can be considered as special cases of gen-
eralized metric. Generalized fixed point theorems that specialize to the classical Banach
theorem and Tarski theorem can be proved [24].

The Lawson topology is metrizable under certain conditions, e.g. if D is a compact
algebraic cpo with a countable basis, but compactness is too strong a condition in many
applications. On the other hand, looking at concrete mathematical stuctures one may
observe that

e many structures (e.g. strings, Mazurkiewicz traces, pomsets, event structures and
various kinds of trees) allow for both a metric and a partial order setting

o there are certain features of languages that give rise to problems in the partial order
setting, e.g. the sequential operator which can easily be handled in the metric
setting [3], and viceversa, e.g. unguarded recursion.

In this paper we establish two concepts by which we may obtain a metric from a partial
order. First we consider partial orders with a length, i.e. a function p which assigns to
each element x of D a length p(x) € INy U {oo}. If the elements of D are interpreted as
processes the length p(z) is the maximal number of atomic steps which are needed for the
execution of z. E.g. the length of a string is its usual length, the length of a tree is its




height. We show that a length on a partial order D induces an ultrametric on a subset M
of D. In order to ensure the completeness of M we introduce the concept of continuous
weight. A weight means a length which ensures the existence of finite cuts where the
n-cut z[n] of an element = € D represents a process whose behaviour is given by the first
n steps of x. Continuity of a weight means that the function z — z[n] is continuous.

The second concept is based on the idea of [9] introducing a pseudo rank ordering on a
partial order D (i.e. a monotone sequence of monotone functions m, : D — D). We show
that a pseudo rank ordering induces an ultrametric on a subset M of D which is complete
if D is a cpo and that continuous weights can be considered as special cases of pseudo
rank orderings.

The paper is organized as follows: In section 2 we introduce the concepts of a length,
weight, continuous weight resp. pseudo rank ordering and study the properties of the
induced metric space. Section 3 treats semantic operators and establishes conditions that
guarantee that these operators display the necessary contraction properties for the induced
metric space. In section 4 we sketch some examples that show that existing settings fit
in our framework. Section 5 shows that Plotkins SFP domains [22] can be characterized
as special kinds of rank ordered cpo’s. In section 6 we discuss the relationship between
the Lawson topology and the topology induced by the metric on a weighted resp. rank
ordered cpo. In section 7 we briefly discuss the connection to related work.

2 From partial order to metric

In this section we introduce three types of 'measuring’ functions of increasing power on
a partial order: the length (section 2.1) , the weight (section 2.2) and continuous weight
(section 2.3). In section 2.4 we investigate the connection to the work of Bruce and
Mitchell [9]. We show that a continuous weight induces a ranking in the sense of [9].

In the following a poset means a pair (D, C) consisting of a set D and a partial order C
on D. We often write D instead of (D,C). By a pointed poset we mean a poset D which
has a bottom element (denoted by Lp or L). If D is a poset and z € D then

zl={yeD:yCz}, z2t= {yeD:zCy}
and for each subset X of D:

X|l= U zl, X1t= U z 1
zeX zeX
X is called leftclosed iff X is nonempty and X | = X. X is called directed iff X is
leftclosed and each pair of elements in X has an upper bound in X. A dcpo means a
pointed poset in which each directed subset X has a least upper bound (which is denoted
by X or lub(X)). We use the notion cpo to denote a pointed poset in which each
monotone sequence (z,) has a least upper bound (denoted by |Jz,). Then each dcpo is a
cpo. If D, D' are pointed posets then we say a function f : D — D’ is continuous iff f is
monotone and for each monotone sequence (z,) in D for which | |z, exists then || f(z,)

exists and
f(Uzn) = U flan).



2.1 Pointed posets with a length

Definition 2.1 A length on a pointed poset (D,E) is a function p : D — INy U {00}
such that for oll z, y € D:
(i) p(z) =0 < =z=1p

(1) zCy = p(z) < p(y)

Fin(D, p) or shortly Fin(D) denotes the collection of all y € D such that p(y) < co. For
all z € D we define:

(@) = {yeD: yCuz, p(y) <n}
W (z) = L)JO () = Fin(D) Nz

An element x € D is called approximable (w.r.t. p) iff z is the least upper bound of
(). = is called finitely approximable iff z 15 approzimable and |} (z) is finite for
all n > 0.

M(D,C, p) or shortly M(D) denotes the set of approzimable elements, Mg, (D, C,p) or
shortly Mg, (D) the set of finitely approzimable elements.

In the following we often omit the index p and write |* (z) or }™(z).

Theorem 2.2 Let (D,C) be a pointed poset and p a length on (D,C). Then

dlp}(z,y) = inf {51— M (z) =1 () }

is a pseudo ultrametric on D and an ultrametric on M(D). Mg, (D) is a closed subspace

of M(D).

Proof: It is clear that 0 < d[p|(z,y) = d[p](y,z) < 1. The strong triangle inequality
can easily be verified. Now we assume that z and y are approximable and we show that

dpl(z,y) = 0 = =z =y

<= 1s clear. Now we assume that z, y are approximable and d[p](z,y) = 0. Then
1" (z) =" (y) for all n > 0. Hence |"(z) = 1% (y). Since z and y are approximable:

z = lub (i,ﬁ"(a:)) = lub (iﬁ"(y)) = .

Next we show that Mg, (D) is a closed subspace. If z = limz, where () is a Cauchy
sequence in My, (D) then we have to show that x is finitely approximable, i.e. that |™ ()
is finite for all m > 0. Let m > 0. There exists n > 0 such that d[p](z,z,) < 1/2™.
Then

17 (z) =17 (2a)
is finite. O
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Remark 2.3 Let (D,C) be a pointed poset. Then p: D — INg U {00},

v _ 0 ifz=1p
pl) = { 1 : otherwise

is a length on (D, ), called the discrete length. The induced metric space M(D) is
D with the discrete metric.

Lemma 2.4 Let p be a length on a pointed poset (D,C) and (z,) a monotone sequence
in M(D) such that limz,, ezxists. Then ||z, ezists and

lim z, = .
n—00 n l—l Tn
n>0

Proof: Let r = limz,. First we show that z, C z forall n > 0.
Claim 1: }i (z,) C " (z) foralln>0

Proof: Let n > 0 and y € }*(z,). Then y €™ (zn) for some m > 0. Since z = limz,
there exists k > n with d[p](z,z) < 1/2™. Since z, C r; we have |™ (o) CI™ (z4).
Hence

y €™ (zn) CI™ (z) =17 (2).
By Claim 1 we get that z is an upper bound of |%*(z,). Since z, is approximable:
z, = lub (,Lﬁ“(xn)) C =
Claim2: z = || z,
Proof: Let y € D with z,, C y for all n > 0. First we show that |"(z) C [f"(y).

Let z € |"(z). Then z €|™ (z) for some m > 0. Let k > 0 such that dlpl(zg, ) < 1/2™.
Then (since 4 C y):

2 elm(x) = 1" (m) CIm () € S).
We conclude that y is an upper bound of [i"(z). Since z is approximable:

z = lub (Lﬁ"(x)) C v
O

Theorem 2.5 Let p be a length on a cpo (D,C) such that (M(D),d[p]) is a complete
metric space. Then

z, = 1
U 0 = lim o
n>0

for each Cauchy sequence (z,) in M(D) which is monotone in D.

Proof: follows immediately by Lemma 2.4. O

Definition 2.6 Let p be a length on a pointed poset (D,C). A tower in (D,C,p) is a
sequence (£,) in M(D) with zg C z; T 7o T ... and

' (2n) = 4" (1)
for alln > 0.



(z,) is a tower in (D,C,p) if and only if d[p)(z,,zn) < 1/2® forallm > n > 0.
In particular, each tower is a Cauchy sequence. On the other hand, a sequence (z,) in
M(D) is a Cauchy sequence if and only if there exists a subsequence (z,,) of (x,) such
that (z,,) is a tower and

‘Lk (‘,L‘Tl) - ‘Jrk (x7zk)
for all n > n; and k > 0. We obtain:

Lemma 2.7 Let p be a length on a pointed poset (D,C). Then (M(D),d[p]) is a com-
plete metric space if and only if for each tower (z,) in (D,C,p) there exists z € M(D)
with 1™ (z,) = 1" (z) for alln >0.

2.2 Pointed posets with a weight

In this section we consider a special kind of a length on a pointed poset, called a weight.
A weight on a pointed poset means a length which ensures the existence of 'n-cuts’, i.e.
a greatest element in | (z).

Definition 2.8 Let (D,C) be a pointed poset. A weight on (D,C) is a length p on
(D,C) such that

o] = b (4" (2))
exists for all z € D, n > 0 and
p(z[n]) < n.
The tripel (D,E, p) s called o weighted poset. z[n] is called the n-cut of z w.r.t. p.

We define:
po 2D =D, ph(z) = z[n].

If (D,C) is a cpo and p a weight on (D,C) then we put

p = || 2 :D =D, ie plz) = L] zln].

n>0 n=>0

Remark 2.9 In general, a length is not a weight: Let D = {L,z,75, T} and C be
given by

1z T, LExz ET.
Then p(L) =0, p(z1) = p(z2) =1 and p(T) = 2 is a length on (D, ) but not a weight

since |, (T {L,z1,z2} does not have a greatest element. O

If p is a length on a cpo then in general M(D) is not a cpo. In the case of a weight we
have:

Lemma 2.10 Let p be a weight on a cpo (D,C) and let (z,) be a monotone sequence in
M(D). Then || z, € M(D).

In particular: M(D) endowed with the restriction of C is a cpo and the inclusion M(D) — D
18 continuous.



Proof: Let z = {4 z, and z’ = pP(z) = | z[k]. Then 2’ T z and 2’ € M(D). We
have to show that +' = z.

Since z, C z we have z,[k] C z[k] for all n, k£ > 0. Therefore

Ll za[k] © z[k]

n>0

for all k¥ > 0. Since z, € M(D):

=]z = [ =kl = U U 2k C ]k =2

n>0 n>0 k>0 k>0 n>0 k>0

We conclude z = 2’ € M(D). O

2.3 Continuous weights

In general the metric space M(D) induced by a weight is not complete even if D is a
dcpo. In this section we present a condition which ensures that the induced metric space
M(D) of a weighted poset (D,C,p) is complete. We start with a characterisation of
those weighted posets whose induced metric space is complete: We show that if M(D) is
complete then the functions y? are in some sense ’continuous’.

Lemma 2.11 Let p be weight on a cpo (D,C). Then the following are equivalent:

(i) (M(D),d[p]) is a complete metric space.

(i) o (U 2m ) = Umso #4(zm) for each tower (z.,) in (D,C,p).

If p is a weight on a pointed poset (D,C) then we have the implication (i) => (i4).

Proof: Let (D,C) be a pointed poset and p a weight on (D,C). For simplicity M =
M(D), d=dp, po = ph, p = p*.

(i) = (ii): If (x,,) is a tower in (D, C, p) then (z,) is a monotone Cauchy sequence. Since
M is complete lim z,, exists and and limz, = || z, (Lemma 2.4). Since d(z,,z,,) <
1/2" for all m > 0 we have: d(z,,z) < 1/2" i.e.

I @) = 1" (5) = 1" (2m)
for all m > n > 0. Therefore p,(z) = pn(zn) = po(zm) for all m > n. Hence
pa(T) = l_' P (Tm)-
(i1) => (i): Let (D,C) be a cpo, () a tower and z = || z,,. Then by (ii):

zln] = || zmln] = z.[n].

m>0

Therefore " (z) = |" (z,). By Lemma 2.7 we get the completeness of M (D). O



Definition 2.12 Let (D,C) be a pointed poset. A continuous weight on (D,C) is a
weight p on (D, C) such that the functions uf, are continuous.

Theorem 2.13 Let p be a continuous weight on a cpo (D,C). Then (M(D), d[p]) and
(Mn(D),d[p]) are complete metric spaces with

A o = L o
n>0

for each Cauchy sequence in M(D) resp. Mg, (D) which is monotone in D.
Proof: follows by Theorem 2.5 and Lemma 2.11. O

Definition 2.14 Let p be a weight on a pointed poset (D,C). (D, C) is called p-complete
iff for each tower (z,) in (D,C,p) the least upper bound ||z, exists.

By definition, each tower is monotone. Hence each weighted cpo is p-complete.

Lemma 2.15 Let p be a continuous weight on a pointed poset (D, ). Then the following
are equivalent:
(i) (M(D),d[p]) is a complete metric space.

(i1) (D,C) 4s p-comnplete.

If p is a weight then we have the implication (1) = (ii).
Proof:

(i) = (ii): Let p be a weight and (z,) a tower. Then (z,) is a Cauchy sequence.
Since M(D) is complete z = limz, exists. By Lemma 2.4: z = |]z,. Hence (D,C) is
p-complete.

(ii) = (i): By Lemma 2.7 we have to show that for each tower (z,,) there exists x € M (D)
with {™ (z) = ™ (z,,) for all m > 0.

Let (z,.) be a tower and let z = ||z,. Since p is a continuous weight we have: p? is
continuous and therefore (since (z,) is a tower):

zlm] = || z.[m] = z.[m]

n>0

Hence |™ (z) =" (z,). O

Lemma 2.16 Let p be a continuous weight on a cpo (D,C) and Mz, = Mg, (D,C,p).
Let (z,) be a monotone sequence in Mg,.

(a) If (z,,) is a tower and x = ||z, erists in D then x € My,.

(b) If (x,) has an upper bound y in My, and x = |z, then x € My, and there exists
a subsequence (T,, k>0 of (xn) such that

ok = 2o, (k] = zalk]



for alln > ny, k> 0.

In particular: If x is the least upper bound of (z,) in Mg, then z is the least upper
bound of (z,) in D.

Proof: ad (a): Let x = ||z, where (z,) is a tower in Mg,. Then z € M(D) by Lemma
2.10 and z,[k] = z[k] for all n > k > 0. Since p is continuous:

zlk] = || zalk] = zilk].

n>0

Since zx € Mg, we get: zi[k] | = z[k] | = |* (z) is finite. Le. z € My,.

Now we show (b): We assume that z, C y where (z,) is a monotone sequence in Mg,
and y € Mg,, x = || z,. For all ¥ > 0 we have:

zolk] 4 C k] 4 C zofk] L C ... C ylk] |
Since y[k] | is finite there exists N, > 0 with
ol L = s8] 4
for all n > N,. Hence zn,[k] = z,[k] for all n > Ni. Let
ng =0, ngyr = max {Nepr, ng + 1} .

Then z,.[k] = z,[k] foralln > n,. In particular (z,,) is a tower in Mg, and z = Uzn,.
By (a) we get: z € Mj, and as we saw above:

zlk] = zn,[k] = zu[k]

forallm >ng, k>0. O

Remark 2.17 Let p be a length on a pointed poset (D,C). Then p can be considered as
a length on the pointed posets M = M(D) and on Mz, = Mg, (D). All elements of M
are approximable. The finite approximable elements of M are the finitely approximable
elements of D. In Mg, all elements are finitely approximbale.

If p is a weight on D then also on M and Mg,. In this case the n-cut of z € M or r € Mg,
in M resp. My, is the n-cut of z in D.

If p is a continuous weight and D is a cpo then p is also a continuous weight on M and
on Mp,. Here we use the fact that the least upper bounds in M resp. Mg, (if they exist)
are the least upper bounds in D (Lemma 2.10 and Lemma 2.16). In this case M is p-
complete if and only if the induced metric space is complete if and only if D is p-complete
(by Lemma 2.15). Since My, is a closed subspace of M we get: If D is p-complete then M
and then also My, are complete metric spaces. By Lemma 2.15 Mj, is also p-complete.

Lemma 2.18 Let (D,C) be a cpo and p a continuous weight on D such that
D[n] = {z€D : p(zr)<n}

is finite for alln. > 0. Then M(D) = Mg, (D) is a compact metric space.




Proof: It is clear that M (D) = Mg,(D). Now we show the compactness of M(D): Let
(%,,) be a sequence in M(D). We define by induction on n a subsequence (z,,,) and an
infinite subset I,, of INg such that z,, [n] = zn,[n] for allm € I,,.

In the case n = 0 we may define mp = 0 and Iy = IVy. Now we assume that n > 0 and
that z,,, and I, are defined. For all m € I,, we have: z,[n + 1] is an element of the finite
set D[n + 1]. Hence there exists an infinite subset I,y of I, and m,y, € I,,, m,, > m,
with:

Tmn+1] = Tp,[n+1] Vme Ly

Then (zm,[n])a>0 is 2 monotone sequence in D. Since D isa cpoz = |z, [n] exists.
By Lemma 2.10: x € M(D). Since p is a continuous weight we get:

zln] = Zm,[n] = Zmn]

for all k > n > 0. We conclude limz,,, = z. O

2.4 Pseudo rank ordered cpo’s

Rank ordered sets were introduced in [9]. They are special kinds of ultrametric spaces.
Here we extend the notion of rank orderings on cpo’s. We show that the induced ultra-
metric space of a rank ordered cpo D is complete. In addition we show that the concept
of continuous weights can be considered as a special case of rank orderings.

Definition 2.19 Let M be a nonempty set. A pseudo rank ordering on M is a family
T = (Tn)n>0 of functions m, : M — M such that:

(i) my is constant

() T 0Ty = Tpom, = m, foral0<n<m.
7 45 called a rank ordering on M iff in addition
(iii) If x, y € M and m,(x) = m,(y) for alln >0 then z = y.

A (pseudo) rank ordered set is a pair (M, %) consisting of a set M and a (pseudo)
rank ordering © on M.

Lemma 2.20 If (M, ) is a pseudo rank ordered set then

A 2a) = int { 5ot male) = (o) |

is a pseudo ultrametric on M. If T is a rank ordering on M then d[7] is an ultrametric
on M.

Definition 2.21 Let (D,C) be a pointed poset. A (pseudo) rank ordering on (D,C)
is a pseudo rank ordering T = (7,)n>0 on D such that:

10




(Z) Ty — )\CL‘_LD
(1) m, is continuous

(iii) 7, T idp

A (pseudo) rank ordered poset is a tripel (D, C,7) consisting of a pointed poset (D, C)
and a (pseudo) rank ordering & on (D,E). A (pseudo) rank ordered cpo is a (pseudo)
rank ordered poset (D,C, @) where (D,C) is a cpo.
Lemma 2.22 Let (D,C,7) be a pseudo rank ordered poset. Then:

(a) (Tn)n>0 s monotone.

(b) If (D,C) is a cpo and T is a rank ordering on (D,C) then || m, = idp.

(c) If Um, = idp then % is a rank ordering on (D,C).
Proof:
(a) Let z € D. Since m, = mn41 0 M, and m,(z) T 2 we get by the monotony of m,.;:
() = g1 (Ma(7)) B Taga(2).

(b) Let (D,C) be a cpo and & a rank ordering on (D,C). We have to show that

r = |J m(x). Let y = |4 ma(z). Since m, is continuous we get for all m > 0:
() = | Tn(m(2) = [ mn(m(@) = | mal(z) = m(2).
n>0 n>m n>m

By condition (iii) of rank ordered sets: z = y.
(c) fz,y€ D, my(x) =my(y) foralln >0then z = || mu(z) = U ma(y) = y. O

Lemma 2.23 Let (D,C,7) be a rank ordered cpo. Then (D,7) is a complete rank ordered

set, i.e. (D,d[7]) is a complete metric space. If (z,)a>0 is monotone Cauchy sequence in
D then :

oz = L e
n>0

Proof: Let d = d[7]. First we show the completeness of D as a metric space: Let
(z) be a Cauchy sequence in D. W.lo.g. d(zm,Tms1) < 1/2™ for all m > 0. Then
Tn(Tm) = mu(z,) and

71'm(-’L'm) = 7rm(xm+l) = 7Tm( 7rm+1($m+l)) ; 7rm+l($m+l)

for allm > n > 0. Since D is a cpo and (7, (%)) m>o is monotone = = || m,(z,,) exists.
Since m, is continuous we get;:

T (z) = |_] T Tm(Tm) ) = L_] T Tm(Zm) ) = Tu(Tn).

m>0 m>n

11



e

We conclude:  d(x,z,) < 1/2"foralln >0,ie. lim T, = .

Now we assume that (z,) is a monotone Cauchy sequence in D, z = lim z,, and
y = U z,. We have to show that =z = y.

First we show that z £ y. There exists a sequence (my)r>o of natural numbers
mo < my <mg<... with d(z,z,) < 1/2% forall m > m,. Hence

T(z) = T(Tm,) E Tm,

for all £ > 0. Therefore

:c:|_|7rk(:v) EI_IImk-—-LI:cmzy.

£>0 k>0 m>0

Now we show that y C x. Let (m,)n,>0 be a sequence in INy as above. If n > m
then m, > n > m and hence =, E zm,. Then m,(zn) C 7Tn(zm,) = mn(z) for all
n > m. Therefore for all m > 0:

Tm = | m(zm) T |] m(z) = z

n>m n>m
I.e. z is an upper bound of (z,;)m>0. Hence y C z. O

Definition 2.24 Let @ be a pseudo rank ordering on a pointed poset (D,C). An element
z € D is called approximable (w.r.t. ) iff

z = || m(z).

n>0
M(D,C, %) denotes the set of approzimable elements in D.

The following theorem shows that adding a continuous weight on a pointed poset is a
special case of adding a pseudo rank ordering.

Theorem 2.25 Let p be a continuous weight on a pointed poset (D,C). Then
Bo= (Hh)axo
15 a pseudo rank ordering on (D,C). In addition we have:
M(D) = M(D,C, j)

and
dlp)(z,y) = d[i)(z,y)
for all z, y € M(D).

Proof: easy verification. Uses the fact that if z, y are approximable and z[n] = y[n] for

all n > 0 then
z = |] 2[n] = |] yln] = v

n>0 n>0

12



Remark 2.26 Let 7 be a pseudo rank ordering on a pointed poset (D,C) with # = (u?)
for some weight p on D then
p(z) = inf {n : m(z) =z}

for all z € D (where inf() = oo). On the other hand, if 7 is a pseudo rank ordering on
D then in general the function

plit] : D = Ny U {0}, pl](z) = inf {n : m,(z) =2}

is not a length on D since we cannot guarantee the monotonicity of p[#]. If we require
the monotonicity of p[7] then p[#] is a continuous weight on D with # = (u£l™), 5.

Next we show that for pseudo rank ordered cpo’s we get a similar result as in Theorem
2.13:

Lemma 2.27 Let 7 be a pseudo rank ordering on a pointed poset (D,C). Then:

(a) If (zn) is @ monotone sequence in M(D,C,7) and r = ||z, ezists in D then
z € M(D,C,7) and x is the least upper bound of (z,) in M(D,C, %). If in addition
(zn) is a Cauchy sequence in M(D,C, %) thenlimz, ezists andz = limz,.

(b) If (D,C) is a cpo then also M(D,C,7) is a cpo and the inclusion M(D,C,#%) = D
1S continuous.

(c) If (z,) is a monotone Cauchy sequence in M(D,C,7) such that limz,, ezists then
Uz, exrists and |z, = lmz,.

(d) 7 is a rank ordering on M(D,C, 7).

Here we assume that the partial order on M(D, T, %) is the restriction of € on M(D, C, %)
and the functions m, are considered as functions M(D,C, %) - M(D,C, 7).

Proof: Let M = M(D,C,7) and d = d[7].

(a) Let z = xz,, z, € M. We have to show that z € M.

Since m, £ idp we have: m,h(z) E z. le. z is an upper bound of (7,,(z))m>o-

Since m, is continuous
Tm(z) = | ] Tmlan).

n>0
Ifye D, m,(z) C yforallm>0 then m,(z,) E yforallm >0 andn > 0.
Hence for all n > 0:
T, = |__| Tm(Za) E v.

m>0

Therefore z = |jz, T y. Weconclude: z = || m,(z) € M.

(b) follows by (a).
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(¢) Let (x,) be a monotone Cauchy sequence in M and z = limz,. W.lo.g.

1
d Ly Ly < —

for all n > m > 0. Then d(z,,,z) < 1/2™ and therefore
Tn(@n) = Tn(tm) = Tm(z) C 2
forallnm >m > 0. If 0 <n > m then (since z, C z,,):
T(Zn) T Tm(Tm) = mu(z) C z
Hence m,(z,) T z forall m >0 and n > 0. Since z, is approximable we get:

T, = [_] Tm(z,) C x
m>0

for alln > 0. Le. z is an upper bound of the sequence (z,).

Ifye D,z, € yforall n >0 then for all m > 0:

Tm(2) = Tm(Tm) E Tm(y) C v
Since z is approximable: z = || 7,(z) C y. Le. z = ||z,.

(d) It is clear that 7 is a pseudo rank ordering on M. By Lemma 2.22(c): # is a rank
ordering on M. O

Theorem 2.28 If @ be a pseudo rank ordering on a cpo (D,C) then M(D,C,7) en-
dowed with the distance d[7] is a complete metric space and

g, oo = L
n>0

for each Cauchy sequence in M(D,C, ) which is monotone in D.
Proof: follows immediately by Lemma 2.27 and 2.23. O

Lemma 2.29 Let @™ = (m,)a>0 be a pseudo rank ordering on a cpo (D,C) such that for
~alln >0 the set m,(D) is finite. Then M(D,C,7) is a compact metric space.

Proof: similar to Lemma 2.18. O

3 Metric and partial order semantics

Semantic operators on a given domain model the syntactic operators of a given language.
In the case of the domain being a cpo continuity of the operators guarantees the existence
of the semantic model. In this chapter we investigate the conditions which a semantic
operator has to satisfy in the case of a weighted poset resp. a pseudo rank ordered
cpo. Here we would like to characterize the properties that ensure that the semantic
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operator can be viewed as one in the poset framework as well as one in the induced
metric framework. Moreover the two semantic models obtained by the two views should
coincide. We show that continuous and contracting operators do achieve the desired
behaviour.

In the following Ifp(f) resp. fix(f) denotes the least resp. unique fixed point (if it exists)
of a function f : D = D resp. f: M — M where D is a pointed poset and M a metric
space.

Let ¥ be a nonempty set of operator symbols. |w| denotes the arity of w € . Idf is a
nonempty set of variables. Then the language £ = L(X, Idf) is given by the production
system

s = w(sy,...,sn) | €| fix(€ =s)

where w € ¥, |w| = n, £ € Idf. A semantics for £ in some semantic domain A can be
defined as a function @ :L — (Env[A] = A) where Env[A] is the set of environments,
lLe. the set of functions o : Idf -+ A. If 0 : Idf — A is an environment and ¢ € Idf,
x € A then the environment ofz/{]: Idf — A is defined by

_ ol ¢ ifn#e
clafeli) = { 70 {12E
If (D,C) is a cpo together with a continuous operator wp : D™ = D for each w € 2,
|w| = n, then a denotational semantics for £ on D can be defined by structural induction
and Tarski’s fixed point theorem. The meaning function ®° : £ — (Env[D] —» D) is
given by [3]:
o 27(&)(0) = a(§)
o ®P(w(sy,..,50) )(0) = wp (@P(s1)(0),. .. , 8P (5,)(0))
o QP(fix(¢ =5) )(o) = Ip(f]]s,¢E])
where fP[s,£]: D — D is given by
£, €lz) = @P(s)(ale/¢]).

More generally: Let £’ be a sublanguage of £ which is closed under the operator symbols
weZ (le w(sy,...,sn) €L ifs; € L, i=1,...,n). For each s € £ let I(s) be the set
of identifiers £ € Idf with fix(é = s) € £'. Then:

If (D,C) is a poset (which might be not complete) and wp : D" = D, w € I, |w| = n,
are semantic operators on D such that for all s € £" and ¢ € I(s) the functions fP[s,¢]
(defined as above) have a least fixed point in D then we also get a partial order semantics

@ : L' — (Env[D] - D)

which is defined as above.

The metric approach works analogously [3]: here we consider non-distance-increasing
operators instead of continuous operators, restrict recursion to guarded recursion which




ensures the existence of fixed points and may substitute least fixed points by unique fixed
points which is guaranteed by Banach’s fixed point theorem.

For each w € ¥ let deg(w) the degree of guardedness of w, i.e. deg(w) is a natural number
between 0 and |w|. If deg(w) = k, |w| = n, then we say that w ensures guardedness in its
last k& arguments. We define guardedness of a variable ¢ in a term s € £ by structural
induction:

1. ¢ is guarded in each constant symbol w € £ (i.e. in each operator symbol of the
arity 0).

2. fwe L, |w =n>1, deg(w) =k, then ¢ is guarded in w(sy, ..., s,) iff whenever ¢
occurs in a subterm s; then either n — k+1 <7 < n or £ is guarded in s;.

3. ¢ is guarded in a term fix(n = s) iff either £ is guarded in s or £ = 7.

LY denotes the set of guarded terms, i.e. £9 is the set of terms s € £ such that for each
subterm fix(¢ =t) of s the variable £ is guarded in t.

Example 3.1 The prefixing operator of CCS [21] has the degree 1 of guardedness. All
other CC'S operators have degree of guardedness 0. This leads to the usual definition of
guardedness of a variable £ in a CCS term s: £ is guarded in s if and only if each free
occurrence of £ in s is in the scope of a prefixing operator.

The sequential operator ; of CSP [13] has the degree of guardedness 1. Then a variable &
is guarded in a term s;t if and only if either s is closed (i.e. each occurence of a variable
n is within a subterm fix(n = t)) or £ is guarded in s.

Let (M, d) be a complete metric space together with non-distance-increasing operators
wpy : M™ — M which are contracting in those arguments in which w ensures guardedness.
More precisely, for each w € X, |w| = n, deg(w) = k, there exists a constant C' with
0 < C < 1 such that

d<wM (i, f,)’wM(ga :‘7’)) < max {d(i‘, Zj), C- d(i.lv g,) }

forall Z, § € M*!, ¥, § € M'. A denotational semantics for £? on M can be defined by
structural induction and Banach’s fixed point theorem:

M . L9 — (Env[M] = M)
is given by:
o TM(¢)(0) = o()
« WM (w(si,.os5m) )(0) = wa (TM(s51)(0),..., ¥M(s,)(a))

o UM( fix(e =5) )(o) = fix(f¥]s,€])
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where fM[s,£]: M — M is given by
£ s, €l(z) = ©M(s)(alz/€]).

It is easy to see that for all s € L9, £ € Idf and o € Env[M)] the function fM[s ¢] is
non-distance-increasing. If € is guarded in s then fM[s,¢] is contracting.

Now we assume that (D,C) is a cpo, ®° : £ — (Env[D] = D) a denotational semantics
and d a metric on a subset M of D (induced by a length or a pseudo rank ordering) such
that M is closed w.r.t. the semantic operators wp, w € ¥, and the restriction of wp on
M, i.e. the function

wy t M" = M, wy(zy,...,2,) = wplzy,...,2,) wheren = |w],

is non-distance-increasing and contracting in its last k¥ arguments where k = deg(w). If
M is complete then the metric denotational semantics ™ : £9 — (Env[M] — M) can
be defined as described above. If M is incomplete we get a metric semantics U™ on the
metric completion of M where we use the canonical extensions of the semantic operators
wy. The question arises in which way the cpo semantics ®° and the metric semantics
U = UM resp. ¥ = UM are related. Our aim is to find conditions which ensure that

for all guarded statements s and environments o : Idf — M. We observe that this
consistency result is equivalent to the following: For each term fix(§ = s) in £9 the
function fM[s,£] has a unique fixed point in M and

Ip(£7[s,€]) = fix(f)[s,€]).

Lemma 3.2 Let (D,C) be a cpo, (M,d) a complete metric space and ¢ : M — D a

function such that Lp € o(M) and ¢(limz,) = | o(z,) for each Cauchy sequence
(z,) in M with @(z9) T @(z;) € .... Then:

If f : D — D s a continuous function, F : M — M a contracting function with
woF = foy then

Iip(f) = @(fix(F)).

Proof: Let 2o € ¢ '(1), Zp41 = F(z,) and yo = Lp, Yns1 = f(yn). Then (by
induction on n):

Hence

p(fix(F)) = p(limz,) = || o(f = |Jy. = Up(f
n>0 n>0
O

Theorem 3.3 Let (D,C) be a cpo, (M,d) a complete metric space and ¢ : M — D
a function such that Lp € (M) and o(limz,) = |} ¢(z,) for each Cauchy sequence
() in M with o(zo) & @(z) T .... Let £L = L(Z,Idf) be a language as above and
for each w € T, |w| = n, deg(w) = k, let wp : D™ = D be a continuous operator on D
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and wy : M™ — M a non-distance-increasing operator on M which is contracting in its
last k arguments such that

o (w1, s20)) = wp (9(1), ., 9(5a)
forallzy,...,x, € M. Then

2°(s)(po0) = ¢ (¥¥(s)(0))
foralls e L9 and o : Idf - M.

Proof: follows by structural induction on s € £9 and Lemma 3.2. O

As a special case of Theorem 3.3 we get with M C D and the inclusion ¢ : M — D the
following consistency result for denotational semantics:

Theorem 3.4 Let D be a cpo and M a complete metric space such that Lp € M C D
and

lim z, =
n—oo " l--I Zn
n>0

for each Cauchy sequence (z,,) in M which is monotone in D.
Let £ = L(Z,1df) be a language as above and let wp, w € T, be continuous semantic
operators on D such that for allw € : wp(M™) C M and

wM:.M"—)A/._f, Wz, ,20) = wp(Z1,...,Zn)

is non-distance-increasing and contracting in its last k arguments where k = deg(w) and
n = |w|. Then

2P (s)(0) = T¥(s)(0)
forallse L9 and o : Idf — M.

Now we omit the assumption that M is complete and we consider the metric semantics
UM on the metric completion of M.

Theorem 3.5 Let (D,C) be a cpo and (M, d) a metric space such that Lp € M C D.
Let L = L(X,Idf) be a language as above and let wp, w € T, be continuous semantic
operators on D such that for ellw € ¥ and o : Idf — M:

(i) wp(M™) C M and
wy  M™ = M, wy(zy,...,z,) = wp(T1,...,T,)

is non-distance-increasing and contracting in its last k arguments where k = deg(w)
and n = |w|.

(i) For each term fix(€ = s) in LY the function fM[s,&] : M — M has a unique fized
point in M and

Ip(71s,€)) = fix(£)'[s,€)).
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Then the cpo semantics P on D and the metric semantics UM on the metric completion
of M (which is defined by using the canonical extensions of the semantic operators wy)
coincide:

2P (s)(0) = T¥(s)(0)
forallse LY and o : Idf - M.

Proof: by structural induction on s € L9. Uses the fact that fM[s,£] is the restriction
of fM[s,£] on M and that

Itp(fPs,€6)) = fix(fM(s,€) = fix(fM[s,€)).

3.1 Metric and partial order semantics on weighted posets

In Theorem 3.6 we present conditions which ensure that for weighted posets the partial
order on D and the metric semantics on M (D) coincide. Remark 3.12 shows that this
result carries over to metric semantics on Mg, (D).

Theorem 3.6 Let £ = L(Z, Idf) be a language as before, p a weight on a pointed poset
(D,E) and M = M(D). For eachw € I, |w| = n, deg(w) = k, let wp : D* = D be an
operator such that wp(M™) C M and

wy  MT = M, wy(zr,...,zn) = wp(zy,...,T,)

18 non-distance-increasing and contracting in its last k arguments. Then:

(a) If D and M are complete and wp is continuous for all w € ¥ then the cpo semantics
on D and the metric semantics on M are the same. More precisely:

oP(s)(0) = ¥¥(5)(0)
forallse LY and o : Idf - M.

(b) If D is a cpo and wp is continuous for all w € ¥ then the cpo semantics ° on D
and the metric semantics on the completion M of M are the same. More precisely:

2P(s)(0) = TY(s)(0)
foralls € L7 and o : Idf - M.

(c) If M is complete and the operators wp are monotone then the partial order semantics
®P can be defined for the sublanguage £9. The metric semantics UM and the partial
order semantics ®P are the same. More precisely:

3°(s)(@) = TY(s)(0)

foralls € L7 and o : Idf - M.
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Theorem 3.6 follows by Theorem 3.4, Theorem 3.5, Lemma 2.4 and the results which are
presented in Lemma 3.10 and Lemma 3.11.

Definition 3.7 Let pp resp. pc be weights on pointed posets (D,Cp) resp. (C,Cc)
and let Mp = M(D), Mc = M(C). Letk > 1 and k > 1 > 0. A function
f: D¥ = C is called cut-preserving of the degree [ iff

f(Mp) € Mc

f@y, . z)n] = fon],. .., zealn], zecipln = 1), .. 2z = 1]) [n]

foralln > 1 and x\,...,zx € Mp. Ifl =k then f is called strong cut-preserving.
We say f is cut-preserving iff f is cut-preserving of degree 0.

Notation 3.8 Let p be a weight on a pointed poset D and k > 1, 7 = (z,...,2,) € DF
and Z = (z1,...,2k), = (Y1,---,Yx) € M* where M = M(D). Then we put:

Z[n] = (a[n],...,z[n])

dlpl(z,5) = max { dlp)(zy) : 1<i<k}

Lemma 3.9 Let pp resp. pc be weights on pointed posets (D,Cp) resp. (C,C¢). Let
k>1,k>1>0and f: D¥ — C a function with f(M%) C Mc where Mp = M(D)
Mc = M(C). Then:

[ is strong cut-preserving of the degree | if and only if fIME — Mc¢ is non-distance-
increasing and contracting in the last | arguments. In particular:

)

(a) f is cut-preserving if and only if f|ME — Mc is non-distance-increasing.

(b) f is strong cut-preserving if and only if fI]ME — Mc is contracting with contracting
constant 1/2.

Proof: Let dp = d{pp], de = d[pc]. If f is cut-preserving of the degree / then we have to
show that for each natural number n > 1:

1 1 1
— dD(.’Z‘,g) < 2_71 A dD(i‘,,g/) <

dC (f(.’?:,f:'), f(ga &’)) < 5; — on—1

Since f is cut-preserving of degree [ we have
| &) = £l #n - 1))
where 2 € M5, 7 € MY, We get:
If dp(zi,y:) <1/2",i=1,...,k~1,and dp(z;,y:) <1/2" L i=k—1+1,...,k, then
B = glnl, #—1] = Flh-1]
Hence

f@&a)[n] = f(E],&n -1 = F@R],7r-1D0R = f@7)0]
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and therefore dg (f(a},a?"’), f(g},g}’)) < 1/2™

If f is non-distance-increasing and contracting in the last | arguments then for all # €
Dt 3 e M:

1
do(33[)) < 5m, dp(#,#ln—1]) < 51;

Here we use the fact that contracting w.r.t. dp and d¢ implies contracting with contracting

constant 1/2. Then:

o (7(3,2), F(Ell#n~1)) < 5

and therefore f(%,2')[n] = f(%[n],#[n — 1])[n]. We get that f is cut-preserving of degree
[. g

In the following two lemmas we present conditions which ensure the existence of a unique

resp. least fixed point of a contracting resp. monotone operator M(D) — M(D) resp.
D — D in absence of the assumption that D resp. M(D) is complete.

Lemma 3.10 Let p be a weight on a cpo D, M = M(D) and f : D — D a continuous
and strong cut-preserving function. Then:

(e¢) Up(f) € M

(b) If 1o € M, znyy = f(z,) then the sequence (z,)n>0 is o Cauchy sequence in the
complete metric space M and

z = lim =z,
n—oo

is the unique fized point of the contracting function f|M — M. (Note that we do
not require the completeness of M .)

Proof: Let + = Ifp(f). Then (by Tarski’s fixed point theorem):

x:l__lxn

n>0

where £o = Lp and 2,4y = f(z,). Since f(M) C M and Lp € M we get by induction
on n that r, € M. By Lemma 2.10: z € M. Le. z is a fixed point of f|]M — M. By
Lemma 3.9: f|M — M is contracting. It can be shown by induction on n that

1
dlp)(z,z,) < o

Hence r = limz,. If 2’ € M is also a fixed point of f then

) d[p](.’L‘,.’L").

N =

dlp](x,2") = dlp](f(z), f(z")) <
Hence d[p|(z,z") = 0,ie. z=12". 0

Lemma 3.11 Let p be a weight on a pointed poset (D,C) such that M = M(D) is a
complete metric space. Let f : D — D be a monotone and strong cut-preserving function.

21



(a) Then Ifp(f) exists and

Ip(f) = | za

n>0

where zg = Lp and zpyy = f(zn).

(b) Ip(f) is the unique fized point of f in M(D).

Proof: Since M is complete and f|M — M contracting (Lemma 3.9) f has a unique
fixed point x in M and

r = lim =z,
n—>00
where o € M and 2,41 = f(z,). Now we assume that zo = Lp. Since f is monotone

we get:
_Lzl‘ogl'l[;l'gg...

By Lemma 2.4 we get: £ = |Jz,. If y € D is also a fixed point of f then we can show
by induction on n that z, T y: The basis of induction n = 0 is clear since zo = L. In
the induction step n = n + 1 we use the monotony of f:

Tot1 = flza) € fy) = v
Hence z = |Jz, T y. We conclude: z = Ifp(f). O

Remark 3.12 Let £, p, D and M be as in Theorem 3.6 and let Mg, = Mg,(D). Then:
If M is a complete metric space then also Mj, (as a closed subspace of M) is a complete
metric space. If in addition the semantic operators wp preserve finitely approximability
(i.e. wp(Mg,") € Mg,) then we get a metric semantics

U L9 - (Env[Mg,) = Mg,)
using the semantic operators wp|Mjz," — Mg,. In this case we have:
2P (s)(0) = TY(s)(0) = Wi (s)(0)
for all s € £? and o : Idf — Mj,. Here ®” is as in Theorem 3.6(a) or (c).

3.2 A consistency result for partial order semantics on weighted
posets

In Theorem 3.14 we present a condition which guarantees the consistency of two partial
order semantics on weighted posets. The following lemma relates the least fixed points of
monotone and strong cut-preserving functions on weighted posets (which exist by Lemma
3.11). |

Lemma 3.13 Let p resp. p' be weights on pointed posets D resp. D', M = M(D),
M = M(D'), and let ¢ : D — D' a continuous function with

p(z[n]) = ¢(z)[n]

for allx € D, n>0. Then:



(a) p(M) & M’

(b) If M and M' are complete metric spacesand f : D — D, f' : D' = D’ are monotone
and strong cut-preserving with oo f = f' oy then

Ip(f") = o( Ifp(f) ).

(¢) If D and D' are cpo’s and f : D — D, f' : D' = D' are continuous with
pof = floyp then
: Iip(f') = ¢( Up(f) ).

Proof: If z € M then z = || z[n]. Since ¢ is continuous we get
p(z) = U o) = | w@)n] € M
n>0 n>0

Now we assume that M and M’ are complete and f, f' monotone and strong cut-
preserving resp. that D and D' are cpo’s and f, f’ continuous with ¢o f = fo .
Then Ifp(f) and Ifp(f’) exist by Lemma 3.11 resp. Tarski’s fixed point theorem and

ip(f) = | z., #p(f) = | =,

n>0 n>0
where o = Lp, 5 = Lpr and 2,41 = f(zn), 25, = f'(z},). Since po f = f' o it can

be shown by induction on n that z), = ¢(z,). Hence

Ip(f) = | =,

n>0 n>0
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Theorem 3.14 Let p resp. p' be weights on pointed posets (D,C) resp. (D',C'), such
that M = M(D) and M' = M(D') are complete metric spaces. Let v :D — D' a
surjective and continuous function with

o(aln)) = ()]
for dll r€ D, n>0. Then:

a) If w: D™ — D is a monotone operator on D such that for all Tlyee oy, Y15..-Yn S
D y
Da‘

(P(flfi):‘ro(yi), i:17""n = (19((“)(‘7"177‘7"”.)) = kI:‘( w(y17"'ayn))
then olw] @ D™ = D', ow]( o(z1),...,0(z) ) = o w(zy,...,z,) ), is

welldefined and a monotone operator on D'. If w is cut-preserving of degree | then
also p[w] is cut-preserving of degree .
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(b) Let L = L(X,Idf) be a language as before and for each operator symbol w of
L, lw| =n, deg(w) =1, let wp : D™ = D be a monotone operator on D which is
cut-preserving of degree | and which satisfies the condition of (a). Then the partial
order semantics ®° and ®P' can be defined for the language L° (w.r.t. the semantic
operator wp on D and the operators plwp] on D') and ®° resp. ®P' are consistent

w.r.t. . Le.
o (2P(s)(0) ) = ®”(s)(wo0)
forallse L9, o : Idf — D.

(c) Let (D,C) and (D',C') be cpo’s and let L be a language as above. For each operator
symbol w of L, |w| = n, let wp: D™ = D be a continuous operator on D which
satisfies the condition of (a) and such that the operator plwp) is continuous on D'
Then the cpo semantics ®° and ®P' (w.r.t. the semantic operator wp on D and
wlwp] on D') are consistent w.r.t. @, i.e.

o( 2°(s)(0) ) = @7 (s)(wo0)

forallse L, 0:1df - D.

Proof: (a) is an easy verification. (b) and (c) follow by (a) and Lemma 3.13(b) where
we use the following facts:

e The functions fP[s,£]: D — D resp. fR'[s,&]: D' — D’ are monotone and cut-

preserving resp. continuous for all s € £9, o : Idf - D, ¢’ : Idf — D' and all
identifiers £. If £ is guarded in s then f2[s,¢] and f2'[s, €] is strong cut-preserving.

o v o fPls¢] = f&'a[s,f] o ¢ forallse L resp. s€ L and o: Idf = D.

Then we use Lemma 3.13(b) resp. (¢). O

Remark 3.15 Let p be a continuous weight ona cpo D, M = M(D), My, = Mg, (D).
Let £ = L(X,Idf) be a language as before. For each operator symbol w € I, |w| = n,
deg(w) = k, let wp : D™ — D be a continuous operator which is cut-preserving of degree
k. By Remark 2.17 p is a continuous weight on the cpo M and on the pointed poset Mg,.
Since D is a cpo D and then also Mj, are p-complete (Remark 2.17).

1. Let ®P denote the cpo semantics on D for the language £ (using the semantic
operators wp). '

2. Let ®M resp. WM denote the cpo semantics resp. metric semantics on M for £
resp. £7. In both cases we use the semantic operators wp|M™ — M where w € &,
lw| = n.

Applying Theorem 3.6(b) to the cpo’s D and M we get

2P (s)(0) = ¥Y(s)(0) = @M(s)(0)




for all s € £7 and o : Idf - M. Appiying Theorem 3.14(c) to the cpo’s D and M and
the function
p = D> M

yields
w (2°(s)(0)) = ®M(s)(u 0 o)

for all s € £ and o : Idf — D. Here we use the fact that u”[wp] is the restriction of
wp on approximable elements. We conclude that the cpo semantics on D and M are the
same, i.e. if 0 : Idf — M then

27(s)(0) = @¥(s)(0)
for all s € £. Here we use the fact that y» o0 = ¢ and Lemma 2.10:

p(f) = U L) = 1 @) = ip(f)

n>0 n>0

where f = fP[s,€] and ' = fM[s,€].

If each of the operators wp preserves finitely approximability (i.e. wp{Mg,") C Mg, where
|w] = n) then '
wp|Mga" = My

is monotone and cut-preserving of degree deg(w) and non-distance-increasing and con-
tracting in its last deg(w) arguments. Hence the partial order semantics ®} and the
metric semantics U} on Mg, can be defined for the sublanguage £¢. By Theorem 3.6(c):

Bin(s)(0) = Til(s)(o)
for all s € £9 and o : Idf - Mjz,. By Remark 3.12:
O (s)(0) = @¥(s)(0) = ®P(s)(0)

for all s € £9 and o : Idf - Mj,.

3.3 Metric and partial order semantics on pseudo rank ordered
cpo’s

Similary to the result of Theorem 3.6(a) we get for pseudo rank ordered cpo’s the consis-
tency of the cpo semantics and the metric semantics: :

Lemma 3.16 Let (M, 7) and (N, i) be pseudo rank ordered sets and f : M* — N a
function where k > 1. Then: f is non-distance-increasing and contracting in its last |
arguments (w.r.t. d[7] resp. d[fi]) if and only if

Hno fo (Wﬁ—la"r;—-l) = fnof
for all n > 0.

Hcre 7l D' — D' s given by wl (z1,..., 7)) = (wm(z1),..., 7Tm(z)).
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Proof: similar to Lemma 3.9. O

Theorem 3.17 Let £ = L(X, Idf) be a language as before and (D,C, ) a pseudo rank
ordered cpo and M = M(D,C,#). For each operator symbolw € ¥ let wp : D™ — D be
a continuous semantic operator on D with

wD(M”) g M
Tm O Wp O (Tr;,_ka an—l) = TmOUWp
for all m > 1 where |w| = n, k& = deg(w). Then the denotational cpo semantics on

(D,C) and the denotational metric semantics on (M, d[7]) are the same:
®°(s)(o) = ¥¥(s)(0)
forallse L9 and o : Idf - M.

Proof: follows by Theorem 3.4, Lemma 3.16 and Theorem 2.28. O

4 Examples: Strings, traces, trees, event structures
and pomsets

In this section we show how the semantic domains of strings (i.e. sequences of actions) and |
Mazurkiewicz traces [20] (i.e. equivalence classes of strings w.r.t. the equivalence relation |
induced by an independency) together with the prefixing order, the semantic domains of

labelled trees, prime event structures and pomsets together with Winskels partial orders

(30, 31] fit in our framework. In the following Act is a nonempty set of actions.

4.1 Strings

Let Act™ denote the set of (finite or infinite) sequences over Act. C denotes the prefixing
order on Act™, i.e. w C ' iff w is a prefix of w’. Then (Act™,C) is a cpo with bottom
element @ (the empty sequence). The function

-] Act™® — INg U {0}

(where |z| denotes the usual length of the string z) is a continuous weight on (Act>, C).
The n-cut z[n] of x € Act™ is given by

2[n] = {.7: ciffz) <n

ajay...a, @ if op...0p is a prefix of z (where a; € Act)

all z € Act™. |" () is a finite set and all sequences z € Act™ are finitely approximable.

M(A(Jtoo) = .Mﬁn(ACtoo) = Act™
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1" (x) is the set of prefixes of x of the length < n. It is easy to see that z = || z[n] for ‘




The induced ultrametric d on Act™ is the usual metric on sequences:

1
d(z,y) = inf {%- :z[n] = y[n]}
By Theorem 2.13 we get the wellknown result that (Act™,d) is a complete ultrametric
space.

4.2 Mazurkiewicz traces

Let (Act,.) be a concurrent alphabet, i.e. ¢ is an irreflexive and symmetric relation on
Act (called independency). A trace is an equivalence class [z] of a finite string = over
Act where the underlying equivalence relation = is the reflexive, transitive closure of =’
which is given by:
r =y 1< 3Jo,f€Ad, z,w€Act* : a1 B8 A z=z200w A y=zBaw

If o = [z]is a trace then |0| = |z| where |z| means the usual length of z. In the
following D denotes the set of traces w.r.t. a fixed concurrent alphabet (Act,:) and C
means the lifting of the prefixing ordering on Act* to D. le.

] C [y <= 3 ,y,2€eAcd” :1'=z A y=y =12
If n € IN then
o™ ={odeD:dCa A |d|<n}.
[16] considers the metric

d(o,7) = inf { —21; s o™ = 7 }
This is the metric d[p] where the length p is given by p(s) = |o|. If 1 # 0 then p is not
a weight, e.g. if o, 3 € Act, o ¢ 3 then

Vo ([eBl) = {L[a]. 18]}

does not contain a greatest element since [a], [J] are incomparable. Since we only deal
with finite traces D is not p-complete. In [17] it is shown how the concept of infinite
traces as proposed in [16] fits in our framework.

4.3 Trees

'Let Tree denote the set of countably branching trees with labelled edges. Formally, a tree
is a 4-tupel (V, K, k, vg) where N is a set of nodes, K C N x N is a set of edges such that
(N, K) is a tree in the graph-theoretical sense, k: K — Act is a labelling function and
v € N is the root. height(T) denotes the usual height of T, i.e. the length of a longest
path in T

To ensure that Tree is a set we assume that N C Nodes where Nodes is a fixed uncountable
set of nodes which contains a fixed element vy. In addition we require that always vq is
the root of a tree.




The partial order C on Tree is defined as in [31]:
T'CT, < ﬂZ(Ni,Ki,ki,1}0),i=1,2 and T}, = TQ[-NI.

Here Tl = Tz[-]\/"[ means that JVI g N2, K1 = Kgﬂ N1 XN[ and kl = kglKl.
(Tree,C) is a cpo where the bottom element is the tree T. = ({vo},0,0,vp). If (T})
is a monotone sequence in Tree (where T; = (Nj, K, ki, vo)) then the supremum of (T})

in Tree is

(U Ni,vU Ki, U k‘,‘, UO) .
height is a continuous weight on the cpo (Tree,C). The n-cut T[n] of a tree is the tree
which arises from T' by removing all nodes of the depth > n 4 1. Le. T[n] = T[N]n]
where N[n] is the set of nodes v € N such that the depth of v in T is at most n. Here
the depth of a node v in T is defined as the length of the path from the root to v. If T is
a tree then | |T[n] = T. Le. all trees are approximable:

M(Tree) = Tree

The induced metric d on Tree coincides with the usual metric on trees:
AT, Ts) = inf { 217 . Tijn] = T[n] }
A tree T is finitely approximable if and only if for each n > 0 the set
1I"(T) = { S € Tree: SC T[n]}

is finite. This is the case if and only if N[n] is finite for all n > 0 if and only if T is finitely
branching. In the following Trees, denotes the subspace of finitely branching trees. Then:

Mo (Tree) = Treeg,

By Remark 2.17 height is a continuous weight on the (incomplete) pointed poset (Treeg,, =)
which is height-complete. Hence Treeg, is a complete metric space.

Using trees as semantic domain we are not interested in the names of the nodes. Hence
we abstract from the names which means that we deal with isomorphism classes. I.e. we
consider the semantic domain

TREE = Tree/ ~

instead of Tree where ~ means isomorphism of trees. It can be shown that the ’lifting’
of C on TREE is a preorder but not a partial order on TREE. Here by the ’lifting’ we
mean the following relation (which we also denote by C) on TREE:

T1ETs :<= There exists representants T; of 7T ; such that T} T Tb.

It can be shown that T as an ordering on TREEg, = Trees,/ ~ is an incomplete partial
order. The lifting of the weight height on TREEy, yields a continuous weight on TREEg,
and TREEy, is height-complete. All elements of TREEg, are finitely approximable. Hence
TREEy, is a complete metric space. The n-cut of [T']. is the isomorphism class of T'[n].
The canonical function

@ : Treey, = TREEg,, o(T) = [T]~

28




is continuous and ¢(T'[n]) = ¢(T)[n]. Let
treecpo : CCS — Tree, tree.ms : GCCS — TREEy,

denote Winskels cpo semantics for CCS resp. the metric semantics for guarded CCS
on TREEg, where Winskels semantic operators lifted to isomorphism classes of finitely
branching trees are used. Then by Theorem 3.14, Remark 3.12 and Remark 3.15:

[ treecpo(s)(0) ]« = treeems(s)(w o o)

forall s € GCCS and o : Idf — Treeg,.

4.4 Event structures

Let (Ev,C) denote the cpo of prime event structures as defined in [30]. A prime event
structure (or shortly event structure) is a 4-tupel E = (N, <,#,[) where N is a set of
events, < a partial order on N, # is a binary symmetric, irreflexive relation on N and
[ N — Act is a labelling function such that for each e € V the set {¢' € N : ¢’ < e} is
finite and for all e, €, €’ € N:

e<ée A efe = €#’
The partial order C on Ev of [30] is given by
F'CE < FE = E[N
where £/ = E[N iff E = (N,<,#,l) and NV’ is a leftclosed subset of N such that
E' = (N, < NN xN,# n N xN, IN).

The depth of event structures is a continuous weight on Ev. Here the depth of an event
structure E is given by

depth(E) = sup {depthg(e):e € N}
where E = (N,<,#,l) and
depthp{e) = max {n € INg:Jey,...e, € N withe; < ...<e, =¢}

foralle € N. e < ¢ means (e < €) A (e # €). The n-cut of E is E[N[n] where
N[n] denotes the set of all events e € N with depthp(e) < n. All event structures are
approximable, i.e.

M(Ev) = Ev.
The set of finitely approximable elements of Ev is the set of event structures E where
E[n] is finite for all n > 0. Here E = (N, <,#,!) is called finite iff NV is a finite set. Let

Evy, denote the set of finitely approximable event structures. By Remark 2.17 depth is a
continuous weight on the incomplete pointed poset (Evg,, E) which is depth-complete.

Let EV = Ev/ ~ where ~ means that isomorphism, i.e. we abstract from the names
of the events. Similary to the situation above where we consider isomorphism classes of
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trees we get the following results: The ’lifting’ of C to EV (which we also denote by £)
yields a preorder on isomorphism classes of event structures. The restriction of C on
EVg, = Evg,/ =~ is an incomplete partial order and

depth([E]~) = depth(E)

is a continuous weight on EVy,. EVj, is depth-complete. The induced complete metric
space coincides with the metric space considered in [11]. If ev,,, : CCS — Ev denotes
Winskels cpo semantics for CCS and ev.y,, : GCCS — EVjg, is the metric semantics for
guarded CC'S where Winskels semantic operators lifted to EVj, are used then we get the
following consistency result (by Theorem 3.14, Remark 3.12 and Remark 3.15):

(eVepo() ()] = evems(s)([0)e)
forall s € GCCS and ¢ : Idf - Evg,.

4.5 Pomsets

Following the idea of {23] in [7, 8] sets of pomsets are used to describe the linear time
and true parallelism behaviour of CCS-/CS P-like processes. Pomsets can be defined as
event structures without conflicts. Here we only deal with finitely approximable pomsets:
In our setting a pomset is a tripel p = (N, <,!) such that (N,<,0,l) € Evg,. Let Pom
denote the set of pomsets. It is easy to see that Pom endowed with the restriction of the
partial order C on Ev to Pom is a pointed poset. The least upper bound of a monotone
sequence in Pom (if it exists) equals the least upper bound in Ev. depth is a continuous
weight on Pom. The n-cut of a pomset p in Pom coincides with its n-cut in Ev. Pom is

depth-complete and all pomsets are finitely approximable.
Mgn(Pom) = M(Pom) = Pom.

Dealing with isomorphism classes of pomsets we get a subspace POM = Pom/ =~ of
EVg,. Then POM is a pointed poset (but not a cpo) and the least upper bound of a mono-
tone sequence in POM (if it exists) coincides with its least upper bound in EVj,. depth
is a continuous weight on POM. POM is depth-complete and Mg, (POM) = POM.
The associated metric space coincides with the metric space of (isomorphism classes of)
pomsets as defined in [7].

5 Characterization of SFP domains as rank ordered
cpo’s

We show that the SFP domains of Plotkin [22] can be characterized as special kinds of

rank ordered cpo’s.

A SFP domain is a cpo D which is the inverse limit of some embedding sequence of finite
cpo’s (in the category CPOF of cpo’s and embedding projection pairs). An embedding
projection pair D — D' is a pair < e, p > of continuous functionse: D — D', p: D' = D

30




such that poe = idp and eo p C idp. An embedding sequence means a sequence
(Dn,tn)a>0 of cpo’s D, and embedding projection pairs ¢, : D, = D,,,. For further
details see [22, 26, 28].

If # = (7p)n>0 is a rank ordering on a cpo D then (m,(D)).>o can be considered as
an embedding sequence where the embedding projection pair ¢, : 7,(D) —= 7,4 1(D) is
given by: 1, = < i,,j, > where i, : (D) - m,11(D) denotes the inclusion and
Jn 7rn+l(D) - Wn(D)a ]n(x) = Wn(‘r)'

Lemma 5.1 If T = (7,)n>0 i a rank ordering on a cpo D then D is the inverse limit
of (mn(D))nx0-

Proof: It is clear that v, = < e,,p, >: D, — D is an embedding projection pair where
en : Ty (D) — D is the inclusion and p, = m,|D — 7,(D). In addition we have:
Tn+1OCln = Tn

If D'is acpo and v, = < i,,j;, > D, — D' are embedding projection pairs with
Vn+1©tn = 7, then it can be shown that < e,p >: D — D’ which is given by

e(z) = L i(m(), p(y) = | n(v)

n>0 n>0

is the unique embedding projection pair with < e,p > 0 7, = ~,. Hence (D,,) is the
inverse limit. O

Definition 5.2 A rank ordering @ = (m,) on a pointed poset (D,C) is called finitary
iff for each n > 0 the set m,(D) is finite.

Lemma 5.3 Let (D,,t,) be an embedding sequence of finite cpo’s. Then there exists a
finitary rank ordering on the inverse limit D of (D, t,).

Proof: Let (D,7,) be the inverse limit where v, = < e,,p, >. Then it is easy to see
that (e, 0 pn)n>0 is a finitary rank ordering on D. O

Theorem 5.4 Let D be a cpo. Then D is a SFP domain if and only if there ezists a
finitary rank ordering on D.

Proof: follows by Lemma 5.1 and Lemma 5.3. O

A similar result is presented in [1] where bifinite domains are described in terms of directed
sets of so-called idempotent deflations (which can be considered as a generalization of
finitary rank orderings).

6 The Lawson and the metric topology on weighted
cpo’s
In this section we discuss the connection between the Lawson topology on an algebraic

dcpo and the topology induced by the metric d[p] resp. d[@] where p is a length and 7 a
rank ordering.
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The topology on a metric space (M, d) is the topology induced by the basis of open balls,
i.e. the sets

B(z,r) = {yeM : d(z,y)<r}
where z € D and r > 0.
Let D be an algebraic dcpo. le. for each element z € D the set

K(z) = {€€K(D) : €Tz}

is directed and * = lub(K(z)). Here K(D) denotes the set of compact (or finite or
isolated) elements of D. An element £ of D is called compact (or finite or isolated) iff
whenever X is a directed subset of D with { C lub(X) then £ C z for some z € X. D
is called w-algebraic iff D is algebraic and K(D) countable. The Lawson topology on an
algebraic dcpo D is defined to be the topology induced by the subbasis £ 1, D \ £ 1 where
¢ € K(D).

Lemma 6.1 Let (D,E) be an algebraic depo, p a weight on D then D = M(D) if and
only if K(D) C Fin(D).

If p is a length on D and K(D) C Fin(D) then D = M(D).

Proof: First we assume that p is a length on D and K(D) C Fin(D). For each element
zr € D we have:
K(z) € {"(z)
Since z is an upper bound of ['"(z) and since z = lub(K(z)) we get:
v = lub(i™(z)
Therefore D = M(D).

Now we assume that p is a weight on D and D = M(D). Let £ € K(D). Then [*(¢)
is directed (since p is a weight) and

¢ = lub (1™(9).
Since ¢ is compact there exists z € |""(¢) with ¢ © . Therefore ¢ = z € Fin(D). O

Lemma 6.2 Let (D,C) be an algebraic depo and p a weight on D with K(D) C Fin(D).
Then the d[p]-topology is finer than the Lawson topology.

Proof: We have to show that the sets { T and D \ £ 1 (where £ € K(D)) are open w.r.t.
d[p]. Let £ € K(D) and n = p(£). By assumption n < oo.

If y € £ 1 then for all z € B(y,1/2"):
§ECyn+1] = z[n+1) C =
Hence z € B(y,1/2"). Therefore B(y,1/2") C € 1.
If y € D\ €1 then for all z € B(y,1/2"):
§ Z yln+1] = z[n+1]
Therefore ¢ £ z. Hence B(y,1/2") € D\¢+t. O
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Lemma 6.3 Let (D,C) be an algebraic dcpo and p a length on D such that
Din)] = {zeD : p(z)<n}

is finite for allm > 0 and such that Fin(D) = K(D). Then the Lawson topology on D
is finer than the d[p]-topology on D.

Proof: We have to show that the open balls B(y,r) are open w.r.t. the Lawson topology.
Let ye D, r >0 and z € B(y,r). Then 1/2" < r for some natural number n > 0. Let

U = ({¢r: €el™(a)},

V = N {&+: €D, €Tz}

Then U and V are Lawson open (since D(n] is finite and D{n] C Fin(D) = K(D)). It is

clear that ) \1
y € UNV = B(x,ﬁ) - B(y,-—-) C B(y,r).

Hence B(z,r) is Lawson open. O

Theorem 6.4 Let p be a weight on an algebraic depo (D, T) such that K(D) = Fin(D)
and such that for all n > 0 the set

Din) = {ze€eD : p(z)<n}

is finite. Then D = M(D) and the Lawson topology on D agrees with the topology
induced by the metric d[p].

Proof: follows by Lemma 6.1, Lemma 6.2 and Lemma 6.3. O

Dealing with rank orderings instead of weights we get similar results. In [26] it is shown
that whenever (D,~,) is the inverse limit of an embedding sequence (D, tn) where D,
are w-algebraic depo’s then D is w-algebraic and

K(D) = U ea(K(Dn))

n>0

where v, = < en,p, >. Since finite posets are always w-algebraic dcpo’s where all
elements are compact we obtain by Lemma 5.1:

Lemma 6.5 If @ = (m,)n>0 s a finitary rank ordering on a cpo D then D is an w-
algebraic depo and
K(D) = |J m.(D).
n>0

Lemma 6.6 Let & be a rank ordering on an algebraic dcpo such that m,(D) C K(D) for
all n > 0. Then the d[7]-topology on D is finer than the Lawson-topology on D.

Proof: analogous to Lemma 6.2 where we have to deal with m,(z) instead of z[n]. O

Lemma 6.7 Let T be a finitary rank ordering on a cpo D. Then the Lawson topology on
D is finer than the d[7]-topology on D.
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Proof: analogous to Lemma 6.3 where we have to deal with m,(z) instead of z[n]. O

Theorem 6.8 Let 7 be a finitary rank ordering on a cpo D. Then the Lawson topology
on D agrees with the topology induced by the metric d[7].

Proof: follows by Lemma 6.6 and Lemma 6.7. O

By Lemma 2.29, Theorem 5.4 and Theorem 6.8 we conclude that each SFP-domain D
(endowed with the Lawson topology) is a compact, metrizable topological space.

7 Related work and future research

Various other authors have attempted to build a bridge between cpo and metrics. E.g.
Matthews [19] introduces the notion of partial metrics and quasi metrics in order to obtain
a topology that is not Hausdorff. Smyth [26] introduces quasi uniformities for the same
propose. In [17] we show that a finite length on a pointed poset induces a continuous
weight (and hence a metric) on the ideal completion and we discuss the relationship
between the metric and the ideal completion as a metric space. There we also show the
connection to the approach of [10] where a metric on the ideal completion of a countable
poset is defined: If p is a finite length on D such that D[n] is finite for all n > 0 then the
metric of [10] on the ideal completion is equivalent our metric. In [17] we also discuss the
relation to the approach of Weihrauch and Schreiber [29]. We recall the results: [29] start
with a partial order (D, ) with a function |- | : D — [0, oo] that obeys:

(¥) 2By = l|z| 2yl

From this they construct a distance d:

k-1 '
d(z,y) = inf { Z |2i| : z0,21,...,2k is a path from z to y }

i=1

A path from z to y is a (finite) sequence zg, z1,...,2; in D such that zp = z, z; = y and
such that for all : there exists an upper bound of z; and z;4; in D. Those elements z in
D with |z| = 0 form a pseudometric space. [29] describes a method to select from every
distance-0-equivalence class a member and obtain a subset of D that is a metric space.
Condition (x) tells us that L is the heaviest’ element and that the ’largest’ elements are
the lightest. E.g. given an alphabet A and choosing D = A*® and |z| = 1/l(z) where
I(z) means the length of a string = we see that the constructed metric space will consist
of infinite strings only. Choosing D = A* with |z| = 1/I(z) there are no elements with
|z| = 0 and the constructed metric space of [29] is empty whereas we obtain the cpo and
complete metric space A* of all sequences.

In (3, 4] we discuss the relation between denotational semantics in the cpo and metric
approach. At present we are studying the connection between initial solutions of domain
equations for cpo’s and unique solutions of domain equations for complete metric spaces
[5]. In contrast to [24] where fixed point theorems for locally continuous and locally
contractive endofunctors of the category of quasi ultrametric spaces are established (and
- hence combine the results of [28] and [2]) we show how the solutions of ’corresponding’
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domain equations D = G(D) for cpo’s (which are solved by the method of [28]) and
M = H(M) complete metric spaces (which are solved by the methods of {2, 18, 25]) are
related.
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