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Zusammenfassung

Mit der zunehmenden Verbreitung von XML-Daten und XML-Anwendungen wird es wich-

tiger, XML-Anfragen effizient auszuwerten. Während in den letzten dreißig Jahren eine

Reihe von Optimierungstechniken für relationale Datenbanken entwickelt wurden, müssen

bei der Optimierung von XML-Anfragen neue Herausforderungen gelöst werden. Ins-

besondere müssen Optimierer für XQuery, die Standardanfragesprache für XML, sowohl

die Dokumentreihenfolge als auch die Sequenzreihenfolge beachten. Andererseits haben

sich algebraische Optimierungen in relationalen Datenbanken als flexibel und leistungsfähig

erwiesen.

Daher wird in dieser Dissertation ein algebraischer Ansatz für die Optimierung von

XQuery-Anfragen entwickelt, der eine einfache Übersetzung von XQuery in diese Al-

gebra ermöglicht. Basierend auf der formalen Definition der algebraischen Operatoren

werden Eigenschaften der Algebra formal bewiesen. In dieser Arbeit nutzen wir die Alge-

bra, um algebraische Äquivalenzen für das Entschachteln geschachtelter XQuery-Anfragen

zu entwickeln. Nach der Entschachtlung der Anfragen werden nahezu alle Anfragen in

Sekunden oder Millisekunden ausgewertet, während die ursprüngliche geschachtelte An-

frage oft mehrere Stunden für die Auswertung benötigt. In dieser Dissertation werden drei

Grundmuster für algebraische Äquivalenzen identifiziert. Für die Auswahl der effektivsten

Entschachtlungsäquivalenz wird für jedes dieser Grundmuster ein Entscheidungsbaum en-

twickelt.

Ein weiteres wichtiges Ergebnis der Anfrageentschachtlung besteht darin, dass in der

darauf folgenden kostenbasierten Optimierung mehr alternative Pläne, und vor allem meist

auch schneller auswertbare Pläne, generiert werden können. In dieser Arbeit werden zwei

weitere Fälle präsentiert, in denen der Suchraum für alternative Pläne erweitert werden

muß, um effiziente Auswertungspläne zu generieren: das Umordnen von Joins und von

Location Steps in Pfadausdrücken. Das in dieser Arbeit vorgestellte algebraische Rah-

menwerk erkennt alle Fälle, in denen bei der Umordnung dieser Operationen die Ord-

nungssemantik von XQuery verletzt wird. Allerdings ermöglichen es aktuelle Ansätze

zur Optimierung der Reihenfolge in Anfragen, effizient die korrekte Reihenfolge wieder

herzustellen.

Der in dieser Dissertation vorgestellte Ansatz zur algebraischen Optimierung von XQuery

stellt somit einen wesentlichen Baustein für die effiziente Auswertung von XML-Anfragen

dar. Darüberhinaus profitiert auch Anfrageauswertung in relationalen Datenbanken von

diesen Techniken, wenn die Reihenfolge bei der Optimierung berücksichtigt werden muss.
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Abstract

As more data is stored in XML and more applications need to process this data, XML

query optimization becomes performance critical. While optimization techniques for rela-

tional databases have been developed over the last thirty years, the optimization of XML

queries poses new challenges. Query optimizers for XQuery, the standard query language

for XML data, need to consider both document order and sequence order. Nevertheless, al-

gebraic optimization proved powerful in query optimizers in relational and object oriented

databases. Thus, this dissertation presents an algebraic approach to XQuery optimization.

In this thesis, an algebra over sequences is presented that allows for a simple translation

of XQuery into this algebra. The formal definitions of the operators in this algebra allow

us to reason formally about algebraic optimizations. This thesis leverages the power of

this formalism when unnesting nested XQuery expressions. In almost all cases unnesting

nested queries in XQuery reduces query execution times from hours to seconds or millisec-

onds. Moreover, this dissertation presents three basic algebraic patterns of nested queries.

For every basic pattern a decision tree is developed to select the most effective unnesting

equivalence for a given query.

Query unnesting extends the search space that can be considered during cost-based op-

timization of XQuery. As a result, substantially more efficient query execution plans may

be detected. This thesis presents two more important cases where the number of plan alter-

natives leads to substantially shorter query execution times: join ordering and reordering

location steps in path expressions. Our algebraic framework detects cases where document

order or sequence order is destroyed. However, state-of-the-art techniques for order opti-

mization in cost-based query optimizers have efficient mechanisms to repair order in these

cases.

The results obtained for query unnesting and cost-based optimization of XQuery under-

line the need for an algebraic approach to XQuery optimization for efficient XML query

processing. Moreover, they are applicable to optimization in relational databases where

order semantics are considered.
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1. Introduction

1.1. Motivation

The Extensible Markup Language (XML) has emerged as one backbone for information

processing on the Web, and in business and scientific applications. Ever increasing amounts

of XML data are produced, exchanged, stored and analyzed. Many tools have been and still

are developed to support these tasks. Most importantly, analyzing and transforming these

huge amounts of XML data necessitated the standardization of query languages and trans-

formation languages for XML data. One prominent example is XQuery. Since XQuery

queries are executed on ever larger collections of XML documents, query processing must

be carried out efficiently. With the research on XQuery processing reported in this thesis,

we contribute important building blocks to meet this challenge.

1.1.1. A Brief History of XQuery

Initial research on querying semistructured data1 laid the foundation for early drafts of

XQuery. After almost a decade of work, the W3C published the recommendation of

XQuery version 1.0. The specification process sparked new interest in developing (XQuery)

query processors. A number of almost complete implementations of the standard were

available in sync with its release. Interesting research prototypes were in development, and

commercial database vendors extended their relational databases to support XQuery.2

Research on XQuery concentrated on efficient storage of XML and evaluation and opti-

mization techniques for XQuery. An increasing number of applications rely on XML data

and demand a complete coverage of the standardized features in XQuery. To motivate the

need for our research on optimization and efficient execution of XQuery, we investigate the

processing requirements of typical XQuery applications.

1.1.2. XQuery Applications

XML Warehouses and XOLAP XML has been adopted for logging events. Usually,

the structure of log entries evolves over time, and log entries may describe complex log

events. Such loosely structured data is the prime target of XML and XQuery. The struc-

ture of log entries is self-describing because tags used in the log entries encode schema

information. Complex log events can be represented in XML by nested elements. Be-

cause log files easily grow into gigabytes of size, they must be managed by XML database

systems. Notice that relational databases do not support this scenario well because they

assume unstructured data (i.e. tuples) and a schema that rarely changes. When analyzing

the logs, it is important to employ efficient retrieval and transformation algorithms. As

queries in XQuery can express complex structural patterns, join conditions, grouping, and

aggregation, XQuery is used to analyze such logs.

Once the queries involved become non-trivial, it is not sufficient to simply interpret these

XQueries or map them to a standard-evaluation strategy. Instead, an XQuery processor

should apply several optimization steps. In the scenario outlined above, order information

1Important predecessors of XQuery are Lorel [AQM+97], UnQL [BFS00], the TSIMMIS project [PGMW95],

XML-QL [DFF+98], Quilt [CRF00], and XPath 1.0 [CD99].
2For example [RSF06, BGvK+06, Kay07, JAKC+02, FHK+02, NDM+01, Sch01, FHK+04, LKA05,

PCS+05, OCP+05, NdL05, Tec07].
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1. Introduction

is relevant: When the temporal order of log entries is encoded in the textual order in the

XML document, a query must respect order. On the other hand, aggregate functions are

usually insensitive to order and, thus, may enable many optimizations. Query unnesting

and join ordering are other key optimizations that an XQuery optimizer must consider in

analytical queries.

Several experiments presented in this thesis support the need for powerful optimizers for

XQuery. But the techniques developed in this thesis improve the state-of-the-art processing

techniques for XQuery by orders of magnitude. For example, we introduce a powerful

unnesting framework that often improves query execution times by a factor of 100. We

investigate the problem of reordering joins and XPath location steps. This includes formal

proofs when reordering operators is valid. But we also discuss how our cost-based query

optimizer enumerates valid operator orders and finds the best plan alternative among all

these alternatives. We argue that our optimizations should become the core optimization

techniques of every XQuery processor.

Information Integration Information integration was one of the first applications and

main motivations for the development of XQuery. In information integration, heterogenous

data sources are represented as XML views, and their real presentation format is hidden.

Queries in applications developed in this context are formulated in XQuery and access

these XML views. At the local data sources, XQuery is either implemented using adaptors,

cursors, or in the native query language of the data sources, e.g. SQL.

The XQuery processor in such an application needs to decide which data source con-

tributes to the result of a query. The order of the accesses on data sources usually de-

pends on the size of the accessed data and the processing speed of the data source. More-

over, some computations can be pushed to the local databases where expensive processing

tasks can often be evaluated more efficiently. Several such non-trivial optimizations as-

sure an efficient processing strategy to evaluate the XQuery query over the heterogenous

data sources. The techniques developed in this thesis contribute to this difficult endeavor

because we treat XQuery optimization on the algebraic level. For example, we propose

algebraic rewrites that merge query blocks into larger ones. Since the cost-based query

optimizer works on the level of query blocks, merging them gives the optimizer complete

information about the query. Thus, the optimizer can exploit more information when it

chooses one of the processing strategies outlined above.

Distributed Processing The core of distributed business processes consists of data

and remote procedure calls (RPC). When business processes cross the boundaries of enter-

prises, it has become customary to encode both the data and the RPCs in XML messages.

In a typical communication between partners in a business process, one has to perform the

following tasks: (1) analyze the exchanged messages using XPath or XQuery, (2) trans-

form and internally process the data and message, and (3) finally generate replies encoded

in XML. Since all these steps are well-supported by XQuery, efforts are under way to im-

plement them by extending XQuery with new processing primitives. The advantages of

this integrated support for storing, querying, and transforming XML messages include: (1)

Less transcoding between business objects and XML is needed. (2) Optimization opportu-

nities arise when different processes interact or share computations. (3) Access to persistent

data can be combined with the the involved transformations. Evidently, the more complex

the application scenarios get, the more important it becomes to optimize the embedded

XQuery statements. Since lots of business data is managed by relational databases, this

data is increasingly complemented by XML data. Hence, integrated processing of XML

and relational data is mandatory. Consequently, XQuery processing architectures that fit

into the architecture of relational databases are desirable because first, it is possible to

leverage techniques developed for relational databases, and second, it is easy to integrate

processing of XML and relational data. Our algebraic approach to XQuery optimization

2
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and processing is motivated by these two observations. Our XQuery query optimizer can

reuse the architecture from relational query optimizers. Moreover, we were able to keep

large parts of our query optimizer independent of the query language. This allows us to

integrate optimization of SQL and XQuery into a single query optimizer. In this thesis, we

point out where we had to extend our query optimizer specifically for XML query process-

ing and where we could reuse the common architecture of relational query optimizers.

The Web 2.0 As more and more XML dialects and XML applications emerge, e.g. SVG,

SMIL, KML in Google Earth, or even as a storage format for office documents, a new trend

of integrating them into Mashups has emerged. In this area, XQuery is a candidate for re-

placing script code that is hard to maintain by declarative and optimizable XQuery code.

Thus, XQuery may complement access to relational data via dynamic SQL in these ap-

plications with access to and integration of diverse XML sources. Users automatically

benefit from new optimizations developed for XQuery without sacrificing code maintain-

ability. Thus, XQuery is perceived both as a query language and a scripting language: it

gets integrated into programming languages, and it allows extensions via function library

modules, similar to user-defined functions in SQL. Extending XQuery into a programming

or scripting language is already under discussion [CCF+06].

Publishing 2.0 Currently, publishers are shifting to XML to store their raw content,

replacing XML’s ancestor SGML [Hun06]. So far, XSLT was used to transform the content

stored in an XML document into a publication specifically tailored for the target audience.

Now, XSLT is replaced by XQuery because it offers the chance to remove layers from

the multi-tier publishing architectures. In this streamlined architecture, XQuery processors

are the core component to implement the content logic. Thus, these content management

systems use XQuery to select, transform, and combine content. Due to its integral role in

this architecture, efficient XQuery processing becomes a key issue. Naturally, publishers

have a strong focus in textual content. XQuery provides powerful functions to process text

data. But most importantly, it respects document order which is a key requirement for such

data. In this thesis, we argue that preserving order at all stages of query processing can be

quite costly. Instead, we propose to destroy document order temporarily to repair it later.

In our cost-based algebraic framework, this decision leads to query processing strategies

superior to current XQuery evaluators.

1.1.3. Observations

As XML applications become more demanding, queries over XML data become more

complex and expensive to evaluate. XQuery will only succeed in penetrating application

areas as the ones outlined above if it is evaluated fast. We expect that complex constructs,

such as node constructors, nested queries, or data retrieval on (several) huge document

instances are the prime targets for optimization techniques. In this thesis, we undertake a

significant effort to develop an architecture for XQuery optimization and several concrete

optimization techniques.

1.2. Natix

Our implementations are integrated into and extend Natix, a native XML database man-

agement system [Kan02, FHK+02] developed by our group. Thus, we briefly survey the

components of Natix which are relevant for this thesis.
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Figure 1.1.: The Natix Architecture

1.2.1. General Architecture

In this thesis, we focus on the optimization and execution of XQuery. The query compiler

and the query execution engine are both core components of the Natix system shown in

Figure 1.1.

Natix consists of three layers. The bottom layer contains the storage engine including

buffer management, see [KM00] for details. The middle layer contains the services one

typically expects from a database management system (DBMS). Among these services

are the query compiler (QC) and the query execution engine (QEE), which are the main

subjects of this thesis. The top layer focuses on system control and provides the interface

to the system via a C++ library [BBK+06]. Applications, like the interactive shell included

in the Natix distribution, are developed by using this interface.

When formulating queries, we have two alternatives. First, an XQuery query can be

passed as a string parameter via the C++ API to the Natix core. This is similar to dynamic

SQL. Second, ad-hoc queries can be evaluated within the interactive shell. In both cases,

the query is passed to the QC, where a query evaluation plan (QEP) is generated. The QEE

then evaluates the QEP and returns the result.

1.2.2. The Query Execution Engine

The query execution engine consists of an iterator-based implementation of algebraic op-

erators. They process ordered sequences of tuples. Tuple attributes either hold base type

values such as strings, numbers, and tree node references, or again contain ordered se-

quences. The iterator model has been slightly extended to deal more efficiently with group

boundaries and nested queries.

Subscripts of the algebraic operators (such as join or selection predicates) are expressed

in an assembly-like language, and are evaluated using the Natix Virtual Machine (NVM).

The NVM avoids the overhead associated with interpreted operator trees.

XML data is accessed through special NVM commands which directly access a clustered

persistent XML storage format in the page buffer. Hence, expensive representation changes

such as pointer swizzling of the data during query execution are not required. Moreover,

our compact format results in few page and CPU cache misses, and performs better than

pure pointer-based main memory representations.
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1.2.3. The Query Compiler
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Figure 1.2.: The Natix
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The architecture of the query compiler is shown in Fig-

ure 1.2. It follows the rather traditional six-phase approach.

The chapters of this thesis follow the structure of the query

compiler.

After the parser has generated an abstract syntax tree in

the first step, the NFST module performs Normalization,

Factorization of common subexpressions, Semantic analy-

sis, and Translation into an internal representation. This

internal representation is a mixture of our algebra and a cal-

culus representation. We discuss this module in Chapter 3.

After that, we can start rewriting the queries. Most im-

portantly, we inline views (which are called functions in

XQuery), unnest queries, and rewrite XPath expressions.

Expanding views can be thought of as replacing a non-

recursive function call with the body of the function. Since a

nested query results in a nested algebraic expression which

in turn requires an inefficient nested-loop evaluation, we try

to unnest queries whenever possible. Query unnesting is the

main optimization we present in Chapter 4.

During the plan generation phase, which is the subject of

Chapter 5, we replace the calculus representation of query

blocks with algebraic expressions. Here, the plan genera-

tor is faced with numerous alternative QEPs because many

execution orders as well as an actual implementation of the algebraic operators are valid

but have widely different costs. The plan generator picks the cheapest among all valid

query execution plans. Dynamic programming is the prevalent approach when generating

execution plans.

In the last but one phase, the generated plan is rewritten. Typically, only small changes

are made to the plan. For example, two successive selections are merged. Finally, we

generate the code for the QEP. We will treat these two phases briefly in Section 5.5

1.3. Research Objectives

Our observations on evolving XQuery applications clearly demonstrate that efficient XQuery

processing is a key requirement. But a direct implementation and execution of queries as

defined in the XQuery specification leads to unsatisfactory performance and poor resource

utilization. Instead, we aim to develop optimizations for XQuery which satisfy the follow-

ing four demands: correctness, efficiency, effectiveness, and extensibility. These goals will

be used to benchmark our techniques, and we will reiterate them in every chapter.

Correctness Clearly, optimizations need to preserve the semantics of a query. We ex-

press most optimizations as equivalences on algebraic expressions. The equivalence trans-

forms a query into a different but, presumably, more efficient query. Evidently, we have to

prove the correctness of every equivalence.

Efficiency Users observe the impact of optimizations as improved performance. The

performance can be measured in different metrics. Typical metrics to assess the efficiency

of query processing include: (1) the time to return the complete query result to the user or

application, (2) the time to compute the first k results, (3) low resource consumption during

optimization and query processing, (4) high overall resource utilization of the system that

processes the query. Since several of these objectives conflict, we have to prioritize them.
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In this thesis, we focus on (1), i.e. we want to minimize the time to compute the complete

query result. In most cases, this also leads to good resource utilization.

Effectiveness Clearly, query optimization comes at some cost. Thus, we require that

the cost for optimization must pay off during query execution. To show this, we conduct

experiments that assess query optimization and execution times.

Extensibility As more optimizations for XQuery are developed, the query optimizer

needs to incorporate them into an overall efficient XQuery processing strategy. But we also

expect that XQuery will be extended to support updates, distributed query processing, or

new functions and operators. Of course, the overall design of our system must be able to

integrate them. We tackle this problem by relying on an algebraic approach that proved

successful for relational and object oriented query languages before. This thesis provides

evidence that this also holds true for XQuery.

1.4. Contributions

We present an algebraic approach to XQuery processing. The results obtained in this thesis

prove that both an algebraic query optimizer and an evaluation engine are well-suited to

satisfy the goals outlined above. At the same time, we can leverage the experience gained

from building relational and object-oriented databases. However, we cannot reuse these

ideas blindly, as the data model of XQuery introduces the following new challenges: (1) It

works on trees instead of flat tuples. (2) It is based on sequences of items instead of bags of

tuples. (3) It includes a rich type system which is based on XML Schema. Consequently,

we have to reconsider fundamental optimizations.

Theory of Algebras over Sequences We formally define the algebraic operators

needed to represent XQuery queries in our algebra, NAL. This algebra is defined over se-

quences of tuples. Thereby, we assure that we capture order semantics of XQuery. We

develop a general framework to formally assess the correctness of algebraic equivalences

on this algebra. While we still formally prove several specific algebraic equivalences, we

introduce properties of algebraic operators that allow us to capture many common alge-

braic equivalences more succinctly. As another key result, we show that many algebraic

equivalences that are valid for algebras over sets or bags do not hold for algebras over

sequences.

Translation into Algebra over Sequences We present the translation of a large

fragment of XQuery into NAL, our algebra. We prepare this translation step by normaliza-

tion rewrites. The normalization rewrites transform the query in such a way that it is easy

to translate and optimize. Moreover, we rely on an extensible framework to annotate the

translated query with type and cardinality information. This information is used in later

steps of the optimization process.

Algebraic Rewrites We identify three basic algebraic patterns of nested queries. With

a set of algebraic rewrites we are able to remove nesting from these queries. We embed

these equivalences into an unnesting strategy; experiments demonstrate the effectiveness

and efficiency of our optimizations.

Cost-Based Query Optimization The full power of heuristic rewrites can only be

exploited when the optimizer is able to pick efficient implementations for the query. We
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motivate the need for a cost-based optimizer to generate optimal plans for queries contain-

ing joins or path expressions. We outline the architecture of our cost-based optimizer, in

particular how we handle document order.

Discussion of the Design, Implementation, and Experiments We complement

our theoretic results with an explanation on the design that underlies the implementation of

our XQuery optimizer. We validate its effectiveness in a number of experiments.

1.5. Thesis Outline

The structure of this thesis follows the architecture of our query compiler (see Fig. 1.2).

Chapter 2 introduces the logical algebra, NAL, and its algebraic properties. We also survey

the most important physical implementations that are available for these algebraic oper-

ators. In Chapter 3, we present the translation of a large fragment of XQuery into our

algebra. We also motivate the design of our internal query representation and outline

how we annotate the query with type and cardinality information. Since the translation

of XQuery into our algebra might result in algebraic expressions containing nested query

blocks, Chapter 4 introduces our unnesting strategy for XQuery. This chapter extends our

previous work [MHM03a, MHM03c, MHM03b, MHM04, MHM06] with remarks on the

efficient implementation of our unnesting strategy. Chapter 5, deals with the problem of

choosing the most efficient operator order and operator implementation based on cost in-

formation. Based on our previous work [MHKM04, MBB+06, MM05a, MM05b], we

motivate the need for cost-based optimizations and outline how we solve this problem.

Chapter 6 summarizes the results of this thesis and points out future work. The full proofs

for the algebraic equivalences proposed in Chapter 2 and 4 can be found in Appendix A.1

and A.2 repectively. Appendix A.3 contains information about the experimental setup used

in this thesis.
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2. The Natix Algebra

The goal of this thesis is to develop an extensible optimization framework for XQuery. As

we want to reason formally about our optimizations, we approach XQuery optimization by

translating every query into an algebraic expression. Optimization of XQuery then consists

of applying algebraic equivalences to the algebraic expressions. Since we precisely define

the semantics of the operators of our algebra, we can prove the correctness of algebraic

equivalences. Thereby, we assure that applying them to an algebraic expression does not

change its semantics.

In Section 2.1, we present the Natix Logical Algebra (NAL). Before we can define the

algebraic operators, we need to arrange for some notation to formally define the operators

of the NAL. As this algebra works on sequences of tuples, it preserves duplicates and order.

We investigate the properties of our algebra over sequences of tuples in Section 2.2. In

Section 2.3, we briefly discuss the Natix Physical Algebra (NPA). The operators available

in NPA are sufficient to implement the plans we will discuss in this thesis. In Section 2.4,

we discuss work related to the Natix Algebra.

Readers familiar with our algebra may skip this chapter and continue with Chapter 3. In

Figure 2.1 we give a brief overview with the formal definitions of the operators in NAL. It

might serve as a reference in the remainder of this work.

2.1. The Natix Logical Algebra

Our algebra (NAL) extends the SAL-Algebra [BT99] developed by Beeri and Tzaban.

SAL, in turn, is the order-preserving counterpart of the algebra used in [CM93, CM95b].

Both SAL and NAL work on sequences of tuples and allow for nested tuples, i.e. the value

of an attribute may be a sequence of tuples.

2.1.1. Notation

Sequences. We denote sequences by 〈·〉, the empty sequence by ǫ, and sequence con-

catenation by ⊕. Note that sequence concatenation is associative but not commutative. For

a sequence e we use α(e) to select its first element and the τ(e) to retrieve its tail. We

equate sequences containing a single item and the item contained. This implicit conversion

is demanded by the XQuery specification.

Tuples. Tuples are constructed by using brackets ([·]) and concatenated by ◦. The set of

attributes of a tuple t is denoted by A(t). The projection of a tuple t on a set of attributes

A is denoted by t|A. To access a single attribute B in a tuple, B ∈ A(t), we use t.B.

For all tuples t1 and t2 contained in a sequence of tuples, we demand A(t1) = A(t2).
Given that, we can define the set of attributes A(s) provided by a sequence s as the set

of attributes of the contained tuples. Let e be an expression whose result is a tuple or a

sequence of tuples. Then the set of attributes provided in the result of e is denoted byA(e).
For all expressions used in this thesis, it can easily be calculated bottom up.

Binding Attributes. Binding an attribute a of some tuple to a value v is denoted by

[a : v]. We call an attribute a in an expression e free if it occurs in e and is not bound to a

value by e. That is, a value for a has to be provided by some other expression, e.g. an outer
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Scan Singleton

2 := 〈[]〉

Selection

σp(e) :=



α(e) ⊕ σp(τ (e)) if p(α(e))
σp(τ (e)) else

Tid

tida(e) := tida(e, 1) where

tida(e, n) := α(e) ◦ [a : n] ⊕ tida(τ (e), n + 1)

Projection

ΠA(e) := α(e)|A ⊕ ΠA(τ (e))

Tid-Duplicate Elimination

Πtidb
A (e) :=



α(e)|A ⊕ Πtidb
A (τ (e)) if α(e).b 6∈ Πb(τ (e))

Πtidb
A (τ (e)) else

Map

χa:e2(e1) := α(e1) ◦ [a : e2(α(e1))] ⊕ χa:e2(τ (e1))

Product

e1×e2 :=



ǫ if e2 = ǫ

(e1 ◦ α(e2)) ⊕ (e1×τ (e2)) else

where e1 is a singleton

Cross Product

e1 × e2 := (α(e1)×e2) ⊕ (τ (e1) × e2)

Join

e1 1p e2 := σp(e1 × e2)

D-Join

e1 <e2 > := α(e1)×e2(α(e1)) ⊕ τ (e1) <e2 >

Semijoin

e1 �p e2 :=



α(e1) ⊕ (τ (e1) �p e2) if ∃x ∈ e2 : p(α(e1) ◦ x)
τ (e1) �p e2 else

Antijoin

e1 ⊲p e2 :=



α(e1) ⊕ (τ (e1) ⊲p e2) if 6 ∃x ∈ e2 : p(α(e1) ◦ x)
τ (e1) ⊲p e2 else

Left Outer Join

e1 �g:e
p e2 :=

8

>

<

>

:

(α(e1) 1p e2) ⊕ (τ (e1)�g:e
p e2) if (α(e1) 1p e2) 6= ǫ

(α(e1) ◦ ⊥A(e2)\{g} ◦ [g : e]) else

⊕(τ (e1)�g:e
p e2)

Union

e1 ∪̂ e2 := e1 ⊕ e2

Intersection

e1 ∩̂ e2 := e1 �A(e1)=A(e2) e2

Difference

e1 −̂ e2 := e1 ⊲A(e1)=A(e2) e2

Unnest

µA:g(e) := (α(e) × (ΠA:A(g)(α(e).g))) ⊕ µA:g(τ (e))

Unnest Map

ΥA:e2(e1) := Πâ(µA:â(χâ:e2(e1)))

Binary Grouping

e1Γg;A1θA2;fe2 := α(e1) ◦ [g : G(α(e1))] ⊕ (τ (e1)Γg;A1θA2;fe2) where

G(x) := f(σx|A1
θA2

(e2))

Unary Grouping

Γg;θA;f (e) := ΠA:A′(ΠD
A′:A(ΠA(e))Γg;A′θA;fe)

Figure 2.1.: Natix ALgebra: Algebraic Operators
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query block. We denote the set of free attributes of an expression e by F(e). Note that

attributes behave the same way as variables: they are bound to a value by some expression

and referenced by another one. From now on, we will use the terms variable and attribute

interchangeably.

For an expression e1 possibly containing free variables, and a tuple e2, we denote by

e1(e2) the result of evaluating e1 where bindings of free variables are taken from variable

bindings provided by e2. Of course this requiresF(e1) ⊆ A(e2). For a set of attributes, we

define the tuple constructor⊥A such that it returns a tuple with attributes in A initialized to

NULL. Thanks to the NULL-value, we can distinguish empty results from unknown values

which is not possible in XQuery yet.

Operations on Sequences. Using these notations, we introduce two elementary op-

erations to construct sequences. The first is 2, which returns a singleton sequence consist-

ing of the empty tuple, i.e. a tuple with no attributes. It is used in order to avoid special

cases during the translation of XQuery. The second operation, denoted by e[a], constructs

a sequence of tuples with attribute a from a sequence of non-tuple values e. For each value

c in e, a tuple is constructed containing a single attribute a whose value is c. More for-

mally, we define e[a] := ǫ if e is empty, and e[a] := [a : α(e)] ⊕ τ(e)[a] else. We use this

operation to map sequences of items in the XQuery data model into sequences of tuples in

our data model.

Functions. We refer to an n-ary function, say f , with f(e1, . . . , en). Sometimes, we

will omit the formal parameters in expressions. Then the actual parameters of f must be

bound by the enclosing expression. We denote the identity function by id and concatenation

of functions or operators by ◦.
For result construction we define a function with signature C(type, name, content). It

constructs a node of the requested node type, with given tag name, and content. We use the

arguments elem, attr, etc. to identify the node type. To support computed constructors,

the name and content may reference previously bound variables. Not every argument is

meaningful for every node type. But for the sake of simplicity, we ignore this fact. Another

proposal to implement result construction with algebraic operators can be found in [FM01].

2.1.2. Operator Definitions

We give the definitions for the order-preserving algebraic operators. For the unordered

counterparts see [CM95b]. The NAL algebra allows for nesting of algebraic expressions.

For example, within a selection predicate we allow for the occurrence of a nested alge-

braic expression. Hence, for example, a join within a selection predicate is possible. This

simplifies the translation of nested XQuery expressions into the algebra.

We define the algebraic operators recursively on their input sequences. In order to handle

the case of empty argument sequences only once and not for every single operator, we

arrange the following. For unary operators, if the input sequence is empty, the output

sequence is also empty. For binary operators, the output sequence is empty whenever the

left operand represents an empty sequence. In the following, let e and ei be expressions

resulting in a sequence of tuples.

General Operators

The order-preserving selection operator with predicate p is defined as

σp(e) :=

{
α(e)⊕ σp(τ(e)) if p(α(e))
σp(τ(e)) else.

We define an auxiliary operator tid which numbers the tuples in a sequence by adding

an attribute a to each tuple that contains its position within the sequence. We need this

11



2. The Natix Algebra

R1

A1

3

2

1

R2

A2 B
1 2

1 3

2 4

2 5

tidT (R1)

A1 T
3 1

2 2

1 3

RT :=
tidT (R1) 1A1=A2 R2

A1 T A2 B
2 2 2 4

2 2 2 5

1 3 1 2

1 3 1 3

ΠtidT (RT )

A1 T A2 B
2 2 2 5

1 3 1 3

Figure 2.2.: Example for the tid operator

operator to identify original tuples of a sequence after they have been connected to other

tuples, to remember order [MHKM04], or to implement position-aware functions. We

define tida(e) := tida(e, 1) where attribute a 6∈ A(e) and

tida(e, n) := α(e) ◦ [a : n]⊕ tida(τ(e), n + 1).

For a list of attribute names A, we define the projection operator as

ΠA(e) := α(e)|A ⊕ΠA(τ(e)).

We also define a duplicate-eliminating projection ΠD
A . Besides the projection, its semantics

are similar to the distinct-values function of XQuery: it does not preserve order.

However, we require it to be deterministic and idempotent.

We also need a special order-preserving duplicate-eliminating projection Πtidb

A , which

removes multiple occurrences of the same tid-value in b that appear in subsequent tuples:

Πtidb

A (e) :=

{
α(e)|A ⊕Πtidb

A (τ(e)) if α(e).B 6∈ ΠB(τ(e))

Πtidb

A (τ(e)) else.

We abbreviate Πtidb

A(e)(e) by Πtidb(e).
Figure 2.2 explains the relationship between the tid operator and the duplicate elimina-

tion of tid values. First, we tag each tuple of R1 with a tid value and bind it to attribute T .

Then, we join the resulting tuples with R2. In this way, some tuples of R1 find multiple

join partners in R2. Finally, we remove those duplicates using the ΠtidT operator. As a

result, we get all tuples of R1 that have a join partner in R2. Evidently the content of some

join partner is still part of the resulting tuples.

Some more variations of projection are useful. If we want to eliminate a set of attributes

A, we denote this by ΠA. We use Π also for renaming attributes as in ΠA′:A. The attributes

in the vector A are renamed to those in A′. Attributes other than those mentioned in A
remain untouched.

The map operator is defined as follows:

χa:e2(e1) := α(e1) ◦ [a : e2(α(e1))]⊕ χa:e2(τ(e1)).

It consumes a sequence of tuples, e1 and extends a given input tuple t1 ∈ e1 by a new

attribute a 6∈ A(e). The value of this new attribute is computed by evaluating e2(t1). Con-

sequently, attribute a might be bound to an item of the XQuery data model or a sequence

of tuples.

12
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R1

A1

1

2

3

R2

A2 B
1 2

1 3

2 4

2 5

χa:σA1=A2 (R2)(R1) =

A1 a
1 〈[A2 : 1, B : 2], [A2 : 1, B : 3]〉
2 〈[A2 : 2, B : 4], [A2 : 2, B : 5]〉
3 〈 〉

Figure 2.3.: Example for the map operator

For an example see Figure 2.3. For every tuple in R1, the map operator collects the tuples

of R2 that match the correlating predicate between A1 and A2. These tuples are bound to

a sequence-valued attribute a. Note that attribute a of the last tuple in R1 is bound to an

empty sequence because it does not have a matching tuple in R2.

Join Operators

We define the cross product of two tuple sequences as

e1 × e2 := (α(e1)×e2)⊕ (τ(e1)× e2)

where

t1×e2 :=

{
ǫ if e2 = ǫ
(t1 ◦ α(e2))⊕ (t1×τ(e2)) else.

Note that t1 and α(e1) in this definition represent a single tuple.

We are now prepared to define the join operation on ordered sequences:

e1 1p e2 := σp(e1 × e2)

and the d-join (or dependent-join, also denoted by 1−→. The arrow points to the right

argument whose evaluation dependents on the left argument) as

e1 <e2 >:= α(e1)×e2(α(e1))⊕ τ(e1) <e2> .

The d-join as mentioned in [CM93] is similar to the Apply operator [GLJ01] or the MapConcat-

operator [RSF06].
We define the semijoin as

e1 �p e2 :=



α(e1) ⊕ (τ (e1) �p e2) if ∃x ∈ e2 : p(α(e1) ◦ x)
τ (e1) �p e2 else

and the antijoin as

e1 ⊲p e2 :=



α(e1) ⊕ (τ (e1) ⊲p e2) if 6 ∃x ∈ e2 : p(α(e1) ◦ x)
τ (e1) ⊲p e2 else.

The left outer join, which will play an essential role in unnesting, is defined as

e1 �g:e
p e2 :=

8

>

<

>

:

(α(e1) 1p e2) ⊕ (τ (e1)�g:e
p e2) if (α(e1) 1p e2) 6= ǫ

(α(e1) ◦ ⊥A(e2)\{g} ◦ [g : e]) else

⊕(τ (e1)�g:e
p e2)

where g ∈ A(e2). Our definition slightly deviates from the standard left outer join, as

we want to use it in conjunction with grouping and (aggregate) functions. Consider, for

example, the sequences R1, R2, and Rcount
2 in Figure 2.4. Note that Rcount

2 is derived

from R2 by grouping it on A2 and then counting the tuples in each group. Now we want

to join R1 (via left outer join) with Rcount
2 . Obviously, tuple 3 of R1 does not have a join

13
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R1

A1

1

2

3

R2

A2 B
1 2

1 3

2 4

2 5

Rcount
2 :=

Γg;=A2;count(R2)

A2 g
1 2

2 2

Rog
1,2 :=

R1 �g:0
A1=A2

Rcount
2

A1 A2 g
1 1 2

2 2 2

3 NULL 0

Figure 2.4.: Example for unary grouping and outer join

partner. The standard left outer join would add a NULL value for g. In our case, having

no join partner corresponds to an empty group and the cardinality of it is well-known (0).

Hence, we assign this default value to attribute g in sequence Rog
1,2 whenever a tuple of R1

does not find a join partner. In general, e defines the value given to attribute g for values in

e1 that do not find a join partner in e2.

Set Operators

The counterparts for set operations on sequences are defined as follows. We define the

union of two tuple sequences as their concatenation:

e1 ∪̂ e2 := e1 ⊕ e2.

The definition of the intersection coincides with the definition of the semijoin:

e1 ∩̂ e2 := e1 �A(e1)=A(e2) e2.

Similarly, the definition of the difference is the same as the one for the antijoin:

e1 −̂ e2 := e1 ⊲A(e1)=A(e2) e2.

As for those operations over sets or bags, we demand that both input sequences produce

tuples with the same set of attributes, i.e. A(e1) = A(e2). Note that the second argument

in the definition of the intersection and the difference filters tuples of the first argument.

Our definitions differ from those defined in XQuery where all three operators are re-

stricted to sequences of nodes as input. In their result, duplicate nodes must be removed

based on node identity. We support this semantic when using the set-based version of those

operators. However, when the ordering mode is set to ordered, the result nodes must be

in document order.

We do not extend the definition of those operators on bags defined in [DGK82] to bags

that are order-sensitive. Extending those definitions requires us to decide how we treat

positions of tuples in both input sequences. In particular how the order of the result is

determined and if equality also includes the (relative) position. Both decisions will be

somewhat arbitrary.

Grouping Operators

For the rest of the work let θ ∈ {=,≤,≥, <, >, 6=} be a comparison operator on atomic

values. These comparisons will be used in the definition of grouping. More specifically,

we will use them to define which items belong to a group. Note that the SQL grouping

feature is based only on equality. With nested queries, groups can be formed by applying

other comparison operators as well.

As the definitions of the grouping operators are rather involved, we employ the example

in Fig. 2.5. Unary grouping (cf. Rg
2 in Fig. 2.5) groups R2 on attribute A2. The new

attribute g is bound to the result of applying function f to all tuples that belong to the same

group.

14



2.1. The Natix Logical Algebra

R1

A1

1

2

3

R2

A2 B
1 2

1 3

2 4

2 5

Rcount
2 :=

Γg;=A2;count(R2)

A2 g
1 2

2 2

Rg
2 :=

Γg;=A2;id(R2)

A2 g
1 〈[A2 : 1, B : 2], [A2 : 1, B : 3]〉
2 〈[A2 : 2, B : 4], [A2 : 2, B : 5]〉

Rg
1,2 :=

R1Γg;A1=A2;idR2

A1 g
1 〈[A2 : 1, B : 2], [A2 : 1, B : 3]〉
2 〈[A2 : 2, B : 4], [A2 : 2, B : 5]〉
3 〈 〉

Figure 2.5.: Examples for unary and binary grouping

In the example in Fig. 2.5, attribute g of Rg
2 contains a sequence of tuples. They all share

the same value on the grouping attribute A2. For some functions f (in particular aggregate

functions), we do not have to keep all the tuples that comprise a group. In our example the

values for the count of each group in Rcount
2 can be computed incrementally.

In contrast to unary grouping, which works on one input sequence, binary grouping

takes two input sequences as input (cf. Rg
1,2 in Fig. 2.5). Each tuple of the left input

R1 defines a group. The tuples of the right input R2 are matched to these groups based

on the predicate A1θA2. The vector of attributes in A1 and A2 must have equal size.

When they contain more than one attribute, the result of the comparison is the conjunction

of comparisons between pairs of attributes at the same position in the vaectors. If the

predicate evaluates to true, the tuple of R2 belongs to the group under consideration. Note

that each tuple of R2 can belong to multiple groups. Again, function f is used to combine

the tuples in each group. For the identity function id, the result is a sequence of tuples.

In this case, binary grouping is identical to the nestjoin [SABdB94]. Note that in Fig. 2.5,

the last group does not find matching tuples in R2. Therefore, this group contains an

empty sequence. This is important when we access the sequence-valued attribute g. Also

notice that binary grouping computes the same result as the map operator in Fig. 2.3. For

this reason, the binary grouping operator is used for unnesting nested queries or in OLAP

queries [CM93, SABdB94, CKMP97, ACJK01, MHM06].

We define unary grouping in terms of binary grouping. In our definitions we have Ai ⊆
A(ei) and g 6∈ (A1 ∪ A2). The new attribute g is bound to the result of applying function

f to all tuples that belong to the same group. Hence, we start with the formal definition of

binary grouping:

e1Γg;A1θA2;fe2 := α(e1) ◦ [g : G(α(e1))] ⊕ (τ(e1)Γg;A1θA2;fe2).

where for a function f we define G(x) := f(σx|A1θA2
(e2)). Now, unary grouping can be

formally defined as follows:

Γg;θA;f(e) := ΠA:A′(ΠA′:A(ΠD
A (e))Γg;A′θA;fe).

XPath Evaluation

We subsume the following operators as operators for XPath evaluation because in this thesis

they are predominantly used for this purpose. However, their definitions suggest that these

operators are not restricted to XPath evaluation.

The unnest operator gets a sequence of tuples containing an attribute g as argument.

Attribute g is bound to a sequence of tuples. The unnest operator unnests g by producing

15
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a result tuple for every tuple contained in g. Every result tuple contains the concatenation

of the attributes in the argument e and a tuple in the sequence-valued attribute g. The

order-preserving analogon to the well-known unnest operator is defined as

µA:g(e) := (α(e)× (ΠA:A(g)(α(e).g))) ⊕ µA:g(τ(e))

where A is a vector of attributes, A∩A(e) = ∅, and α(e).g retrieves the sequence of tuples

stored in attribute g. The unnest operator creates a new tuple for each tuple in the sequence

bound to α(e).g. This new tuple contains the attributes and bindings of α(e) and the values

of one tuple in α(e).g. Thereby, the vector of attributes in g is renamed to the vector of

attribute names given in A.

In some rare cases, operators following the unnest operator refer to the attribute g.

Hence, the unnest operator preserves the sequence-valued attribute g. However, in most

cases we will ignore its existence. But, we may use the fact that for the sequences R2

and Rg
2 in Fig. 2.5 it holds that R2 = ΠA2:A3(ΠA3B(µA(g):g(ΠA3:A2(R

g
2)))). Hence, the

unnest operator can extract the sequence-valued attributes computed by a grouping opera-

tion.

As a very convenient abbreviation, we define the unnest map operator as follows:

ΥA:e2(e1) := Πâ(µA:â(χâ:e2(e1)))

It first materializes a sequence of tuples in a new sequence-valued attribute â which is

then immediately unnested. As a result, the tuples of e1 are extended by the attributes in

e2, which are renamed to the vector of attribute names in A. Basically, the unnest map

operator has the same semantics as our d-join (see Eqv. 2.17 in Section 2.2.3).

We mainly use the unnest map operator to evaluate XPath location steps. Therefore, we

translate the XPath expressions after normalization as presented in [BKHM05]. Note that

our translation of XPath expressions yields sequences of tuples as opposed to sequences of

items as defined in XPath [DFF+07]. For path expressions the final projection establishes

the bindings required by the expression that embeds the path expression.

2.2. Algebraic Equivalences

After a query is translated into an algebraic expression it is likely that it can be improved

further in two ways. First, efficient implementations of the algebraic operators in NAL

can lead to substantial improvements in execution time. We discuss possible implementa-

tions of our algebra in the next section. Second, algebraic equivalences that transform an

algebraic expression into a different but equivalent algebraic expression give the query op-

timizer the freedom to find more efficient query evaluation plans. In this section we discuss

fundamental algebraic equivalences that hold for our algebra over sequences.

While the relational algebra is based on sets, query languages such as SQL work on

bags (also known as multisets). Both sets and bags have been studied intensively because

algebraic equivalences for sets or bags are at the core of most query optimizers today. As

a new challenge, an algebra over sequences is sensitive to both duplicates and order of

tuples. Hence, some equivalences known for algebras over sets or bags are no longer valid.

Most importantly cross products – and consequently joins – are not commutative any more.

Thus, when we commute the arguments of a join, we have to repair order afterwards.

We do not simply enumerate algebraic equivalences that hold for our algebra. Instead, we

first discuss associativity and commutativity for the binary operators in our algebra. Then

we apply the notion of linearity [vB90, CM95a] to our algebra over sequences. Linearity

is an important property that allows us to reorder operators. Hence, we need not check

every pair of algebraic operators when we consider their reorderability. Finally, we give

additional algebraic equivalences that do not follow immediately from linearity or that

hold for non-linear algebraic operators. In Appendix A.1 we present the proofs of all

equivalences presented in this section.
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e1 × (e2 × e3) = (e1 × e2)× e3 (2.1)

e1 1p1 (e2 1p2 e3) = (e1 1p1 e2) 1p2 e3 (2.2)

e1 �p1 (e2 �p2 e3) = (e1 �p1 e2)�p2 e3 (2.3)

e1 ∪̂ (e2 ∪̂ e3) = (e1 ∪̂ e2) ∪̂ e3 (2.4)

e1 ∩̂ (e2 ∩̂ e3) = (e1 ∩̂ e2) ∩̂ e3 (2.5)

Figure 2.6.: Associativity of binary operators in NAL

2.2.1. Commutativity and Associativity

Let us begin with commutativity. As we will see below, none of the binary operators is

commutative for sequences. This is a substantial restriction compared to algebras over

bags or sets.

Cross product is not commutative as a counter example consider (see [Moe03]):

e1 = < [a : 1], [a : 2] >

e2 = < [b : 1], [b : 2] >

e1 × e2 = < [a : 1, b : 1], [a : 1, b : 2], [a : 2, b : 1], [a : 2, b : 2] >

e2 × e1 = < [a : 1, b : 1], [a : 2, b : 1], [a : 1, b : 2], [a : 2, b : 2] > .

Join is not commutative which is a direct consequence of this property for the cross

product.

Semijoin, antijoin, d-join, outer join, and binary grouping are not commutative

for obvious reasons.

Union is not commutative because

e1 = < [a : 1], [a : 2] >

e2 = < [a : 3], [a : 4] >

e1 ∪̂ e2 = < [a : 1], [a : 2], [a : 3], [a : 4] >

e2 ∪̂ e1 = < [a : 3], [a : 4], [a : 1], [a : 2] > .

Intersection is not commutative because it filters tuples of the left input based on the

tuples available in the right input. This asymmetry breaks the commutativity as the

following example shows:

e1 = < [a : 1], [a : 2] >

e2 = < [a : 2], [a : 2] >

e1 ∩̂ e2 = < [a : 2] >

e2 ∩̂ e1 = < [a : 2], [a : 2] > .

Difference is not commutative because it is not even commutative for sets.

We resume with checking the associativity of binary algebraic operators. Figure 2.6

summarizes our results.

Cross product is associative (Eqv. 2.1)

Preconditions None.

Basic Idea It does not matter how we parenthesize cross products. This is an important

property for ordering cross products in the plan generator.
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Join is associative (Eqv. 2.2)

Preconditions F(p1) ⊂ A(e1) ∪A(e2) and F(p2) ⊂ A(e2) ∪ A(e3)

Basic Idea Associativity of joins is a direct consequence of associativity of cross prod-

ucts. Note that the preconditions can be relaxed. But then associativity might in-

troduce cross products and the predicates involved cannot simply be copied. Join

order optimization with associative (but not commutative) joins is investigated by

Moerkotte [Moe03].

Semijoin and Antijoin are not associative. Consider the algebraic expression (e1�p

e2) �q e3. In this expression the semijoin with e3 as right argument has access to the at-

tributes of e1 but not those of e2. On the other hand, in expression e1 �p (e2 �q e3) the

semijoin with e3 as right argument has access to the attributes of e2 but not to those of e1.

For the same reasons, the antijoin operator is not associative.

Outer join is not generally associative. Galindo-Legaria et al. [RGL90, GLR97]

observed that outer joins are not associative in general and survey algebraic rewrites that

are valid or invalid for outer joins in an algebra over sets. As a consequence, outer joins

over sequences of tuples are neither associative nor commutative in general. In Figure 2.6,

we give an equivalence involving a left outer join. Later, we will discuss several more

equivalences.

Outer join associativity (Eqv. 2.3)

Preconditions F(p1) ⊂ A(e1) ∪ A(e2), F(p2) ⊂ A(e2) ∪ A(e3), neither the result of

p1 nor p2 depend on the position, and p2 must be strong w.r.t e2.

Basic Idea The requirement that p2 is strong with respect to expression e2 means that p2

evaluates to false if all attributes in e2 contain⊥A(e2). Given these constraints above,

left outer joins can be reordered,

Union is associative (Eqv. 2.4)

Preconditions A(e1) = A(e2) = A(e3).

Basic Idea Associativity of the union operator directly follows from associativity of se-

quence concatenation.

Intersection is associative (Eqv. 2.5)

Preconditions A(e1) = A(e2) = A(e3).

Basic Idea Associativity of the intersection operator results from the transitivity of the

equality comparison.

Difference is not associative The difference operator is not even associative for sets

as the example below shows:

e1 = < [a : 1] >

e2 = < [a : 1] >

e3 = < [a : 1] >

e1 −̂ (e2 −̂ e3) = < [a : 1] >

(e1 −̂ e2) −̂ e3 = ǫ.
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Binary Grouping is not associative The binary grouping operator is not even as-

sociative for sets. Consider the expression (e1Γg1;A1θA21 ;f1e2)Γg2;A22θA3;f2e3. This ex-

pression produces tuples containing attributes A(e1) ∪ g1 ∪ g2. In contrast, expression

e1Γg1;A1θA21 ;f1(e2Γg2;A22θA3;f2e3) produces tuples containing attributesA(e1) ∪ g1.

In Section 2.2.3, we discuss algebraic equivalences for the outer join and binary grouping

that still hold.

2.2.2. Linearity

Finding the optimal plan for a query relies on the possibility to reorder the algebraic opera-

tors in an algebraic expression. Many queries contain different unary and binary operators

such as join, outer join, grouping, and selection. Thus, we have to investigate the re-

orderability of all pairs of algebraic operators to be able to exploit all possibilities. For n
algebraic operators this means that we have to formally prove reorderability of n2 pairs of

operators.

In Section 2.2.1, we have only looked at binary operators in isolation. For the general

case we still do not have to provide full proofs for all n2 combinations because we apply the

notion of linearity to our algebra over sequences [vB90, CM95a]. Based on the linearity we

can state conditions when two operators are reorderable. This results in a more extensible

and concise test.

Definition 1 (Linearity) Let f be a unary operator that consumes an input sequence s and

returns a result sequence s′. Then f : s→ s′ is called linear, iff

1. f(ǫ) = ǫ

2. f(s1 ⊕ s2) = f(s1)⊕ f(s2) where s = s1 ⊕ s2.

Intuitively, a unary operator is linear if applying the operator to subsequences and con-

catenating the results of these applications does not change the overall result.

We can generalize the notion of linearity to n-ary operators as follows. Let f be an n-ary

operator over sequences s1, s2, . . . , si, . . . , sn, then f is linear in its i-th argument iff

1. f(s1, . . . , ǫ, . . . , sn) = ǫ

2. f(s1, . . . , si1⊕si2 , . . . , sn) = f(s1, . . . , si1 , . . . , sn)⊕f(s1, . . . , si2 , . . . , sn) where

si = si1 ⊕ si2 .

Since we want to investigate how several algebraic operators interact, let us note that the

application of linear operators in a sequence is again a linear operation.

Corollary 1 Let f and g be linear operators over some sequence s = s1 ⊕ s2. Then their

concatenation f ◦ g is again a linear operation, i.e.

(f ◦ g)(s1 ⊕ s2) = (f ◦ g)(s1)⊕ (f ◦ g)(s2).

Proof: For the first condition we have:

(f ◦ g)(ǫ) = ǫ

= (f ◦ g)(ǫ)⊕ (f ◦ g)(ǫ).

Now, we show the second condition:

(f ◦ g)(s1 ⊕ s2) = f(g(s1 ⊕ s2))

= f(g(s1)⊕ g(s2))

= f(g(s1))⊕ f(g(s2))

= (f ◦ g)(s1)⊕ (f ◦ g)(s2).
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2

We will make use of Corollary 1 when we discuss the reorderability of arbitrary se-

quences of linear operators in the following section. But we also use this corollary to (dis-)

prove the linearity of operators that can be expressed in terms of other algebraic operators.

Notice that we have to show the linearity of every operator explicitly. Therefore, we

provide inductive proofs. For non-linear operators we give counter examples.

To see why we cannot simplify the proofs to the concatenation of singleton sequences,

consider an algebraic operator RM3 that removes the third tuple. Let t1, t2, t3 be tuples.

Then, operatorRM3 clearly is not linear because

RM3(< t1, t2, t3 >) = < t1, t2 > but

RM3(< t1, t2 >)⊕RM3(< t3 >) = < t1, t2, t3 >, i.e.

this operator violates the second condition of Definition 1. However, by considering only

singleton sequences, we do not detect this violation:

RM3(< t1 > ⊕ < t2 >) = < t1, t2 >

= RM3(< t1 >)⊕RM3(< t2 >).

Similar examples can be constructed to show that we cannot shortcut this test for bags

or sets either.

Therefore, we examine the linearity of every operator in NAL; Figure 2.7 summarizes

these results. To show that an algebraic operator is not linear in some argument, we present

a counter example. We prove the linearity of the operators by induction over the length of

input sequence s. In all these proofs t denotes a singleton sequence.

Notice that the base case follows directly from the first condition in Definition 1. To see

this, consider some operator f for which we have verified that f(ǫ) = ǫ. Then we can show

that f(ǫ⊕ ǫ) = f(ǫ) = f(ǫ)⊕ ǫ = f(ǫ)⊕ f(ǫ).
To avoid clutter, we will only present a simplified inductive step of each proof. We need

to verify the second condition in Definition 1 for arbitrary sequences. However, the follow-

ing corollary allows us to restrict ourselfs to the concatenation of a singleton sequence, t,
and sequence of arbitrary length, s.

Corollary 2 Let s = (s1 ⊕ s2) be an arbitrary non-empty sequence and f be a unary

operator. If f(α(s) ⊕ τ(s)) = f(α(s)) ⊕ f(τ(s)) holds then also f(s1 ⊕ s2) = f(s1) ⊕
f(s2).

Proof: We can prove this corollary by induction over the length of sequence s1. We use

that sequence concatenation is associative.

Base Case : |s1| = 1: then s1 = α(s) and s2 = τ(s) and the claim follows from the

prerequisite.

Inductive Hypothesis : f(α(s)⊕τ(s)) = f(α(s))⊕f(τ(s))⇒ f(s1⊕s2) = f(s1)⊕
f(s2) holds for |s1| > 0.

Inductive Step : (|s1| − 1)→ |s1|

f(s1)⊕ f(s2) = f(α(s1)⊕ τ(s1))⊕ f(s2)

= (f(α(s1))⊕ f(τ(s1)))⊕ f(s2)

= f(α(s1))⊕ (f(τ(s1))⊕ f(s2))
IH
= f(α(s1))⊕ (f(τ(s1)⊕ s2))

= f(s1 ⊕ s2)
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2

We continue with the proofs of the operators in NAL.

Scan Singleton Since this operator does not have any argument, linearity does not make

sense for this operator.

Selection is linear because

1. σp(ǫ) = ǫ and

2. case 1: p(t) = true, then σp(t⊕ s) = t⊕ σp(s) = σp(t)⊕ σp(s)

case 2: p(t) = false, then σp(t⊕ s) = ǫ⊕ σp(s) = σp(t)⊕ σp(s).

Tid is not linear. Consider the following counter example:

tidt(< [a : 1] > ⊕ < [a : 2] >) = < [a : 1, t : 1], [a : 2, t : 2] > but

tidt(< [a : 1] >)⊕ tidt(< [a : 2] >) = < [a : 1, t : 1], [a : 2, t : 1] > .

Tid-Duplicate Elimination is not linear. Consider the following counter example:

Πtidt(< [a : 1, t : 1], [a : 2, t : 1] >) = < [a : 2, t : 1] > but

Πtidt(< [a : 1, t : 1] >)⊕Πtidt(< [a : 2, t : 1] >) = < [a : 1, t : 1], [a : 2, t : 1] > .

Duplicate Elimination is not linear. Consider the following counter example:

ΠD
a (< [a : 1] > ⊕ < [a : 1] >) = < [a : 1] > but

ΠD
a (< [a : 1] >)⊕ΠD

a (< [a : 1] >) = < [a : 1], [a : 1] > .

Projection is linear because

1. ΠA(ǫ) = ǫ and

2. ΠA(t⊕ s) = t|A ⊕ΠA(s) = ΠA(t)⊕ΠA(s).

Map is linear because

1. χa:e2(ǫ) = ǫ and

2. χa:e2(t⊕ s) = t ◦ [a : e2(t)]⊕ χa:e2(s) = χa:e2(t)⊕ χa:e2(s).

Product is linear in its second argument Note that the first argument of the Prod-

uct, e1, must be a singleton sequence. Hence, linearity in this argument is not rele-

vant.

1. e1×ǫ = ǫ and

2. e1×(t⊕ s) = (e1 ◦ t)⊕ (e1×s) = (e1×t)⊕ (e1×s).

Cross Product is . . .

. . . linear in its first argument

1. ǫ× e2 = ǫ and

2. (t⊕ s)× e2 = (t×e2)⊕ (s× e2) = (t× e2)⊕ (s× e2).
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2. The Natix Algebra

. . . not linear in its second argument. Consider the following counter exam-

ple:

< [a : 1], [a : 2] > ×(< [b : 1] > ⊕ < [b : 2] >)

= < [a : 1, b : 1], [a : 1, b : 2], [a : 2, b : 1], [a : 2, b : 2] >

but

(< [a : 1], [a : 2] > × < [b : 1] >)⊕ (< [a : 1], [a : 2] > × < [b : 2] >)

= < [a : 1, b : 1], [a : 2, b : 1], [a : 1, b : 2], [a : 2, b : 2] > .

Join is linear in its first argument Linearity in the first argument follows from linear-

ity of σ, × and Corollary 1. Since × is not linear in its second argument, 1 cannot

be linear in its second argument either (e.g. take p = true).

D-Join is linear in its first argument because

1. ǫ <e2 >= ǫ and

2. (t⊕ s) <e2 >= (t×e2(t))⊕ (s <e2 >) = (t <e2 >)⊕ (s <e2 >).

Note that linearity of the second argument is not meaningful for the d-join because

the result of evaluating the second argument depends on the values computed in the

first argument.

Semijoin is . . .

linear in its first argument because

1. ǫ �p e2 = ǫ and

2. case 1: ∃x ∈ e2 : p(t ◦ x) then

(t⊕ s) �p e2 = t⊕ (s �p e2) = (t �p e2)⊕ (s �p e2)

case 2: ¬∃x ∈ e2 : p(t ◦ x) then

(t⊕ s) �p e2 = ǫ⊕ (s �p e2) = (t �p e2)⊕ (s �p e2).

not linear in its second argument. Consider the following counter example:

e1 = < [a : 1], [a : 1] >

e2 = < [b : 1], [b : 1] >

e1 �a=b e2 = e1 but

(e1�a=b < [b : 1] >)⊕ (e1�a=b < [b : 1] >) = < [a : 1], [a : 1], [a : 1], [a : 1] > .

Antijoin is . . .

linear in its first argument because

1. ǫ ⊲p e2 = ǫ and

2. case 1: ∃x ∈ e2 : p(t ◦ x) then

(t⊕ s) ⊲p e2 = ǫ⊕ (s ⊲p e2) = (t ⊲p e2)⊕ (s ⊲p e2)

case 2: ¬∃x ∈ e2 : p(t ◦ x) then

(t⊕ s) ⊲p e2 = t⊕ (s ⊲p e2) = (t ⊲p e2)⊕ (s ⊲p e2).

not linear in its second argument. Consider the following counter example:

e1 = < [a : 1], [a : 1] >

e2 = < [b : 2] >

e1 ⊲a=b e2 = e1 but

(e1⊲a=b < [b : 2] >)⊕ (e1⊲a=b < [b : 2] >) = < [a : 1], [a : 1], [a : 1], [a : 1] > .
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Left Outer Join is . . .

linear in its first argument because

1. ǫ�g:e
p e2 = ǫ and

2. case 1: t 1p e2 6= ǫ then linearity follows from linearity of 1

case 2: t 1p e2 = ǫ then

(t⊕ s)�g:e
p e2 = (t ◦ ⊥A(e2)\{g} ◦ [g : e])⊕ (s�g:e

p e2)

= (t�g:e
p e2)⊕ (s�g:e

p e2).

not linear in its second argument because e1 �g:e
p ǫ = ǫ holds only if e1 = ǫ.

Union is not linear

in its first argument. Consider the following counter example:

(< [a : 1] > ⊕ < [a : 2] >) ∪̂ < [a : 3] > = < [a : 1], [a : 2], [a : 3] > but

(< [a : 1] > ∪̂ < [a : 3] >)⊕
(< [a : 2] > ∪̂ < [a : 3] >) = < [a : 1], [a : 3], [a : 2], [a : 3] > .

in its second argument. Consider the following counter example:

< [a : 1] > ∪̂ (< [a : 2] > ⊕ < [a : 3] >) = < [a : 1], [a : 2], [a : 3] > but

(< [a : 1] > ∪̂ < [a : 2] >)⊕
(< [a : 1] > ∪̂ < [a : 3] >) = < [a : 1], [a : 2], [a : 1], [a : 3] > .

The counter examples show that union is not even linear for bags.

Intersection is . . .

linear in its first argument. This follows directly from the definition of the in-

tersection operator in terms of the semijoin and linearity and the semijoin in its

first argument.

not linear in its second argument. Consider the following counter example:

e1 = < [a : 1], [a : 2] >

e2 = < [a : 2], [a : 1] >

e1 ∩̂ e2 = e1 but

(e1 ∩̂ < [a : 2] >)⊕ (e1 ∩̂ < [a : 1] >) = e2.

Difference is . . .

linear in its first argument. This follows directly from the definition of the dif-

ference operator in terms of the antijoin and linearity and the antijoin in its first

argument.

not linear in its second argument. Consider the following counter example:

e1 = < [a : 1], [a : 2] >

e2 = < [a : 2], [a : 1] >

e1 −̂ e2 = ǫ but

(e1 −̂ < [a : 2] >)⊕ (e1 −̂ < [a : 1] >) = e1.

Unnest is linear because
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2. The Natix Algebra

1. µA:g(ǫ) = ǫ and

2. µA:g(t⊕ s) = (t× (t.g)|A:A(g))⊕ µA:g(s) = µA:g(t)⊕ µA:g(s).

Unnest Map is linear by linearity of µ and χ and Corollary 1.

Binary Grouping is . . .

. . . linear in its first argument because

1. ǫ Γg;A1θA2;fe2 = ǫ and

(t⊕ s)Γg;A1θA2;fe2 = (t ◦ [g : G(t)]) ⊕ (s Γg;A1θA2;fe2)

= (t Γg;A1θA2;fe2)⊕ (s Γg;A1θA2;fe2).

. . . not linear in its second argument. Consider the following counter exam-

ple:

< [a : 1] > Γg;a=b;count(< [b : 1] > ⊕ < [b : 1] >) = < [a : 1, g : 2] > but

(< [a : 1] > Γg;a=b;count < [b : 1] >)⊕
(< [a : 1] > Γg;a=b;count < [b : 1] >) = < [a : 1, g : 1], [a : 1, g : 1] > .

Unary Grouping is not linear. Consider the following counter example:

Γg;=a;count(< [a : 1] > ⊕ < [a : 1] >) = < [a : 1, g : 2] > but

(Γg;=a;count(< [a : 1] >))⊕ (Γg;=a;count(< [a : 1] >)) = < [a : 1, g : 1], [a : 1, g : 1] > .

In Figure 2.7, we summarize the results of our discussion on the linearity of operators

in NAL. Many operators are linear. In particular, all join operators are linear in their first

argument. Linearity of these operators allows us to discuss reordering algebraic operators

in a more general fashion. However, neither the Cross product nor the the Join is linear in

its second argument.

2.2.3. Reorderability

Now we will exploit linearity to decide if two algebraic operators can be reordered. The

following definition states the conditions that must hold for two operators to be reorderable.

Definition 2 (Reorderability) Let f and g be unary operators that map sequence r (s)

to sequence r′ (s′), i.e. f : r → r′ and g : s → s′, s an arbitrary sequence, and t1, t2
arbitrary singleton sequences. If for f and g the two conditions

1. f and g are linear, and

2. f(g(s)) = g(f(s))⇔ f(g(t1 ⊕ t2)) = g(f(t1))⊕ g(f(t2)).

hold then f and g are reorderable.

The second condition in Definition 2 assures that the operators do not interfere in their

producer-consumer relationship. Notice that algebraic expressions in XPath or XQuery

might depend on the order of tuples in a sequence. Thus, now in contrast to data models

based on sets or bags the order of the resulting sequence matters.

The second condition also states that we can simplify the test of reorderability to sin-

gleton sequences. This is valid because we can construct a sequence of arbitrary length

by concatenating it from singleton sequences. In addition, we have shown in Section 2.2.2

the linearity of the involved operators for sequences of arbitrary length, and reordering

them does not invalidate this property. We now prove the second condition of Definition 2

inductively.

Proof:
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2.2. Algebraic Equivalences

Operator first argument (e1) second argument (e2)

Scan Singleton - -

Selection
√

-

Tid x -

Projection
√

-

Tid-Duplicate Elimination x -

Map
√

-

Product -
√

Cross Product
√

x

Join
√

x

D-Join
√

x

Semijoin
√

x

Antijoin
√

x

Left Outer Join
√

x

Union x x

Intersection
√

x

Difference
√

x

Unnest
√

-

Unnest Map
√

-

Binary Grouping
√

x

Unary Grouping x -√
: is linear; x: is not linear; -: is not applicable

Figure 2.7.: Linearity of operators in NAL

“⇒”: This direction is trivially true. We simply define s = t1 ⊕ t2 and use that f and g
are linear.

“⇐”: Let s be a sequence and ti tuples (singleton sequences resp.).

Base Case We have to consider the empty sequence and the singleton sequence. (1) The

case of the empty sequence, i.e. s = ǫ, reduces to the first case in Definition 1. (2)

The case of the singleton sequence, i.e. s = t1, follows directly from the prerequi-

sites, i.e. f(g(s)) = f(g(t1 ⊕ ǫ)) = g(f(t1))⊕ ǫ = g(f(s)).

Inductive Hypothesis f(g(s)) = g(f(s))⇔ f(g(t1 ⊕ t2)) = g(f(t1))⊕ g(f(t2)) for

|s| > 0.

Inductive Step s→ t2 ⊕ s.

Since we have a non-empty sequence, we have a sequence t2 ⊕ s.

f(g(t1 ⊕ (t2 ⊕ s)))

= f(g(t1 ⊕ (t2 ⊕ s)))

= f(g((t1 ⊕ t2)⊕ s))

= f(g(t1 ⊕ t2))⊕ f(g(s))
PR
= (g(f(t1))⊕ g(f(t2))) ⊕ f(g(s))
IH
= (g(f(t1))⊕ g(f(t2))) ⊕ g(f(s))

= g(f(t1))⊕ (g(f(t2))⊕ g(f(s)))

= g(f(t1))⊕ g(f(t2 ⊕ s))

= g(f(t1))⊕ g(f(t2 ⊕ s))

= g(f(t1 ⊕ (t2 ⊕ s)))
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2. The Natix Algebra

σp1(σp2 (e1)) = σp2(σp1 (e1)) (2.6)

σp1 (e1 × e2) = σp1(e1)× e2 (2.7)

σp1 (e1 1p e2) = σp1(e1) 1p e2 (2.8)

σp1(e1 �p e2) = σp1(e1) �p e2 (2.9)

σp1(e1 ⊲p e2) = σp1(e1) ⊲p e2 (2.10)

σp1(e1 �g:e
p e2) = σp1(e1)�g:e

p e2 (2.11)

σp(e1Γg;A1θA2;fe2) = (σp(e1))Γg;A1θA2;fe2 (2.12)

Figure 2.8.: Reorderability of operators in NAL (examples)

In the step marked with PR, we exploit the prerequisite that we can reorder f and g
on singleton sequences. The remaining steps either rely on the linearity of f and g
or on the associativity of ⊕.

2

Definition 2 directly extends to n-ary operators. As a result, a linear operator can be

pushed into or pulled out of the i-th argument of an n-ary operator if this operator is linear

in its i-th argument and the second condition mentioned in Definition 2 holds.

Definition 2 simplifies matters because checking the conditions on the involved operators

is much easier to do than enumerating all valid combination of reorderable operators. In

many cases, it suffices to test syntactic conditions, when reordering operators is allowed.

However, in the data model of XQuery, we often have to enumerate additional conditions

that must hold in order to preserve the result order. As a very simple example, consider:

χf (e1 × e2) = χf (e1)× e2.

The first condition of Definition 2 holds because the map operator is linear and the cross

product is linear in its left argument. Next, we notice that the equivalence is only correct if

f only refers to attributes bound by e1, i.e. F(f) ⊂ A(e1). Finally, we need to make sure

that the result of function f in the subscript of the map operator does not depend on the

position in the input sequence. Thus, we need to keep this information for each function to

check the applicability of the equivalence.

Summarizing, we need to check both syntactic and semantic conditions when we want to

reorder algebraic operators. Nevertheless, these conditions can usually be tested statically,

i.e. without looking at any data.

In Figure 2.8, we summarize algebraic equivalences implied by the Definition. We focus

on reordering the selection operator. But of course other linear operators can be reordered

in the same fashion. The validity of these equivalences follows from the fact that linear

operators are reordered and some simple conditions hold. For example, we need to check

the syntactical correctness of the algebraic expressions on both sides of the equivalence, i.e.

for Eqv. 2.6 we require that all attributes of p1 are bound by expression e1, i.e. F(p1) ⊂
A(e1). In addition, we sometimes require that predicates or functions do not depend on

the position in the input sequence. Hence, the validity check is much more general and

extensible than enumerating all of the above equivalences. In Appendix A.1, we formally

prove these equivalences and point out the necessity for checking semantic conditions.

We continue with algebraic equivalences that hold for algebraic operators which are

not linear. Figure 2.9 contains several equivalences we prove here. The proofs of the

equivalences discussed below can be found in Appendix A.1

Equivalence 2.13.
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Preconditions None.

Basic Idea Since the union operator is not linear in any of its arguments, we need to be

more careful when pushing predicates beneath the union operator. In particular, we

need to push the selection into both arguments of the union operator.

Equivalence 2.14.

Preconditions F(p2) ⊂ A(e2)

Basic Idea While the Cross Product is not linear in its right argument, we can still push

a selection into and out of its right argument. This important property is exploited by

many algebraic query optimizers.

Equivalence 2.15.

Preconditions F(p2) ⊂ A(e2)

Basic Idea As a trivial but notable consequence of Eqv. 2.14, we can push selections into

the right argument of the join.

Equivalence 2.16.

Preconditions B ⊂ A

Basic Idea We can remove adjacent projections and only keep the last, most restrictive

one.

Equivalence 2.17.

Preconditions None.

Basic Idea After turning the unnest map operator into a d-join, we might subsequently

be able to apply Eqv. 2.18.

Equivalence 2.18.

Preconditions e1 and e2 can be evaluated independently

Basic Idea After turning the d-join operator into a join, we can benefit from the associa-

tivity and linearity of the join. More efficient implementations are usually available

for the join.

Binary Grouping

Some algebraic properties for binary grouping for algebras over sets were presented in [CM93,

Ste95, ACJK01]. Here, we present algebraic equivalences that hold for our algebra over

sequences of tuples.

Equivalence 2.19.

Preconditions Ai ⊂ ei

Basic Idea For parallel processing, Equivalence 2.19 can be used to partition the group-

ing input, process the partitions independently, and union the result of grouping them.

If we choose the partitions of the grouping input small enough to fit in main memory,

we can evaluate the binary grouping operator for each partition in main-memory.
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σp(e1 ∪̂ e2) = σp(e1) ∪̂ σp(e2) (2.13)

σp2(e1 × e2) = e1 × σp2(e2) (2.14)

σp2(e1 1p e2) = e1 1p σp2(e2) (2.15)

ΠA(ΠB(e1)) = ΠA(e1) (2.16)

ΥA(e2):e2
(e1) = e1 <e2 > (2.17)

e1 <e2 > = e1 × e2 (2.18)

e1Γg;A1θA2;fe2 = ∪̂ i(e1iΓg;A1θA2;fe2) (2.19)

(e1Γg1;A1θ1A2;f1e2)Γg2;A1θ2A3;f2e3 = (e1Γg2;A1θ2A3;f2e3)Γg1;A1θ1A2;f1e2(2.20)

e1Γg;A1=A2;fe2 = ΠA2
(e1 �g:f(ǫ)

A1=A2
(Γg;=A2;f (e2))) (2.21)

Figure 2.9.: Algebraic equivalences for NAL

Equivalence 2.20.

Preconditions F(fi) ⊂ A(e1)∪A(ei+1), A1i ⊂ A(e1), and Aj ⊂ A(ej), g1 6∈ A(e1)∪
A(e2), g2 6∈ A(e1) ∪ A(e3)

Basic Idea This equivalence allows us to reorder the evaluation of adjacent binary group-

ing operators. It can be applied beneficially from left to right when the grouped val-

ues of e2 consume a lot of memory. By reordering both grouping operations we can

delay this resource consumption.

Equivalence 2.21.

Preconditions Ai ⊆ A(ei), A1 ∩A2 = ∅, and g 6∈ A(e1) ∪ A(e2).

Basic Idea As we will see in Chapter 4, binary grouping is applicable in a more general

context. Since this operator is not widely used yet, it can be replaced by a sequence

of unary grouping and outer join. Note however, that the predicate in the binary

grouping operator is restricted to an equality predicate.

Outer Joins and Antijoins

Galindo-Legaria et al. [RGL90, GLR97] were the first to investigate algebraic equivalences

that are valid or invalid for outer joins in an algebra over sets. Rao et al. [RLL+01] extended

their results by integrating reorderability of joins, antijoins, and outer joins. In Figure 2.10

we repeat several of their results. Here, we restrict ourselfs to the left outer join. More

equivalences exist when the right and full outer join is also included. Rao et al. [RLL+01]

present a conflict matrix which summarizes the operators that cannot be reordered. From

this matrix, we can derive invalid reorderings (see Figure 2.10). We also summarize the

remaining valid equivalences including left outer joins and antijoins. Some of them require

additional conditions to hold [GLR97].

We now discuss the valid equivalences for antijoins and outer joins.

Equivalence 2.27.

Preconditions Ai ⊆ A(ei), Ai pairwise disjunct

Basic Idea A join operator can be pushed into or out of the left argument of an outer join.
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2.2. Algebraic Equivalences

Conflict Matrix:

Join left argument right argument� {⊲(2.25)} {1 (2.22), ⊲(2.23)}
⊲ {�(2.25), ⊲(2.26)} {�(2.23), ⊲(2.26), 1 (2.24)}
1 {�(2.22), ⊲(2.24)} {}

Invalid reorderings:

e1 �A1θ1A21
(e2 1A22θ2A3 e3) 6= (e1 �A1θ1A21

e2) 1A22θ2A3 e3 (2.22)

e1 �A1θ1A21
(e2 ⊲A22θ2A3 e3) 6= (e1 �A1θ1A21

e2) ⊲A22θ2A3 e3 (2.23)

e1 ⊲A1θ1A21
(e2 1A22θ2A3 e3) 6= (e1 ⊲A1θ1A21

e2) 1A22θ2A3 e3 (2.24)

e1 ⊲A1θ1A21
(e2 �A22θ2A3 e3) 6= (e1 ⊲A1θ1A21

e2)�A22θ2A3 e3 (2.25)

e1 ⊲A1θ1A21
(e2 ⊲A22θ2A3 e3) 6= (e1 ⊲A1θ1A21

e2) ⊲A22θ2A3 e3 (2.26)

Valid reorderings:

(e1 1A1θ1A21
e2)�A22θ2A3 e3 = e1 1A1θ1A21

(e2 �A22θ2A3 e3) (2.27)

(e1 �A1θ1A21
e2)�A22θ2A3 e3 = e1 �A1θ1A21

(e2 �A22θ2A3 e3) (2.28)

(e1 1A1θ1A21
e2) ⊲A22θ2A3 e3 = e1 1A1θ1A21

(e2 ⊲A22θ2A3 e3) (2.29)

e1 �A1θA2∧p1 e2 = e1 �A1θA2 (σp1(e2)) (2.30)

σp1(e1 �A1θA2 e2) = σp1 (e1 1A1θA2 e2) (2.31)

Figure 2.10.: Reorderability of antijoin and outer join

Equivalence 2.28.

Preconditions Ai ⊆ A(ei), Ai pairwise disjunct, A2θA3 rejects NULL values on e2

Basic Idea Outer joins can be reordered, if their tuple preserving sides point into the

same direction. Specifically for left outer joins, they can be reordered, if the right

outer join rejects NULL values on its left argument. This property is also called

Null-intolerant [RLL+01] or strong.

Equivalence 2.29.

Preconditions Ai ⊆ A(ei), Ai pairwise disjunct,

Basic Idea Joins can be pushed into and out of the left argument of an antijoin.

Equivalence 2.30

Preconditions F(p) ⊆ A(e2)

Basic Idea A conjunct in the predicate of the outer join can be pushed into the outer join’s

right argument. Note that this is not the same as pushing a selection into the right

argument. Note also that it is possible to push selections into the left argument of the

outer join because the left outer join is linear in its left argument (see Eqv. 2.11).

Equivalence 2.31

Preconditions p1 rejects NULL values on e2

29



2. The Natix Algebra

Basic Idea This is an important rewrite to simplify algebraic expressions containing

outer joins. In [GLR97] this equivalence and a similar equivalence for two-sided

outer joins is used to turn outer into single-sided outer joins or joins. This is bene-

ficial because the join can be evaluated more efficiently, and more algebraic equiva-

lences hold for the join than for the outer join.

2.2.4. Summary

In this section we have thoroughly investigated the algebraic properties of NAL, our logical

algebra. Based on the notion of linearity, we have detected general rules that allow us to

reorder operators in our algebra. Not surprisingly, it turned out that certain algebraic equiv-

alences that hold for bags or sets are not valid any more for our algebra over sequences.

Most importantly, cross products and joins are not commutative.

In our opinion, this severely constrains the search space considered by the plan generator.

In Chapter 5, we discuss a number of experiments in which we have observed huge perfor-

mance gains when we disregarded the order of sequences for join processing and establish

the correct order after computing joins. Moreover, in many cases one can safely disregard

the order of sequences, e.g. in arguments to aggregate functions. In these cases, optimiza-

tions known from the relational context can be applied. Hence, a complete derivation mech-

anism is needed that computes when order is not relevant any more [FHM+04, GRT07].

2.3. The Natix Physical Algebra

When we discuss optimizations on algebraic expressions of the logical algebra, we need to

measure the effectiveness of alternative algebraic expressions. Thus, we need to associate

algorithms with every operator in an algebraic expression. The set of all those algorithms

that implement the algebraic operators in NAL represent the Natix Physical Algebra (NPA).

We consider an optimization effective if the query evaluation plan (QEP) where our opti-

mizations are applied evaluates faster than the one without our optimizations. For example,

unnesting nested queries often increases the number of implementations that are available

to the plan generator. Hence, it is important to supply the plan generator with efficient

implementation alternatives for the operators in NAL to make unnesting really beneficial.

In this section we discuss all non-trivial implementations for operators in the NPA. For

the remaining operators, we simply assume a direct mapping of the operator definition

presented in Section 2.1 into code. The set of operators in the NPA is sufficient to efficiently

evaluate every query we discuss in this thesis.

As a basis for our description, we need to arrange for some notation which helps us to

decide which conditions must hold to apply an algorithm. Then we discuss the operator

implementations in the same order as we did in Section 2.1 for the logical operators.

2.3.1. Architecture and Notation

Our physical algebra works on sequences of tuples. Each tuple contains a set of variable

bindings representing the attributes of the tuple. Some physical operators extend these

bindings by appending attribute-value pairs to a tuple.

In Natix we have extended the conventional iterator interface [Wes00]. In the conven-

tional architecture [Gra93], the open and close routines perform initialization and deini-

tialization. To avoid this effort in some cases, we split each routine into three parts which

do only parts of the work, e.g. allocation of memory, intialization of data structures, prepa-

ration of the first result tuple.

Tuples are passed from the argument operator to its consumer in a pipelined fashion.

This means, we copy tuples only when it cannot be avoided. Many operators preserve the

order of tuples they consume while producing their result. We only need to be careful when
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n ↓ m m is child of n
n ⇓ m m is descendent of n
n ↑ m m is parent of n
n ⇑ m m is ancestor of n
n→ m m is right sibling of n
n⇒ m m follows n
n← m m is left sibling of n
n⇐ m m precedes n
n ·m m and n are the same node

Figure 2.11.: Notation for structural relationships

operators break the pipelined execution (pipeline breakers) and copy data into internal data

structures, e.g. a hash table, and potentially return their input in a different order. In this

section, we will investigate these issues in detail.

The set of supported operators we cover here comprises the common algorithms used to

execute XQuery queries [BKHM05, PCS+05, RSF06].

Notation for Structural Relationships. To test structural relationships between XML

nodes, we arrange for the notations in Figure 2.11. We also use these abbreviations to de-

note XPath axis steps. Then n is the context node, and m is a node reachable along the

desired axis.

Properties of Predicates. To find the most efficient implementation for binary match-

ing operators, we need to examine the properties of predicates. Therefore, we distinguish

symmetric, irreflexive predicates ( 6=) from antisymmetric, transitive predicates (<,≤, >
,≥) and equivalence relations (i.e. reflexive, symmetric, transitive).

Properties of Aggregate Functions. Aggregate functions can be decomposable and

reversible [CM95c]. These properties help us to find the most efficient implementation for

binary grouping. We now recall their definitions.

The definitions are given in terms of sequences, but extensions to sets and bags are

straightforward. Only the definitions of disjoint set union and the empty set need to be

adjusted to the bulk type as follows:

bulk type ∅ .∪
set empty set disjoint set union

bag empty bag bag union

sequence empty sequence append sequence

Definition 3 (Decomposable Aggregate Function) LetN be the codomain of a scalar ag-

gregate function f : S → N over some sequence S of tuples. We say f : S → N is

decomposable if there exist functions

aggI : S → N ′

aggO : N ′,N ′ → N ′

aggF : N ′ → N

with

f(X) = aggF (aggO(aggI(Y ), aggI(Z)))

for all non-empty sequences X , Y , and Z with X = Y
.∪ Z and Y ∩̂ Z = ǫ.
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f(X) = aggF (aggO(aggI(Y ), aggI(Z)))

count(X) = id(fn : sum(fn : count(Y ), fn : count(Z)))

sum(X) = id(fn : sum(fn : sum(Y ), fn : sum(Z)))

avg(X) = div2(fn : sum(fn : sum(Y ), fn : sum(Z)),

fn : sum(fn : count(Y ), fn : count(Z)))

min(X) = id(min2(fn : min(Y ), fn : min(Z))

max(X) = id(max2(fn : max(Y ), fn : max(Z)))

Figure 2.12.: Examples of decomposable aggregate functions

Decomposable aggregate functions allow us to aggregate on subsequences of the whole

data and combine the results of these computations to the aggregate over the whole data.

Fortunately, many aggregate functions are decomposable. In Figure 2.12 we summarize

how we can compute their value. In this figure, we use a prefix notation for addition or

division to ease the transition from the abstract notation to the concrete aggregate function.

The most difficult aggregate function is fn:avg where we have to both fn:sum and

fn:count the values that belong to each sub sequence Y and Z . Both computations are

combined by adding their results — this corresponds to function aggO. To get the average

for all values, we have to divide the sum and the count. For all aggregate functions but the

average, we do not need function aggF . In these cases we use the identity function id to

denote that no function needs to be applied. We need to be careful with empty sequences.

In these cases we use functions with suffix 2. But we defer this special case until the end

of this section.

We now define reversible aggregate functions that allow us to compute aggregates more

efficiently.

Definition 4 (Reversible Aggregate Function) A decomposable scalar function f : S →
N over some sequence S is called reversible if for aggO there exists a function (aggO)−1 :
N ′,N ′ → N ′ with

f(Z) = aggF ((aggO)−1(aggI(X), aggI(Y )))

for all non-empty sequences X , Y , and Z with X = Y
.∪ Z and Y ∩̂ Z = ∅.

Reversible scalar aggregates allow us to compute the value of an aggregate function

over some subsequence by computing the aggregate function over the sequence. Using

this result, we can use the inverse function (aggO)−1 to compute the desired value for the

subsequence.

In Figure 2.13 we show that fn:sum, fn:count, and fn:avg are reversible. The

aggregate functions fn:min and fn:max are not reversible. To see this, consider

Y = ([a : 1], [a : 2])

Z = ([a : 3], [a : 4]).

We have fn : min(Y ) = 1, fn : min(X) = fn : min(Y ∪̂ Z) = 1. Given these

information, it is not possible to derive fn : min(Z).

Empty Sequences. For some of these aggregate functions, we have to be careful with

empty sequences. The functions fn:min and fn:max return an empty sequence when

applied to an empty sequence. When we want to combine the result of computing the

minimum or maximum of two sequences, we need to ignore this empty sequence. Hence,

we define the function max2 (and min2 analogous) as:
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f(Z) = aggF ((aggO)−1(aggI(X), aggI(Y )))

count(Z) = id(−(fn : count(X), fn : count(Y )))

sum(Z) = id(−(fn : sum(X), fn : sum(Y )))

avg(Z) = div2(−(fn : sum(X), fn : sum(Y )),−(fn : count(X), fn : count(Y )))

Figure 2.13.: Examples of reversible aggregate functions

declare function max2($arg1 as xs:anyAtomicType?,

$arg2 as xs:anyAtomicType?) as anyAtomicType?

{
if (fn :empty($arg1))

then $arg2

else if (fn :empty($arg2))

then $arg1

else fn :max($arg1,$arg2)

};

The functions fn:count and fn:sum with one argument return the integer constant 0
when applied to empty sequences. Hence, we do not need special treatment there. Finally,

function fn:avg returns the empty sequence for empty input. Thus, we use function

div2 to handle this case:

declare function div2($arg1 as xs:anyAtomicType,

$arg2 as xs:anyAtomicType) as anyAtomicType?

{
if ($arg2 eq 0.0)

then ()

else ($arg1 div $arg2)

};

All these problems are not unique to XQuery. For example in SQL, we have to take care

of NULL values and different semantics of the function COUNT.

Partitioning. When we rely on decomposable or reversible aggregate functions we will

usually partition the input by some grouping attribute. Thus, different groups might contain

the same value to aggregate. However, for decomposable aggregate functions this does not

cause any problems because all these aggregate functions are not sensitive to order. Hence,

it does not matter in which order we combine the partial results. For decomposable aggre-

gate function we note that (aggO)−1 must be the reverse function of aggO. Since these

functions exist for adding, subtracting, and counting but not for minimum or maximum the

last two are not reversible.

2.3.2. Operator Implementations

Standard implementation techniques for some algebraic operators [Gra93] do not preserve

order. In this section we survey the algorithms available in the NPA and comment on their

properties concerning sequences.

Simple Operators

Several operators’ definitions can be mapped trivially to an implementation. The first

among them is the SINGLETONSCAN which returns a singleton sequence consisting of

the empty tuple.
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Similarly, the MAP operator χa:e2(e1) is implemented by evaluating its subscript e2 for

each tuple in e1. The result of this evaluation is bound to variable a.

Sorting is a physical operator implementation for which there exists no counterpart in the

logical algebra exists. We employ sorting to establish a user-defined order of the result or

to establish the correct order after application of an operator that destroys the required or-

der [MHKM04]. We support sorting in a list of attributes (denoted with SORTa). Available

sorting algorithms include Quicksort and Heapsort in main memory and external sorting

based on replacement selection. We support stable sorting with these algorithms by intro-

ducing a tid which is appended at the end of the list of sort attributes.

Join Operators

Let us comment on the implementations of join operators. We do not discuss details of

the join implementations. Instead, we summarize the preconditions that must hold to ap-

ply a join implementation and whether the join changes the order of its input. We refer

to [DKO+84, ME92, Gra93, HCLS97] for surveys on implementing joins.

Figure 2.14 summarizes the join algorithms we used to implement the query evaluation

plans. In this table we give the assumptions that must hold on the input of the join and on

the predicates. The MERGEJOIN is the only algorithm that requires its input to be sorted on

the join attributes. In most cases in XQuery this join cannot exploit document order of its

input. Even worse, it requires sorting before and after its application. This severely limits

the utility of this algorithm.

Several algorithms require the predicate to be an equivalence relation. In practice this

usually means that the predicate must be an equality predicate. In particular the hash-based

and sort-based algorithms require such a join predicate.

The right-hand side of the table shows to which extent order is preserved by our join

implementations. In general, the nested-loop-based algorithms as well as the MERGEJOIN

preserve the order of their left input. Furthermore, the predicate might induce functional

dependencies and, hence, sorting of the right input might be preserved as minor order.

For both the HASHSEMIJOIN and HASHANTIJOIN, the order of their left input is pre-

served because this input is only filtered by a lookup in a hash table into which the right

input is loaded. As the right input of either algorithm does not belong to the output, order-

preservation of the right input is neither relevant nor meaningful.

The remaining hash-based join algorithms do not not preserve order of either input.

Hence, we have no efficient join implementation available to implement equijoins. For-

tunately, [CKK98] provide an efficient implementation for an order-preserving hash join.

Further performance enhancements can be expected when using the order-preserving hash

join. Until then, we employ nested-loop-based algorithms or resort to the techniques de-

scribed in [MHKM04] and repair order.

Set Operators

Union as defined in Section 2.1 can is implemented as simple concatenation of two se-

quences of tuples. Of course, we have to remove duplicates from both inputs when we

compute the union of two sequences of nodes in an XPath expression. In this case, a

merge-based union operator should be used that merges its two arguments based on their

input order. Currently, we have not implemented this operator but use a sort-based duplicate

elimination operator after the sorting the unioned sequences by document order.

We implement union and difference as defined in Section 2.1 in terms of semijoin and

antijoin. Fortunately, we do note take care of duplicates for those operations on node

sequences when the first sequence is in document order and duplicate free.
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Algorithm Assumptions Preserves Order

Name e1 e2 A1θA2 e1 e2

DEPENDENTNLJOIN - - -
√

(
√

)

NLJOIN - - -
√

(
√

)

SIMPLEHASHJOIN - - E - -

GRACEHASHJOIN - - E - -

MERGEJOIN S S E
√

(
√

)

θ-SEMIJOIN - - - - -

θ-ANTIJOIN - - - - -

HASHSEMIJOIN - - E
√

-

HASHANTIJOIN - - E
√

-

NLLEFTOUTERJOIN - - -
√

(
√

)

HASHLEFTOUTERJOIN - - E - -

S sorted E equivalence relation

Figure 2.14.: Implementations for join operators e1 1A1θA2 e2

Grouping and Duplicate Elimination Operators

Unary Grouping and Duplicate Elimination. We support both a hash-based and a

sort-based version of the unary grouping operator. Duplicate elimination is implemented

as a special case of either algorithm. The hash-based grouping operator aggregates the

values of each group in a main-memory hash table and does not preserve insertion order.

The implementation of the sort-based grouping operator is straight forward [Gra93]. For

grouping or duplicate elimination on very large data sets, we prefer the sort-based imple-

mentations. In future, we may also support materializing hash-based implementations as

described in [BD83, HNM02].

Binary Grouping. In Chapter 4 we will examine the value of the binary grouping op-

erator for unnesting nested queries. Here, we survey implementations of this operator

which can efficiently evaluate the algebraic pattern χg:f(σA1θA2
(e2))(e1) [ACJK01, CM95c,

MM05a, MM05b].

In the context of XQuery, we have investigated the implementations summarized in Fig-

ure 2.15 (see [MM05b] for details). The left part of the table contains the algorithms with

their simplified time and space complexity. In these complexity formulas we denote with

n = max(|e1|, |e2|).
The right part of the table surveys the assumptions for each algorithm. Thus, it can be

used as a guide to the most efficient implementation. The assumptions are related to the

inputs e1 and e2, the predicate A1θA2, and the function f in the binary grouping operator

e1Γg;A1θA2;fe2 defined in Section 2.1. The last column indicates the ratio of improvement

in execution time over the direct nested evaluation of the nested query using NESTEDSORT.

For some algorithms ranges for ∆ are given. Values of ∆ > 1.0 indicate an improvement

by a factor ∆. Obviously, algorithms with more assumptions evaluate up to three orders

of magnitude faster than the nested-loops-based algorithms with fewer assumptions. The

algorithms at the bottom of the table perform in linear time, compared to quadratic time

in the general case of nested evaluation. In general, algorithms that require sorted input

demand constant space, while hash-based algorithms use linear space in the size of the

grouping input.

To be able to evaluate XQuery queries, we have extended these implementations to sup-

port sequences [MM05b]. Basically, we keep duplicates when detecting groups and use a

helper data structure to record the order of insertion into the hash table.
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Algorithm Assumptions

Name Time Space e1 e2 A1θA2 f ∆

NESTED O(n2) O(n) - - - - 0.95-1.2

NLBINGROUP O(n2) O(n) - - - - 0.65-0.75

HASHBINGROUP O(n lg n) O(n) - - ¬SY, T D 1300

TREEBINGROUP O(n lg n) O(n) - - ¬SY, T D 1300

EQBINGROUP O(n) O(n) - - SY RE 1850

NESTEDSORT O(n2) O(1) S - - - 1.0

SORTBINGROUP O(n2) O(1) S - - - 1.1-1.2

LTSORTBINGROUP O(n) O(1) S S ¬SY, T - 2100

S sorted SY symmetric

T transitive

D decomposable

RE reversible

Figure 2.15.: Assumptions and complexity for the implementations of the binary grouping

operator

XPath Evaluation Operators

Navigating Implementations. The definition of the unnest map operator in Section 2.1

suggests that the result of evaluating the subscript is temporarily materialized before it is

returned as a result. Our implementation of the UNNESTMAP is more efficient because it

evaluates the subscript in a lazy fashion and immediately returns a result tuple computed in

the subscript. The UNNESTMAP operator is mostly used to evaluate XPath location steps.

Thus, the subscript e2 contains the location step c/a :: n resulting in Υcn:c/a::n(e1). Given

a context node stored in variable c of a tuple t ∈ e1, it evaluates axis a and applies node test

n to the remaining candidate nodes. Each result node is bound to variable cn in the result

tuple. During the evaluation of a location step the operator navigates through the document

that potentially contains result nodes. This traversal is done for every context node. Note

that the result nodes for each context node are generated in document order.

Index-Aware Operators. For efficient XPath evaluation [SAKJ+02] proposed the STRUC-

TURALJOIN (e1 1
ST−J
p e2). It joins one sequence of tuples of context nodes, e1, with a

sequence of candidate nodes, e2. Both sequences must be sorted in document order. Pred-

icate p tests the axis step relation that must hold between nodes of the two sequences as

summarized in Figure 2.11. We perform these tests on ORDPATH IDs [OOP+04] which

we use as logical node identifiers. We do not use any implementation of the Holistic Twig

Join [BKS02] because we optimize XPath expressions on a fine-grained level.

Index Operators

We employ the INDEXSCAN (Idxn;A;p;rp) to access data stored in a B-link tree named n.

A is a set of attribute bindings established by the scan. It must be a subset of the attributes

defined in the schema of the index. Predicate p optionally tests the upper and lower bound

for the range scan over all leaf pages of the index. The residual predicate rp is an optional

predicate applied to each tuple before it is passed to the consumer operator. We use the

INDEXSCAN to retrieve logical XML node identifiers to be used by the STRUCTURALJOIN.

The index we use in Natix is an implementation of a B+-tree with sibling links based on

the algorithms proposed by Jaluta et. al [JSSS05, B0̈5]. This B-link index allows storing

keys of variable size and performs online rebalancing and deallocation operations in case

of underutilized nodes. These operations are especially beneficial as the index performance

does not deteriorate due to document updates, and explicit garbage collection operations
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become obsolete. We employ this index to support the evaluation of location steps in path

expressions. Thus, another useful feature for processing ORDPATH IDs includes key-range

scans exploiting the sibling links and high concurrency by restricting the number of latches

to a minimum.

2.4. Related Work

Logical Algebra

Unfortunately, there is no standard logical algebra for XQuery or XPath yet as it is available

to query relational databases. So far, three main camps have emerged:

Extensions to Relational Algebras. The first camp leverages the power and expe-

riences of optimizing OQL and SQL by extending the logical algebras used for these lan-

guages. Relational algebras are based on sets [Mai83]. For SQL, this algebra was extended

to support bag semantics [DGK82, Alb91]. Further extensions were needed to support

OQL [CM93, SABdB94], e.g. relation-valued attributes [RKS88]. Because the XQuery

data model is based on sequences of items, algebras for XQuery need to handle both du-

plicates and order. Algebras proposed for order- and duplicate-aware data models [SJS02,

LS03] and specifically for XQuery include [BT99, FHP02, VGD+02, MHM03a, GT04].

They all have in common that (1) they extend the relational algebra with new operators

needed to translate XQuery and (2) treat order and duplicates of the data.

Among the proposed algebras only [SJS02, FHP02, VGD+02, LS03] list algebraic equiv-

alences valid for their algebras. However, all of them omit rigorous correctness proofs. To

the best of our knowledge, this is the first extensive treatment of algebras over sequences.

Tree Algebras. The second camp represents queries as pattern trees [JLST02]. XPath

expressions are translated into a pattern tree. Computing the result of a XPath expression

corresponds to finding all embeddings of the tree pattern in the XML tree instance.

The use of tree algebras is motivated by the fact that one can formally reason about

trees [Suc01]. Theoretical results on tree patterns include e.g. satisfiability of path queries [Hid03],

query containment [MS02, Sch04], or tree pattern minimization [ZO02, AYCLS01]. A

particularly interesting result is that query containment is coNP complete once either two

features //, [], ∗ are combined with the child axis [MS02]. For more restricted cases query

containment is in P . As query containment is an important test for applicability of views

to answer a query, these results affect our translation procedure discussed in Chapter 3.

On the other hand, tree algebras seem to lack the expressiveness needed to represent any

query formulated in XQuery. Most tree algebras are restricted to a subset of axis steps

and have difficulty in expressing advanced XQuery constructs such as node construction or

type-based constructs.

Calculus Representations. The third camp translates the XQuery query into a repre-

sentation close to the query language level. This includes representations as query graph [JK84,

HFLP89] or in comprehension calculus [FM95, FM00]. Both the query graph model [SKS+01,

FKS+02, OCP+05] and the comprehension calculus [FLBC02] required extensions to sup-

port XQuery. The advantage of a calculus representation is that it is more declarative than

an algebra expression. As a consequence, optimizations such as unnesting rewrites are

easier to implement because pattern matching needs to consider fewer cases. On the other

hand, another translation step is needed because a query evaluation plan is usually ex-

pressed as an algebraic expression.
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Other Approaches. In the literature on XQuery optimization the distinction between

logical and physical algebra is often blurred [BKHM05, RSF06]. The reason is that heuris-

tics are used to directly derive an efficient QEP from the query. In this work we prefer to

clearly separate logical and physical algebra, as it is done e.g. in [JAKC+02, FHK+04,

LKA05, BGvK+06]. While several optimizations are valid and useful on the logical alge-

bra, e.g. simplification of algebraic expressions or normalization, our final goal is to find a

cost-efficient query evaluation plan based on costs. This requires to associate costs to each

primitive of QEP and to compute cardinalities for the input to each algebraic operator. Up

to now this information is only available for a subset of these primitives.

Physical Algebra

The architecture of our physical algebra is based on iterators [Gra93, Wes00]. Operators

treat their input as a sequence of tuples and, hence, preserve the order of their input tuples

in many cases. However, some operators alter the order of their input. In this section we

have examined this problem for joins, grouping, and duplicate elimination.

A large number of techniques for efficient XPath evaluation were proposed, e.g. [ILW03,

LMP02, SAKJ+02, BKS02, Gru02, GKP02, GKP05, JFB05, KBM05]. Several proposals

for XPath evaluation require specialized index structures, e.g. [GW97, LM01, CVZ+02,

BCM05]. If not explicitly mentioned otherwise we either employ the canonical or the

stacked translation (and evaluation) of XPath expressions presented in [BKHM05]. We

have chosen this rather simple evaluation technique because (1) it does not require any

additional indices, (2) it can be used to evaluate any kind of XPath expression, and (3)

there is no satisfying cost model yet to choose any of the other techniques. Our analysis

shows that this evaluation technique is superior to most other techniques when large parts

of the document must be visited to answer a query [MBB+06].
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Algebra

The equivalences discussed in Chapter 2 transform algebraic expressions. As we have

motivated in this chapter, algebraic equivalences provide us with a formal framework to

reason about the correctness of transformations on algebraic expressions. At the same

time, the algorithms that implement the operators in NAL lead us to different costs for

query evaluation strategies enumerated in a cost-based optimizer.

To be able to benefit from this algebraic framework, we need to translate XQuery state-

ments into our algebra. As we will see in Section 3.4, we do not directly translate XQuery

into NAL, but apply a normalization step first. This simplifies our translation procedures

which we present in Section 3.5. While the result of the translation procedure presented

here will be an algebraic expression, the actual implementation consists of a mixture of

algebra and calculus. In Section 3.6, we describe the mapping of our NAL algebra into this

representation.

All steps presented in this chapter are implemented in the NFST module of our query op-

timizer. Evidently, we concentrate on Normalization and Translation. We discuss Factorization

of common subexpressions only shortly in Section 3.6 where we present our internal rep-

resentation and Semantic Analysis in Section 3.7 in the context of typing.

3.1. Relevant XQuery Fragment

In this work, we focus on a subset of XQuery that is expressive enough to formulate com-

plex queries, e.g. nested queries. However, the translation and optimization approach we

cover here is general enough to support the missing features. Figure 3.1 presents the

subset of the XQuery grammar we currently support. It is a variant of LixQuery gram-

mar [HPVD04].

In this grammar, we denote terminals with terminal and non-terminals with nonterminal.
Some terminals contain complex regular expressions of tokens. We refer to [HPVD04]

for their definition and simply use angle brackets instead, i.e. < complex token >. For

simplicity, we use a very restrictive set of functions which we all treat as special built-in

functions. In particular, we ignore user-defined or recursive functions.

In the grammar, we only give the productions for computed constructors. Since our

example queries use direct constructors, we need to normalize them into computed con-

structors as defined in [DFF+07]. We will use this normalization step in this thesis without

repeating the associated rewrites.

We have added flwrExpr to be able to express queries more succinctly and quant-

Expr because we want to express quantifiers explicitly. Furthermore, we distinguish be-

tween general comparison – having existential semantics – and value comparison. All these

extensions to LixQuery are syntactic sugar, but are often used in practice. As we will see

later, their treatment has several implications on normalization, translation, and optimiza-

tion of XQuery.

Note that we have simplified the grammar. For example, our grammar does not explicitly

enforce any precedence rules for binary operators as it is done in the XQuery specifica-

tion [DFF+07]. Nevertheless they are still left associative.

39



3. Translating XQuery into the Algebra

mainModule ::= expr <EOF>
expr ::= singleExpr | exprSeq

exprSeq ::= singleExpr ( "," singleExpr )*

singleExpr ::= flwrExpr | quantExpr | andExpr

builtIn ::= ( "doc(" singleExpr ")"

| "name(" singleExpr ")"

| "string(" singleExpr ")"

| "integer(" singleExpr ")"

| "contains(" singleExpr "," singleExpr ")"

| "true()" | "false()"
| "not(" singleExpr ")"

| "count(" singleExpr ")"

| "distinct-values(" singleExpr ")"

flwrExpr ::= (forExpr | letExpr)+ whereClause? "return" singleExpr

rangeExpr ::= var "in" singleExpr

bindExpr ::= var ":=" singleExpr

forExpr ::= "for" rangeExpr ("," rangeExpr)*

letExpr ::= "let" bindExpr ("," bindExpr)*

whereClause ::= "where" singleExpr

quantExpr ::= ("some" | "every") rangeExpr ("," rangeExpr)*

"satisfies" ExprSingle

andExpr ::= compExpr ( ("or" | "and") compExpr )?

compExpr ::= addExpr ( (genComp | valComp | nodeComp) addExpr )?

genComp ::= "=" | "! =" | "<" | "<=" | ">" | ">="
valComp ::= "eq" | "ne" | "lt" | "le" | "gt" | "ge"
nodeComp ::= "<<" | ">>" | "is"
addExpr ::= multExpr ( ("+" | "-") multExpr )*

multExpr ::= union ( ("*" | "div" | "idiv" | "mod") union )*

union ::= path ( ("|" | "union" | "intersect" | "except" ) union )*

path ::= filter ( ( "/" | "//" ) path )*

filter ::= step ( "[" singleExpr "]" )*

step ::= "." | ".." | qname | "@" qname | "*" | "@*"
| "text()" | primaryExpr

primaryExpr ::= builtIn | qname | constr | var | literal | empSeq | "(" expr ")"

literal ::= string | integer

string ::= <String>
integer ::= ( (<Digits> | "+" <Digits> ) | ("-"<Digits> ) )

var ::= "$" qname

empSeq ::= "()"

constr ::= ( "element" "{" singleExpr "}" "{" expr "}"
| "attribute" "{" singleExpr "}" "{" expr "}"
| "text" "{" singleExpr "}"
| "document" "{" singleExpr "}"

qname ::= <NCName> | (<NCName> ":" <NCName>)

Figure 3.1.: BNF of the supported XQuery fragment
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3.2. Requirements

The operations discussed in this chapter are important as a preparation for the subsequent

phases of the algebraic optimizer. Thus, we require the following properties of normaliza-

tion and translation:

Soundness Each transformation must preserve the semantics of the given query.

Completeness Ideally, every query construct should be handled by the normalization

and translation step. As XQuery is a query language with many features, we cannot

treat every language construct in this work. Instead, we concentrate on the XQuery

fragment defined in Section 3.1.

Uniqueness The normalization and translation of equivalent queries should result in the

same representation of the query, i.e. a normal form. The application order of rewrite

rules should not matter, and it should be ensured that the normal form is reached by

the normalization algorithm if the normal form exists.

Effectiveness The normal form should be reached in a finite number of transformations,

preferably in a few transformation steps. We will point out how we achieve this.

Optimizability The normal form should be a good starting point for later optimization

steps. We will see in Chapter 4 that our translation procedure provides a good foun-

dation for optimization.

3.3. Notation

Conceptually, the normalization and translation rules we present here match patterns of

the textual XQuery representation and transform them, given the bindings of the matched

pattern. In this section, we will denote pattern matching with regular expressions on the

grammar presented in Section 3.1. We refer to terminal symbols with terminal and to

non-terminals with nonterminal. During normalization, some rules introduce new variable

names using the expression < $v = newV ar() >. Thereby, we create a new variable

name to which we can refer by $v. We will also use fun to refer to arbitrary functions

including builtIn, andExpr, compExpr, addExpr, multExpr, and constr. In the case of

constructors, these arguments refer to the computed node name and the computed content.

3.4. Normalization

As an important preparation step to the translation, we normalize XQuery expressions on

the query level. More precisely, all normalization steps work on the abstract syntax tree

created by the XQuery parser. Our normalization rewrites transform the XQuery statement

into a normal form. The normalized query is easier to translate the query into our algebra

because we have to consider fewer query patterns. Moreover, normalization facilitates

common subexpression elimination because we introduce new variables that are bound to

complex expressions. In this query representation, it is much easier to detect common

subexpressions.

There are many relationships between path expressions embedded into XQuery expres-

sions and equivalent expressions in XQuery [DFF+07, JHSV06]. For example, the trans-

formation of XQuery into the XQuery core breaks location steps into nested FLWOR ex-

pressions [DFF+07]. We use several of these techniques and, hence, reuse normalization

rules presented there. But we will tailor normalization for our needs. In particular, we

will break XPath expressions apart only when a location step contains a filter expression.

The reverse step, detecting tree patterns, has been discussed in [JHSV06]. Our motivation
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for doing so is that especially for simple path expressions many optimizations are known,

e.g. [AYCLS01, ZO02, HKM02, HM03, BOB+04]. Several of these optimizations are only

tractable or applicable for simple path expressions.

First, we discuss our normalization steps for FLWR expressions. Afterwards, we treat

XPath expressions.

3.4.1. FLWR Expressions

Objectives

The objective of normalizing FLWR expressions consists in obtaining a uniform represen-

tation for different formulations of the FLWR expression. As a result, the subsequent steps

of query compilation are simplified, most importantly the translation step and several op-

timizations. For example, during normalization we reduce the number of query patterns

which have to be handled during query translation. Our normalization rewrites separate the

query into three parts:

The binding part consists of for and the let clauses. It gathers all queried data, computes

intermediate results, and binds them to variables.

The modifying part alters the tuple stream, either by changing the order of items as

specified in the order by clause or by filtering out items in the where clause.

The result construction part consists of the the return clause, which solely refers to

bound variables.

Normalization Rules

In Figure 3.2, the rewriting rules for normalizing FLWR expressions are summarized. We

now discuss the idea behind each normalization rule.

N-3.1 and N-3.2 We split for or let clauses that bind multiple variables into individual

clauses. Note that the occurrence indicator of the clause in both rules is + instead of

∗, as in the grammar productions for the forExpr and letExpr. This is necessary for

the correctness of the rewrite because it makes sure that the list of for or let clauses

contains at least two clauses. After the exhaustive application of this rewrite, each

forExpr or letExpr binds at most one variable.

N-3.3 We split quantified expressions that bind multiple variables into individual quanti-

fied expressions. Note that the occurrence indicator on the RangeExpr in both rules

is + instead of ∗, as in the grammar production for the quantExpr. As for the pre-

vious rewrites it is necessary for the correctness of the rewrite. After the exhaustive

application of this rewrite, each quantExpr contains at most one RangeExpr.

N-3.4 When the where clause of a FLWR expression contains a complex expression, we

introduce a new letExpr and bind the computation of this complex expression to a

new variable $p. For this rewrite, we consider singleExpr1 ∈ {flwrExpr, builtIn,
(Expr)} as complex expressions but leave comparisons and quantified expressions

as they are. We replace the old complex expression by a reference to the new variable

$p. After the exhaustive application of this rewrite, the where clause contains only

references to variables, quantified expressions, or comparison operators.

N-3.5 We move every complex expression in the range predicate of a quantified expression

into a new letExpr. These letExpr are a convenient extension to simplify detection

of common subexpressions and during translation. For this rewrite, we consider

singleExpr ∈ {flwrExpr, builtIn, (Expr)} as complex expressions.
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N-3.6 Similar to rule N-3.4, we move a complex expression from the return clause of a

FLWR expression into a new letExpr. For this rewrite, we consider singleExpr ∈
{flwrExpr, builtIn, (Expr), constr, exprSeq} as complex expressions. The exhaus-

tive application of this rewrite leaves only a single variable reference in the return

clause.

N-3.7 This rule replaces complex expressions inside a sequence of expressions by vari-

ables which are bound to the result of the replaced complex expression. We con-

sider singleExpr ∈ {flwrExpr, builtIn, (Expr), constr, exprSeq} as complex ex-

pressions.

N3.8 This rule replaces complex expressions as function arguments by variable refer-

ences which are bound to the result of the replaced complex expression. We con-

sider singleExpr ∈ {flwrExpr, builtIn, (Expr), constr, exprSeq} as complex ex-

pressions. We also treat built-in functions, constructors, arithmetic expressions, or

comparisons as functions and refer to them by fun.

N-3.9 This rule turns general comparisons denoted by genComp into value comparisons

denoted by valComp.

The original general comparison is replaced by a

quantified expression with the corresponding value

comparison. The mapping of general comparisons

into value comparisons is summarized in the table be-

low (see also [DFF+07]). Note that we introduce the

proper type conversion while typing both arguments

and, hence, do not introduce them here.

genComp valComp
= eq

!= ne

< lt

<= le

> gt

>= ge

Let us make sure that the rules in Figure 3.2 achieve our goals. First, notice that neither

in the where clause nor in the return clause any of the rewrites introduces complex ex-

pressions. Second, notice that the rewrites introduce complex expressions only in new let

clauses. They possibly create new for or let clauses containing complex expressions.

The exhaustive application of these rewrites eventually results in the normal form dis-

cussed at the beginning of this section. Since we only move around complex expressions

but do not create ones, we reach this normal form in as many steps as there are complex

expressions.

3.4.2. XPath Expressions

When normalizing XPath expressions, our main goal consists in restructuring them such

that they are easier to optimize. We attempt this by breaking branching path expressions

into simple path expressions. This gives us two important opportunities for optimization:

(1) Predicates become visible. This enables us to detect join predicates, to move them into

the where clause, and to unnest nested XPath expressions. (2) We assume that indices or

materialized views are available rather for simple path expressions than for complex path

expressions. Additionally, the problem of matching view definitions to path expressions in

the user query becomes tractable when we extract simple path expressions from complex

path expressions.

However, we have to be careful to preserve the semantics of path expressions.

1. In particular, we need to preserve document order, and we need to handle dupli-

cates and position-based functions correctly. Currently, we do not rewrite the XPath

expression when its evaluation depends on document order.

2. XPath expressions can contain predicates that correlate the selected node in the cur-

rent path expression to nodes in another path expression.
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for rangeExpr1
(, rangeExpr)+

→
for rangeExpr1
for rangeExpr(, rangeExpr)∗

(3.1)

let bindExpr1
(, bindExpr)+

→
let bindExpr1
let bindExpr(, bindExpr)∗

(3.2)

(some|every) rangeExpr1
(, rangeExpr)+

satisfies exprSingle
→

(some|every) rangeExpr1
satisfies

(some|every) rangeExpr
(, rangeExpr)∗

satisfies exprSingle

(3.3)

(forExpr|letExpr)+
where singleExpr1
return singleExpr2

→

(forExpr|letExpr)+
let < $p = newV ar() > := singleExpr1
where $p
return singleExpr2

(3.4)

(some|every) rangeExpr
(, rangeExpr)∗

satisfies singleExpr
→

(some|every) rangeExpr (, rangeExpr)∗
let < $v = newV ar() > := singleExpr
satisfies $v

(3.5)

(forExpr|letExpr)+
whereClause?
return singleExpr

→

(forExpr|letExpr)+
let < $v = newV ar() > := singleExpr
whereClause?
return $v

(3.6)

let var :=
(singleExpr1(, singleExpr)+)

→
let < $v = newV ar() > := singleExpr1
let var := ($v(, singleExpr)+)

(3.7)

let var := fun(expr) →
let < $v = newV ar() > := expr
let var := fun($v)

(3.8)

singleExpr1 genComp singleExpr2 →

some < $v1 = newV ar() > in singleExpr1
let < $v2 = newV ar() > := data($v1)

satisfies

some < $v3 = newV ar() > in singleExpr2
let < $v4 = newV ar() > := data($v3)

satisfies $v2 valComp $v4

(3.9)

Figure 3.2.: Normalization of FLWR expressions

path1$c
(/|//) step [singleExpr] →

for < $v = newV ar() > in $c / path (/|//) step
where singleExpr
return $v

(3.10)

path1$c
(/|//) step

([singleExpr]) + path2
→

let < $v1 = newV ar() > :=
$c / path1 (/|//) step ([singleExpr])+

for < $v2 = newV ar() > in $v1/ path2
return $v2

(3.11)

Figure 3.3.: Normalization of XPath expressions

3. XPath expressions may contain nested expressions that are interpreted as nested

queries.

Our normalization rewrites are summarized in Figure 3.3. They introduce new variables

that store the intermediate results of the path expressions. We expect this to be beneficial

for factorization of common subexpressions. When we add these variables into the current

scope, we have to avoid name clashes.

N-3.10 This rewrite moves an XPath predicate into the where clause of a FLWR expres-

sion when the path expression is inside a for clause.

Note that we ignore several intricate issues here: (1) the result of the XPath predicate

is the effective boolean value of expression exprSingle. The computation done for
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the predicate might depend on actual types returned at runtime. (2) Positional pred-

icates are another source of difficulty we ignore here. (3) Document order must be

correct, e.g. when the last axis step before a positional predicate computes a reverse

axis.

N-3.11 This rewrite allows us to break XPath expressions into pieces.

Note that in both rewrites we use the variable $c to explicitly refer to the set of con-

text nodes. We also expand abbreviated syntax in path expressions into the corresponding

unabbreviated form [DFF+07], i.e.

1. We treat occurrences of @NodeTest as attribute axis, i.e. attribute::NodeTest.

2. We treat occurrences of .. as parent axis, i.e. parent::node().

3. We expand each occurrence of // in a relative location path to /descendant-or-

self::node()/. When the axis step afterwards contains a node test but no posi-

tional predicate, we can even replace//NameTest by /descendant::NameTest,

which is more efficient to evaluate.

4. We rewrite absolute location paths so that they explicitly use function fn::root,

i.e. fn:root(self::node()) treat as document-node()/.

5. When the axis name is omitted from an axis step, the default axis is child unless the

axis step contains an AttributeTest or SchemaAttributeTest. Hence, we expand these

path expressions by a child step including the node test.

3.4.3. Example Queries

In this section, we apply our normalization rules to concrete queries to demonstrate their

effectiveness in establishing our normal form. We focus on queries containing quantified

expressions or implicit grouping for two reasons. First, we get existentially quantified ex-

pressions when we normalize general comparisons when we make implicit computations

explicit. Second, we want to rewrite to prepare the queries such that they are more conve-

nient to optimize. In particular, both types quantified expressions and implicit grouping is

formulated with nested queries. In Chapter 4, we show how to unnest this important class

of queries.

General Comparisons

First, we look at a query that contains a general comparison. This is an interesting example

because the general comparison implicitly has existential semantics.

for $t1 in doc(”bib .xml” )// book/ title

where $t1 = doc(”reviews .xml” )// entry / title

return $t1

Normalization is simple because we only need to turn the general comparison into a

quantified expression using rewrite N-3.9. This rewrite introduces function data to apply

atomization to the result of both range expressions.

N−3.9→
for $t1 in doc(”bib .xml” )// book/ title

where some $v1 in $t1

let $v2 := data ($t1)

satisfies

some $v3 in doc(”reviews .xml” )// entry / title
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let $v4 := data ($v3)

satisfies $v2 eq $v4

return $t1

We now have established the desired form:

1. All data retrieval is done in the for or let clauses.

2. Implicit computations (e.g. the existential nature of general comparison) have be-

come explicit.

3. The return clause only contains variable references.

4. Function calls, except function fn:distinct-values, do not contain complex

expressions as arguments.

Implicit Grouping

Since there is no explicit grouping construct in XQuery yet, grouping must be formulated

with nested queries. Because grouping in XQuery can be expressed in many ways, we like

to treat all of them in a uniform fashion. Among the different possibilities to express group-

ing implicitly, one can use a nested FLWR expression in the return clause. Alternatively, it

is possible to use a nested FLWR expression in the let clause. Queries containing grouping

often employ element constructors to mimic tuples [BCC+04, BC04]. The reason is that

the XQuery data model is based on flat sequences of items, i.e. sequences cannot be nested.

For these reasons, we investigate the query below which features all these concepts.

Normalization of this query starts by removing the element constructor from the return

clause (rewrite N-3.6). Remember that it is our goal to have only variable references in

the return clause. Next, we replace the sequence of expressions in the element constructor

by a variable reference and introduce a new let clause. Therefore, we apply rewrite N-3.8.

Note that we treat the constructor as a function here. Then, we replace the two complex

expressions inside the sequence expression by variables using rewrite N-3.7.

Finally, we normalize the FLWR expression bound to the new variable $v4. As before,

we introduce a new let which is bound to the path expression in the return clause (rewrite

N-3.6). Then, we move the XPath predicate into the where clause. In the next normaliza-

tion step, we extract the path expression in the second argument of the comparison into a

new let clause. Here, we treat the comparison as a boolean function.

for $p in distinct −values(doc(”bib .xml” )// publisher )

return

<publisher>

<name> { $p } </name>,

{ for $b in doc(”bib .xml” )// book[$p eq publisher ]

return $b/ title

}
</publisher>

N−3.6→ (move return clause into a new let clause)

for $p in distinct −values(doc(”bib .xml” )// publisher )

let $v1 :=

<publisher>

<name> { $p } </name>,

{ for $b in doc(”bib .xml” )// book[$p eq publisher ]

return $b/ title

}
</publisher>

return $v1
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N−3.8→ (move the arguments of the element constructor into a new let clause)

for $p in distinct −values(doc(”bib .xml” )// publisher )

let $v2 := ( <name> { $p } </name>,

for $b in doc(”bib .xml” )// book[$p eq publisher ]

return $b/ title )

let $v1 := <publisher> { $v2 } </publisher>

return $v1

N−3.7→ (bind the complex expressions in the sequence of expressions to new let clauses)

for $p in distinct −values(doc(”bib .xml” )// publisher )

let $v4 := ( for $b in doc(”bib .xml” )// book[$p eq publisher ]

return $b/ title )

let $v3 := <name> { $p } </name>

let $v2 := ( $v3, $v4 )

let $v1 := <publisher> { $v2 } </publisher>

return $v1

N−3.6→ (move return clause into a new let clause)

for $p in distinct −values(doc(”bib .xml” )// publisher )

let $v4 := ( for $b in doc(”bib .xml” )// book[$p eq publisher ]

let $v5 := $b/ title

return $v5)

let $v3 := <name> { $p } </name>

let $v2 := ( $v3, $v4 )

let $v1 := <publisher> { $v2 } </publisher>

return $v1

N−3.10→ (turn an XPath predicate into a where clause)

for $p in distinct −values(doc(”bib .xml” )// publisher )

let $v4 := ( for $b in doc(”bib .xml” )// book

let $v5 := $b/ title

where $p eq $b/ publisher

return $v5)

let $v3 := <name> { $p } </name>

let $v2 := ( $v3, $v4 )

let $v1 := <publisher> { $v2 } </publisher>

return $v1

N−3.8→ (move the complex arguments of the value comparison into a new let clause)

for $p in distinct −values(doc(”bib .xml” )// publisher )

let $v4 := ( for $b in doc(”bib .xml” )// book

let $v5 := $b/ title

let $v6 := $b/ publisher

where $p eq $v6

return $v5)

let $v3 := <name> { $p } </name>

let $v2 := ( $v3, $v4 )

let $v1 := <publisher> { $v2 } </publisher>

return $v1

Let us examine the structure of the normalized query. We observe:

1. All data retrieval is done in the for or let clauses.

2. All return clauses only contain variable references.
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3. Function calls, value comparisons, or element constructors only refer to variables.

They do not contain complex expressions as arguments.

Thus, we have established the desired normal form. Notice that we reach the same

normal form when grouping is expressed using a let clause. In this case, we would save

the first rewriting step (N-3.6). Notice that the rewrites are only correct because element

construction does not depend on namespace declarations.

Detecting Join Predicates

The following example query contains a nested query with aggregate function fn:min.

The value of this function depends on the items computed by a correlated path expression.

We would like to extract the correlation predicate in the path expression to be able to

optimize this query.

We proceed as follows: The first three normalization steps replace complex expressions

in the return clause or in function calls by variable references and introduce new let clauses

(N-3.6). Then, we break the path expression into two parts using rewrite N-3.11 so that the

first path expression ends in a predicate. In the next step, we use this result to extract the

predicate and move it into the where clause of a new FLWR expression (rewrite N-3.10).

In the last normalization step, we use rewrite N-3.8 to extract the path expression from the

predicate in this where clause.

let $doc := doc(” prices .xml”)

for $t in $doc //book/ title

return

<minprice>

{ min($doc//book[ title eq $t ]/ price ) }
</minprice>

N−3.6→ (move return clause into a new let clause)

let $doc := doc(” prices .xml”)

for $t in $doc //book/ title

let $v1 :=

<minprice>

{ min($doc//book[ title eq $t ]/ price ) }
</minprice>

return $v1

N−3.8→ (move the arguments of the element constructor into a new let clause)

let $doc := doc(” prices .xml”)

for $t in $doc //book/ title

let $v2 := min($doc//book[ title eq $t ]/ price )

let $v1 := <minprice> { $v2 } </minprice>

return $v1

N−3.8→ (move the argument of function fn:min into a new let clause)

let $doc := doc(” prices .xml”)

for $t in $doc //book/ title

let $v3 := $doc //book[ title eq $t ]/ price

let $v2 := min($v3)

let $v1 := <minprice> { $v2 } </minprice>

return $v1

N−3.11→ (split path expressions behind a predicate)
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let $doc := doc(” prices .xml”)

for $t in $doc //book/ title

let $v3 := ( let $v4 := $doc //book[ title eq $t ]

for $v5 in $v4/ price

return $v4)

let $v2 := min($v3)

let $v1 := <minprice> { $v2 } </minprice>

return $v1

N−3.10→ (turn an XPath predicate into a where clause)

let $doc := doc(” prices .xml”)

for $t in $doc //book/ title

let $v3 := ( let $v4 := ( for $v6 in $doc //book

where $v6/ title eq $t

return $v6)

for $v5 in $v4/ price

return $v4)

let $v2 := min($v3)

let $v1 := <minprice> { $v2 } </minprice>

return $v1

N−3.8→ (move the complex argument of the value comparison into a new let clause)

let $doc := doc(” prices .xml”)

for $t in $doc //book/ title

let $v3 := ( let $v4 := ( for $v6 in $doc //book

let $v7 := $v6/ title

where $v7 eq $t

return $v6)

for $v5 in $v4/ price

return $v4)

let $v2 := min($v3)

let $v1 := <minprice> { $v2 } </minprice>

return $v1

Obviously, this sequence of rewrites achives its goal: All retrieval is done in for or let

clauses, we have broken up complex expressions. Looking at the result of the normalization

steps, it is evident that the XPath predicate has become a predicate in the where clause.

Now, the corelation predicate is much easier to detect during query unnesting.

Nested Path Expressions

Predicates in path expressions might contain further nested path expressions. A nested

path expression inside the filter expression of another path expression is (in most cases) se-

mantically equivalent to an existentially quantified query. This similarity is our motivation

to break path expressions such that embedded predicates become visible. As we will see

below, our normalization rewrites make sure that nested path expressions and existential

quantifiers are treated in a uniform way. This substantially simplifies query optimization

because we have to support fewer cases of nested queries.

In the example query below, the predicate of the path expression contains two path ex-

pressions. One depends on the previous location step, while the other is independent of

the context. We want to avoid to evaluate the context-independent path expression for ev-

ery context node. As we want to apply optimizations to these nested path expressions, we

first apply rewrite N-3.11 and then rewrite N-3.10. In the final step, we turn the general

comparison into quantified expressions (rewrite N-3.9).

let $d := doc(”bib .xml”)

for $t in $d //book[author = $d //book/ editor ]/ title
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return $t

N−3.11→ (split path expressions behind a predicate)

let $d := doc(”bib .xml”)

let $v1 := $d //book[author = $d //book/ editor ]

for $t in $v1/ title

return $t

N−3.10→ (turn an XPath predicate into a where clause)

let $d := doc(”bib .xml”)

let $v1 := $d //book

for $t in $v1/ title

where $v1/author = $d //book/ editor

return $t

N−3.9→ (turn a general comparison into a value comparison)

let $d := doc(”bib .xml”)

let $v1 := $d //book

for $t in $v1/ title

where some $v2 in $v1/author

let $v3 := fn : data ($v2)

satisfies

some $v4 in $d //book/ editor

let $v5 := data ($v4)

satisfies $v3 eq $v5

return $t

In Chapter 4, we present a general framework for optimizing such expressions. For the

specific case of nested location paths in XPath 1.0, we refer to [BKHM06].

3.4.4. Restrictions

Several of our normalization rewrites are only valid under the assumption that certain in-

formation of the involved subexpressions will not be observed in the remainder of the

query. This information includes node identity, local namespace declarations, and non-

determinism of XQuery expressions. Besides our normalizations, these issues rule out

many other optimizations. But for many queries they do not cause any problems, and

hence our normalizations will be valuable in many cases. Consequently, we ignore them in

this work.

Node Construction and Node Identity

In some cases, common subexpressions cannot be factorized [CDF+04, BCF+07]. For

example:

( <a/>, <a/> )

is not the same as

let $x := <a/>

return ( $x, $x )

because the first expression constructs two distinct XML element nodes, whereas the sec-

ond returns two identical XML nodes. This problem occurs in all rewrites that introduce

new let clauses containing expressions with constructors. Since most operations do not

exploit node identity, this problem is rarely an issue. In most cases, node construction is

only done to construct the final result which is returned to the user.
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Namespaces

When moving expressions, we need to be careful because element constructors might intro-

duce new namespaces. When we move expressions out of these scopes, e.g. by introducing

a new let expression, we violate these scoping rules as shown in the following example

taken from [FK04]:

declare namespace ns=”uri1”

for $x in fn :doc(”uri ” )/ ns :a

where $x/ns:b eq 3

return

<result xmlns:ns=”uri2”>

{for $x in fn :doc(”uri ” )/ ns :a

return $x/ns:b }
</ result >

When we apply our normalization rewrites as usual, the FLWOR expression bound to vari-

able $v2 is evaluated using namespace uri1 instead of uri2:

declare namespace ns=”uri1”

for $x in fn :doc(”uri ” )/ ns :a

where $x/ns:b eq 3

let $v2 := ( for $x in fn :doc(” uri ” )/ ns:a

return $x/ns:b)

let $v1 := <result xmlns:ns=”uri2”> { $v2 } </ result >

return $v1

Thus, the rewrites might change the namespace declarations that are defined in the current

evaluation context. In principle, one could establish the proper namespace declarations, but

in this work we will ignore the problem of namespaces.

Ordering Mode

The result of the following expression is not deterministic. Depending on the order in

which the values in the input sequence are applied to the predicate list, the result of this

expression can either be an error or the value 3.

unordered{
(”foo”, ”bar” , 3)[ floor (.) < 5][1]

}

Hence, one must be careful when inferring unorderedness in subexpressions of queries,

e.g.

some $i in (”foo”, ”bar”, 3)[ floor (.) < 5][1]

satisfies true

Again, we will ignore these issues in our optimizations and assume deterministic results.

We refer to [GRT07] for a further discussion on this topic.

3.5. Translation into Logical Algebra

The result of normalization, discussed in the previous section, will now turn out to be

a convenient starting point for the translation of XQuery queries into our algebra. Let

us therefore summarize the structure of normalized queries as they are produced during

normalization.

First, path expressions are broken up into simple path expressions. Consequently, we

only need to treat simple path expressions without nested path expressions or predicates in
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The binary T function for FLWOR expressions:

T (Q, A) :=

8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

:

T (REST, [tidp(]Υx:TT (e)(A))[)] if Q = for $x [at $p] in e REST or

if Q = $x in e REST

T (REST, χx:TT (e)(A)) if Q = let $x := e REST and e is sequence-valued

T (REST, χx:TI(e)(A)) if Q = let $x := e REST and e returns a single item

T (REST, σTI(p)(A)) if Q = where p REST

T (REST, Sortx1...xn(A)) if Q = order by $x1 . . . $xn REST

Πe(A) if Q = return $e

A if Q is empty string

The unary functions TT and TI for other expressions:

TT (Q) :=

8

>

>

<

>

>

:

translation of [BKHM05]. if Q is a simple path expression

ΠD(TT (e)) if Q = distinct-values(e)

T (Q,2) if Q is a FLWOR expression

TI(Q) [x] if Q returns (a sequence of) items

TI(Q) :=

8

>

>

>

>

<

>

>

>

>

:

∃t ∈ TT (R) : TI(P ) if Q = some R satisfies P

∀t ∈ TT (R) : TI(P ) if Q = every R satisfies P

f(TI(e1), . . . , TI(en)) if Q = f(e1, . . . , en)
v if Q is a variable reference to variable $v

c if Q is constant c

Figure 3.4.: Translation of XQuery FLWOR expressions into the algebra

our translation function. Second, path expressions are only located in the for clause and

the let clause. This assures uniform results after translation for different formulations of

the same query. Third, nested query blocks are explicitly marked by FLWOR expressions

or quantified expressions. Fourth, correlation between query blocks is explicitly handled

in the where clause. Nested query blocks become subject to unnesting in later steps of the

optimization.

3.5.1. Translation Function

Based on the properties mentioned above, we specify the translation procedure by means

of three mutually recursive procedures T (see Figure 3.4). For a given query Q, TT (Q)
translates Q into our algebra.

The binary function T (Q, A) is responsible for translating a FLWOR expression Q into

the algebra. The first argument of this function is the (remainder of) the query to be trans-

lated, and the second argument is the algebraic expression constructed so far. The result

of each translation step is a tree of algebraic operators which produce sequences of tuples.

For each clause of the FLWOR expression, we give the corresponding translation rule.

For non-FLWOR expressions, we use two different unary translation functions. Func-

tion TI(Q) translates a subexpression Q into a function with a simple return type in the

XQuery data model, while function TT (Q) returns an algebraic expression which produces

sequences of tuples. Notice that we rely on the translation presented in [BKHM05] to trans-

late simple path expressions. However, in contrast to that proposal, we show in Section 3.6

that we do not fix the implementation of the location steps during translation. This decision

is made during cost-based optimization instead.

Since a FLWOR expression can occur within simple expressions and vice versa, these

functions are mutually recursive. In the translation rule for the let clause we explicitly

select the translation function to use: if the expression bound in the let clause is sequence-

valued, this sequence is turned into a sequence of tuples. Otherwise, we use the tranlsation

function that returns single items.
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3.5.2. Example

Let us consider the last example query of Section 3.4.3. Below, we repeat the result of

normalization:

let $d := doc(”bib .xml”)

let $v1 := $d //book

for $t in $v1/ title

where some $v2 in $v1/author

let $v3 := fn : data ($v2)

satisfies

some $v4 in $d //book/ editor

let $v5 := data ($v4)

satisfies $v3 eq $v5

return $t

We begin with the first let clause of the FLWOR expression. The translation results in:

χd:T (doc(”bib.xml”))(2)

After translating the function call in the subscript, we encounter another let clause.

χv1:T ($d//book)(χd:doc(”bib.xml”)(2))

We continue with the for clause which is mapped to an unnestmap operator by the transla-

tion function.

Υt:T ($v1/title)(χv1:Υb:d//book(2)(χd:doc(”bib.xml”)(2)))

The where clause is translated into a selection operator. We have to translate the predicate

recursively.

σT (... )(Υt:Υtt:v1/title(2)(χv1:Υb:d//book(2)(χd:doc(”bib.xml”)(2))))

We continue with the first quantified expression.

σ∃x∈T (... ):T (... )(Υt:Υtt:v1/title(2)(χv1:Υb:d//book(2)(χd:doc(”bib.xml”)(2))))

To avoid clutter, we will refer to the result of translating the range expression of the first

quantified expression by e1 and to the result of translating the range predicate of this exis-

tential quantifier by e2. Thus, we get:

σ∃x∈e1:e2(Υt:Υtt:v1/title(2)(χv1:Υb:d//book(2)(χd:doc(”bib.xml”)(2))))

The recursive translation of the range expression is similar to the translation of the for

clause and let clause. The translation of the second quantified expression is also similar to

the translation of the first quantifier:

e1 := χv2:fn:data(v1)(Υv1:Υa:v1/author(2)(2))

e2 := ∃y ∈ χv4:fn:data(v3)(Υv3:Υc:c/editor(Υc:d/book(2))(2)) : v2 = v4

The last translation step consists of translating the return clause which introduces a pro-

jection.

Πt(σ∃x∈e1:e2(Υt:Υtt:v1/title(2)(χv1:Υb:d//book(2)(χd:doc(”bib.xml”)(2)))))

Clearly, the translation is a simple mapping of the normalized XQuery expression into

our algebra. The resulting algebraic expression contains nested algebraic expressions – in

this example existential quantifiers. One of our goals in the remainder of this work is to

replace these nested algebraic expressions by algebraic operators for which more efficient

evaluation techniques exist and which allow for more optimizations.
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3.6. Query Representation

In the previous sections, we have presented our normalization steps as rewrites on the ab-

stract syntax tree of the parsed XQuery query. We have also defined a translation function

that maps XQuery constructs into our algebra. In this section, we discuss the implementa-

tion of the normalization and translation steps.

In our implementation, we integrate normalization, translation, and factorization of com-

mon subexpressions. We also assign a type to all translated constructs and annotate them

with cost and cardinality information. Therefore, we use the schema component which we

discuss in Section 3.7.

Most importantly, we do not translate the parsed query directly into an algebraic expres-

sion. Instead, our internal query representation unifies features of calculus and algebra. In

this section, we give details on the mapping into our query representation. It is similar to

the query graph model [HFLP89, JK84, SKS+01]. We will argue that for all expressions

in our algebra, there is an equivalent representation in our query representation.

3.6.1. General Concepts

After the translation step, all steps of our optimizer work on a common query representa-

tion. As already mentioned, it is closer to a calculus representation used during the first

heuristic rewrite phase. During cost-based optimization, it is turned into a representation

closer to an algebraic expression annotated with implementation hints. Figure 3.5 contains

the classes most relevant for this thesis. Next, we briefly survey the most important classes.

Then, we introduce the important concepts that underlie our internal representation.

Class Hierarchy of the Query Representation

All classes of the query representation derive from the abstract base class Expression.

Algebraic operators are represented by classes derived from the abstract class Algebra

which in turn is a direct subclass of the class Expression. While algebraic operators

consume and produce sequences of tuples, the remaining subclasses mostly return atomic

values. Instances of expressions are often bound to the subscript of an algebraic operator.

For example comparisons are handled by function calls (class ExprFFunCall), and these

boolean functions can be connected by boolean operators handled by classes derived from

class ExprBool. To facilitate the factorization of common subexpressions, we employ the

class IU (Information Unit, see below). Briefly, an IU represents an (intermediate) result

of an expression. For example, an IU might represent the value of an attribute inside a tuple

returned as query result, or the intermediate result in an arithmetic expression. We already

pointed out that our translation of simple path expressions does not decide how location

steps are implemented. Thus, until this decision is made by the cost-based optimizer, we

represent location steps by the class ExprStep. In Section 3.6.4, we give more details on

our representation of path expressions.

The calculus flavour of our internal representation is realized by classes we call blocks.

Blocks are special classes because, apart from being Expressions, they also inherit

from class BlockMixIn. This class injects the properties of a calculus expression to

these classes. Currently, we use two blocks: AlgSFWD blocks represent FLWOR expres-

sions and quantified expressions, and AlgGroup blocks express grouping explicitly and

duplicate elimination (as a special case of grouping). We give more details later in this

section.

Finally, there is a large number of algebraic operators. The most important unary opera-

tors are:
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cts::Expression
cts::DBItem
cts::ExprBool

cts::ExprBoolNaryAndcts::ExprBoolNaryOr

cts::ExprConstantcts::ExprFunCallBase

cts::ExprNot

cts::ExprBoolNary

cts::ExprFunCallcts::ExprStep

cts::ExprTFunCallcts::ExprFFunCall

cts::ExprBoolUnarycts::DBDocExtent
cts::DBIndexcts::Algebra

cts::AlgBinary

cts::AlgSFWD

cts::AlgUnary

cts::AlgSort

cts::AlgGroup

cts::AlgChicts::AlgUnnest

cts::AlgJoin

cts::AlgScanBase
cts::AlgScanIndexcts::AlgScanDocExtent

cts::AlgInitJoincts::AlgSelect
cts::AlgTemp

cts::AlgBinGamma

cts::AlgScanSingleton
cts::BlockMixIn

cts::BlockMixInWithProjection

cts::IUcts::ExprVariable

cts::ExprPolymorph
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3. Translating XQuery into the Algebra

AlgSort is used for explicit sorting requests in an algebraic expression.

AlgSelect filters tuples based on the result of evaluating the predicate p in its

subscript.

AlgChi represents the map operator χ.

AlgUnnest represents the unnest map operator Υ.

Among the binary operators, the class AlgJoin is the most important one. It is used

for all join types but the outer join and the d-join. The latter two join types are handled by

the class AlgJoinInit because they both require an additional expression to initialize

tuples.

Operations on the Query Representation

The class hierarchy of our query representation implements the composite pattern [GHJV95].

The composition models the argument relationship among the operators and expressions in

the query. Additionally, the classes of our query representation mostly serve as information

containers.

While they still contain some (recursive) functions to synthesize their values, most oper-

ations are performed by visitors or mutators [GHJV95]. This way, it is possible to add new

operations to the classes of the query representation without actually touching their code.

A visitor only collects information during the traversal of the object structure. In addi-

tion, a mutator may change the visited elements. In our implementation, a mutator traverses

the object structure from its root to its leaves and ascends back from the leaves to the root.

Information can be collected during descending, while elements are only changed while

ascending. All rewrites we present in this thesis are implemented as mutators. Several of

them use visitors to collect information. This means that we implement all transformations

explicitly in the visit operations of the mutators.

One might argue that a more declarative way of describing transformations on the query

representation is desirable. We could specify rules declaratively when we formulate them

as transformations in an attribute grammar [FMS93, ALSU06]. Consequently, we need to

interpret our query representation as a type-annotated tree.

Information Units

During query execution, it is desirable, not to compute the same subexpression repeatedly.

Hence, we have to detect common subexpressions in a query and explicitly share them.

During rewriting, this sharing of subexpressions must stay intact.

We solve this problem by introducing information units into our query representation

(class IU). Every instance of this class represents an abstract value at query evaluation

time. Notice that every intermediate result is bound to an information unit, no matter if

its result is actually shared. Currently, we detect and share common subexpressions in

subscripts of algebraic operators. However, sharing common algebraic subexpressions is

certainly a desirable future extension [Neu05].

Consider as an example the predicate[position() ne 2 and position() lt

5]. Obviously, the position of the context node is used twice in this predicate. We avoid

to evaluate and represent the result of this function call by factoring its result as shown

in Fig. 3.6. Notice that function fn:position has one implicit parameter which is the

context position from the dynamic context. In this example, we assume that this context

position is bound to a named IU, i.e. one can refer to the information unit by its name “cp”.

All other information units are not associated with a name, denoted by “-”.

In the following sections, we describe how we use the query representation as a target

of the translation step. We will focus on FLWOR expressions, quantified expressions and

simple location paths, as they are most relevant to the optimizations we deal with in this

thesis.
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3.6. Query Representation

IU:-

ExprBoolNaryAnd

IU:-

ExprFunCall ( 6=)

IU:-

ExprConstant (2)

IU:-

ExprFunCall

(fn : position())

IU:cp

IU:-

ExprFunCall (<)

IU:-

ExprConstant (5)

Figure 3.6.: Sharing of common subexpressions

3.6.2. FLWOR-Expressions

The translation presented in Section 3.5 yields a canonical operator tree as it is usually pre-

sented in database text books [GMUW01, RG02]. However, detecting patterns on such an

algebraic expression is difficult and inefficient because the argument relationship is directly

encoded into the algebraic expression. For many rewrites the exact argument relationship

is not important. Such rewrites are more difficult to implement on algebra trees because

pattern matching must consider more combinations of argument relationships.

Blocks

A query representation that is closer to a calculus representation simplifies pattern match-

ing during heuristic rewriting. All classes, we consider as blocks, derive by multiple inher-

itance from class BlockMixinwhich introduces a class hierarchy independent of expres-

sions. This class injects the concept of a block into the algebraic representation in the rest

of the class hierarchy [BC90, SB98].

Figure 3.7 introduces some notation which we will subsequently use to refer to compo-

nents of blocks. All blocks inherit from class BlockMixIn: a list of producers, P , similar

to generators in a calculus expression, a list of AlgChi operators, C, each of which en-

capsulates the computation of an expression, a list of AlgUnnest operators, U , each of

which represents the computation of a sequence-valued function whose result is immedi-

ately flattened, and a pointer to the parent block. Additionally, classes derived from class

BlockMixInWithProjection contain a projection list, i.e. they implement ΠA for a

set of attributes A. We have two different kinds of blocks.

Class AlgSFWD is derived from class BlockMixInWithProjection and extends

this class with a predicate p as defined in Figure 3.7. First, we assume for simplicity only

a FLWOR expression without let or order by clauses and with path expressions whose

predicates are all moved into the where clause if possible. Then the semantics of this class

is defined as the algebraic expression

ΠA(σp(Υpn(. . . (Υp2(Υp1(2)))))).

Thus, the variable in the return clause constitutes the projection of the block. The where

clause is represented by a selection operator, and the for clauses are implemented by a

sequence of unnest map operators. When the producers pi can be evaluated independently,

we can turn the unnest map operators into cross products (via Eqvs. 2.17 and 2.18).
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3. Translating XQuery into the Algebra

Notation Description

ΠA the attributes A specified in the final projection (class

AlgBlockMixinWithProjection)

P = 〈p1 . . . pk〉 the producers P
p = l1 ∧ l2 ∧ · · · ∧ lm a conjunctive predicate (only in classes derived from blocks)

C = 〈c1 . . . cn〉 expressions ci whose result is bound to a variable

U = 〈u1 . . . uo〉 sequence-valued expressions ui whose result must be iter-

ated over

G = 〈g1, . . . gp〉 grouping attributes

Figure 3.7.: Notation used for blocks

Remember that we also denote the concatenation of the application of algebraic operators

with ◦. The semantics of this class is defined by the algebraic expression

Π
(i1)
A ◦ (3.12)

σ
(i2)
l1
◦ σ

(i3)
l2
◦ · · · ◦ σ

(ij)
lk
◦

χ(ij+1)
cn

◦ χ(ij+2)
cn̂

◦ · · · ◦ χ(ik)
cṅ
◦

Υ(ik+1)
p1

◦Υ(ik+2)
p2

◦ · · · ◦Υ(il−1)
pn

◦
2

(il).

The superscript (ix) denotes the permutation of these operators that is consistent with

the given XQuery expression. For every query, we have (i1) = 1 and (il) = l, i.e. the pro-

jection is the outer-most operator and the singleton scan is the inner-most operator of this

expression. The list theApplicationOrder represents this permutation of operators

that maps positions in the resulting algebraic expressions to pointers of the operator at this

position. Thus, after translation, the order of the entries in this list is consistent with the

occurence in the textual query representation. This is too restrictive because a partial order

of the expressions would suffice. But later rewrites can simplify these order constraints.

Notice that not all map operators in the define list of the block actually need to be part

of the algebraic expression 3.12. Only the map operators resulting from the translation of

let clauses are part of this expression. The remaining map operators in the define list wrap

complex expressions.

Similarly, none of the unnest map operators of the unnest list appears in the algebraic

expression 3.12. This list is only used to simplify detecting sequence-valued functions

contained in any part of the FLWOR expression. But only the variable bindings resulting

from these expressions belong to the result of this expression.

Now that we have introduced the block structure and the semantics of the SFWDU block

implemented by class AlgSFWD, it is easy to map the FLWOR expressions to SFWDU

blocks. The name of the SFWDU block is motivated by the main components of an SQL

block (and also OQL block): Select, From, Where, and auxiliary components Define and

Unnest. Each clause of a FLWOR expression is mapped to the components of the SFWDU

block, as indicated by the solid arrows in Figure 3.8. The dotted lines pointing from the

U- and D-component to the F-component represent the access to document nodes in path

expressions in the for or let clause. The list of producers obtained this way provides a con-

venient access to schema information used to type the query. Notice that the return clause

after normalization contains only a single variable binding. This projection is represented

by a projection list in the Select component. The order by clause is implemented by an sort

operator (AlgSort) that consumes the result of the SFWDU block. Hence, the SFWDU

block must not project attributes that are needed by the sort operator. Since this operator
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AlgSort

F L W O R

S

F

W

D

U

Figure 3.8.: Mapping of FLWOR expressions to the SFWDU block

can project away attributes, it establishes the required tuple signature.

Class AlgGroup is also derived from class BlockMixInWithProjection and

extends it with a grouping specification and a predicate p, as defined in Figure 3.7. The

grouping specification is a list of grouping attributes G. Let a be the elements in C that

contain aggregate functions. The result of these expressions is bound to the set of attributes

R. Then, the class AlgGroup implements the algebraic expression

ΠR∪G(σp(ΓR;=G;a(p1))) for AlgGroup and

σp((p1)ΓR;p1.G=p2.G;a(p2)) for AlgBinGamma.

Notice that we assume that the producer list P contains exactly one entry for class AlgGroup

and exactly two entries for class AlgBinGamma.

3.6.3. Quantified Queries

In our implementation, we translate universal quantifiers into negated existential quantifiers

because of Eqv. 3.13

∀x ∈ e : ¬(p) = ¬∃x ∈ e : p (3.13)

= ¬∃x ∈ σp(e) : true.

This decision is based on the observation that the canonical nested evaluation of a univer-

sal quantifier requires us to look at all tuples in e. After rewriting the universal quantifier

into a negated existential quantifier, it is possible to stop after the first tuple that passes the

negated predicate. Thus, in the average case, we can already stop after looking at half of

the tuples.

As a consequence, when we look for universal quantifiers, we have to match a negated

existential quantifier with predicate p modified accordingly. We map the existential quanti-

fier in Eqv. 3.13 to an instance of class ExprPolymorph. Consequently, we map the uni-

versal quantifier to an instance of class ExprNotwith an instance of class ExprPolymorph

as argument. Moreover, notice that after applying Eqv. 3.13 we have moved a range pred-

icate into the range expression. Thus, e contains the range predicate, in clauses of the

quantified expression, and let clauses. Hence, it is natural to translate this range expression

into a SFWDU block. We set a flag in the SFWDU block to mark it as quantified. This will

be convenient when we rewrite quantified expressions.
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3.6.4. Path Expressions

We have to pay special attention to path expressions for two reasons: (1) They are used

in almost every XQuery query because they are needed to address data in an XML docu-

ment. (2) We expect the optimization of path expressions to be especially critical for query

performance. Thus, we now present the internal representation for path expressions.

Step Expressions

Consequently our main requirements for the internal representation of step expressions are

that

1. Searching for complex patterns of location steps must be supported efficiently. Be-

fore we rewrite a path expression, we have to detect patterns. As this will be done

quite often for a single query, efficient pattern matching on path expressions is a core

requirement for our query optimizer.

2. Restructuring of path expressions must be fast. We expect that most optimizations

of path expressions add or remove steps. Hence, this operation is especially perfor-

mance critical.

Location steps are represented by the class ExprStep. Figure 3.9 shows the relevant

parts of the class definition. We satisfy the requirements above by connecting simple path

expressions in a doubly linked list. This means, that each step maintains a reference to

its argument (Attribute theNextStep points to an IU, as all expressions do) and to its

preceding step (attribute thePreviousStep). The doubly linked list is fast to modify,

and it allows immediate traversal in both directions. Therby we assure that both pattern

matching an transformations on path expressions are performed fast.

class ExprStep : public ExprFunCall {
protected :

// constructors and destructor

public:

// getter and setter functions

float cost ();

float cardinality ();

private :

Expression∗ theNextStep;

Expression∗ thePreviousStep ;

ExprAxisType theAxis ;

ExprNodeKindTest theNodeKindTest;

natix :: QName theNameTest;

NLS::SchemaElementHandle theType;

};

Figure 3.9.: Definition of class ExprStep

The remaining members of class ExprStep specify the axis of the step (theAxis),

and the node test. Information about the node test include the memberstheNodeKindTest

and theNameTest with their obvious semantics. If only the former is specified, then the

name test contains a wildcard, and if only the latter is specified, then the kind test stores

the principal node kind.

During translation, every step expression is wrapped into an algebraic operator of class

AlgUnnest and stored in the U-component of the enclosing SFWDU-block. If another

instance of class ExprStepwith the same arguments exists in this list, a pointer to this ob-

ject is returned. This way, we factorize common subexpressions. Notice however, that this
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is a purely syntactic check and, hence, we miss oportunities for factorization of common

subexpressions that may be an equivalence test [AYCLS01, MS02].

Notice that the argument relationship in this internal representation reverses the order of

path expressions. A step has its preceding step as argument.

Function Calls and Predicates

We do not need any special treatment for function calls. Inside path expressions, they are

referenced as regular arguments and translated into instances of class ExprFunCallBase.

In addition, every function call is wrapped into an algebraic operator of class AlgChi and

stored in the D-component of the enclosing SFWDU block. If the same function call is

already contained in this list, a reference to this function is returned. Thereby, we imple-

ment factorization of common subexpressions. Note that, as discussed in Section 3.4.4,

factorization of common subexpressions can cause problems.

During normalization, we move XPath predicates into the where clause of a FLWOR

expression. We add these predicates to the predicate of the enclosing SFWDU block when

the path expression occurs inside a for clause. The list, theApplicationOrder in the

SFWDU block takes care of the propor evaluation order. This is especially important in the

presence of positional predicates.

Static and Dynamic Context

Every query in our query optimizer is wrapped into a SFWDU block. This simplifies the

optimizer code in several places, but it also allows to add global information there. We use

this top-level block to store information about the static context in the D-component.

Inside path expressions, the dynamic context is represented by three information units

for context item, context position and context size. The latter two are only materialized if

they are referenced anywhere. Thus, they are created on demand only. The context item is

the IU that represents the result of an axis step. As a consequence, implicit references to

the context are made explicit during translation.

3.6.5. Example

We resume our example from Section 3.4.3 and Section 3.5.2. After normalization, the

query was as follows:

let $d := doc(”bib .xml”)

let $v1 := $d //book

for $t in $v1/ title

where some $v2 in $v1/author

let $v3 := fn : data ($v2)

satisfies

some $v4 in $d //book/ editor

let $v5 := fn : data ($v4)

satisfies $v3 eq $v5

return $t

The translation into our algebra resulted in the algebraic expression

Πt(σ∃x∈e1:e2(Υt:Υtt:v1/title(2)(χv1:Υb:d//book(2)(χd:doc(”bib.xml”)(2))))) with

e1 := χv2:fn:data(v1)(Υv1:Υa:v1/author(2)(2))

e2 := ∃y ∈ χv4:fn:data(v3)(Υv3:Υc:c/editor(Υc:d/book(2))(2)) : v2 = v4

In Figure 3.10, we show the internal representation for this query. Below the top-level

block, the nested query blocks are clearly visible: An instance of class ExprPolymorph

points from the second block to the third block, and another instance of this class refers
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AlgSFWD
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Figure 3.10.: Mapping of algebraic expressions to the Internal Representation
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to the inner most query block. Also easy to detect are the path expressions. Two location

paths end in the corelation predicate in the innermost query block. This corelation predicate

compares IU “v3” with IU “v5”. Both are computed by a sequence of axis steps represented

by instances of class ExprStep followed by a call to function fn:data. Location steps

are wrapped into AlgUnnest operators and also stored in the unnest list. Function calls

and comparisons are wrapped into AlgChi operators and stored in the define list.

3.7. Typing

All optimization steps following the NFST phase assume a semantically correct query rep-

resentation. If this assertion holds, all optimizations transform a valid query representation

into an equivalent representation of the query. Thus, during the translation of the query it

is necessary to check its structural and semantic correctness.

We have treated structural correctness in the previous three sections. In this section,

we turn our attention to semantic correctness. In particular, we present the design of our

schema management component. The check of semantic correctness includes:

• All expressions are well-typed.

• All function calls and variable references can be resolved to their definitions.

• Given a function call, the number and type of the actual arguments match some

definition of the function.

• All explicit type casts can be handled by (usually built-in) conversion functions.

• All implicit type conversions can be resolved.

The XQuery specification [BCF+07, DFF+07] requires dynamic typing, i.e. performing

type checks at runtime, and allows to do static typing at compile time. Hence, in any case,

we to support the XQuery type system, which is based on XML Schema. In our system, we

will support static typing for several reasons [CDF+04]. (1) In some cases, it can guarantee

that given valid input data, the result of a query will obey to a desired output schema. (2) It

can detect errors without executing the query. Thereby, it shortens the development cycle

for XQuery-based applications by providing this useful debugging information. (3) Type

information can be useful at query optimization time (e.g. [PMC02, KG02]). It might

even be possible to integrate type information with XML synopsis to obtain more precise

cardinality information.

We already have implemented the infrastructure for the schema component [Aly05],

and its integration into the query optimizer is underway. Figure 3.11 shows its architec-

ture. The schema component consists of the three subcomponents Facade, Internal

Representation, and the Life Cycle Management, which we now discuss in

detail.

3.7.1. The Schema Management Facade

The package Facade is the interface used by clients of the schema management. The

query compiler, the query execution engine, or the storage system are the main users of this

component. The query compiler uses it for static typing, the query execution engine for

dynamic typing, and the storage system to validate persistent data.

The facade is split into two parts. The SchemaMgr and its derived class XMLSchemaMgr

provide functions to load and store schemas and to query their content. The latter class

contains functions specifically needed for working with XML schemas. Figure 3.11 shows

only a part of the complete interface of these classes.
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create

SchemaFactory+createSetType()+createXMLDocumentExtent()+createUnionType() SchemaMgr+createXMLSchema()+createSQLSchema()+lookupFunction()+lookupExtOrRel()+makeSchemaPersistent()+isSubtypeOf()XMLSchemaMgr+lookupElement()+canBeCasted()+canBePromoted()+derivesFrom()+substitutesFor()+extendedBy()+mixesTo()+adjustTo()+expandsTo()+quantifier()+prime()
XMLSchemaFactory+createXMLLocalElement()+createXMLGlobalElement()
Facade SchemaSchemaElementInternalRepresentation

AbstractRequestWriter+write()AbstractSchemaReader+readSchema()AbstractSchemaRequestValidator+validate()+doStartRequest() SchemaBuilder+execute()
SchemaCreatorLifeCycleManagement

importschemauses

Figure 3.11.: Architecture of the schema management component

As detailed in [Aly05], the class XMLSchemaMgr implements all functions defined in

the XQuery specification [DFF+07], including type inference, type containment checks,

type casting and promotion, and typing of literals. For comparisons on content models,

we transform the content models into DFAs and thereby map the type comparison to a

comparison of DFAs, e.g. the structural equality of a type maps to the equality of the corre-

sponding automata. The schema facade also serves as the entry point to information about

the physical schema, i.e. the physical storage location or statistics for an XML document.

The schema facade hides the actual definition and implementation of the schema ele-

ments from the users of the schema management component. All these functions use only

handles [Str00] of SchemaElements when referring to the content of a schema. This

allows us to change the internal representation of schemas without affecting the clients of

the schema management component.

The class SchemaFactory and its derived class XMLSchemaFactory implement

factory methods [GHJV95] to construct types independent of the internal representation of

types.

3.7.2. Internal Representation

The internal representation is implemented as a deep hierarchy of classes. This hierarchy

is general enough to store schema information for different data models. For example,

we successfully use the schema representation for both SQL and XML Schema. Common

features are factored and used by several schema languages. At the same time, classes

specific to XML Schema are completely separated. The classes in the Facade use and

combine the information stored in the internal representation to satisfy requests by clients.

However, we were careful to shield clients from the internal representation of a schema.
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Since all classes in the internal representations are subclasses of class SchemaElement,

it suffices to expose this base class as a handle [Str00] to the clients.

3.7.3. The Life Cycle of a Schema

The XQuery specification describes how the types defined in an XML Schema document

are made available in an XQuery statement via the import schema statement. The lo-

cation hint in this statement may or may not be used by the XQuery processor. In particular,

we would like to be able to reuse a schema already loaded into memory. When bulkloading

an XML document, we want to validate it and associate the XML Schema documents used

for validation with the document. Then it is natural to make the XML Schema documents

persistent inside Natix so that we can refer to them in validated documents or in XQuery

statements.

Summarizing, we would like to load XML Schema information stored in different for-

mats and in different locations, We also want to materialize schema information into a file

on disk or inside the Natix system, e.g. we need to test type equality at runtime where one

of the types is computed at compile time. Then it is desirable to simply reload the computed

type information at query execution time.

We support this desired flexibility in the life cycle management of the schema manage-

ment component. Let us. therefore, trace the life cycle of a schema: When a client refers

to an XML Schema, it must be loaded into main memory first. Usually, this is done via the

static method SchemMgr::createXMLSchema. This method forwards this request to

the class SchemaCreator. When the required schema is already loaded into the internal

cache, a reference to the schema is returned immediately. Otherwise, class Schema-

Creator chooses a concrete implementation of class AbstractSchemaReader to

read a schema file. One choice is to read a XML Schema file from disk, another is to read

a materialized schema from the current Natix instance. The class SchemaCreator may

also validate the loaded schema using a concrete subclass of class AbstractSchema-

RequestValidator. Finally, the instance of class SchemaBuilder constructs the

main memory representation of the schema.

When the client does not need the schema anymore, it destroys the SchemaMgr. This

way it signals the schema management component that the schema can be removed from

main memory. However, the SchemaCreator is free to overrule this request, e.g. the

SchemaCreatormight detect that the schema is still used by another client or it decides

to cache the schema for later reuse.

Moreover, the client may ask the schema management component to materialize a schema.

Again, class SchemaCreator chooses a concrete subclass of class AbstractRequest-

Writer to materialize the content of the current schema. The storage format of the

materialized schema is specifically designed for a convenient materialization and loading

of schema information. Notice that the life cycle management is largely independent of

the internal representation of the schema. Creating SchemaElements is done via the

SchemaBuilder who delegates this task to the SchemaFactory. The information

needed to materialize and, later on, load schema information is basically independent of

the internal representation of the schema.

3.7.4. Summary

Our schema management component provides all functions required to type XQuery state-

ments. The internal representation of schemas and the mechanism to load and materialize

schemas is easy to extend. We exploit this flexibility to load and store schema information

of different data models (e.g. relational schema and XML Schema), different storage loca-

tions (e.g. text file or inside a Natix instance), and different storage formats (e.g. load XML

Schema file or our native storage format). We refer to [Aly05] for details on the design of

our schema management component and an assessment of the performance characteristics.
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DOC

A

B

A A

C

A

B

A B

Figure 3.12.: An XML document

3.8. XPath Cardinality Estimation

Besides type information, every object of the query representation is annotated with car-

dinality information. The estimated result size for the query result as well as intermediate

results are important information for cost-based query optimization. If statistics were gath-

ered on queried data, we can compute precise cardinality estimates. Otherwise, we need to

rely on simple heuristics.

We use well-known and well-studied techniques to estimate the cardinality of stan-

dard relational operators such as selections, joins, duplicate elimination, see [Ioa03] for

a survey. Therefore, we concentrate on estimating the result size of path expressions

in this section. Among the numerous proposals we decided to implement Markov Ta-

bles [AAN01, LWP+02]. However, the architecture we present here also allows to incor-

porate other XML synopsis structures, e.g.XSketch [PG02], Bloom Histogram [WJLY04],

or XSeed [ZOAI06].

3.8.1. XML-Specific Challenges

Let us first review why XML cardinality estimation requires specific treatment. This anal-

ysis will directly lead us to the requirements. Consider the XML document depicted in

Figure 3.12 as a rooted ordered labeled tree. The nodes in this tree represent XML ele-

ments.

First, notice that we deal with tree-structured data as opposed to flat tuples in the rela-

tional data model. In the tree, the path from the root to some element node can contribute

information useful for estimating the number and kinds of elements to be found in the sub-

tree rooted at this node. For example the node labeled “A” which is the only child of the

node labeled “DOC” only contains children labeled “B” or “C” whereas all other nodes

labeled “A” occur only as leaf nodes. Second, XML data might contain structural skew.

Since elements can be optional, repeated, or chosen from a set of valid elements, the con-

tent model of nodes with the same label can be highly different, even when they are valid

with respect to some schema. In Figure 3.12, for example, the content of the elements

labeled “B” is different. Third, the result of queries may be sensitive to document order.

This is the case, for example, when elements are filtered by a positional predicate.

3.8.2. Requirements

At best, we want estimates that are precise despite the challenges mentioned above. In

particular, our requirements are:

1. Precise estimates for common query patterns,

2. Ability to trade precision for storage requirements,

3. Updateability,
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4. Low construction overhead,

5. Fast and incremental computation of estimates.

They are not only desirable in the context of XML data [LWP+02] but also of relational

data [PHIS96]. We want to have precise cardinality estimates because the cardinality is the

most important parameter of cost functions. Inaccurate estimates lead to wrong decisions

by the cost-based query optimizer and to poor query performance. However, the synopsis

structures used to obtain the cardinality estimates should be small compared to the accessed

data. The synopsis structures must fit into the available main-memory at optimization

time and main memory is a scarce resource during optimization. The effort for creating

a synopsis structure should be small so that it has only a small impact on the uptime or

the performance of the database system during regular processing. Updateability assures

low estimation errors even in the presence of updates of the base data. Finally, computing

the estimates based on the synopsis should be efficient to do. When we estimate the result

cardinality of a path expression, we are also interested in result sizes if intermediate results.

As we will see in Chapter 5, this information may affect the decisions made by the query

optimizer.

Given these requirements, we decided to implement the Markov Table [AAN01, LWP+02].

It can used to estimate the cardinality of simple path expression. Simple path expressions

start with descendent step and may be followed by an arbitrary number of child steps possi-

bly containing wildcards. For other axis steps, we base our estimates on simplifications and

assumptions. Result cardinalities can be computed incrementally for every location step.

This is not really possible for Bloom Histograms [WJLY04]. Intermediate result sizes are

important information for the cost-based optimizer [HDN+03, MBB+06]. Especially com-

pared to XML Synopsis [PG02, ZOAI06], the effort for construction is low. When updating

the data store, it is possible to update the Markov Table without complete recomputation.

3.8.3. Architecture

Figure 3.13 presents the architecture of the XML statistics component. All concrete imple-

mentations of the XML cardinality estimators are accessed via the facade class Statistics-

Mgr.

Given a concrete estimator, e.g. an instance of class MarkovEstimator, statistics

for an XML document can be gathered using the function createFromFile. The

internal data structures for an estimator might be quite different, but this fact is hidden

from the user. This specific data can be materialized or loaded into memory using func-

tions loadFromXMLFile and writeToXMLFile. The MarkovEstimator is able

to updates of the underlying data via function update.

For all XML estimators, cardinality estimation for a path expression works as follows.

The method getRootContext returns an instance of class EstimatorContext that

represents the document root node. We assume that even for variable references represent-

ing a nodeset, we have previously traversed some location path to estimate the cardinality of

this nodeset. Hence, in this case and for all relative path expressions, the query optimizer or

any other client of the statistics has an EstimatorContext that represents the context

nodes for an axis step. If we want to know the result cardinality for some path expression,

we then call function traverseStep. This function takes the EstimatorContext

and information about the axis step as arguments. All these information are carried by

an instance of class Step. With this information, the cardinality estimator computes a

new EstimatorContext that represents the (virtual) result of the axis step. Clients

may retrieve the result cardinality of the step by call function getCardinality2 (func-

tion getCardinality returns the cardinality of the input to the location step). Notice

that the same context can be used to traverse two different axis steps. This can be used to

estimate the result cardinality even for branching path expressions. However, none of our

estimators exploits correlations between the branches in the path expression yet.
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Figure 3.13.: Architecture of the statistics component

3.8.4. Simple Estimators

Among the three estimators we have implemented, class SimpleEstimator is the sim-

plest. This estimator stores the number of nodes in the document (theNodeCount)

and the average fan out of nodes in the document (theFanout). In this class, we use

the standard values theFanout=10, theDepth=5, and the theNodeCount= 105,

which seem to be reasonable estimates of real-world documents [MBV03]. The subclass

DynamicSimpleEstimator reads these values in a single scan over the document.

Both classes share the simple estimation scheme shown in Figure 3.14. Independent of

the name test of any axis step, we assume that every node has f children that qualify as

query results. This assumption directly leads to the formulas in the first four rows in the

figure. Considering the result cardinality of the sibling axes, we assume that each context

node splits the children of its parents into two halves. Similar reasoning with respect to the

whole document leads to the formulas for the preceding and following axis. The cardinality

and depth for the remaining steps can be computed trivially with these formulas. In some

cases, we can use the statistics to detect when we leave the document. For path expressions

only containing parent, child, and sibling axes, we can determine that we move beyond the

document root or the deepest leaf node. In any case, we can use the total count of nodes in

the document to limit the result cardinality.

3.8.5. Markov Estimator

Using the MarkovEstimator, much more precise estimates can be computed, particu-

larly when axis steps contain name tests. The table computed from the example document

in Figure 3.12 is shown in Figure 3.15. Aboulnaga et al. [AAN01] argue that only little

accuracy is lost when we restrict ourselves to a Markov process of order 1. Thus, we only

keep paths of length 1 and 2 in the Markov Table and compute the cardinality of longer

paths with the formula below. In this formula, f(ti, ti+1) refer to entries in the Markov

Table that are pairs of labels denoting a parent-child relationship, and f(ti) to entries that
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Axis result cardinality result depth

child and attribute c · f min(d + 1, dt)
descendant c · fdt−d -

parent c−f max(d− 1, 0)
ancestor c · f−d -

following-sibling, preceding-sibling 0.5 · c · f − 1 d
following, preceding ct− c · fdt−d -

self c d

with

ct total number of nodes in the document

dt depth of the document

f average fanout of a node

c cardinality of the context sequence

d current depth of the context

Figure 3.14.: Cardinality estimation for simple estimators

contain the total number of occurrences for a tag name ti.

sel(//t1/t2/ . . . (tn−1/tn) =

(
n−2∏

i=1

f(ti, ti+1)

f(ti+1)

)

· f(tn−1, tn) (3.14)

For example, the cardinality of the path expression //A/B/A is computed as follows.

sel(//A) = f(A) = 5

sel(//A/B) = f(A, B) = 2

sel(//A/B/A) =
f(A, B)

f(B)
· f(B, A) =

2

3
· 3 = 2

parent child count

A - 5

B - 3

C - 1

DOC - 1

A B 2

A C 1

B A 3

B B 1

C A 1

DOC A 1

Figure 3.15.: Markov Ta-

ble for the

document in

Fig. 3.12

Clearly, we can compute the result cardinality of the com-

plete path incrementally. Thus, as a side effect, we also com-

pute cardinalities for intermediate results. In this case, the

cardinality of intermediate results is precise. But the cardi-

nality of the final result is slightly underestimated because the

Markov Table assumes structural uniformity and independence

between paths. By looking at the document, it is clear that this

assumption does not hold here.

To support the other axes, we need to rely on heuristics. We

estimate the result cardinality of the descendant axis, the fol-

lowing axis, and the preceding axis with name test as half the

cardinality of the overall occurrences of the given tag. Similar

to the simple estimators, we estimate that the current node is in

the middle of its parent and, thus, half of the siblings precede

and follow the current node.

Notice that the Markov Table returns a specific MarkovContext.

This context stores a pointer to the parent context. Thereby,

we can precisely compute parent steps and ancestor with and

without wildcards when we have reached the current context

via child steps. Otherwise, we use the current (or total) depth, use the entries f(ti, ti+1) as

estimates for the fanout of the parent node, and divide the current cardinality by this value.
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DBLP XMark SF10 Swissprot Treebank

Size 286 MB 1172.3 MB 115 MB 86 MB

# elements 6701980 16703210 2977031 2437666

parsing time 31s 66s 16s 7s

generate statistics 89s 237s 43s 31s

materialize statistics 0.01s 0.01s 0.01s 0.05s

load statistics 0.02s 0.02s 0.02s 0.12s

TreeSketch 2220s - DNF DNF

XSeed 1620s - 15660s 7620s

Figure 3.16.: Execution times to generate Markov Table

3.8.6. Experiments

Hardly any publication on XML cardinality estimation has reported construction times

for their XML synopsis. We agree with Zhang et al. [ZOAI06] that construction time is a

serious issue. Therefore, we present our performance numbers for constructing the Markov

Table on the system described in Appendix A.3.

Figure 3.16 reports the elapsed times. We explicitly show the time to read and parse the

XML documents from disk using SAX. The parsing time is included in the time to generate

the statistics. We also report the time to materialize the generated statistics and to load the

materialized statistics from an XML file on disk. Our experiments suggest that the statistics

can be generated at a rate of approximately 3MB per second. Moreover, parsing the XML

input, which is done at approximately 10MB per second, is not the bottleneck yet.

The execution times for the Markov Table are more than 100 times faster than the execu-

tion times reported in [ZOAI06] for XSeed (on a slightly less powerful system). Moreover,

TreeSketch [PGI04] used to benchmark XSeed does not even finish to construct the statis-

tics of Swissprot or Treebank within 24 hours! Neither system was tested with XMark

with scale factor 10. But on an XMark document with scale factor 1, XSeed needed 162

seconds, and TreeSketch did not finish within 24 hours.

It remains open whether users are willing to invest the tremendous cost for creating

the statistics for TreeSketch or XSeed. Comparing the predecessor of TreeSketch, XS-

ketch [PG02], with the Markov Table, Polyzotis and Garofalakis obtained only better pre-

cision for memory budgets well below 50KB of available memory. Notice, however, that

the Markov Table approach can adjust to query feedback [LWP+02]. Frequently queried

path expressions can be integrated into the Markov Table to enhance precision with little

additional overhead.

3.8.7. Summary

We have presented a generic framework for estimating result cardinalities of path expres-

sions on XML documents. We believe that other XML synopsis, e.g. XML Synopsis or

XSeed, can be easily integrated into the framework we have presented here. The concept

of the estimator context is so flexible that all relevant context information can be stored

there. Fortunately, the client code is independent of the concrete XML cardinality estima-

tor used and, therefore, such extensions can be integrated seamlessly.

We also plan to incorporate value statistics into our XML statistics. While in [PG06],

value statistics are created for every node, we will generate statistics only for selected

parts of the document [LWP+02, BEH+06]. We do this for two reasons: (1) The storage

overhead for e.g. a histogram is only a good investment if these values are actually queried.

Similarly, for strings or text, a lot of memory is needed for the value statistics. (2) Even

when schema information is available, and we know that a sequence of digits is actually

used as a number, certain queries will not be able to use the number value because they
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are compared to an untyped value or a string. In these cases, the statistics cannot be used

even when the underlying data is accessed by a query. Consequently, we require the user

to specify a simple path expression and the type for the content of the resulting nodes.

Then, we compute statistics for numbers, strings or keywords, knowing that they will be

actually used. The implementation of these value statistics will not be hard-coded but can

be specified by the user.

3.9. Related Work

There are two main approaches to optimize a query. In the first one, the query is trans-

formed into an internal representation that can be interpreted by the query evaluation sys-

tem [AC75, WY76]. In this approach, called interpretation, there are only limited possibil-

ities for optimizations.

Thus, the translation of a query into an internal representation is now the dominant tech-

nique in query processing. Relational algebra and relational calculus equivalences became

prime targets for the translation of query languages because one can formally prove the

equivalence of two expressions. It is then the task of query optimization to find equivalent

expressions that can be evaluated more efficiently.

Normalization and Translation before XQuery

Ceri and Gottlob [CG85] translate a SQL query into an algebraic expression in two steps:

The first step transforms the SQL syntax into a restricted one establishing a normalized

syntax. This simplifies the translation, the second step, in which the restricted SQL syntax

ist translated into the algebra. The authors argue that the resulting algebraic expression

can be optimized and, thus, efficiency of the resulting algebraic expression is not an issue.

Moreover, it is shown that their translation establishes a normal form because syntactically

different queries are translated into the same algebraic expression.

Calculus representations are another representation into which SQL is translated [NPS91,

vB87, FM95]. Fegaras [FM95, FM00] and von Bültzingsloewen [vB87] use a normal

form established during their translation as the basis for further optimizations. Optimizing

nested queries either containing quantifiers or aggregate functions are the prime subjects of

research here [JK84, Bry89, vB90, Nak90, FM00].

In Starburst and DB2, a query is translated into the Query Graph Model (QGM) [HFLP89,

PHH92, PLH97]. QGM is a custom representation similar to the calculus representations

above. For SQL and, as we will see later, also for XQuery, a mapping of query constructs

to the QGM is defined. Unfortunately, only informal descriptions of this mapping are pub-

licly available. Heuristic optimizations, such as the decorrelation of nested queries and the

merging of QGM blocks, are performed on this representations.

Translation of XPath 1.0

Path expressions represent an important fragment of XQuery. Many features of the XPath

1.0 standard have become part of the XQuery specification. Thus, translation, optimization,

and evaluation techniques proposed for XPath 1.0 should carry over to path expressions in

XQuery.

We make use of efficient translations of XPath expressions. Gottlob et al. [GKP02,

GKP03b] observed that XPath expressions have an exponential worst-case run time when

subexpressions are evaluated repeatedly. They propose to use memoization to avoid this

redundant work.

Along the same line, Helmer et al. [HKM02] translate XPath location steps without po-

sitional predicates such that creating duplicates is avoided. These ideas were extended
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in [HM03], where redundant sort operations are removed when the result of the path ex-

pression will still be in document order. Brantner et.al [BKHM05] were the first to present

a complete translation procedure for XPath 1.0 into algebraic expressions. A complete

translation of XPath into SQL statements is proposed in [Gru02]. In another approach

to the processing of the child and descendent axis, XPath is translated into an automa-

ton [LMP02].

Normalization and Translation of XQuery

The idea of Ceri and Gottlob [CG85] to normalize the full query syntax into a core language

is also proposed in the XQuery specification [DFF+07]. The formal semantics of XQuery

is defined in terms of this core language. Thus, an interpretative view of evaluating XQuery

is taken in the formal specification. While some implementations of XQuery implement

these semantics literally, it was soon clear that efficient XQuery processing demands a

query representation that is easy to optimize.

The first proposal to normalize XQuery was proposed by Manolescu et al. [MFK01].

Their normalization rules prepare XQuery statements for the translation into SQL state-

ments. Thus, all normalization rules work on the level of XQuery statements, remove

nested FLOWR expressions, and establish some normal form that is not formally charac-

terized.

Extending previous work [FM00], Fegaras [FLBC02] translates XQuery statements into

monoid comprehensions. Rewrites establish a unique normal form to prepare subsequent

optimizations. Monoid comprehensions allow for an elegant integration of different bulk

types. Expressions in this calculus can be checked to preserve order or duplicates. Unfor-

tunately, the cited work does not seem to exploit this fact.

Another translation algorithm for a subset of XQuery was proposed by Viglas et al.

[VGD+02]. The presented algebra does not seem to preserve because XML documents

are not treated as ordered labeled trees. A unique feature of this approach is its explicit

management of context information. This context information can be exploited during

query optimization.

The Timber system [JAKC+02] follows a different approach. Queries are translated into

pattern trees defined in the logical tree algebra TAX [JLST02]. Optimizations are defined as

rewrites on this tree algebra. All pattern trees in TAX can be mapped to algebraic operators

in the physical algebra [SSKH+02].

These early proposals do not fully support the XQuery specification. Some of these

efforts included a translation of XQuery into SQL [KKN03]. However, the MonetDB/-

Pathfinder project is the approach that covers a large subset of XQuery. In this system,

XML documents are represented in a pre-/post order encoding that maps a unique iden-

tifier to each node in the document [Gru02]. This allows to construct SQL queries that

retrieve all nodes that satisfy a path expression. Later, this translation was extended to

larger fragments of XQuery [GST04, GT04].

In the following, as the standardization process of XQuery converged, the focus shifted

to a more complete coverage of the XQuery specification.

The XQuery engine of the BEA streaming XQuery engine [FHK+04] translates XQuery

expressions into an internal expression representation. While this representation shares the

ideas of the relational algebra, it is specifically designed to represent XQuery expressions.

Both normalization and optimization are carried out as rewrites on this query representa-

tion.

A similar approach is taken by Galax [RSF06]. This system implements the normaliza-

tion of the XQuery specification literally. Afterwards, the resulting XQuery Core expres-

sions are translated into an extended algebra. Algebraic rewrites allow for optimizations.

Commercial relational database products also support XQuery to a varying extent. Mi-

crosoft SQL Server [PCS+05] and Oracle XML DB [LKA05] support fragments of the

XQuery specification. Queries are translated into algebraic expressions and, if possible,
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rewriting techniques of the relational optimizer are used for optimizations. The IBM DB2

product [NdL05] builds upon the System RX prototype [OCP+05, BCH+06]. The QGM

query representation of DB2 was extended to be able to represent XQuery statements. Nec-

essary extensions to the relational engine and XQuery specific optimizations are described

in [BEH+06].

Our query representation is similar to the query graph model [HFLP89, JK84, SKS+01],

which has proven very powerful in performing transformations on the query graph. In this

chapter, we have described the normalization and translation into this representation. We

have formally specified our normalization rules, the translation functions and the mapping

between our algebra and our calculus-like query representation. As others have done be-

fore, our normalization rules simplify the translation into our internal representation. In

parallel to normalization, translation, and semantic analysis, we factorize common subex-

pressions. The latter task is based on the ideas of dependency-based optimization [CM93].

In this process, new variables are introduced as a preparatory step for factorization [CD92].

Typing and Statistics

During semantic analysis, a type is associated with every expression. The XQuery specifi-

cation gives some rules for typing XQuery expressions [DFF+07]. Aly [Aly05] describes

the architecture for computing types and performing validation in our system. During typ-

ing and validation, schema information provided by an XMLSchema can be exploited. The

complexity of type checking is treated in [Suc02, GKP03a, Seg03]. Given some schema or

type information, several optimizations become available [FS98, KG02, ZO02, PMC02].

The XQuery typing rules are imprecise in deriving result cardinalities. For some expres-

sions, more precise result cardinalities can be derived. At best, statistical information is

available for the XML data to access. Unfortunately, synopsis structures used successfully

for relational data [MCS88, Ioa03] are only of limited use for semistructured data because

(1) the result cardinality of a location step depends on the context in which this location

step is evaluated, and (2) the uniform distribution assumption may not hold. Hence, specific

techniques for a result size estimation of XML queries were developed – see [Ram06] for a

survey. We could identify five main approaches to XML cardinality estimation. First, his-

togram techniques were adopted for querying XML [FHR+02, Sar03b, WPJ02]. Second,

the idea of a Markov process was used to treat context information [AAN01, LWP+02,

BEH+06]. Third, specific synopses [GW97, PG02, PG06, ZOAI06] were developed that

can trade space for better accuracy. XML Synopses can both represent context information

and adjust to local violations of the uniform distribution assumption. Finally, the Bloom

Histogram [WJLY04] and statistical learning techniques were used for cardinality estima-

tion and even for cost estimation [ZHJ+05].

We have implemented the Markov Table proposed in [AAN01, LWP+02] for structural

cardinality estimation. However, our architecture is general enough to support other esti-

mators. We plan to include value statistics for path expressions specified by the user and

query feedback to adjust to updates and query workloads.
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The translation of a query into NAL, our algebra, yields a logical plan that may not lead to

an efficient evaluation strategy. Thus, the query optimizer first applies transformations to

the logical plan to improve it. These transformations are usually heuristics, i.e. each trans-

formations is assumed to improve the quality of the logical plan. These transformations are

not guided by cost information.

Among these heuristics, query unnesting is a particularly performance critical. Nested

queries in XQuery require additional attention because many queries can only be formu-

lated using nested query blocks. It is well-known that nested queries often need much

longer to evaluate than unnested ones because (1) they require an evaluation in nested loops

while for unnested queries more efficient evaluation algorithms become available, and (2)

unnested queries allow the cost-based query optimizer to consider more plan alternatives.

Naturally, this leads to an increased optimization time. But this is a good investment be-

cause, as we will see in this chapter, query execution times usually improve by several

orders of magnitudes after unnesting a query. For this reason, we will concentrate on tech-

niques for unnesting nested queries in XQuery. Other heuristics need to accompany query

unnesting to exploit the full potential of algebraic optimization, and we mention several of

them in this chapter.

First, we enumerate requirements for our unnesting equivalences and their implementa-

tion (Section 4.1). In Section 4.2, we introduce the three basic algebraic patterns we detect

with our unnesting techniques and present motivating examples for each of them. We do

not simply enumerate algebraic equivalences that turn a nested query into an unnested one.

Instead, we organize all our unnesting equivalences together with supporting rewrites into

decision trees. We devote one section to the algebraic equivalences and support rewrites

for one pattern of the three basic patterns (Sections 4.3, 4.4, and 4.5). We apply our frame-

work to example queries, and thereby explain our optimization approach and discuss the

performance impact of unnesting. In Section 4.6, we present the implementation of our

unnesting framework. Finally, we summarize our work in Section 4.7 and an discuss work

related to ours in Section 4.8.

4.1. Requirements

As a fundamental requirement, we demand that our equivalences are correct. Given this

prerequisite, our equivalences will only be useful when we can expect an performance gain

after unnesting that exceeds the effort of applying our unnesting equivalences. This leads

to the following requirements (see also e.g. [Che98]):

Correctness Rewrites transform the query plan from a valid plan into another valid plan.

Effectiveness The rewriting system chooses those rewrites that result in most efficient

plans among all applicable rewrites.

Comprehensibility It must be easy to relate a rewrite rule to an equivalence. Scheduling

of rewrite rules must be easy to tune or extend.

Extensibility The rewriting system must be easy to extend with new rules and traversal

strategies.

75



4. Query Unnesting

Efficiency Rewriting should be reasonably fast. In particular we expect that the addi-

tional effort of rewriting is small when no rewrite can be applied.

In this chapter, it is our main goal to convey the idea of our unnesting framework. Thus,

we refer to Appendix A.2 for the proofs of our equivalences. The structure of our decision

trees will be the main tool to argue for the effectiveness of our unnesting framework. The

last three requirements focus on design and implementation issues. Hence, we treat them

in Section 4.6 where we present the implementation of our unnesting framework.

4.2. Algebraic Patterns

Our unnesting equivalences detect algebraic patterns containing algebraic expressions in

subscripts of selections or map operators. In this section we identify and motivate these

basic patterns.

4.2.1. Quantified Queries

XQuery contains primitives for expressing quantification in queries. A quantified expres-

sion begins with a quantifier (some for existential, every for universal quantification), fol-

lowed by one or more in-clauses that are used to bind variables. We refer to the in-clauses

as range expressions. After that we have the keyword satisfies and a test expression (or

range predicate). Conceptually, the range predicate is evaluated for each combination of

variable bindings. In the case of the quantifier some, the expression is true if at least one

evaluation of the range predicate returns true, in the case of the quantifier every, all tests

have to evaluate to true.

Let us reconsider the following example query which uses an (existentially) quantified

expression in the where clause:

for $t1 in doc(”bib .xml” )// book/ title

where some $t2 in doc(”reviews .xml” )// entry / title

satisfies $t1 eq $t2

return $t1

General comparisons in XQuery employ implicit existential quantification when compar-

ing sequences. During normalization, we rewrite these implicit quantifications into explicit

ones. Since quantification occurs quite frequently in XQuery queries, it is important to opti-

mize these expressions by unnesting them. The previous example query can be formulated

in terms of general comparisons:

for $t1 in doc(”bib .xml” )// book/ title

where $t1 = doc(”reviews .xml” )// entry / title

return $t1

The query with explicit quantification is translated into the following algebraic expres-

sion (we ignore the return clause, implicit function calls, and the result construction).

σ∃t∈(e2):t1=t2(e1)

with

e1 := Υt1:doc(”bib.xml”)//book/title(2)

e2 := Υt2:doc(”reviews.xml”)//entry/title(2)

The example query contains the pattern that all existentially quantified queries in our

unnesting procedure exhibit:
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basic patterns for nested quantified queries

σ∃x∈σp(e2):q(e1)

σ∀x∈σp(e2):q(e1)

In our unnesting rules we identify several variations of these patterns for expression e1,

the range expression e2, or the range predicate p. For each kind of these patterns we give

an equivalent unnested expression.

4.2.2. Implicit Grouping

The term implicit grouping is motivated by the fact that grouping in XQuery must be for-

mulated using nested queries. Explicit grouping implies an explicit grouping construct in

the surface syntax of the query language.

In XQuery implicit grouping is frequently used to restructure input documents or to

aggregate data using an aggregation function such as sum, count, or avg. The following

example query groups book titles by publishers:

for $p in distinct −values(doc(”bib .xml” )// publisher )

return

<publisher>

<name> { $p } </name>,

{ for $b in doc(”bib .xml” )// book[$p eq publisher ]

return $b/ title

}
</publisher>

Here, grouping is expressed by a nested query in the return clause. Normalization

results in an alternative style of expressing grouping, pulling up the nested part of the

return into a let clause:

for $p in distinct −values(doc(”bib .xml” )// publisher )

let $t := ( for $b in doc(”bib .xml” )// book

let $p2 := $b/ publisher

let $t2 := $b/ title

where $p eq $p2

return $t2)

let $np := <name> { $p } </name>

let $res := <publisher> { $t , $np } </publisher>

return $res

Translating the normalized query into an algebraic expression, we get (again ignoring

implicit function calls and result construction):

χt:Πt2(σp=p2(e2))(e1)

where

e1 := Υp:ΠD(doc(”bib.xml”)//publisher)(2)

e2 := χt2:b/title(χp2:b/publisher(Υb:doc(”bib.xml”)//book(2)))

The key component of the translation is that the let clause is translated into a χ operator

with a subexpression in its subscript. We identify the

basic pattern for implicit grouping

χg:f(σp(e2))(e1)
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Similar to quantified queries, we identify several variations of this basic pattern. For each

variation of the pattern containing a nested algebraic expression, we devise an equivalent

unnested algebraic expression.

4.3. Existential Quantifiers

This section, as well as the following two sections on universal quantifiers and implicit

grouping, is structured as follows. We start with a (small) motivating example and then

discuss the general strategy for unnesting queries of this type. After that, we describe

the concrete equivalences used for unnesting and some rules for support rewrites. Having

covered the foundations, we then present detailed examples for unnesting, applying the

rules and equivalences introduced before. In this context we also validate the effectiveness

of our approach by showing performance figures for the example queries.

4.3.1. Motivating Example

As a motivating example for queries containing existential quantifiers, let us reconsider the

query from Section 4.2 (where we want to find all books with at least one review):

for $t1 in doc(”bib .xml” )// book/ title

where some $t2 in doc(”reviews .xml” )// entry / title

satisfies $t1 eq $t2

return $t1

After having normalized and translated this query into our algebra, we arrive at the fol-

lowing expression:

Πt1(σ∃t∈(e2):t1=t2(e1))

with

e1 := Υt1:doc(”bib.xml”)//book/title(2)

e2 := Υt2:doc(”reviews.xml”)//entry/title(2)

It is not hard to detect the basic pattern for existentially quantified queries in this expres-

sion. How do we continue from here? Ideally, we would now hand the algebraic expression

to an optimizer that determines an efficient query plan based on a cost model. Cost-based

optimizers work on the level of query blocks. In the case of XQuery a block corresponds

approximately to a FLWOR expression or a quantified expression. Hence, when we are

able to merge nested algebraic expressionsinto larger ones, we increase the search space

of the query optimizers. As a consequence the query optimizer will often find much more

efficient query execution plans. The choice of the best unnesting equivalence to apply is

based on heuristics. This heuristic is presented in the form of a decision tree in the next

section.

4.3.2. Optimization Strategy

Figure 4.1 shows the decision tree we use for unnesting existentially quantified expressions.

Going down the tree from top to bottom, we reach more and more specific rules, which we

formally define in Figure 4.2. At the moment, our heuristic consists of applying the most

special rewrite rule possible, as the more special rules tend to improve the performance

significantly. (For each rule we enumerate all preconditions that have to be met in order

to apply this rule, more details follow in the next section.) Let us have a brief look at the

decision tree. First of all, we check for an expression σ∃x∈e2:p(e1) if e2 can be evaluated

independently of e1. If not, we leave the expression as it is or evaluate it via an efficiently
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σ∃x∈σp(e2):q(e1)

does evaluation of e2 depend on

evaluation of e1?

are there conjuncts in p that

compare variables of e1 with those of e2?

no

try support rewrite - if not

applicable: unnest to × using

Eqv. 4.2

no

check correlating predicate p

yes

apply Eqv. 4.3, check

ΠA1(e1) ⊇ ΠA1:A2(ΠA2 (e2))

=

apply Eqv. 4.6

yes

apply Eqv. 4.4

<, >

apply Eqv. 4.5

else

apply Eqv. 4.1

yes

Figure 4.1.: Decision tree for existentially quantified queries

implemented unnest map operator (using Eqv. 4.1) [Gra03, BKHM05]. If yes, we examine

the predicate p. If we are not able to correlate the expressions e1 and e2 via p, then we

unnest the expression with the help of a Cartesian product (using Eqv. 4.2). If p correlates

e1 and e2, we use different variants of semijoins or grouping/aggregation to unnest the

expression (Eqvs. 4.3, 4.4, 4.5, 4.6).

For our motivating example this means that we end up at Eqv. 4.3 (Eqv. 4.6 is not ap-

plicable, as bib.xml and reviews.xml may not contain the same books). Applying

Eqv. 4.3 to our example yields

Πt1(e1 �t1=t2 e2)

4.3.3. Equivalences for Unnesting

After having outlined the general strategy, we now present the concrete equivalences (see

Figure 4.2) and list all prerequisites necessary for applying them.

Equivalence 4.1

Preconditions e1 and e2 cannot be evaluated independently (formally speaking,

F(e2) ∩ A(e1) 6= ∅).
Basic idea Combine all tuples in e1 with all tuples in e2(e1) via an unnest map

operator and then apply p. We need the tids to eliminate duplicates.

Equivalence 4.2

Preconditions e1 and e2 can be evaluated independently (F(e2) ∩ A(e1) = ∅).
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σ∃x∈(e2):p(e1) = Π
tidi1

A(e1)(σp(ΥA(e2):e2
(tidi1(e1)))) (4.1)

σ∃x∈(e2):p(e1) = Π
tidi1

A(e1)(σp(tidi1(e1)× e2)) (4.2)

σ∃x∈(σA1=A2(e2)):p(e1) = e1 �A1=A2∧p e2 (4.3)

σ∃x∈(σA1θA2
(e2)):p(e1) = σA1θaggrA2 (σp(e2))(e1) (4.4)

σ∃x∈(σA1θA2
(e2)):p(e1) = e1 �A1=A3 (ΠA3:A1(e1 1A1θA2∧p e2)) (4.5)

ΠD(e1) �A1=A2 (σp(e2)) = σc>0(ΠA1:A2(Γc;=A2;count◦σp(e2))) (4.6)

Figure 4.2.: Unnesting equivalences for existentially quantified queries

Basic idea Combine all tuples in e1 with all tuples in e2 via a Cartesian product

and then apply p. We need the tids to eliminate duplicates. This equivalence

has to be used if e1 and e2 are not correlated via the predicate p. If e1 and e2 are

correlated, it should only be used if the other equivalences are not applicable.

Equivalence 4.3

Preconditions e1 and e2 can be evaluated independently, and e1 and e2 are corre-

lated with an equality predicate.

Basic idea Use a semijoin to evaluate the expression. We expect the evaluation of

a semijoin operator to be much more efficient than that of a cross product or

the nested version of the expression.

Equivalence 4.6

Preconditions Eqv. 4.6 is a special case of Eqv. 4.3. In addition to the precondi-

tions of Eqv. 4.3, ΠA1(e1) ⊇ ΠA1:A2(ΠA2(e2)) must hold. This is the case e.g.

if both expressions, e1 and e2, evaluate the same path expression on the same

document.

Basic idea We do not have to redundantly evaluate both e1 and e2. It is sufficient

to just group all tuples in e2 on attribute A2, filter the tuples with predicate p
and count the remaining tuples. In the equivalence we denote this operation

by a function composition. For existential quantification the number of tuples

satisfying p for a certain value A2 has to be greater than 0.

Equivalence 4.4

Preconditions Same as for Eqv. 4.3, except that e1 and e2 are correlated with

an inequality predicate. The following table gives the correct assignments for

θ,¬θ and aggr:

θ aggr
>, ≥ min
<, ≤ max

Basic idea If we have an inequality comparison operator (θ ∈ {<,≤,≥, >}), we

just need to compare the value of A1 to the minimal or maximal value of A2.

For existential quantification a tuple of e1 satisfies the query predicate if A1

lies in the range [minA2(e2),∞) or in the range (−∞, maxA2(e2)], respec-

tively. The resulting nested expression can be unnested with equivalences that

are introduced in Sec. 4.5.

We have to be careful when handling the special case e2 = ǫ. In this case,

the predicate A1θaggr is evaluated to false. Additionally, we must take care
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of the semantics of XQuery: In XQuery the sequence of items that functions

min or max get as arguments convert these items to xs : double. In contrast,

the general comparison does not perform such an implicit type conversion, i.e.

xs : string is used for the items. For strings we rely on the collation to order

the strings and to compute the minimum or maximum.

Equivalence 4.5

Preconditions Same as for Eqv. 4.3, except that e1 and e2 are correlated with an

arbitrary predicate. This is the most general case for correlated expressions.

Basic idea The general predicate is delegated to a θ-join operator. This has the

advantage that the θ-join operator does not need to preserve order (this is done

by the semijoin). Non-order-preserving operators can usually be implemented

more efficiently. 1

4.3.4. Support Rewrites

The equivalences for unnesting from the previous section may not be immediately applica-

ble, but with the help of some further rewrite rules, we can bring the expression that is to

be optimized into the right form.

For example, take the following expression, in which the tuples bound to variables s and

t contain x resp. y as bound variables

∃s ∈ e1 : ∃t ∈ e2 : xθy.

None of the equivalences presented in Section 4.3.3 can be applied to this expression di-

rectly. However, if we rewrite it to

∃s ∈ σ∃t∈e2:xθy(e1) : true

we can apply equivalence 4.3 and replace the selection with a semijoin:

∃s ∈ (e1 �xθy e2) : true.

When rewriting expressions, we follow two general heuristics. First, we try to reduce the

number of free variables in the subexpression we want to unnest. This is mainly achieved

by splitting and moving predicates [Ste95]. As all free variables in a subexpression are

bound by the enclosing expression, by moving these free variables we try to decouple the

subexpression from the enclosing expression as much as possible. The second heuristic

involves minimizing the distance between query blocks that are correlated via predicates.

These two strategies simplify the unnesting of subexpressions considerably.

In contrast to the unnesting equivalences, which are almost always applied from left to

right, the support rewrite rules are usually used in both directions. Hence, we check that we

have not applied the rewrite to the same expression before to avoid getting stuck in infinite

loops.

Let us now have a look at the rewrite rules (all rules are summarized in Figure 4.3). This

list is in no way exhaustive (we just included rules that are needed in the remainder of

this paper) and many of the rules are common knowledge and have already been described

elsewhere [Bry89, JK84, Ste95].

Equivalence 4.7

Preconditions e1 and e2 can be evaluated independently of each other. Further-

more, Eqv. 4.7 may not have been applied to the same subexpression before.

1 Note that we cannot use the θ-semijoin proposed by [SHP+96] because it is restricted to an unordered context.
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∃x ∈ e1 : ∃y ∈ e2 : p = ∃y ∈ e2 : ∃x ∈ e1 : p (4.7)

∃x ∈ e1 : p ∧ q = ∃x ∈ σp(e1) : q (4.8)

∃x ∈ ΠA(e1) : p = ∃x ∈ e1 : p (4.9)

p ∧ ∃x ∈ e1 : q = ∃x ∈ e1 : p ∧ q (4.10)

p ∨ ∃x ∈ e1 : q = ∃x ∈ e1 : p ∨ q (4.11)

σ∃x∈e2:p∧∃y∈e3:q(e1) = σ∃x∈e2:p(σ∃y∈e3:q(e1)) (4.12)

= σ∃y∈e3:q(σ∃x∈e2:p(e1))

Figure 4.3.: Support rewrites for existentially quantified queries

Basic idea Since we match fixed query patterns, a wrong order of quantifiers can

sometimes prevent the application of an unnesting or support rewrite equiva-

lence. Exchanging quantifiers may be able to solve this problem.

Equivalence 4.8

Preconditions Eqv. 4.8 has not been applied to the same subexpression before.

Basic idea Applied from left to right, it corresponds to the standard predicate push

down on algebraic expressions – in the opposite direction, it models a predicate

pull up.2 This equivalence was used for the motivating example (with p = ∃y ∈
e2 : xθy and q = true).

Equivalence 4.9

Preconditions The projection may not remove attributes that are needed for the

evaluation of the predicate p. Also, Eqv. 4.9 has not been applied to the same

subexpression before.

Basic idea Removing or inserting projections in existential quantifiers does not

change their result. The rewrite prepares other support rewrites, e.g. predicate

pull up, which otherwise would not be applicable for a lack of visibility of

bound attributes.

Equivalences 4.10 and 4.11

Preconditions The equivalences have not been applied to the same subexpression

before. Also, the free variables in p are not bound by e1 (F(p) ∩ A(e1) = ∅).
Basic idea We want to move predicates that do not depend on attributes of the

subexpression out of that expression. We can do this if the predicate is totally

independent of all variables in the subexpression.

Equivalence 4.12

Preconditions Eqv. 4.12 has not been applied to the same subexpression before.

Also, all free variables in p and q are bound by the expressions e1, e2, or e3

(F(p) ⊆ A(e1) ∪ A(e2) and F(q) ⊆ A(e1) ∪ A(e3).

Basic idea As a selection is order-preserving and commutative, it does not matter

in which order the selections are evaluated.

2Both rewrites are also called range nesting and (de-)scoping [Bry89, JK84, Ste95].
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4.3.5. Example Queries

We now present more detailed example queries showing the unnesting and support rewrite

rules in action. These examples also include measurements on the evaluation times of the

different query plans.

Simple Existential Quantification

First, we discuss a variant of the query used in the motivation and in Section 4.2. Optimiz-

ing existentially quantified queries in XQuery is motivated by their their frequent usage in

general comparisons. General comparisons are implicitly existentially quantified.

for $t1 in doc(”bib .xml” )// book/ title

where $t1 = doc(”reviews .xml” )// entry / title

return $t1

This query considers each title of a book. In the where clause, this book title is compared

to all titles mentioned in entries of reviews. A book title is returned in the query result if at

least one review exists with the same title. It does not matter how many such reviews exist

for the same book title. The general comparison returns true when any match is found.

All these steps are made explicit during normalization: The general comparison is turned

into a quantified expression that compares the items in both arguments of the general com-

parison. The comparison is done on atomic values, i.e. for nodes, for example, the typed

value is extracted. Then, a value comparison is performed that exploits available type in-

formation. In absence of specific type information, a string comparison is performed. As

a result of normalization, we replace the general comparison by an existentially quantified

expression in the where clause.

for $t1 in doc(”bib .xml” )// book/ title

where some $t2 in doc(”reviews .xml” )// entry / title

satisfies $t1 eq $t2

return $t1

We translate the normalized query into

Πt1(σ∃t3∈e2:t1=t2(e1))

where

e1 := Υt1:doc1//book/title(2)

e2 := Υt2:doc2//entry/title(2)

and

doc1 := doc("bib.xml")

doc2 := doc("reviews.xml")

Unnesting The translated query almost directly matches the conditions for Eqv. 4.3. We

only need to push the range predicate of the nested query into the range expression using

support rewrite 4.8. We will use this rewrite quite frequently in our examples. As result of

these steps we get

Πt1(σ∃t3∈e2:t1=t2(e1))

(4.8)
= Πt1(σ∃t3∈σt1=t2(e2):true(e1))

(4.3)
= Πt1(e1 �t1=t2 e2).

Evaluation Before we discuss the experimental results, let us briefly describe the exper-

imental setup. All queries were implemented and evaluated in our native XML database

system Natix. They were executed with warm buffer on documents that fit into the database

buffer. We only report elapsed times because query execution was CPU-bound.
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The data sets we used are based on the XQuery Use Cases “XMP” and “R”. “XMP”

contains data on books, authors, editors, reviews and so on, while “R” describes an auction

site with users, items, bids, etc. As in this first example query, we will sometimes use the

fact that child nodes occur exactly once below their parents. In the appendix A.3 we give

further details of the experimental setup.

The performance of these two evaluation plans is compared in the following table.

Size 100 1000 10000

Nested 0.10 s 1.83 s 175.80 s

Unnested 0.08 s 0.09 s 0.20 s

The measurements clearly show that the unnested query plan scales better than the nested

plan. When the document size of the input increases from 1000 to 10000 the execution time

of the nested query increases by a factor of 1000 – a direct consequence of the nested-loop-

evaluation. On the other hand, for the efficient hash-based implementation of the semijoin

in the unnested query the execution time only doubles when both the input size of both

input documents increases by a factor of 100.

Existential Quantification vs. Grouping

Existential Quantification Using exists Existential quantification might be ex-

pressed in different ways. Instead of using a quantified expression, it is also possible to

use the function empty or check if counting evaluates to zero. The following example

illustrates a third alternative using the function exists. This query returns all the books

having at least on author containing the string “Suciu” in its name.

let $d1 := doc(”bib .xml”)

for $b1 in $d1//book

where exists ( for $b2 := $d1//book,

$a2 in $b2/author

where contains ($a2, ”Suciu”)

and $b1 is $b2

return $b2)

return $b1

During normalization we extract the complex FLWR expression in the argument of func-

tion exists into a new let clause.

let $d1 := doc(”bib .xml”)

for $b1 in $d1//book

let $b3 := ( for $b2 in $d1//book,

$a2 in $b2/author

where contains ($a2, ”Suciu”)

and $b1 is $b2

return $b2)

where exists ($b3)

return $b1

Then, the translation of the query yields:

Πb1(σfn::exists(b3)(χb3:e3(e1))).

where

e1 := Υb1:d1//book(χd1:doc1(2))

e2 := Υa2:b2/author(Υb2:d1//book(2))

e3 := Πb2(σb1=b2∧contains(a2,”Suciu”)(e2))

and

doc1 := doc("bib.xml")
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Unnesting by Detecting Grouping Since e1 and e3 differ only in the retrieval and

filter on the authors name, the expression can be unnested by using Eqv. 4.29 or 4.27 — see

Section 4.5 for details. Note, that the condition e1 = ΠA1:A2(Π
D
A2

(e2)) holds and that we

can apply the filter operation after associating tuples to groups. Thus, we can even apply

Eqv. 4.30.

Πa1(σfn::exists(b3)(χb3:Πb2(σb1=b2∧contains(a2,”Suciu”)(e2))(e1))))

(4.30)
= Πa1(σfn::exists(b3)(Πa1:a2(Γb3;=b2;id◦σcontains(a2,”Suciu”)

(e2))))

This is not really efficient, because we materialize all tuples that belong to a group only to

check if the group was not empty afterwards. Thus, it is better to replace function exists

by the expression 0 > count before unnesting. This corresponds to the second alterna-

tive of expressing existential quantification mentioned above. Then, we get the following

sequence of rewrites:

Πb1(σfn::exists(b3)(χb3:Πb2(σb1=b2∧contains(a2,”Suciu”)(e2)(e1))))

= Πb1(σcount(b3)>0(χb3:Πb2(σb1=b2∧contains(a2,”Suciu”)(e2)(e1))))

= Πb1(σc>0(χc:count(Πb2(σb1=b2∧contains(a2,”Suciu”)(e2)(e1)))))

(4.30)
= Πb1(σc>0(Γb3;=b2;count◦σcontains(a2,”Suciu”)

(e2))

Existential Quantification Using Quantified Expression When we formulate this

query using a quantified expression we get the following query:

let $d1 := doc(”bib .xml”)

for $b1 in $d1//book

where some $b2 in $d1//book,

$a2 in $b2/author

satisfies contains ($a2, ”Suciu”) and $b1 is $b2

return $b1

During normalization the query remains unchanged, and the translation results in

Πb1(σ∃b∈e2 :e3(e1)).

where

e1 := Υb1:d1//book(χd1:doc1(2))

e2 := Υa2:b2/author(Υb2:d1//book(2))

e3 := b1 = b2 ∧ contains(a2, ”Suciu”)

and

doc1 := doc("bib.xml")

Unnesting Quantified Expression Again, we have two choices to unnest this query.

In a first attempt start unnesting by pushing the range predicate of the existential quantifier

into the range expression using Eqv. 4.8. Then we push this selection down into expression

e3. In the last unnesting step we apply Eqv. 4.3.

Πb1(σ∃b3∈e2:e3(e1))

(4.8)
= Πb1(σ∃b3∈σe3 (e2):true(e1))

(4.3)
= Πb1(e1 �b1=b2 (σcontains(a2,′′Suciu′′)(e2)))

85



4. Query Unnesting

As already discussed before for this query, we may also exploit the fact that the condition

ΠA1(e1) ⊇ ΠA1:A2(ΠA2(e2)) holds. This observation allows us to apply Eqv. 4.6 after

applying Eqv. 4.8.

Πb1(σ∃b3∈e2:e3(e1))

(4.8)
= Πb1(σ∃b3∈σe3e2:true(e1))

(4.6)
= Πb1(σc>0(Γc;=b2;count◦contains(a2,′′Suciu′′)(e2)))

An encouraging result of the discussion on this query is that different formulations of

the same query lead us to the same unnested expression. This is a good indication for the

general applicability of our set of rewrites and unnesting equivalences.

Evaluation In the table below, we summarize the execution times for the three presented

expressions. The tremendous effect of unnesting can also be seen in this case. In addition,

we observe a performance gain in the third evaluation plan, which is caused by avoiding

one scan of the input document.

Size 100 1000 10000

Nested 0.04 s 1.31 s 138.8 s

Semijoin 0.03 s 0.05 s 0.30 s

Grouping 0.02 s 0.02 s 0.02 s

Exchanging Quantifiers

With the following example query, we show how an expression can be rewritten using

Eqv. 4.7 to allow for more efficient unnesting techniques. In the query below we want to

determine all users of an auction site who are actively bidding on at least one item:

for $u in doc(”users .xml” )// usertuple

where some $i in doc(”items .xml” )// itemtuple

satisfies some $b in doc(”bids .xml” )// bidtuple

satisfies ($u/ userid eq $b/ userid and

$i /itemno eq $b/itemno)

return $u/name

Following the normalization steps introduced in Section 3.4, we move the path expressions

in the innermost range predicate into new let clauses in the quantified subexpressions.

for $u in doc(”users .xml” )// usertuple

let $un := $u/name

let $uu := $u/ userid

where some $i in in doc(”items .xml” )// itemtuple

let $ii := $i /itemno

satisfies some $b in doc(”bids .xml” )// bidtuple

let $bu := $b/ userid

let $bi := $b/itemno

satisfies ($uu eq $bu and $ii eq $bi )

return $un

Translating the above into our algebra results in the following expression:

Πun(χun:u/name(σ∃it∈(e2):∃bt∈(e3):e4
(e1)))
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where

e1 := χuu:u/userid(Υu:doc1//usertuple(2))

e2 := χii:i/itemno(Υi:doc2//itemtuple(2))

e3 := χbi:b/itemno(χbu:b/userid(

Υb:doc3//bidtuple(2)))

e4 = uu = bu ∧ ii = bi

and

doc1 := doc("users.xml")

doc2 := doc("items.xml")

doc3 := doc("bids.xml")

Note that during the translation we exploit the fact that the child nodes of itemtuple,

bidtuple, and usertuple occur exactly once. Since predicate e4 references variables

bound in e1, e2, and e3, none of the more efficient unnesting equivalences on the lower

right hand side of the decision tree are applicable immediately. However, using some of

the support rewrite rules, we can remedy this situation. First, we are going to present a

naive approach to unnesting the above algebraic expression. Then, we will show how to

optimize it in a more clever way.

Naive Unnesting As e1 and e2 can be evaluated independently of each other and they

are not correlated in any way, we can apply Eqv. 4.2. After having pushed down the predi-

cate e4 (see Eqv. 4.8), we can apply Eqv. 4.3 connecting e3 via a semijoin:

Πun(χun:u/name(σ∃it∈(e2):∃bt∈(e3):e4
(e1)))

(4.2)
= Πun(χun:u/name(Π

tidp1

A(e1)(σ∃bt∈(e3):e4
(tidp1(e1)× e2))))

(4.8)
= Πun(χun:u/name(Π

tidp1

A(e1)(σ∃bt∈(σe4 (e3)):true(tidp1(e1)× e2))))

(4.3)
= Πun(χun:u/name(Π

tidp1

A(e1)((tidp1(e1)× e2) �e4 e3)))

Improved Unnesting However, we can do better than that and avoid using the Carte-

sian product. If we first reorder the quantifiers ∃it ∈ (e2) : ∃bt ∈ (e3) : e4 using Eqv. 4.7

and then push down the first part of the predicate e4, we can apply Eqv. 4.3. After having

pushed down the second part of e4, we can apply Eqv. 4.3 again, arriving at an expression

containing two semijoins:

Πun(χun:u/name(σ∃it∈(e2):∃bt∈(e3):e4
(e1)))

(4.7)
= Πun(χun:u/name(σ∃bt∈(e3):∃it∈(e2):e4

(e1)))

(4.8)
= Πun(χun:u/name(σ∃bt∈(e3):∃it∈(σii=bi(e2)):uu=bu(e1)))

(4.8)
= Πun(χun:u/name(σ∃bt∈σ∃it∈(σii=bi(e2))(e3):uu=bu(e1)))

(4.3)
= Πun(χun:u/name(σ∃bt∈(e3�ii=bie2):uu=bu(e1)))

(4.8)
= Πun(χun:u/name(σ∃bt∈(σuu=bu(e3�ii=bie2)):true(e1)))

(4.3)
= Πun(χun:u/name(e1 �uu=bu (e3 �ii=bi e2)))

Evaluation Running the nested, the naively unnested, and the improved unnested ver-

sion, we acquired the following averaged running times (in seconds).

Size 100 1000 10000

Nested 10.42s 3944.71s ∞
Naively Unnested 0.16s 8.45s 860.69s

Improved Unnested 0.08s 0.12s 0.56s
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The nested version is clearly the slowest variant (for a document size of 10000 nodes

we aborted the execution after three hours). While the naively unnested version already

improves the performance by several orders of magnitude, we can decrease the evalua-

tion time even further below one second for the largest document size by eliminating the

Cartesian product.

Non-Equality Correlation Predicates

Correlation predicates which are no equality predicates are more difficult to evaluate. While

predicates involving equality can be mapped to equijoins, we now have to employ more

general θ-joins (which usually are more expensive to evaluate).

Our example query illustrates a simple integrity check testing if there are any bids which

are bound to fail, as the reserve price of an item has not been met:

for $b in doc(”bids .xml” )// bidtuple

where some $i in doc(”items .xml” )// itemtuple

[itemno eq $b/itemno]

satisfies $i / reserveprice gt $b/bid

return

<failcheck>

{ $b/itemno, $b/ userid }
</ failcheck>

The normalized query introduces several let clauses and moves complex expressions out

of the where and return clause.

for $b in doc(”bids .xml” )// bidtuple

let $bn := $b/itemno

let $bb := $b/bid

let $bu := $b/ userid

let $bs := ($bn, $bu)

let $res := <failcheck> { $bs } </ failcheck>

where some $i in doc(”items .xml” )// itemtuple

let $in := $i /itemno

let $ir := $i / reserveprice

where $in eq $bn

satisfies $ir gt $bb

return $res

During translation we exploit the fact that each child element of bidtuple and itemtuple

occurs only once (we know this from the DTD). As a result of translating the normalized

query into our algebra, we get:

Πres(χres:C(elem,s1,bs)(χbs:(bn,bu)(χbu:b/userid(σ∃it∈σin=bn(e2):ir>bb(e1)))))

where

e1 := χbn:b/itemno(χbb:b/bid(

Υb:doc1//bidtuple(2)))

e2 := χir:i/reserveprice(χin:i/itemno(

Υi:doc2//itemtuple(2))))

and

doc1 := doc("bids.xml")

doc2 := doc("items.xml")

s1 := "failcheck"

Unnesting To establish the pattern for quantified queries we push down the predicate

ir > bb using Eqv. 4.8. Then, we can directly apply Eqv. 4.5 for unnesting general non-

equality correlating predicates:
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= Πres(χres:C(elem,s1,bs)(χbs:(bn,bu)(χbu:b/userid(σ∃it∈σin=bn(e2):ir>bb(e1)))))

(4.8)
= Πres(χres:C(elem,s1,bs)(χbs:(bn,bu)(χbu:b/userid(σ∃it∈σin=bn∧ir>bb(e2):true(e1)))))

(4.5)
= Πres(χres:C(elem,s1,bs)(χbs:(bn,bu)(χbu:b/userid(e1 �bn=bn′∧bb=bb′ (

Πbn′:bn,bb′:bb(e1 1in=bn∧ir>bb e2))))))

At first glance this may look less efficient than the original algebraic expression, but as

we can evaluate the θ-join via a more efficient block-wise nested-loop join, rather than us-

ing a naive nested-loop join, we can gain performance here. Since ordering is not important

in the range expression of the existential quantifier, we are given more leeway in tuning the

parameters of the semijoin and θ-join (e.g. order of join arguments, hash table size). In

this particular case we could also go a step further and rewrite e1 1in=bn∧ir>bb e2 into

σir>bb(e1 1in=bn e2) and use an even more efficient hash-join algorithm to evaluate the

join between e1 and e2. 3

Evaluation The following table summarizes our experimental results for this query:

Size 100 1000 10000

Nested 0.16s 5.21s 451.97s

Unnested 0.10s 0.25s 10.63s

Even though we duplicate a subexpression, e1, we observe significant gains in efficiency

when unnesting. The improvements are mainly due to employing efficient join imple-

mentations that become an option after identifying subexpressions insensitive to document

order.

Complex Correlation

In the following example query, we demonstrate how complex correlation predicates be-

tween query blocks can be untangled. We retrieve all users who bid on an item (which they

do not offer themselves) and where the bid is at least twice as high as the reserve price:

for $u in doc(”users .xml” )// usertuple

where some $i in doc(”items .xml” )// itemtuple

satisfies ($i / offeredby ne $u/ userid

and some $b in doc(”bids .xml” )// bidtuple

satisfies ($b/ userid eq $u/ userid

and $b/itemno eq $i /itemno

and ($b/bid cast as xs:double) gt

(2.0 ∗ $i / reserveprice )))

return $u/ userid

Normalizing and translating the XQuery expression into our algebra, we get:

for $u in doc(”users .xml” )// usertuple

let $ui := $u/ userid

where some $i in doc(”items .xml” )// itemtuple

let $io := $i / offeredby

let $ir := $i / reserveprice

let $in := $i /itemno

satisfies ($io ne $ui and

some $b in doc(”bids .xml” )// bidtuple

3We refrained from doing so, as we wanted to measure the performance gains possible for unnesting a general

correlation predicate.
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users.xml
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Figure 4.4.: Dependencies

let $bi := $b/ userid

let $bb := $b/bid cast as xs:double

let $bn := $b/itemno

satisfies ($bi eq $ui and

$bu eq $in and

$bb gt 2.0 ∗ $ir ))

return $ui

Translating this expression into our algebra yields:

Πui(σ∃it∈e2:(io 6=ui∧∃bt∈e3:e4)(e1))

where

e1 := χui:u/userid(Υu:doc1//usertuple(2))

e2 := χin:i/itemno(χir:i/reserveprice(

χio:i/offeredby(Υi:doc2//itemtuple(2))))

e3 := χbn:b/itemno(χbb:b/bid(χbi:b/userid(Υb:doc3//bidtuple(2))))

e4 := bi = ui ∧ bn = in ∧ bb > 2.0 · ir

and

doc1 := doc("users.xml")

doc2 := doc("items.xml")

doc3 := doc("bids.xml")

Although the correlation predicate looks quite complicated, our unnesting techniques are

powerful enough to handle even this case. The graph in Fig. 4.4 depicts the complexity of

the correlation predicate by showing how the query blocks accessing the different docu-

ments (represented as nodes) are connected via the predicates (represented as edges). The

edge runs from the query block that binds a variable to the nested query block that uses this

binding:

We present two different ways to unnest the above algebraic expression. One involves

a direct unnesting via a semijoin, the other an indirect unnesting via a Cartesian product

(which is eliminated later on).

Semijoin 1 This approach is quite straightforward, as we apply Eqv. 4.5, pull a part of

the join predicate into a selection outside the join, and then apply Eqv. 4.5 again in order to

unnest the doubly nested expression:

Πui(σ∃it∈e2:(io 6=ui∧∃bt∈e3:e4)(e1))

(4.5)
= Πui(e1 �A(e1)=A(e1)′ (ΠA(e1)′:A(e1)(e1 1io 6=ui∧∃bt∈e3:e4 e2)))

= Πui(e1 �A(e1)=A(e1)′ (ΠA(e1)′:A(e1)(σ∃bt∈e3:e4(e1 1io 6=ui e2))))

(4.5)
= Πui(e1 �A(e1)=A(e1)′ (ΠA(e1)′:A(e1)((e1 1io 6=ui e2) �A(e1,e2)=A(e1,e2)′

(ΠA(e1,e2)′:A(e1,e2)((e1 1io 6=ui e2) 1e4 e3)))))

Semijoin 2 Although we advised against using Cartesian products, we can use Eqv.4.2

in a first step, then pull in part of the selection predicate into the Cartesian product to change
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it into a join, and finally apply Eqv. 4.5, introducing a semijoin:

Πui(σ∃it∈e2 :(io 6=ui∧∃bt∈e3:e4)(e1))

(4.2)
= Πui(Π

tidp1

A(e1)((σio 6=ui∧∃bt∈(e3):e4
(tidp1(e1)× e2))))

(4.12)
= Πui(Π

tidp1

A(e1)(σ∃bt∈(e3):e4
(σio 6=ui(tidp1(e1)× e2))))

(4.5)
= Πui(Π

tidp1

A(e1)(ΠA(e1)′:A(e1)((tidp1(e1) 1io 6=ui e2) �A(e1,e2)=A(e1,e2)′

(ΠA(e1,e2)′:A(e1,e2)((tidp1(e1) 1io 6=ui e2) 1e4 e3)))))

The main difference between this expression and the first semijoin variant is the fact that in

the first variant, all θ-joins need not be order-preserving (the semijoin with e1 determines

the final order), while here the first θ-join between e1 and e2 needs to be order-preserving.

In both variants we can optimize the expression (e1 1io 6=ui e2) 1e4 e3, further using stan-

dard join ordering techniques (in this way, we get two joins involving equality predicates):

(e1 1io 6=ui e2) 1e4 e3 = (e3 1bi=ui e1) 1bn=in∧io 6=ui∧bb>2.0·ir e2

Evaluation The following table shows the results from our measurements. As can be

seen clearly, both unnested variants outperform the nested version easily. Again, Semijoin

2 is slower because we require the first θ-join to be order-preserving while for Semijoin 1

no such restriction exists for any of the θ-joins.

Size 100 1000 10000

Nested 56.69s 3041.22s ∞
Semijoin 1 0.21s 0.80s 81.21s

Semijoin 2 0.63s 14.25s 1176.2s

General Comparisons

In the previous sections, we assumed all comparisons to be value-based. Now we show

how we can handle general comparisons with our approach. The main idea is to trans-

form the general comparisons into explicit existentially quantified expressions with value

comparisons during normalization. Then, after the translation into the algebra, we use our

techniques to unnest these expressions. Following that, we can continue with unnesting the

actual nested query as shown before.

Consider the following example query, in which we are looking for books that are sold

below the price mentioned in some review (e.g. suggested retail price):

for $b in doc(”bib .xml” )// book

where some $e in doc(”reviews .xml” )// entry [ title = $b/ title ]

satisfies $e/ price > $b/price

return

<cheap−book>

{ $b/ title , $b/ price }
</cheap−book>

During normalization we expand the range expressions of the quantified queries to FLWR

expressions. Normalization of the quantified queries ensures that all comparisons become

value comparisons4:

for $b in doc(”bib .xml” )// book

let $bt := $b/ title

4Here and in the sequel we omit conversions on the sequences and types for readability. We refer to [DFF+07]

for details.
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let $bp := $b/ price

let $bs := ($bt , $bp)

let $res := <cheap−book> { $bs } </cheap−book>

where some $e in doc(”reviews .xml” )// entry

let $et := $e/ title

let $ep := $e/ price

where some $ets in $et

satisfies some $bts in $bt

satisfies $ets eq $bts

satisfies some $eps in $ep

satisfies some $bps in $bp

satisfies $eps gt $bps

return $res

Translating this into our algebra yields:

Πres(σe2(e0))

where

e0 := χres:C(elem,s1,bs)(χbs:(bt,bp)(χbp:b/price(

χbt:b/title(Υb:doc1//book(2)))))

e1 := χep:e/price(χet:e/title(

Υe:doc2//entry(2)))

e2 := ∃et1 ∈ (σe3 (e1)) : e6

e3 := ∃et2 ∈ e4 : ∃bt1 ∈ e5 : ets = bts

e4 := Υets:et(2)

e5 := Υbts:bt(2)

e6 := ∃et3 ∈ e7 :

∃bt2 ∈ e8 : eps > bps

e7 := Υeps:ep(2)

e8 := Υbps:bp(2)

and

doc1 := doc("bib.xml")

doc2 := doc("reviews.xml")

s1 := "cheap-book"

Dependencies between different expressions (the evaluation of e5 and e8 depends on e0,

while that of e4 and e7 depends on e1) do not make our job any easier. That means that

in the first step of unnesting the introduced quantified expressions, we are forced to use

Eqv. 4.1. However, we can improve our situation by decoupling the range expression in e2,

σe3(e1), from the outer query block. We do this by pushing the independent parts of the

predicates in e2 into the range expression and moving the dependent parts into the range

predicate:

e2 = ∃et1 ∈ (σe3 (e1)) : e6

(4.1)
= ∃et1 ∈ (Π

tidi1

A(e1)(σ∃bt1∈e5:ets=bts(ΥA(e4):e4(tidi1 (e1))))) :

∃et3 ∈ e7 : ∃bt2 ∈ e8 : eps > bps

(4.8)
= ∃et1 ∈ (σ∃et3∈e7 :∃bt2∈e8:eps>bps(Π

tidi1

A(e1)(

σ∃bt1∈e5:ets=bts(ΥA(e4):e4(tidi1(e1)))))) : true

(4.1)
= ∃et1 ∈ (Π

tidi2

A(e1)(σ∃bt2∈e8:eps>bps(ΥA(e7):e7
(tidi2(

Π
tidi1

A(e1)(σ∃bt1∈e5:ets=bts(ΥA(e4):e4(tidi1 (e1)))))))))

(4.9)
= ∃et1 ∈ (σ∃bt2∈e8 :eps>bps(ΥA(e7):e7

(σ∃bt1∈e5:ets=bts(ΥA(e4):e4(e1)))))

(4.8)
= ∃et1 ∈ (ΥA(e7):e7

(ΥA(e4):e4(e1))) :

(∃bt2 ∈ e8 : eps > bps) ∧ (∃bt1 ∈ e5 : ets = bts)

In the last but one step, we also eliminate the tid operators as they are not needed anymore

(as both projections on the tids have been removed). To be able to apply Eqv. 4.8 twice in
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4.4. Universal Quantifiers

the last step, we exchanged the positions of ΥA(e7):e7
and σ∃bt2∈e5:ets=bts, which poses no

problem, as e7 is not connected to the selection predicate in any way.

After having removed the level of nesting introduced by the general comparisons, we

could now continue with the unnesting of the actual query. As we have already shown how

to proceed with nested queries containing value comparisons in the previous examples, we

leave it out here.

4.4. Universal Quantifiers

We start this section with an example to motivate unnesting queries containing univer-

sal quantifiers. Then we introduce a general optimization strategy and present rules for

unnesting and rewriting algebraic expressions. The application of these rules to typical

query classes follows.

4.4.1. Motivating Example

As a motivating example for universal quantifiers we present a query in which we want to

find all auction items that only have valid bids (all bids are at least as high as the reserve

price):

for $i in doc(”items .xml” )// itemtuple

where every $b in doc(”bids .xml” )// bidtuple

[itemno eq $i / itemno]

satisfies $b/bid ge $i / reserveprice

return $i /itemno

Normalizing and translating this query results in the following algebraic expression:

Πii(σ∀bt∈σbi=ii(e2):bb≥ir(e1))

where

e1 := χii:i/itemno(χir:i/reserveprice(Υi:doc(”items.xml”)//itemtuple(2)))

e2 := χbb:b/bid(χbi:b/itemno(Υb:doc(”bids.xml”)//bidtuple(2)))

The pattern for universally quantified expressions can be easily identified in the translated

version of the query. The general strategy for unnesting these expressions is given in the

following section.

4.4.2. Optimization Strategy

The strategy for unnesting universally quantified expressions is very similar to that used for

existentially quantified expressions. (See Figure 4.5 for the decision tree and Figure 4.6 for

the equivalences). Again, we try to apply the most special rewrite rule possible.

For our motivation example, this means that we end up at Eqv. 4.15. Applying this

equivalence to our example yields (note that we have to negate the range predicate in the

antijoin):

Πii((e1) ⊲bi=ii∧bb<ir (e2))

Let us give a word of caution related to pushing conjuncts of p that only refer to e2 (con-

juncts pushed into e1 can be handled as in the case of existential quantification). If a

conjunct pushed into e2 filters out even a single tuple, then the quantified expression re-

turns an empty answer. During query evaluation, this can be used by first evaluating e2 and

aborting the evaluation immediately after a tuple is filtered out by a pushed conjunct of p.
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4. Query Unnesting

σ∀y∈σp(e2):q(e1)

does evaluation of e2 depend on

evaluation of e1?

are there conjuncts in p that

compare variables of e1 with those of e2?

no

try support rewrite - if not

applicable: unnest using Eqv. 4.14

no

check correlating predicate p

yes

apply Eqv. 4.15, check

ΠA1(e1) ⊇ ΠA1:A2(ΠA2(e2))

=

apply Eqv. 4.18

yes

apply Eqv. 4.16

<, >

apply Eqv. 4.17

else

apply Eqv. 4.13

yes

Figure 4.5.: Decision tree for universally quantified queries

4.4.3. Equivalences for Unnesting

Figure 4.6 lists the equivalences for universal quantification. For each unnesting equiv-

alence in Section 4.3, we have a universally quantified counterpart. We proceed by dis-

cussing the equivalences in more detail:

σ∀x∈(e2):p(e1) = e1 ⊲A1=A3 ΠA3:A1(σ¬p(ΥA(e2):e2
(e1))) (4.13)

σ∀x∈(e2):p(e1) = e1 ⊲¬p e2 (4.14)

σ∀x∈(σA1=A2 (e2)):p(e1) = e1 ⊲A1=A2∧¬p e2 (4.15)

σ∀x∈(σA1θA2
(e2)):p(e1) = σA1¬θaggrA2 (σ¬p(e2))(e1) (4.16)

σ∀x∈(σA1θA2
(e2)):p(e1) = (e1) ⊲A1=A3 (ΠA3:A1(e1 1A1θA2∧¬p e2)) (4.17)

ΠD(e1) ⊲A1=A2 (σp(e2)) = σc=0(ΠA1:A2(Γc;=A2;count◦σp(e2))) (4.18)

Figure 4.6.: Unnesting equivalences for universally quantified queries

Equivalence 4.13

Preconditions Expression e1 and e2 cannot be evaluated independently, i.e. F(e2)∩
A(e1) 6= ∅.

Basic idea We use an unnest map operator to evaluate the subexpression e2 de-

pending on the current tuple in e1. If we find at least one tuple that satisfies the
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4.4. Universal Quantifiers

negation of the predicate p, then the corresponding tuple in the outer expression

e1 finds a join partner and will be filtered out by the antijoin.

Equivalence 4.14

Preconditions Expression e1 and e2 can be evaluated independently, i.e. F(e2)∩
A(e1) = ∅.

Basic idea At first glance, this equivalence looks quite simple. However, when p
does not correlate e1 and e2, then the evaluation of this expression has to be

done in a nested-loop fashion.

Equivalence 4.15

Preconditions The evaluation of e2 does not depend on e1, that is,F(e2)∩A(e1) =
∅ and e1 and e2 are correlated by an equality predicate.

Basic idea We fall back on an antijoin operator. As e2 does not depend on e1, we

do not need the unnest map found in Eqv. 4.13.

Equivalence 4.18

Preconditions This equivalence is a special case of Eqv. 4.15. An additional pre-

condition is ΠA1(e1) ⊇ ΠA1:A2(ΠA2(e2)).

Basic idea This equivalence is the counterpart of Eqv. 4.6 for existential quantifi-

cation. It avoids to evaluate the same subexpression multiple times if the con-

dition check ΠA1(e1) ⊇ ΠA1:A2(ΠA2(e2)) holds. For universal quantification

we need to make sure that no tuple exists that satisfies the predicate p.

Equivalence 4.16

Preconditions Same preconditions as for Eqv. 4.15. Depending on the compari-

son operator θ in p, we have the following assignments:

θ ¬θ aggr
>, ≥ ≤, < min
<, ≤ ≥, > max

Basic idea If the comparison operator θ ∈ {<,≤,≥, >}, we just need to compare

the value of A1 to the minimal or maximal value of A2, respectively. For

universal quantification a tuple of e1 belongs to the answer set if the value for

A1 does not overlap with the range of values that do not satisfy the predicate p.

Similar to Eqv. 4.4, we have to be careful when handling the special case

e2 = ǫ: for universal quantification it is automatically evaluated to true. E.g.

the aggregated value can be initialized to ∞ or −∞ depending on aggr. In

addition, we must be careful with the semantics of the aggregate function aggr
and the general comparison. The resulting unnested expression can be unnested

further with rewrites of Sec. 4.5.

Equivalence 4.17

Preconditions Same preconditions as for Eqv. 4.15. But now predicate p can

contain arbitrary boolean expressions.

Basic idea The θ-join is delegated to an ordinary join operator, which does not

even have to be order-preserving. The outer antijoin preserves the order of the

tuples in expression e1.
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4.4.4. Support Rewrites

Usually, we will have the same problems applying unnesting equivalences to universally

quantified expressions as to existentially quantified ones: they may not be immediately ap-

plicable. Therefore, we need rules to rewrite universally quantified expressions, bringing

them into the right shape. In general, we follow the same two strategies as in Section 4.3.4,

reducing the number of free variables in a subexpression that is to be unnested and mini-

mizing the distance between correlated query blocks.

∀x ∈ e1 : ∀y ∈ e2 : p = ∀y ∈ e2 : ∀x ∈ e1 : p (4.19)

∀x ∈ e1 : ¬p ∨ q = ∀x ∈ (σp(e1)) : q (4.20)

p ∧ ∀x ∈ e1 : q = ∀x ∈ e1 : p ∧ q (4.21)

σ∀x∈e2:p∧∀y∈e3:q(e1) = σ∀x∈e2:p(σ∀y∈e3:q(e1)) (4.22)

= σ∀y∈e3:q(σ∀x∈e2:p(e1))

Figure 4.7.: Support rewrites for universally quantified queries

Let us now take a look at the rewrite rules (that are summarized in Figure 4.7). This is

not a complete list, more rules can be found in the literature, e.g. [Bry89, JK84, Ste95].

Equivalence 4.19

Preconditions e1 and e2 can be evaluated independently of each other. Further-

more, Eqv. 4.19 was not applied to the same subexpression before.

Basic idea As with existential quantifiers, (independent) universal quantifiers can

be exchanged (allowing the application of an unnesting rule that was not possi-

ble before).

Equivalence 4.20

Preconditions The rewrite has not been applied to the subexpression before.

Basic idea Depending on the direction in which we apply this equivalence in, we

have the standard predicate push down or pull up (see also Eqv. 4.8 and [Bry89,

JK84, Ste95]). Note that due to the universal quantifier, the predicate p has to

be negated and is combined with the predicate q via a logical or-operator.

Equivalence 4.21

Preconditions The equivalence has not been applied to the same subexpression

before. Also, the free variables in p are not bound by e1 (F(p) ∩ A(e1) = ∅).
Basic idea We can freely move predicates that do not depend on attributes of an

subexpression out of that expression.

Equivalence 4.22

Preconditions Eqv. 4.22 has not been applied to the same subexpression before.

Also, all free variables in p and q are bound by the expressions e1, e2, or e3

(F(p) ⊆ A(e1) ∪ A(e2) and F(q) ⊆ A(e1) ∪ A(e3)).

Basic idea Due to the order-preserving nature of the selection operator (and its

commutativity), we are not bound to a specific evaluation order of selection

operators.
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4.4.5. Example Queries

As the overall strategies for unnesting universally quantified expressions are very similar to

those for unnesting existential quantifiers, we restrict ourselves to three example queries.

Universal Quantification vs. Grouping

Similar to the second example query discussed in Section 4.3.5 universal quantification

can be expressed in different ways. Besides the explicit quantified expression one can

use function fn::empty or use counting. In the following example query we chose the

quantified expression. It returns the authors whose books were all published after 1993.

for $a1 in distinct −values(doc(”bib .xml” )// author )

where every $b2 in doc(”bib .xml” )// book[author is $a1]

satisfies $b2/@year gt 1993

return

<new−author>

{ $a1 }
<new−author>

During normalization we introduce a new let clause in the quantified expression to re-

move the path expression from the satisfies clause. We also move the path expression in

the range expression into a new let clause. Finally, we move the comparison into a new

where clause. These steps result in

for $a1 in distinct −values(doc(”bib .xml” )// author )

where every $b2 in doc(”bib .xml” )// book,

$a2 in $b2/author

let $y2 := $b2/@year

where $a1 is $a2

satisfies $y2 gt 1993

return

<new−author>

{ $a1 }
<new−author>

The nested query plan is derived by application of the translation rules.

Πres(χres:C(elem,s1,a1)(σ∀y∈σa1=a2(e2):y2>1993(e1)))

where

e1 = Υa1:ΠD(doc//author)(2)

e2 = χy2:b2/@year(Υa2:b2/author(Υb2:doc//book(2)))

and

doc := doc("bib.xml")

s1 := "new-author"

Antijoin Eqv. 4.15 is applicable because the nested query contains a corelating predicate

which performs an equality comparison and the range expression of the nested query can

be evaluated independently. Then we can push the second part of the join predicate into its

second operand.

Πres(χres:C(elem,s1,a1)(σ∀y∈σa1=a2(e2):y2>1993(e1)))

(4.15)
= Πres(χres:C(elem,s1,a1)(e1 ⊲a1=a2∧y2≤1993 e3))

= Πres(χres:C(elem,s1,a1)(e1 ⊲a1=a2 (σy2≤1993(e3))))
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Grouping Since we know from the DTD that author elements occur only under book

elements, ΠA1(e1) = Πa1:a2(Πa2(e2)) holds and thus, we can apply Eqv. 4.18, which

yields:

Πres(χres:C(elem,s1,a1)(σ∀y∈σa1=a2(e2):y2>1993(e1)))

(4.18)
= Πres(χres:C(elem,s1,a1)(σc=0(Γc;=aa;count◦σy3≤1993

(e3))))

Notice that the steps taken in this example are similar to steps taken for the second

example query in Section 4.3.5. It is quite easy to see that unnesting would work similar for

a formulation of the current example query based on counting or the function fn::empty

as discussed there.

Evaluation A comparison of the evaluation times of the discussed plans is given in the

table below. The unnested query plans scale better than the nested plan because they need

to scan the input document once or twice. In contrast to that the nested plan needs to

execute the nested query as often as there are author elements in the input document.

Plan 100 1000 10000

Nested 0.12 s 4.86 s 507.85 s

Antijoin 0.07 s 0.08 s 0.24 s

Grouping 0.07 s 0.08 s 0.23 s

Non-Equality Correlating Predicates

Our second example query is an extension of the motivating query from the beginning of

this section. In addition to checking the reserve price, we also make sure that a bid was

placed in the specified period of time.

for $i in doc(”items .xml” )// itemtuple

where every $b in doc(”bids .xml” )// bidtuple

[itemno eq $i /itemno]

satisfies ($b/bid ge $i / reserveprice

and $b/ bid date ge $i / startdate

and $b/ bid date le $i /enddate)

return $i /itemno

The resulting normalized query looks as follows:

for $i in doc(”items .xml” )// itemtuple

let $ii := $i /itemno

let $ir := $i / reserveprice

let $is := $i / startdate

let $ie := $i /enddate

where every $b in doc(”bids .xml” )// bidtuple

let $bi := $b/itemno

let $bb := $b/bid

let $bd := $b/ biddate

where $bi eq $ii

satisfies ($bb ge $ir and

$bd ge $is and

$bd le $ie )

return $ii

After having normalized and translated this query, we arrive at the following algebraic

expression. Again, we exploit the fact that child nodes occur exactly once.

Πii(σ∀bt∈(σbi=ii(e2)):bb≥ir∧bd≥is∧bd≤ie(e1))

98



4.4. Universal Quantifiers

where

e1 := χie:i/enddate(χis:i/startdate(

χir:i/reserveprice(χii:i/itemno(

Υi:doc1//itemtuple(2)))))

e2 = χbd:b/biddate(χbb:b/bid(χbi:b/itemno(Υb:doc2//bidtuple(2))))

and

doc1 := doc("items.xml")

doc2 := doc("bids.xml")

Antijoin 1 Only one of the equivalences is immediately applicable: Eqv. 4.15. Applying

this equivalence results in the following expression (note that the predicate p = bb ≥
ir ∧ bd ≥ is ∧ bd ≤ ie is negated for the antijoin):

Πii(σ∀bt∈(σbi=ii(e2)):bb≥ir∧bd≥is∧bd≤ie(e1))

(4.15)
= Πii(e1 ⊲bi=ii∧(bb<ir∨bd<is∨bd>ie) e2)

Antijoin 2 Applying the support rewrite rule Eqv. 4.20 allows us to push down the pred-

icate p. After that, we can merge it with the other selection and interpret the resulting

predicate as a general θ-comparison, which matches the left hand side of Eqv. 4.17:

Πii(σ∀bt∈(σbi=ii(e2)):(bb≥ir∧bd≥is∧bd≤ie)∨false(e1))

(4.20)
= Πii(σ∀bt∈(σbb<ir∨bd<is∨bd>ie(σbi=ii(e2))):false(e1))

(4.17)
= Πii(e1 ⊲ii=ii′ Πii′ :ii(e1 1bi=ii∧(bb<ir∨bd<is∨bd>ie)∧true e2))

Evaluation The nested version of the query was implemented using a negated existen-

tial quantifier: Πii(σ6∃bt∈σbi=ii(e2):bb<ir∨bd<is∨bd>ie(e1)). This performs better because as

soon as we find a tuple that satisfies the predicate, we can stop the evaluation of the nested

query and return false.

In the table below, we present the execution times for the nested and the two unnested

variants of the example query. As can be clearly seen, both unnested versions outperform

the nested one:

Size 100 1000 10000

Nested 0.47s 11.39s 819.71s

Antijoin 1 0.21s 1.01s 8.54s

Antijoin 2 0.23s 1.68s 23.98s

Combining Existential and Universal Quantifiers

An interesting case that we have not looked at yet is mixing existentially and universally

quantified expressions that are correlated with each other and the outer query block.5 The

following query returns the names of all users that bid on every item:

for $u in doc(”users .xml” )// usertuple

where every $i in doc(”items .xml” )// itemtuple

satisfies some $b in doc(”bids .xml” )// bidtuple

satisfies ($i /itemno eq $b/itemno and

$u/ userid eq $b/ userid )

return $u/name

During normalization we introduce variables and bind them to new let clauses.

5 The result of the innermost existentially quantified expression depends on variable bindings passed by the two

outer expressions. Notice that this query computes a relational division.
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for $u in doc(”users .xml” )// usertuple

let $ui := $u/ userid

let $un := $u/name

where every $i in doc(”items .xml” )// itemtuple

let $in := $i /itemno

satisfies some $b in doc(”bids .xml” )// bidtuple

let $bn := $bb/itemno

let $bi := $bb/ userid

satisfies ($in eq $bn and

$ui eq $bi)

return $un

After having normalized and translated this query, we get the following algebraic ex-

pression:

Πun(σ∀it∈e2 :∃bt∈e3:in=bn∧ui=bi(e1))

where

e1 := χun:u/name(χui:u/userid(

Υu:doc1//usertuple(2)))

e2 := χin:i/itemno(Υi:doc2//itemtuple(2))

e3 := χbi:b/userid(χbn:b/itemno(Υb:doc3//bidtuple(2)))

and

doc1 := doc("users.xml")

doc2 := doc("items.xml")

doc3 := doc("bids.xml")

Antijoin When we try to unnest the translated query, we observe that we cannot use

Eqv. 4.3 directly because the range predicate of the existential quantifier contains a quan-

tified expression. We cannot apply Eqv. 4.15 either because the range predicate of the

universal quantifier contains free variables that are not bound by the range expression of

the universal quantifier.

We remedy this situation by pushing down the range predicates (once for the existential

quantifier using Eqv. 4.8 and once for the universal quantifier using Eqv. 4.20). After that,

we can unnest the inner query block by applying Eqv. 4.15 and then use Eqv. 4.13 for

the final unnesting step (we use unnesting rules for universal quantifiers twice because by

pushing down the existential quantifier we turn it into a universal quantifier):

Πun(σ∀it∈e2 :∃bt∈e3:in=bn∧ui=bi(e1))

(4.8)
= Πun(σ∀it∈e2 :(∃bt∈σin=bn(e3):ui=bi)∨false(e1))

(4.20)
= Πun(σ∀it∈(σ∀bt∈(σin=bn(e3):ui6=bi)(e2)):false(e1))

(4.15)
= Πun(σ∀it∈(e2⊲in=bn∧ui=bie3):false(e1))

(4.13)
= Πun(e1 ⊲A(e1)=A(e1)′ (ΠA(e1)′:A(e1)(σtrue(ΥA(e2):(e2⊲in=bn∧ui=bie3)(e1)))))

= Πun(e1 ⊲A(e1)=A(e1)′ (ΠA(e1)′:A(e1)(ΥA(e2):(e2⊲in=bn∧ui=bie3)(e1))))

We compare two different unnested versions of the query. The first version is the ex-

pression above after applying Eqv. 4.15 (Antijoin). In the second version, we introduced

an unnest map operator (Antijoin + unnest map). This version is more efficient, as we can

stop evaluating the antijoin in the unnest map operator as soon as it produces a tuple (in

that case, the current tuple of e1 will be disqualified by the other antijoin operator).

We now discuss two alternative evaluation strategies also mentioned in [CKMP97]. The

first evaluates the universal quantifier with counting and the second is based on relational

division. We do not give algebraic equivalences because in an ordered context the unnesting

approach presented above is most appropriate.
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Grouping Another way to evaluate universal quantifiers works by counting matching

tuples. When counting the number of non-matching tuples, we have to test for a count of

zero. Alternatively the number of matching tuples must be equal to the number of tuples in

the range expression.

Πun(σg=count(e2)(Γg;=p1∪A(e1);Π
tidp1
t1

◦count
(

(tidp1(e1)× e2) �in=bn∧ui=bi e3)))

= Πun(σg=count(e2)(Γg;=p1∪A(e1);Π
tidp1
t1

◦count
(

Πtidp2 (tidp1(e1) 1ui=bi (tidp2(e2) 1in=bn e3)))))

The idea of these plans is to detect, if any tuples of e2 are discarted by the joins. Therefore,

we compute the cardinality of e2 using function count. This computation only incures a

small overhead because we can count the number of tuples in e2 while performing the join.

We compare this value with the count computed for of each group in the grouping operator.

Since the count value of each group is equal to the number of distinct matching tuples of e2

with for each tuple in e1, we can check that every tuple of e2 actually found a join partner.

In the first plan (Grouping 1), we observe two things: (1) The argument of the grouping

operator is a sequence of joins. Since order-preserving joins are associative we can explore

an equivalent plan (Grouping 2). (2) We can avoid a costly cross product.

As we will see in the evaluation, the first plan is still the more efficient one. Nevertheless,

only unnesting allows the cost-based decision between both plans.

Division Another alternative is based on the division operator. When we want to pre-

serve the order, we either need to use nested-loop-based implementations or we need to

sort after the division operator [GC95, RSMW02]. This decision should be made by the

cost-based optimizer. Additionally, algebraic equivalences valid for division operators (as

proposed for an algebra over sets [RM06]) become available after introducing the relational

division operator. The resulting plans are as follows:

= Πun(((e1 × e2) �in=bn∧ui=bi e3)÷A(e2) e2)

= Πun(Πtidp1 (tidp1(e1) 1ui=bi (e2 1in=bn e3))÷A(e2) e2)

We will refer to the first plan by Division 1. Again, we observe that we can exploit

associativity of joins and replace the cross product by a join leading the the second plan

(Division 2). Notice, that these plans introduce additional scans. Thus, we cannot expect

more efficient execution plans. However, in an unordered context these plans might be

efficient when operator implementations become available that can destroy order. We have

looked at this possibility in plan Division 3:

Πun(e1 � ((e1 1ui=bi (e2 1in=bn e3))÷A(e2) e2)).

In this plan, the final semijoin filters all tuples in e1 that do not qualify for the result and

returns the result in document order.

Evaluation This is one of the rare cases where the unnested version of the query was

not faster than the nested one. This underscores the importance of an algebraic approach

in which different alternatives can be compared in a cost-based manner. The table below

summarizes our experimental results for this example query:
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Size 100 1000 10000

Nested 0.50s 11.12s 788.14s

Antijoin 0.31s 18.98s 2009.24s

Antijoin + unnest map 0.80s 15.18s 957.25s

Grouping 1 0.15s 8.38s 859.61

Grouping 2 9.74s 9730s ∞
Division 1 5.50s 5237s ∞
Division 2 6.78s 6434s ∞
Division 3 0.07s 0.12s 0.51

The fastest of the unnested plans based on order-presering operators are still in the same

range of execution time. Obviously the alternative join order in the plans Grouping 2 and

Division 2 is not better than the unnested plans with cross product and semijoin. The

plan Division 3, which uses hash-based operator implementations for all operators, shows

that improvements in orders of magnitudes become possible when order is discartend and

reestablished later. Hence, in an unordered context unnested plans become much more

efficient again. In [MHKM04] we have found similar results for join queries.

4.5. Implicit Grouping

Unlike SQL or OQL, which feature grouping clauses, XQuery does not have explicit group-

ing constructs yet. Grouping in XQuery is done via nested queries, hence we use the term

implicit grouping. Although some researchers advocate introducing explicit grouping into

XQuery [BC04, BCC+05], this does not mean that the option of implicit grouping will

just vanish. Consequently, an optimization approach would have to be able to handle both

cases. In the remainder of this section we present unnesting techniques for expressions

containing implicit grouping.

4.5.1. Motivating Example

As a motivating example, we pick up the query from Section 3 again. In this query we

rearrange all books such that they are grouped by their publishers:

for $p in distinct −values(doc(”bib .xml” )// publisher )

return

<publisher>

<name> { $p } </name>,

{ for $b in doc(”bib .xml” )// book[$p eq publisher ]

return $b/ title

}
</publisher>

Recalling Section 3, we know that the normalization step for implicit grouping basically

consisted of pulling up the return clause into a let clause and translating this let clause into

a map operator. After having translated the normalized version of this query, we arrive at

the basic pattern for implicit grouping (this time considering the return clause):

Πres(χres:C(elem,s1,sq)(χsq:(pn,t)(χpn:C(elem,s2,p)(χt:Πt2(σp=p2(e2))(e1)))))

where

e1 := Υp:ΠD(doc//publisher)(2)

e2 := χt2:b/title(χp2:b/publisher(Υb:doc//book(2)))

and

doc = doc("bib.xml")

s1 = "publisher"

s2 = "name"

We have now arrived at the standard pattern for implicit grouping. Strategies for unnest-

ing this algebraic pattern can be found in the following section.
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χg:f(σp(e2))(e1)

does evaluation of e2 depend on e1?

are there conjuncts in p that compare

variables of e1 with those of e2?

no

apply Eqv.4.25 or 4.26

(or use temp operator)

no

p is equality predicate?

yes

rewrite using outer join and

grouping or binary grouping

(Eqvs. 4.27 or 4.28)

no

e1 = ΠD
A1:A2

(ΠA2(e2)) ?

yes

rewrite using outer join and

grouping or binary grouping

(Eqvs. 4.27 or 4.29)

no

rewrite using unary group-

ing (Eqv. 4.30)

yes

apply Eqv.4.23 or

4.24

yes

Figure 4.8.: Decision tree for implicit grouping, Equivalences and decisions refer to the

case of value comparisons in predicates

4.5.2. Optimization Strategy

The strategy employed for unnesting expressions containing implicit grouping (see Fig-

ure 4.8 for an overview and Figure 4.9 for the equivalences) is similar to that for quantified

expressions. First we check whether e1 and e2 can be evaluated independently of each

other. If not, we have to rely on an unnest map operator. Otherwise, we take a look at the

predicate p. Here, we distinguish the cases that e1 and e2

• are not correlated via p

• are correlated via a complex (non-equality) comparison operator

• are correlated via an equality predicate

For the equality predicate, there is room for further optimization if e1 and e2 produce

identical sequences (save duplicates and additional attributes in e2).

About our motivational example query we know the following: e1 and e2 can be evalu-

ated independently, they are correlated via an equality predicate, and e1 = ΠD
p:p2(Πp2(e2)).

So we would apply Eqv. 4.30 in this case:

Πres(χres:C(elem,s1,sq)(χsq:(pn,t)(χpn:C(elem,s2,p)(

Πp:p2(Γt;=p2;Πt2(χt2:b/title(χp2:b/publisher(Υb:doc//book(2)))))))))

4.5.3. Equivalences for Unnesting

In Figure 4.9 the equivalences for unnesting implicit grouping can be found. As for unnest-

ing quantified expressions before, we state the preconditions for applying an equivalence

and give a brief description of the underlying idea. For most patterns we present two alter-

natives: one alternative that uses an outer join and unary grouping and another alternative
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χg:f(σp(e2))(e1) = e1Γg;A(e1)=A′
1;f (ΠA′

1:A(e1)(σp(ΥA(e2):e2
(ΠD

A(e1)(e1)))))(4.23)

χg:f(σp(e2))(e1) = ΠA3
(e1 �g:f(ǫ)

A(e1)=A3
(ΠA3:A(e1)(

Γg;=A(e1);f(σp(ΥA(e2):e2
(ΠD

A(e1)(e1))))))) (4.24)

χg:f(σp(e2))(e1) = e1Γg;A(e1)=A′
1;f (ΠA′

1:A(e1)(σp(Π
D
A(e1)(e1)× e2))) (4.25)

χg:f(σp(e2))(e1) = ΠA3
(e1 �g:f(ǫ)

A(e1)=A3
(ΠA3:A(e1)(

Γg;=A(e1);f(σp(Π
D
A(e1)(e1)× e2))))) (4.26)

χg:f(σA1θA2
(e2))(e1) = e1Γg;A1θA2;fe2 (4.27)

χg:f(σA1θA2
(e2))(e1) = ΠA3

(e1 �g:f(ǫ)
A1=A3

(ΠA3:A1(

Γg;=A1;f (ΠD
A1

(e1) 1A1θA2 e2)))) (4.28)

χg:f(σA1=A2(e2))(e1) = ΠA2
(e1 �g:f(ǫ)

A1=A2
(Γg;=A2;f (e2))) (4.29)

χg:f(σA1=A2(e2))(e1) = ΠA1:A2(Γg;=A2;f (e2)) (4.30)

Figure 4.9.: Unnesting equivalences for implicit grouping

that uses binary grouping. The first alternative uses operators that are more generally avail-

able in database systems, while the second alternative often results in more efficient plans.

We will come back to this in our example queries.

Equivalence 4.23

Preconditions e1 and e2 cannot be evaluated independently (formally speaking,

F(e2) ∩ A(e1) 6= ∅).
Basic idea For each tuple in e1, we collect the corresponding tuples in e2 via a

binary grouping operator and apply the function f to all tuples in the corre-

sponding group. We generate the tuples of the expression e2 by combining all

tuples t1 in e1 with all tuples in e2(t1) via an unnest map operator and then

apply p.

Equivalence 4.24

Preconditions e1 and e2 cannot be evaluated independently (formally speaking,

F(e2) ∩ A(e1) 6= ∅).
Basic idea This is a variant of Eqv. 4.23. Instead of a binary grouping operator,

we use a unary one. In order to avoid the “count bug” (i.e. losing a tuple due

to an empty group) we use an outer join operator. The main motivation for this

variant is the fact that not every DBMS supports a binary grouping operator.

Equivalence 4.25

Preconditions e1 and e2 can be evaluated independently (F(e2) ∩ A(e1) = ∅).
Basic idea This equivalence looks very similar to Eqv. 4.23 except that e2 can

be evaluated independently of e1 and, therefore, is connected via a Cartesian

product to each tuple in e1. For each tuple in e1, the tuples in e2 are grouped

via a binary grouping operator. If the predicate p does not refer to attributes in

e1, we could also compute f(σp(e2)), store the result temporarily, and attach

this result to each tuple in e1 (as in this case, we have the same group for each

tuple in e1).

Equivalence 4.26
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4.5. Implicit Grouping

Preconditions e1 and e2 can be evaluated independently (F(e2) ∩ A(e1) = ∅).
Basic idea This is the outer join/unary grouping variant of Eqv. 4.25.

Equivalence 4.27

Preconditions e1 and e2 can be evaluated independently, and e1 and e2 are corre-

lated with a predicate containing a θ-comparison.

Basic idea As we know more about the attributes involved in the predicate, we

can group the tuples in e2 directly without connecting them to tuples in e1 first.

The predicate correlating e1 and e2 is now an element of the binary grouping

operator.

Equivalence 4.28

Preconditions e1 and e2 can be evaluated independently, and e1 and e2 are corre-

lated with a predicate containing a θ-comparison.

Basic idea This is the outer join/unary grouping variant of Eqv. 4.27. The elegant

integration of the correlating predicate into the grouping operator is not possible

here, as we use a unary grouping operator. So this looks more like Eqv. 4.26,

replacing the cross product with a θ-join. This technique is also known as

magic set decorrelation [SPL96]. (The θ-join between e1 and e2 needs only be

order-preserving if the correct computation of f relies on ordered tuples.)

Equivalence 4.29

Preconditions e1 and e2 can be evaluated independently, and e1 and e2 are corre-

lated with an equality predicate.

Basic idea In the special case of an equality predicate, the function f is computed

for each possible group identified in e2. The main advantage is that the result of

the grouping needs only be evaluated once and can be materialized. The variant

using a binary grouping operator is already covered by Eqv. 4.27.

Equivalence 4.30

Preconditions e1 and e2 can be evaluated independently, and e1 and e2 are corre-

lated with an equality predicate. Also, e1 = ΠD
A1:A2

(ΠA2(e2)), assuming that

Ai = A(ei).

Basic idea If we know that there are no empty groups (because e1 and e2 contain

the same attribute values, save attribute names and duplicates), we do not need

to evaluate e1, but can do a unary grouping on e2.

4.5.4. Support Rewrites

Πg1
(χg2:f(g1)(χg1:e2(e1))) = χg2:f(e2)(e1) (4.31)

ΥA:ΥB:e2(2)(e1) = ΥA:e2(e1) (4.32)

ΠtidB

Ai
(tidB(e1 × e2)) = Π

tidB1 ,tidB2

Ai
(tidB1(e1)× tidB2(e2)) (4.33)

ΠtidB

A1
(ΠtidC

A1
(e1)) = ΠtidB

A1
(e1) (4.34)

Figure 4.10.: Support Rewrites

As the unnesting equivalences from Section 4.5.3 expect certain patterns, we may have

to rewrite nested algebraic expressions to match these patterns. Figure 4.10 gives a quick
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overview of the support rewrite rules for unnesting implicit grouping. The underlying ideas

are explained in the following:

Equivalence 4.31

Preconditions None

Basic idea This rewrite merges two map operators into one and can be used when

the result of one map operator is just consumed by another map operator and

does not appear anywhere else afterwards. This is useful, as it saves us from

constructing the (possibly sequence-valued) attribute g1.

Equivalence 4.32

Preconditions None

Basic idea This rewrite merges two unnest map operators into one. We eliminate

an unnecessary step of nesting and then unnesting again.

Equivalence 4.33

Preconditions None

Basic idea We break up a tid operator that assigns a unique id to each tuple of

a Cartesian product into two tid operators operating on the subexpressions of

the product. We can do this because each tuple of the cross product is still

identifiable as before. When discarding duplicates, we have to look at both

tids. This rewrite allows us to push down operators into the cross product (e.g.

selections turning the product into a join).

Equivalence 4.34

Preconditions The tids are assigned in such a way in e1 that the attribute B is

functionally dependent on C (C → B).

Basic idea In this case, we can get rid of the inner duplicate elimination, as each

tuple that is filtered out by ΠtidC

A1
will also be filtered out by ΠtidB

A1
.

Queries with implicit grouping involving general comparison operators are handled by

transforming them into existentially quantified expressions during normalization. It follows

that all equivalences (unnesting and support rewrite) found in Section 4.3 can also be used

as support rewrite rules when unnesting implicit grouping expressions containing general

comparisons.

4.5.5. Example Queries

Let us now show how to apply the unnesting equivalences to concrete example queries.

First, we present two simple example queries for detecting grouping with aggregation in

the return clause or in the where clause. After that we discuss several examples that are

more involved. In the third example query we investigate how we detect a unary grouping

operator. Then, we discuss combining the unnesting rules for grouping with those for

quantified expressions to demonstrate the full power of our framework. Depending on

whether the variables used in our queries are atomic or sequence-valued, we have to employ

a value-based or a general comparison operator. We distinguish between the variables in

the outer query block and those in the inner (implicit grouping) query block. As both sets

of variables can be atomic or sequence-valued, we have four different cases. For each of

these cases we will present an example query and discuss its optimization.
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Aggregation

Aggregation is often used in conjunction with grouping. In this query we want to find the

minimal price for each book which is identified by its title.

for $t1 in distinct −values(doc(” prices .xml” )// book/ title )

let $p1 := for $p2 in doc(” prices .xml” )// book

[ title eq $t1 ]/ price

return decimal($p2)

return

<minprice title =”{ $t1 }”>

<price> { min($p1) } </price>

</minprice>

We first normalize the query. In general, we have to be very careful when rewriting a

path expression. Breaking up the XPath expression in the query is only possible because

we know from the DTD that every book element has exactly one price child element

and exactly on title child element. We also move the element construction into new let

clauses.

for $t1 in distinct −values(doc(” prices .xml” )// book/ title )

let $p1 := ( for $b2 in doc(” prices .xml” )// book

let $t2 := $b2/ title ,

$p2 := $b2/ price ,

$c2 := decimal($p2)

where $t1 eq $t2

return $c2),

$m1 := min($p1),

$pt := <price> { $m1 } </price>,

$res := <minprice title =”{ $t1 }”> { $pt } </minprice>

return $res

After these rather complex normalization steps translation is straight forward

Πres(χres:C(elem,s1,ra,pt)(χra:C(attr,s2,t1)(χpt:C(elem,s3,m1)(

χm1:min(p1)(χp1:Πc2(σt1=t2(e2))(e1))))))

where

e1 = Υt1:ΠD(doc//book/title)(2)

e2 = χc2:decimal(p2)(χp2:b2/price(χt2:b2/title(

Υb2:doc//book(2))))

and

doc := doc("prices.xml")

s1 := "minprice"

s2 := "title"

s3 := "price"

The translated query contains a rather complex sequence of node constructors. Since we

focus on query unnesting here, we define

Ξres(. . . ) := Πres(χres:C(elem,s1,ra,pt)(χra:C(attr,s2,t1)(χpt:C(elem,s3,m1)(. . . ))))

as an abreviation.

Unnesting We start with merging the map operator containing the nested query with the

computation of the minimum using Eqv. 4.31. Thereby, we avoid materializing a sequence-

valued result and at the same time remove a variable binding that is subsequently not used

any more. Since only title elements under book elements are considered, not only are

Eqvs. 4.27 and 4.29 applicable but the restriction e1 = Πt1:t2(Π
D
t2(e2)) holds and Eqv. 4.30

can be used. As we will see in our third example query, the latter results in the most efficient
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plan. Hence, we neglect the other possibilities. Applying Eqv. 4.30 leaves us with

Ξres(χm1:min(p1)(χp1:Πc2(σt1=t2(e2))(e1)))

(4.31)
= Ξres(χm1:min(Πc2(σt1=t2(e2)))(e1))

(4.30)
= Ξres(Πt1:t2(Γm1;=t2;min◦Πc2(e2))).

Evaluation Below, we compare the evaluation times for the two plans. While the nested

plan needs to scan the document |book| + 1 times, the unnested plan unsing grouping

needs to scan the document just one time. Here |book| is the number of book elements in

the input document, i.e. 100, 1000, or 10000 books. The measurements demonstrate the

massive performance improvements as an immediate consequence.

Size 100 1000 10000

Nested 0.09 s 1.81 s 173.51 s

Grouping 0.07 s 0.08 s 0.19 s

Aggregation in the Where Clause

Let us consider a query where nesting occurs in a predicate in the where clause that depends

on an aggregate function, count in this case. This is similar to a having-clause in SQL:

after grouping bids by itemno, they are selected by the result of the aggregation. The

query returns all popular items offered, i.e. all items with at least three bids.

let $d1 := doc(”bids .xml”)

for $i1 in distinct −values($d1//itemno)

where count($d1 // bidtuple [itemno eq $i1 ]) ge 3

return $i1

During normalization we extract the left argument of the value comparison, turn it into

a let clause, and move the XPath predicate into a where clause.

let $d1 := doc(”bids .xml”)

for $i1 in distinct −values($d1//itemno)

let $i3 := ( for $i2 in $d1// bidtuple /itemno

where $i1 = $i2

return $i2)

let $c1 := count($i3)

where $c1 ge 3

return $i1

Now the translation into our algebra is easy.

Πi1(σc1≥3(χc1:count(i3)(χi3:Πi2(σi1=i2(e2))(e1))))

where

e1 := Υi1:ΠD(d1//itemno)(χd1:doc(2))

e2 := Υi2:d2//bidtuple/itemno(2)

and

doc := doc("bids.xml")

Unnesting We would like to apply Eqv. 4.30 for unnesting the above expression. In or-

der to do that, we have to check that the prerequisites hold. Looking at the DTD of bids.xml,

we see that itemno elements appear only directly beneath bidtuple elements. Thus,

the condition e1 = Πi1:i2(Π
D
i2(e2)) holds, and we can apply Eqv. 4.30. Again we merge

two adjacent map operators before we apply the unnesting equivalence.
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Πi1(σc1≥3(χc1:count(i3)(χi3:Πi2(σi1=i2(e2))(e1))))

(4.31)
= Πi1(σc1≥3(χc1:count(Πi2(σi1=i2(e2)))(e1)))

(4.30)
= Πi1(σc1≥3(Πi1:i2(Γc1;=i2;count(e2))))

Evaluation The evaluation times for each plan are given in the table below. The num-

ber of bids — shown as column heading in the table below — and items is varied. The

number of items equals 1/5 times the number of bids. Again, the measurements verify the

effectiveness of the unnesting techniques.

Size 100 1000 10000

Nested 0.06 s 0.53 s 48.1 s

Grouping 0.06 s 0.07 s 0.10 s

Unary Grouping

We have looked at two rather simple queries. Now we discuss more involved queries.

The query below restructures the input document by grouping books by authors. Its result

contains for each author a sequence of book title. In contrast to the previous examples,

these book titles are not summarized into an aggregated value.

let $d1 := doc(”bib .xml”)

for $a1 in distinct −values($d1// author )

return

<author>

<name> { $a1 } </name>

{
for $b2 in $d1/book[$a1 = author ]

return $b2/ title

}
</author>

Normalization of the query first moves the nested FLWR expression outside the return

clause into a new let clause. We prepare the moved for clause for the translation into an al-

gebraic expression by introducing new variables. We further move the predicate at the end

of the path expression into the where clause. Since the predicate performs a general com-

parison we turn this comparison into a quantified query. Thereby the existential semantics

of this predicate are made explicit.

let $d1 := doc(”bib .xml”)

for $a1 in distinct −values($d1// author )

let $t1 := ( for $b2 in $d1/book

let $t2 := $b2/ title

where some $a2 in $b2/author

satisfies $a1 eq $a2

return $t2)

let $an := <name> { $a1 } </name>

let $res := <author> { $an, $t1 } </author>

return $res

From the DTD we know that every book contains only a single title element. Hence,

the projection on t2 returns a sequence of those elements. We do not have to take care of

implicit flattening of nested sequences in the return clause of the inner query block. The

translation then results in

Πres(χres:C(elem,s1,an,t1)(χan:C(elem,s2,a1)(χt1:Πt2(σ∃a3∈Υa2:b2/author (2):a1=a2(e2))(e1))))
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where

e1 := Υa1:ΠD(d1//author)(χd1:doc(2))

e2 := χt2:b2/title(Υb2:d1/book(2))

and

doc := doc("bib.xml")

s1 := "author"

s2 := "name"

To avoid clutter and since we focus on query unnesting here, we define

Ξres(. . . ) := Πres(χres:C(elem,s1,an,t1)(χan:C(elem,s2,a1)(. . . )))

as an abreviation.

Unnest Existential Quantifier Our goal is to apply any of our unnesting equivalences

and explicitly compute the groups using a grouping operator. Before we can do that we have

to remove the existential quantifier because our equivalences test for value comparisons as

correlating predicates.

Clearly, the evaluation of the range expression of the quantifier depends on its enclosing

block. Hence, we have to apply Eqv. 4.1 to unnest the nested query. After that we can sim-

plify the resulting expression by merging projections and unnest map operators (Eqv. 4.32).

This step establishes the basic pattern for implicit grouping.

Ξres(χt1:Πt2(σ∃a3∈Υa2:b2/author (2):a1=a2(e2))(e1))

(4.1)
= Ξres(χt1:Πt2(Π

tidt3
A(e2)

(σa1=a2(ΥΥa2:b2/author(2)(tidt3(e2)))))
(e1))

(4.32)
= Ξres(χt1:Π

tidt3
t2 (σa1=a2(Υa2:b2/author(tidt3(e2))))

(e1))

Binary Grouping Looking at result of the previous steps, Eqv. 4.27 is an obvious can-

didate to unnest this algebraic expression resulting in:

(4.27)
= Ξres(e1Γt1;a1=a2;Π

tidt3
t2

(Υa2:b2/author(tidt3(e2))))

Outer Join According to the decision tree presented in Figure 4.8 Eqv. 4.29 is annother

candidate resulting in:

(4.29)
= Ξres(ΠA(e1)∪t1(e1 �t1:ǫ

a1=a2 (Γ
t1;=a2;Π

tidt3
t2

(Υa2:b2/author(tidt3(e2))))))

For these two unnested plans we can expect drastic improvements. Despite the fact that

we can unnest this query to an even more efficent plan, we include them here for two

reasons. First, the condition for applying Eqv. 4.30 can be hard to verify. Hence, we expect

that unnesting often results in plans using one of the two alternative plans above. Second,

we want to investigate the performance differences at query execution time of the three

alternatives we will discuss here. Particularly, we can decide how much performance loss

we suffer when we cannot detect that Eqv. 4.30 is applicable and wether we should prefer

binary grouping to unary grouping and outer join.

Unary Grouping Looking more closely at the nested algebraic expression after sim-

plification, we realize that Eqv. 4.30 is also applicable. In order to meet the conditions of

Eqv. 4.30, we have to verify that e1 = Πa1:a2(Π
D
a2(Υa2:b2/author(tidt3(e2)))) holds. This

is indeed the case if there are no author elements other than those directly under book

elements. This is the case for the DTD given for document bib.xml, and we can apply this

equivalence:
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(4.30)
= Ξres(Πa1:a2(Γt1;=a2;Π

tidt3
t2

(Υa2:b2/author(tidt3(e2))))

Note that although the order is destroyed on authors, all unnested expressions produce

the titles of each author in document order, as is required by the XQuery semantics for this

query.

Evaluation In the table below, we summarize the evaluation times for the first query.

The document bib.xml contained either 100, 1000, or 10000 books with ten authors per

book.

Size 100 1000 10000

Nested 0.40 s 31.65 s 3195 s

Binary Grouping 0.12 s 0.32 s 2.45 s

Outer Join 0.13 s 0.33 s 3.31 s

Unary Grouping 0.12 s 0.32 s 1.85 s

The nested plan needs to scan the document |author| + 1 times where |author| is the

number of author elements in the input document. The query plans using either binary

grouping or the outer join need to scan the input document twice. For this query, binary

grouping performs faster then unary grouping and outerjoin. But since the last plan per-

formes just one scan it is always the fastest. Nevertheless, the improvement is rather small

compared to the effect of unnesting into either unnested plan.

Non-Equality Correlating Predicates

The following example query counts the number of bids for each item where the reserveprice

for the item is less than the price of the bid. In this case, all variables are atomic.

for $i in doc(”items .xml” )// itemtuple

return

<item>

{ $i / itemno },

<count> { count(for $b in doc(”bids .xml” )// bidtuple

where $i/ reserveprice lt $b/bid

and $i /itemno eq $b/itemno

return $b) }
</count>

</item>

The normalization step introduces several new let clauses, pulling up the nested return

clause and moving path expressions:

for $i in doc(”items .xml” )// itemtuple

let $in := $i /itemno

let $ir := $i / reserveprice

let $bt := ( for $b in doc(”bids .xml” )// bidtuple

let $bn := $b/itemno

let $bb := $b/bid

where $ir lt $bb and $in eq $bn

return $b)

let $ct := count($bt)

let $ce := <count> { $ct } </count>

let $sq := ($in , $ct )

let $res := <item> { $sq } </item>

return $res
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Translating this into our algebra is now straightforward:

Πres(χres:C(elem,s1,sq)(χsq:(in,ce)(χce:C(elem,s2,ct)(χct:count(bt)

(χbt:(Πb(σir<bb∧in=bn(e2)))(e1))))))

where

e1 := χir:i/reserveprice(χin:i/itemno(

Υi:doc1//itemtuple(2)))

e2 := χbb:b/bid(χbn:b/itemno(

Υb:doc2//bidtuple(2)))

and

doc1 := doc("items.xml")

doc2 := doc("bids.xml")

s1 := "item"

s2 := "count"

Binary Grouping The first step in unnesting this query is to combine map operators

via rewrite rule 4.31 (we can do this because, e.g. the attribute bt created by the inner map

operator is not needed in the remainder of the algebraic expression). After that, we have

reached our standard pattern for implicit grouping and can apply Eqv. 4.27, as e1 and e2

can be evaluated independently and are correlated via a non-equality predicate:

(4.31)
= Πres(χres:C(elem,s1,(in,C(elem,s2,ct)))(χct:count(Πb(σir<bb∧in=bn(e2)))(e1)))

(4.27)
= Πres(χres:C(elem,s1,(in,C(elem,s2,ct)))(e1Γct;ir<bb∧in=bn;count◦Πb

e2))

Outer Join After having merged the two map operators we can also apply the alternative

equivalence 4.28 using an outer join and a unary grouping operator:

(4.28)
= Πres(χres:C(elem,s1,(in,C(elem,s2,ct)))(e1 �ct:0

in=in′∧ir=ir′

(Πin′ :in,ir′:ir(Γct;=in,ir;count(Π
D
in,ir(e1) 1in=bn∧bb>ir e2)))))

Evaluation As can be clearly seen in following table, both unnested versions of the

query outperform the nested version by orders of magnitude. For the expression involving

the binary grouping operator, we used our implementation as presented in [MM05a], which

in this case is more efficient than the outer join expression.

Size 100 1000 10000

Nested 0.12s 10.22s 1008.17s

Binary Grouping 0.10s 0.16s 0.72s

Outer Join 0.11s 0.22s 3.08s

Sequence-Valued Attribute in Nested Expression

The following query counts for each author the number of times he or she has been an

editor. This query features implicit grouping with a sequence-valued comparison in the

nested subexpression. We transform this into an existentially quantified subquery during

normalization.

for $a in distinct −values(doc(”bib .xml” )// book/author )

return

<author−editor>

{ $a },

<count> { count(for $c in doc(”bib .xml” )// book

where $a = $c/ editor

return $c)

} </count>

</author−editor>
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Normalization introduces the usual let clauses for the implicit grouping and path expres-

sions. The general comparison is turned into a nested quantified query containing a FLWR

expression:

for $a in distinct −values(doc(”bib .xml” )// book/author )

let $ae := ( for $c in doc(”bib .xml” )// book

let $ce := $c/ editor

where some $ce1 in $ce

satisfies $a eq $ce1

return $c)

let $ct := count($ae)

let $ci := <count> { $ct } </count>

let $sq := ($a, $ci )

let $res := <author−editor> { $sq } </author−editor>

return $res

The translation of the normalized query into our algebra yields:

Πres(χres:C(elem,s1,sq)(χsq:(a,ci)(χci:C(elem,s2,ct)(

χct:count(ae)(χae:Πc(σ∃cet∈Υce1:ce(2):a=ce1(e2))(e1))))))

where

e1 := ΠD(Υa:doc//book/author(2))

e2 := χce:c/editor(Υc:doc//book(2))

and

doc := doc("bib.xml")

s1 := "author-editor"

s2 := "count"

Binary Grouping In a first step, we unnest the nested expression introduced by the

existential quantifier. As the range expression of the selection depends on e2, we have to

apply Eqv. 4.1. After that, we merge two map and two unnest map operators (Eqv. 4.31

and Eqv. 4.32, respectively). Finally, we apply an unnesting rule for implicit grouping

(Eqv. 4.27).

(4.1)
= Πres(χres:C(elem,s1,sq)(χsq:(a,ci)(χci:C(elem,s2,ct)(

χct:count(ae)(χae:Πc(Π
tidB
A(e2)∪ce1

(σa=ce1(Υce1:Υce1:ce(2)(tidB(e2)))))
(e1))))))

(4.31)
= Πres(χres:C(elem,s1,(a,C(elem,s2,ct)))(

χ
ct:count(Πc(Π

tidB
A(e2)∪ce1

(σa=ce1(Υce1:Υce1:ce(2)(tidB(e2))))))
(e1)))

(4.32)
= Πres(χres:C(elem,s1,(a,C(elem,s2,ct)))(

χ
ct:count(Πc(Π

tidB
A(e2)∪ce1

(σa=ce1(Υce1:ce(tidB(e2))))))
(e1)))

(4.27)
= Πres(χres:C(elem,s1,(a,C(elem,s2,ct)))

(e1Γct;a=ce1;count◦Πc◦Π
tidB
A(e2)∪ce1

Υce1:ce(tidB(e2))))

Outer Join In the last unnesting step, we can also use the alternative equivalence based

on outer join and unary grouping. Since we have a correlating predicate based on equality,

we can apply Eqv. 4.29:

(4.29)
= Πres(χres:C(elem,s1,a,C(elem,s2,ct))(

e1 �ct:0
a=ce1 (Γ

ct;=ce1;count◦Πc◦Π
tidB
A(e2)∪ce1

Υce1:ce(tidB(e2)))))
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Evaluation The result for this query looks very similar to the results for the query from

the previous section. Overall, the running times are larger due to the general compari-

son in the nested expression. Again, the implementation based on the binary grouping is

faster than the one based on the outer join operator (however, this time the difference is

significant).

Size 100 1000 10000

Nested 7.08s 655.66s ∞
Binary Grouping 0.16s 0.73s 6.63s

Outer Join 0.20s 2.34s 415.26s

Sequence-Valued Attribute in Outer Expression

In this section we present an example query in which the sequence-valued attribute is lo-

cated in the outer query block. For each author we count the number of books that are

cheaper than any book written by that particular author.

The main difficulties in evaluating this query efficiently are the following. The values

that we group on (i.e. the authors) are not found in the correlating predicate (cf. [BCC+04,

BCC+05] on the grouping problem). In addition to that, the groups are created based on a

non-equality predicate.

for $a in distinct −values(doc(”bib .xml” )// book/author )

let $ap := doc(”bib .xml” )// book[$a = author ]/ price

return

<cheaper−books>

{ $a },

<count>

{ count(doc(”bib .xml” )// book[price < $ap]) }
</count>

</cheaper−books>

During normalization we turn the XPath predicates into where clauses in FLWR expres-

sions. This is correct because the comparisons always return boolean values so that these

predicates cannot result in positional predicates during evaluation. And books without price

are handled properly during the construction of the sequence bound to variable ap. From

the DTD, we know that each book always has exactly one price. Normalization introduces

several new let expressions and shifts the implicit grouping out of the return block.

for $a in distinct −values(doc(”bib .xml” )// book/author )

let $ap := ( for $ab in doc(”bib .xml” )// book

let $aba := $ab/author

let $abp := $ab/ price

where some $aa in $aba

satisfies $a eq $aa

return $abp)

let $lp := ( for $pb in doc(”bib .xml” )// book

let $pp := $pb/ price

where some $pa in $ap

satisfies $pp lt $pa

return $pb)

let $ct := count($lp)

let $ce := <count> { $ct } </count>

let $sq := ($a, $ce)

let $res := <cheaper−books> { $sq } </cheaper−books>

return $res
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The translation step produces the following algebraic expression:

Πres(χres:C(elem,s1,sq)(χsq:(a,ce)(χce:C(elem,s2,ct)(χct:count(lp)(

χlp:Πpb(σ∃pt∈Υpa:ap(2):pp<pa(e3))(χap:Πabp(σ∃at∈Υaa:aba(2):a=aa(e2))(e1)))))))

where

e1 := ΠD(Υa:doc//book/author(2))

e2 := χabp:ab/price(χaba:ab/author(

Υab:doc//book(2)))

e3 := χpp:pb/price(Υpb:doc//book(2))

and

doc := doc("bib.xml")

s1 := "cheaper-books"

s2 := "count"

Binary Grouping Unnesting this algebraic expression involves several steps. First, we

unnest the inner existentially quantified expression (applying Eqv. 4.1 as the range predicate

depends on e2). After that, we eliminate a redundant unnest map operator using the support

rewrite rule 4.32. Then we are ready to apply an equivalence for unnesting grouping on the

inner map operator. Eqv. 4.30 is the most efficient variant in this case, resulting in a unary

grouping operator on e2:

(4.1)
= Πres(χres:C(elem,s1,(a,C(elem,s2,ct)))(

χct:count(lp)(χlp:Πpb(σ∃pt∈Υpa:ap(2):pp<pa(e3))(

χ
ap:Πabp(Π

tidB
A(e2)∪aa

(σaa=a(Υaa:Υaa:aba(2)(tidB(e2)))))
(e1)))))

(4.32)
= Πres(χres:C(elem,s1,(a,C(elem,s2,ct)))(χct:count(lp)(χlp:Πpb(σ∃pt∈Υpa:ap(2):pp<pa(e3))(

χ
ap:Πabp(Π

tidB
A(e2)∪aa

(σaa=a(Υaa:aba(tidB(e2)))))
(e1)))))

(4.30)
= Πres(χres:C(elem,s1,(a,C(elem,s2,ct)))(χct:count(lp)(χlp:Πpb(σ∃pt∈Υpa:ap(2):pp<pa(e3))(

Πa:aa(Γ
ap;=aa;Πabp◦Π

tidB
A(e2)∪aa

Υaa:aba(tidB(e2)))

︸ ︷︷ ︸

e4

))))

In order to keep things readable, we call the inner, unnested expression e4 in the follow-

ing. We continue by merging the two remaining map operators via Eqv. 4.31, prepare

the existentially quantified subexpression for unnesting using Eqv. 4.8, and then unnest it

by applying Eqv. 4.4. As mentioned earlier, we have to be careful with the semantics of

function max. In our query it has to use string comparison to compute the maximum:

(4.31)
= Πres(χres:C(elem,s1,(a,C(elem,s2,ct)))(χct:count(Πpb(σ∃pt∈Υpa:ap(2):pp<pa(e3)))(e4)))

(4.8)
= Πres(χres:C(elem,s1,(a,C(elem,s2,ct)))(χct:count(Πpb(σ∃pt∈σpp<pa(Υpa:ap(2))(e3)))(e4)))

(4.4)
= Πres(χres:C(elem,s1,(a,C(elem,s2,ct)))(χct:count(Πpb(σpp<maxpa(Υpa:ap(2))(e3)))(e4)))

Finally, we are now ready to unnest the grouping expression containing the count-function.

Here we use the variant based on binary grouping (the outer join/unary grouping variant

will be presented in just a moment). After having unnested the expression, we can trans-

form the unnest map operator into a Cartesian product, as the two involved expressions can

be evaluated independently of each other. In a last step, we change the selection and cross
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product into a join operator:

(4.23)
= Πres(χres:C(elem,s1,(a,C(elem,s2,ct)))(

e4Γct;A(e4)=A′
4;count◦Πpb

ΠA′
4:A(e4)(σpp<maxpa(Υpa:ap(2))(

ΥA(e3):e3
(ΠD

A(e4)(e4))))))

= Πres(χres:C(elem,s1,(a,C(elem,s2,ct)))(

e4Γct;A(e4)=A′
4;count◦Πpb

ΠA′
4:A(e4)(σpp<maxpa(Υpa:ap(2))(e4 × e3))))

= Πres(χres:C(elem,s1,(a,C(elem,s2,ct)))(

e4Γct;A(e4)=A′
4;count◦Πpb

ΠA′
4:A(e4)(e4 1pp<maxpa(Υpa:ap(2)) e3)))

Outer Join Instead of unnesting via a binary grouping operator (Eqv. 4.23), we can also

apply a combination of outer join and unary grouping (Eqv. 4.24):

(4.24)
= Πres(χres:C(elem,s1,(a,C(elem,s2,ct)))(e4 �ct:0

A(e4)=A′
4
(

ΠA′
4:A(e4)(Γct;=A(e4);count◦Πpb

(σpp<maxpa(Υpa:ap(2))(

ΥA(e3):e3
(ΠD

A(e4)(e4))))))))

= Πres(χres:C(elem,s1,(a,C(elem,s2,ct)))(e4 �ct:0
A(e4)=A′

4
(

ΠA′
4:A(e4)(Γct;=A(e4);count◦Πpb

(e4 1pp<maxpa(Υpa:ap(2)) e3)))))

Evaluation The following table shows the results for the nested and both unnested ver-

sions of the query. Again, the evaluation of the unnested expressions is considerably faster

than the evaluation of the nested one (with the binary grouping being [slightly] slower than

the outer join).

Size 100 1000 10000

Nested 1.53s 132.65s ∞
Binary Grouping 0.15s 1.04s 64.93s

Outer Join 0.15s 0.94s 58.54s

Sequence-Valued Attributes in Both Expressions

We now come to the most complicated case, in which we allow sequence-valued attributes

in both query blocks, the outer and the inner one. As an example query we take a modified

version of the query presented in Section 4.5.5. For each book we determine how many

books its authors have edited:

for $b in doc(”bib .xml” )// book

return

<book−editor>

{ $b }
<count> { count(for $c in doc(”bib .xml” )// book

where $b/author = $c/ editor

return $c)

} </count>

</book−editor>

Normalizing this query introduces yet again several let clauses:

for $b in doc(”bib .xml” )// book

let $ba := $b/author

let $cc := ( for $c in doc(”bib .xml” )// book

let $ce := $c/ editor

where some $e in $ce
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satisfies some $ea in $ba

satisfies $e eq $ea

return $c)

let $ct := count($cc)

let $ci := <count> { $ct } </count>

let $sq := ($b, $ci )

let $res := <book−editor> { $sq } </book−editor>

return $res

Normalization and translation into our algebra results in the following expression:

Πres(χres:C(elem,s1,sq)(χsq:(b,ci)(χci:C(elem,s2,ct)(

χct:count(cc)(χcc:Πc(σ∃et∈Υe:ce(2):∃eat∈Υea:ba (2):e=ea(e2))(e1))))))

where

e1 := χba:b/author(Υb:doc//book(2))

e2 := χce:c/editor(Υc:doc//book(2))

and

doc := doc("bib.xml")

s1 := "book-editor"

s2 := "count"

Binary Grouping In a first step, we merge map operators and then unnest the nested

implicit grouping expression:

(4.31)
= Πres(χres:C(elem,s1,(b,C(elem,s2,ct)))(

χct:count(Πc(σ∃et∈Υe:ce(2):∃eat∈Υea:ba(2):e=ea(e2)))(e1)))

(4.25)
= Πres(χres:C(elem,s1,(b,C(elem,s2,ct)))(e1Γct;A(e1)=A′

1;count◦Πc
(ΠA′

1:A(e1)(

σ∃et∈Υe:ce(2):∃eat∈Υea:ba(2):e=ea(ΠD
A(e1)(e1)× e2)))))

In a second step, we unnest the existentially quantified expressions introduced by the nor-

malization and eliminate unnecessary unnest map operators:

(4.1)
= Πres(χres:C(elem,s1,(b,C(elem,s2,ct)))(e1Γct;A(e1)=A′

1;count◦Πc
(ΠA′

1:A(e1)(

ΠtidA

A(e1)∪A(e2)(σ∃eat∈Υea:ba(2):e=ea(Υe:Υe:ce(2)(tidA(ΠD
A(e1)(e1)× e2))))))))

(4.1)
= Πres(χres:C(elem,s1,(b,C(elem,s2,ct)))(e1Γct;A(e1)=A′

1;count◦Πc
(ΠA′

1:A(e1)(

ΠtidA

A(e1)∪A(e2)(Π
tidB

A(e1)∪A(e2)(σe=ea(

Υea:Υea:ba(2)(tidB(Υe:Υe:ce(2)(tidA(ΠD
A(e1)(e1)× e2)))))))))))

(4.32)
= Πres(χres:C(elem,s1,(b,C(elem,s2,ct)))(e1Γct;A(e1)=A′

1;count◦Πc
(ΠA′

1:A(e1)(

ΠtidA

A(e1)∪A(e2)(Π
tidB

A(e1)∪A(e2)(σe=ea(

Υea:ba(tidB(Υe:ce(tidA(ΠD
A(e1)(e1)× e2)))))))))))

In a last step, we want to turn the cross product into a join operator. Before being able to do

so, we have to eliminate one of the tid operators and push the other into the cross product.

After having assigned the tid A, we unnest and then assign the tid B. This guarantees that

for every value of B, we have the same value for A, so B → A. Therefore, we do not need

the duplicate elimination based on attribute B anymore (and can get rid of the operation to
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assign it):

(4.34)
= Πres(χres:C(elem,s1,(b,C(elem,s2,ct)))(e1Γct;A(e1)=A′

1;count◦Πc
(ΠA′

1:A(e1)(

ΠtidA

A(e1)∪A(e2)(σe=ea(Υea:ba(Υe:ce(tidA(ΠD
A(e1)(e1)× e2)))))))))

(4.33)
= Πres(χres:C(elem,s1,(b,C(elem,s2,ct)))(e1Γct;A(e1)=A′

1;count◦Πc
(ΠA′

1:A(e1)(

Π
tidA1 ,tidA2

A(e1)∪A(e2)(σe=ea(Υea:ba(Υe:ce(tidA1(Π
D
A(e1)(e1))× tidA2(e2)))))))))

= Πres(χres:C(elem,s1,(b,C(elem,s2,ct)))(e1Γct;A(e1)=A′
1;count◦Πc

(ΠA′
1:A(e1)(

Π
tidA1 ,tidA2

A(e1)∪A(e2)(Υea:ba(tidA1(Π
D
A(e1)(e1))) 1e=ea Υe:ce(tidA2(e2)))))))

Outer Join Instead of applying Eqv. 4.25 in the second rewrite of the first step above,

we could use Eqv. 4.26 based on the outer join operator. After doing so, we can rewrite the

existentially quantified subexpression as shown above:

(4.26)
= Πres(χres:C(elem,s1,(b,C(elem,s2,ct)))(e1 �ct:0

A(e1)=A′
1
(ΠA′

1:A(e1)(Γct;=A(e1);count◦Πc
(

σ∃et∈Υe:ce(2):∃eat∈Υea:ba(2):e=ea(ΠD
A(e1)(e1)× e2))))))

= Πres(χres:C(elem,s1,(b,C(elem,s2,ct)))(e1 �ct:0
A(e1)=A′

1
(ΠA′

1:A(e1)(Γct;=A(e1);count◦Πc
(

Π
tidA1 ,tidA2

A(e1)∪A(e2)(Υea:ba(tidA1(Π
D
A(e1)(e1))) 1e=ea Υe:ce(tidA2(e2))))))))

Evaluation The following table summarizes the results for the running times of the

different versions of the query. This query does not seem to be favorable to unnesting.

However, we can exploit the fact that the aggregate function count is insensitive to order.

Hence, we can employ efficient implementations for the equijoin and the unary grouping

operator. This results in substantially more efficient plans with notable advantages for the

plan using binary grouping.

Size 100 1000 10000

Nested 0.84s 67.96s ∞
Binary Grouping 0.14s 0.84s 9.57s

Outer Join 0.14s 1.04s 35.99s

4.6. Implementation

To validate the feasibility of our unnesting framework, we have implemented most equiv-

alences presented in this chapter (see [Bit07] for details). In this section, we present the

basic design that underlies our implementation. We also discuss the performance of our

rewriting component.

4.6.1. Rules

Let us first discuss how we get from equivalences presented in the previous sections to rules

and why we need to distinguish both concepts. After that, we look at the implementation

of rewrite rules in Natix.

From Equivalences to Rewrite Rules

Equivalences are valid when applied in both directions. However, in the case of unnesting

equivalences we prefer the unnested representation of a query to the nested one. Conse-

quently, we apply the unnesting equivalences introduced in the previous sections from left

to right.
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This view of directed application of equivalences is called rewrite. Hence, we will im-

plement all unnesting equivalences as rewrite rules and embed them in a rewriting system

that selects the most specific rewrite rule to apply.

A rewrite rule consists of three parts: (1) It matches a pattern in the query. (2) It tests

conditions that must hold in addition to the structural properties expressed in the query

pattern. (3) It restructures the query based on the variable bindings established during

matching.

As an example consider Eqv. 4.3 which holds only under the conditions C discussed in

Sec. 4.3

σ∃x∈(σA1=A2 (e2)):p(e1) = e1 �A1=A2∧p e2.

We denote this equivalence as a directed rewrite

σ∃x∈(σA1=A2(e2)):p(e1)
C⇒ e1 �A1=A2∧p e2.

The left-hand side of this rewrite indicates the pattern to match. We write the additional

conditions C to verify before the rule is applied above the arrow. The right-hand side

specifies the result after application of the rewrite rule. Obviously, we are very specific

about the structure of certain parts of the pattern to match while we are more tolerant for

other parts of the pattern. For the former, we precisely state the pattern to match, e.g. the

two selections, the existential quantifier, and the comparison operator = in the correlation

predicate and their structural relationship. For the latter, we use typed pattern variables,

in this example e1, e2, A1, A2, x, and p. They denote parts of the pattern that need to

match with algebraic operators or expressions in the query that are consistent with the types

required by the pattern. The condition C narrow the possible matches for these variables.

In our example, the condition includes that e1 and e2 can be evaluated independently.

Besides equivalences for which we clearly prefer one direction of application, there are

other rewrites where we cannot state such a preference. For example the support rewrites

can be beneficial when applied in either direction. Thus, we create one rewrite to implement

either direction to support these rewrites in a rule-based rewriting system. As a result, we

need to take care that we do not run into cycles when we apply support rewrites. This

problem can be resolved by memorizing all expressions we have generated so far during

rewriting [GD87, McK93]. When we create a new expression, we first check, if the memo

table already contains an isomorphic query pattern. If not, we add the new expression

to the memo table and resume rewriting. Notice that our task is easier than memorizing

all possible plan alternatives because after one unnesting step we can be certain that only

structurally different query plans will be generated. Thus, after each successful application

of an unnesting equivalence, we can discard all entries in the memo table. This is different

to the exhaustive search performed in [GD87, McK93].

Rule Implementation

From the previous discussion follows that we have to solve two problems when we im-

plement a unnesting rewrite [PHH92]. (1) We have to test if a subexpression in the plan

matches the pattern and passes all conditions. We will refer to this task as rule matching.

(2) Once we have matched the pattern, we have bindings for the variable parts in the al-

gebraic pattern. Given these bindings, we can now construct a new algebraic expression

which yields the result of the rewrite. We will refer to this task as rule application.

We have implemented the rewrite rules with mutators. Mutators differ from visitors [GHJV95]

because their visit function might modify the object structure during the traversal over the

query graph. Thus, when we try to apply some rewrite implemented by a mutator, we tra-

verse the query. While descending in the depth-first traversal, we can gather information

needed for examining subexpressions. While ascending, we first match each operator in

the query to the pattern and condition implemented in the rewrite. When rule matching
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nestedSFWD:=arg()	>boundTo()predicate:=predicate()
producers:=producers() producers:=producers()collectCorrelatingPredicates(outerSFWD,Expr_EQ,predicateToCopy)funKind()[exprExist!=0]
mAlgSFWD predicate:ExpressionnestedSFWD:AlgSFWDexprExist:ExprPolymorph

[exprExist	>funKind()==Expr_Exists]freeVariables:=freeVariables(producers)

:QuantifierEqualToJoinouterSFWD:AlgSFWD

[!predicateToCopy.empty()]applyRule(outerSFWD,nestedSFWD,exprExist,predicateToCopy)[freeVariables.empty()]

exprExist:=predicate()

Figure 4.11.: Rule Matching in the Mutator for Eqvs. 4.3 and 4.15

succeeds, we apply the rewrite to the subexpression. The possibly rewritten subexpression

is returned as a result of each recursive call to the visit function.

In our implementation, we merge two algebraic equivalences into a single mutator when

they match almost the same algebraic pattern. Thereby, we reduce the number of traversals

over the query and the number of matching operations. At the same time we keep the

implementation easy to comprehend and flexible to apply. In particular, as we will see

shortly, we can schedule rewrites effectively.

Since the basic ideas of the implementation is the same for all our unnesting equiva-

lences, we will use Eqv. 4.3 as an example. Notice that in this equivalence, we only need to

replace the existential quantifier by a universal quantifier to arrive at Eqv. 4.15. When we

look at the decision tree in Fig. 4.14, we observe that the path to either equivalence is the

same. This is the main reason for implementing both equivalences in one single mutator.

But in our subsequent discussion we will concentrate on the implementation of Eqv. 4.3.

In Fig. 4.11 we trace the execution of the mutator assuming Eqv. 4.3 can be applied.

Rule Matching Let us start with the modification function mAlgSFWD (the modifica-

tion function corresponds to the visit function for visitors [GHJV95]). Its main purpose

is to check if either of the two equivalences matches. The mutator assumes that during

normalization and translation quantifiers are moved into the predicate of the SFWD block.

Universal quantifiers are translated into negated existential quantifiers. Fig. 4.12 depicts

the internal representation of a nested SQL query after translation. In the first step, we

look for an existential quantifier in the predicate. If we find one, it is bound to the variable

exprExist.

In the next step we look for an immediately nested SFWD block and bind it to the vari-

able nestedSFWD. For simplicity we ignore aggregation or grouping here. We use the

function collectCorrelatingPredicate to search for a correlation predicate in

the AlgSFWD block referenced by variable nestedSFWD. Since we only allow equality

predicates, we pass the constant ExprEQ to this function. At the end, the variable pred-

icateToCopy stores all comparison functions (instances of class ExprFOpCall) which

correlate the inner query block with the outer one.

120



4.6. Implementation

AlgSFWD

ExprConstant

where select

ProducerType

from

AlgSFWD AlgScanSingleton

ExprPolymorph

where

O_ORDERDATE
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ProducerType

from

AlgChi

define

ExprAttrAccess

AlgScanRelation

ORDER

otherIU
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=

where

L_SHIPDATE

select

ProducerType

from
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AlgScanRelation

LINEITEM

otherIU

keyIU

DBRelation

dbItem

Figure 4.12.: Nested query with existential quantifier and correlation predicate =

It remains to verify that the nested query block can be evaluated independent of the

outer query block. Therefore, we check if the nested query block binds all variables

it refers to. To obtain all free variables in nestedSFWD, the mutator calls the function

freeVariables. If at least one correlation predicate exists, and the check for free at-

tributes has failed, function mAlgSFWD calls function applyRule.

Since universal quantifiers are translated into negated existential quantifiers, rule match-

ing proceeds similar to the existential case.

Rule Application Based on the variable bindings established during rule matching,

function applyRule restructures the query rooted at the AlgSFWD block bound to vari-

able outerSFWD into an unnested one.

First, it creates an instance of the class AlgJoin and annotates it as left semijoin. The

expression on the left-hand side of the semijoin operator is represented by the AlgSFWD

block bound to variable outerSFWD. The expression bound to variable nestedSFWD be-

comes the right argument of the semijoin. The correlation predicate bound to variable
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Figure 4.13.: Result of Unnesting with Eqv. 4.3

predicateToCopy becomes the predicate of the new semijoin. The projection list of this

semijoin corresponds to the projection list of the old outer AlgSFWD block.

Having created the semijoin, we need to remove the quantifier from the predicate of

the outer AlgSFWD block referenced by variable outerSFWD. We also have to delete the

correlation predicate in the predicate of the nested SFWD block referenced by variable nest-

edSFWD. Now function applyRule removes the instance of class AlgChi from the

outer AlgSFWD block, which materializes the inner expression from the define list.

Finally, we create a new instance of class AlgSFWD which wraps the resulting expres-

sion. This is necessary because the cost-based optimizer is triggered for each AlgSWFD

block. The only producer of this block becomes the semijoin created in the first step. Then,

we set the predicate of this block to true and copy the projection list of the join into the

projection list of this block. Eventually, the function applyRule returns this wrapper

AlgSFWD. The resulting plan representation is shown in Fig. 4.13.

4.6.2. Rule Scheduling

An effective rewriting engine must choose the rewrite rule that results in the most efficient

plan. We call this task rule scheduling. The decision trees presented in the previous sections

guide this selection. For convenience, we repeat them in Figs. 4.14 and 4.15.

Let us recapitulate, how we select the most specific equivalence given an algebraic pat-

tern: We enter at the root of any of the two decision trees and check for the basic pattern.

If it matches we traverse the decision tree top-down. At each inner node of the tree we test

if a certain condition holds. Based on the outcome of the test, we resume the traversal until
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σ∃x∈e2:p(e1),
σ∀x∈e2:p(e1)

F(e2) ∩ A(e1) = ∅?

F(p) ∩ (A(e1) ∪ A(e2)) 6= ∅?

no

try support rewrite else apply

Eqvs. 4.2 or 4.14

no

check correlating predicate p

yes

apply Eqvs. 4.3 or 4.15 , check

ΠA1(e1) ⊇ ΠA1:A2(ΠA2(e2))

=

apply Eqvs. 4.6 or 4.18

yes

apply Eqvs. 4.4 or 4.16

<, >

apply Eqvs. 4.5 or 4.17

else

apply Eqv. 4.1 or 4.13

yes

Figure 4.14.: Combined Decision tree for quantified queries

we reach a leaf node. Each leaf node tells the equivalence to apply.

In our implementation, we reverse this logic and start at the bottom with the most specific

rewrite rules. Each mutator that implements such a rule has to test all conditions on the path

from the root of its decision tree to the leaf node. By scheduling the most specific rule first

and the most general rule last, we make sure that an efficient algebraic expression is created

for which an efficient plan can be generated during cost-based optimization. In principle,

we could always apply the least specific rule, i.e. one that results in a d-join. But this

requires further rewrites and complex pattern matching to achieve the same effect.

However, we do not need such a strict ordering among the rules: When two rules match

disjoint patterns, i.e. not both of them can match at the same time, we group them into a

rule set. In principle, all rules in a rule set can be tested in an arbitrary order. For example,

for the decision tree in Fig. 4.14, we can test Eqvs. 4.3 and 4.4 at the same time. The

reason is that we always match the least specific type of comparison in the correlation

predicate and this cannot be both an equality and inequality predicate. We plan to improve

this simple test by spliting conjunctive predicates and matchin the most specific part as we

have outlined in [MM05b].

This line of reasoning leads us to the rule sets shown in Fig. 4.16. Consider rule set 0.

It contains all unnesting equivalences that result in a unary grouping operator. Since all

these equivalences share a common path to the root of the decision tree with another, more

general unnesting equivalence, we have to put these rewrites into a separate rule set. These

more general equivalences are contained in rule set 1 (Eqvs. 4.3, 4.15, and 4.29). They

are used when the condition ΠA1(e1) ⊇ ΠA1:A2(ΠA2(e2)) (e1 = ΠD
A1:A2

(ΠA2(e2)) resp.)

does not hold. As mentioned above, we can also include the unnesting equivalences for

quantified queries that match for correlation predicates containing <, >, ≤ or ≥. Next, in

rule set 2, we put all unnesting equivalences that allow an arbitrary correlation predicate.

These rules need to be in a separate rule set because they will also match for all expressions

that should be handled by the rewrites in rule set 0 and rule set 1. We now turn our attention

to the support rewrites contained in rule set 3. Remember that we try the rewrite rules before
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χg:f(σp(e2))(e1)

F(e2) ∩ A(e1) = ∅?

F(p) ∩ (A(e1) ∪ A(e2)) 6= ∅?

no

try support rewrite else

apply Eqv. 4.25 or 4.26

no

p is equality predicate?

yes

apply Eqv. 4.27 or 4.28

no

e1Π
D
A1:A2

(ΠA2(e2)) ?

yes

apply Eqvs. 4.27 or 4.29

no

apply Eqv. 4.30

yes

apply Eqv. 4.23 or 4.24

yes

Figure 4.15.: Decision tree for implicit grouping

we apply equivalences that might result in cross products or d-joins. Hence, we must test

all support rewrites before we check the latter equivalences. Finally, since we prefer cross

products to d-joins, we conceptually create two rule sets. The first consists of the unnesting

equivalences that introduce cross products and the latter (rule set 5) contains the remaining

unnesting equivalences that introduce d-joins.

Thanks to Eqvs. 2.17 and 2.18, we are even able to generalize our implementation: We

can remove all equivalences contained in rule set 4 and generate unnest map operators first.

In the next step, we can replace the unnest map operator by a cross product if the subscript

of the unnest map operator can be evaluated independent of the argument of the unnest

map operator. This sequence of rewrites generates the same algebraic expressions as the

removed rewrites did, but our rules become more generally applicable.

In Fig. 4.17, we present the pseudo code for rule scheduling. After initializing the rule

sets, we first apply the three most specific rule sets in the fixed order. The rules contained

in each rule set are triggered in function tryRuleSet or trySupport. In our current

implementation, we iterate over all rules contained in the rule set and try to apply each rule.

This allows us to merge adjacent rule sets when they both contain unnesting or support

rewrites. In our case, we can merge the first three rule sets and the last two rule sets.

Rule set Equivalences

0 4.6, 4.18, 4.30

1 4.3, 4.4, 4.15, 4.16, 4.29

2 4.5, 4.17, 4.27, 4.28

3 all support rewrites

4 4.2, 4.14, 4.25, 4.26

5 4.1, 4.13, 4.23, 4.24

Figure 4.16.: Rule sets for unnesting equivalences
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1 AlgSFWD∗ unnest(AlgSFWD∗ expression){
2

3 RuleSet[6] decisionTree ;

4 for ( i = 0 to 5) {
5 decisionTree [ i ] = createRuleSet ( i );

6 }
7 bool unnested = true ;

8

9 while(unnested){
10 unnested = false ;

11

12 for ( i = 0 to 2) {
13 unnested = tryRuleset ( i , expression );

14 }
15 /∗ try to apply preparing support rewrite ∗/

16 if (unnested) continue;

17

18 unnested = trySupport (3, expression );

19 if (unnested) continue;

20

21 for ( i = 4 to 5) {
22 unnested = tryRuleset ( i , expression );

23 }
24 }
25 return expression ;

26 }

27 bool tryRuleset (UnnestMutator[] ruleset , AlgSFWD∗\& expression){
28 foreach (mutator in ruleset ){
29 expression .acceptM(mutator);

30 bool changed = mutator .unnested ();

31 if (changed) break; /∗ unnesting rewrite successful ∗/

32 }
33 return changed;

34 }

35 bool trySupport (SupportMutator[] ruleset , AlgSFWD∗\& expression){
36 foreach (mutator in ruleset ){
37 mutator . reset ();

38 if (mutator not applied here before in the other direction ){
39 expression .acceptM(mutator);

40 bool changed = mutator . unnested ();

41 if (changed) break; /∗ support rewrite successful ∗/

42 }
43 }
44 return changed;

45 }

Figure 4.17.: Pseudo code for rule scheduling

Notice that we could call different functions that trigger the contained rules and thereby

support arbitrary triggering strategies in a controlled manner. Thus, our approach is similar

to the one proposed in [PLH97].
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Termination of Rewriting

From the pseudo code in Fig. 4.17 it is also clear that rewriting will eventually terminate.

If no rewrite was applied in one iteration of the main loop in function unnest, unnesting

terminates. Furthermore, every unnesting rewrite removes a nested expression in some

subexpression of the query. It does not introduce new nested expressions. Consequently, at

most n applications of unnesting rewrites will occur, if the query contains n nested query

blocks. Finally, support rewrites might be applied if none of the unnesting rewrites of the

first three rule sets matches. The support rewrites in our framework can be applied in both

directions. Thus, duplicate algebraic expressions might be constructed leading to loops in

the application of support rewrites. As discussed in Sec. 4.6.1, we avoid this problem by

memorizing all expressions created by support rewrites. Hence, we can detect and discard

those duplicates and thereby guarantee termination.

Summarizing our results so far, our rule-based rewriting component is effective because

it always applies the most specific rewrite possible as prescribed by the decision trees pre-

sented in Sections 4.3, 4.4, and 4.5. In most cases, we implement two equivalences that

match very similar patterns in one mutator. Thereby our implementation remains compre-

hensive and easy to extend and tune. In the other hand, our approach requires matching

similar patterns multiple times and one traversal for each unnesting mutator. In the remain-

der of this section, we evaluate the performance impact of these design decisions.

4.6.3. Evaluation

In this section we assess the efficiency of our unnesting component. We will investigate

two aspects: (1) What is the overhead of rule application when unnesting rules can be

applied? (2) What is the overhead for queries that do not contain nested query blocks. For

the former question, we are willing to invest time because we can expect improved query

performance in orders of magnitudes, i.e. queries finish within seconds instead of running

for several hours. For the latter problem, we want to minimize the effort spent to discover

that unnesting is not necessary.

For our experiments, we run Natix on a Linux Server with 4 Intel(R) Xeon(TM) CPUs

(3.40 ,Ghz, 2 MB), a 3 GB hard disk and SuSE Linux 10.0 as the operating system. Natix

was compiled with GCC 4.0.3 and optimization level O2.

In Fig. 4.18, we present the elapsed time for parsing, translation and unnesting. For each

query we give the average elapsed time in milliseconds of 1000 executions. We compare

the time for all three steps with all unnesting equivalences turned on (with unnesting) and

turned off (w/o unnesting). The labels on the x-axis tell applicable unnesting equivalence.

The first three queries are taken from the TPC-H benchmark (Query 2, 5, 9).

The plot in Fig. 4.18 shows that applying unnesting equivalences causes an overhead of

at most 5 milliseconds. This is a very satisfying result because we can expect improved

query execution times that easily match this additional effort.

On the other hand, the TPC-H query 5 and 9 are reasonably complex queries without

nested query blocks. For these two queries, we almost do not observe any overhead. More

detailed experiments presented in [Bit07] did not reveal any particularly expensive unnest-

ing equivalence.

4.7. Summary

Unnesting Equivalences Our unnesting equivalences detect and unnest a wide range

of nested queries. For quantified queries, we can even unnest queries with query blocks

whose correlation predicates span multiple blocks. Unfortunately, this is not the case for

queries containing implicit grouping. Here, we advocate magic decorrelation [SPL96] to
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Figure 4.18.: Overhead of query unnesting

efficiently treat such nested queries. Notice that currently it is unknown how this technique

needs to be applied to preserve order.

In our treatment we have restricted ourselfs to conjunctive predicates. In conjunctive

predicates containing several conjuncts that are correlation predicates, our framework al-

ways choses the rewrite that is consistent with the least specific correlation predicate con-

tained in any conjunct, i.e. in A1 = A2∧B1 6= B2 the equivalence for arbitrary θ-predicates

are applied. In some cases, we can do better. For binary grouping and thus implicit group-

ing, we have discussed more efficient alternatives [MM05b]. The idea is to look for the

conjuncts that lead to the most specific rewrite and treat the remaining conjuncts as residual

predicates. We believe that a similar treatment is also possible for semijoins and antijoins.

In several cases, more efficient query execution plans can be derived when the cor-

relation predicate contains disjunctions. Some proposals for treating disjunctive predi-

cates [BMM06, BMM07, EGLGJ07] will lead to more efficient query execution plans.

Thus, we need to integrate these ideas into our framework.

Rule Scheduling Our experiments show that our framework leads to an effective and

efficient implementation. But the approach to rule scheduling presented here leaves many

opportunities to tune rewriting. As one possible extension we can keep global informa-

tion about nested query blocks, quantifiers, or free variables to prune application of certain

rules. These information can be gathered by a single traversal over the query graph or as

a side effect during rule matching. We can even go a step further and not only record the

existence of certain features but also provide direct access to, e.g. nested query blocks or

free variables. As another possible improvement, we could share information about par-

tially matched query patterns among mutators and thereby save matching effort. However

currently, as we have seen in the experiments in Section 4.6.3, we do not have to. The time

spent for rule matching and repeated traversals over the query is neglegible compared to

the overall optimization time. Consequently, we expect our architecture to scale well even

when we add many more rules to our rule-based rewriting engine.
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Complementary Rewrites As already pointed out, our architecture allows us to plug

further rewrites into our rewriting component. It is natural to complement our unnesting

equivalences with further rewrites which we will briefly discuss here.

First, a weak spot in our unnesting approach are queries containing implicit grouping in

which correlation predicates span multiple query blocks. Our unnesting equivalences can-

not detect such patterns and hence, will unnest such queries using d-joins. As this might

result in unsatisfactory query execution times, we want to implement magic set optimiza-

tions for such cases [MFPR90, SPL96].

Second, we point out that the quantified queries are insensitive to order and duplicates.

Consequently, it makes sense to include rewrites that propagate these information in the

query as proposed by Pirahesh [PLH97] and Mumick [MP94]. As a result, our cost-based

query optimizer has more freedom in chosing operator implementations and to (re-) order

the processed data. In the context of XQuery, this is even more important because by de-

fault the result of XPath expressions must be returned in document order. Furthermore, the

semantics of for clauses is defined in terms of sequence order [BCF+07]. The optimiza-

tions proposed by Grust et. al [GRT07] can be used as a starting point here.

Third, our unnesting equivalences that detect implicit grouping introduce outerjoins and

grouping operators. The proper placement of outerjoins and grouping can have enormous

performance impact. Hence, we plan to integrate the optimizations developed in [RGL90,

GLR97] for outerjoins and in [CS94, YL94] for grouping into our rewriting component.

Our results show that in some cases it is either not possible or not beneficial to unnest a

query. Consequently, query unnesting should be integrated into the cost-based query opti-

mizer. Guravannavar [GRS05] present cost-based optimizations in the presence of nested

queries. The framework proposed in [EGLGJ07] discusses alternative processing strategies

for nested queries and their trade-offs.

4.8. Related Work

Processing Nested Queries The problem of efficient processing of nested queries

first occurred for SQL. The original technique proposed was to evaluate the inner query

block for each tuple of the outer block [AC75].

Graefe showed that this straightforward evaluation of nested queries loops can be im-

proved by several techniques [Gra03]. As a consequence, query unnesting should be

integrated into the cost-based query optimizer [SHP+96, GRS05, ALW+06, EGLGJ07].

Nevertheless, unnesting nested queries leaves more freedom for subsequent algebraic opti-

mizations possibly reintroducing nested queries with efficient execution strategies.

Unnesting in SQL Kim was the first to observe that it is possible to rewrite a nested

SQL query into an unnested one and thereby significantly improve the evaluation cost

[Kim82]. He introduced a classification for nested queries and pointed out that nested

queries can be unnested such that the transformed query uses joins or grouping instead of

nested queries. However, restrictions required for their validity have been found for some

of his rewrites. They mainly concern empty results for the inner query block, NULL values,

and duplicate handling.

Algebraic Approaches to Unnesting Several solutions for these problems were pro-

posed. Current approaches differ from early approaches to query unnesting because unnest-

ing of queries either works on algebraic [Mur89, Mur92, CM93, CM95b, Ste95, SABdB94,

GLJ01] or calculus representations [Nak90, Feg98, FM00, SPL96] of the query. A major

advantage of unnesting at the algebraic level is that now unnesting can be integrated into

cost-based plan generation [GLJ01].

Several rewrites introduced grouping, outerjoins, and semijoins which increased the ex-

pressiveness of SQL and widened the range for additional optimizations.One of the most
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important constructs to avoid problems with NULL-values and empty results when unnest-

ing queries turned out to be outer joins [Kie84, Day87, GW87]. After their introduction

into SQL and their usage for unnesting, reordering of outer joins became an important topic

[BGI95, GLR97, RGL90].

Other rewrites detect division operators [RM06] or discuss efficient implementations for

queries containing universal quantifiers [CKMP97]. Claussen et al. [CKMP97] compare

evaluation techniques for universal quantifiers. Implementation techniques for relational

division are presented in [GC95, RSMW02]. In [RM06] algebraic rewrites for the division

operators are presented.

Unfortunately many proposals to unnesting are restricted to sets. But since most SQL

queries have bag semantics, proper treatment of duplicates is important [Klu82, PHH92,

SPL96].

Recently, nested queries containing disjunctions received attention [BMM06, BMM07].

Before that, disjunctions were treated by duplicating subexpressions and introducing union

operators. By resorting to bypass-operators [CKM+00] it is possible to construct query

execution plans that outperform previous techniques by orders of magnitudes.

Unnesting in XQuery Optimization of XQuery can benefit from the techniques men-

tioned so far for SQL queries that do not need to preserve order or when order is explicitly

treated in an unordered query processing environment. The latter can be achieved by trans-

lating XQuery into SQL [GST04] or into a relational algebra [PCS+05, LKA05], unnesting

the query, and adding a final sort. While this technique is feasible, we argue in [MHKM04]

that the decision to destroy and later repair document order should be based on costs. One

contribution of this work is to point out when no sorting is needed after unnesting nested

queries in an order-preserving query processor.

XQuery lacks an explicit grouping construct — a situation that is likely to be remedied

[BC04, BCC+04, BCC+05, Eng07]. Until then, grouping must be formulated implicitly,

giving rise to another stereotype of nested queries. But even when explicit grouping ar-

rives in XQuery, nested queries will probably still be used sometimes to express grouping

implicitly. Detecting and unnesting implicit grouping is a challenging task, before us Pa-

parizos et al. tried to tackle it [PAKJ+02]. In their approach a tree pattern based grouping

operator is proposed, and a single case where it can be beneficially used to unnest a nested

query is identified. However, the description is at a rather high level and special cases are

not taken care of, e.g. empty groups. Based on their previous work [Feg98, FM00], Fegaras

tried to adopt his approach to XQuery [FLBC02]. However, from his exposition it is not

clear whether the unnesting techniques presented there preserve order. [DPX04] present

an algorithm for detecting grouping on a subset of XQuery. Their algorithm minimizes

the number of navigation steps needed to evaluate a query. However, their algorithm does

not preserve order semantics as required in XQuery. For XQuery queries which cannot

be unnested, the evaluation techniques proposed by Sartiani [Sar03a] can by applied. Re-

cently, an algebraic unnesting framework similar to ours was proposed [RSF06]. To the

best of our knowledge, it is the only other treatment of nested queries that fully obeys to

XQuery semantics.

Some of the material presented here has already appeared elsewhere [MHM03a, MHM03c,

MHM03b, MHM04, MHM06]. We extend this work by discussing further evaluation

strategies for unnested query execution plans. Furthermore, we present the implementa-

tion of our unnesting equivalences. We also investigate the effort in terms of optimization

time needed to unnest nested queries.

Closely connected to the efficient evaluation of XQuery is that of XPath [GKP02, GKP03b,

BKHM05]. Since XPath expressions are translated into our algebra, our unnesting tech-

niques can also be applied to them.
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Rule-based Optimization Currently query unnesting is applied in a rewrite phase and

thus precedes the cost-based plan generation. The main reason for this decision is that in the

overwhelming number of cases the unnested query is at least as fast to evaluate as the nested

one. But compared to the nested query, cost-based optimization has more opportunities

to optimize the unnested query because query execution plans are constructed per query

block. This restricts the information available to the plan generator to smaller fragments

of the query and also restricts the possibilities to reorder operators in the query execution

plan.

However, a major advantage of unnesting at the algebraic level is that unnesting can be

integrated into cost-based plan generation [SHP+96, GLJ01, ALW+06]. Only during cost-

based plan generation it is possible to decide wether unnesting is beneficial for unnesting

techniques which only sometimes improve performance. For example when we duplicate

subexpressions the resulting query execution plan can be less efficient to evaluate.

In any case, unnesting equivalences will be embedded into rules, and these rules will be

integrated into a rule-based query optimizer. Rule-based optimization is the major imple-

mentation technique for both heuristic rewriting [HFLP89, PHH92, PLH97, CZ96, CZ98,

Che98] and cost-based optimizers [CDF+86, GD87, GM93, GCD+94, Gra95, Fre87, Loh88]

because it allows extensible implementations that are resonably efficient. However there

is a tradeoff when we aim for comprehensible and provably correct implementations. On

the one hand, several proposals exist to specify rules in a declarative way [FMS93, DB95,

Che98]. These declarative rule specifications may also serve as input to a theorem prover

that can prove, e.g. the correctness of the rules. On the other hand, coding rules di-

rectly [PHH92, PLH97, KD99] allows for optimizations that are not possible otherwise.

The architecture of our rule-based rewriting component is closest to the one described

in [PLH97].
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The task of cost-based optimization is to schedule all logical operators contained in the

query and to choose the most efficient implementation for them. Usually, the optimizer is

invoked per query block, in our case per AlgSFWD block. Heuristic optimizations, such as

merging query blocks during query unnesting or view merging, are important preparation

steps for cost-based optimization because the cost-based optimizer get a holistic view on

the query to optimize and, thus, is able to generate better query execution plans.

Enumerating all possible operator orders and implementations efficiently is a challenging

task, i.e. in general, finding the optimal join order is NP hard. For SQL and relational

databases, it was shown that only by considering the full search space of plans, we can

assure to find the optimal plan. We conjecture that this also holds for XQuery.

Previous work on cost-based query optimization assumed a data model based on set or

bag semantics. Now, in XQuery, the order of the items in a sequence is the new aspect

to consider. Unfortunately, joins in our algebra over sequences are not commutative (but

still associative). Additionally, many other operators cannot be reordered, as we are accus-

tomed to in the relational algebra over sets or bags. Thus, query optimizers are severely

constrained in considering plan alternatives.

In this chapter, we show that the results developed in Chapter 2 provide important infor-

mation, when reordering operators implies that order is destroyed. In particular, we have a

choice: either we destroy order and pay the additional cost of sorting to repair it later, or

we preserve document order and sequence order.

Our argument is based on experiments carried out with concrete queries and a benchmark

data. In Section 5.1, we describe the structure of our data set which allows us to investigate

the performance impact of different query parameters at fine granularity.

In the first set of experiments, presented in Section 5.2, we look at the issue of document

order. Since XPath and XQuery demand the result of path expressions to be in document

order, we are forced to return the result nodes of a path expression in document order.

Consequently, we take care that every location step returns a node sequence in document

order and duplicate free, or we repair them when we have to. In particular, we compare

the evaluation of path expressions using navigation with indices. Using indices allows us

to reorder the evaluation of axis steps. As pointed out above, evaluating location steps in a

different order necessitates in sort operations to repair document order.

In the second set of experiments, discussed in Section 5.3, we turn our attention to se-

quence order. Sequence order is relevant when we combine the results of different se-

quences in a series of for clauses. As we have shown in Chapter 2, joins on sequences are

associative but not commutative. Because exchanging the arguments of a join also changes

the order of the result, we need sort operations to repair order. We show that there are sit-

uations where this additional cost is more than outweighed by the effort saved during join

processing.

Our observations motivate the need for a cost-based optimization of XQuery. Thus, we

present the architecture of our cost-based optimizer in Section 5.4. Clearly, an efficient

support for properties, in particular of order information, is crucial for an efficient query

optimization. Hence, we give details how our cost-based plan generator manages properties

in a generic fashion. Fortunately, we can build upon efficient techniques for including order

in query optimization [NM04].
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5.1. The Benchmarking Data

To get precise performance characteristics for each of the evaluation strategies we discuss

in this chapter, we use generated data sets. This allows us to tune the selectivity of XPath

axis steps or join predicates individually.

The input documents used in our experiments were generated by the XDG document

generator implemented by our group.1 It allows to specify several parameters, i.e. the

number of nodes, the document depth, the fan-out of each element and the number of

different element and attribute names.

Conceptually, the generator creates as many child nodes as defined by the parameter

“Fan-out” and resumes with a recursive call for each child. When the depth of the recur-

sive calls reaches the specified parameter value “Depth”, no recursive calls are executed

any more. The frequency of occurrences of tag names decreases by a factor 2 for each

subsequent tag name. E.g. the argument “C” for parameter “Elements” means that the tag

names A, B, and C are used in the document where every second node gets tag name A,

every fourth node gets tag name B, and so on. To get up to 100%, nodes with tag name A

are generated. In our setup, this means that exactly 50.1% of the nodes are A nodes. The

tool generates new nodes until the limit for the number of nodes (#Nodes) is reached.

In principle, this generator might introduce correlations between predicates such that the

distribution of tag names strongly depends on the parent nodes. For our data sets, this is

not the case for tag names A, B, C, and D. However, the remaining tag names only occur as

leaf nodes.

In document D0, every element contains the attributes a, b, c, d and an id. The range

of these attributes values doubles for each subsequent letter. This means that attribute a

only takes the values 0 or 1, while attribute c may have the values from 0 to 7, the values of

attribute d range from 0 to 15, while id takes a unique value for each element. The values

for each attribute a, b, c, and d are uniformly distributed.

We generated documents of five sizes with the parameters summarized in Figure 5.1. In

this figure, we give the size of the generated XML file. This setup allows us to control the

selectivity of each axis step between 50% and 0.1% by changing the name test of each axis

step. Similarly, we can change the selectivity of join predicates by combining different

attribute names.

Document Parameter Document Instance

Parameter Description D0 D1 D2 D3 D4

#Nodes # of generated XML elements 5,000 10,000 100,000 1,000,000 10,000,000

Depth max. depth of the document 4 4 5 6 7

Fan-out # of children per element node 10

Elements # of different tag names “K” (11) “J” (10)

Attributes # of different attribute names 4 0

Size Size of textual XML file 0.396MB 0.327MB 3.46MB 36.5MB 384MB

Figure 5.1.: Parameters and characteristics of generated documents

5.2. Document Order Considered Harmful

In this section, we investigate different query execution plans (QEPs) that either employ

navigation or indices to evaluate path expressions. In a series of experiments, we show

that sometimes it is more efficient to reorder location steps and sort the result of a path ex-

pression than to preserve document order even for intermediate results of path expressions.

Moreover, we will see that there is no clear winner when we have to decide if navigation or

1available for download at http://db.informatik.uni-mannheim.de/xdg.html
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DOC1

A1.1

B1.1.1

A1.1.1.1

A
1.1.1.1.1

A1.1.1.1.3

A1.1.1.3

A1.1.3 B1.1.5

A1.1.5.1

A1.1.5.1.1 A1.1.5.1.3

B1.1.7

A1.1.7.1 A1.1.7.3

A1.1.7.3.1

(a) Example document

Tag2Lid

Tag Lid

A 1.1

A 1.1.1.1

A 1.1.1.1.1

. . . . . .
A 1.1.5.3

A 1.1.5.3.1

B 1.1.1

B 1.1.3

B 1.1.5

DOC 1

Lid2Nid

Lid Nid

1 1

1.1 2

1.1.1 3

1.1.1.1 4

. . .
1.1.5 12

1.1.5.1 13

1.1.5.3 14

1.1.5.3.1 15

(b) Indices

Figure 5.2.: Indexing XML documents

indices are the better approach to evaluate path expressions. But before we discuss the plan

alternatives and their performance, we introduce the structure of the indices, we employ in

the plans we present in this section.

5.2.1. Indexing XML

Similar to the proposal of Chien at. al [CVZ+02], we index XML documents in B-link

indices. As described in Section 2.3, we can reference physical nodes stored in our database

with logical node ids (LIDs). We use ORDPATH IDs to identify logical nodes [OOP+04].

There exist other proposals for indexing XML documents, e.g. [GW97, LM01]. But we

believe that our approach provides a solid performance for a wide range of queries and at

the same time supports efficient concurrent updates.

The idea of our indexing scheme, depicted in Figure 5.2, is to create two indices: one

called Tag2Lid and the other Lid2Nid.

Tag2Lid maps tag names to LIDs. The key value is the tag name, and the indexed value

is the LID. For the same tag name, LIDs are returned in document order, i.e. in

ascending order.

Lid2Nid maps LIDs to their physical storage address. This index is optional when the

storage manager directly provides access to XML fragments based on their LID.

However, for generality we will explicitly use this index to locate result nodes of an

XPath expression.

We create the two indices shown in Figure 5.2(b) for XML document in Figure 5.2(a).

The subscript of every node in the document is annotated with its LID. In Natix, we cluster
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subtrees of the XML document on the same page to reduce I/O during document traversals

and lookup of nodes, see [KM00, KM06] for details.

5.2.2. Query Execution Plans

The translation of path expressions into our algebra, described in Chapter 3, does not as-

sociate operator implementations with the axis steps. Moreover, the translation function

schedules axis steps in their canonical order. It is the task of the cost-based optimizer to

choose the most efficient order and implementation for axis steps. We now discuss the

alternative query execution plans (QEPs) the optimizer may consider:

1. Navigate through the XML document (e.g. in a DOM-like fashion).

2. Use indices to access the candidate nodes of each navigation step and relate them by

join operations to evaluate the query. If there are multiple navigation steps, we have

two more choices:

a) Access indices in the order specified in the query.

b) Reorder the index accesses and sort the result nodes at the end.

In our opinion, these types of QEPs comprise a wide variety of XPath evaluation tech-

niques that have not been compared yet. For each alternative mentioned above, we present

a QEP for the query /DOC/TAG1/TAG2. Even this simple query allows us to point out

the advantages of each alternative. The reason is that each QEP exploits structural rela-

tionships, selectivities of axis steps, or physical storage characteristics to different degrees.

As we will see in our experiments, there is no single plan that is consistently faster than

the other alternatives. Thus, the best plan must be chosen based on its estimated execution

costs.

Plan Using Navigation

1−→
χr:root

2

Sortb

ΠD
b

Υb:a/TAG2

Υa:d/TAG1

Υd:r/DOC

2

Figure 5.3.: Plan

using

navi-

gation

The most direct translation of the XPath expression results in a navi-

gational plan [BKHM05]. The result of the stacked translation of the

query into our algebra is depicted in Figure 5.3. The topmost opera-

tor of the QEP is a D-Join which initializes the context for the XPath

query evaluation to the root node. The right argument is evaluated

with the bindings taken from this context. The stacked translation

results in a sequence of Unnest Map operators, each of which eval-

uates one axis step. In general, to compute the resulting node set,

duplicates have to be removed, and the result nodes have to be sorted

by document order. In our example query, we can avoid duplicate

elimination or sorting [HKM02, HM03].

When the QEP is evaluated, each Unnest Map operator traverses

some part of the document, starting at the current context node. E.g.

during a child step, all children of the current context node will be

visited. When a node satisfies all node tests, it is passed to the next

operator, where it may serve as another context node.

This evaluation strategy has three basic consequences: (1) Non-

matching nodes may implicitly prune parts of the document from

the traversal. Thereby, accessing physical pages is avoided for potentially large parts of the

document. (2) Axis steps may visit intermediate nodes that will never be part of a matching

path expression. E.g. for descendant steps, we have to look at all descendant nodes of the

context node. (3) In Natix, the document traversal may visit a physical page in random

order and multiple times.
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χ∗n

1−→
Sortb

ΠD
b

1−→
1−→

1−→
χr:root

2

IdxTag2Lid;d;DOC;r↓d

IdxTag2Lid;a;TAG1;d↓a

IdxTag2Lid;b;TAG2;a↓b

IdxLid2Nid;n;b;true

Figure 5.4.: Plan with index access in order

Plan with Index Access in Canonical Order

The motivation for using an index is to retrieve only nodes with tag names that satisfy the

name tests of the axis steps in the path expression. The translation into a plan using an

index is an application of the canonical translation presented in [BKHM05] or the XQuery

translation of [PCS+05].

The result of this translation is shown in Figure 5.4. The data flow of the QEP goes from

the bottom-left leaf node upwards to the root of the QEP. First, the root node is initialized

as context node. This context can be used to restrict the range scan in the index “Tag2Lid”.

This index access is performed in the dependent part of each D-Join in the plan. We have to

apply the residual predicate to each node retrieved from the index. Together with the range

predicate, this test completes the structural test between context node and document node.

Before all physical nodes are retrieved, we possibly have to perform a duplicate elimination

and a sort [HM03]. Finally, we employ the index “Lid2Nid” to get the physical nodes of

the query result and access the physical nodes on disk using a Map operator. Note that

some queries do not require this final dereferencing step, e.g. quantified queries or queries

with count aggregate. This can be used in favour of such queries.

The index-based technique has the following properties: (1) It only considers nodes

which can match the node tests in the query. (2) The index is repeatedly accessed for each

context node. This results in random I/O, as the same index page is accessed for different

axis steps. (3) Context information can be used to prune the set of candidate nodes. This

depends on the availability of e.g. level information for axis steps to sibling nodes. (4)

Parts of structural queries can be answered solely based on LIDs. Hence, less information

needs to be stored in the index. This potentially decreases the required I/O bandwidth. (5)

Additional I/O is needed to retrieve the result nodes of the query.

Plan with Index Access Reordered

We now turn our attention to index-based QEPs in which we reorder axis steps. We treat

the reordering of axis steps separately because there are two main issues that limit the value

of join reordering for XPath expressions: (1) Join ordering in general is known to be NP

hard. When we allow to sort by document order at the end, the search space contains

O((2n)!/n!) bushy join trees and O(n!) left deep join trees [OL90, PGLK97] contain-

ing n joins. Here, we consider one scan for each axis step and include cross products.

(2) The quality of the generated plans heavily depends on the precision of cardinality es-

timates [IC91]. However, good methods for cardinality estimation are known only for

restricted classes of XPath [AAN01, LWP+02, PGI04, ZOAI06].

We can order the index accesses as shown in Figure 5.5. Reordering axis steps implies
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χ∗n

1−→
Sortb

ΠD
b

1−→
1−→

1−→
χr:root

2

IdxTag2Lid;d;DOC;r↓d

IdxTag2Lid;b;TAG2;d⇓b∧b.level=3

IdxTag2Lid;a;TAG1;a↓b∧d↓a

IdxLid2Nid;n;b;true

Figure 5.5.: Plan with index access reordered

three differences to the previous plan: (1) We reordered the axis steps. (2) The residual

predicates had to be adjusted. (3) To establish the document order, we need a final sort.

The potential value of reordering axis steps stems from the possibility of evaluating axis

steps with low result cardinality first to minimize the number of lookup operations in the in-

dex. The additional freedom of reordering axis steps has to be payed with an additional sort

operation (which is always needed now) and less restrictive structural predicates. Hence, it

is not clear which strategy is better in which case. In general, this decision should be based

on costs.

Plan Using Index and Structural Join

The plans discussed in the previous sections access the index for each context node. Thanks

to the Structural Join (1ST−J
p ), we can evaluate an axis step with a single scan of each

input, and we still have the full freedom to choose the most efficient plan among all bushy

join constructed with Structural Joins [SAKJ+02, WPJ03]. Notice that this is not generally

true for staircase joins [GvKT03] One possible QEP using Structural Joins is depicted in

Figure 5.6. In this plan, a Structural Join is performed between the nodes with tag name

TAG1 and TAG2. Since both input sequences are sorted in document order, the Structural

Join can compute its result with one scan through both sequences and some additional

buffering. The resulting node sequence is sorted by document order and does not produce

duplicates.

χ∗n

1−→
1−→

1−→
χr:root

2

IdxTag2Lid;d;DOC;r↓d 1
ST−J
a↓b

IdxTag2Lid,a;TAG1;d↓a
IdxTag2Lid;b;TAG2;

d⇓b∧b.level=3

IdxLid2Nid;n;b;true

Figure 5.6.: Plan using index and Structural Join
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5.2.3. Experiments

Now, we compare the performance characteristics of the QEPs developed in Section 5.2.2

for three XPath queries on the synthetic data set presented in Section 5.1.

We have executed all queries on Natix. Each query was executed three times with cold

buffer (with 8MB buffer size). We report the average of all three evaluations. Our execution

environment was a PC with two 3GHz Intel Xeon CPUs, 1 GB of RAM, 34GB hard disc

(FUJITSU MAS3367NC) running SUSE Linux with kernel 2.6.11-smp.

XPath Queries

We have compared the performance characteristics of the QEPs discussed in Section 5.2.2

for the following three XPath query patterns:

Q1: /descendant::TAG. This query reveals the impact of the access patterns of

the QEPs because when evaluating this query, structural information is unimportant. The

navigational plan visits the whole document to access all potential result nodes. In contrast,

the index-based plans only visit only the nodes with tag name TAG.

The main difference is that the navigational plan performs random I/O in the worst case,

whereas the index-based QEP can directly retrieve the requested nodes by a range scan on

the “Tag2Lid” index.

Q2: /DOC/TAG1/TAG2. With this query, we investigate (1) how well each plan alter-

native exploits structural properties demanded by the query, and (2) how reordering navi-

gation steps effects query performance.

Q3: /DOC/descendant::TAG1/descendant::TAG2. In addition to query Q2,

the cost of evaluating each step in this query is potentially much higher because level in-

formation is less useful here. As both descendant axis steps potentially visit large parts of

the document, we expect optimizations that can reduce the I/O to be very important.

We restrict ourselves to the child axis and the descendent axis because only for these two

axes precise selectivity estimation techniques are known, e.g. [AAN01, LWP+02, ZOAI06,

PG06]. To make our experimental results comprehensible, we ignore the other XPath axes

because we cannot easily compute the selectivity of an axis step with respect to some

arbitrary context node.

Experimental Results

Query Q1. Figure 5.7 shows the results for query Q1. In Figures 5.7(a) and 5.7(b), we

compare the performance of the navigational plan and the index-based plan for document

D2 (3.46MB) and D4 (384MB).

For small selectivities on the smaller document, the index-based plan performs better

than the navigational plan. As we make the node test less selective, the index-based ap-

proach needs more time to evaluate the query, while the execution time of the navigational

plan remains nearly constant. The break-even is reached at a selectivity of about 1%. For

larger selectivities, the navigational plan outperforms the index-based plan. All these re-

sults agree with our experience in the relational world.

In Figures 5.7(c) and 5.7(d), we plot the query execution times for specific selectivities

of 50% and 0.2% over documents D1, D2, D3, and D4.

Again, the results confirm that index-based evaluation is superior only for selective

queries. However, since two indices and the document are accessed, more buffer pages

have to replaced due to lack of space, and additional I/O is needed. As a result, the perfor-

mance of the index-based plan suffers on the largest document instance.
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(d) Selectivity: 0.2%

Figure 5.7.: Query Q1 (/descendant::TAG)

Query Q2. Figure 5.8 contains the results of our experiments for query Q2. We restrict

ourselves to two document sizes (3.46MB and 384MB) because the results on the other

documents do not provide any additional insight. In our exposition, we keep the selectivity

of the second axis step (TAG2) constant at 50% (see Figures 5.8(a) and 5.8(c)) and at

0.2% (see Figures 5.8(b) and 5.8(d)). We only modified the selectivity of the first axis step

(TAG1).

The navigational QEP has an almost constant execution time independent of the selec-

tivity. This is a direct consequence of its evaluation strategy: This QEP has to inspect the

same set of nodes to compute its result, no matter how selective each step is. The naviga-

tional QEP dominates all other QEPs because this plan only visits the three upper levels of

the document.

The value of reordering axis steps becomes apparent when we compare the execution

times of the naive and the reordered version of the index-based plans. In the experiments

depicted in Figures 5.8(a) and 5.8(c), the reordered version is up to ten times slower than

the naive plan because the reordered QEP performs the more expensive scan first (selectiv-

ity 50%). In Figures 5.8(b) and 5.8(d) we observe exactly the reverse behavior because the

second axis step is very selective (selectivity = 0.2%). However, the differences are smaller

because the naive plan can use more information to restrict the index scan. In all exper-

iments the Structural Join behaves similar to the naive index-based evaluation technique.

The index based technique is competitive because none of the navigation steps produces

duplicates. Hence, no redundant index lookup is performed.

The advantage of the navigational plan is partially a consequence of the document struc-

ture. For shallow documents where we increase the number of children per node, we expect

similar behavior as for query Q3.

Query Q3. For our final experiment, we replace the last two child steps of Q2 by descen-

dant steps: /DOC/descendant::TAG1/descendant::TAG2. The execution times
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Figure 5.8.: Query Q2 (/DOC/TAG1/TAG2)

for these three alternatives are shown in Figure 5.9. In the results we present here, we use

the same parameters as we did for query Q2.

First, we discuss the navigational approach: We observe that in all figures the evaluation

times of the navigational QEP increase with an increasing selectivity of the name tests.

The reason for this is that the XPath expression generates more context nodes for which

the whole subtree is traversed. For larger selectivities, fewer subtrees are pruned during the

traversal.

In contrast, the index-based QEPs retrieve exactly the candidate nodes with the correct

tag name. However, only in Figure 5.9(b) both index-based strategies are faster than navi-

gation for very small selectivities on a small document. The reason for this is that our naive

index-based execution strategy is not aware of structural relationships of context nodes. As

a result, the same nodes are returned repeatedly by index lookups. We conclude that the

simple index-based QEPs do not result in an acceptable query performance for this query

pattern.

The plan based on Structural Joins avoids these superfluous index lookups. For large

selectivities (of 50%) of the second step, the Structural Join is faster when the selectivity

of the first step is smaller than about 2% and the document is large (Figure 5.9(c)). How-

ever, when we keep the selectivity of the second step at 0.2%, the Structural Join clearly

outperforms the navigational query independent of the selectivity of the first step and the

document size. This advantage is larger when the selectivity of the axis steps is small.

Summarizing, our experiments show that neither navigation nor index-based plans are

always superior. Moreover, there are cases where reordering axis steps is better than eval-

uating them in their canonical order, even when this requires an additional sort operation.

Hence, all these alternatives are important and must be considered during cost-based plan

generation.

139



5. Cost-Based Optimization

 0.1

 1

 10

 100

 1000

 0.001  0.01  0.1  1

E
la

p
s
e

d
 T

im
e

 (
s
)

Selectivity (TAG1)

Index
Index Reordered

Structural Join
Navigation

(a) Selectivity TAG2: 50%, Doc. D2

 0.1

 1

 10

 100

 0.001  0.01  0.1  1

E
la

p
s
e

d
 T

im
e

 (
s
)

Selectivity (TAG1)

Index
Index Reordered

Structural Join
Navigation

(b) Selectivity TAG2: 0.2%, Doc. D2

 10

 100

 1000

 0.001  0.01  0.1  1

E
la

p
s
e

d
 T

im
e

 (
s
)

Selectivity (TAG1)

Index
Index Reordered

Structural Join
Navigation

(c) Selectivity TAG2: 50%, Doc D4

 0.1

 1

 10

 100

 1000

 0.001  0.01  0.1  1

E
la

p
s
e

d
 T

im
e

 (
s
)

Selectivity (TAG1)

Index
Index Reordered

Structural Join
Navigation

(d) Selectivity TAG2: 0.2%, Doc D4

Figure 5.9.: Query Q3 (/DOC/descendant::TAG1/descendant::TAG2)

5.3. Sequence Order Considered Harmful

When we combine sequences of items in XQuery by a series of for clauses, we have to

respect the order of the combined sequences, i.e. their sequence order. Thus, the observable

effect of nested for clauses must be the same as the evaluation of nested loops in which we

iterate through the involved sequences.

In Chapter 2, we proved that joins over sequences are associative but not commutative.

In particular, exchanging the arguments of a join destroys the order. Consequently, the

query optimizer is severely limited when enumerating possible join orders. In this section,

we show how the search space of a plan generator can be extended significantly and how

this leads to better plans. We will allow to destroy order temporarily and add sort operations

to repair order afterwards. Since sorting is not for free, the decision to destroy order should

be based on costs.

With the help of the following example query, we show how extending the search space

influences the quality of the QEP. We have chosen a simple SPJ-query that is well suited to

explain the tasks performed by the plan generator during query optimization.

for $x1 in doc(”d1.xml” )//K,

$x2 in doc(”d2.xml” )//A,

$x3 in doc(”d3.xml” )//A

where

$x1/∗/@a = $x2/∗/@a

and $x2/∗/@d = $x3/∗/@d

and $x1/∗/@c = $x3/∗/@c

return

<result>

<x1>{ $x1/@id }</x1>

<x2>{ $x2/@id }</x2>
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Πres

χres:C(... )

1
NL
x2/∗/@d=x3/∗/@d∧
x1/∗/@c=x3/∗/@c

1
NL
x2/∗/@a=x2/∗/@a

Υx1:doc(”d1.xml”)//K

2

Υx2:doc(”d2.xml”)//A

2

Υx3:doc(”d3.xml”)//A

2

(a) QP1

Πres

χres:C(... )

1
NL
x1/∗/@a=x2/∗/@a∧
x1/∗/@c=x3/∗/@c

Υx1:doc(”d1.xml”)//K

2

1
NL
x2/∗/@d=x3/∗/@d

Υx2:doc(”d2.xml”)//A

2

Υx3:doc(”d3.xml”)//A

2
(b) QP2

Figure 5.10.: Naive Plans

<x3>{ $x3/@id }</x3>

</ result >

Before delving into the details of optimizing this query, we explain some properties of

the documents used in his query. They all have the structure of document D0 introduced

in Section 5.1. The first path expression evaluates to a sequence of ⌊ 5000211 ⌋ = 2 nodes,

while the other two path expressions evaluate to approx. 2500 nodes. Thus, the variable

x1 is bound to a sequence that is much smaller than the sequences bound to x2 and x3.

Also note that the query graph contains a cycle x1 ↔ x2 ↔ x3 ↔ x1. The selectivity of

the predicates also varies from the first to the last because in the first predicate only two

different attribute values occur, as opposed to sixteen in the second predicate and eight in

the last predicate.

5.3.1. Query Execution Plans

We now present several query execution plans (QEPs) to evaluate the example query. Start-

ing with the canonical translation of the query that we have introduced in Chapter 3, we

will increase the considered search space and discuss its impact. Since our focus here is on

join ordering and to keep the QEPs readable, we omit many details on evaluating the path

expressions involved. This is an orthogonal issue which we have examined in the previous

section. Along the same lines, we abbreviate the element construction with χres:C(... ).

Naive Translation

The semantics of XQuery demand that the result of a query is computed in document

order. This means, when an element A is visited before element B in the traversal of an

XML document, then A is located before B in the resulting sequence of elements. When

sequences of items from multiple sources are combined using for clauses, the order of the

for clauses in the query determines the order of the combined sequence of items.
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The canonic translation of a query results in a sequence of (order-preserving) Unnestmap

operators connecting the sequences in the for clauses. When an expression in the for clause

can be evaluated independently of the previous ones, we can apply Eqvs 2.17 and 2.18

to transform them into Cartesian products. These Cartesian products can be turned into

joins when we can have join dependencies between those sequences. Thus, a naive query

translator will turn the example query into a sequence of nested loop joins (see query plan

QP1 in Figure 5.10(a)). We employ nested loop joins due to their order-preserving property.

Typically, hash join algorithms do not have this property because they partition the input

on secondary storage. Sort-merge joins require their input to be sorted on the join attribute,

which does not necessarily match sequence order.

Evaluating the join predicates is done via a nested query. For example, for the first

join predicate all the attribute values of $x1/*/@a are generated and compared to those

generated for $x2/*/@a. In case we find a value that both sequences have in common,

the predicate is true. Another variant to evaluate the join predicates would be to attach the

sequence of attribute values to each tuple of x1, x2, and x3 and employ an adapted version

of a set-valued join algorithm [HM97, MGM03, RPNR00].

Ordering Order-preserving Joins

Based on the algebraic properties of the operators in a query, the plan generator may choose

between different plans. For example, order-preserving joins are associative but not com-

mutative. Compared to the general join-ordering problem, this results in a much smaller

search space for join ordering. Let us denote by C(n) the Catalan numbers. Then, for

ordering n order-preserving joins, there are “only” C(n) = 1/(n+1)
(
2n
n

)
different execu-

tion plans. Moreover, the join ordering problem can be solved in polynomial time (O(n3))
independently of the query graph and the cost function [Moe03].

The choice of the best operator order depends primarily on the input cardinality and the

selectivity of the joins. For our example query the plan generator may choose between two

different queries, QP1 and QP2 (see Figure 5.10). When running the queries on Natix, QP1

takes 587.75 seconds, while QP2 takes 395.18 seconds.

As we can see, there is a better alternative to the naive translation of our query. This

resembles results obtained by Wu et al. in [WPJ03] in the context of structural joins for

evaluation of XPath. However, this is just a first step in extending the options of the plan

generator. In the following sections, we present some approaches to increase the search

space even further.

Disregarding Order Preservation

The cardinality of the input and the selectivity of the join predicate are also important

parameters for generating the cost-optimal order of joins that do not preserve order. A

rule of thumb for plan generators is, e.g., joining the input with the smallest cardinality

and the most selective join predicate first. However, the naive order-preserving evalua-

tion limits our choices significantly. In order to lift these restrictions, we now disregard

sequence order during query processing. As a consequence, for n join operators we now

have (n+1)!C(n) possible orderings (due to the commutativity of a join operator that does

not preserve order) [OL90, PGLK97]. Thus, we get twelve different plans for our example

query, increasing our search space considerably. Another consequence is that we have to

sort the final result to make sure that sequence order is obeyed, since it may have been cor-

rupted by using non-order-preserving join operators or by reordering the joins exploiting

the commutativity.

Let us examine some implementation details of the plan depicted in Figure 5.11. First

of all, we use a tid operator to add an attribute containing the position to each tuple in a

sequence. This way, we are able to reconstruct sequence order later on. We also unnest the

join attributes. For example, for the first join predicate this means that we generate a tuple
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Figure 5.11.: Optimized Join Order (QP3)
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Figure 5.12.: Optimized Join Order with pushed duplicate elimination (QP3 de)

for each attribute value in doc("d1.xml")//K/*/@a and doc("d2.xml")//A/*/@a

and then join the two sequences on these attribute values. As this results in duplicates, we

also have to insert a duplicate elimination step after joining all sequences.

The best QEP we found among all twelve plans, called QP3, is depicted in Figure 5.11.

In this case, the sequences for x1 and x3 are joined first. In our case, this is better than join-

ing the smallest sequence with the least selective predicate or joining the largest sequences

with the most selective predicate first. Comparing the execution time of this plan (125.48

seconds) to QP2 from the previous section, we see that we have improved the performance

approximately by a factor of three.
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Pushing Duplicate Elimination

As noted in the previous section, the joins might contain duplicates in their results. We now

extend the search space of the plan generator to consider introducing an additional duplicate

elimination after each join. In a query with n joins, we may introduce at most n − 1
additional duplicate elimination operators. The final duplicate elimination is mandatory in

our case. Note that introducing the duplicate elimination does not harm the sequence order.

Duplicate elimination does not come for free. It is not trivial to decide if introducing

duplicate elimination is beneficial, and this issue has been addressed in the context of early

aggregation in the literature [Lar02]. Deciding on the effectiveness of doing so is the task

of the cost-based query optimizer [HNM03].

In our example, the search space is extended only by one additional alternative for QP3.

The resulting plan QP3 de, shown in Figure 5.12, contains an additional duplicate elimi-

nation, ΠD
t1,t3,a1,d3 , after the join of x1 and x3. Since this duplicate elimination reduces

the input cardinality of the last join, the execution time of this plan improves to 103.21

seconds. As the example query shows, it is worth to extend the search space of the plan

generator to consider introducing duplicate elimination. However, it is not always worth

doing this extra work, but it gives more freedom to the plan generator.

Choice of Join Algorithm

When giving up the order-preserving property of the join operators, we can go one step

further and employ different non-order-preserving implementations of join operators. Con-

sequently, we extend the search space even more by allowing the plan generator to choose

among several different join evaluation techniques [DKO+84, Gra94, GLS94, Gra93, HCLS97].

In our case, we implemented two other join algorithms: a hash-based and a sort-based

one. The SIMPLEHASHJOIN is a block wise nested loop algorithm that pipes main-memory

sized blocks of the outer producer into a hash table and probes each block with all the tuples

of the inner producer. The sort-based MERGEJOIN is a standard n:m sort-merge join.

For our measurements, we restrict ourselves to the most efficient plan from the previous

section. We replace the nested loop joins either by hash joins or sort-merge joins. For the

hash join we have a query evaluation time of 7.34 seconds and for the sort-merge join an

evaluation time of 8.00 seconds.

5.3.2. Performance Summary

The comparison of the query execution plans in this section show that extending the search

space of the query optimizer leads to substantially more efficient plans.

The execution times of the plans we have considered here are summarized in Figure 5.13.

The canonical translation of the query resulted in a plan that needs almost ten minutes to

join the three documents of about 0.4MB size. Exploiting associativity, we could improve

execution time to about 6 minutes which we consider as not acceptable. This improvement

still represents the state of the art of join ordering for XQuery. By disregarding order, we

improved query execution times to two minutes. The main advantage of disregarding order

is that we are now free to choose an efficient implementation for performing the joins. In

our case, both hash join and sort-merge join evaluate this query in about eight seconds.

Comparing this to the original optimal order-preserving plan, we improved the execution

time by almost 50 times even on this small example query with just two join operators!

5.4. Towards Cost-based Optimization of XQuery

XQuery still has lots of potential for query optimization, in particular when several query

execution plans are enumerated and the cheapest is chosen among all alternatives. In the
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Plan Join Algorithm Preserve Order? Dupl. Elim. Time (s)

Q1: NLJOIN Yes No 587.75

Q2: NLJOIN Yes No 395.18

Q3: NLJOIN No Final 125.48

Q3 de: NLJOIN No Pushed 103.21

Q3 de: MERGEJOIN No Pushed 8.00

Q3 de: SIMPLEHASHJOIN No Pushed 7.34

Figure 5.13.: Comparison of query execution times

previous two sections we have demonstrated that reordering operators can lead to substan-

tially more efficient query execution plans. When we detect that reordering some operators

does not preserve order, but is valid for bags, we need to insert a sort operation to repair

order later. Since sorting is a costly operation, this decision should be based on costs.

As a consequence of these observations, an efficient management of orders (and possibly

also of duplicates) becomes a key requirement for cost-based XQuery optimizers. The main

idea of our approach is to use interesting orders [SAC+79] to model both document and

sequence order explicitly. As outlined in Section 5.2, logical node ids allow us to check if

two XML nodes are in document order. On the other hand, we can employ the tid operator

to make sequence order explicit (see Section 5.3). Then, we can use the tids both to repair

sequence order and to remove duplicates. In our query optimizer, we rely on an efficient

management of interesting orders [NM04].

In [Hac06], we have generalized the concept of interesting orders to interesting proper-

ties in general. In the remainder of this chapter, we describe how we integrate this general

property framework into our cost-based query optimizer. As a result, we can efficiently

generate query execution plans that exploit all the ideas discussed in Sections 5.2 and 5.3.

5.4.1. A Classification of Properties

The input to the cost-based query optimizer consists of a logical expression, i.e. the query

representation used before this step. This means, until this phase the query representation

does not contain any implementation details. Besides the operators contained in this query

representation, properties of this query representation are important information when gen-

erating and comparing plan alternatives. Consider the following query:

for $x1 in // K/@a,

$x2 in // A/@b,

$x3 in // A/@a

where

$x1 eq $x2

and $x2 eq $x3

return

<r> { $x1, $x2, $x3 } </r>

The translation of this query into an algebraic expression results in:

Πr(χr:C(... )(σx1=x2∧x2=x3(Υx3://A/@a(Υx2://A/@b(Υx1://K/@a(2))))))

(2.17)
= Πr(χr:C(... )(σx1=x2∧x2=x3(e3 1−→(e2 1−→e1))))

(2.18)
= Πr(χr:C(... )(e3 1x2=x3 (e2 1x1=x2 e1)))

where
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• Joined data sources

• Applied operators

• Result cardinality

• Tuple size

• Key

• Functional dependency

(a) Logical Properties

• Cost

• Order

• Grouping

• Duplicate Free

• Site in a distributed DBMS

• Presence in main memory

(b) Physical Properties

Figure 5.14.: Examples of logical and physical properties

e1 := Υx1://K/@a(2)

e2 := Υx2://A/@b(2)

e3 := Υx3://A/@a(2)

Remember that the task of the cost-based query optimizer is to find the cheapest order and

implementation of the operators in the query. Logical and physical properties that hold

for an argument plan are important information when constructing and comparing plan

alternatives.

Logical Properties need to hold for every plan considered by the plan generator, inde-

pendent of the operator implementations involved. In our example, the join e1 1x1=x2 e2

requires that the subexpressions e1 and e2 are completely contained in the argument plans

of this join. Otherwise, attributes x1 and x2 in the join predicate are not available.

When the plan generator considers to use a sort-merge join to implement the above join,

it must additionally hold that expressions e1 and e2 are sorted on the values in x1 and x2,

respectively. Since sequence order and the order of the values do not coincide in general,

an additional sort operation on e1 and e2 is needed to establish the order required by the

sort-merge join. The sort operator enforces the order property required by the sort-merge

join. Physical Properties are properties that are required or produced by specific algorithms

used in a plan.

Hence, physical properties of a plan depend on the operator implementations used,

whereas logical properties do not. In this work, we follow the classification of plan prop-

erties proposed by McKenna [McK93] and distinguish logical and physical properties.

Examples of them are summarized in Figure 5.14. We also use the term enforcer intro-

duced there to establish required physical properties. A similar classification is proposed

by Lohman [Loh88], where enforcers are called glue operators.

With the advent of XPath and XQuery, several new properties were invented. Helmer

et.al [HKM02] use them to avoid creating duplicates. Hidders and Michiels [HM03] use an

automaton to decide if after application of an axis step, the result is still free of duplicates

and in document order.

If not, they insert enforcers to remove duplicates or establish document order. Interest-

ingly, their automaton derives these physical properties based on a set of logical properties

that hold for the path expressions. Grust et. al [GRT07] are able to derive when order is

not relevant. As a result, order constraints on the query result can be relaxed.

It is likely that new properties will be discovered. For example, new properties may be

able to detect conditions when physical properties need not be enforced. Or new algorithms

to implement database operations may demand properties yet uncovered to hold. This is our

motivation to develop an extensible framework to support an arbitrary number of logical

and physical properties efficiently.
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Figure 5.15.: Process of cost-based optimization [Hac06]

5.4.2. Generic Property Support for Plan Generators

Now, we give details how the properties identified in this chapter are communicated to the

plan generator. As shown in Figure 5.15, the plan generator is the main component of

the cost-based query optimizer. Since the plan generator considers many plan alternatives

in the optimization phase, a space-efficient representation of plan alternatives with time-

efficient access methods is of utmost importance. In contrast, the query representation is

less sensitive to these issues, but usability of properties is the main concern. Consequently,

we distinguish the three phases in Figure 5.15. Among other things, the first two phases

gather properties and convert them into more efficient representations used in the last phase,

optimization. In our presentation, we concentrate on document order, sequence order, and

duplicates because they are the most relevant properties for XQuery processing. A more

general treatment of properties and their implementation can be found in [Hac06].

Preparation Phase

We concluded in Sections 5.2 and 5.3 that an explicit representation of both document order

and sequence order is needed to restore order after it was destroyed temporarily. Until cost-

based optimization, we only apply rewrites that preserve order. Hence, we do not need to

care about this issue there. Now, during cost-based optimization, we allow reordering axis

steps or joins. Thus, we need to be able to detect that order was destroyed relying on an

explicit representation of order information.

The first key observation we use to preserve document order is the following: We have

to assure that a path expression returns its final result in document order and duplicate

free. Therefore, we can exploit the fact that all nodes in our system are associated with a

logical node id (LID) that can be used to compare if two nodes obey to document order.

Consequently, we explicitly request the node sequence resulting from a path expression to
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be in document order. If the cheapest plan constructed in the optimization phase preserves

order, this plan will not contain a sort operator to repair order. On the other hand, explicit

sort operators are inserted automatically to satisfy the sorting request. Similarly, LIDs

allow us to detect duplicates.

The second key observation we use to preserve sequence order is that we can employ the

tid operator to achieve the same effect for sequence order as LIDs do for document order.

Hence, our approach is to add new attributes representing tids whose value depends on the

computation of the whole path expression bound in the for clause. We annotate every tid

added this way as sorted in ascending order and duplicate free. Finally, we request the final

result of the plan to be sorted by the tids in ascending order and to be duplicate free. If

we have multiple for clauses in the query, we add a tid for every clause. The resulting sort

request is the compound order with major order prescribed by the tid of the first for clause

and the least significant order given by the last for clause.

Alternatively, we could also use the sort key of every path expression to create a larger

compound sort key for sequence order. Of course, this only works for sequences of nodes.

But it avoids adding new attributes and trades reduced memory consumption for more

complex sort keys.

In the preparation phase, we also compute information used for scheduling operators.

Therefore, we annotate every operator with the operators that are required in an argument

plan and the operators that are forbidden in an argument plan. This allows us to control

scheduling of algebraic operators beyond their immediate argument relationships. Cur-

rently, we fix grouping, semijoin, antijoin, and outerjoin at the position that resulted from

unnesting. But the performance gains possible from reordering these operators makes re-

ordering them a desirable future extension of our optimizer [GLR97, RLL+01, YL94].

Summarizing, we use the preparation phase to extract all operators from the query rep-

resentation. We detect path expressions and demand their results to be in document order

and duplicate free. Similarly, we materialize sequence order in auxiliary attributes and use

these attributes to assure proper ordering of the final result.

The actual implementation of the preparation phase maps objects in the query repre-

sentation to numbers. This prepares the query representation for an even more compact

representation which is constructed in the initialization phase, the next phase. This map-

ping of operators to numbers is used to extract the final query execution plan from the plan

generator.

Initialization Phase

The preparation phase has gathered all property information and all operators from the

query representation. The initialization phase examines this information and (1) derives

further information from the input to avoid repeated computations in the optimization

phase, (2) creates an extremely compact representation of any kind of information used

in the optimization phase, e.g. operator identification or available properties.

A novelty we introduce in this phase is that collecting all physical properties required

by an implementation rule is carried out by the same rule. This design is motivated by the

observation that the (optimized) information is also used by these rules in the optimization

phase. We expect that this design allows extensions to new properties or operators to be

integrated more effectively.

Property computation focuses mainly on physical properties because all logical proper-

ties are already contained in the query representation. On the other hand, physical proper-

ties thus far only include the orders demanded in the order by clause, duplicate elimination

(e.g. fn:distinct-values) of the XQuery statement, and the sorting and duplicate

elimination requests generated in the preparation phase.

But many more physical properties may be relevant during cost-based query optimiza-

tion. Resuming with the example query introduced in Section 5.4.1, the rule for the

MERGEJOIN adds orders on its join attributes as relevant physical properties. After query
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unnesting, the query may contain grouping operators. Thus, the rule for sort-based group-

ing adds an order on the grouping attributes as interesting order. Duplicate elimination

is implemented with grouping. Hence, sets of attributes that are duplicate-free are also

accumulated in this phase. For example, more efficient implementations of the MERGE-

JOIN exist if at least one input does not contain duplicates on the join attributes. Moreover,

grouping comes for free when we can assure that the grouping attributes do not contain

duplicates.

All this information is gathered by iterating over all operators contained in the query. For

every operator and every rule that implements this operator, the function Rule::init is

called, which adds all physical properties.

In the next step, the collected physical properties are mapped to space-efficient repre-

sentations that also support all required operations on them efficiently. In [NM04] the

mapping we use for order and grouping is described. This preprocessing step has the fol-

lowing positive impact on the optimization phase: (1) It avoids repeated computations, e.g.

if an order is subsumed by another. (2) It makes operations faster, e.g. an equality test of

orders maps to a pointer comparison. (3) It saves space, by using bitmaps or pointers to

singleton instances of a property value wherever possible.

Optimization phase

The optimization phase enumerates all possible query execution plans; implementation

details can be found in [Neu01]. Currently, we use the enumeration technique of [VM96]

to generate QEPs in a bottom-up fashion effectively performing dynamic programming.

When a new (partial) plan is constructed, the implementation rule first checks if all re-

quired logical and physical properties are fulfilled, e.g. all required operators are contained

in the argument(s), and no forbidden properties hold for the argument plans, e.g. no for-

bidden operators are already scheduled. If all tests are passed, a new (partial) plan is con-

structed and the resulting logical and physical properties are derived. Missing physical

properties are established by scheduling enforcers. Below, we discuss how we avoid some

pitfalls when we want to enforce multiple properties. The new plan is added to its plan

class and cost-based and property-based pruning is performed.

To support XQuery, we treat axis steps explicitly as new operators. This is required to

accurately derive all physical properties for different implementations and different axes.

For example, certain combinations of axis steps potentially produce duplicates or poten-

tially destroy document order [HM03]. But other implementations always produce their

result in document order and without duplicates if their input has these properties. Notice,

however, that document order and sequence order do not require specific treatment beyond

the general framework.

Enforcing Multiple Properties

Enforcers are used to establish physical properties. So far, the integration of enforcers into

the plan generator was done in an ad-hoc fashion because enforcers such as Sort or Ship

(to another site in a distributed system) did not interfere.

Now that we consider more enforcers and enforcer implementations, we have to consider

that enforcers interfere. On the one hand, this can be a problem, e.g. when a hash-based

duplicate elimination destroys the order established by a sort operation. On the other hand,

it can be an advantage, e.g. when a sort-based duplicate elimination can benefit from an

existing order. The issue of interfering enforcers has not been investigated yet.

To formalize this problem, we have to model the dependencies between enforcer imple-

mentations. We use the following notation to describe the behavior of some operator o with

respect to some property p:

o req p operator o requires property p
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Rule

Enforcer 1 Enforcer 2

Enforcer 3

req p1 req p2

dest p2

req p3 req p2

Figure 5.16.: Example for enforcers

o dest p operator o destroys property p

o prod p operator o produces property p

Now, for every implementation rule of some logical operator we construct a rooted di-

rected graph G(V, E) with the following properties:

1. r ∈ V is the root of the graph and denotes the considered implementation rule.

2. v ∈ V for every enforcer that produces any required property, including those re-

quired by r.

3. ∀x, y ∈ V : (x, y) ∈ E ⇔ (x prod p ∧ y req p) ∨ (x dest p ∧ y prod p ∧ r req p).

The third rule states that an edge is added to G if one of the following two conditions

holds. (1) If enforcer x produces property p and operator y requires p, then x has to be

scheduled before y. (2) If enforcer x destroys property p, enforcer y produces p, and

operator r requires p, then x has to be scheduled before y.

A valid order in which every enforcer is scheduled at most once can be obtained by a

topological sort of the directed graph iff G is acyclic. Among all possible topological sorts,

the plan generator should select the cheapest order. If G contains a cycle, we can remove

edges from G to remove cycles, do a topological sort, and try to schedule an enforcer twice.

We suggest to remove edges first that represent the destruction of some property. If this

does not help, the combination of required physical properties might be pathological. Par-

ticularly, we believe that cycles containing only edges that are annotated with requirements

cannot be satisfied at all.

Consider Figure 5.16 for an example. The rule requires properties p1 and p2. Enforcer

1 requires enforcer 3 to produce property p3. At the same time, this enforcer 1 destroys

property p2, and enforcer 3 requires property p2. Evidently, these three enforcers are part

of a cycle. Therefore, we cannot simply use the result of a topological sort to order these

operators. But if we ignore the edge labeled “dest p2”, a valid order of these rules is:

Enforcer 2→ Enforcer 3→ Enforcer 1→ Enforcer 2→ Rule.

We now investigate the problem of finding the most efficient application order among

all possibilities, assuming that the dependency graph G is acyclic. For simplicity, we as-

sume that no properties are destroyed by any of the enforcer implementations and only one

enforcer implementation is provided per property.

Let us denote with n = |V | the number of vertices (i.e. the number of enforcers) in

G. In the worst case, O(n!) different topological application orders can be chosen. This

is the case if no dependencies are defined among the corresponding enforcers. Thus, any

permutation of the individual enforcer implementations can be used.

When some implementation rule requires physical properties, we have two basic choices

to schedule the enforcers that establish these properties. First, the dynamic approach may
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use a greedy algorithm (heuristic) or enumeration (optimal) to schedule enforcers on de-

mand. The greedy heuristic performs a topological sort in Θ(|V | + |E|) time. When

multiple orders exist, we schedule the cheapest enforcer first. The cost-optimal order of

the enforcers can be computed be enumerating all n! possible orders of enforcers. But us-

ing memoization, the runtime can be reduced to O(2n−1), analogous to join ordering of

left-deep join trees [Moe05, OL90, PGLK97]. If G is a dense graph resulting in few valid

topological sorts, then the algorithm of [VR81] might be more efficient. It enumerates all

valid topological sorts with respect to the partial orders given to the algorithm.

Second, when we can assure that no combination of required properties generates a

cyclic dependency graph, it is also possible to hard-code a preferred order of enforcers.

In this heuristic solution, the best order of enforcers is decided by the implementor using

either of the algorithms above.

Rules of enforcers in our plan generator are no different from other implementation

rules. In particular, different implementations for the same logical enforcer might exist.

All enforcer rules derive from a common base class Enforcer. In some cases, the actual

implementation of an enforcer rule simply refers to the implementation rule of a logical

operator. For example, our duplicate elimination simply refers to the implementation rules

for grouping. Nevertheless, we could also employ specialized algorithms for duplicate

elimination [BD83, HNM02].

5.5. Plan Polishing

The query execution plan constructed during cost-based optimization can often be im-

proved in a subsequent heuristic rewriting step called plan polishing. This phase is mo-

tivated by the following observations: (1) Some very specific implementations for query

patterns may not be considered during cost-based optimization to avoid the involved com-

plexity. (2) Adjacent operators can be merged.

In our current implementation, we focus on the latter issue. In particular, we implement

equivalences that merge operators when the involved functions or predicates are not sensi-

tive to the position in the input sequence or its size. Their correctness follows directly from

the proofs of the equivalences presented in Chapter 2.

σp(σq(e)) = σp∧q(e) (5.1)

σp(e1 × e2) = e1 1
NL
p e2 (5.2)

σp(e1 1q e2) = e1 1p∧q e2 (5.3)

χf (χg(e)) = χf◦g(e) (5.4)

In addition to the equivalences above, we also push selections into scans and map opera-

tions into grouping. The benefit of merging operators is a reduced effort in the subsequent

code generation phase [May02] and, most importantly, fewer function calls during query

execution.

We plan to implement rewrites that detect the query patterns for grouping proposed

in [WM99]. Their application is always beneficial because they reduce the number of

scans or the memory consumption of the query execution plan.

5.6. Related Work

In this chapter, we have argued for cost-based optimization to generate optimal plans for

XQuery statements. To support our claim, we have considered path expressions and joins as

the two most performance-critical core features of XQuery. Below, we relate our findings

to other optimization techniques that were proposed for XPath, XQuery, and join ordering.
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Furthermore, we have outlined the architecture of our cost-based optimizer. It employs

a powerful property framework to implement the functionality needed to realize the full

optimization potential of XQuery. We relate the architecture to the conventional design of

relational optimizers and survey the role of properties in query optimizers.

XML Storage

When XML documents are stored in a relational database, the logical tree structure of

the documents must be shredded (are stored as BLOB) to map it into the relational data

model [Gru02, TDCZ02]. To be able to restore this logical tree structure, either a labeling

scheme or some explicit representation of parent-child references is used. Traversing the

XML document requires join operations [ZND+01]. Since this is a performance-critical

operation, algorithms were developed that exploit specific knowledge of the tree structure

of XML documents. Below, we enumerate several such algorithms.

Native XML storage managers as the one used in Natix [FHK+02, KM00, KM06] or by

IBM [OCP+05] are able to directly access the logical tree structure stored on disk. Basi-

cally the same holds for main-memory representations [RSF06] and object stores [JAKC+02].

Indexing XML

Indices, in particular B-trees, are a core access path for relational databases. To support

updates and secondary indices, relational databases rely on the concept of tuple identifiers

that serve as a logical identifier for the tuple physically stored on disk. Thereby, references

to the logical tuple are effectively separated from its physical storage location.

To support efficient processing of path expressions in object-oriented databases, path

indices were developed, e.g. [KM90, CCM96, FS98]. Since path expressions are at the

heart of XPath and XQuery, they were also employed there [GW97, MS99]. Other indices

used to accelerate the evaluation of path expressions include [CSF+01, LM01].

These early proposals for indexing XML did not address the problem of updates. Num-

bering schemes all require the renumbering of all nodes after a certain amount of updates.

Based on the concept of Dewey IDs, space-efficient labeling schemes for XML were de-

veloped [CKM02, OOP+04]. They have the following desirable properties: (1) They avoid

relabelling the nodes in an XML document and are still space efficient when the XML doc-

ument is updated. (2) They separate the physical storage address from the logical node.

(3) It is possible to test the structural relationship of nodes in the same document based

on the label. Hence, we use ORDPATH IDs [OOP+04] in our native XML store and our

indices. ORDPATH IDs in XML database systems play the same role tuple identifiers play

in relational databases.

A cost-based selection of the access method is another issue. In proposals of an index

only the effectiveness of the proposed index is compared to other index strutures for a

limited set of queries. The results presented in this work question the universal advantage

of indices for processing path expressions.

Nevertheless, in DB2 [BEH+06] indices are selected based on costs to filter documents

or regions of a document that contribute to the query result. But the final result of a path

expression is computed by the XNav operator. Another cost-based approach to access path

selection is presented in [HDN+03].

Summarizing, many evaluation strategies for path expressions are tightly coupled with

storage structures and specialized indices. We refer to [Wei06] for a comprehensive overview

of indexing and labeling schemes for XML. But no satisfying strategy to select the most

efficient access structure has been proposed yet.
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Optimization of XPath

XPath query processing is approached by translating the statement into an algebra [PCS+05,

BKHM05, RSF06] or tree patterns [JLST02]. Besides the statistical learning techniques

presented in [ZHJ+05], we are not aware of any cost-based optimization approach to

XPath. Instead, heuristic rewrites are applied to optimize the path expression.

For example, tree pattern minimization [Woo01, ZO02, AYCLS01] reduces the number

of axis steps to perform. These optimizations are beneficial under the assumption that

reducing the number of axis steps reduces the effort of processing the path expression.

Notice, however, that the opposite idea, i.e. introducing new axis steps, may also yield

better performance [PMC02].

Another interesting rewriting technique replaces occurrences of backward axes in path

expressions by forward axes [OMFB02]. The rewrites enable streaming processing of

XPath. It would be interesting to know if (at least some of) the rewrites improve the effi-

ciency of query execution.

Query containment can be used to check the eligibility of materialized views for path

expressions [BOB+04]. Using materialized views avoids the expensive evaluation of path

expressions.

All optimizations we are aware of carefully avoid to destroy document order during

query processing [WPJ03, PCS+05, BEH+06]. In particular, Hidders et al. [HM03, FHM+04]

use automata to decide when duplicate elimination or sorting is actually needed. We are the

first to explore the opposite approach [MHKM04]: We consider the cost of an additional

sort operation to repair document order after we discard order temporarily. This allows

us to reorder axis steps. Our experiments show that reordering axis steps can improve

execution times substantially.

Evaluation Techniques for Path Expressions

Several algorithms to evaluate path expressions were proposed. The structural Join [SAKJ+02],

the Staircase Join [GvKT03], the Holistic Twig Join [BKS02], or the XNav operator [JFB05]

are efficient implementations of path expressions. The latter two operators work on a

coarsely grained level because they evaluate complete tree patterns. They do not easily

allow to switch between navigation and their specific evaluation techniques. Additionally,

no algebraic equivalences are known for them to be used for optimizing XPath.

Structural join algorithms rely on an efficient test of the structural relationship between

context nodes and candidate result nodes which is usually accomplished by a node labeling

scheme. It is a natural extension to combine index access with processing structural joins,

as it is done in [CVZ+02]. We have used these ideas in our query execution plans for path

expressions.

The XPath processing algorithms mentioned above are most effective if tree patterns are

large. This leads to the necessity to detect tree patterns in an XQuery statement [JHSV06].

Once the tree pattern is detected, a (cost-based) decision should choose the most efficient

processing strategy [HDN+03, MMS06, MBB+06].

Given a sequence of context nodes, evaluating an axis step might produce duplicates.

These duplicates are the source of exponential execution times observed for some XPath

processors [GKP02, GKP03b]. Gottlob et al. [GKP02, GKP03b] solve this problem using

memoization avoiding repeated computations. However, their algorithm requires O(|D|3+
|Q|2) space, where |D| is the size of the document. This rules out documents that are

significantly larger than physical main memory.

In Natix, we avoid this space overhead using pipelining and early removal of dupli-

cates [BKHM05]. As an alternative, Helmer at al. [HKM02] avoid generating duplicates

by introducing variants of XPath axis steps. Hidders et al. [HM03] use automata to decide

when duplicate elimination or sorting is actually needed. However, it is not clear if remov-

ing duplicates and sorting is always the most effective evaluation strategy. We propose to
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base this decision on costs.

Optimization and Evaluation Techniques for XQuery

In Lore, one of the first systems to work with semistructured data, a cost-based optimizer

is used to generate the query execution plan with lowest I/O costs [MW99]. Possible query

processing strategies include bottom-up (using one of the indices), top-down (navigation),

and hybrid combining those two strategies. These basic evaluation techniques were devel-

oped in the context of the query language Lorel, a predecessor of XQuery.

Halverson et al. [HDN+03] also do cost-based optimization minimizing I/O costs. Since

their data is stored solely in B+-tree indices, the optimization task does not differ from

optimization in relational databases. It would be interesting to transfer these ideas to sys-

tems with native XML storage managers. However, estimating the I/O operations for native

XML stores is still an open problem; see [ZHJ+05] for one proposal. Currently, we derive

cost functions for our algebraic operators using regression analysis.

An overview of XQuery optimization in DB2 is given in [BEH+06]. The optimizations

used there focus on the evaluation of path expressions. The compiler of Galax uses an

algebra similar to ours to optimize XQuery [RSF06]. However, all optimizations in Galax

are applied as heuristics without considering cost information.

As we have seen in this chapter, discarding order has great potential for optimizing

XQuery. For example, more algebraic equivalences can be applied without destroying

order. Grust et al. [GRT07] present a framework to derive all cases where order need

not be preserved. Such cases include that the ordering mode is unordered, inside the

unordered function, inside aggregates or quantifiers. These ideas are complementary to

ours but support our claim that preserving order can be very costly.

Join Ordering

Join ordering is still the core of query optimization in relational databases. The funda-

mental work on join ordering was done in the System R prototype [SAC+79]. In general,

the join ordering problem is NP-complete [OL90, PGLK97, Van98]. Recently, a join or-

dering algorithm was developed that generates query execution plans without cross prod-

ucts [NM06, Moe06]. This algorithm enumerates the minimal number of plan alternatives

for all topologies of connected query graphs.

The special case of join ordering for order-preserving joins is discussed by Wu et al. [WPJ03]

for structural joins and by Moerkotte [Moe03] for arbitrary order-preserving joins. The

main result of this work is that join ordering can be done in O(n3) for a query containing

n order-preserving joins.

Query optimizers also consider operators beyond natural joins. Proper scheduling of

outerjoins, antijoins, and grouping can improve the quality of plans significantly. We plan

to incorporate the ideas of Rao et al. [RLL+01] and Yan et al. [YL94] into our optimizer.

The optimization of nested queries in the plan generators was considered in [GRS05].

While this work does not remove nested query blocks, we would like to do even query

unnesting inside the cost-based query optimizer.

Order is the most relevant physical property considered by query optimizers because or-

der can be exploited by sort-based operator implementations, most importantly the merge

join. Consequently, optimization of order has been investigated in [SSM96]. These ideas

were extended to incorporate secondary sorting or grouping [WC03]. These techniques

can be applied considering document order as one interesting order. [NM04] presents an

efficient framework for order optimization on which we rely in our cost-based query opti-

mizer.
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Architectures for Query Optimizers

The architecture of our cost-based optimizer still follows the basic principles developed

in System R [SAC+79]. In particular, we enumerate all query execution plans using

dynamic programming. However, in the meantime extensibility has become mandatory

to support new algebraic operators and algorithms for existing algebraic operators. The

key technique developed for this purpose are rules which were introduced in the Starburst

optimizer [Fre87, Loh88, LFL88, OL90] and Exodus [GD87] and its successors [GM93,

McK93, Gra95].

Volcano [McK93], Cascades [Gra95], and Starburst [Loh88] use enforcers or glue oper-

ators to enforce properties. However, properties seem to be integrated into optimizers in an

ad-hoc fashion.

We extend the work of Das [DB95] and develop an integrated framework to efficiently

manage and derive logical and physical properties. We also identify the need to schedule

enforcers that interfere. This architecture allows us to handle document order and sequence

order in our plan generator. Moreover, as we foresee the need for more properties for

effective XQuery optimization, we are able to handle new properties with minor changes

to our code.
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6.1. Summary

We have presented an algebraic framework for optimizing XQuery. This framework allows

us to prove the correctness of algebraic equivalences. At the same time, these equivalences

can be implemented efficiently, and experiments show that our unnesting equivalences im-

prove the query execution times by orders of magnitude. Hence, these optimizations are

important building blocks for efficient XQuery engines.

Our algebra, NAL, is the foundation for our optimizations. We formalize and prove

algebraic properties of NAL. The notion of linearity allows us to check the reorderability

of algebraic operators. We only have to check syntactic and some semantic conditions

at query optimization time. Unfortunately, many equivalences known from algebras over

sets or bags do not hold for our algebra over sequences. The operators in NAL can be

implemented efficiently. We also enumerate the implementations for the operators in NAL.

For example, we investigate efficient implementations for the binary grouping operator.

This operator is a corner stone for the efficient execution of queries containing grouping

operations.

We prepare XQuery statements for the translation by using normalization rewrites. Our

translation function maps the resulting XQuery statements into algebraic expressions. We

define the semantics of our query representation in terms of our algebra. For subsequent

optimization steps, we annotate the translated query with type and cardinality informa-

tion. The computation of all type information required for XQuery is implemented in our

schema management component. Currently, we rely on Markov Tables to estimate the car-

dinalities of path expressions. In our experiments we show that generating a Markov Table

for an XML document is more than 100 times faster than other XML synopses with sim-

ilar estimation quality. Moreover, the Markov Table can be updated efficiently when the

underlying data is updated. Our estimation framework is designed to support other XML

synopsis structures without changing client code.

For many queries, the translation of XQuery statements introduces nested blocks. Nested

queries can occur in three basic patterns: one for existentially quantified queries, one for

universally quantified queries, and one for queries with implicit grouping. We call the last

pattern implicit grouping because XQuery does not have a grouping construct yet. Thus,

users need to state grouping with nested queries. We demonstrate that a naive evaluation

of nested queries is very inefficient. This clearly motivates the need for unnesting nested

queries. We enumerate unnesting equivalences and support rewrites that allow us to re-

move nested query blocks for almost every nested query. While query unnesting has been

investigated before, our techniques include the following new aspects: (1) We are the first

to formally treat unnesting for an algebra over sequences. (2) We include non-equality

correlation predicates. (3) We unnest query blocks whose evaluation inherently depends on

enclosing query blocks. For every basic pattern, we present a decision tree which selects an

unnesting equivalence. Among all applicable equivalences, the selected one results in the

most efficient unnested query. These decision trees formalize our unnesting strategy and

are the basis for the implementation of our unnesting framework. Extensive experiments

demonstrate that our unnesting techniques are implemented efficiently and that the result-

ing unnested queries are faster to evaluate, usually by orders of magnitude. This is possible

because our query representation is designed for fast pattern matching. The correctness of

our unnesting equivalences is validated in proofs.
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After merging query blocks by unnesting nested queries, the cost-based query optimizer

has more opportunities to schedule algebraic operators and select efficient implementations

for them. As a novel challenge, the cost-based optimizer needs to respect duplicates and

order as required by the query. We investigate path expressions where we have to preserve

document order and joins which have to preserve sequence order. For both types of or-

der, we argue that the query optimizer should consider to disregard order temporarily and

repair it later in the query execution plan. Of course, the decision to sort or to preserve

order should be based on costs. Since our physical algebra also works on sequences of

tuples, we have a tight control over order. The property framework described in this the-

sis, in conjunction with an efficient management of interesting orders, allows us to do this

efficiently.

6.2. Future Work

The results presented in this thesis can be extended in various ways.

Unified Query Representation There is no consensus on the best representation

of XQuery and XPath statements. Since optimization is a key issue for the success of

XQuery in the real world, a unified query representation similar to the algebra for rela-

tional databases would improve the common understanding of XQuery optimization. We

believe that the formal treatment of our algebra over sequences is an important step into

this direction. Since our algebra is an extension of the relational algebra, the transition to

an algebra over sequences of tuples would be rather small.

Cost-Based Optimization Cost-based optimization of XQuery is still in its infancy.

While we have provided evidence that cost-based optimization is a must for efficient XQuery

processing, there are still several problems to solve. Among them, we discuss cost-based

query unnesting and developing cost-functions for native XML query processing sepa-

rately. Here, we note that current XQuery optimizers are rather XQuery translators equipped

with several heuristics. Given that cost functions are known for all available query process-

ing algorithms, we would like to include the following optimizations into the cost-based

optimizer:

Index Selection Currently, most systems employ indices whenever they are eligible.

XML Views While the containment problem for path expressions is only tractable for a

restricted subset of XPath, exploiting (materialized) views has a great potential in

improving XQuery processing.

Diverse Operator Support Our research has shown that there will not be a single best

evaluation technique even for path expressions. The superiority of certain evaluation

techniques was demonstrated for specific use cases. Choosing the best algorithm for

arbitrary queries is still an open problem.

Cost-based Query Unnesting As demonstrated in our experiments, in rare cases

query unnesting does not improve query execution times. This is often the case when

subexpressions are duplicated. These cases would benefit from an integration of query

unnesting into the cost-based query optimizer.

Cost Functions for Native XML Query Processing To the best of our knowledge,

establishing the execution costs for very basic operators has been solved only by XQuery

engines that work on relational storage. For the bulk of evaluation techniques that ex-

ploit the native XML storage structures, no cost functions are known. Learning techniques
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were proposed to capture the complexities of semistructured data in terms of I/O and CPU

processing costs. But an analytical model, as it was developed for most other operator

implementations, would be more desirable.

Benchmarking XMark is the dominant benchmark to asses the efficency of XQuery

processors. However, this benchmark is restricted to a narrow subset of XQuery, and it

operates only on a single large document. Instead, we need a widely accepted benchmark

for XQuery that includes all important use cases of XQuery. MemBeR is a community-

driven effort to accumulate benchmark queries, query generators, and document generators.

We have submitted all queries presented in this thesis to this project as a nucleus of a

benchmark for nested queries.
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A.1. Algebra

In this section we present the proofs of the algebraic equivalences over NAL.

A.1.1. Proof of Equivalence 2.1

e1 × (e2 × e3) = (e1 × e2)× e3

Proof by Induction over the length of sequence e1

Base Case: e1 = ǫ

e1 × (e2 × e3) = ǫ = (e1 × e2)× e3

Inductive Hypothesis: e1 × (e2 × e3) = (e1 × e2)× e3

Inductive Step: e1 → e1 ⊕ t

(e1 ⊕ t)× (e2 × e3) = ((e1 ⊕ t)× e2)× e3

⇔ (e1 × (e2 × e3))⊕ (t×(e2 × e3)) = ((e1 × e2)× e3)⊕ ((t×e2)× e3)

By inductive hypothesis we know that (e1 × (e2 × e3)) = ((e1 × e2) × e3). Hence, it

remains to be shown that (t×(e2× e3)) = ((t×e2)× e3). We prove this by induction over

the length of e2

Helper Proof

(t×(e2 × e3)) = ((t×e2)× e3)

Proof by Induction over the length of sequence e2

Base Case: e2 = ǫ

t×(e2 × e3) = ǫ = (t×e2)× e3

Inductive Hypothesis: t×(e2 × e3) = (t×e2)× e3
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Inductive Step: e2 → e2 ⊕ s

t×((e2 ⊕ s)× e3) = (t×(e2 ⊕ s))× e3

⇔ t×((e2 × e3)⊕ (s×e3)) = ((t×e2)⊕ (t ◦ s))× e3

⇔ (t×(e2 × e3))⊕ (t×(s×e3)) = ((t×e2)× e3)⊕ ((t ◦ s)× e3)

By inductive hypothesis we know that (t×(e2×e3)) = ((t×e2)×e3). Hence, it remains

to be shown that (t×(s×e3)) = ((t ◦ s)× e3).

lhs = t×(s×e3)

= ((t ◦ s)×e3)

= ((t ◦ s)× e3)

= rhs

Note that t and s are single tuples. Thus, the order in which they are combined with e3

does not matter. For the same reason we can replace × by × in the last step.

This concludes the proof for Eqv. 2.1.

A.1.2. Proof of Equivalence 2.2

e1 1p1 (e2 1p2 e3) = (e1 1p1 e2) 1p2 e3

The equivalence holds if F(pi) ⊂ A(ei) ∪ A(ei+1) and the result of evaluation p1 and

p2 does not depend on the position of the items fed into the predicates.

lhs = e1 1p1 (e2 1p2 e3)

= e1 1p1 (σp2(e2 × e3))

= σp1(e1 × (σp2 (e2 × e3)))

(2.14)
= σp1(σp2 (e1 × (e2 × e3)))

(2.1)
= σp1(σp2 ((e1 × e2)× e3))

= σp1((e1 × e2) 1p2 e3)

= (e1 1p1 e2) 1p2 e3

= rhs

A.1.3. Proof of Equivalence 2.3

e1 �p1 (e2 �p2 e3) = (e1 �p1 e2)�p2 e3

The equivalence holds ifF(p1) ⊂ A(e1)∪A(e2), F(p2) ⊂ A(e2)∪A(e3). Additionally

neither the result of p1 nor the result of p2 depends on the position of the tuples of either

input sequence. We also require that p2 must be strong w.r.t e2.

Proof by Induction over the length of sequence e1

Base Case: e1 = ǫ

e1 �p1 (e2 �p2 e3) = ǫ = (e1 �p1 e2)�p2 e3
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Inductive Hypothesis: e1 �p1 (e2 �p2 e3) = (e1 �p1 e2)�p2 e3 for |e1| ≥ 0.

Inductive Step: e1 → e1 ⊕ t

(e1 ⊕ t)�p1 (e2 �p2 e3) = ((e1 ⊕ t)�p1 e2)�p2 e3

⇔ (e1 �p1 (e2 �p2 e3))⊕ (t�p1 (e2 �p2 e3)) = ((e1 �p1 e2)�p2 e3)⊕ ((t�p1 e2)�p2 e3)

By inductive hypothesis we know that (e1 �p1 (e2 �p2 e3)) = ((e1 �p1 e2) �p2 e3).
Hence, it remains to be shown that (t�p1 (e2 �p2 e3)) = ((t�p1 e2)�p2 e3). We prove

this by induction over the length of e2

Helper Proof

t�p1 (e2 �p2 e3) = (t�p1 e2)�p2 e3

if F(p1) ⊂ A(e1) ∪ A(e2), F(p2) ⊂ A(e2) ∪ A(e3) and p2 is strong w.r.t e2.

Proof by Induction over the length of sequence e2

Base Case: e2 = ǫ

lhs = t�p1 (e2 �p2 e3)
p2 strong

= t ◦ ⊥A(e2)∪A(e3)

= (t�p1 e2)�p2 e3

= rhs

Inductive Hypothesis: t�p1 (e2 �p2 e3) = (t�p1 e2)�p2 e3 for |e2| ≥ 0.

Inductive Step: e2 → e2 ⊕ s

t�p1 ((e2 ⊕ s)�p2 e3) = (t�p1 (e2 ⊕ s))�p2 e3

⇔ t�p1 ((e2 �p2 e3)⊕ (s�p1 e3)) = ((t�p1 e2)⊕ (t�p1 s))�p2 e3

⇔ (t�p1 (e2 �p2 e3))⊕ (t�p1 (s�p2 e3)) = ((t�p1 e2)�p2 e3)⊕ ((t�p1 s)�p2 e3)

By inductive hypothesis we know that (t�p1 (e2�p2 e3)) = ((t�p1 e2)�p2 e3). Hence,

it remains to be shown that (t�p1 (s�p2 e3)) = ((t�p1 s)�p2 e3).

Case 1: s 1p2 e3 6= ǫ

Case 1.1: p1(t ◦ s) = true

rhs = t�p1 (s 1p2 e3)

= t�p1 (σp2 (s×e3))

= σp2 (t�p1 (s×e3))

= σp2 ((t ◦ s)×e3)

= (t ◦ s) 1p2 e3

= (t�p1 s)�p2 e3

= lhs
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Case 1.2 p1(t ◦ s) = false

rhs = (t�p1 s)�p2 e3

= (t ◦ ⊥A(e2))�p2 e3

p2 strong
= (t ◦ ⊥A(e2)∪A(e3))

= t�p1 (s�p2 e3)

= lhs

Case 2: s 1p2 e3 = ǫ

Case 2.1: p1(t ◦ s) = true

lhs = t�p1 (s�p2 e3)

= t�p1 (s ◦ ⊥A(e3))

= t ◦ (s ◦ ⊥A(e3))

= (t ◦ s) ◦ ⊥A(e3)

= (t�p1 s) ◦ ⊥A(e3)

= (t�p1 s)�p2 e3

= rhs

Case 2.2 p1(t ◦ s) = false

lhs = t�p1 (s�p2 e3)

= t�p1 (s ◦ ⊥A(e3))

= t ◦ ⊥A(e2)∪A(e3)

= (t�p1 s)�p2 e3

= rhs

This concludes the proof for Eqv. 2.3.

A.1.4. Proof of Equivalence 2.4

e1 ∪̂ (e2 ∪̂ e3) = (e1 ∪̂ e2) ∪̂ e3

The equivalence holds if A(e1) = A(e2) = A(e3).
The proof follows directly from the associativity of the sequence concatenation operator

⊕.

lhs = e1 ∪̂ (e2 ∪̂ e3)

= e1 ⊕ (e2 ⊕ e3)

= (e1 ⊕ e2)⊕ e3

= (e1 ∪̂ e2) ∪̂ e3

= rhs

A.1.5. Proof of Equivalence 2.5

e1 ∩̂ (e2 ∩̂ e3) = (e1 ∩̂ e2) ∩̂ e3

The equivalence holds if A(e1) = A(e2) = A(e3).
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Proof by Induction over the length of sequence e1

Base Case: e1 = ǫ

e1 ∩̂ (e2 ∩̂ e3) = ǫ = (e1 ∩̂ e2) ∩̂ e3

Inductive Hypothesis: e1 ∩̂ (e2 ∩̂ e3) = (e1 ∩̂ e2) ∩̂ e3

Inductive Step: e1 → e1 ⊕ t

(e1 ⊕ t) ∩̂ (e2 ∩̂ e3) = ((e1 ⊕ t) ∩̂ e2) ∩̂ e3

⇔ (e1 ⊕ t)�A(e1)=A(e2) (e2 �A(e2)=A(e3) e3) = ((e1 ⊕ t) �A(e1)=A(e2) e2) �A(e2)=A(e3) e3

⇔ (e1 �A(e1)=A(e2) (e2 �A(e2)=A(e3) e3))⊕ (t �A(e1)=A(e2) (e2 �A(e2)=A(e3) e3))

= ((e1 �A(e1)=A(e2) e2)⊕ (t �A(e1)=A(e2) e2)) �A(e2)=A(e3) e3

= ((e1 �A(e1)=A(e2) e2) �A(e2)=A(e3) e3)⊕ ((t �A(e1)=A(e2) e2) �A(e2)=A(e3) e3)

By inductive hypothesis we know that (e1�A(e1)=A(e2)(e2�A(e2)=A(e3)e3)) = ((e1�A(e1)=A(e2)

e2)�A(e2)=A(e3) e3) Hence, it remains to be shown that (t�A(e1)=A(e2) (e2 �A(e2)=A(e3)

e3)) = ((t �A(e1)=A(e2) e2) �A(e2)=A(e3) e3).

t ∈ (t �A(e1)=A(e2) (e2 �A(e2)=A(e3) e3))

⇔ ∃x ∈ (e2 �A(e2)=A(e3) e3) : t = x

⇔ ∃x ∈ e2 : ∃y ∈ e3 : t = x ∧ x = y

⇔ t = x = y

⇔ ∃x ∈ e2 : t = x ∧ ∃y ∈ e3 : t = y

⇔ (t �A(e1)=A(e2) e2)�A(e1)=A(e3) e3

A.1.6. Proof of Equivalence 2.6

σp1 (σp2(e)) = σp2 (σp1(e))

Proof by Induction over the length of sequence e

Base Case: e = ǫ

σp1(σp2 (e)) = ǫ = σp2(σp1(e))

Inductive Hypothesis: σp1(σp2(e)) = σp2(σp1(e)), |e1| ≥ 0

Inductive Step: e→ e⊕ t

σp1(σp2 (e⊕ t)) = σp2 (σp1(e⊕ t))

⇔ σp1(σp2 (e))⊕ σp1(σp2(t)) = σp2(σp1 (e))⊕ σp2(σp1(t))

By inductive hypothesis we know that σp1(σp2(e)) = σp2 (σp1(e)). Thus, we need to

show that σp1(σp2 (t)) = σp2 (σp1(α(t))):
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case 1: p1(t) = true, then:

σp1(σp2 (t)) = σp2(t)

= σp2(σp1 (t))

case 2: p1(t) = false, then:

σp1(σp2 (t)) = ǫ

= σp2(σp1 (t))

Note that the result is the same only if neither the result of predicate p1 nor the one of p2

depends on the position of α(e) within the sequence computed by e. I.e. they may not be

positional predicates.

A.1.7. Proof of Equivalence 2.7

σp1(e1 × e2) = σp1 (e1)× e2

Note that this requires F(p1) ⊂ A(e1).

Proof by Induction over the length of sequence e1

Base Case: e1 = ǫ

σp1 (e1 × e2) = ǫ = σp1(e1)× e2

Inductive Hypothesis: σp1(e1 × e2) = σp1 (e1)× e2

Inductive Step: e1 → e1 ⊕ t

σp1((e1 ⊕ t)× e2) = σp1(e1 ⊕ t)× e2

⇔ σp1(e1 × e2)⊕ σp1 (t×e2) = (σp1 (e1)× e2)⊕ (σp1 (t)×e2)

By inductive hypothesis we know that σp1(e1 × e2) = σp1(e1) × e2. Thus, we need to

show that σp1(t×e2) = σp1(t)×e2:

case 1: p1(t) = true, then:

σp1(t×e2) = t×e2

= σp1(t)×e2

case 2: p1(t) = false, then:

σp1(t×e2) = ǫ

= σp1(t)×e2

Note that the result is the same only if the result of predicate p1 does not depend on

the position of α(e) within the sequence computed by e1. I.e. it may not be a positional

predicate.
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A.1.8. Proof of Equivalence 2.8

σp1(e1 1p e2) = σp1 (e1) 1p e2

This requires F(p1) ⊂ A(e1) and neither predicate depends on the position of tuples in

e1.

lhs = σp1(e1 1p e2)

= σp1(σp(e1 × e2))

(2.6)
= σp(σp1 (e1 × e2))

(2.7)
= σp(σp1 (e1)× e2)

= σp1(e1) 1p e2

= rhs

A.1.9. Proof of Equivalence 2.9

σp1(e1 �p e2) = σp1 (e1)�p e2

This requires F(p1) ⊂ A(e1) and neither predicate depends on the position of tuples in

e1.

Proof by Induction over the length of sequence e1

Base Case: e1 = ǫ

σp1(e1 �p e2) = ǫ = σp1(e1) �p e2

Inductive Hypothesis: σp1(e1 �p e2) = σp1(e1)�p e2

Inductive Step: e1 → e1 ⊕ t

σp1((e1 ⊕ t) �p e2) = σp1 (e1 ⊕ t) �p e2

⇔ (σp1(e1 �p e2))⊕ (σp1(t �p e2)) = (σp1(e1)�p e2)⊕ (σp1(t) �p e2)

By inductive hypothesis we know that σp1(e1 �p e2) = (σp1(e1) �p e2). Hence, it

remains to be shown that (σp1(t �p e2)) = (σp1(t) �p e2).

case 1: p1(t) = true, then:

case 1.1: ∃x ∈ e2 : p(x ◦ t) then

lhs = σp1(t �p e2) = σp1(t) = t = t �p e2 = σp1(t) �p e2 = rhs

case 1.2: ¬∃x ∈ e2 : p(x ◦ t) then

lhs = σp1 (t �p e2) = σp1(ǫ) = ǫ = t �p e2 = σp1 (t) �p e2 = rhs

case 2: p1(t) = false, then:
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case 2.1: ∃x ∈ e2 : p(x ◦ t) then

lhs = σp1(t �p e2) = σp1(t) = ǫ = (ǫ)�p e2 = σp1(t) �p e2 = rhs

case 2.2: ¬∃x ∈ e2 : p(x ◦ t) then

lhs = σp1(t �p e2) = σp1(ǫ) = ǫ = (ǫ) �p e2 = σp1(t) �p e2 = rhs

A.1.10. Proof of Equivalence 2.10

σp1(e1 ⊲p e2) = σp1 (e1) ⊲p e2

This requires F(p1) ⊂ A(e1) and neither predicate depends on the position of tuples in

e1.

Proof by Induction over the length of sequence e1

Base Case: e1 = ǫ

σp1(e1 ⊲p e2) = ǫ = σp1(e1) ⊲p e2

Inductive Hypothesis: σp1(e1 ⊲p e2) = σp1(e1) ⊲p e2

Inductive Step: e1 → e1 ⊕ t

σp1((e1 ⊕ t) ⊲p e2) = σp1(e1 ⊕ t) ⊲p e2

⇔ (σp1(e1 ⊲p e2))⊕ (σp1 (t ⊲p e2)) = (σp1(e1) ⊲p e2)⊕ (σp1 (t) ⊲p e2)

By inductive hypothesis we know that σp1(e1⊲pe2) = (σp1 (e1)⊲pe2). Hence, it remains

to be shown that (σp1 (t ⊲p e2)) = (σp1(t) ⊲p e2).

case 1: p1(t) = true, then:

case 1.1: ∃x ∈ e2 : p(x ◦ t) then

lhs = σp1(t ⊲p e2) = σp1(ǫ) = ǫ = t ⊲p e2 = σp1(t) ⊲p e2 = rhs

case 1.2: ¬∃x ∈ e2 : p(x ◦ t) then

lhs = σp1(t ⊲p e2) = σp1(t) = t = t ⊲p e2 = σp1 (t) ⊲p e2 = rhs

case 2: p1(t) = false, then:

case 2.1: ∃x ∈ e2 : p(x ◦ t) then

lhs = σp1(t ⊲p e2) = σp1(t) = ǫ = (ǫ) ⊲p e2 = σp1 (t) ⊲p e2 = rhs

case 2.2: ¬∃x ∈ e2 : p(x ◦ t) then

lhs = σp1(t ⊲p e2) = σp1(t) = ǫ = (ǫ) ⊲p e2 = σp1 (t) ⊲p e2 = rhs
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A.1.11. Proof of Equivalence 2.11

σp1(e1 �g:e
p e2) = σp1 (e1)�g:e

p e2

This requires F(p1) ⊂ A(e1) and neither predicate depends on the position of tuples in

e1.

Proof by Induction over the length of sequence e1

Base Case: e1 = ǫ

σp1(e1 �g:e
p e2) = ǫ = σp1(e1)�g:e

p e2

Inductive Hypothesis: σp1(e1 �g:e
p e2) = σp1(e1)�g:e

p e2

Inductive Step: e1 → e1 ⊕ t

σp1 ((e1 ⊕ t)�g:e
p e2) = σp1(e1 ⊕ t)�g:e

p e2

⇔ (σp1 (e1 �g:e
p e2))⊕ (σp1(t�g:e

p e2)) = (σp1(e1)�g:e
p e2)⊕ (σp1(t)�g:e

p e2)

By inductive hypothesis we know that σp1(e1 �g:e
p e2) = (σp1 (e1) �g:e

p e2). Hence, it

remains to be shown that (σp1(t�g:e
p e2)) = (σp1(t)�g:e

p e2).

case 1: t 1p e2 6= ǫ, then:

lhs = σp1(t 1p e2)
(2.8)
= σp1(t) �p e2 = rhs

case 2: t 1p e2 = ǫ, then:

lhs = σp1(t ◦ ⊥A(e2)\{g} ◦ [g : e])
F(p1)⊂A(e1)

= σp1(t)⊥A(e2)\{g} ◦ [g : e] = rhs

A.1.12. Proof of Equivalence 2.12

σp(e1Γg;A1θA2;fe2) = (σp(e1))Γg;A1θA2;fe2

with F(p) ⊂ A(e1), Ai ⊂ A(ei), and the result of evaluation predicate p does not

depend on the position of items in its input sequence.

Proof by Induction over the length of sequence e1

Base Case: e1 = ǫ:

lhs = ǫ = rhs

Inductive Hypothesis: σp(e1Γg;A1θA2;fe2) = (σp(e1))Γg;A1θA2;fe2, |e1| > 0
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Inductive Step: e1 → e1 ⊕ t

σp((e1 ⊕ t)Γg;A1θA2;fe2) = (σp(e1 ⊕ t))Γg;A1θA2;fe2

⇔ σp((e1Γg;A1θA2;fe2)⊕ (t ◦ [g : G(t)])) = (σp(e1)⊕ σp(t))Γg;A1θA2;fe2

⇔ σp(e1Γg;A1θA2;fe2)⊕ σp(t ◦ [g : G(t)]) = (σp(e1)Γg;A1θA2;fe2)⊕ (σp(t)Γg;A1θA2;fe2)

By inductive hypothesis we know that σp(e1Γg;A1θA2;fe2) = (σp(e1))Γg;A1θA2;fe2.

Hence, it remains to be shown that σp(t ◦ [g : G(t)]) = σp(t)Γg;A1θA2;fe2:

case 1: p(t) = true, then

lhs = σp(t ◦ [g : G(t)])

= t ◦ [g : G(t)]

= tΓg;A1θA2;fe2

= rhs

case 2: p(t) = false, then

lhs = σp(t ◦ [g : G(t)])

= ǫ

= ǫΓg;A1θA2;fe2

= rhs

A.1.13. Proof of Equivalence 2.13

σp(e1 ∪̂ e2) = σp(e1) ∪̂ σp(e2)

We prove this equivalence in two inductive proofs. The first is an induction over the

length of sequence e1, the second over length of sequence e2.

1. Proof by Induction over the length of sequence e1 Let e2 be a sequence of

arbitrary but fixed length.

Base Case: e1 = ǫ

σp(e1 ∪̂ e2) = σp(e2) = σp(e1) ∪̂ e2

Inductive Hypothesis: σp(e1 ∪̂ e2) = σp(e1) ∪̂ σp(e2), |e1|ge0

Inductive Step: e1 → e1 ⊕ t

σp((e1 ⊕ t) ∪̂ e2) = σp((e1 ⊕ t)) ∪̂ σp(e2)

case 1: p(α(e1)) = true, then the lhs evaluates to:

σp((e1 ⊕ t) ∪̂ e2) = α(e1)⊕ σp(τ(e1 ⊕ t) ∪̂ e2)

The rhs evaluates to:

σp((e1 ⊕ t)) ∪̂ e2) = α(e1)⊕ σp(τ(e1 ⊕ t)) ∪̂ e2

By inductive hyposthesis we know that σp(τ(e1 ⊕ t) ∪̂ e2) = σp(τ(e1 ⊕ t)) ∪̂ e2.

Hence, both sides are the same.
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case 2: p1(α(e1)) = false, then α(e1) will not be in the result. Hence we get: lhs =
σp(τ(e1 ⊕ t)) ∪̂ e2 = rhs

2. Proof by Induction over the length of sequence e2 Let e1 be a sequence of

arbitrary but fixed length.

Base Case: e2 = ǫ

σp(e1 ∪̂ e2) = σp(e1) = σp(e1) ∪̂ e2

Inductive Hypothesis: σp(e1 ∪̂ e2) = σp(e1) ∪̂ σp(e2), |e1| ≥ 0

Inductive Step: e2 → e2 ⊕ s

lhs = σp(e1 ∪̂ (e2 ⊕ s))

= σp(e1 ⊕ (e2 ⊕ s))

= σp((e1 ⊕ e2)⊕ s)

= σp(e1 ⊕ e2)⊕ σp(s)

= σp(e1 ∪̂ e2)⊕ σp(s)
∗
= σp(e1) ∪̂ σp(e2)⊕ σp(s)

= σp(e1) ∪̂ σp(e2 ⊕ s)

= rhs

A.1.14. Proof of Equivalence 2.14

σp2(e1 × e2) = e1 × σp2(e2)

Note that this requires F(p2) ⊂ A(e2).

Proof by Induction over the length of sequence e1

Base Case: e1 = ǫ

σp2 (e1 × e2) = ǫ = e1 × σp2(e2)

Inductive Hypothesis: σp2(e1 × e2) = e1 × σp2(e2)

Inductive Step: e1 → e1 ⊕ t

σp2((e1 ⊕ t)× e2) = (e1 ⊕ t)× σp2(e2)

⇔ σp2(e1 × e2)⊕ σp2 (t×e2) = (e1 × σp2(e2))⊕ (t×σp2(e2))

By inductive hypothesis we know that σp2(e1 × e2) = e1 × σp2(e2). Thus, we need to

show that σp2(t×e2) = t×σp2(e2).

Helper Proof

σp2 (t×e2) = t×σp2(e2)

with F(p2) ⊂ A(e2).
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Proof by Induction over the length of sequence e2

Base Case: e2 = ǫ

σp2(t×e2) = ǫ = t×σp2(e2)

Inductive Hypothesis: σp2(t×e2) = t×σp2(e2)

Inductive Step: e2 → e2 ⊕ s

σp2(t×(e2 ⊕ s)) = t×σp2((e2 ⊕ s))

⇔ σp2(t×e2)⊕ σp2(t ◦ s) = (t×σp2(e2))⊕ (t ◦ σp2(s))

By inductive hyposthesis we know σp2(t×e2) = t×σp2(e2). Hence, we need to show

that σp2 (t ◦ s) = t ◦ σp2 (s)

case 1: p2(s) = true, then:

σp2 (t ◦ s) = t ◦ s

= t ◦ σp2 (s)

case 2: p2(s) = false, then:

σp2 (t ◦ s) = ǫ

= t ◦ σp2 (s)

This poofs the helper proof.

As a result Eqv. 2.14 holds, when the result of predicate p2 does not depend on the

position of α(e2) within the sequence computed by e2. I.e. it may not be a positional

predicate.

A.1.15. Proof of Equivalence 2.15

σp2(e1 1p e2) = e1 1p σp2(e2)

This requires F(p2) ⊂ A(e2) and neither predicate depends on the position of tuples in

e2.

lhs = σp2 (e1 1p e2)

= σp2 (σp(e1 × e2))

(2.6)
= σp(σp2 (e1 × e2))

(2.14)
= σp(e1 × σp2(e2))

= e1 1p σp2(e2)

= rhs

A.1.16. Proof of Equivalence 2.16

ΠA(ΠB(e1)) = ΠA(e1)

if B ⊂ A
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Proof by Induction over the length of sequence e1

Base Case: e1 = ǫ

ΠA(ΠB(e1)) = ǫ = ΠA(e1)

Inductive Hypothesis: ΠA(ΠB(e1)) = ΠA(e1)

Inductive Step: e1 → e1 ⊕ t

ΠA(ΠB(e1 ⊕ t)) = ΠA(e1 ⊕ t)

⇔ ΠA(ΠB(e1))⊕ α(ΠB(t)|A) = ΠA(e1)⊕ α(t)|A

By inductive hypothesis we know that ΠA(ΠB(e1)) = ΠA(e1). Hence, it remains to be

shown that α(ΠB(t)|A) = α(t)|A.

lhs = α(ΠB(t)|A)

= α((α(t)|B)|A)

= α(t)|A

= rhs

A.1.17. Proof of Equivalence 2.17

ΥA(e2):e2
(e1) = e1 1−→e2

Proof by Induction over the length of sequence e1

Base Case: e1 = ǫ

ΥA(e2):e2
(e1) = ǫ = e1 1−→e2

Inductive Hypothesis: ΥA(e2):e2
(e1) = e1 1−→e2 for |e1| ≥ 0.

Inductive Step: e1 → e1 ⊕ t

ΥA(e2):e2
(e1 ⊕ t) = (e1 ⊕ t)1−→e2

⇔ µA(e2):â(χâ:e2(e1 ⊕ t)) = (e1 ⊕ t)1−→e2

⇔ µA(e2):â(χâ:e2(e1))⊕ µA(e2):â(t ◦ [â : e2(t)]) = (e1 1−→e2)⊕ (t1−→e2)

⇔ ΥA(e2):e2
(e1)⊕ µA(e2):â(t ◦ [â : e2(t)]) = (e1 1−→e2)⊕ (t1−→e2)

By inductive hypothesis we know that ΥA(e2):e2
(e1) = e1 1−→e2. Hence, it remains to be

shown that µA(e2):â(t ◦ [â : e2(t)]) = t1−→e2.
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lhs = µA(e2):â(t ◦ [â : e2(t)])

= t× (ΠA(e2):A(e2)(e2(t)))

= t×e2(t)

= t1−→e2

= rhs

In the third step marked, we can throw away the sequence-valued attribute â because it

is only used temporarily inside the Υ operator.

A.1.18. Proof of Equivalence 2.18

e1 1−→e2 = e1 × e2

The proof is a trivial consequence of the requirement that F(e2) ∩ A(e1) = ∅, i.e. the

result of evaluating e2 does not dependent on e1.

Proof by Induction over the length of sequence e1

Base Case: e1 = ǫ

e1 1−→e2 = ǫ = e1 × e2

Inductive Hypothesis: e1 1−→e2 = e1 × e2 for |e1| ≥ 0.

Inductive Step: e1 → e1 ⊕ t

lhs = (e1 ⊕ t)1−→e2

= (e1 1−→e2)⊕ (t×e2(t))

= (e1 1−→e2)⊕ (t×e2)

IH
= (e1 × e2)⊕ (t×e2)

= (e1 ⊕ t)× e2

= rhs

In the third step we exploit the fact that the e2 can be evaluated independent of e1.

A.1.19. Proof of Equivalence 2.19

e1Γg;A1θA2;fe2 = ∪̂ i(e1iΓg;A1θA2;fe2)

with Aj ⊂ A(ej)

Note that it suffices to show that this equivalence holds for two partitions where the first

partition contains exactly one element, i.e. we will use partitions α(e1) and τ(e1). The case

for arbitrary numbers of partitions and partition sizes follows directly from Eqv. 2.4.

Proof by Induction over the length of sequence e1
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Base Case:

|e1| = 0 : e1Γg;A1θA2;fe2 = ǫ = ∪̂ i(e1iΓg;A1θA2;fe2)

|e1| = 1 : We define e1 := t ∪̂ ǫ, then

rhs = (t Γg;A1θA2;fe2) ∪̂ (ǫ Γg;A1θA2;fe2)

= (t Γg;A1θA2;fe2) ∪̂ ǫ

= t Γg;A1θA2;fe2

= lhs

Inductive Hypothesis: e1Γg;A1θA2;fe2 = (α(e1)Γg;A1θA2;fe2) ∪̂ (τ(e1)Γg;A1θA2;fe2),
|e1| > 0

Inductive Step: e1 → e1 ⊕ t
Note that in the following steps it suffices to write α(e1) instead of α(e1 ⊕ t) because

sequence e1 is not empty (|e1| > 0) and only the first izem of the sequence is retrieved.

Hence α(e1) = α(e1 ⊕ t) holds.

(e1 ⊕ t)Γg;A1θA2;fe2 = (α(e1)Γg;A1θA2;fe2) ∪̂ (τ(e1 ⊕ t)Γg;A1θA2;fe2)

⇔ (e1 ⊕ t)Γg;A1θA2;fe2 = (α(e1)Γg;A1θA2;fe2) ∪̂ (τ(e1 ⊕ t)Γg;A1θA2;fe2)

⇔ (e1Γg;A1θA2;fe2)⊕ (t ◦ [g : G(t)]) = (α(e1)Γg;A1θA2;fe2) ∪̂ ((τ(e1)Γg;A1θA2;fe2)⊕ (t ◦ [g : G(t)]))

⇔ (e1Γg;A1θA2;fe2)⊕ (t ◦ [g : G(t)]) = (α(e1)Γg;A1θA2;fe2) ∪̂ ((τ(e1)Γg;A1θA2;fe2)⊕ (t ◦ [g : G(t)]))

In these steps G(t) := f(σt|A1θA2
(e2)) as used in the definition of the binary grouping

operator.

By inductive hypothesis we know that e1Γg;A1θA2;fe2 = (α(e1)Γg;A1θA2;fe2) ∪̂ (τ(e1)Γg;A1θA2;fe2).
Since the remaining expression is obviously equal, we have proven the equivalence.

A.1.20. Proof of Equivalence 2.19

e1Γg;A1θA2;fe2 = ∪̂ i(e1iΓg;A1θA2;fe2)

with Aj ⊂ A(ej)
Note that it suffices to show that this equivalence holds for two partitions where the first

partition contains exactly one element, i.e. we will use partitions α(e1) and τ(e1). The case

for arbitrary numbers of partitions and partition sizes follows directly from Eqv. 2.4.

Proof by Induction over the length of sequence e1

Base Case:

|e1| = 0 : e1Γg;A1θA2;fe2 = ǫ = ∪̂ i(e1iΓg;A1θA2;fe2)

|e1| = 1 : We define e1 := t ∪̂ ǫ, then

rhs = (t Γg;A1θA2;fe2) ∪̂ (ǫ Γg;A1θA2;fe2)

= (t Γg;A1θA2;fe2) ∪̂ ǫ

= t Γg;A1θA2;fe2

= lhs

Inductive Hypothesis: e1Γg;A1θA2;fe2 = (α(e1)Γg;A1θA2;fe2) ∪̂ (τ(e1)Γg;A1θA2;fe2),
|e1| > 0
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Inductive Step: e1 → e1 ⊕ t
Note that in the following steps it suffices to write α(e1) instead of α(e1 ⊕ t) because

sequence e1 is not empty (|e1| > 0) and only the first izem of the sequence is retrieved.

Hence α(e1) = α(e1 ⊕ t) holds.

(e1 ⊕ t)Γg;A1θA2;fe2 = (α(e1)Γg;A1θA2;fe2) ∪̂ (τ(e1 ⊕ t)Γg;A1θA2;fe2)

⇔ (e1 ⊕ t)Γg;A1θA2;fe2 = (α(e1)Γg;A1θA2;fe2) ∪̂ (τ(e1 ⊕ t)Γg;A1θA2;fe2)

⇔ (e1Γg;A1θA2;fe2)⊕ (t ◦ [g : G(t)]) = (α(e1)Γg;A1θA2;fe2) ∪̂ ((τ(e1)Γg;A1θA2;fe2)⊕ (t ◦ [g : G(t)]))

⇔ (e1Γg;A1θA2;fe2)⊕ (t ◦ [g : G(t)]) = (α(e1)Γg;A1θA2;fe2) ∪̂ ((τ(e1)Γg;A1θA2;fe2)⊕ (t ◦ [g : G(t)]))

In these steps G(t) := f(σt|A1θA2
(e2)) as used in the definition of the binary grouping

operator.

By inductive hypothesis we know that e1Γg;A1θA2;fe2 = (α(e1)Γg;A1θA2;fe2) ∪̂ (τ(e1)Γg;A1θA2;fe2).
Since the remaining expression is obviously equal, we have proven the equivalence.

A.1.21. Proof of Equivalence 2.20

(e1Γg1;A1θ1A2;f1e2)Γg2;A1θ2A3;f2e3 = (e1Γg2;A1θ2A3;f2e3)Γg1;A1θ1A2;f1e2

with F(fi) ⊂ A(e1) ∪ A(ei+1), A1i ⊂ A(e1), and Aj ⊂ A(ej), g1 6∈ A(e1) ∪
A(e2), g2 6∈ A(e1) ∪ A(e3).

Proof by Induction over the length of sequence e1

Base Case: e1 = ǫ:

lhs = ǫ = rhs

Inductive Hypothesis: (e1Γg1;A1θ1A2;f1e2)Γg2;A1θ2A3;f2e3 = (e1Γg2;A1θ2A3;f2e3)Γg1;A1θ1A2;f1e2,

|e1| > 0

Inductive Step: e1 → e1 ⊕ t

((e1 ⊕ t)Γg1;A1θ1A2;f1e2)Γg2;A1θ2A3;f2e3 = ((e1 ⊕ t)Γg2;A1θ2A3;f2e3)Γg1;A1θ1A2;f1e2

⇔ ((e1Γg1;A1θ1A2;f1e2)⊕ (tΓg1;A1θ1A2;f1e2))Γg2;A1θ2A3;f2e3

= ((e1Γg2;A1θ2A3;f2e3)⊕ (tΓg1;A1θ2A3;f2e3))Γg2;A1θ1A2;f1e2

⇔ ((e1Γg1;A1θ1A2;f1e2)Γg2;A1θ2A3;f2e3)⊕ ((tΓg1;A1θ1A2;f1e2)Γg2;A1θ2A3;f2e3)

= ((e1Γg2;A1θ2A3;f2e3)Γg1;A1θ1A2;f1e2)⊕ ((tΓg2;A1θ2A3;f2e3)Γg1;A1θ1A2;f1e2)

By inductive hypothesis we know that

(e1Γg1;A1θ1A2;f1e2)Γg2;A1θ2A3;f2e3 = (e1Γg2;A1θ2A3;f2e3)Γg1;A1θ1A2;f1e2. Hence, it re-

mains to be shown that (tΓg1;A1θ1A2;f1e2)Γg2;A1θ2A3;f2e3 = (tΓg2;A1θ2A3;f2e3)Γg1;A1θ1A2;f1e2:

lhs = (tΓg1;A1θ1A2;f1e2)Γg2;A1θ2A3;f2e3

= (t ◦ [g1 : G1(t)])Γg2 ;A1θ2A3;f2e3

= ((t ◦ [g1 : G1(t)]) ◦ [g2 : G2(t)])

= ((t ◦ [g2 : G2(t)]) ◦ [g1 : G1(t)])

= (t ◦ [g2 : G2(t)])Γg1 ;A1θ1A2;f1e2

= (tΓg2;A1θ2A3;f2e3)Γg1;A1θ1A2;f1e2

= rhs

where G1(t) := f1(σt|A1
θA2(e2)) and G2(t) := f2(σt|A1

θA3(e3)).
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A.1.22. Proof of Equivalence 2.21

e1Γg;A1=A2;fe2 = ΠA2
(e1 �g:f(ǫ)

A1=A2
(Γg;=A2;f (e2)))

if Ai ⊆ A(ei), A1 ∩A2 = ∅, and g 6∈ A(e1) ∪A(e2).

Case 1: e1 = ǫ

lhs = ǫ = rhs

Case 2: e1 6= ǫ

Let ti be the i-th tuple in e1 and

h(e2) = Γg;=A2;f (e2)

= ΠA2:A′
2
(ΠD

A′
2:A2

(ΠA2(e2))Γg;A′
2=A2;fe2).

e2 is projected on A2 with a duplicate elimination, so each value of A2 appears only

once in h(e2). Let t′j be the j-th tuple in ΠD
A′

2:A2
(ΠA2(e2)). The j-th tuple in h(e2)

then is

ΠA2:A′
2
(t′j ◦ [g : f(σtj |A′

2
=A2

(e2))])

= ΠA2:A′
2
(t′j ◦ [g : f(σA′

2=A2
(e2))(t

′
j)]).

Each tuple ti in e1 joins with at most one tuple in h(e2) with join predicate A1 = A2.

If no join partner is found in h(e2), then the current tuple of e1 is padded with

appropriate values. For each tuple ti in e1 we have the corresponding tuple at the

i-th position after the outer join.

Case 2(a): ¬∃x ∈ e2 : ti.A1 = x.A2

(⇒ ti �A1=A2 h(e2) = ǫ)

For lhs we have

ti ◦ [g : f(σti|A1
=A2(e2))]

= ti ◦ [g : f(ǫ)].

For the right hand side (rhs) we get

ΠA2
(ti ◦ ⊥A2 ◦ [g : f(ǫ)])

= ti ◦ [g : f(ǫ)].

Case 2(b): ∃x ∈ e2 : ti.A1 = x.A2

(⇒ ti �A1=A2 h(e2) 6= ǫ)

For the left hand side (lhs) we have

ti ◦ [g : f(σti|A1
=A2(e2))].

We now turn to rhs. Let t′′k be the tuple from h(e2) for which t′′k .A2 = ti.A1

(all other tuples in h(e2) are irrelevant for the join). Therefore, rhs is equal to
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ΠA2
(ti �A1=A2 h(e2))

= ΠA2
(ti ◦ t′′k)

= ΠA2
(ti ◦ΠA2:A′

2
(t′k ◦ [g : f(σ|t′k|A′

2
=A2

(e2))])).

As ti.A1 = t′′k .A2 = t′k.A′
2 and we project away A′

2 (after renaming it to A2),

we get

ti ◦ [g : f(σti|A1
=A2(e2))].

A.2. Unnesting Equivalences

For completeness, we present the proofs of our unnesting equivalences. These proofs were

done by Sven Helmer and have already appeared in [MHM06].

For the following proofs let lhs denote the left hand side and rhs the right hand side of

an equivalence.

A.2.1. Proof of Equivalence 4.1

σ∃x∈(e2):p(e1) = Π
tidi1

A(e1)(σp(ΥA(e2):e2
(tidi1(e1))))

if Ai ⊆ A(ei), F(e2) ∩A(e1) 6= ∅,
Proof by Induction: over the length of the sequence e1

Base Case: e1 = ǫ:

lhs = rhs = ǫ

Inductive Hypothesis:

σ∃x∈(e2):p(e1) = Π
tidi1

A(e1)(σp(ΥA(e2):e2
(tidi1(e1))))

Inductive Step: e1 → e1 ⊕ t

σ∃x∈(e2):p(e1 ⊕ t) =

Π
tidi1

A(e1)(σp(ΥA(e2):e2
(tidi1(e1 ⊕ t))))

⇔ σ∃x∈(e2):p(e1)⊕ σ∃x∈(e2):p(t) =

Π
tidi1

A(e1)(σp(ΥA(e2):e2
(tidi1(e1)))) ⊕

Π
tidi1

A(e1)(σp(ΥA(e2):e2
(tidi1(t ◦ [i1 : max(Πtid(e1)) + 1]))))

As we know that σ∃x∈(e2):p(e1) = Π
tidi1

A(e1)(σp(ΥA(e2):e2
(tidi1(e1)))),

we have to prove that

σ∃x∈(e2(t)):p(t) = Π
tidi1

A(e1)(σp(ΥA(e2):e2(t)(tidi1(t ◦ [i1 : max(Πtid(e1)) + 1]))))

Case 1: ∃x ∈ e2(t) : (p)(t ◦ x)
For the lhs, this means that t will pass the selection operator, so

σ∃x∈(e2(t)):p(t) = t

For the rhs this means that σp(ΥA(e2):e2(t)(tidi1(t◦[i1 : max(Πtid(e1))+1])))
will contain all tuples in ΥA(e2):e2(t)(tidi1(t ◦ [i1 : max(Πtid(e1)) + 1])) for

which p holds, among them the tuple (t ◦ [i1 : max(Πtid(e1)) + 1]) ◦ x. As

all tuples have the same attribute values for A(e1), including i1, the projection

operator will reduce this to a single tuple, t.
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Case 2: 6 ∃x ∈ e2(t) : (p)(t ◦ x)
For the lhs, this means that σ∃x∈(e2(t)):p(t) = ǫ

For the rhs, σp(ΥA(e2):e2(t)(tidi1(t◦ [i1 : max(Πtid(e1))+1]))) will be empty,

therefore rhs=ǫ.

A.2.2. Proof of Equivalence 4.2

σ∃x∈(e2):p(e1) = Πtid
A(e1)(σp(tid(e1)× e2))

if Ai ⊆ A(ei), F(e2) ∩A(e1) = ∅,
Proof by Induction: over the length of the sequence e1

Base Case: e1 = ǫ:

lhs = rhs = ǫ

Inductive Hypothesis:

σ∃x∈(e2):p(e1) = Πtid
A(e1)(σp(tid(e1)× e2))

Inductive Step: e1 → e1 ⊕ t

σ∃x∈(e2):p(e1 ⊕ t) =

Πtid
A(e1)(σp(tid(e1 ⊕ t)× e2))

⇔ σ∃x∈(e2):p(e1)⊕ σ∃x∈(e2):p(t) =

Πtid
A(e1)(σp(tid(e1)× e2))⊕Πtid

A(e1)(σp((t ◦ [tid : max(Πtid(e1)) + 1])× e2))

As we know that σ∃x∈(e2):p(e1) = Πtid
A(e1)(σp(tid(e1)× e2)), we have to prove that

σ∃x∈(e2):p(t) = Πtid
A(e1)(σp((t ◦ [tid : max(Πtid(e1)) + 1])× e2))

Case 1: ∃x ∈ e2 : (p)(t ◦ x)
For the lhs, this means that t will pass the selection operator, so

σ∃x∈(e2):p(t) = t

For the rhs this means that σp((t◦ [tid : max(Πtid(e1))+1])×e2) will contain

all tuples in (t ◦ [tid : max(Πtid(e1)) + 1]) × e2 for which p holds, among

them the tuple (t ◦ [tid : max(Πtid(e1)) + 1]) ◦ x. As all tuples have the same

attribute values for A(e1), including tid, the projection operator will reduce

this to a single tuple, t.

Case 2: 6 ∃x ∈ e2 : (p)(t ◦ x)
For the lhs, this means that σ∃x∈(e2):p(t) = ǫ.

For the rhs, σp((t ◦ [tid : max(Πtid(e1)) + 1])× e2) will be empty, therefore

rhs=ǫ.

A.2.3. Proof of Equivalence 4.3

σ∃x∈(σA1=A2(e2)):p(e1) = e1 �A1=A2∧p e2

if Ai ⊆ A(ei), F(e2) ∩A(e1) = ∅.
Proof by Induction: over the length of the sequence e1

Base Case: e1 = ǫ:

lhs = rhs = ǫ

Inductive Hypothesis:
σ∃x∈(σA1=A2(e2)):p(e1) = e1 �A1=A2∧p e2
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Inductive Step: e1 → e1 ⊕ t

σ∃x∈(σA1=A2(e2)):p(e1 ⊕ t) =

(e1 ⊕ t) �A1=A2∧p e2

⇔ σ∃x∈(σA1=A2(e2)):p(e1)⊕ σ∃x∈(σA1=A2(e2)):p(t) =

e1 �A1=A2∧p e2 ⊕ t �A1=A2∧p e2

As we know that σ∃x∈(σA1=A2(e2)):p(e1) = e1 �A1=A2∧p e2, we have to prove that

σ∃x∈(σA1=A2(e2)):p(t) = t �A1=A2∧p e2.

Case 1: ∃x ∈ e2 : (A1 = A2 ∧ p)(t ◦ x)
First of all, we show that ∃x ∈ e2 : (A1 = A2 ∧ p)(t ◦ x) ⇔ ∃x ∈
(σA1=A2(e2))(t) : p.

“⇒”:

Let y be a tuple from e2 for which (A1 = A2 ∧ p)(t ◦ y) holds.

⇒ y ∈ (σA1=A2(e2))(t), because t ◦ y satisfies A1 = A2.

⇒ ∃x ∈ (σA1=A2(e2))(t) : p, as y also satisfies p.

“⇐”:
Let y be a tuple from (σA1=A2(e2))(t) for which p holds.

⇒ y ∈ e2

⇒ ∃x ∈ e2 : (A1 = A2 ∧ p)(t ◦ x), because y satisfies t.A1 = y.A2 and

y satisfies p.

For lhs this means that σ∃x∈(σA1=A2(e2)):p(t) = t.
For rhs we get t �A1=A2∧p e2 = t = lhs.

Case 2: 6 ∃x ∈ e2 : (A1 = A2 ∧ p)(t ◦ x) (which is equivalent to 6 ∃x ∈
(σA1=A2(e2))(t) : p, as already shown above)

So for lhs we get σ∃x∈(σA1=A2(e2)):p(t) = ǫ.

For rhs t �A1=A2∧p e2 = ǫ = lhs.

A.2.4. Proof of Equivalence 4.4

σ∃x∈(σA1θA2
(e2)):p(e1) = σA1θaggrA2 (σp(e2))(e1)

Proof by Induction: over the length of the sequence e1

Base Case: e1 = ǫ:

lhs = rhs = ǫ

Inductive Hypothesis:

σ∃x∈(σA1θA2
(e2)):p(e1) = σA1θaggrA2 (σp(e2))(e1)

Inductive Step: e1 → e1 ⊕ t

σ∃x∈(σA1θA2
(e2)):p(e1 ⊕ t) = σA1θaggrA2 (σp(e2))(e1 ⊕ t)

⇔ σ∃x∈(σA1θA2
(e2)):p(e1)⊕ σ∃x∈(σA1θA2

(e2)):p(t) =

σA1θaggrA2 (σp(e2))(e1)⊕ σA1θaggrA2 (σp(e2))(t)

As we know that σ∃x∈(σA1θA2
(e2)):p(e1) = σA1θaggrA2 (σp(e2))(e1), we have to prove

that σ∃x∈(σA1θA2
(e2)):p(t) = σA1θaggrA2 (σp(e2))(t)
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Case 1: aggr = min, θ ∈ {>,≥}
We have to look at a special case first, namely that there is no tuple in e2 for

which p holds. In that case we compare A1 with an undefined value on the rhs.

This can be solved in different ways, e.g. setting the result of the min-operater

on an empty sequence to NULL (and assuming that a comparison with a NULL

value always returns false) or setting it to∞.

Case 1(a): θ =’>’

We show that ∃x ∈ e2 : (A1 > A2 ∧ p)(t ◦ x)⇔ t.A1 > minA2(σp(e2))

“⇒”:

∃x ∈ e2 : (A1 > A2 ∧ p)(t ◦ x)
⇒ t.A1 > x.A2

Let y ∈ e2 : p ∧ y.A2 = minA2(e2)
⇒ x.A2 ≥ y.A2

⇒ t.A1 > y.A2

⇒ t.A1 > minA2(e2)

“⇐”:
t.A1 > minA2(σp(e2))
Let y = minA2(σp(e2))
⇒ (A1 > A2 ∧ p)(t ◦ y) is true

⇒ ∃x ∈ e2 : (A1 > A2 ∧ p)(t ◦ x)

Case 1(b): θ =’≥’

Can be shown analogously to Case 1(b).

Case 2: aggr = max, θ ∈ {<,≤}
Can be shown similarly to Case 1. However, the result of the max-operater on

an empty sequence has to be set to NULL or to −∞.

A.2.5. Proof of Equivalence 4.5

σ∃x∈(σA1θA2
(e2)):p(e1) = e1 �A1=A3 (ΠA3:A1(e1 1A1θA2∧p e2))

if Ai ⊆ A(ei), F(e2) ∩A(e1) = ∅.
Proof by Induction: over the length of the sequence e1

Base Case: e1 = ǫ:

lhs = rhs = ǫ

Inductive Hypothesis:

σ∃x∈(σA1θA2
(e2)):p(e1) = e1 �A1=A3 (ΠA3:A1(e1 1A1θA2∧p e2))

Inductive Step: e1 → e1 ⊕ t

σ∃x∈(σA1θA2
(e2)):p(e1 ⊕ t) =

(e1 ⊕ t)�A1=A3 (ΠA3:A1((e1 ⊕ t) 1A1θA2∧p e2))

⇔ σ∃x∈(σA1θA2
(e2)):p(e1)⊕ σ∃x∈(σA1θA2

(e2)):p(t) =

e1 �A1=A3 (ΠA3:A1((e1 ⊕ t) 1A1θA2∧p e2))⊕
t �A1=A3 (ΠA3:A1((e1 ⊕ t) 1A1θA2∧p e2))

For the rhs we now distinguish between two different cases:

Case 1: ∃y ∈ e1 : t.A1 = y.A1

For (e1⊕ t) 1A1θA2∧p e2 this means that either both y and t find a join partner

in e2 or none of them finds one. So we could just replace (e1⊕ t) with e1. This

has no influence on the result of the semijoin with e1.
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Case 2: 6 ∃y ∈ e1 : t.A1 = y.A1

If t does not find a join partner in e2, it has no influence on the semijoin with

e1. If t finds a join partner in e2, this has no influence on the semijoin either, as

the value t.A1 is not present in e1. Again, we could just replace (e1 ⊕ t) with

e1.

So the rhs is equal to:

e1�A1=A3 (ΠA3:A1(e1 1A1θA2∧p e2))⊕t�A1=A3 (ΠA3:A1((e1⊕t) 1A1θA2∧p e2))

As we know that σ∃x∈(σA1θA2
(e2)):p(e1) = e1 �A1=A3 (ΠA3:A1(e1 1A1θA2∧p e2))

we have to prove that σ∃x∈(σA1θA2
(e2)):p(t) = t�A1=A3 (ΠA3:A1((e1⊕t) 1A1θA2∧p

e2)) = t �A1=A3 (ΠA3:A1((e1 1A1θA2∧p e2)⊕ (t 1A1θA2∧p e2)))

Case 1: ∃x ∈ e2 : (A1θA2 ∧ p)(t ◦ x)
Obviously, ∃x ∈ e2 : (A1θA2 ∧ p)(t ◦ x)⇔ ∃x ∈ (σA1θA2(e2))(t) : p. (Proof

is done analogously to the one in (4.3).)

For the lhs we get t.

For the rhs this means that t will find a join partner in e2 and so t will find a

join partner in the semijoin. So rhs = t.

Case 2: 6 ∃x ∈ e2 : (A1θA2 ∧ p)(t ◦ x)
For the lhs we get ǫ.

For the rhs this means that t will not find a join partner in e2. Even if there is

a tuple y ∈ e1 that finds a join partner in e2, y.A1 has to have a different value

than t.A1 (otherwise, t would also have found a join partner in e2). This tuple

y will not be a join partner for t in the semijoin. So rhs = ǫ.

A.2.6. Proof of Equivalence 4.6

ΠD(e1)�A1=A2 (σp(e2)) = σc>0(E)

with E = ΠA1:A2(Γc;=A2;count◦σp(e2)). The equivalence holds if Ai ⊆ A(ei), F(e2) ∩
A(e1) = ∅, and ΠD(e1) = ΠD

A1:A2
(ΠA2(e2)).

Case 1: e2 = ǫ (⇒ e1 = ǫ)
lhs = rhs = ǫ

Case 2: e2 6= ǫ (⇒ e1 6= ǫ)
Let ti be the i-th tuple in ΠD

A1:A2
(ΠA2(e2)) (again, we assume that ΠD is not order-

preserving, but deterministic and idempotent). The order of the result of lhs is deter-

mined by the order of the tuples in ΠD
A1:A2

(ΠA2(e2)) (it is the concatenation of the

results of processing t1 to tn). The result of processing the i-th tuple on lhs is

ti �A1=A2 (σp(e2)).

According to the definition of the semijoin operator:

= ti if ∃x ∈ σp(e2) : (A1 = A2)(ti ◦ x)

= ǫ if 6 ∃x ∈ σp(e2) : (A1 = A2)(ti ◦ x)

Replacing the unary Γ with the binary one on rhs, we get

σc>0(ΠA1:A2(Γc;=A2;count◦σp(e2)))

= σc>0(ΠA1:A2(ΠA2:A′
2
(ΠD

A′
2:A2

(ΠA2(e2))

Γc;A′
2=A2;count◦σp

e2)))

= σc>0(Π
D
A1:A2

(ΠA2(e2))

Γc;A1=A2;count◦σpe2).
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The order of the result of rhs is determined as in lhs, so the result of processing tuple

ti on rhs is

= σc>0(ti ◦
[c : count(σp(σti|A1=A2

(e2)))])

= σc>0(ti ◦
[c : count(σA1=A2(σp(e2)))(ti)]).

According to the definition of σ this is

= ti if count(σA1=A2(σp(e2)))(ti) > 0

= ǫ if count(σA1=A2(σp(e2)))(ti) = 0.

We have to show that

∃x ∈ σp(e2) : (A1 = A2)(ti ◦ x)

⇔ count(σA1=A2(σp(e2)))(ti) > 0.

“⇒”:

∃x ∈ σp(e2) : (A1 = A2)(ti ◦ x)

⇒ x ∈ e2

We know that x satisfies the predicate p, so

x ∈ σp(e2).

Was also know that ti.A1 = x.A2, so

x ∈ σA1=A2(σp(e2))(ti).

and, therefore, the count is larger than 0.

“⇐”:

count(σA1=A2(σp(e2)))(ti) > 0

⇒ ∃x ∈ σA1=A2(σp(e2)) : true(ti)

⇒ ∃x ∈ σp(e2) : (A1 = A2)(ti ◦ x)

A.2.7. Proof of Equivalence 4.13

σ∀x∈(e2):p(e1) = e1 ⊲A1=A3 ΠA3:A1(σ¬p(ΥA(e2):e2
(e1)))

if Ai ⊆ A(ei), F(e2) ∩A(e1) 6= ∅,
Proof by Induction: over the length of the sequence e1

Base Case: e1 = ǫ:

lhs = rhs = ǫ

Inductive Hypothesis:
σ∀x∈(e2):p(e1) = e1 ⊲A1=A3 ΠA3:A1(σ¬p(ΥA(e2):e2

(e1)))
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Inductive Step: e1 → e1 ⊕ t

σ∀x∈(e2):p(e1 ⊕ t) = (e1 ⊕ t) ⊲A1=A3 ΠA3:A1(σ¬p(ΥA(e2):e2
(e1 ⊕ t)))

⇔ σ∀x∈(e2):p(e1)⊕ σ∀x∈(e2):p(t) =

e1 ⊲A1=A3 ΠA3:A1(σ¬p(ΥA(e2):e2
(e1 ⊕ t)))⊕

t ⊲A1=A3 ΠA3:A1(σ¬p(ΥA(e2):e2
(e1 ⊕ t)))

⇔ σ∀x∈(e2):p(e1)⊕ σ∀x∈(e2):p(t) =

e1 ⊲A1=A3 (ΠA3:A1(σ¬p(ΥA(e2):e2
(e1)))⊕ (ΠA3:A1(σ¬p(ΥA(e2):e2

(t))))) ⊕
t ⊲A1=A3 (ΠA3:A1(σ¬p(ΥA(e2):e2

(e1)))⊕ (ΠA3:A1(σ¬p(ΥA(e2):e2
(t)))))

Case 1: ∃y ∈ e1 : y.A1 = t.A1

For the antijoin involving e1 this means that ΠA3:A1(σ¬p(ΥA(e2):e2
(t))) has

no influence on the result (there is already a tuple with the same values in

ΠA3:A1(σ¬p(ΥA(e2):e2
(e1))) and duplicates have no influence on the antijoin).

Case 2: 6 ∃y ∈ e1 : y.A1 = t.A1

In this case, ΠA3:A1(σ¬p(ΥA(e2):e2
(t))) has no influence either, as the value

for t.A1 does not appear in e1 and is irrelevant for the antijoin.

There are analogous arguments for the antijoin involving t, i.e. we can rewrite the

above equivalence to:

σ∀x∈(e2):p(e1)⊕ σ∀x∈(e2):p(t) =

e1 ⊲A1=A3 (ΠA3:A1(σ¬p(ΥA(e2):e2
(e1))))⊕ t ⊲A1=A3 (ΠA3:A1(σ¬p(ΥA(e2):e2

(t))))

As we know that σ∀x∈(e2):p(e1) = e1 ⊲A1=A3 (ΠA3:A1(σ¬p(ΥA(e2):e2
(e1)))), we

have to prove that σ∀x∈(e2):p(t) = t ⊲A1=A3 (ΠA3:A1(σ¬p(ΥA(e2):e2
(t)))).

Case 1: ∀x ∈ e2(t) : p
For the lhs, this means that t will pass the selection operator, so

σ∀x∈(e2):p(t) = t

On the rhs all tuples in ΥA(e2):e2
(t) will be filtered out by σ¬p, which means

that t will not find a join partner. As we have an antijoin, rhs = t.

Case 2: 6 ∀x ∈ e2(t) : p
For the lhs, this means that σ∃x∈(e2):p(t) = ǫ.

For the rhs, this means that ∃x ∈ e2(t) : ¬p. This tuple will pass the filter

σ¬p, which means that t will find a join partner. So the result of the antijoin is

empty: rhs = ǫ.

A.2.8. Proof of Equivalence 4.14

σ∀x∈(e2):p(e1) = e1 ⊲¬p e2

if Ai ⊆ A(ei), F(e2) ∩A(e1) = ∅.
Proof by Induction: over the length of the sequence e1

Base Case: e1 = ǫ:

lhs = rhs = ǫ

Inductive Hypothesis:
σ∀x∈(e2):p(e1) = e1 ⊲¬p e2
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Inductive Step: e1 → e1 ⊕ t

σ∀x∈(e2):p(e1 ⊕ t) = (e1 ⊕ t) ⊲¬p e2

⇔ σ∀x∈(e2):p(e1)⊕ σ∀x∈(e2):p(t) =

e1 ⊲¬p e2 ⊕ t ⊲¬p e2

As we know that σ∀x∈(e2):p(e1) = e1 ⊲¬p e2, we have to prove that σ∀x∈(e2):p(t) =
t ⊲¬p e2

Case 1: ∃x ∈ e2 : (¬p)(t ◦ x)
For the lhs, this means that t will not pass the selection operator, so

σ∃x∈(e2):p(t) = ǫ

For the rhs, this means that t finds a join partner in e2 and consequently will be

filtered out by the antijoin (definition of antijoin), so rhs = ǫ

Case 2: 6 ∃x ∈ e2 : (¬p)(t ◦ x)
For the lhs, this means that σ∃x∈(e2):p(t) = t.

For the rhs, t will not find a join partner and, therefore, will stay (due to the

antijoin), so rhs = t.

A.2.9. Proof of Equivalence 4.15

σ∀x∈(σA1=A2(e2)):p(e1) = e1 ⊲A1=A2∧¬p e2

if Ai ⊆ A(ei), F(e2) ∩A(e1) = ∅.
Proof by Induction: over the length of the sequence e1

Base Case: e1 = ǫ:

lhs = rhs = ǫ

Inductive Hypothesis:

σ∀x∈(σA1=A2(e2)):p(e1) = e1 ⊲A1=A2∧¬p e2

Inductive Step: e1 → e1 ⊕ t

σ∀x∈(σA1=A2(e2)):p(e1 ⊕ t) =

(e1 ⊕ t) ⊲A1=A2∧¬p e2

⇔ σ∀x∈(σA1=A2(e2)):p(e1)⊕ σ∀x∈(σA1=A2(e2)):p(t) =

e1 ⊲A1=A2∧¬p e2 ⊕ t ⊲A1=A2∧¬p e2

As we know that σ∀x∈(σA1=A2 (e2)):p(e1) = e1 ⊲A1=A2∧¬p e2, we have to prove that

σ∀x∈(σA1=A2(e2)):p(t) = t ⊲A1=A2∧¬p e2.

Case 1: 6 ∃x ∈ e2 : (A1 = A2 ∧ ¬p)(t ◦ x)
First of all, we show that 6 ∃x ∈ e2 : (A1 = A2 ∧ ¬p)(t ◦ x) ⇔ ∀x ∈
(σA1=A2(e2))(t) : p.

Case 1(a): e2 = ǫ
lhs = rhs = true

Case 1(b): e2 6= ǫ

“⇒”:

Let y be an arbitrary tuple from Z = {z|z ∈ e2 ∧ z.A2 6= t.A1}.
⇒ y 6∈ (σA1=A2(e2))(t)
⇒ Such a tuple y cannot be the cause for ∀x ∈ (σA1=A2(e2))(t) : p =
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false.

So, let y′ be an arbitrary tuple from Z ′ = e2 \ Z (i.e. Z ′ = {z|z ∈
e2 ∧ z.A2 = t.A1}).
⇒ y′ satisfies p, because there is no tuple in e2 for which (A1 = A2)
and ¬p holds.

⇒No tuple y′ can be the cause for ∀x ∈ (σA1=A2(e2))(t) : p = false.

As Z ∪ Z ′ = e2, there can be no tuple in e2 which causes ∀x ∈
(σA1=A2(e2))(t) : p to be false.

⇒ ∀x ∈ (σA1=A2(e2))(t) : p holds.

“⇐”:

Let us assume that ∃x ∈ e2 : (A1 = A2 ∧ ¬p)(t ◦ x).
⇒ x ∈ (σA1=A2(e2))(t)
As x satisfies ¬p, it cannot satisfy p.

⇒ 6 ∀x ∈ (σA1=A2(e2))(t) : p, which contradicts our prerequisite.

Therefore, 6 ∃x ∈ e2 : (A1 = A2 ∧ ¬p)(t ◦ x).

For lhs this means that σ∀x∈(σA1=A2(e2)):p(t) = t.
For rhs we get t ⊲A1=A2∧¬p e2 = t = lhs.

Case 2: ∃x ∈ e2 : (A1 = A2 ∧ ¬p)(t ◦ x) (which is equivalent to 6 ∀x ∈
(σA1=A2(e2))(t) : p. as already shown above)

So for lhs we get σ∀x∈(σA1=A2(e2)):p(t) = ǫ.

For rhs t ⊲A1=A2∧¬p e2 = ǫ = lhs.

A.2.10. Proof of Equivalence 4.16

σ∀x∈(σA1θA2
(e2)):p(e1) = σA1¬θaggrA2(σ¬p(e2))(e1)

Proof by Induction: over the length of the sequence e1

Base Case: e1 = ǫ:

lhs = rhs = ǫ

Inductive Hypothesis:

σ∀x∈(σA1θA2
(e2))p(e1) = σA1¬θaggrA2(σ¬p(e2))(e1)

Inductive Step: e1 → e1 ⊕ t

σ∀x∈(σA1θA2
(e2)):p(e1 ⊕ t) = σA1¬θaggrA2 (σ¬p(e2))(e1 ⊕ t)

⇔ σ∀x∈(σA1θA2
(e2)):p(e1)⊕ σ∀x∈(σA1θA2

(e2)):p(t) =

σA1¬θaggrA2 (σ¬p(e2))(e1)⊕ σA1¬θaggrA2(σ¬p(e2))(t)

As we know that σ∀x∈(σA1θA2
(e2)):p(e1) = σA1¬θaggrA2(σ¬p(e2))(e1), we have to

prove that σ∀x∈(σA1θA2
(e2)):p(t) = σA1¬θaggrA2 (σ¬p(e2))(t)

Case 1: aggr = min, θ ∈ {>,≥}
We have to look at a special case first, namely that there is no tuple in e2 for

which ¬p holds. In that case we compare A1 with an undefined value on the

rhs. This can be solved in different ways, e.g. always returning true when

comparing A1 with an undefined value or setting min to −∞. Note that this is

different to Equivalence 4.4.
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Case 1(a): θ =’>’

We show that ∀x ∈ (σA1>A2(e2))(t) : p⇔ t.A1 ≤ minA2(σ¬p(e2))

“⇒”:

Assume that t.A1 > minA2(σ¬p(e2))
⇒ ∃x ∈ e2 : (A1 > A2 ∧ ¬p)(t ◦ x)
⇒ x ∈ (σA1>A2(e2))(t)
As x satisfies ¬p, it cannot satisfy p
⇒ 6 ∀x ∈ (σA1>A2(e2))(t) : p, which is a contradiction

⇒ t.A1 ≤ minA2(e2)

“⇐”:
t.A1 ≤ minA2(σp(e2))
⇒ 6 ∃x ∈ (σA1>A2(e2))(t) : p
⇒ ∀x ∈ (σA1>A2(e2))(t) : p

Case 1(b): θ =’≥’

Can be shown analogously to Case 1(b).

Case 2: aggr = max, θ ∈ {<,≤}
Can be shown similarly to Case 1. However, the result of the max-operater

on an empty sequence has to be set to ∞ (or the comparison with A1 always

returns true).

A.2.11. Proof of Equivalence 4.17

σ∀x∈(σA1θA2
(e2)):p(e1) = e1 ⊲A1=A3 (ΠA3:A1(e1 1A1θA2∧¬p e2))

if Ai ⊆ A(ei), F(e2) ∩A(e1) = ∅.
Proof by Induction: over the length of the sequence e1

Base Case: e1 = ǫ:

lhs = rhs = ǫ

Inductive Hypothesis:

σ∀x∈(σA1θA2
(e2)):p(e1) = e1 ⊲A1=A3 (ΠA3:A1(e1 1A1θA2∧¬p e2))

Inductive Step: e1 → e1 ⊕ t

σ∀x∈(σA1θA2
(e2)):p(e1 ⊕ t) =

(e1 ⊕ t) ⊲A1=A3 (ΠA3:A1((e1 ⊕ t) 1A1θA2∧¬p e2))

⇔ σ∀x∈(σA1θA2
(e2)):p(e1)⊕ σ∀x∈(σA1θA2

(e2)):p(t) =

e1 ⊲A1=A3 (ΠA3:A1((e1 ⊕ t) 1A1θA2∧¬p e2))⊕
t ⊲A1=A3 (ΠA3:A1((e1 ⊕ t) 1A1θA2∧¬p e2))

For the rhs we now distinguish between two different cases:

Case 1: ∃y ∈ e1 : t.A1 = y.A1

For (e1⊕t) 1A1θA2∧¬p e2 this means that either both y and t find a join partner

in e2 or none of them finds one. So we can replace (e1 ⊕ t) with e1. This has

no influence on the result of the antijoin with e1.

Case 2: 6 ∃y ∈ e1 : t.A1 = y.A1

If t does not find a join partner in e2, it has no influence on the antijoin with

e1 (there is no tuple in e1 to join with anyway). If t finds a join partner in e2,

this also has no influence on the antijoin, as the value t.A1 is not present in e1.

Again, we can replace (e1 ⊕ t) with e1.
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So the rhs is equal to:

e1 ⊲A1=A3 (ΠA3:A1(e1 1A1θA2∧¬p e2))⊕
t ⊲A1=A3 (ΠA3:A1((e1 ⊕ t) 1A1θA2∧¬p e2))

As we know that

σ∀x∈(σA1θA2
(e2)):p(e1) = e1 ⊲A1=A3 (ΠA3:A1(e1 1A1θA2∧¬p e2)),

we have to prove that

σ∀x∈(σA1θA2
(e2)):p(t) = e1 ⊲A1=A3 (ΠA3:A1(e1 1A1θA2∧¬p e2))⊕

t ⊲A1=A3 (ΠA3:A1((e1 ⊕ t) 1A1θA2∧¬p e2)).

Case 1: 6 ∃x ∈ e2 : (A1θA2 ∧ ¬p)(t ◦ x)
Obviously, 6 ∃x ∈ e2 : (A1θA2 ∧ ¬p)(t ◦ x) ⇔ ∀x ∈ (σA1θA2(e2))(t) : p.

(Proof is done analogously to the one in (4.15).)

For the lhs we get t.

For the rhs this means that t will not find a join partner in e2. Even if there is

a tuple y ∈ e1 that finds a join partner in e2, y.A1 has to have a different value

than t.A1 (otherwise, t would also have found a join partner in e2). This tuple

y will not be a join partner for t in the antijoin. So rhs = t.

Case 2: ∃x ∈ e2 : (A1θA2 ∧ ¬p)(t ◦ x)
For the lhs we get ǫ.

For the rhs this means that t will find a join partner in e2, which will lead to an

unsatisfied predicate for the antijoin. So rhs = ǫ.

A.2.12. Proof of Equivalence 4.18

ΠD(e1) ⊲A1=A2 (σp(e2)) = σc=0(E)

with E = ΠA1:A2(Γc;=A2;count◦σp(e2)). The equivalence holds if Ai ⊆ A(ei), F(e2) ∩
A(e1) = ∅, and ΠD(e1) = ΠD

A1:A2
(ΠA2(e2)).

Case 1: e2 = ǫ (⇒ e1 = ǫ)
lhs = rhs = ǫ

Case 2: e2 6= ǫ (⇒ e1 6= ǫ)
Let ti be the i-th tuple in ΠD

A1:A2
(ΠA2(e2)) (with a non-order-preserving, determin-

istic, idempotent ΠD). The order of the result of lhs is determined by the order of

the tuples in ΠD
A1:A2

(ΠA2(e2)). Processing the i-th tuple on lhs results in

ti ⊲A1=A2 (σp(e2)).

In accordance to the definition of the semijoin operator:

= ti if 6 ∃x ∈ σp(e2) : (A1 = A2)(ti ◦ x)

= ǫ if ∃x ∈ σp(e2) : (A1 = A2)(ti ◦ x)

Replacing the unary Γ with the binary one on rhs, we get

σc=0(ΠA1:A2(Γc;=A2;count◦σpe2))

= σc=0(ΠA1:A2(ΠA2:A′
2
(ΠD

A′
2:A2

(ΠA2(e2)))

Γc;A′
2=A2;count◦σp

(e2)))

= σc=0(Π
D
A1:A2

(ΠA2(e2))

Γc;A1=A2;count◦σp(e2)).
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The order of the result of rhs is determined as in lhs, so the result of processing tuple

ti on rhs is

= σc=0(ti ◦
[c : count(σp(σti|A1=A2

(e2)))])

= σc=0(ti ◦
[c : count(σA1=A2(σp(e2)))(ti)]).

According to the definition of σ, this is

= ti if count(σA1=A2(σp(e2)))(ti) = 0

= ǫ if count(σA1=A2(σp(e2)))(ti) > 0.

We have to show that

6 ∃x ∈ σp(e2) : (A1 = A2)(ti ◦ x)

⇔ count(σA1=A2(σp(e2)))(ti) = 0,

which has already been done for the previous equivalence.

A.2.13. Proof of Equivalence 4.23

χg:f(σp(e2))(e1) = e1Γg;A(e1)=A′
1;f

(ΠA′
1:A(e1)(σp(ΥA(e2):e2

(ΠD
A(e1)(e1)))))

if g 6∈ A(e1), F(e2) ∩A(e1) 6= ∅.

Case 1: e1 = ǫ
From the definition of χ and binary Γ immediately follows: lhs = ǫ and rhs = ǫ.

Case 2: e1 6= ǫ
Let ti be the i-th tuple of e1. As the χ operator traverses e1 tuple by tuple (while

preserving the order), the i-th tuple of lhs is equal to

ti ◦ [g : f(σp(e2))(ti)].

The binary Γ operator also traverses e1 tuplewise, so the i-th tuple of rhs is equal to

ti ◦ [g : f(σti|A(e1)=A′
1
(ΠA′

1:A(e1)(σp(ΥA(e2):e2
(ΠD

A(e1)(e1))))))]

= ti ◦ [g : f(σp(ΥA(e2):e2
(σti|A(e1)=A′

1
(ΠA′

1:A(e1)(Π
D
A(e1)(e1))))))]

= ti ◦ [g : f(σp(ΥA(e2):e2
(ti)))]

As (e2)(ti) contains the same tuples from e2 as ΥA(e2):e2
(ti), lhs is equal to rhs.

A.2.14. Proof of Equivalence 4.24

χg:f(σp(e2))(e1) = ΠA3
(e1 �g:f(ǫ)

A(e1)=A3
(ΠA3:A(e1)(Γg;=A(e1);f (

σp(ΥA(e2):e2
(ΠD

A(e1)(e1)))))))

if g 6∈ A(e1), F(e2) ∩A(e1) 6= ∅.

Case 1: e1 = ǫ
from the definition of χ, Π and� immediately follows: lhs = ǫ and rhs = ǫ.
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Case 2: e1 6= ǫ
Let ti be the i-th tuple in e1; e1 imposes its order upon lhs and rhs, as χ and �
are order-preserving (for the outer join the expression e1 left of the � is relevant).

Transforming the unary Γ into a binary Γ, we get:

ΠA3
(e1 �g:f(ǫ)

A(e1)=A3
(ΠA3:A(e1)(ΠA(e1):A′

1
(h(e1, e2)))))

with h(e1, e2) equal to

h2(e1,e2)
︷ ︸︸ ︷

ΠD
A′

1:A(e1)(ΠA(e1)(σp(ΥA(e2):e2
(ΠD

A(e1)(e1))))) Γg;A′
1=A(e1);f (

σp(ΥA(e2):e2
(ΠD

A(e1)(e1))))

h2(e1, e2) being the first operand of the binary Γ

Case 2(a): 6 ∃x ∈ σp(e2(ti)):
For the tuple ti this means that no tuples are produced in the (dependent) ex-

pression e2 that satisfy the predicate p.

For lhs we have

ti ◦ [g : f(σp(e2))(ti)]

= ti ◦ [g : f(ǫ)].

For the right hand side (rhs) we get

ti ◦ [g : f(ǫ)]

because σp(ΥA(e2):e2
(ΠD

A(e1)(ti))) does not produce a tuple. Consequently,

h2(e1, e2) in the binary Γ the group for ti.A(e1) is empty, resulting in h(e1, e2) =
ǫ for these attribute values. So in the outer join ti does not find a join partner,

resulting in ti ◦ [g : f(ǫ)].

Case 2(b): ∃x ∈ σ(e2(ti)):
For the lhs we get

ti ◦ [g : f(σp(e2))(ti)]

For the rhs this means that we are looking for the join partner of ti in the outer

join expression. Let tj be the tuple in h2(e1, e2) with tj .A
′
1 = ti.A(e1). As

∃x ∈ σ(e2(ti)), in the binary grouping operator there will be one group for the

attribute values of ti.A(e1), namely:

tj ◦ [g : f(σtj |A′
1=A(e1)(σp(ΥA(e2):e2

(ΠD
A(e1)(e1)))))]

= tj ◦ [g : f(σp(ΥA(e2):e2
(σtj |A′

1=A(e1)(Π
D
A(e1)(e1)))))]

As tj .A
′
1 = ti.A(e1), this is equal to

tj ◦ [g : f(σp(ΥA(e2):e2
(ti)))]

Also, this is the only join partner for ti in the outer join expression (all other

tuples in the result of h(e1, e2) have other values for A′
1). After joining this to

ti, renaming, and projecting away unnecessary attributes we get:

ti ◦ [g : f(σp(ΥA(e2):e2
(ti)))]

As (e2)(ti) contains the same tuples from e2 as Υx:e2(ti), lhs is equal to rhs.
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A.2.15. Proof of Equivalence 4.25

χg:f(σp(e2))(e1) = e1Γg;A(e1)=A′
1;f

(ΠA′
1:A(e1)(σp(Π

D
A(e1)(e1)× e2)))

if g 6∈ A(e1), F(e2) ∩A(e1) = ∅.

Case 1: e1 = ǫ
From the definition of χ and binary Γ immediately follows: lhs = ǫ and rhs = ǫ.

Case 2: e1 6= ǫ
Let ti be the i-th tuple of e1. As the χ operator traverses e1 tuple by tuple (while

preserving the order), the i-th tuple of lhs is equal to

ti ◦ [g : f(σp(e2))(ti)].

The binary Γ operator also traverses e1 tuplewise, so the i-th tuple of rhs is equal to

ti ◦ [g : f(σti|A(e1)=A′
1
(ΠA′

1:A(e1)(σp(Π
D
A(e1)(e1)× e2))))]

= ti ◦ [g : f(σp(σti|A(e1)=A′
1
(ΠA′

1:A(e1)(Π
D
A(e1)(e1)))× e2))]

= ti ◦ [g : f(σp(ti × e2))]

As (e2)(ti) contains the same tuples from e2 as ti × e2 (e2 can be evaluated inde-

pendently of e1), lhs is equal to rhs.

A.2.16. Proof of Equivalence 4.26

χg:f(σp(e2))(e1) = ΠA3
(e1 �g:f(ǫ)

A(e1)=A3
(ΠA3:A(e1)(

Γg;=A(e1);f (σp(Π
D
A(e1)(e1)× e2)))))

if g 6∈ A(e1), F(e2) ∩A(e1) = ∅.

Case 1: e1 = ǫ
From the definition of χ, Π and� immediately follows: lhs = ǫ and rhs = ǫ.

Case 2: e1 6= ǫ
Let ti be the i-th tuple in e1; e1 imposes its order upon lhs and rhs, as χ and �
are order-preserving (for the outer join the expression e1 left of the � is relevant).

Transforming the unary Γ into a binary Γ, we get:

ΠA3
(e1 �g:f(ǫ)

A(e1)=A3
(ΠA3:A(e1)(ΠA(e1):A′

1
(h(e1, e2)))))

with h(e1, e2) equal to

h2(e1,e2)
︷ ︸︸ ︷

ΠD
A′

1:A(e1)(ΠA(e1)(σp(Π
D
A(e1)(e1)× e2))) Γg;A′

1=A(e1);f (σp(Π
D
A(e1)(e1)× e2))

h2(e1, e2) being the first operand of the binary Γ

Case 2(a): 6 ∃x ∈ σp(e2(ti)):
For the tuple ti this means that no tuples are produced in the (independent)

expression e2 that satisfy the predicate p.

For lhs we have

ti ◦ [g : f(σp(e2))(ti)]

= ti ◦ [g : f(ǫ)].
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For the right hand side (rhs) we get

ti ◦ [g : f(ǫ)]

because σp(Π
D
A(e1)(ti)×e2) does not produce a tuple. Consequently, h2(e1, e2)

in the binary Γ the group for ti.A(e1) is empty, resulting in h(e1, e2) = ǫ
for these attribute values. So in the outer join ti does not find a join partner,

resulting in ti ◦ [g : f(ǫ)].

Case 2(b): ∃x ∈ σ(e2(ti)):
For the lhs we get

ti ◦ [g : f(σp(e2))(ti)]

For the rhs this means that we are looking for the join partner of ti in the outer

join expression. Let tj be the tuple in h2(e1, e2) with tj .A
′
1 = ti.A(e1). As

∃x ∈ σ(e2(ti)), in the binary grouping operator there will be one group for the

attribute values of ti.A(e1), namely:

tj ◦ [g : f(σtj |A′
1=A(e1)(σp(Π

D
A(e1)(e1)× e2)))]

= tj ◦ [g : f(σp(σtj |A′
1=A(e1)(Π

D
A(e1)(e1)× e2)))]

As tj .A
′
1 = ti.A(e1), this is equal to

tj ◦ [g : f(σp(ti × e2))]

Also, this is the only join partner for ti in the outer join expression (all other

tuples in the result of h(e1, e2) have other values for A′
1). After joining this to

ti, renaming, and projecting away unnecessary attributes we get:

ti ◦ [g : f(σp(ti)× e2)]

As (e2)(ti) contains the same tuples from e2 as ti × e2, lhs is equal to rhs.

A.2.17. Proof of Equivalence 4.27

χg:f(σA1θA2
(e2))(e1) = e1Γg;A1θA2;fe2

if Ai ⊆ A(ei), g 6∈ A1 ∪A2, F(e2) ∩ A(e1) = ∅, and A1 ∩A2 = ∅.

Case 1: e1 = ǫ
From the definition of χ and binary Γ immediately follows: lhs = ǫ and rhs = ǫ.

Case 2: e1 6= ǫ
Let ti be the i-th tuple of e1, ti = α(τ(τ(. . . τ

︸ ︷︷ ︸

i−1

(e1) . . . ))).

As the χ operator traverses e1 tuple by tuple, the i-th tuple of lhs is equal to

ti ◦ [g : f(σA1θA2(e2))(ti)].

The binary Γ operator also traverses e1 tuplewise, so the i-th tuple of rhs is equal to

ti ◦ [g : f(σti|A1θA2
(e2))]

= ti ◦ [g : f(σA1θA2(e2))(ti)]

as A1 ⊆ A(e1).
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A.2.18. Proof of Equivalence 4.28

χg:f(σA1θA2
(e2))(e1) = ΠA3

(e1 �g:f(ǫ)
A1=A3

(ΠA3:A1(Γg;=A1;f(ΠD
A1

(e1) 1A1θA2 e2))))

if Ai ⊆ A(ei), F(e2) ∩A(e1) = ∅, A1 ∩A2 = ∅, and g 6∈ A1 ∪A2.

Case 1: e1 = ǫ
from the definition of χ, Π and� immediately follows: lhs = ǫ and rhs = ǫ.

Case 2: e1 6= ǫ
Let ti be the i-th tuple in e1; e1 imposes its order upon lhs and rhs, as χ and � are

order-preserving. Transforming the unary Γ into a binary Γ, we get:

ΠA3
(e1 �g:f(ǫ)

A1=A3
(ΠA3:A1(ΠA1:A′

1
(h(e1, e2)))))

with h(e1, e2) equal to

h2(e1,e2)
︷ ︸︸ ︷

ΠD
A′

1:A1
(ΠA1(Π

D
A1

(e1) 1A1θA2 e2)) Γg;A′
1=A1;f (ΠD

A1
(e1) 1A1θA2 e2)

h2(e1, e2) being the first operand of the binary Γ

Case 2(a): 6 ∃x ∈ e2 : ti.A1θx.A2 holds

(⇒ ti �A1=A3 ΠA3:A1(ΠA1:A′
1
(h(e1, e2))) = ǫ, as both operands of Γ are

empty)

For lhs we have

ti ◦ [g : f(σA1θA2(e2))(ti)]

= ti ◦ [g : f(ǫ)].

For the right hand side (rhs) we get

ti ◦ [g : f(ǫ)]

because the join in h2(e1, e2) does not produce a tuple with a value of ti.A1 for

attribute A1. So the group for ti.A1 is empty and in the outer join ti is joined

with an empty tuple.

Case 2(b): ∃x ∈ e2 : ti.A1θx.A2 holds

For the left hand side (lhs) we have

ti ◦ [g : f(σA1θA2(e2))(ti)]

For the right hand side (rhs), we now have to show that ti finds a join partner

in h(e1, e2) and that it is equal to [f(σA1θA2(e2))(ti)].

Let tj be the tuple in ΠD
A1

(e1) with tj .A1 = ti.A1. As we know that ∃x ∈ e2

for which ti.A1θx.A2 holds, tj finds at least one join partner in e2. We join

tj with all corresponding tuples and then project with duplicate elimination to

A1, so h2(e1, e2) contains one tuple t′j with t′j .A1 = ti.A1 (which is relevant

for the join with ti). Let us now look at the group generated by the grouping

operator for t′j . The tuple for the value ti.A1 in h(e1, e2) is equal to

t′j ◦ [g : f(σt′j |A
′
1=A1

(ΠD
A1

(e1) 1A1θA2 e2))]

= t′j ◦ [g : f(σA′
1=A1

(ΠD
A1

(e1) 1A1θA2 e2))(t
′
j)]
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Let tk be the tuple in ΠD
A1

(e1) for which tk.A1 = t′j .A
′
1 = ti.A1 (all other

tuples will be filtered out by σA′
1=A1

). tk will be joined to the following tuples

in e2:

tk 1A1θA2 e2

For the concatenation with t′j this means

t′j ◦ [g : f(σA′
1=A1

(tk 1A1θA2 (e2)))(t
′
j)]

As f only references attributes of e2 and A1 (or A′
1, respectively), t′j .A

′
1 =

tk.A1, and the join is order-preserving, this is equal to

t′j ◦ [g : f(σA′
1θA2

(e2))(t
′
j)]

Finally, after renaming (ΠA3:A1 and ΠA1:A′
1
) this is joined to ti, and unneces-

sary attributes are eliminated by projection (ΠA3
). So we get:

ti ◦ [g : f(σA1θA2(e2))(ti)]

A.2.19. Proof of Equivalence 4.29

χg:f(σA1=A2(e2))(e1) = ΠA2
(e1 �g:f(ǫ)

A1=A2
(Γg;=A2;f (e2)))

if Ai ⊆ A(ei), F(e2) ∩A(e1) = ∅, A1 ∩A2 = ∅, and g 6∈ A1 ∪A2.

Case 1: e1 = ǫ
from the definition of χ, Π and� immediately follows: lhs = ǫ and rhs = ǫ.

Case 2: e1 6= ǫ
Let ti be the i-th tuple in e1 and

h(e2) = Γg;=A2;f (e2)

= ΠA2:A′
2
(ΠD

A′
2:A2

(ΠA2(e2))Γg;A′
2=A2;fe2).

e2 is projected on A2 with a duplicate elimination, so each value of A2 appears only

once in h(e2). Let t′j be the j-th tuple in ΠD
A′

2:A2
(ΠA2(e2)). The j-th tuple in h(e2)

then is

ΠA2:A′
2
(t′j ◦ [g : f(σtj |A′

2
=A2

(e2))])

= ΠA2:A′
2
(t′j ◦ [g : f(σA′

2=A2
(e2))(t

′
j)]).

Each tuple ti in e1 joins with at most one tuple in h(e2) with join predicate A1 = A2.

If no join partner is found in h(e2), then an empty tuple is concatenated to ti via the

outer join operator. For each tuple ti in e1 we have the corresponding tuple at the

i-th position after the outer join.

Case 2(a): 6 ∃x ∈ e2 : ti.A1 = x.A2

(⇒ ti �A1=A2 h(e2) = ǫ)

For lhs we have

ti ◦ [g : f(σA1=A2(e2))(ti)]

= ti ◦ [g : f(ǫ)].

For the right hand side (rhs) we get

ΠA2
(ti ◦ ⊥A2 ◦ [g : f(ǫ)])

= ti ◦ [g : f(ǫ)].
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Case 2(b): ∃x ∈ e2 : ti.A1 = x.A2

(⇒ ti �A1=A2 h(e2) 6= ǫ)

For the left hand side (lhs) we have

ti ◦ [g : f(σA1=A2(e2))(ti)].

We now turn to rhs. Let t′′k be the tuple from h(e2) for which t′′k .A2 = ti.A1

(all other tuples in h(e2) are irrelevant for the join). Therefore, rhs is equal to

ΠA2
(ti �A1=A2 h(e2))

= ΠA2
(ti ◦ t′′k)

= ΠA2
(ti ◦ΠA2:A′

2
(t′k ◦ [g : f(σA′

2=A2
(e2))(t

′
k)])).

As ti.A1 = t′′k .A2 = t′k.A′
2 and we project away A′

2 (after renaming it to A2),

we get

ti ◦ [g : f(σA1=A2(e2))(ti)].

A.2.20. Proof of Equivalence 4.30

χg:f(σA1=A2(e2))(e1) = ΠA1:A2(Γg;=A2;f(e2))

if Ai ⊆ A(ei), F(e2) ∩ A(e1) = ∅, A1 ∩ A2 = ∅, g 6∈ A(e1) ∪ A(e2), and e1 =
ΠD

A1:A2
(ΠA2(e2)) (this implies that A1 = A(e1))

Case 1: e2 = ǫ (⇒ e1 = ǫ)
From the definition of χ and unary Γ immediately follows: lhs = ǫ and rhs = ǫ.

Case 2: e2 6= ǫ (⇒ e1 6= ǫ)
The ΠD in ΠD

A1:A2
(ΠA2(e2)) does not necessarily preserve the original order in e2,

but we assume that it is a deterministic operator, i.e., for the same input we always

get the same output order. Let ti be the i-th tuple in ΠD
A1:A2

(ΠA2(e2)).
So, the i-th tuple in lhs is

ti ◦ [g : f(σA1=A2(e2))(ti)].

Replacing the unary Γ in rhs with the binary Γ, we get

ΠA1:A2(ΠA2:A′
2
(ΠD

A′
2:A2

(ΠA2(e2))Γg;A′
2=A2;fe2))

= ΠA1:A′
2
(ΠD

A′
2:A2

(ΠA2(e2))Γg;A′
2=A2;fe2)

= e1Γg;A1=A2;fe2.

This is a special case of equivalence (4.27) for θ equal to =, so we know that the i-th
tuple in rhs is

ti ◦ [g : f(σti|A1=A2
(e2))]

= ti ◦ [g : f(σA1=A2(e2))(ti)].

A.3. Experimental Setup

In this section we provide details on the experimental setup used in our experiments.
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Use case XMP:

<!DOCTYPE bib [

<!ELEMENT bib (book∗)>

<!ELEMENT book ( title , ( author+ |
editor +),

publisher ,

price )>

<!ATTLIST book year CDATA

#REQUIRED>

<!ELEMENT author ( last , first )>

<!ELEMENT editor ( last , first ,

affiliation )>

<!ELEMENT title (#PCDATA)>

<!ELEMENT last (#PCDATA)>

<!ELEMENT first (#PCDATA)>

<!ELEMENT affiliation (#PCDATA)>

<!ELEMENT publisher (#PCDATA)>

<!ELEMENT price (#PCDATA)>

]>

<!DOCTYPE reviews [

<!ELEMENT reviews (entry∗)>

<!ELEMENT entry ( title , price ,

review)>

<!ELEMENT title (#PCDATA)>

<!ELEMENT price (#PCDATA)>

<!ELEMENT review (#PCDATA)>

]>

<!DOCTYPE prices [

<!ELEMENT prices (book∗)>

<!ELEMENT book (title, source ,

price )>

<!ELEMENT title (#PCDATA)>

<!ELEMENT source (#PCDATA)>

<!ELEMENT price (#PCDATA)>

]>

Use case R:

<!DOCTYPE users [

<!ELEMENT users ( usertuple ∗)>

<!ELEMENT usertuple (userid, name,

rating ?)>

<!ELEMENT userid (#PCDATA)>

<!ELEMENT name (#PCDATA)>

<!ELEMENT rating (#PCDATA)>

]>

<!DOCTYPE items [

<!ELEMENT items ( itemtuple ∗)>

<!ELEMENT itemtuple (itemno,

description ,

offeredby ,

startdate ,

enddate ,

reserveprice )>

<!ELEMENT itemno (#PCDATA)>

<!ELEMENT description (#PCDATA)>

<!ELEMENT offered by (#PCDATA)>

<!ELEMENT startdate (#PCDATA)>

<!ELEMENT enddate (#PCDATA)>

<!ELEMENT reserveprice (#PCDATA)>

]>

<!DOCTYPE bids [

<!ELEMENT bids ( bidtuple ∗)>

<!ELEMENT bidtuple (userid, itemno,

bid , biddate )>

<!ELEMENT userid (#PCDATA)>

<!ELEMENT itemno (#PCDATA)>

<!ELEMENT bid (#PCDATA)>

<!ELEMENT biddate (#PCDATA)>

]>

Figure A.1.: DTDs for the experimental data

A.3.1. System Setup

The system runs on an Intel Pentium 4 CPU 2.40GHz PC with 1 GB RAM and IBM 18.3GB

Ultra 160 SCSI hard disk drive with 4MB buffer. Natix was compiled with GCC 3.3.5 and

optimization level O3. All queries were run with warm buffer cache under Linux Kernel

2.6.11. The database buffer was 8 MB large.

A.3.2. Experimental Data

The data sets we used are based on the XQuery Use Cases “XMP” and “R”. “XMP” con-

tains data on books, reviews, prices and so on, while “R” describes an auction site with

users, items, bids, etc.

The XML files were generated by ToXgene1 using the DTD in the XQuery use case

document. We repeat these DTDs in Figure A.1. To assess the scalability of each plan

1available at: http://www.cs.toronto.edu/tox/toxgene/
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Use case XMP Use case R

file bib.xml prices.xml reviews.xml bids.xml items.xml users.xml

100 68.7 KB 10.7 KB 20.8 KB 11.1 KB 21.4 KB 9.0 KB

1000 688 KB 106 KB 203 KB 111 KB 215 KB 89.4 KB

10000 6.90 MB 1.06 MB 2.07 MB 1.13 MB 2.16 MB 903 KB

Figure A.2.: File size of the input documents

alternative we executed the various evaluation plans on different sizes of input documents

as listed in Figure A.2. The number of authors per book varied between 1 and 10. Similarly,

there are between 1 and 10 bids per item. We note the number of elements contained

in the input documents for each measurement and thereby reference to the documents as

summarized in Figure A.2. We did not consider larger documents for evaluation because

for most queries the nested queries did not even finish to evaluate on our largest document

instances within three hours.
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[BBK+06] Alexander Böhm, Matthias Brantner, Carl-Christian Kanne, Norman May,

and Guido Moerkotte. Natix visual interfaces. In Proc. 10. International

Conference on Extending Database Technology, pages 1125–1129, 2006.

[BC90] Gilad Bracha and William Cook. Mixin-based inheritance. In Norman

Meyrowitz, editor, Proceedings of the Conference on Object-Oriented Pro-

gramming: Systems, Languages, and Applications / Proceedings of the Euro-

pean Conference on Object-Oriented Programming, pages 303–311, Ottawa,

Canada, 1990. ACM Press.

[BC04] V. Borkar and M. Carey. Extending XQuery for grouping, duplicate elimina-

tion, and outer joins. In XML 2004, November 2004.

[BCC+04] Kevin S. Beyer, Roberta Cochrane, Latha S. Colby, Fatma Ozcan, and Hamid

Pirahesh. XQuery for analytics: Challenges and requirements. In <XIME-

P/>, pages 3–8, 2004.

[BCC+05] Kevin Beyer, Don Chamberlin, Latha Colby, Fatma Özcan, Hamid Pirahesh,
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versal database. In Böhm et al. [BJH+05], pages 1164–1174.

[NDM+01] Jeffrey F. Naughton, David J. DeWitt, David Maier, Ashraf Aboulnaga,

Jianjun Chen, Leonidas Galanis, Jaewoo Kang, Rajasekar Krishnamurthy,

Qiong Luo, Naveen Prakash, Ravishankar Ramamurthy, Jayavel Shanmuga-

sundaram, Feng Tian, Kristin Tufte, Stratis Viglas, Yuan Wang, Chun Zhang,

Bruce Jackson, Anurag Gupta, and Rushan Chen. The Niagara internet query

system. IEEE Data Eng. Bull., 24(2):27–33, 2001.

[Neu01] Thomas Neumann. Regelbasierte Plangenerierung. Master’s thesis, Univer-

sity of Mannheim, 2001.

[Neu05] Thomas Neumann. Efficient Generation and Execution of DAG-Structured

Query Graphs. PhD thesis, University of Mannheim, 2005.

[NM04] Thomas Neumann and Guido Moerkotte. A combined framework for group-

ing and order optimization. In Nascimento et al. [NÖK+04], pages 960–971.
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