
Reihe Informatik
.~- :,•.•.•.. ~.~

30/951

Denotational linear time semantics and
sequential composition

C. Baier, M.E. Majster-Cederbaum

1

Denotational Linear Time Semantics and
Sequential Composition

Christel Baier, Mila E. Majster-Cederbaum

Fakultät für Mathematik und Informatik
Universität Mannheim, 68131 Mannheim

{baier,mcb }@pi1.informatik.uni-mannheim.de

December 1995

Abstract

This paper focuses on the issue of modelling sequential composition in denota-
tional linear time semantics for (nondeterministieJ languages which admit infinite
computations. This operator deserves special attention as it causes problems to meet
the requirements of a standard denotational semantics based on metric or cpo. We
present a general framework for the treatment of sequential composition. It turns
out that a pro gram can be described by its maximal computations in the metric
approach whereas the partial order approach is suitable to describe a program by
all its partial computations.

Contents

1 Introduction

2 The language Prag

3 Denotational linear time semantics in the metric approach

3.1 Metric spaces suitable to model finite behaviour

3.2 Modelling infinite behaviour

3.3 A denotationallinear time semantics on Pco(1Vf)

2

3

6

6

9

11

4 Denotational linear time semantics in the partial order approach 16

4.1 Pointed posets suitable to model finite behaviour 18

4.2 Modelling partial behaviour 20

4.3 A denotationallinear time semantics on P.;(D) 22

1

5 The connection between the metric and partial order approach
.•.....

6 Conclusion

1 Introduction

24

32

Usually the semantic domain of lineartirrie semantics is a collection of subsets of a seman-
tic domain A where the elements of A can be considered as computations of programs.
The meaning of a program P is then a subset H of A where the elements of H correspond
to the possible computations of P. Typical examples are trace [5, 11] or pomset semantics
[4, 7, 15]. .

Two kinds of computations can be distinguished: maximal and partial computations.
Maximal computations can either be infinite or finite. The latter include successfull
terminating computations as weIl as deadlocked computations. Partial computations are
finite execution fragments of maximal computations. A partial computation leads either
to a final state or to an intermediate state, Le. astate in which the computation goes on.
In other words, partial computations are either terminating computations or computations
which can be extended to maximal computations.

One attempt of this paper is to present conditions which characterize 'good' sequential
operators on the underlying domains.By a 'good' sequential operator we mean an opera-
tor which reflects the ideas of sequential composition as specified by a given operational
semantics. If P and Q are programs then their sequential composition P; Q is a program
which first behaves like P and if P has successfull terminated then it behaves like Q. In
this paper we do not deal with deacklocked processes, i.e. we assurne that termination is
always successfull. Hence the set of maximal computations of P; Q consists of the infinite
computations of P and all computations which start with a terminating computation of
P followed by a maximal computation of Q. The set of partial computations of P; Q
consists of the partial computationsof P (possibly except for those terminating computa-
tions which pronounce their termination) and all computations which first behave like a
terminating computation of P and then perform a partial computation of Q. If A is a se-
mantic domain whose elements can be interpreted as maximal resp. partial computations
then a 'good' sequential operator ;A on A would satisfy:

(i) If x E A is an infinite computation resp. a computation leading to an intermediate
state then x ;A Y = x.

(ii) If x is a terminating computation then x ;A Y stands for a computation which first
performs x and then y.

Such an operator on A induces the operator (H, 1) t-+ {X;A Y : x E H, y EI} on the
powerset of A. Hence our aim is find conditions which ensure that a semantic operator
on A for modelling sequential composition satisfies the conditions (i) and (ii). (i) and (ii)
imply that A has to distinguish between elements representing terminating computations
from those which stand far infinite computations resp. computations leading to an inter-
mediate state. Dealing with maximal computations it seems to be natural to assurne that

2

--------- ------~-------------------------....,

the elements of A representing iilfinite computations differ from the elements of A which
stand for terminating (i.e. finite) computations. In contrast to this, dealing with partial
computations it might be the case that in A terminating computations cannot be distin-
guished from partial computations leading to an intermediate state. For instance, if A is
the set of finite strings over some action alphabet Ad where astring al ... an is considered
as a computation which performs successively the actions aI, ... , an then the terminating
computation which performs aI, ,an and then stops cannot be distinguished from the
computation which performs aI, ,an but does not come to a halt. We generalize the
idea of [11] and model termination by a new action J. "Ve show how a metric setting can
be used to associate with a process P the set of its maximal computations, and how the
cpo setting can be used to give a partial computation meaning.

The paper is organized as follows:'_S.e~.tion2 presents the syntax of the language Prag
which is under consideration for the whole paper. Section 3 presents conditions which
allow the definition of a metric denotationallinear time semantics which assigns to each
program the set of its maximal computations. In section 4 we argue that the partial
order approach fails to describe the maximal computations. Hence we switch to partial
computations and give a denotationallinear time semantics which maps each program to
the set of its partial computations. In section 5 we show how the partial computations
of a pro gram which are given by a partial order semantics as in section 4 can be derived
from its maximal computations which are given by a metric semantics as in section 3.
The assumption that the elements of a semantic domain A can be interpreted as partial
computations implies that A is (orcan .be) equipped with a partial order: x CA y iff
x is an execution fragment of y. For this reason we do not discuss the question whether
the metric approach works for partial computations in absense of a suitable partial order.
Section 6 contains some concluding remarks. Throughout the whole paper we deal with
traces and pomsets as applications of our framework.

2 The language Prog

Throughout we consider a languagePrag which includes nondeterministic choice, sequen-
tial composition and recursion. We assurne a fixed set Ad of atomic actions a, ß, Each
action a represents a program thatperforms a and then stops. In addition to the binary
operator symbols + and ; which stand.far nondeterministic choice resp. sequential com-
position we assurne a set n of operator symbols for modelling operators like parallelism
with 01' without communication, relabelling, hiding, and so on. Each operator symbol w
is associated with an arity Iwl ~ 1. Recursion is modelled by guarded declarations, Le.
we assurne a fixed set I df of identifiers and a fixed mapping (J that assigns a guarded
statement (J (~) to each identifiel' ~. Formally, the set Prof (n) (01' Prag for short) of
pro grams is given by the production system

where a E Act, ~ E I df and where wEn is a k-ary operator symbol. Guarded statements
are given by the production system:

3

a is a fixed mapping from I df into th~~et of guarded statements. Each occurrence of
an identifier ~ in a program P E Prog is a recursive call of the procedure a(~). The
guardedness of the statements a(~) is essential for the definition of a denotational sem an-
tics in the metric approach. This assumption can be omitted if one only wants to give a
denotational semantics in the partial order approach.

Example 2.1 In the following we will consider the language Prog" ({li}) as a standard
examle which is given by the production system -

where 11 denotes parallel composition without communication. As before we assurne a to
be a fixed guarded declaration. An operational semantics for Prog" ({II}) can be given by
as in [5]: Let E be a new symbol. Then

-+ ~ Prog"({II}) x Ad x (Prog"({II}) U {E})

is the smallest relation which satisfies the following conditions (where we write P ~ P'
insteacrof (P, Ci, P') E -+):

PI ~ P{
PI ; P2 ~ P{ ; P2

P2 ~ Q
PI + P2 ~ Q where Q E Prog"({II}) U {E}

where P{ E Prog" ({II})

Pl~pr
PI 11 P2 ~ P{ 11 P2

PI ~E
PI 11 P2 ~ P2

. P2~ E
PI 11 P2 ~ PI

where Q E Prag"({II}) U {E}

Weconsider the labelIed transition system (Prog"({II}) U {E},-+). Computations of a
program P are reflected in the paths starting at P. A maximal finite computation of P
corresponds to a path from P to E.D ..

A standard technique to define a denotationallinear time semantics for a language of type
Prag" (n) consists of two steps:

(i) provide a semantic domain A to model the finite deterministic behaviour, i.e. the
sublanguage Pragfin given by

4

together with suitable semailtic operatots aA E A, ;A: A x A -+ A and WA : Ak -+
Pfin(A) where Pfin(A) denotes the' collection of nonempty and finite subsets of A.
The meaning funetion is then

with

{.X;...ty : xE MeA(Pd, y E MeA(p2) }

MeA(w(P1, •.• ,Pk)) = U{ WA(Xl, ... ,Xk) : Xi E MeA(pi), i = 1, ... ,k}

(ii) extend this semantics MeA to infinite computations where some powerdomain con-
struetion P*(A) of Ais used assemantic domain. Since the computations of P + Q
are those of P and Q the nondeterministic choice operator + has to be modelled by
the union on P*(A).

Throughout we consider the semantic domains of traces and pomsets as standard exam-
pIes where the underlying language is Prolf ({II}). The semantic operators for modelling
nondeterministic choice, sequential composition and parallelism are those of [11] and [5]
in the case of traces and those of [4] and [7] in the case of pomsets.

Example 2.2 Let Act* be the set offinite sequences over Act (which we call traces). Act+
denotes the subset of nonempty finite .traces. The atomic action a E Act is associated
with the single-element trace a. Sequential composition is interpreted by concatenation:

derx;y = xy

Parallelism is modelled by interleaving, i.e. x 11 y is the set of traces which arise by
merging:

xII y ~ xry u yrx

where r means leftmerge, i.e. 0fz ~{z}, axrz ~ {aw : W E xrz}. E.g. the inter-
pretation of the program P = (a; 1') 11 ß as a subset of Aet* is

o

Example 2.3 A pomset is a partiallyordered set (E,~) which is endowed with a la-
belling funetion l : E -+ Aet that maps the elements of E (called events) to some action.
The interpretation of pomsets as computations is as follows: The execution of an event
e E E means the execution of the associated action l(e). If e < e' (i.e. e ~ e' and e:j:. e')
then e must be executed before e'. If e, e' are independent events (i.e. neither e ~ e' nor

5

d(x, y)

e' ~ e) then e and e' may be executed in parallel. In addition we require that each event
isoreachable, i.e. for each e E E the set of predecessors of e is finite.

Porn* denotes the set of isomorphism classes of finite pomsets, Porn+ the subset of
nonempty and finite pomsets. Here by a finite pomset we mean a pomset where the
underlying partially ordered set is finite. Isomorphism of pomsets means that they only
differ in the names of the events, i.e. we abstract from the names of the events. In what
follows, we identify pomsets and their isomorphism classes.

The associated pomset of an atomic action a is the pomset Pa which consists of a single
event labelled by a. Given two finite pomsets PI, P2 we get PI; P2 by appending P2 at
the end of PI, i.e. each event of P2 is preceeded by all events of PI' Formally, sequential
composition ; on Porn* is given by: .

(EI, ~I, lt} ; (E2, ::52, l2) ~ (EI U E2,~, II U l2)

where EI n E2 = 0 and ~ = ~I U ~2 U EI X E2. The parallel execution PI 11 P2 of
two pomsets is modelled by taken the disjoint union, i.e. for all events e of PI and e' of
P2 the events e and e' are independent in PI 11 P2.

(EI, ~I, lt} 11 (E2, ~2, l2) def (EI U E2, ~I U ~2, II U l2)

where EI, E2 are disjoint. E.g. the meaning of the program S = (a; ,) 11 ß is then the
set consisting of th.e pomset:

o

3 Denotational linear time semantics in the metric
approach

In this section we show how a denotational linear time semantics defined in the metric
approach can be given such that themeaning of a program can be viewed the set of its
maximal computations. The starting point is a metric space 1\1 suitable to model finite
behaviour. The completion M of M isused to describe finite and infinite behaviour. \Ve
present conditions which the semantic operators on M have to fulfill and show how under
these conditions suitable semantic operators on Pco(M), the collection of all nonempty
and compact subsets of M, can be derived thus yielding a denotational semantics on
Pco(1vf).

3.1 Metric spaces suitable to model finite behaviour

vVe assume that the metric on NI is a measure for the number of atomic steps in which
two computations agree. We require that for each two computations x, y E 1\1:

1

6

-------~-
if and only if x and y coincide in the first n steps and differ in the (n + 1)-th step. The
interpretation of a 'step' depends onthe underlying semantic domain. A step might be
the execution of a single atomic action a E Act, the communication of two (or more)
atomic actions or the parallel execution of some atomic acions and/or communications
between atomic actions. We formalize this assumption by the concept of a ranking. The
notion of a ranking as we use it here is closely related to the notions of a rank ordering
or a projection space as they were introduced in [8] resp. [9].

Definition 3.1 A ranking on a metric space M is a sequence of funetions

M -+M, x 1-+ x[n]

where n ranges over the natural numbers ~ 1 such that:

• (x(nD[m] = (x[mD[n] = x(n] for all m ~ n ~ 1

• for each x EM there is some n~ 1 with x = x(n]

• the metric d on M is given by the formula

d(x, y) = inf {21n x(n] = y(n] }

where inf 0 = 1. We put

If H is a subset of M, x

p(x) = min {n : x(n] = x }.

(Xl"" , Xk) E Mk then we put:

H(n] {x(n] : x EH}, x(n] = (xdn]' ... , xk(nD

We interpret p(x) as the number of stepswhich the computation x performs. The second
conditions ensures that each element of M can be considered as a finite (i.e. terminat-
ing) computation. In addition, it implies that the elements of M stand for 'nonempty'
computations, i.e. computations that perform at least one step. x(n] is called the n-cut
of x. x(n] represents the behaviour ofx.until the n-th step. This is due to the fact that
p(x(nD ~ n and d(x, x(nD ~ 1/2n. We have p(x) ~ n if and only if x = x(n]. If p(x) > n
then we may think of x(n] as a process which behaves like x in the first n steps and then
terminates.

Example 3.2 The metric on Act+

d(x, y) = inf { 21n : n-th prefix of x = n-th prefix of y }

is induced by the ranking x 1-+ x(n] where x(n] denotes the n-th prefix of x. Then p(x) is
the usuallength of the string x. The metric of [4] on Pom+ is given by

d(p,q) = _{;n : p[n] = q[n] }

7

is induced by the ranking p ~ p(n]. Here p(n] is the pomset which arises from p by re-
moving all events e with depthp(e) > n where

depthp(e) = max {n : 3el, ... ,en E E el < ... < en = e}.

Then p(p) is the usual depth of p:

depth(p) = max {depthp(e) e is an event of p }

o

In the following definition we formalize the properties which an operator for modelling
sequential composition has to fulfill. If p(x) ~ n (i.e. the execution of x' needs at least n
steps) then the first n steps ofx; y eqlla.tthose of x. If p(x) = m < n (i.e. the execution
of x stops after performing m steps) then the first n steps of x; y consist of the execution
of x followed by the first n - m steps of y.

Definition 3.3 Let M be a metne space whieh is equipped with a ranking. An operator

M x M -+ M, (x, y) ~ X;M y

is ealted admissible (for modelling sequential composition) iff it satisfies:

__ { x(n]
(x ;M y)[n]

x ;M y(n - m]
for alt x, y E jVf and n ~ 1.

if p(x) ~ n

if p(x) = m < n.

The following condition about the semantic operators WM is needed to get non-distance-
increasing operators on the powerdomain. It asserts that the first n steps of the possible
computations of a composed program w(PI, ... , Pk) are uniquely determined by the first
n steps of the computations of PI,' .. ,Pk. This requirements seems to be natural for op-
erators like parallelism (with or without communication), hiding, relabelling or prefixing.

Definition 3.4 Let M be a metne space whieh is equipped with a ranking and let wEn
be a k-ary operator symbol. An operator

Alk -+ Pfm(M), (Xl, .. " Xk) ~ WM(Xl, ... , Xk)

is calted admissible (for interpreting W) iff for alt X E jVfk and n ~ 1:

Notation 3.5 We say that ametrie spaee M is suitable to model finite behaviour
iff it is equipped with a ranking andsemantic operators ;M and WM, wEn, such that ;,H
and the operators WM are admissible .. In addition we suppose an interpretation of the
atomie actions Q E Act in M, i.e. we assume that there are fixed elements Q,'vf E 1'1;/.

Example 3.6 It is easy to see that the sequence resp. parallel operators on Act+ and
Pom+ satisfy the condition of Definition 3.3 resp. 3.4. Hence Aet+ and Pom+ are suitable
to model finite behaviour. 0

8

3.2 Modelling infinite hehaviour

In what follows we assume that M is ametrie space suitable to model finite behaviour.
Let M be the completion of M. The elements of M \ Mare considered as infinite
computations. The underlying metric on M and M is denoted by d. We extend the
functions M -+ M, x t--+ x(n]' to functions

M -+ M, x t--+ x(n]

as follows: If x E M then x(n] EMdenotes the unique element in M such that for each
Cauchy sequence (xm) in M with x = limxm:

.xmJn] = x(n]
.. 1, .

for almost all rn E !No. Such an element x(n] exists since for each two Cauchy seqllences
(xm), (Ym) in M with x = limxm = limYm there exists no ~ 0 such that d(xm,x),
d(Y-m, x) ~ 1/2n for all rn ~ no. Then d(xm, Ym) ~ 1/2n. Hence xm(n] = Ym(n] for all
rn ~ no. It is easy to see that

d(x, y) - inf {21n : x(n] = y(n] }
for all x, Y E M. We extend p to a function on M:

p(x) = 00 if x E M \ M
- _ .-k ..

If H ~ 1\1 and x = (Xl"" ,Xk) E M then we put:

H[n] = {x(n] : xE H}, i(n] = (xIfn), ... , xk[n])

We also write H(n] as an abbreviation for HI[n] X ... X Hk[n] if H = HI X ... X Hk'

Example 3.7 The completion of Act+ is ActOO the set of nonempty, finite and infinite
sequences over Act. The n-cut x[n] of an infinite sequence is the n-th prefix. The com-
pletion of Porn+ is the set Porn°O ofnonempty pomsets p = (E,:::;, 1) such that for each
n ~ 1 the set E[n] of all events e E E with depthp(e) ~ n is finite. The n-cut p[n] of pis
the pomset which arises from p by removing all events e tt E[n]. D

Definition 3.8 The operator M x M -+ 1\1, (x, y) t--+ x ;M Y is given by:

x ;M Y = lim x[n];M y[n]
n-+oo

;M is the canonical extension Of;M, i.e. x ;M Y = x ;M Y far all x, y E 1\1.

Lemma 3.9 For all x, y E M and n :2: 1:

(x ;M y)[n]

If x E M \ M then x ;M y - x.

{

x[n]

x ;M y(n - rn]

9

if p(x) :2: n

if p(x) = rn < n

Proof: easy verification. 0

By Lemma 3.9 it follows immediately:

Corollar 3.10 For all x, y E M and n ~ 2:

(x ;M y)[n] = (x(n];M y(n - 1])(n]

In particular, ;M is non-distance-increasing and contracting in its second argument.

We extend the operators WM to operators W"j;j in the following way:

Definition 3.11 For each k-ary operator symbol wEn we define an operator

-k -
W"j;j : M -+ P(M)

as foltows:

W"j;j(x) = {lim Zn : Zn E WM(x(n])(n]' Zn = Zn+dn] }n~oo

"Here P(M) stands for the powerset of M.

Lemma 3.12 W"j;j extends WM, i.e. WM(X) = W"j;j(x) for alt x E Alk.

Proof: Let xE lWk• There exists a natural number N ~ 1 with z(n] = z for all z E WJyf(X)
and n ~ N. Note that the set WM(X) is finite. Hence we may define

N = max {p(z) : z E WM(X) }.

Then for all n ~ N:
WM (x(n]) (n] = wM(x)[n] = WM(X)

Le. whenever (zn) is a sequence inM with Zn E WM(x[n])[n] and Zn = Zn+l[n] then

ZN = ZN+l[N] = ZN+! = ZN+2[N + 1] = ZN+2

Therefore limzn = ZN E WM(X). Hence W"j;j(X) ~ WM(X).

If Z E WM(X) then we put Zn = z[n]. Then

Zn+l[n] = Zn and limzn = z. Hence z E W"j;j(X). 0

-k
Lemma 3.13 For each k-ary operator symbol wEn and alt xE M , n ~ 1:

W"j;j(x)[n] = W"j;j(x[n])[n]

is a finite set.

10

Proof: Let Z E w;w(x)[n]. Then there masts a sequence (Zn)n>l such that

and Zm = zm+dm] and Z = (lim zm)[n]. Then Zn = Zm[n] for all m ~ n. By definition
of the n-cuts of elements in M we have:

Z = (lim Zm)[n] Zn E w;w(x[n])[n]

Let Z E w;w(x[n])(n]. By Lemma 3.12:

Z E w;w(x[n])[n] = WM (x[n]) [n]
JA i

•.•• \0 .•. ;.,.

We define by induction on m ~ 1 a sequence (zm) with Zm E wM(x[m])[m]' Zm = zm[m + 1]
and Z = (lim zm)[n] .

• In the case m ::; n we put: Zm der z(m]. Then:

• We assurne that m ~ n and that Zl, ... , Zm are defined. Since

Zm E WM(x[m])[m] = WM(x[m + l])[m]

there exists Z~+l E WM(x[m + 1]) with z:n+l[m] = Zm' vVeput:

. . . der , [1]zm+l = zm+l m +

Let z' = lim Zm' Then z' E W;W(x) and Z = z'[n] E LvM(x) [n].
By Lemma 3.12 and by the assumption that WM(fj) is finite for all fj E j\![k:

LvM(x)(nl = wM(x[n])[n]

is finite. 0

3.3 A denotationallinear time semantics on Pco(M)

Our aim is to give a denotational semantics Me for Prag on some powerdomain construc-
tion of M such that Me(P) can be viewed as the set of maximal computations of P. By
our results in [1]we need a suitablepowerdomain P,.(M) which is a complete metric space
and which is endowed with semantkoperators as follows:

• for each atomic action a E Aet there is an element a E P,.(M)

• there is a binary non-distance-increasing operator ;-on P,. (lvI) which is contrading
in its second argument

11

• for each k-ary operator symbol wEn there is a k-ary non-distance-increasing
operator w on P*(M)

• there is a binary non-distance-increasing operator + on P*(M)

As shown in [1]: Under the assumptions of above there is a unique meaning function

which satisfies:

• Mecms(a)

• Nlecms(e)

• Mecms(PI; P2) = Mecms(Pd ~ Mecms(p2)

• Mecms(PI + P2) = Mecms(PI) + Mecrns(p2)

• lV1ecms(w(PI, ... , Pk)) = w(Mecms(PI), ... , Mecms(Pk))

It might be the case that there are several possibilities to define a domain P*(J."\{) which
satisfies these properties. In order to guarantee an inte!pretation in terms of maximal
computations we make some additional assumptions:

(I) For each atomic action a the aSsociated meaning Ci is the single-element set {aM }.

This reflects the fact that the only computation of the program P = a is the
computation which performs a and then stops.

(U) The semantic operator for modelling nondeterministic choice should be the union.
This corresponds to the assumption that the maximal computations of P + Q are
exactly those of P and Q.

(lU) For the sequence operator ~we require H ~ I. = {x ;M Y : x E H, y EI}. This
guarantees that z E Mecms(P; Q) if and only if either z is an infinite computation
of P or z represents a computation which starts by a terminating computation of
P followed by a computation of Q.

(IV) For each k-ary operator symbol w:

w(HI, ... ,Hk) = UfWx7(XI, ... ,xk) : XiEHi, i=l, ... ,k}

This asserts that the maximal computations of the composed program w(PI, ... , Pk)
are those which one gets by cömposing maximal computations of PI,' .. , Pk.

[10] and [12] have shown that the collection of all closed resp. compact subsets of a
complete metric space endowed with the Hausdorff-distance

d(H, I) = max { sup d(x, I),sup d(y, H)} where d(z, X) = inf d(x, z)
xEH yEI xEX

12

are complete metric spaces. Hence we have two candidates as semantic domain:

the collection of all nonempty and closed subsets of M

the collection of all nonempty and compact subsets of lvI

The reason for excluding the empty set is that the empty set has no interpretation as
a computation (and would cause problems to define a sequential operator which is con-
tracting in its second argument). In both cases the single-element sets {QM} are suitable
interpretations of the atomic actions Q E Act. The use of the union for modelling nonde-
terministic choice causes no problem since Pc1(A1) and Peo(M) are closed under union and
since the union is always non-distance-increasing W.r.t. the Hausdorff-distance. Defin-
ing suitable semantic operators on PedM) might be problematic in the case where j\1
is not compact. This is because there might be sets H, I E Pc1UVl) such that the set
{ x ;M Y : x E H, y EI} is not closed. Warmerdam illustrated this by an example in
the case M = Act+ which can be found in [6]. Similary it might be the case that for
closed sets Hl, ... , Hk the set

U{wxr(Xl, ... ,Xk): xiEHi, i=l, ... ,k}

is not closed. If one is forced to use Pcl(M) as semantic domain (e.g. if one deals infinite
nondeterminism instead of our binary choice operator +) then using the closure of those
sets yield semantic operators on Pc1(M) which satisfies all mathematical properties which
are needed to define a denotational semantics on Pc1(M). vVeargue that the resulting
semantics is not adequate because there it might include infinite elements in the meaning
of a program P which do not represent a possible computation of P.

Since our language Prag does not allow for infinite nondeterminism we may deal \vith the
powerdomain construction Peo 0\1). In the rest of this section we show how a denotational
linear time semantics on Peo(M) can be defined. It is easy to see that for all H, I E
Peo(M):

d(H,1) = inf{ 21n : H[n] = I[n] } .

I.e., the metric on Peo(A1) is induced by the ranking H f--t H[n]. Hence d(H,1) ::; 1/2'"
if and only if for each computation x E H there is some y E I with x[n] = y[n] and vice
versa. Before we define the semantic operators on Pco(M) we give a characterization of
the elements of Pco(M):

Lemma 3.14 Let H be a closed subset of M. Then H is compact if and only if fOT each
n ~ 1 the set H[n] is finite.

Proof: If His compact and n ~ 1 then the open balls B(x, 1/2n-
l) with center x. E Hand

radius 1/2n
-
l form an open cover of H. Hence there exists a finite subcovering. I.e. there

exist Xl,'" ,Xk E H such that each element x E His contained in a ball B(Xi, 1/2,,-1).
Hence d(X,Xi) < 1/2n

-
l. Therefore d(X,Xi) ::; 1/2n, i.e. x[n] = xi[n]. vVeconclude that

H[n] = {xdn]' ... , xk[n]} is finite.

Now we assurne that the sets H[n] are finite. We show that each sequence (:rk) in H con-
tains a convergent subsequence (XkJ whose limit belongs to H. We define the subsequence

13

(XkJ and infinite sets In of natural numbers by induction on n such that xkJn] = xk[n]
for allk EIn' Then (XkJ is a Cauchy sequence in M. Hence lim Xkn exists. Since H is
closed lim x kn EH.

Since H[1] is finite and since xk[1] E H[1] for all k ~ 1 there is an infinite set 11 of indices
k ~ 1 and some k1 ~ 1 such that xk,[1] = xk[1] for all kElt.

Now we assurne that n ~ 2 and Xk" ... , Xkn_, and In-1 are defined. Since H[n] is finite
and since xk[n] E H[n] for all k E In-1 there exists an infinite subset In of In-1 and an
element kn E In with kn > kn-1 such that Xkn[n] = Xk[n] for all kEIn' 0

Lemma 3.15 I/ H, I E Pco(M) then the set

H ~ I ~ r x ;M Y : x E H, Y EI}

is compact and satisfies (H ~ IHn] = (H[n] ~ I[n - 1])[n] tor all n ~ 2.

Proof: The formula (H ~ IHn] = (H[n] ~ I[n - 1])[n] follows immediately by Corollar
3.10. By Lemma 3.14: If H, I are compact then the sets H[n] and I[n - 1] are finite.
Hence H[n] ;- I[n - 1] and therefore (H .~ IHn] is finite. Now we show that H ~ I is
closed: Let (zn) be a sequence in H ~ Iwhich converges in M to z. We have to show that
zEH ~ I. Let (xn) resp. (Yn) be sequences in H resp. I such that:

Since H is compact there is convergent subsequence (xnk). Then lim xnk E H. "V.l.o.g.
xnk = Xk. Otherwise we deal with the subsequence (znJ instead of (zn)' Since I is
compact there exists a convergent subsequence (Ynk) of (Yn)' Then lim Ynk E I. Then
(since ;M is non-distance-increasing and therefore continuous):

By Lemma 3.14: H ~ I is compact.O

Corollar 3.16 The operator ~ : Pco(M) x Pco(M) -+ PcoUv1) is non-distance-increasing
and contracting in its second argument.

Proof: follows immediately by the equation (H ~ I)[n] = (H(n] ~ I(n - 1])[n]. 0

Definition 3.17 I/ wEn is a k-ary operator symbol then we define:

Lemma 3.18 I/ H1, ••• , Hk are compact then also w(H1, •.. , Hk) is compact. For all
n ~ 1 we have:

14

Proof: The formula w(H1, .•• , Hk)[n] = w(H1(n]' ... , Hk(n])(n] follows immediately by
Lemrpa 3.13. If Hi are compactl...i == l, ... ,k, then_Hi(n] are finite sets (Lemma 3.14).
Let H = H1 X ... X Hk. Then H is compact and H(n] finite. Hence the sets

w(H(n])(n] = U {wM(i(n])(n] : i EH}

are finite. (Here we use Lemma 3.12.) Therefore the sets w(H)[n]' ~ 2:: 1, are finite.
Now we show that the set w(H) is closed. Let (zn) be a convergent sequence in w(H) and
z = lim Zn' We have to show thatz E w(H). W.l.o.g. d(zn, z) ~ 1J2n. Then

z(n] = zn(n] E w(H)(n] = w(H(n])(n]

Hence there exists a sequence (in) in H with z(n] E wM(in(n])(n]. Since H is compact
there exists a convergent subsequence of (in)' Let i be the limit of this sequence. vVe
show that z(n] E wM(i(n])(n]. Ifn 2:: 1 then i(n] = im(n] for some m 2:: n. Hence

WM(i(n]) (n] = wM(im(n])(n] = wM(im(m])(n)

Since z(m] E wM(im(m])(m] we get:

z(n] = (z(m])(n] E wM(im(m])(n]
- -Since H is closed i E H. We conclude: .

z = lim z(n) E w(H)
n--+oo

By Lemma 3.14 w(H) is compact. 0

Corollar 3.19 For each k-ary operator symbol wEn the operator

is welldefined and non-distance-increasing.

Using the semantic operators ~,wand the union for modelling nondeterminism we get Cl

denotational linear time semantics:

where the action symbols a E Act are interpreted by a ~ {aM}'

Example 3.20 The trace semantics of the program P = ~+ ß where a(~) = a; ~ is
{ aaa ... , ß }. The trace semantics of Q = 1'1 11 1'2 is { 1'n2, 1'2'Y1 }. Hence the trace
semantics of P; Q is the set of traces which we get by applying the operator ~to the trace
semantics of P and Q:

{ aaa ... , ß1'n2, ß1'2'Y1}

The.pomset semantics of P consistsof the infinite pomset

15

----------------------------------.,.---,

and the pomset 0. The pomset semantics of Q is the single-element set consisting of the
pomset

~
The pomset semantics of P; Q arises from the semantics of P and Q by applying the
operator ~:

o

{ @] -t @] -t@] -t ...,

....
" .

4 Denotational linear time semantics in the partial
order approach

In this section we discuss the use ofthepartial order approach to give denotationallinear
time semantics for the language Prog.' First we argue that maximal computations cannot
be expressed by the partial order approach. Second we present conditions which allow
the definition of a denotationallinear time semantics which assigns to each program the
set of its partial computations.

We claim that there do not exist

(1) a semantic domain A whose elements can be interpreted as maximal computations

(2) a powerdomain construction P*(A) of A which is endowed with a partial order c:
such that P*(A) is a cpo and the union is monotone on P*(A)

such that for each declaration CI a meaning function Me : Proff(D) -t P*(A) can be
defined which satisfies:

(3) l'v1e(P) is the set of maximal computations of P.

(4) For each recursive program: the sequence of its finite approximations is monotone
and its meaning is the least upper bound of its finite approximations.

We do not give formal descriptions ofthe assumptions (1), (3) and (4). Condition (4)
(as we use it in the proof) is satisfied when Me is a denotational semantics defined by
the standard procedure: using continuous semantic operators and Tarski's fixed point
thoerem.

Proof: Let. f7 be a declaration such that

CI(()
CI(~) -
CI(TJ)

a;(
a.a. C + a.a, ,~ ,
a; a; (TJ + a) + a; a

16

We assume that a meaning function Me: Prag -t P*(A) satisfying the conditions (1)-(4)
exists (where the underlying declaration of Pragis a). We put:

a
a;a + a;a
aja;a + a;a

Sn+! a; Sn
Pn+1 = a; a; Pn + a; a
Qn+! = aja;(Qn+a) + aja

We assume that (1) guarantees the existence of pairwise distinct elements Xn, n ~ 1, and
x E A such that Xn represents the computations which performs n-times the action a and
then stops and x a computations which performs the action a infinitely often. Then by
condition (3):

Me(Sn)
Me(Pn)
Me(Qn)

{Xn}
- {i2k : 1::; k ::; n }

{Xk : 2::; k ::;2n + 1 }
Sn, Pn resp. Qn are the n-th unwindings of the recursive programs (, ~ resp. TJ. Hence
Me(Sn), Me(Pn) resp. Me(Qn) are considered as the n-th approximation of Me((), Me(~)
resp. Me(TJ). By assumption (4):

(i) Me(()

(ii) Me(~)

(iii) Me(TJ)

U Me(Sn)

U l\l1e(Pn)

U l\l1e(Qn)

On the other hand by assumption (3):

(i') NIe (()

(ii') Me(~)

(iii') l\l1e(TJ)

By (i) and (i'):

{x}

{X2k : k ~ 1 } U {x}

{xk:k~l}U{x}

By the monotonicity of the union (assumption (2)) and by (iv):

{X2} U {X4}U", U {X2n}

{X2} U {X2} U {X4} U {X4} U U {X2n} U {X2n}

C {X2} U {xa} U{X4} U {xs} U U {X2n} U {x2n+d

- Me(Qn)

17

Hence by (ii) and (iii) Me(~) C Me(TJ). Again by the monotonicity of the union (as-
sumption (2)) and by (iv):

{X2} U {X3} U {X4} U U {x2n-d U {X2n} U {:L'2n+d

C {X2} U {X4} U {X4} U U {X2n} U {X2n} U {X2n+2}

{X2} U {X4} U ... U {X2n} U,{X2n+2}

Me(Pn+1)

ijence by (ii) and (iii) Me(TJ) C Me(~). Therefore: Me(TJ)
by (ii') and (iii'):

X3 E Me(TJ) \ Me(~)

Me(~). On the other hand

p C p' {:=:::}

Contradiction. 0

The result of above carries over to languages like ces which use aprefix operator P f-t

n.P instead of sequential composition. If programs are given by a production system of
the form

P ::= nil I ~ I PI + P2 I n.P I ...
where a fixed declaration (7 is assumed and where nil stands for a process which does not
perform any action then in the above we only have to modify the syntax in which the
programs Sn, Pn, Qn and the statements (7(') are defined. E.g. (7(~) = n.n.~ + n.n.nil.

4.1 Pointed posets suitable to model finite behaviour

We show how a denotational linear time semantics in the partial order approach can be
defined such that the meaning of a program is the set of its partial computations. The
starting point is a pointed poset D, Le. a partially ordered set D with a bottom element
..L,whose elements can be considered as computations of non-recursive programs. vVe
suppose that D does not distinguish computations leading to an intermediate state and
their terminating counterparts. We assume that the underlying partial order I;;;; on D can
be interpreted as follows: x C y if and only if xis a 'subcomputation' of y. The bottom
element is assumed to represent a process that does not perform any action.

Example 4.1 The prefix ordering on'Ad* and also the partial order

{
There. are representatives (E, ~, l) resp. (E',~', [') of
p andp' with E ~ E', ~ =~' nE x E and [= ['IE.

on Pom* allow such an interpretation. In the case of traces ..Lis the empty trace (a
sequence of length 0), in the tase ofpomsets ..Lis the empty pomset (0,0,0). 0

As in the metrlc case we formalize the conditions that a suitable sequence operator on D
has to fulfill such that our intuition is reflected: The bottom element should be neutral
which corresponds to the fact that the process which does not perform any action is neutral
w.r.t. sequential composition. Recall that we do not deal with deadlocked processes, hence

18

..Lstands for a well-terminated process. Second we require the monotonicity in the second
ärgument. This reflects the assumption that for deterministic terminating processes P,
Pt, P2: If the execution of Pi is a partial computation of P2 then the execution of P; Pt
is a partial computation of P; P2• The third condition asserts that for deterministic
terminating programs P, P': z is a partial computation of P; P' if and only if z is either
a partial computation of P or z represents the execution of the whole program P followed
by a partial computation of P'.

Definition 4.2 An operator;D : D x D -+ D is called admissible (for modelling
sequent ial composi t ion) iff it satisfies:

• ..L ;D x = x ;D ..L = x

• ;D is monotone in its second argument, i.e. y c: z implies x ;D y ~ x ;D z

• z c: X;D y if and only if eitherz ~ x or there is some w E D such that w c: y
and z = X;D w.

From the mathematical point of view there is no need to make any requirements about
the operators WD on D. A natural assumption (which we make in section 5) would be the
monotonicity of WD w.r.t. the lower preorder.

Notation 4.3 We say that a pointed poset D is suitable to model finite behaviour
iff D is endowed with an admissible semantic operator ;D and for each k-ary operator
symbol wEn an operator

WD : Dk -+ Pfm(D).

In addition we require that the actomic actions a E Act are interpreted by fixed elements
aD E D.

Example 4.4 The sequence and parallel operators on Act" and Pom" are admissible.
Hence Aet" and Pom" are pointed posets suitable for modelling finite behaviour. 0

In the sequel we assurne that D is a pointed poset which is suitable to model finite
behaviour. Our aim is to give a denotational linear time semantics for Prag on some
powerdomain P.•(D) of D. By our results of [1] we need a powerdomain P.•(D) which is
a cpo and which is endowed with semantic operators as folIows:

• for each atomic action a E Act there is an element CiE P .•(D)

• there is a continuous operator; : P.•(D) x P.•(D) -+ P.•(D)

• for each k-ary operator symbol wEn there is a k-ary continuous operator w on
P..(D)

• there is a continuous operator +- : P*(D) x P*(D) -+ P*(D)

As shown in [1]: Under these assumptions there is aleast meaning function

Mecpo
: Prag -+ P .•(D)

which satisfies:

19

• MeCPO(P[; P2) = MeCPO(Pt};- MeCPO(P2)

• MeCPO(P1 + P2) = MeCPO(Pt} +- MeCPO(P2)

• 1\tfecPO(w(P1, ••. , Pk)) = Q(MeCPO(Pd, ... , MeCPO(Pk))

In order to ensure that the MeCPO(P) can be considered as the set of partial computations
of P and because of our assumption that x !;; y if and only if x is a 'subcomputation' of
y we get that the elements of P*(D) are leftclosed (i.e. a11predecessors of an element
in H E P*(D) are contained in H).- This is because whenever y E MeCPO(p) and x C y
then y (and then also x) is a partial computation of P. Hence x E l\tfecPO(P). I.e.
MeCPO(p) is leftclosed. Hence, powerdomain constructions like the Plotkin [14] or Smyth
[16] powerdomain are not suitable to d~scribe partial computations. We generalize the idea
of [11] and extend D by new elements such that computations leading to an intermediate
state and their terminating counterparts can be distinguished and use the cpo of leftclosed
subsets of this extension of D as semantic domain.

4.2 Modelling partial behaviour

Fo11owingthe idea of [11] we duplicate the elements of D to get new elements xv' whose
behaviour equals those of x with the exception that we think of x to describe a computa-
tion which does not come to a halt and and xv' to represent a terminating process. One
might think of v' as a new action that a terminating process performs at the end of its
execution and that informs the environment about its termination.

Definition 4.5 Let D be a pointed poset. Por each x E D let xv' be an element such that
xv' rt D and xv' =1= Yv' if x =1= y. Then we define:

D.; = D U {xv': x E D}

The partial order C.; on D.; is given by:

(1) If x, Y E D then x C.; y if and only if x!; y.

(2) If xE D.;, y E D then x !;.; yv if and only if xE D and x I;";;;y.

(3) If xE D, y E D.;. then xv' !;.; y if and only if xv' = y.

C.; is the smallest partial order on D.;'such that C = C.; n D x D and x C.; .Lv'.
Hence we may write C instead of !;.;. The elements xv' are maximal in D.;.
Notation 4.6 The projeetion 7f : D.; -t D is given by:

rr(x) - {:,

20

if xE D

if x = X'v'

then PV is given by

Example 4.7 The assodated poset Actj can be identified with the set of finite sequences
over Act U {V} which either do not contain V or wh ich contain V only as last element.
If x = eil'" an E Act" then xV = a! ... anv. Then 7r(x) = x for each sequence ;];
over Act. If x ends with the element V then 7r(x) is the sequence which arises from ;];by
removing V.
The associated poset Pomj can be identified with the set offinite pomsets (E,~, l) where
the labelling function 1maps the events to the set Act U {V} and where an event e E E
is allowed to have the action V only if eis the greatest element of (E, ~). If p = (E,~, l)
is a finite pomset then

PV = (E U {eo}, ~' , l')
where eo rt. E, l'(e) = l(e) if e E Eand l'(eo) = V,

e ~ e' {::::::} e ~ e' V e' = eo.

I.e. PV arises from p by appending an event labelIed by V. For instance, if pis given by

~ ---+ @]~_____ 7[{]
[l]

If pis a pomsets whose events are alllabelIed by actions a E Act then 7r (p) = p. Otherwise
7r(p) is the pomset which we get by teinoving the event which is labelIed by V. 0

The operator ;D on D induces an operator ;yI on Dyl as folIows: If xV is a computation
of P and y a computation of some program Q then x followed by y is a computation of
P; Q. If x E D is a partial nonterminating computation of P then x is also a partial
nonterminating computation of P; Q. This is refl.ected in the following definition:

Definition 4.8 If x, Y E D yI we put:

X';D y if x = x' V, Y E D

x ;yI y (X' •,D

x

y')V if x = x' V, y = y' V
if xE D

In general an admissible operator ;D is not monotone. For instance the sequence operator
on Act* is not monotone: a C aß but a,,! g aß,,!. Nevertheless the associated operator
;yI is monotone:

Lemma 4.9 The operator;yI is monotone on Dyl.

21

Proof: Let x C x', y C y'.

Case 1: x E D. If x' E D then x iy' y
some z E D. Then x C z and

x ~ x' - x';y' y'. Otherwise x' = zJ for

{

Z iD y'
x' iy'Y' =

(z ;D w)J

if y' E D

if y' = wJ.
In both cases z C x' iy' y'. Hence x iy' Y = x C z ~ x' iy' y'.

Case 2: x = z J. Then x is maximal. Hence x = x'. If y ~ D then y is maximal and
hence y' = y. Therefore x i J Y = x' iy' y'. If y E D then y C 7r(Y') and

. - r;n y' x'. y' if y' E D,y'
x ;y' y - z iD Y C Z iD 7r(Y') C

z iD W C x'. y' if y' = wJ,y'

o
Next we extend the operators WD on D to operators wy' on Dy" Here we assurne that a
computation x E WD(X) terminates if and only if xl,"" Xk are terminating computations.

Definition 4.10 Let W be a k-aryoperator symbol in n. Then wy': D~ -+ Pfin(Dy') is
given by:

• If Xl, ... , Xk E Dy' where Xi E D for some i then:

• IfxI, ... ,Xk E Dy'\D then:

4.3 A denotational linear time semantics on P ..;(D)

We give a denotational linear time semantics on the cpo of leftclosed and nonempty
subsets of Dy' such that the programs are descibed by their partial computations.

Definition 4.11 P y'(D) denotes the cpo of nonempty and leftclosed subsets of Dy', i.e.

ordered by inclusion.

It is clear that Py'(D) is a cpo with bottom element {..L}. The least upper bound of a
(monotone) sequence (Hn) in P y'(D) is UHn. We show that the operators on Dy' induces
continuous operators on P y'(D).

22

Definition 4.12 If H, I E P..;(D) then we put:

der '._' .-"
H ; I = {x;..; y : X E H, y EI}

Lemma 4.13 If H, I are leftclosed then H ; I is leftclosed.

Proof: Let X E H, y E land z ~ x;..; y. If z E D..; \ D then z is maximal and therefore

z = x;..; Y E H; I.

Now we assurne that z E D. Then z C x;..; 7f(Y). Since 7f(Y) E I we may assurne that
y = 7f(Y) E D.

If-x'E.D then x ;..; y = x and z ~.x. Then zEH n D and therefore

z - z;..; Y EH; I.

If x = x' J then x ;..; y = X';D y. Hence either z C x and therefore zEH nD or
z = x' ;D w for some w C y. In the first case:

z = z;..; Y EH; I.

In the second case w E land z x;..;w E H; 1.0

Immediately by the definition of; we get:

Lemma 4.14 The operator; : P ..;(D) x P ..;(D) --t P ..;(D) is continuous.

Definition 4.15 If w is a k-ary operator symbol we put:

w(H) ~ U { w..;(i) -1-: i EH}

Here H -I- denotes the leftclosure of H, i.e.

H -I- ~ U x -1-, x -I- ~ {y E D..; : y C x }.
xEH

Lemma 4.16 The operators w : P ..;tD)k --t P ..;(D) are continuous.

Proof: easy verification. Note that we deal with the leftclosure of the sets w..;(i). 0

Using the semantic operators;, wand the union for modelling nondeterminism we get a
least compositional meaning function

Mecpo : Prolf(O) --t P..;(D).

Here the action symbols a E Act are interpreted by the sets ader {a DJ } -1-.

23

Example 4.11 The trace semantics of the program P = ~+ ß where a(~) = 0:; ~ is
the set {o:n : n ~ I} U {1., ß, ßJ}. The trace semantics of Q = /1 11 /2 is the set

{ 1., /1, /2, /1/2, /2/1, /1/2J, /2/1J }.
Hence we get the trace semantics of P; Q by applying the operator;:

The pomset semantics of P consists of the pomsets

Pn ~ ~ -+@] -+ ... -+ @:1•.
n

and the pomsets

1., 0, 0 -+ [{].

The pomset semantics of Q consists of the five pomsets

Hence the pomset semantics of P; Q is the set which consists of the pomsets Pn, n ~ 1,
the pomsets

and the pomsets

and

o

5 The connection between the metric and partial
order approach

In this section we show that if a semantic domain A for the sublanguage Progfin is given
stich that both, the metric and the partial order approach, can be applied then the

24

partial order semantics is an abstntc~to~ öf the metric semantics. We make the fo11owing
assumptions about A: "

A is a set that is endowed with a partial order C such that D = (A, C) is a pointed
poset as in seetion 4. We assurne that there is a metric on M = A \ {..1.} is induced by
a ranking x H x(n]' n ~ 1, such that x(n] is the greatest element of the set

.tn (x) ~ {y E D : y C x, p(y) ~ n } .

We put x(O] ..1. and ..1.(n] = ..1., p(..1.) = O. We require that for a11x E I\1:

p(x(n]) = min { p(x), n }

In addition we assurne that there aresemantic operators ;A and WA on A and interpreta-
tions Q:A E A of the atomic actions such that

• Whenever x E M, y E Athen x ;A y E M.

We require that ;A and WA as operators on M satisfies the conditions given in section 3
(see Definition 3.3 and 3.4) €lnd that jA 'as an operator on the partial order D satisfies
the conditions given in Definition 4.2~ We make some additional requirements about the
semantic operators WA' We require that for each k-ary operator symbol wEn and for a11
xl, ... , Xk, Yl,'" , Yk E Ak:

(1) If z E WA(Xl, ... ,Xk) then p(z) ~ max{p(xi): i=1, ... ,k}.

(2) WA is monotone w.r.t. the lower preorder CL on PfJn(D):

where H CL I iffVx E H 3y EI. x C y.

Then it can be shown that for a11Xl, ... ,Xk E M and z E WM(XI, ... ,Xk):

p(z) ~ max {P(Xi) : i = 1, ... ,k}

Then for a11x, y E A:

..1.= x(O] C x(l]C ... C x(n] C ~ x

x C y =} x(n]' C y(n]

Remark 5.1 Suitable semantic operators for modelling para11elism without communica-
tion, hiding, relabeling or prefixingwould fulfi11the conditions (1) and (2). E.g. dealing
with A = Ad* or A = Pom* the parallel operator 11 satisfies both conditions. Problems
arises when operators like CCS-restriction or para11elism with TCSP-communication

25

..t.fin(H) = U ..t.fin(x)
xEH

should be modelIed. For instance the CC S-restriction operator P t-+ P \ L which
forbids the execution of actions a E L has a natural interpretation in A = Act*:

Ad* -+ Ad*, x \ L = a1 ... am

where x = a1 ... an and m = max {N : a1, ... , aN rt L } and max 0 = O. This
operator (identified with the operator Ad* -+ Pfin(Ad*), X t-+ {x \ L}) violates the first
condition. E.g. for x = aß and L = {ß} we have x \ L = a. Then

p(x \ L) = 1 < 2 = p(x).

The TCSP-like communication IIL also yields problems: P IIL Q describes a process that
executes P and Q in parallel where P and Q are enforced to communicate on all actions
a E L. The natural interpretation.of,t~e program a;ill{a} ß in Ad* would be the-single-
element set {ß}. This is because the'process a; i has no chance to execute its first action
a. Then condition (1) is violated since

p(ß) = 1 < 2 = max { p(ai), p(ß) }.

o
We define a function <p: Pco(M) -+P yI(D) such that <p(Mecms(P)) = lVfeCPO(P). The
function <p replaces each infinite computation by its finite subcomputations and each
terminating computation x by xv and all its predecessors.

Definition 5.2 Let<p : Pco(M) -+ P yI(D) be given by:

<p(H) ~ ..t.fin(H) U {XV: xE HnA}

..t.fin(x) ~ U x(n]..t.,
n~O .

for each x E j\!f and each subset H of j\!f.

Example 5.3 Let H E Pco(AdOO
) be the set consisting of the infinite trace aaa ...

and the trace ,8. Then the infinite trace aaa ... is substituted by its finite prefixes an.
The terminating computation desrcibed by the finite trace ß is replaced by the prefixes
of ßV. Hence:

<p(H) = {an: n ~ 1 } U { 1-, ß, ßV }
o

We now present the main result ofthis section: The denotational linear time semantics
defined in the partial order approach is an abstraction of the denotational linear time
semantics defined in the metric approach. Given the metric semantics Mecms(P) one
gets the partial order semantics MeCPO(P) by substituting infinite behaviour by its finite
subcomputations and by substituting finite behaviour x E M by the subcomputations of
xV.
It should be noted that in general areverse mapping llJ with llJ 0Mecpo = Nlecms does not
exist. In the case of pomsets e.g. this can be seen by considering the programs P = a 11 ~

and P' = P + ~with O"(~) = a;~. The pomsets associated with P and P' in the cpo
setting coincide but are different in the metric setting.

26

Theorem 5.4 'P 0 Mecms = Mecpo

Proof: As shown in [1]: Mecms is the unique fixed point of the contracting mapping

\lf : (Prog -+ Pco(M)) -+ (Prog -+ Pco(M))

which is given by:

• \lf(J)(a) = a

• \lf(J)(~) = i(a(~))

• \lf(J)(PI + P2) = \lf(J)(Pd u \lf(J)(P2)

• \lf(J)(PI; P2) = \lf(J)(Pd ~ \lf(J)(P2)

• \lf(J)(w(PI, ... , Pk)) = w(\lf(J)(Pd, ... , \lf(J)(Pk)))

By Banach's fixed point theorem Mecms = lim in where ft : Prog -+ Pco(M) is an
arbritary function and in+! = \lf(fn)'
l\!leCPO is the least fixed point of the continuous mapping

<P : (Prog-+ P..;(D)) -+ (Prog-+ P..;(D))

which is given by:

• <P (g)(a) = a

• <p(g)(~) = g(a(~))

• <p(g)(PI + P2) = <p(g)(Pd u <p(g)(P2)

• <p(g)(PI; P2) = <p(g)(Pd -; <p(g)(P2)

• <P (g) (w (PI, ... , Pk)) = W(<P (g) (PI), ... , <P (g)(Pk)))

By Tarski's fixed point theorem Mecpo = U gn where go : Prog -+ P ..;(D) is given by
go(P) = {J..} for an P E Prog and gn+1 = <P(gn)' In the sequel we fix this definition of
the functions gn'

Before going into detail we give a sketch of the proof for Theorem 5.4: \Ve show that
there is a function ft : Prog -+ P~o(M) with rp 0 ft = g2- Then we conclude that
rp0 in = gn+1 for an n 2:: 1. Sincerp maps the limit of a Cauchy sequence (Hn) in
Pco(M) whose image is monotone to the least upper bound of (rp(Nn)) in P ..;(D) (Claim
1) we get for an P E Prog:

U rp(Jn(P)) - U gn+I(P)
n~1 n~l

27

Claim 1 lf (Hn)n~l is a Cauchy sequence in Pco(M) such that cp(Hd ~ cp(H2) ~ .•.

~m --
cp (J~~Hn) = U cp(Hn).

n~l

Proof: Let H = lim Hn. We mayassume w.l.o.g. that d(H,Hn) < 1/2n for all n ~ 1.
Then H[n] = Hn[n] for all n ~ 1. Let l = U cp(Hn).

First we show cp(H) ~ l. Let y E cp(H).

ease 1: y E -!-fin(H). Then y c: x[n] für some x E Hand n ~ 1. There exists x' E H[n]
with x[n] = x'[n]. Then y c: x(n] = x'(n]. Hence y E -!-fin(Hn) ~ l.

ease 2: y = x.j where x E H n A Letn = p(x). Then x = x(n]. Hence

x = x(n +1] E H(n + 1] = Hn+l(n + 1]
Let z E Hn+1 such that x = z(n + 1]. Then

min { p(z), n + 1} = p(z(n + 1]) = p(x) = n

Hence p(z) = n and z = z(n] = (z(n + 1])(n] = x(n] = x. vYeconclude x E Hn+1 and there-
fore

Next we show l ~ cp(H). Let y E l.

ease 1: y E D. Then y c: x(m] for some x E Hn and n, m ~ 1. "V.l.o.g. m ~ n. Since
cp(Hn) ~ cp(Hm) we have x(m] E cp(Hm). Hence x(m] ~ z[k] for some z E Hm and k ~ 1.
Then x(m] c: z(m]. Since H(m] = Hm[m] there exists wEH with z[m] = w[m]. Then
y c: w[m]. Therefore y E cp(H).

ease 2: y t/: D. Then y = x.j where x E Hn nA for some n ~ 1. Let

m = max { p(x), n} + 1.

Then cp(Hn) ~ <p(Hm) and hence x E Hm. Then x = x[m] E Hm[m]
x = z[m] for some zEH. Then

H[m]. Hence

min { p(z), m} = p(z[m]) = p(x) < m

Hence p(z) < m and therefore z = z(m) = x E H. vYeget y = x'.j E cp(H). 0

We now construct a function !I :Prog -+ Pco(M) such that <po!I = 92. The problem
is that the definition of the sequence (9n) uses the bottom element of P .;(D) which does
not belong to J.Vf. In order to give an adequate description of {1-} in the metric we extend
Pco(M) by the emptyset: Let P~o(M) denote the collection of compact subsets of NI
including the emptyset. We extend the operators ~ and w on the emptyset:

rA"'H~(AVJ , - VJ, H - (Ader H -(H H) der rA; v = , W 1, ... , k = V

if Hi = (/)for some i. We also extend cp to a function P~o(J.Vf) -+ P .;(D):

cp((/)) ~ {1-}

28

The interpretation of the atomic actions a E Aet in P~o(M) is the interpretation of a in
Pco(M). Using these semantic operators on P~o(M) we get an extension

(Prog ~ P~o(M)) ~ (Prog ~ P~o(AI))

of the operator W which we also denote by W.

Claim 2 The function cp: P~o(M) ~ P .;(D) satisfies:

• cp(a) = &

• cp(HI U H2) cp(HI) U <p(H2)

• <p(HI ; H2) cp(HI) -; <p(H2)

• cp(w(HI, ... , Hk)) = w(cp(HI), ... , cp(Hk))

Proof: It is clear that cp(a) = & and that cp is compositional w.r.t. the union.

Claim: <p(HI ; H2) ~ <p(HI) -; <p(H2)

Proof: Let z E cp(HI ; H2). If z E Athen z C x[n] for some x E HI ; H2 and n 2:: 1.
Hence x = Xl ;M X2 for some Xi E Hi .

• If p(XI) 2:: n then x[n] = xdn]. Hence z C xdn];.;..l E cp(HI) -; cp(H2) .

• If p(xI) = m < n then Xl E cp(HI) and

z I;;;; x[n] = Xl ;A X2[n - m].

Since X2[n - m] E <p(H2) we have: z E cp(HI) -; <p(H2).

If z = z' y' then z' E A n (Hl ; H2). Hence there exist Xl E An Hl and X2 E An H2
such that z' = Xl ;A X2. Then Xl y' E cp(HI) and X2y' E <p(H2) and

Claim: <p(HI ; H2) ;;2 cp(Ht} -; cp(H2)

Proof: Let z E cp(Hl) -; cp(H2). If z E Athen z
so me X2 E CP(X2)'

Xl ;.; X2 for some Xl E <p(Ht} and

• If Xl E D then Xl C x~[n] forsome x~ E Hl and n 2:: 1. Then z

where X2 is an arbritary element ofH2. Hence

29

Xl and

Let m

• If Xl = X~ J where X~ E HlflA then X2 E A (otherwise Z E D..; \ A). Hence
X2 C x2(n] for some x2 E H2 and n ;:::1. Then

p(Z) and w.l.o.g. n ;:::m. If p(xD ;:::m then

Z = z(m] = x~[m] = (x~ ;M x~)[m] E cp(HI ~ H2).

Otherwise p(x~) = k < m and

z = z[m] = X~;A x2[m - k] C (X~;A x~(n])(m]

(x~ ;M x~)[m] E cp(HI ~ H2).

Since cp(HI ~ H2) is leftclosed weget z E cp(HI ~ H2).

Proof: For simplicity we assurne k = 1.

First we show '~': Let z E cp(w(H)).If z E Athen z C x(n] where X E WJ:[(Y) for some
y E Hand some n ;:::1. W.l.o.g. n ;:::p(z). Since

WJ:[(y)[n] -!- = WA(y[n])(n] -!- ~ WA(y(n]) -!- ~ w..;(y[n]) -!-

and since y[n] E cp(H) we get:

z E w..;(y[n]) -!- ~ w(cp(H)).

If z = z' J where z' E w(H) nA then there is some y E Hand a sequence (zn) in A
with Zn = Zn+l[n] and

such that z'

Hence z'

Zn E WA(y[n])[n] = WJ:[(y)[n]
lim Zn' Let n = p(z') + 1. Then z' = Zn

z' E WJ:[(y)[n].

z"[n] for some z" E WJ:[(Y). Since

... and

min { p(z"), n} = p(z"(n]) = p(z') < n

we have p(z") < n. Therefore z' =.z"(n] = z" E WJ:[(Y). Since p(z') > p(y) we have
y E H n A. Hence yJ E cp(H) and

z = z' J E w.;(yJ).

Therefore z E w(cp(H)).

We show '2': Let z E w(cp(H)). Ifz E Athen z E WA(y) -!- for some y E cp(H) n A.
Then z C X for some xE WA(y). Sincey E cp(H) nA there is some y' E H, N ~ 1 with
y ~ y'[N]. Then for all n ;:::N:

y C y'(N] ~ y'(n]

30

and therefore
WA(y) ~L WA(y'(N]) CL WA(y(n]).

Hence there exists a sequence (Xn)n~N with Xn E WA(y'(n]) and X C Xn for all n ~ N.
Since

xn(n] E wA(y'(n])(n] = UJM(y')(n] ~ w(H)[n]

there is a sequence (X~)n~N in w(H) with xn(n] = x~(n]. Since w(H) is compact there is
a convergent subsequence (X~Jm~N. We put:

, der I' ,
X = 1m Xnm-too m

Then X' E w(H). Let m p(X). 1'~~nx'(m] = x~/(m] for some 1 ~ N. Hence

x'(m] = Xn/ (m]

for alll ~ N. Since X C xn/ and p(x) = m we have:

z ~ x ~ xn/(m] = x'(m].

Therefore z E <p(w(H)).

If z = z' J where z' E Athen z' E WA (y') for some y' E H n A. Then
z' E WA(y') = UJM(Y') ~ w(H)

Hence z = z'J E <p(w(H)). 0

If X is a set endowed with semantic operators ;', +' : X x X -+ X and w' : Xk -+ X
(where k is the arity of w E 0) and interpretations cl E X of the atomic actions then by
a homomorphism on X we mean a function f : Prag -+ X such that:

• f(o:) = 0:'

• f(PI + P2) = f(Pt} +' f(P2)
• f(Pl; P2) = f(Pl) ;' f(P2)

• f(w(Pl, ••. ,Pk)) = w'(f(Pt}, ... ,f(Pk))

Given a function F : I df -+ X there is a unique homomorphism f : Prag -+ X with
f(~) = F(~) for all ~ E Idf. Dealing with X = P,;(D) we have for all n ~ 1:
9n : Prag -+ P,; (D) is the unique homomorphism such that 9n (~) = gn-l (a (~)) .

Claim 3 Let f : Prag -+ P~o(M) and 9 : Prag -+ P ,;(D) be homomorphisms s'uch that
<p0 f = g. Then <p 0 'I!(j) = <p(g).

Proof: By structural induction it can be shown that <p(\J!(j)(P)) = <p(g)(P). Uses
Claim 2. 0

Claim 4 If f : Prog -+ P~o(M) is a homomorphism on P~o(1l,,1) then f(G) E Pco(l\1)
for each guarded statement G.

31

Proof easy verification. Uses structural induction and a E Pco(M), H ~ I -:I 0 if
H-:l0.0
Let Jo : Prog -t P~o(M) be the unique homomorphism with Jo (~) = 0 for 1'111~ E I df.
Using Claim 2 and the fact that gl is the unique homomorphism Prog -t P,;(D) with
gl(~) = {..L} = <p(Jo(~)) we get <po Jo = gl' Let F: Prog -t P~o(Al) be the unique
homomorphism such that F(~) = Jo((J(~)) for a11~ E Idf. Then we get by structural
induction and Claim 4:

F(P) E Pco(M) for a11PE Prog.

Since F = \Jf(Jo) we get by Claim 3: <p0 F = g2. Let ft : Prog -t Pco(J:\!l) be given by
ft(P) = F(P) for a11P E Prog. Then <p0 ft = g2. Let Jn = \Jf(Jn-l) for 1'111n ~ 2.
Then by Claim 3: <p0 Jn = gn+l for a11n ~ 1. 0

On might suppose that the proof of Theorem 5.4 is too complicate and it would be easier
if..L is not excluded from M. The problem is that then because ofthe natural assumption
..L ;A x = x;A..L = x the resulting sequence operator ~ on Pco(M) would not be
contracting in its second argument. This is essential for the definition of the semantics
Mecms ..

Example 5.5 Theorem 5.4 yields the consistency of the trace semantics on P.!-(Ad~) of
[11] and the trace semantics on Pco(AdOO

) of [5]. We also obtain the consistency of the
pomset semantics on P ,;(Pom*) of [7] and the pomset semantics on Pco(PomOO

) of [4]. 0

6 Conclusion

We presented 1'1general framework to define denotationallinear time semantics for lan-
guages that a110w for nondeterminism, recursion and sequential composition. \Ve gave
conditions that 1'1'good' sequence operator on 1'1domain A for finite behaviour has to
fulfi11 (Definition 3.3 and Definition 4.2). In these characterizations of 1'1good sequence
operator it is essential that we do not deal with deadlocked processes. In order to deal
with the case where processes may deadlock the semantic domain A has to be devided into
elements representing successfu11 terminating computations and elements for representing
deadlocked computations. In the partial order approach one has to require that the set of
successfu11 terminating computations is leftclosed (which asserts that no partial execution
of a successfu11 terminating process can be deadlocked). A good sequence operator on A
is then an operator ;A which satisfies:

• x ;A Y = x for each deadlocked computations x

• x ;A Y represents a successfull terminating computation if and only if x and y
represents successfu11 terminating computations

• In the metric case: If x stands for a successfu11 terminating computation then the
n-cuts x(n] of x also stand for successfu11 terminating computations and

{

x(n] if p(x) ~ n
(x ;A y)[n] =

X;A y(n - m] if p(x) = m < n.

32

• In the partial order case ;A has to fulfill the conditions of Definition 4.2.

Then in the metric case one can define adenotationallinear time semantics on Pco(M) as
in section 3: take the canonical extension ;M Of;A on the completion M of A as semantic
operator for modelling sequential composition on finite and infinite computations and use
the operator

H ~ I ~ {x ;M Y : x E H, y EI}

on Pco(IVf). In the partial order approach a little modification of the semantic domain
P,;(D) is needed. Define D,; to be the set of all elements x E D and new elements xV'
where x E D stands for a successfull terminating computation. Then a suitable sequence
operator on P ,;(D) can be defined as in section 4.

The assumptions in section 5 are closely related to the requirement that the underlying
partial order is endowed with a finite weight p in the sense of [2]. A finite weight means
a function p : D ~ !No such that:

(1) p(1.) = 0

(2) If x C y then p(x) ~ p(y).

(3) For each x E D the set { y E D
(denoted by x[n]).

y !; x, p(y) < n } has a greatest element

Then x I---t x[n] is a ranking on M = D \ {1.} as in section 3. In section 5 we do not
need condition (2). Nevertheless (2) is a natural requirement since we interpret x r; y as
xis a subcomputation of y. Hence p(x), the length of the execution of .7:, is at most p(y).
Instead of (2) we require

p(x[n]) = min { p(x), n }.

The treatment of sequential composition in branching time semantics is more complicate.
A suitable sequence operator ;A on a branching time model A has to be defined in such
a way that x ;A y arises from x by 'appending' y at every 'maximal computation' of .7:
(cf. e.g. the sequence operator on prime event structures [1]). vVedo not see a way to
formalize the 'maximal computations' of the elements in branching time models. Hence,
we cannot propose a general framework for the treatment of sequential composition in
branching time models.

33

References

[1] C. Baier, M.E. Majster-Cederbaum: Denotational semantics in the cpo and metric
approach, Theoretical Computer Science, Vol. 135, pp 171-220, 1995.

[2] C. Baier, M.E. Majster-Cederbaum: Construction of a cms on a given cpo, submitted
for publication, Techn. Report 28/95, Reihe Informatik, Universität Mannheim, 1995.

[3] J.W. de Bakker, J.I.Zucker: Processes and the Denotational Semantics of Concur-
rency, Information and Control, Vol.54, No. 1/2, pp 70-120, 1982.

[4] J.W. de Bakker, J.H.A. Warmerdam: Metric pomset semantics for a concurrent
language with recursion, Report CS-R9033, Centre for Mathematics and Computer
Science, Amsterdam, July 1990.

[5] J.W. de Bakker, J. Meyer: Metric semantics for concurrency, Report CS-R8803,
Centre for Mathematics and Computer Science, Amsterdam, 1988.

[6] F. van Breugel: Topological Models in Comparative Semanties, Ph.D.Thesis, Vrije
Universiteit Amsterdam, 1994.

[7] M. Broy: Operational and Denotational Semantics with Explicit Concurrency, Fun-
damenta Informaticae, Vol. 16, 1992.

[8] K. Bruce, J.C. Mitchell: PER Models of Subtyping, Recursive Terms and Higher-
order Polymorphism, Journal of ACM, 8/92, 1992.

[9] H. Ehrig, F. Parisi-Presicce, P. Boehm, C. Rieckhoff, C. Dimitrovici, M. Große-
Rohde: Combining Data Type Specifications using Projection Algebras, Theoretical
Computer Science, Vol. 71, 1990.

[10] H. Hahn: Reelle Funktionen, Chelsea, New York, 1948.

[11] C.A.R. Hoare: Communicating Sequential Processes, Prentice Hall, 1985.

[12] K. Kuratowski: Sur une methode de metrisation complete des certains espaces
d'ensembles compacts, Fundamentae Mathematicae, Vol. 43, pp 114-138, 1956.

[13] R. 1-1ilner: Communication and Concurrency, Prentice Hall, 1989.

[14] G.D. Plotkin: A Powerdomain Construction, SIAM Journal of Computation, Vol. 5,
No. 3, pp 452-487, 1976.

[15] V. Pratt: The Pomset Model of Parallel Processes: Unifying the Temporal and the
Spatial, Seminar on Concurrency, Lecture Notes in Computer Science 197, Springer-
Verlag, 1984.

[16] M.B. Smyth: Power Domains, Journal of Computer and System Sience, Vol. 16, pp
23-36, 1978.

34

	00000001
	00000002
	00000003
	00000004
	00000005
	00000006
	00000007
	00000008
	00000009
	00000010
	00000011
	00000012
	00000013
	00000014
	00000015
	00000016
	00000017
	00000018
	00000019
	00000020
	00000021
	00000022
	00000023
	00000024
	00000025
	00000026
	00000027
	00000028
	00000029
	00000030
	00000031
	00000032
	00000033
	00000034
	00000035

