Reihe Informatik

30/95'

Denotational linear time semantics and
sequential composition

C. Baier, ML.E. Majster-Cederbaum

Denotational Linear Time Semantics and
Sequential Composition

Christel Baier, Mila E. Majster-Cederbaum

Fakultat fir Mathematik und Informatik
Universitat Mannheim, 68131 Mannheim
{baier,mcb}@pil.informatik.uni-mannheim.de

December 1995

Abstract

This paper focuses on the issue of modelling sequential composition in denota-
tional linear time semantics for (nondeterministic) languages which admit infinite
computations. This operator deserves special attention as it causes problems to meet
the requirements of a standard denotational semantics based on metric or cpo. We
present a general framework for the treatment of sequential composition. It turns
out that a program can be described by its maximal computations in the metric
approach whereas the partial order approach is suitable to describe a program by
all its partial computations.

Contents

1 Introduction > 2

2 The language Prog 3

3 Denotational linear time semahtics in the metric approach 6
3.1 Metric spaces suitable to model finite behaviour 6
3.2 Modelling infinite behaviour L. 9
3.3 A denotational linear time semantics on 'Pm(M) 11

4 Denotational linear time semantics in the partial order approach 16
4.1 Pointed posets suitable to model finite behaviour 18
4.2 Modelling partial behaviour 20
4.3 A denotational linear time semanticson Py(D) 22

5 The connection between the metric and partial order approach 24

6 Conclusion 32

1 Introduction

Usually the semantic domain of linear time semantics is a collection of subsets of a seman-
tic domain A where the elements of A can be considered as computations of programs.
The meaning of a program P is then a subset H of A where the elements of H correspond
to the possible computations of P. Typical examples are trace [3, 11] or pomset semantics
[4, 7, 15]. -

Two kinds of computations can be distinguished: maximal and partial computations.
Maximal computations can either be infinite or finite. The latter include successfull
terminating computations as well as deadlocked computations. Partial computations are
finite execution fragments of maximal computations. A partial computation leads either
to a final state or to an intermediate state, i.e. a state in which the computation goes on.
In other words, partial computations are either terminating computations or computations
which can be extended to maximal computations.

One attempt of this paper is to present conditions which characterize 'good’ sequential
operators on the underlying domains. By a ’good’ sequential operator we mean an opera-
tor which reflects the ideas of sequential composition as specified by a given operational
semantics. If P and () are programs then their sequential composition P; () is a program
which first behaves like P and if P has successfull terminated then it behaves like Q. In
this paper we do not deal with deacklocked processes, i.e. we assume that termination is
always successfull. Hence the set of maximal computations of P; () consists of the infinite
computations of P and all computations which start with a terminating computation of
P followed by a maximal computation of). The set of partial computations of P;Q
consists of the partial computationsof P (possibly except for those terminating computa-
tions which pronounce their termination) and all computations which first behave like a
terminating computation of P and then perform a partial computation of Q). If A is a se-
mantic domain whose elements can be interpreted as maximal resp. partial computations
then a ’good’ sequential operator ;4 on A would satisfy:

(i) If € A is an infinite computatlon resp. a computation leading to an intermediate
state then TiaYy = T.

(ii) If z is a terminating computatlon then z ;4 y stands for a computation which first
performs z and then y.

Such an operator on A induces the operator (H,I) — {z;4 y : z € H, y€ I } on the
powerset of A. Hence our aim is find conditions which ensure that a semantic operator
on A for modelling sequential composition satisfies the conditions (i) and (ii). (i) and (ii)
imply that A has to distinguish between elements representing terminating computations
from those which stand for infinite computations resp. computations leading to an inter-
mediate state. Dealing with maximal computations it seems to be natural to assume that

the elements of A representing infinite computations differ from the elements of A which
stand for terminating (i.e. finite) computations. In contrast to this, dealing with partial
computations it might be the case that in A terminating computations cannot be distin-
guished from partial computations leading to an intermediate state. For instance, if A is
the set of finite strings over some action alphabet Act where a string a; . .. o, is considered

as a computation which performs successively the actions ¢y, ..., a, then the terminating
computation which performs ¢,...,a, and then stops cannot be distinguished from the
computation which performs ay,...,a, but does not come to a halt. We generalize the

idea of [11] and model termination by a new action /. We show how a metric setting can
be used to associate with a process P the set of its maximal computations, and how the
cpo setting can be used to give a partial computation meaning.

The paper is organized aS‘follows_:j_:__S,egt'iOnﬂ 2 presents the syntax of the language Prog
which is under consideration for the whole paper. Section 3 presents conditions which
allow the definition of a metric denotational linear time semantics which assigns to each
program the set of its maximal computations. In section 4 we argue that the partial
order approach fails to describe the maximal computations. Hence we switch to partial
computations and give a denotational linear time semantics which maps each program to
the set of its partial computations. In section 5 we show how the partial computations
of a program which are given by a partial order semantics as in section 4 can be derived
from its maximal computations which are given by a metric semantics as in section 3.
The assumption that the elements of a semantic domain A can be interpreted as partial
computations implies that A is (or can be) equipped with a partial order: z T, y iff
T is an execution fragment of y. For this reason we do not discuss the question whether
the metric approach works for partial computations in absense of a suitable partial order.
Section 6 contains some concluding remarks. Throughout the whole paper we deal with
traces and pomsets as applications of our framework.

2 The language Prog

Throughout we consider a language Prog which includes nondeterministic choice, sequen-
tial composition and recursion. We assume a fixed set Act of atomic actions o, 3, Each
action a represents a program that performs a and then stops. In addition to the binary
operator symbols + and ; which stand.for nondeterministic choice resp. sequential com-
position we assume a set 2 of operator symbols for modelling operators like parallelism
with or without communication, relabelling, hiding, and so on. Each operator symbol w
is associated with an arity |w| > 1. Recursion is modelled by guarded declarations, i.e.
we assume a fixed set Idf of identifiers and a fixed mapping o that assigns a guarded
statement o(£) to each identifier £. Formally, the set Prog”(f?) (or Prog for short) of
programs is given by the production system

P:= al| | P1‘1+1P2 | PP | w(P,...,P)

where a € Act, £ € Idf and where w € {2 is a k-ary operator symbol. Guarded statements
are given by the production system:

G:i= al| Gi+G2 | G;P | w(Gy,...,Gyi)

o is a fixed mapping from Idf into the set of guarded statements. Fach occurrence of
an identifier £ in a program P € Prog is a recursive call of the procedure o(€). The
- guardedness of the statements ¢ (£) is essential for the definition of a denotational seman-
tics in the metric approach. This assumption can be omitted if one only wants to give a
denotational semantics in the partial order approach.

Example 2.1 In the following we will consider the language Prog”({||}) as a standard
examle which is given by the production system

Pu=oaol|f|PA+P|P;P|P|P

where || denotes parallel composition without communication. As before we assume o to
be a fixed guarded declaration. An operational semantics for Prog”({||}) can be given by
as in [5]: Let E be a new symbol. Then

~ € Prog’({|}) x Act x (Prog’ ({|}) U {E})

is the smallest relation which satisfies the following conditions (where we write P < P’
instead of (P, a, P') € —):

Q,

a— F
P = Q P2£)Q where
< % € Pro, U{FE
o v Py Q & Prog ({1} U (B}
P = P _PSE here P!
: P eP
P ; LS PP P P 3 Py where Py € Prog”({][})
Pl—a')Pll Pég*Pé / /
& - where P|, Pj € Pro
P | P =P | P P;PR3P|P b2 g (I}
P3FE "B 3E
PRSP : PR3P
7= - where Q € Prog?({[}}) U (E}

We-consider the labelled transition system (Prog”({||}) U {£},—). Computations of a
program P are reflected in the paths starting at P. A maximal finite computation of P
corresponds to a path from P to E a .

A standard technique to define a denotatlonal linear time semantics for a language of type
Prog? (2) consists of two steps:

(i) provide a semantic domain A to model the finite deterministic behaviour, i.e. the
sublanguage Progg, given by

P - al PI;P2 | w(Pl,...,Pk)

together with suitable semantic operatots a4 € A, ;4: AX A = A and wy : 4% o
Pin(A) where Pg,(A) denotes the collection of nonempty and finite subsets of A.
The meaning function is then

Me” : Progs, — Pin (A)

with
Me*(a) = {aa}
Me* (P + P) = Me'(P) U Me'(Py)
Me(Py; Py) = {m Ay T €Me'(P), y € Me'(P,) }

Me*(w(Py,..., P))

U'{ wa(zl,...,zx) @ T; € Me*(P), i=1,...,k}

(ii) extend this semantics Me® to infinite computations where some powerdomain con-
struction P.(A) of A is used as semantic domain. Since the computations of P + Q
are those of P and @) the nondeterministic choice operator + has to be modelled by
the union on P.(A).

Throughout we consider the semantic domains of traces and pomsets as standard exam-
ples where the underlying language is Prog”({||}). The semantic operators for modelling
nondeterministic choice, sequential composition and parallelism are those of [11] and [3]
in the case of traces and those of [4] and [7] in the case of pomsets.

Example 2.2 Let Act* be the set of finite sequences over Act (which we call traces). Act™
denotes the subset of nonempty finite traces. The atomic action a € Act is associated
with the single-element trace a. Sequential composition is interpreted by concatenation:

Parallelism is modelled by interleaving, i.e. z || y is the set of traces which arise by
merging:
def
zlly = 2y U yfz

where [means leftmerge, i.e. §[z def {z}, az[z ¥ {ow : we z[z}. E.g. the inter-

pretation of the program P = (a;7) || § as a subset of Act* is

{ 7B, afv,Bav}.

|

Example 2.3 A pomset is a partially ordered set (E, <) which is endowed with a la-
belling function / : E — Act that maps the elements of E (called events) to some action.
The interpretation of pomsets as computations is as follows: The execution of an event
e € E means the execution of the associated action [(e). If e < €’ (i.e. e < ¢ and e # ¢')
then e must be executed before €'. If e, €' are independent events (i.e. neither e < ¢’ nor

¢’ < e) then e and €' may be executed in parallel. In addition we require that each event
is'reachable, i.e. for each e € E the set of predecessors of e is finite.

Pom™ denotes the set of isomorphism classes of finite pomsets, Pom* the subset of
nonempty and finite pomsets. Here by a finite pomset we mean a pomset where the
underlying partially ordered set is finite. Isomorphism of pomsets means that they only
differ in the names of the events, i.e. we abstract from the names of the events. In what
follows, we identify pomsets and their isomorphism classes.

The associated pomset of an atomic action « is the pomset p, which consists of a single
event labelled by a. Given two finite pomsets p;, p» we get p1;p» by appending p, at
the end of py, i.e. each event of p, is preceeded by all events of p;. Formally, sequential
composition ; on Pom™ is given by: .. .

(E17 Slall) a (E27S2al2) '!__if (El U E?) S’ll U 12)

where E; NEy = $and < = <; U <3 U E; X E,. The parallel execution p; || pa of
two pomsets is modelled by taken the disjoint union, i.e. for all events e of p; and €' of
p2 the events e and €’ are independent in p; || ps.

(Ey,<1,h) | (E2,Sz,l2). o (B1U Ep, <1 U <o,l1 Uly)

where E), Ej are disjoint. E.g. the meaning of the program S = (a;~) || 8 is then the
set consisting of the pomset: o
[e] —

3 Denotational linear time semantics in the metric
approach |

In this section we show how a denotational linear time semantics defined in the metric
approach can be given such that the meaning of a program can be viewed the set of its
maximal computations. The starting point is a metric space M suitable to model finite
behaviour. The completion M of M is used to describe finite and infinite behaviour. We
present conditions which the semantic operators on M have to fulfill and show how under
these conditions suitable semantic operators on P.,(M), the collection of all nonempty

and compact subsets of M, can be derived thus yielding a denotational semantics on
P (7).

3.1 Metric spaces suitable to model finite behaviour

We assume that the metric on M is a measure for the number of atomic steps in which
two computations agree. We require that for each two computations z, y € M:

1
: d(x,y) = on

2

if and only if z and y coincide in the first n steps and differ in the (n + 1)-th step. The
interpretation of a ’step’ depends on.the underlying semantic domain. A step might be
the execution of a single atomic action a € Act, the communication of two (or more)
atomic actions or the parallel execution of some atomic acions and/or communications
between atomic actions. We formalize this assumption by the concept of a ranking. The
notion of a ranking as we use it here is closely related to the notions of a rank ordering
or a projection space as they were introduced in [8] resp. [9].

Definition 3.1 A ranking on a metric space M is a sequence of functions
M= M, zw zn]

where n ranges over the natural numbers > 1 such that:

o (z[n)[m] = (z[m])n] = z[n] foralim=n>1
o for each z € M there is some nZ 1 with z = z[n]

e the metric d on M is given by the formula
d(z,y) = inf { 51; . z[n] = y[n] }

where inf) = 1. We put -
: p(z) = min {n :z[n]==z}.

IfH is a subset of M, & = (x1,...,7x) € MP* then we put:

Hn] = {z[n] : zeH}, Zn] = (zi[n],...,zen])

We interpret p(z) as the number of steps which the computation = performs. The second
conditions ensures that each element of M can be considered as a finite (i.e. terminat-
ing) computation. In addition, it implies that the elements of M stand for 'nonempty’
computations, i.e. computations that perform at least one step. z[n] is called the n-cut
of z. z[n] represents the behaviour of z.until the n-th step. This is due to the fact that
p(z[n]) < n and d(z,z[n]) < 1/2". We have p(z) < n if and only if z = z[n]. If p(z) > n
then we may think of z[n] as a process which behaves like z in the first n steps and then
terminates.

Example 3.2 The metric on Act™ " - |
d(z,y) = inf { 51; : n-th prefix of £ = n-th prefix of y }

is induced by the ranking = + z[n] where z[n] denotes the n-th prefix of z. Then p(z) is
the usual length of the string z. The metric of [4] on Pom™ is given by

d(p,q) ={% : pln] = Q[”]}

is induced by the ranking p + p[n]. Here p[n] is the pomset which arises from p by re-
moving all events e with depth,(e) > n where

depth,(e) = max {n :3Je;,...,e,€E e <...<e,=¢e}.
Then p(p) is the usual depth of p:

depth(p) = max { depth,(e) : e is an event of p }

a

In the following definition we formalize the properties which an operator for modelling
sequential composition has to fulfill. If p(x) > n (i.e. the execution of z needs at least n
steps) then the first n steps of z;y equal those of z. If p(z) = m < n (i.e. the execution
of = stops after performing m steps) then the first n steps of x; y consist of the execution
of z followed by the first n — m steps of y.

Definition 3.3 Let M be a metric s;bace which is equipped with a ranking. An operator
MxM->M, (z,y) » z;m y
is called admissible (for modelling sequential composition) iff it satisfies:

z[n] L if plz) 2 n
(z im Yn] = ,
zim yln—m] : if p(z) =m < n.

forallz, ye M andn > 1.

The following condition about the semantic operators wy, is needed to get non-distance-
increasing operators on the powerdomain. It asserts that the first n steps of the possible
computations of a composed program w(P,..., P;) are uniquely determined by the first
n steps of the computations of P, ..., P;. This requirements seems to be natural for op-
erators like parallelism (with or without communication), hiding, relabelling or prefixing.

Definition 3.4 Let M be a metric ‘space which is equipped with a ranking and let w € Q
be a k-ary operator symbol. An operator

;Mk—-)Pﬁn(M); '_(xla"-axk) = LUM(Il,---,-'L'k)

is called admissible (for interpreting w) iff for allZ € M* andn > 1:

wu (E[n))n] = war(#)[n]

Notation 3.5 We say that a metric space M is suitable to model finite behaviour
iff it is equipped with a ranking and semantic operators ;yr and wy, w € Q, such that ;y
and the operators wys are admissible. In addition we suppose an interpretation of the
atomic actions a € Act in M, i.e. we assume that there are fized elements ayr € M.

Example 3.6 It is easy to see that the sequence resp. parallel operators on Actt and
Pom satisfy the condition of Definition 3.3 resp. 3.4. Hence Act* and Pom™ are suitable
to model finite behaviour. O ’

3.2 Modelling infinite behaviour

In what follows we assume that M is a metric space suitable to model finite behaviour.
Let M be the completion of M. The elements of M \ M are considered as infinite
computations. The underlying metric on M and M is denoted by d. We extend the
functions M — M, z — z[n], to functions

M- M, zv zn

as follows: If z € M then z[n] € M denotes the unique element in M such that for each
Cauchy sequence (z,,) in M with z = limz,,:

- Tm[n] = z[n]

for almost all m € INy. Such an element z[n] exists since for each two Cauchy sequences

(Tm), (ym) in M with z = limz, = limy,, there exists ny > 0 such that d(z,,z),

 d(Ym,z) < 1/2" for all m > ng. Then d(zm,ym) < 1/2°. Hence z,,[n] = y,[n] for all
m > ng. It is easy to see that ‘ '

d@wsﬁquxw=mw

for all z, y € M. We extend p to a fuﬁction on M:
plz) = o ifzreM\M
If HC M and % = (z1,..., %) E'-Mk_the‘n we put:
Hln) = {a[n] : c€H}, #n] = (mn],...,zn)
We also write H[n] as an abbreviation for Hin] x ... x Hyn] if H=H, x ... x Hy.

Example 3.7 The completion of Act* is Act™ the set of nonempty, finite and infinite
sequences over Act. The n-cut z[n] of an infinite sequence is the n-th prefix. The com-
pletion of Pom™ is the set Pom®™ of nonempty pomsets p = (E, <,!l) such that for each
n > 1 the set E[n] of all events e € E with depth,(e) < n is finite. The n-cut p[n] of p is
the pomset which arises from p by removing all events e ¢ E[n]. O

Definition 3.8 The operator M x M — M, (z,y) — = 37 y is given by:

Ty = lim z[n] ;m yln]
;37 is the canonical extension of ;y,ie. T ;57 ¥y = z;m y forallz,ye M.

Lemma 3.9 Forallz, y€ M andn > 1:

zln] . ifp(z) 2 m
@l = {

zir yln—m] ¢ ifplz)=m<n

Ifte M\ M thenz ;37 y = .

-

Proof: easy verification. O

By Lemma 3.9 it follows immediately:
Corollar 3.10 Forallz, y € M and n > 2:
(z 53 Y)[r] = (z[n] ;m y[n—1])[n]
In particular, ;37 is non-distance-incredéing and contracting in its second argument.
We extend the operators wys to operators wyy in the following way:
Definition 3.11 For each k-ary operator symbol w €) we define an operator
| | wﬁv : b-J_/Ik - P(M)
as follows: _ o
| ow(@®) = { Jim z @€ wnEnDlnl 2= sl |
"Here P(M) stands for the powerset of M.
Lemma 3.12 wyr extends wyy, i.e. ‘wM(:i') = wyp(&) for all & € MF.

Proof: Let & € M*. There exists a natural number N > 1 with z[n] = z for all z € wy(Z)
and n > N. Note that the set wy(Z) is finite. Hence we may define

N = max { p(2) : z€wy(Z) }.

Then for all n > N:
| wu (E[n])[n] = wm(@)[n] = wm(3)

Le. whenever (z,) is a sequenc.e in M with zn € wuy(Z[n])[n] and z, = z,41[n] then
v = avp[N] = Z_N+_1 = 42N +1] = zng0 = ...

Therefore limz, = zy € wpy(Z). Hence wy(Z) C wu(%).

If z € wy (%) then we put z, = z[n]. Then
2 € wu(®n] = ol
Zn41[n] = 7z, and limz, = =z Henc'e;:z € wyp(z). O
Lemma 3.13 For each k-ary oper;aior symbol we€NandallZ € Mk, n>1:

wir(@)[n] = wi(En])n]

is a finite set.

10

Proof: Let z € wi7(Z)[n]. Then there exists a sequence (z,)n>1 such that

tm € wye(E[m))[m]

and 2y = Zm4i[m] and z = (lim 2,,)[n]. Then z, = zy[n] for all m > n. By definition

- of the n-cuts of elements in M we have:
= (im z2)fn) = 2 € wy(En)n]
Let z € wgp(Z[n])[n]. By Lemma 3.12:

2 € wg(@nln] = ww(@n)in)

We define by inductiononm > 1a éédﬁéﬁce (zm) With z,, € wp(Z[m])[m], z2m = 2m[m + 1]
and z = (lim z,)[n}. '

o In the case m < n we put: zn, o z[m]. Then:

Zm € (wm(En))[n])[m] = wu(En])m] = wu(E[m])m]
o We assume that m > n and that Z1y...,2m are defined. Since
o € wi(E[m])lm] = wyr(Em + 1])[m]
there exists 2/, ,, € wy (Z[m + 1)) w;vith Zpy1lm] = zm. We put:
Zmpt E Zm+1]
Let 2 = lim zn,. Then 2’ € wy(%) ana z = Z[n] € wy(@)[n]
By Lemma 3.12 and by the assumption that wy(7) is finite for all § € M*:

wir®)ln) = ww(En])n)

is finite. O

3.3 A denotational linear time semantics on P, (M)

Our aim is to give a denotational semantics Me for Prog on some powerdomain construc-
tion of M such that Me(P) can be viewed as the set of maximal computations of P. By
our results in [1] we need a suitable powerdomain P.(M) which is a complete metric space
and which is endowed with semantic operators as follows:

e for each atomic action a € Act there is an element @ € P.(M)

e there is a binary non-distance-increasing operator 7 on P.(M) which is contracting
in its second argument

11

e for each k-ary operator symbol w € (2 there is a k-ary non-distance-increasing
operator @ on P.(M) i

e there is a binary non-distance-increasing operator + on P.(M)

As shown in [1]: Under the assumptions of above there is a unique meaning function
Me™ . Prog - P.(M)

which satisfies: 4

Py M cms(a)

o Me™™(§) = Me™(a(§))

(
o Me™(Py; P,) = Me™(P,) 7 Me cms(P)
o Me™™(

(w

)3
mS(Py+ Py) = Me™(P) F Me™(P)

o Me™(w(Py,...,Py)) = E(Mecms(Pl), ooy Me"™(Py))
It might be the case that there are several possibilities to define a domain P, (M) which

satisfies these properties. In order to guarantee an interpretation in terms of maximal
computations we make some additional assumptions:

(I) For each atomic action a the associated meaning @ is the single-element set {aar}.
This reflects the fact that the only computation of the program P = « is the
computation which performs o and then stops.

(II) The semantic operator for modelling nondeterministic choice should be the union.
"~ This corresponds to the assumption that the maximal computations of P + Q are
exactly those of P and Q.

(III) For the sequence operator T we require H;I. = {z ;37 v : £ € H, y € I }. This
guarantees that z € Me"™(P; Q) if and only if either z is an infinite computation
of P or z represents a computation which starts by a terminating computation of
P followed by a computation of Q.

(IV) For each k-ary operator symbol w:
E(Hl,...,Hk) = U{wﬁ(.’tl,,l‘k) rr; €H,,i=1,...,k }

This asserts that the maximal computations of the composed program w(Py, ..., Py)
are those which one gets by composing maximal computations of Pi,..., Ps.

[10] and [12] have shown that the collection of all closed resp. compact subsets of a
complete metric space endowed with the Hausdorff-distance

d(H,I) = max {sup d(z,I),'sﬁp' d(y;H)} where d(z,X) = inf d(z,2)
z€H el z€X

12

are complete metric spaces. Hence we have two candidates as semantic domain:

Pa(M) the collection of all nonempty and closed subsets of M

Peo(M) the collection of all nonempty and compact subsets of M

The reason for excluding the empty set is that the empty set has no interpretation as
a computation (and would cause problems to define a sequential operator which is con-
tracting in its second argument). In both cases the single-element sets {a} are suitable
interpretations of the atomic actions a € Act. The use of the union for modelling nonde-
terministic choice causes no problem since P, (M) and P, (7\7[_) are closed under union and
since the union is always non-distance-increasing w.r.t. the Hausdorff-distance. Defin-
ing suitable semantic operators on Pa(M) might be problematic in the case where M
is not compact. This is because there might be sets H, I € Py(M) such that the set
{z7y: x€H, yel}isnot closed. Warmerdam illustrated this by an example in
the case M = Act* which can be found in [6]. Similary it might be the case that for
closed sets Hy,..., H the set '

U{wﬁ(l‘l,...,l‘k) 1 x; € H;, i=1,...,k}

is not closed. If one is forced to use Py(M) as semantic domain (e.g. if one deals infinite
nondeterminism instead of our binary choice operator +) then using the closure of those
sets yield semantic operators on P, (M) which satisfies all mathematical properties which
are needed to define a denotational semantics on P,(M). We argue that the resulting
semantics is not adequate because there it might include infinite elements in the meaning
of a program P which do not represent a possible computation of P.

Since our language Prog does not allow for infinite nondeterminism we may deal with the
powerdomain construction Pe(M). In the rest of this section we show how a denotational
linear time semantics on Po(M) can be defined. It is easy to see that for all H, I €
Peo(M): i

d(H,I) = inf { 51; . Hln] = I[n] }

Ie. the metric on P, (M) is induced by the ranking H — H[n]. Hence d(H,I) < 1/2"
if and only if for each computation z € H there is some y € I with z[n] = y[n] and vice

versa. Before we define the semantic operators on P, (M) we give a characterization of
the elements of P.,(M): :

Lemma 3.14 Let H be a closed subset ofM Then H is compact if and only if for each
n > 1 the set H[n| is finite.

Proof: If H is compact and n > 1 then the open balls B(z,1/2""!) with center z € H and
radius 1/2"! form an open cover of H. Hence there exists a finite subcovering. l.e. there
exist zy,...,7x € H such that each element z € H is contained in a ball B(z;,1/2"").

Hence d(z, :v,) < 1/2" L. Therefore d(z,z;) < 1/2", i.e. z[n] = z;[n]. We conclude that
H[n] = {z1n],... ,xk[n]} is finite.

Now we assume that the sets H[n] are finite. We show that each sequence (zx) in H con-
tains a convergent subsequence (zx,) whose limit belongs to H. We define the subsequence

13

(z«,) and infinite sets I, of natural numbers by induction on n such that z, [n] = z4[n]
for all'k € I,. Then (zx,) is a Cauchy sequence in M. Hence lim z, exists. Since H is
closed lim z, € H. '

Since H([1] is finite and since z4[1] € H [1] for all £ > 1 there is an infinite set I, of indices
k > 1 and some k; > 1 such that zy,[1] = z[1] for all k € I,.

Now we assume that n > 2 and zy,,...,Zr,_, and I,_; are defined. Since H[n] is finite
and since zx[n] € H[n] for all k € I,_; there exists an infinite subset I,, of I,_; and an
element k, € I, with k, > k,_1 such that z [n] = zi[n] forall k € I,. O

Lemma 3.15 If H, I € P(M) then the set
HiI ¥ {z;7y:2€H yel}
is compact and satisfies (H 5 I)[n] = (H[n]; I[n—1])[n] for alln > 2.

Proof: The formula (H ; I)[n] = (H[n]: I[n — 1])[n] follows immediately by Corollar
3.10. By Lemma 3.14: If H, I are compact then the sets H[n] and I[n — 1] are finite.
Hence H[n] 7 I[n — 1] and therefore (H 3 I)[n] is finite. Now we show that H 7 I is
closed: Let (z,) be a sequence in H ; I which converges in M to 2. We have to show that
z€ H7I. Let (z,) resp. (y,) be sequences in H resp. [such that:

Bn = Tn i1 Yn

Since H is compact there is convergent subsequence (z,,). Then lim z,, € H. W.lLo.g.
' Zn, = zy. Otherwise we deal with the subsequence (z,,) instead of (z,). Since I is
compact there exists a convergent subsequence (yn,) of (y»). Then lim y,, € I. Then
(since ;7 is non-distance-increasing and therefore continuous):

z = lim 2z, = lim =z,
koo Tk ko Uk M Yne

| = (Jim o) o (Jim own) € Hi
By Lemma 3.14: H ;7 I is compact. O - -

Corollar 3.16 The operator T : Peo(M) X Peo(M) =+ Peo(M) is non-distance-increasing
and contracting in its second argument. .

Proof: follows immediately by the equation (H ; I)[n] = (H[n]] I[n —1])[n]. O

Definition 3.17 Ifw € Q is a k-ary operator symbol then we define:

_(.J(Hl,...,Hk) def U{W(l‘l,...,l‘k) » x; € H;, i=1,...,k}
for all Hy, ..., Hy € Po(M).

Lemma 3.18 If Hy,..., H; are compact then also W(H,,...,Hy) is compact. For all
n > 1 we have: }
’ @(Hy, ..., Hy)[n] = @(Hi[n),..., H[n])[n]

Proof: The formula W(Hy,..., Hy)[n] = G(H\[n),..., Hn))[n] follows immediately by
Lemma 3.13. If H; are compact, ¢ = 1,...,k, then Hj[n] are finite sets (Lemma 3.14).
Let H = H) X ... X H;. Then H is compact and H{[n| finite. Hence the sets

GH)N] = U {wm(En)in] - 2€ A}

are finite. (Here we use Lemma 3.12.) Therefore the sets @(H)[n], n > 1, are finite.

Now we show that the set T(H) is closed. Let (2,) be a convergent sequence in @(H) and
z = limz,. We have to show that z € W(H). W.l.o.g. d(z,,2) <1/2". Then

2n] = zn} € G(H)[N] = B(HN)(n

Hence there exists a sequence (%,) in H with z[n] € wy(%.[n])[n]. Since H is compact
there exists a convergent subsequence of (Z,). Let Z be the limit of this sequence. We
show that z[n] € wuy(Z[n])[n]. If n > 1 then Z[n] = Z,[n] for some m > n. Hence

on (G = wiEnln)ln] = w(Enlm)n]

Since z[m] € wy(Zn[m])[m] we get:

An] = (m)in] € wy(@Enlm)n] = wu(ER)n]

Since H is closed 7 € H. We conclude: -

z = lim z[n] € W(H)

n—00

By Lemma 3.14 W(H) is compact. O

Corollar 3.19 For each k-ary opefatbr symbol w € §2 the operator
T Peo(B)* = Pu(F)

ts welldefined and non-distance-increalsing.

Using the semantic operators j, @ and the union for modelling nondeterminism we get a
denotational linear time semantics:

Me™ : Prog”(Q)) — Peo(M)
where the action symbols o € Act are interpreted by @ < { ay}.

Example 3.20 The trace semantics of the program P = &+ 3 where 0(§) = ;¢ is
{ aac..., B }. The trace semantics of @ = v || v2 is { 7172, 7271 }. Hence the trace
semantics of P; @ is the set of traces which we get by applying the operator 7 to the trace
semantics of P and Q:

{aoa..., fnye, Byom }

The pomset semantics of P consists of the infinite pomset

@ — @ — @ — .

15

and the pomset @ The pomset‘ semantics of () is the single-element set consisting of the

pomset -

The pomset semantics of P; @ arises from the semantics of P and @) by applying the
operator 7.

[a] — [¢] — [a] — ..., /

4 Denotational linear time semantics in the partial
order approach

In this section we discuss the use of the partial order approach to give denotational linear
time semantics for the language Prog. First we argue that maximal computations cannot
be expressed by the partial order approach. Second we present conditions which allow
the definition of a denotational linear time semantics which assigns to each program the
set of its partial computations.

We claim that there do not exist

(1) a semantic domain A whose elements can be interpreted as maximal computations

(2) a powerdomain construction P. (A) of A which is endowed with a partial order C
such that P.(A) is a cpo and the union is monotone on P.(A)

such that for each declaration o a meaning function Me : Prog”(Q) — P.(A) can be
defined which satisfies:

(3) Me(P) is the set of maximal éﬁmputations of P.

(4) For each recursive program: the sequence of its finite approximations is monotone
and its meaning is the least upper bound of its finite approximations.

We do not give formal descriptions of the assumptions (1), (3) and (4). Condition (4)
(as we use it in the proof) is satisfied when Me is a denotational semantics defined by
the standard procedure: using continuous semantic operators and Tarski’s fixed point
thoerem. '

Proof: Let ¢ be a declaration such that

o(() = ¢
o) = o€ + aa
) + o5

on) = o5 + a

We assume that a meaning function Me : Prog — P.(A) satisfying the conditions (1)-(4)
exists (where the underlying declaration of Progis o). We put:

S = a Sei1 = 85,
P = o0+ o Piy1 = a;aP, + aja
Qi = oa + aa Quyt = &a(Qn+0) + oo

We assume that (1) guarantees the existence of pairwise distinct elements z,, n > 1, and
z € A such that z, represents the computations which performs n-times the action a and
then stops and z a computations which performs the action a infinitely often. Then by
condition (3): '

Me(S,) = {In}
Me(Pn) = {x.'l'gk : 1<k<n }
Me(Q,) = {zx : 2<k<2n+1}

Sn, Pn resp. Qn are the n-th unwindings of the recursive programs ¢, £ resp. 7. Hence
Me(S,), Me(P,) resp. Me(Q,) are considered as the n-th approximation of Me((), Me(¢)
resp. Me(n). By assumption (4): - .

(i) Me(¢() = U Me(Sn)

(i) Me(§) = U Me(P,)

(ili) Me(n) = U Me(Qx)
On the other hand by assumption (3): -
(") Me(¢) = {z}

(") Me(¢) = {zox : k>1} U {J:}
(ii") Me(n) = {zx : k>1} U (=)

By (i) and (i"): |
(v) {z1} T (=2} C {as} C ... T {z}

By the monotonicity of the union (assumption (2)) and by (iv):

| Me(P,) = {z2}U {:v4}:_ u...u {z2.}
= {z2} U {.’L‘Q}YU {ra} U{za} U.. U {z2.} U {z2.}
C {z2}U{z3}U{za}U{z5}U...U{z2,} U {Z20ns1}

= Me(Qn)

17

Hence by (ii) and (iii) Me(§) T Me(n). Again by the monotonicity of the union (as-
sumption (2)) and by (iv): i

Me(Qn) = {72} U {z3}U{za} V... U {z20-1} U {220} U {22041}
C {z}U{za}U{zs} U... U {z2n} U {22} U {22012}
= {r2}U{z4} V... U{z2,} U{Z2n12}
= Me(Pon)

Hence by (ii) and (iii) Me(n) £ Me(€). Therefore: Me(n) = Me(£). On the other hand
by (ii’) and (iii’): Lo

z3 € Meln) \ Me(¢)
Contradiction. O

The result of above carries over to languages like CC'S which use a prefix operator P
a.P instead of sequential composition. If programs are given by a production system of
the form '

’ P u= nil| £ | PP+P | aP | ...

where a fixed declaration o is assumed and where nil stands for a process which does not
perform any action then in the above we only have to modify the syntax in which the
programs Sy, P,, @, and the statements o(-) are defined. E.g. ¢(¢) = a.a.f + a.a.nil.

4.1 Pointed posets suitable to model finite behaviour

We show how a denotational linear time semantics in the partial order approach can be
defined such that the meaning of a program is the set of its partial computations. The
starting point is a pointed poset D, i.e. a partially ordered set D with a bottom element
1, whose elements can be considered as computations of non-recursive programs. We
suppose that D does not distinguish computations leading to an intermediate state and
their terminating counterparts. We assume that the underlying partial order © on D can
be interpreted as follows: x T y if and only if z is a 'subcomputation’ of y. The bottom
element is assumed to represent a process that does not perform any action.

Example 4.1 The prefix ordering on' Act* and also the partial order

C oy e There are representatives (E, <,!) resp. (E',<',l') of
P =" pandp with ECE,<=<NE x E and | = I'|E.

on Pom™ allow such an interpretation. In the case of traces L is the empty trace (a
sequence of length 0), in the case of pomsets L is the empty pomset (§,9,0). O

As in the metric case we formalize the conditions that a suitable sequence operator on D
has to fulfill such that our intuition is reflected: The bottom element should be neutral
which corresponds to the fact that the process which does not perform any action is neutral
w.r.t. sequential composition. Recall that we do not deal with deadlocked processes, hence

18

L stands for a well-terminated process. Second we require the monotonicity in the second
argument. This reflects the assumption that for deterministic terminating processes P,
Py, Py: If the execution of P, is a partial computation of P, then the execution of P; P,
is a partial computation of P; P,. The third condition asserts that for deterministic
terminating programs P, P’: z is a partial computation of P; P’ if and only if z is either
a partial computation of P or z represents the execution of the whole program P followed
by a partial computation of P’.

Definition 4.2 An operator ;p : D X D — D is called admissible (for modelling
sequential composition) uff it satisfies:

e L:px=1z;pl =12
® ;p 1s monotone in its second argument, t.e. y © z impliesz ;p y C z ;p 2
e 2 T z;p yif and only if either 2 T z or there is some w € D such that w C y

and z = I p w.

From the mathematical point of view there is no need to make any requirements about
the operators wp on D. A natural assumption (which we make in section 5) would be the
monotonicity of wp w.r.t. the lower preorder

Notation 4.3 We say that a pointed posetD issuitable to model finite behaviour
iff D is endowed with an admissible semantic operator ;p and for each k-ary operator
symbol w €) an operator

wp ka ~ Pﬁn(D).

In addition we require that the actomic actions a € Act are interpreted by fized elements
ap € D.

Example 4.4 The sequence and parallel operators on Act* and Pom* are admissible.
Hence Act* and Pom™ are pointed posets suitable for modelling finite behaviour. O

In the sequel we assume that D is a pointed poset which is suitable to model finite
behaviour. Our aim is to give a denotational linear time semantics for Prog on some
powerdomain P.(D) of D. By our results of [1] we need a powerdomain P,(D) which is
a cpo and which is endowed with semantic operators as follows:

o for each atomic action a € Act there is an element @ € P.(D)
e there is a continuous operator] : P.(D) x P.(D) — P.(D)

e for each k-ary operator symbol w €) there is a k-ary continuous operator @ on
P.(D) o

e there is a continuous operator + : P.(D) x P.(D) = P.(D)

As shown in [1]: Under these assumptions there is a least meaning function

Me®™° : Prog — P.(D)

which satisfies:

MeP° a)

(
Me™(€) = Me(o(¢))
Me®° (P Py) = Me®°(P) 7 Mew(P)
(
(w

o Me®*(P + Py) = Me™(P) + Me™(P)

MecP°

(Pl, ey)) = &\J(MC‘CPO(PI),...,MecPo(Pk))

In order to ensure that the Me®°(P) can be considered as the set of partial computations
of P and because of our assumption that z C y if and only if z is a 'subcomputation’ of
y we get that the elements of P,(D) are leftclosed (i.e. all predecessors of an element
in H € P.(D) are contained in H).- This is because whenever y € Me®*(P) and z C y
~then y (and then also z) is a partial computation of P. Hence z € Me®°(P). Ie.
MeP°(P) is leftclosed. Hence, powerdomain constructions like the Plotkin [14] or Smyth
[16] powerdomain are not suitable to describe partial computations. We generalize the idea
of [11] and extend D by new elements such that computations leading to an intermediate
state and their terminating counterparts can be distinguished and use the cpo of leftclosed
subsets of this extension of D as semantic domain.

4.2 Modelling partial behaviour

Following the idea of [11] we duplicate the elements of D to get new elements z/ whose
behaviour equals those of z with the exception that we think of = to describe a computa-
tion which does not come to a halt and and z/ to represent a terminating process. One
might think of / as a new action that a terminating process performs at the end of its
execution and that informs the environment about its termination.

Definition 4.5 Let D be a pointed poset.. For each z € D let z/ be an element such that
zv/ & D and z+/ # yv/ if £ # y. Then we define:

D, =DU {zy/:z€ D}
The partial order &, on D, is given by:
(1) Ifz,ye D then z T, y if and only ifz T y.
(2) Ifr€D,,y€D then £ T, yy/. ifandonlyifz € D and zC y.
(3) Ifzr€ D,ye D,.then z/ T, y — if and only if z/ =

C . is the smallest partial order on D suchthat © = C, NDxDandz T, zv/. |
Hence we may write C instead of C /. The elements z+/ are maximal in D . |

Notation 4.6 The projection w : D , — D 1is given by:
'z : ifzxeD
' ifz=2y

w(z) =

Example 4.7 The associated poset Act?, can be identified with the set of finite sequences
over Act U {/} which either do not contain +/ or which contain / only as last element.
Ifz =aj...ap € Act* then z/ = .apy/. Then n(z) = z for each sequence z
over Act. If z ends with the element |/ then 7(x) is the sequence which arises from z by
removing +/.

The associated poset Pom’\‘/ can be identified with the set of finite pomsets (E, <,!) where
the labelling function ! maps the events to the set Act U {,/} and where an event e € F
is allowed to have the action / only if e is the greatest element of (E,<). If p = (E, <, 1)
is a finite pomset then

| pv = (EU{e}, <\ 1)
where g ¢ E, l'(e) = I(e) ife € Eand I'{eo) = V/,

e < < e<e Ve=e¢.

Le. py/ arises from p by appending an event labelled by /. For instance, if p is given by
(@] — 6]

then p+/ is given by
[@ — [4] \.
/
(]

If p is a pomsets whose events are all labelled by actions a € Act then n(p) = p. Otherwise
m(p) is the pomset which we get by removing the event which is labelled by /. O

The operator ;p on D induces an operator ;,; on D, as follows: If 1/ is a computation
of P and y a computation of some program @ then z followed by y is a computation of
P;Q. If z € D is a partial nonterminating computation of P then z is also a partial
- nonterminating computation of P; Q. This is reflected in the following definition:

Definition 4.8 Ifz, y € D, we put: .~

' ipy : ifr=a2\/,yeD
ziyy = @YV @ fr=2dV,y=yV
z : ifzeD

In general an admissible operator ;p is not monotone. For instance the sequence operator
on Act” is not monotone a C af but ay £ af~y. Nevertheless the associated operator
;v 18 monotone:

Lemma 4.9 The operator ;,/ is monotone on D ;.

21

Proof: Let z C z/,y C ¢.

Casel: z€ D. If 2/ € D then = ,\/y =z C 1’ = 2,/ y. Otherwise 2/ = z,/ for
some z € D. Then z C 2z and

z;p v : ifyeD

(z;p w)y : ify =wy/.

In both cases z C 2’5, ¥/ Hence.a:;‘/ y =zCz2C ;9.

vy =

Case 2: z = z/. Then z is maximal. Hence z = 2’. If y ¢ D then y is maximal and
hence ' = y. Thereforer ;\/y = z';, y. fy€ Dtheny T 7(y) and

zipy = 25,y @ ifyeD
z;yy =2;py C z;pny) C
zipw E 25,y ¢ ify =wy
O

Next we extend the operators wp on D to operators w, on D ,. Here we assume that a
computation £ € wp(Z) terminates if and only if zy, ..., 2 are terminating computations.

Definition 4.10 Let w be a k-ary operator symbol in Q. Then w, : D’f/ — P (D) s
given by:
o Ifzy,...,zx € D/ where x; € D for some 1 then:

w(Tr,. .., Tk) def wp(m(z1),...,m(zk))

o Ifzy,...,zx € D/\ D then:

wy(i,...,Tk) d-i-fl_{__.z\/ : z €wpln(zy),...,m(zk)) }

4.3 A denotational linear time semantics on P /(D)

We give a denotational linear time semantics on the cpo of leftclosed and nonempty
subsets of D, such that the programs are descibed by their partial computations.

Definition 4.11 P /(D) denotes the cpo of nonempty and leftclosed subsets of D/, i.e.

PyD) = P, (D)
ordered by inclusion. |

It is clear that P /(D) is a cpo with bottom element {L}. The least upper bound of a
(monotone) sequence (H,) in P /(D) is U H,. We show that the operators on D, induces
continuous operators on P /(D). -

22

Definition 4.12 If H, I € P /(D) then we put:
HI ¥ 3:\/ y:z€H yel}
Lemma 4.13 If H, I are leftclosed then H 7 I is leftclosed.
Proof: Letz€ H,yc€landz C z;, y. If 2€ D /\ D then z is maximal and therefore
2=z vy € HTIL

Now we assume that z € D. Then z C z;, 7(y). Since 7(y) € I we may assume that
y = n(y) € D.

I.;f"m'G"D then z ;v ¥y = rand zCz. Then z € HN D and therefore
z =z W yue HTI.

z'y/thenz ;,y = ' ;p y. Hence either z C z and therefore 2z € HN D or

Ifz =
= 2’ ;p w for some w C y. In the first case:

z
z = é;\/ y € HT71.

In thé second casew € fand 2 = 5, w € HI. O

Immediately by the definition of T we get:

Lemma 4.14 The operator 5 : P,(D) x P,(D) — P (D) is continuous.

Definition 4.15 If w is a k-ary operator symbol we put:

o) € U {w@l: e}

for all H € P /(D)*.

Here H | denotes the leftclosure of H ,.1.e.

HIZ Uzl zl¥ {yeDy:yCuz}

z€H

Lemma 4.16 The operators @ : ’P‘/(D)’c — Py(D) are continuous.

Proof: easy verification. Note that we deal with the leftclosure of the sets w /(Z). O

Using the semantic operators 5, @ and the union for modelling nondeterminism we get a
least compositional meaning function

Me®®° : Prog’(Q}) — P,(D).

Here the action symbols a € Act are interpreted by the sets & def { apv } L

Example 4.17 The trace semantics of the program P = £+ 3 where 0(§) = o;¢ is
the set {&" : n>1} U {1,08,0v}. The trace semantics of @ = 7, || 72 is the set

{ L, 7, 720 720 Y271 M2V ey}

Hence we get the trace semantics of P; Q) by applying the operator 3:
{" i n21} U { L, B, B, B2 Brves Brems Buvevs Brmy' }

The pomset semantics of P consists of the pomsets

>

ndéf@ﬁ,@—)...—)@

n

and the pomsets

1, , -—->.

The pomset semantics of @) consists of the five pomsets

1L, [[, V]
| 2]

Hence the pomset semantics of P;() is the set which consists of the pomsets p,, n > 1,

the pomsets 4
LB B

and the pomsets

-
6] = g[8l — =[BT
-

and

v}
\-

5 The connection between the metric and partial
order approach

In this section we show that if a semantic domain A for the sublanguage Progg, is given
such that both, the metric and the partial order approach, can be applied then the

24

partial order semantics is an abstractlon of the metric semantics. We make the following
assumptions about A:

A is a set that is endowed with a partial order C such that D = (A,C) is a pointed
poset as in section 4. We assume that there is a metricon M = A\ {1} is induced by
a ranking z — z{n], n > 1, such that z[n] is the greatest element of the set

\"(z) € {yeD : yCu, py)<n).
We put z[0] = L and L[n] = L, p(L) = 0. We require that for all z € M:
o(aln]) = min { plz), n }

In addition we assume that there are semantic operators ;4 and w4 on A and interpreta-
tions ay € A of the atomic actions such that

OaAEM o ;
o Whenevera:EM,yEAthen:i;A y EM.

o Whenever z1,...,2¢ € M then wy(zy,...,2x) C M.

- We require that ;4 and wy4 as operators on M satisfies the conditions given in section 3
(see Definition 3.3 and 3.4) and that ;4 -as an operator on the partial order D satisfies
the conditions given in Definition 4.2. We make some additional requirements about the
semantic operators wy. We require that for each k- ary operator symbol w € §2 and for all
Tl Tk, Y1, ., Yk € AF:

(1) If z € wa(zy,...,zx) then p(z) > max { p(z;) : i=1,...,k }.
(2) wy is monotone w.r.t. the lower preorder T on Py, (D):
T, E oy, i=1,...,k = walz1,...,7) Er walyr,- -5 %)

where H C; TifVee Hdyel zC y.

. Then it can be shown that for all z,...,zx € M and z € wyz(x1,...,Tk):
p(z) > max { p(z;) : i=1,...,k}
Then for all z, y € A:

L = z[0] C z'[l] E..CznC..Czx
r Ty = z[n] C yn

Remark 5.1 Suitable semantic operators for modelling parallelism without communica-
tion, hiding, relabeling or prefixing would fulfill the conditions (1) and (2). E.g. dealing
with A = Act* or A = Pom” the parallel operator || satisfies both conditions. Problems
arises when operators like C'CS-restriction or parallelism with T'C'S P-communication

25

should be modelled. For instance the C'CS-restriction operator P+ P\ L which
forbids the execution of actions o € L has a natural interpretation in A = Act*:

Act® = Act*, z\L = a;...a,

wherez = oa;...a, and m = max { N : ap,...,ax¢ L}and max § = 0. This
operator (identified with the operator Act® — Pg,(Act*), z = {z \ L}) violates the first
condition. E.g. forz = af and L = {§} we have z\ L = o. Then

plz\L) =1 < 2 = p(z).

The T'CS P-like communication ||, also yields problems: P ||; @ describes a process that
executes P and () in parallel where P and @ are enforced to communicate on all actions
a € L. The natural interpretation of the program ;7 ||{o} 8 in Act* would be thesingle-
element set {3}. This is because the process a;~ has no chance to execute its first action
a. Then condition (1) is violated since

p(B) = 1 <2 = max { p(ey), p(B) }.
O

We define a function ¢ : Peo(M) = P/(D) such that ¢ (Me™(P)) = Me™°(P). The
function ¢ replaces each infinite computation by its finite subcomputations and each
terminating computation = by z/ and all its predecessors.

Definition 5.2 Let ¢ : Peo(M) — P(D) be given by:

o(H) ¥ |""(H) U {z/ : z€e HNA}

where

Vingzy &Y aln]d, IH) = U @)

n>0 z€H
for each x € M and each subset H‘ofj_\/.T.

Example 5.3 Let H € P,(Act™) be the set consisting of the infinite trace aac...
and the trace 3. Then the infinite trace aac ... is substituted by its finite prefixes a”.

The terminating computation desrcibed by the finite trace (3 is replaced by the prefixes
of 84/. Hence:

o(H) = {a" :n21} U {1, B 6V}
a

We now present the main result of this section: The denotational linear time semantics
defined in the partial order approach is an abstraction of the denotational linear time
semantics defined in the metric approach. Given the metric semantics Me“™(P) one
gets the partial order semantics Me®P°(P) by substituting infinite behaviour by its finite
subcomputations and by substituting finite behaviour z € M by the subcomputations of
It should be noted that in general a reverse mapping ¥ with ¥ o Me®° = Me*™ does not
exist. In the case of pomsets e.g. this can be seen by considering the programs P = « || £
and P/ = P + ¢ with 0(§) = o;&. The pomsets associated with P and P’ in the cpo
setting coincide but are different in the metric setting.

26

Theorem 5.4 0o Me™ = MeP

Proof: As shown in [1]: Me™ is the unique fixed point of the contracting mapping
¥ : (Prog = Po(M)) — (Prog — P..(M))

which is given by:

(

(

(PL+P) = ¥(f)(A) U ¥(f)(P)
AP P = V(AP T E(S)(P)
HW(Pr,..., Pe)) = 3 ()(Pl),---,‘I’(f)(Pk)))

By Banach’s fixed point theorem Me M = lim fa where fi : Prog — P.,(M) is an
arbritary function and f,4; = ¥(fn)

MEe®P° is the least fixed point of the continuous mapping
® : (Prog — Py(D)) — (Prog— P,(D))

Which is given by:

o &

o @ o(®(g)(P), -, ®(9)(PW)))

J=)
&
~
=
It

CPO - .

By Tarski’s fixed point theorem Me®® = || g, where g : Prog = P (D) is given by
go(P) = {L} for all P € Prog and gn+1 = ®(g,). In the sequel we fix this definition of
the functions g,.

Before going into detail we give a sketch of the proof for Theorem 5.4: We show that
there is a function fi : Prog — P;;,(ﬁ/.f—_)’ with w 0 fi = go. Then we conclude that
00 fo = gnyy for all n > 1. Since ¢ maps the limit of a Cauchy sequence (H,) in
P.o(M) whose image is monotone to the least upper bound of (¢(H.,)) in P /(D) (Claim
1) we get for all P € Prog:

n—oo

o (Mem(P)) = (Jim fa(P))
= U elalP) = U gans(P) = Me*(P)

n>1 . n>1

27

Claim 1 If (Ha)a>1 is a Cauchy seduence in Peo(M) such that p(H;) C p(H,) C ...
then o

w(,}grgo Hn) = | e(Ha).

n>1

Proof: Let H = lim H,. We may assume w.l.o.g. that d(H H,) < 1/2" foralln > 1.
. Then H[n] = Hy[n]foralln>1. Let I = U @(H,).

First we show @(H) C I. Let y € o(H).

Case 1: y € ['""(H). Then y C z[n] for some z € H and n > 1. There exists ' € H[n]
with z[n] = z'[n]. Then y C z[n] = 2'[n]. Hence y € |*"(H,) C I.

Case 2: y = z/ wherez € HNA. Let n = p(z). Then z = z{n]. Hence
z = zn+1] € .H[n+1] = Hnpifn +1]
Let z € H,4; such that £ = z[n + 1]. Then
min { p(z), n+1} = p(2l +1]) = pz) = n

Hence p(z) = nand z = z[n] = (z[n + 1])[n] = z[n] = z. We conclude z € H, 4, and there-
fore-

y = .’L'\/.G ¢(Hny1) C 1. .
Next we show I C o(H). Lety € I. - |

Case 1: y € D. Then y C z[m] for some z € H, and n, m > 1. W.l.o.g. m > n. Since
w(H,) C @(Hn) we have z[m] € ¢(H,,). Hence z[m] C z[k] for some z € H,, and k > 1.
Then z{m] C z[m]. Since H{m] = H,[m] there exists w € H with z[m] = w(m]. Then
y C w[m]. Therefore y € ¢(H).

Case 2: y ¢ D. Then y = z/ where z € H, N A for some n > 1. Let
m = max { p(z), n} + 1.

Then ¢(H,) C ¢(H,,) and hence z € H,,. Then z = z[m] € Hp[m] = H[m|. Hence
z = z[m] for some z € H. Then

min { p(z), m } = p(z[m]) = p(z) < m
Hence p(z) < m and therefore z = 2lm] = z € H- Wegety = 2/ € o(H). O

We now construct a function f; : Prog — Pe(M) such that ¢ o fi = go. The problem
is that the definition of the sequence (g,) uses the bottom element of P /(D) which does
not belong to M. In order to give an adequate description of { L} in the metric we extend
Peo(M) by the emptyset: Let P2 (M) denote the collection of compact subsets of M
‘including the emptyset. We extend the operators 7 and & on the emptyset:

0 H 9 H0Y H wH,. . H) Yo

if H; = 0 for some i. We also extend ¢ to a function P2 (M) - P (D):

o) ¥ (1)

28

The interpretation of the atomic actions a € Act in PP (M) is the interpretation of a in
P.o(M). Using these semantic operators on P2 (M) we get an extension

(Prog — P&(M)) — (Prog — PL(M))
of the operator ¥ which we also denote by V.

Claim 2 The function ¢ : PP (M) - P/(D) satisfies:

o p@ = a

s

(HiUH,) = ¢(H) U ¢(Hy)
o o(H\ T Hy) = o(H))7 p(Ha)
(

2 w(Hl"",Hk)) = ‘D((P(Hl)$ <oy @(Hk))

Proof: It is clear that p(@) = @ and that ¢ is compositional w.r.t. the union.

Claim: o(H: 7 Ha) C @(Hi1) 75 ¢(Ha)

Proof: Let z € @o(H, 7 Hy). If 2 € A then z T z[n] for some 2 € H;] Hy and n > 1.
Hence z = z; ;37 72 for some z; € H;.

e If p(z1) > n then z[n] = zy[n]. Hence 2 T zy[n];, L € @(H1)7 o(Ha).
e Ifp(z1) = m < nthen z; € p(H;) and
2 E'.x[n] = Z1 ;4 Zo[n —m].

o~

Since zs[n — m| = ©(Hs) we have: z € o(Hy) T p(Ha).

If z = 2/\/then 2’ € A N (H, 7 Hy). Hence there exist z; € ANH, and 2, € AN Hy
such that 2 = 1z, ;4 2. Then 21/ € ¢(H;) and 34/ € @(H3) and

z =2V = 3y w2y € o(H) T p(H)

Claim: ¢(H 7 Ha) 2 w(Hi) 7T o(Hs)

Proof: Let z € o(H;) T ¢(Ha). If z € Athen z = z1;, zo for some z; € p(H;) and
some I € ¢(z2).

e Ifr; € D then z; T z/[n] forsome 2} € Hy and n > 1. Then 2 = z; and
s = o C (@)
where 74 is an arbritary element of H,. Hence

z € lﬁ“(.H1TH2) C @(H; 7 H,).

29

o If z;, = 2}/ where 2§ € Hy N A then z, € A (otherwise z € D\ A). Hence
zo T zh{n] for some z, € Hy and n > 1. Then

z = gi;a 32 C 754 75[n]
Let m = p(z) and w.lo.g. n > m. If p(z}) > m then
z = 2[m] = zi[m] = (] ;37 2b)[m] € @(H\] Hy).
Otherwise p(z]) = k <m and’

z = 2m] = 2y;4 z[m—k] T (24 n])(m]

= (2} ;7 22)[m] € w(H; T Ha).
Since ¢(H, 7 Hs) is leftclosed we get z € @(H, T H»).

Claim: o(T(Hy,...,Hy)) = &(e(H), ..., ¢(H))
Proof: For simplicity we assume k = 1.

First we show 'C’: Let 2z € o(W(H)). If z € A then z T z[n] where z € wy;(y) for some
y € H and some n > 1. W.lo.g. n > p(z). Since

wir()[n] 4 = walyln})] 4 € wa(yln]) L € wy(yln]) {

and since y[n] € @(H) we get:

z € wy(yn]) I C B(p(H)).

If z = 2// where 2/ € WH)N A then there is some y € H and a sequence (z,) in A
with z, = z,31{n] and

@ € waun[n] = wir(y)[n]
such that 2/ = lim 2,. Let n. = p(2’) + 1. Then 2’ = 2, = z,41 = ... and
7 € wy(y)n].
Hence 2/ = 2z"[n] for some 2" € wy7(y). Since
min { ('), n} = p('[]) = o) <n

we have p(z") < n. Therefore 2/ = z”[n] = 2’ € wy(y). Since p(2’) > p(y) we have
y € HN A. Hence y/ € ¢(H) and

z = 2V € wy(yyV).
Therefore z € W(p(H)).

We show 'D: Let z € @(p(H)). If 2z € Athen z € wa(y) | for somey € p(H)N A.
Then 2 T z for some z € wa(y). Since y € ¢(H) N A there issome y’ € H, N > 1 with
y C ¢/[N]. Then for all n > N: '

y E ¢[N] E y[n]

30

and therefore o ‘
wa(y) Er wa(y[N]) Cr wa(yln]).

Hence there exists a sequence (z,),>y With z, € wa(y'[n]) and z C z,, for all n > N.
Since

za[n] € waly'nllln] = wir(V)ln] € w(H)[N

there is a sequence (2]),>n in W(H) with z,[n] = z![n]. Since @W(H) is compact there is
a convergent subsequence (z,)m>n. We put:

7 def
r = lim :1:
m—+00 m

Then 2’ € @W(H). Let m = p(z). Then'z'[m] = 7, [m] for some I > N. Hence
Zm] = z,[m]
foralll > N. Since z C z,, and p(z) = m we have:
| z C z C z,[m] = 2'[m].
Therefore z € @(wW(H)). ‘
If z = 2// where 2 € A then 2’ € wIA'(y’) for some y € H N A. Then
2 € waly) = wirly) C ©(H)
Hence z = '/ € ¢(w(H)). O

If X is a set endowed with semantic operators ;/, +' : X x X - X and o/ : X* — X
(where k is the arity of w €) and interpretations o’ € X of the atomic actions then by
a homomorphism on X we mean a function f: Prog — X such that:

o flo) =

f(
fP+P) = f(B) + f(B)
1
#

Pl,P?)—f(Pl)v f(P2) o
w(Plv s k)) = w’(f(Pl)"-",f(Pk))

Given a function F : Idf — X there is a unique homomorphism f : Prog — X with
f(§) = F(¢&) for all £ € Idf. Dealing with X = P /(D) we have for all n > 1
gn : Prog = P /(D) is the unique homomorphism such that g,(§) = gn.-1(c(£)).

Claim 3 Let f : Prog — P2 (M) and g : Prog — P /(D) be homomorphisms such that
pof = g. Then ¢ o U(f) = 2(g).

Proof: By structural induction it can be shown that e(¥(f)(P)) = @®(g)(P). Uses
Claim 2. O

Claim 4 If f : Prog — P? (M) is a homomorphism on P2 (M) then f(G) € P (M)
for each gquarded statement G. :

31

S

Proof easy verification. Uses structural induction and @ € P,(M), HTI # § if
H#Q. O __—

Let fo : Prog — P2 (M) be the unique homomorphism with f3(¢§) = @ for all £ € Idf.
Using Claim 2 and the fact that g; is the unique homomorphism Prog — P /(D) with
a(&) = {L} = o(fo(€)) weget pofo = g1. Let F : Prog — P% (M) be the unique
homomorphism such that F(§) = fo(o()) for all £ € Idf. Then we get by structural
induction and Claim 4: |

F(P) € P,(M) for all P € Prog.

Since F = ¥(f;) we get by Claim 3: ¢po F = go. Let f, : Prog — P.,(M) be given by
fi(P) = F(P) for all P € Prog. Then o f; = go. Let f, = ¥(f,_;) foralln > 2.
Then by Claim 3: po f, = gp41 foralln>1. 0

On might suppose that the proof of Theorem 5.4 is too complicate and it would be easier
if L is not excluded from M. The problem is that then because of the natural assumption
li;az = z;4 L = z the resulting sequence operator] on P.(M) would not be
contracting in its second argument. This is essential for the definition of the semantics
MeCmS. . -

Example 5.5 Theorem 5.4 yields the consistency of the trace semantics on ’Pl(Act”:/) of
[11] and the trace semantics on P.(Act™) of [5]. We also obtain the consistency of the
pomset semantics on P /(Pom™) of [7] and the pomset semantics on Pe,(Pom™) of [4]. O

6 Conclusion

We presented a general framework to define denotational linear time semantics for lan-
guages that allow for nondeterminism, recursion and sequential composition. We gave
conditions that a ’good’ sequence operator on a domain A for finite behaviour has to
fulfill (Definition 3.3 and Definition 4.2). In these characterizations of a good sequence
operator it is essential that we do not deal with deadlocked processes. In order to deal
with the case where processes may deadlock the semantic domain A has to be devided into
elements representing successfull terminating computations and elements for representing
deadlocked computations. In the partial order approach one has to require that the set of
successfull terminating computations is leftclosed (which asserts that no partial execution
of a successfull terminating process can be deadlocked). A good sequence operator on A
is then an operator ;4 which satisfies:

.z ;4 y = z for each deadlocked computations z

e = ;, y represents a successfull terminating computation if and only if z and y
represents successfull terminating computations

e In the metric case: If = stands for a successfull terminating computation then the
n-cuts z{n] of z also stand for successfull terminating computations and
z([n] :ifp(z) 2 n

(=54 Yn] =
zia yYln—m] : if p(z) =m < n.

32

¢ In the partial order case ;4 has to fulfill the conditions of Definition 4.2.

Then in the metric case one can define a denotational linear time semantics on P.,(M) as
in section 3: take the canonical extension ;37 of ;4 on the completion M of A as semantic
operator for modelling sequential composition on finite and infinite computations and use
the operator -
Hil ¥ {(g;37y:2€H yel}

on P,,(M). In the partial order approach a little modification of the semantic domain
P(D) is needed. Define D, to be the set of all elements z € D and new elements z/
where z € D stands for a successfull terminating computation. Then a suitable sequence
operator on P /(D) can be defined as in section 4.

The assumptions in section 5 are closely related to the requirement that the underlying
partial order is endowed with a finite weight p in the sense of [2]. A finite weight means
a function p : D — INy such that:

(1) p(L) =0
(2) If z Cy then p(z) < p(y).

(3) For each z € D theset { y € D : y C z, p(y) < n } has a greatest element
(denoted by z[n]). '

Then z — z[n] is a ranking on M = D\ {1} as in section 3. In section 5 we do not
need condition (2). Nevertheless (2) is a natural requirement since we interpret z C y as
z is a subcomputation of y. Hence p(z), the length of the execution of z, is at most p(y).
Instead of (2) we require :
p(aln]) = min { p(z), n }.

The treatment of sequential composition in branching time semantics is more complicate.
A suitable sequence operator ;4 on a branching time model A has to be defined in such
a way that r ;4 y arises from z by ’appending’ y at every 'maximal computation’ of
(cf. e.g. the sequence operator on prime event structures [1]). We do not see a way to
formalize the 'maximal computations’ of the elements in branching time models. Hence,
we cannot propose a general framework for the treatment of sequential composition in
branching time models.

References

[1] C. Baier, M.E. Majster-Cederbaum: Denotational semantics in the cpo and metric
approach, Theoretical Computer Science, Vol. 135, pp 171-220, 1995.

[2] C. Baier, M.E. Majster-Cederbaum: Construction of a cms on a given cpo, submitted
for publication, Techn. Report 28/95, Reihe Informatik, Universitdt Mannheim, 1995.

[3] J.W. de Bakker, J.I.Zucker: Processes and the Denotational Semantics of Concur-
rency, Information and Control, Vol.54, No. 1/2, pp 70-120, 1982.

[4] J.W. de Bakker, J.H.A. Warmerdam: Metric pomset semantics for a concurrent
language with recursion, Report CS-R9033, Centre for Mathematics and Computer
Science, Amsterdam, July 1990. .

[5] J.W. de Bakker, J. Meyer: Metric semantics for concurrency, Report CS-R8803,
Centre for Mathematics and Computer Science, Amsterdam, 1988.

[6] F. van Breugel: Topological Models in Comparative Semantics, Ph.D.Thesis, Vrije
Universiteit Amsterdam, 1994.

[7] M. Broy: Operational and Denotational Semantics with Explicit Concurrency, Fun-
damenta Informaticae, Vol. 16, 1992. |

[8] K. Bruce, J.C. Mitchell: PER Models of Subtyping, Recursive Terms and Higher-
order Polymorphism, Journal of ACM, 8/92, 1992.

[9] H. Ehrig, F. Parisi-Presicce, P."Boehm, C. Rieckhoff, C. Dimitrovici, M. Grofle- |
Rohde: Combining Data Type Specifications using Projection Algebras, Theoretical
Computer Science, Vol. 71, 1990. |

[10] H. Hahn: Reelle Funktionen, Chelsea, New York, 1948. |
[11] C.A.R. Hoare: Communicating Sequential Processes, Prentice Hall, 1985.

[12] K. Kuratowski: Sur une méthode de métrisation complete des certains espaces |
d’ensembles compacts, Fundamentae Mathematicae, Vol. 43, pp 114-138, 1956. ‘

[13] R. Milner: Communication and Concurrency, Prentice Hall, 1989.

[14] G.D. Plotkin: A Powerdomain Construction, SIAM Journal of Computation, Vol. 3,
No. 3, pp 452-487, 1976.

[15] V. Pratt: The Pomset Model of Parallel Processes: Unifying the Temporal and the |
Spatial, Seminar on Concurrency, Lecture Notes in Computer Science 197, Springer- |
Verlag, 1984.

[16] M.B. Smyth: Power Domains, Journal of Computer and System Sience, Vol. 16, pp
23-36, 1978.

34

	00000001
	00000002
	00000003
	00000004
	00000005
	00000006
	00000007
	00000008
	00000009
	00000010
	00000011
	00000012
	00000013
	00000014
	00000015
	00000016
	00000017
	00000018
	00000019
	00000020
	00000021
	00000022
	00000023
	00000024
	00000025
	00000026
	00000027
	00000028
	00000029
	00000030
	00000031
	00000032
	00000033
	00000034
	00000035

