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EQUATIONALLY COMPACT ARTINIAN RINGS

By a Noetherian (Artinian) ring R = <R3;+,-,0,'> we

mean apn associative ring satisfying the ascending (descending)
chain condition on Jleft ideals. An arbitrary ring R is said
to be'%quationaZZy compact 1f every system of ring polynomial.
equations with constants in R is simultaneously solvable in

R provided every finite subset is. (The reader is referred

to [21, [81, [13] and [14] for terminology and relevant

results on equational compactness, and to [4] for unreferenced

‘ring—theofetical results) In this report a characterization
of equationally compact Artinian rings is given - roughly '
speaking, i these are the finite dircct sums of finite rings
and Prifer groups; as consequences it is shown that an
equationalliy compact ring satisfying both chain conditions
is always finite; as 1s any Artinian ring which is a compact
topological ring; further, using a result of S. Warner [117,
we give a necessary and sufficient. condition for an equa-
tionally compact Noetherian ring with identity to be a
compact tbpological ring; a few remarks on the embedding‘of
certain rings into equationally compact rings are made, and
we obtain also here generalizations of known results on
compact topological rings. '

. The material forms a part of the author's Ph.D. thesis.

Preliminary results. We begin by deriving a few useful
tools. Let R be a ring and A an ideal of R ('ideal" always

means two-sided ideal), and let I be a system of equations
with constants in A. If gxo’xi"“’xy"")y<a are the
‘variables occurring in I then the solution set of I in R
is a certain subset S of Ra. If such a system I exists
“such that the projection of S onto the first component is
the ideal A, then we shall say that A <s ezpressible by
" equations. For exampie, if R has an identity and A is
finitely generated as a left ideal, then A is expressible
uati = . e » .
by the equation Xy Xqaqt +Xnan’ where a

1’.0.’an
generate A.
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If x is a varieble and A is an ideal of R, then "x € A"
will denote, quite naturally, the relational predicate A(x)
for the unary relation A on R.

We will make recurrent use of the following observation:

Remark. Let R be an equationally compact ring. Suppose

(A.l iel) is a family of ideals of R, each of which is expressible
by equ tions, and suppose (x I lEI) is a family of wvariables.

Let be a set of equatlons w1th constants in R. _Then the system
of formulas '
| | Q := ¢ U {xi e A iel}

is solvable in R provided it 1s finitely solvable in R.

proof: Let AiAbe expressible by the system DE ie I3 let

(x ) denote the variables appearing in

ey X tge e
Ol’Xll’ >Ty1? Y<ai

T whereby it is assumed that the variables in and x

i " 8
distinet if i#4j or y#§, and that no in occurs in I. Now the
finite solvability of @ implies the finite solvability of the

are

- system of equations

(4| 1eI) U {x; = x ;5 iel} Uz,

v

which is then solvable by the equational compactness of R,
and a solution obviously yields a solution of Q in R. g.e.d.

Proposition 1. Let R be a ring and A an ideal of R such that

A is expressible by equations and R is equationally compact.
Then R/A and A are equationally compact rings.

proof: Suppose g = {@i = 03 iel} is a system'of equations

with constants in R/A and finitely solvable in R/A. ©Now each

ds induces a polynomial in R, say @i, by replacing the constants
by arbitrary representatives in R. If Zss ieI, are variables
not occurring in I, then the system

{og = 243

iel}l VU {Zi e A; 1eT1}

is clearly finitely solvable in R, hence (by the last Remark)
solvable in R, and any solution taken modulo A yields & solution
for ¥ in R/A. Thus R/A is equationally compact, and a similar

argument shows that A is equationally compact.



'appearlng, take x as follows: x(e ) = I e.

Next we derive a useful remark cn matrix rings.

Proposition 2. Let R be a ring with identity, let s# be a nonzero

cardinal and let S = My,u(R) (i.e., S is the ring of linear
transformations‘oh the free R-module F on M generators).

Then S is equationaliy compact if and only if R-is equationally
compaét and s is finite. '

proof: Sufficiencys If I is-a finitely solvable‘systém of
equations with constants in S then by replacing each variable

'x by the variable matrix (Xij] 1€i,jsm), every equation in ¢

reduces in the obvious fashion to a system over R, finitely
solvable in R, hence solvable in R; such a solution yields a
solution for'Z in 8.

Necéssity.' Let I be a set with cardinality M and let {ei;ieI}
be a basis for F. Fix i el. For each ieI define m; o€ S

as follows: ﬂi(ej} = éJle ,for all jel. Let p; be the retrac-

" tion of F onto Re.. Then the system

i) =V{pix = T ieI}

.1s flnltely solvable (for a flnlte bubset J‘=I of 1ndlces

, and x(e.) =0
1o o 1ed i J

for J # i ) However Z forces x to be such that x(e )
: 1eI -

which is impossible unless M is finite. To see that R is

~equationally compact, consider a system I of equations with

constants in R and finitely solvable in R. ~ For reR let e(r)
denote the matrix (a ) where a 4 = r and ajs = O otherwise.
Replace every constant reR appearing in I by e(r) and every
variable x by e(1).x.e(1). Then I is flnltely solvable in S,
hence solvable in S. Taking the upper left hand entries from

a solution in S yields obviously a solution of £ in R. qg.e.d.

If R = <R;+,-,0,:> is a ring. we denote by R" the under-
lying additive abelian group <Rj;+,-,0>.

Proposition 3. Let R be an equationally compact ring and

let D = <D;+,-,0> be the largest divisible subgroup of Rt
Then R:D = D.R = {0}. 1In particular, D is an ideal of R.

Moreover, the ring R/D is equationally compact.
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proof: Let d € D and r ¢ R. Consider the system of equations

r = {(xi - XJ.)Xij = red; i1, e I, 1i#j}

where I is a set with cardinality larger than IRII £ is
finiteiy solvable in R, since for any finite subset of indices
JEI, choose‘ni, ieJ, to be distinet natural numbers, set

¢; = ngr, and'pick dij such that (ni_- nj>dij = d for i#].
“Then clearly (c:.L —ch)dij = r-d for all i,j € J, 1i#j. Thus

L must be solvable in R. However I implies Xy = Xj for som¢
~i#j, because of the cardinality of I, hence r.d = O. An almost

- 1ldentical argument shows that d-r = O.

We recall that an abelian group G is algebraically

compact (in the sense of Kaplansky [61) if
| G = C @l(n(Gp[ p = prime))

where C is divisible and each Gp is a p—primary group complete
in its p-adic topology and containing no nonzero element which
is divisible by all powéré of p. The group R*is equationally
compact and therefore algebraically compact as was shown by

S. Balcerzyk.in [1]; thus in view of the latter condition on
the Gp's the subgroup 0D under discussion equals C and is
expressible by the equations ,

o> nel}.

Thus, R/D is equationally compact by Proposition 1.

X = n.Xx
{O

Proposition 4. Let R be an equationally compact ring such

that RY is a bounded torsion group. Then there exists an
equationally compact ring S with identity such that R is an
ideal in S of finite index.

~ proof: Let n.be a natural number such that.n-R = (0), and

let Zn denote the integers modulo n. Define S = <szn;+,—,o,->
as follows: + is the usual direct sum addition, and”
' (r,1)-(s,k) := (r.s+l.s+k-r,1l-k).

The map r » (r,0) is a ring embedding.of R into S, making
R clearly an ideal of S of finite index.

" Now let I be a system of equations with constants in $;

REEE Y"'°)Y<a be the

variables appearing in I£. Replace each variable XY by (yY,zy),
inducing the system 2, with the obvious interpretation of

finitely solvable in S. Let (xo,x X

--



sol%ability (i.e., yY must be replaced by an element of R and

sz by an element of Zn). We construct by transfinite induction
O
a sequence (n ’nl”"ny"")y<a e Z , such that ZO((Z ny)Y<a)

is finitely solvable ("zy+ny” means that the variable zY is
replaeed by nY). Let B be an ordinal and let nY,.y<B,be already
constructed such that
| ZB ::'ZO((zy+nY)Y<B)
is finitely solvable. (For B = O the construction is triviall)
Suppos% for each mieZn the system ZB(ZB+m).is not finitely
~solvabley i.e., for each m € Zn there exists a finite subset

of L, such that ZB m(zs+m) is not solvable. - But then the
) 1)

ZB,m B

finite system

| UZBmEB
meZ

is clearly not solvable This 1s a contradiction, so there
exists nB!e Z such that Z (z -n ) is finitely solvable, and

the 1nductlon step is complete Thus Z HERD) «ZY Y)Y<d) is

a flnltely solvable system involving only the variables (y )Y<

_Now any ¢ ¢ 21 is equlvalent to a palr of equatlons (@1,®2)

o’

where @1 is an equation with constants in R and involving the
variables (yY)Y< » and &, involves only constants (from Zn)'
Therefore 21 is solvable because R is equationally compact. g.e.d.

Semisimplicity. A ring R is semisimple 1f its Jacobson

radical J(R) is zero. We consider now the impact of this
condition on equationally compact Artinian and Noetherian
'rlngs. '

Reoall that an element r of a ring R is left quasw—'
regular if there exists an element y € R with r + y + y-r = 0,
It is well-known that J(R) is the largestvleft quasi-regular
left ideal in R; that is, r € J(R) if and only if the left
ideal generated by r is lefthuasi—regular. Hence J(R)is

~expressible by the set of equations

{s-xO toZexg ¥ Vs,2 * ys,z'(sfxo + z-xo) = O; seR, zelZ},
! and in view of Proposition 1 we have - -
"Prop051tlon 5. If the ring R is equationally compact, then

so are the rings R/J(R) and J(R).
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Lemma 1. A semisimple Artinian ring R is equationally compact

if and only if it is finite.

proof: Sufficiency. It is perhaps apprqéfiate_ét this point
to remark that an arbitrary universal algebra A = <A;F> which
is a%so a compact topological algebra (i.e., A can be endowed
with

'Struéture) is equationally compact (see [8]1). Indeed, the

a compact Hausdorff topology compatible with the algebraic

solution set of any equation is a closed subset of an
'appro?riate power of A endowed with the Tychonov pfoduct
topol@gy.

As a special case, any finite algebra, hence any finite
ring, is equationally compact.
Necessity. It is easily seen that a finite direct sum of rings
is equationally compact if and only if every summand is. By
Wedderburn's theorem R is a finite direct sum of matrix rings
over-division rings, each of which,therefore, is equationally
compact. By Proposition 2 the respective divisions rings are
"equationally compact. However, equationally compact division
rings are known to be finite (consider, for example, the
system I = {(xi - Xj)yij.: 1; i,jeI, 1#j} for suitably large I).
Thus R is finite. ' ) '

Proposition 6. Let R be an equationally compact semisimple

Noetherian ring with identity. Then R is finite.

In view of the fact that ~equationally compact Noetherian
rings with identity are necessarily linearly compact for the
discrete topology, Proposifion 6 follows from D. Zelinsky's
decomposition of linearly compact semisimple rings [15,Prop.11]
and Lemma 1. For completeness'fsaké we give a proof, which is
in the spirit of an argument of. S. Warner [12, p.55].

Lemma 2. Let R be as above but, in addition, a primitive

ring. Then R is finite (and hence simple Artinian).
o .

proof: By the Jacobson=Chevalley Density Theorem R is a
dense rihg of linear transformations on a vector space V- with
basis, say, {ei; ieI}. For each iel, let

A; = {6 € R; ¢(e;) = Ol
Ai is-g'left ideal, hepce finitely generated, and therefore
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expressible by equatiocns. Let (Vj>ieI e V' be chosen arbi-

trarily. By denseness there exists for each iel ¢i e R

such that ¢i(ei) = V. Thus the system of equations

L= {x = ¢, + zs3 iel} vy {z: e Ay; iel}

is finitely solvable (again by denseness) and hence sol&able\
However I implies that x must map each es to Vs Thus R is

the complete transformation ring, and therefore by Prop. 2.and: |

~Lemma 1 a finite matrix ring over a division ring. g.e.d.

proof of Proposition 6: As is well-known R is a-subdirect

product'ofﬁéﬁfﬁmily of primitive rings {R/Aii iel} where the
Ai's are ideals of R. Since R is Noetherian with identity,
each Ai is expressible by equations, so R/Ai is equationally
compact by Proposition 1 and Noetherian. Hence by Lemma 2
R/Ai is finite, simple and Artinian. Hence the Ai{s are
maximal ideals. Let r‘=(ri + Ai>ieI € H(R/Ai| ieI). The
system ) ' _

L= {x = ry otz iel} v {zi e A iel}
iggfinitely solvable by the Chinese Remainder Theorem, hence
solvable in R. But I imples x = r, so r e R. Hence R is the
- full direct product and so I must'be finite because R is
Noetherian. o - -  g.e.d.

We summarize these results in the following

'Theorem 1. For an equationally compact semisimple ring R
the following are equivalent: A

(i) R is finite.

(ii) R is Artinian.

(iii) R is Noetherian with identity.

Noetherian rings. Although we are not able to characterize

structurally those Noetherian rings with identity which are
equationally compact, Theorem 1 and a cfucial result of
Warher vield a pleasant criterium relating equational compact-
ness and topological compactness in this class of rings. We

paraphrase the relevant result:




Proposition 7 [11,Theorem 21]. Let R be a topological
Noetherian ring with identity. Then R is topologically com-
pact if and only if the topology of R is the radical topo-
logy T, R is complete for that topology and R/J(R) is a
finiti ring.

ow let R be an equationally compact Néetherianfring“'
with identity. By Theorem 1 R/J(R) is finite. Now the
topolo@y T defined by taking the powers of J(R) as a neigh-
bourhoéd base of O is not necessarily Hausdorff. However, _
‘we shall show that the space (R,T) is complete. To see this,

consider a Cauchy sequence (ri) in R. For each

natural number n choose in_suchlt%éi,éﬁé subsequence (ri|izin)
is J(R)"-close. Since R is Noetherian with identity, the
ideal J(Rr‘)n is expressible by equations, so we have the system
of equations

L= {x=r. +

7 s
1 n?
n

which is finitely solvable (if m is the largest index appearing

neN} U {z_ e J(R)"; neN)

in a finite subset, set x = r. and z_ = I for all nsm).
. ' m m n
- Hence I is solvable and obviously:any solution is a limit of
(r.).; . As a matter of fact, T is compact. To see
171=1,2,... :

this we quote the following

Lemma 3. Let R be a ring with identity, A and B two ideals
such that B is finitely generated as a left ideal and both
R/A and R/B are finite. Then R/A-B is finite.

The proof is a straightforward counting of cosets as
giVen in the probf of [10,Lemma 4], where the hypothesized
commutativity is not used.

Now by Lemma 3 and induction, we see that J(R)" has
finite index in R for each n. This means that the family of
cosets F = {r +»J(R)n; reR, nelN} is a subbase of closed sets
for the topology T, and by the-AlexanderW_Subbase Theorem T
is compact if every,Subfamily"of F with the finite intersection
property has a nonempty intersection. The latter is however
clear by equational compactness of R and the fact that each
J(R)n is expressible by equations. In view of Proposition 7
we have proved ' '




Theorem 2. Let R be an equationally compact Noetherian . ring
with identity. Then the radical topology is a complete and
compact topology on R, and R/J(R) 1s finite. Moreover, R is

a compact topological ring if and only if (W(J(R)nf neN) = {0}.

" Remark. By [3], equational and topological compactness
coincide when R is a commutative Noetherian ring with identity.
In general, I do not know of an equationally compact Noetherian

ring with identity which is not topologically compact.

Artinian rings. As an immediate consequence of Theorem 2

we have the following

Corollary. 1. An equationally compact Artinian ring R with

~dldentity 1s finite.

proof: Two well~known results assert that R is Noetherian
and J(R) is nilpotent. Hence J(R)" = (0) for some n, thus
the radical topology is discrete and, by theorem 2, compact,

which forces R to be finite.

Corollary 2 [11, Theorem 2, Corollaryl]. A compact topological

Artinian ring with identity is finite.

The case of arbitrary Artinian rings requires a closer
look.

Lemma I, If R is an equationally compact Artinian ring such
that RY is a bounded torsion group, then R is finite.

proof: By Proposition i there is an equationally compact
ring with identity S, such that R is an ideal of S and S/R
is finite. Thus R is an Artinian S—modulé, as is the finite
S-module S/R, and so S is an Artinian S-module, i.e., S is

~an Artinian ring. But then S is finite by Corollary 1. q.e.d.
~Lemma 5. Let R be an equationally compact torsion-free
~Artinian ring. Then R = (0). -

proof: A torsion-free Artinian ring has, as well-Kknown,
a left identity e and is an algebra over the rationals.
‘But then the system of equations
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{ s o X))V .. = 3 1,5¢e] 1#]
‘ L(xl J'“J)"TLJ e; 1,jel, 1#j}
is finitely solvable in R, hence solvable in R; taking |I| > |R]

forces e = 0, i.e., R = (0).

Recall that the Priifer group Z(p") is the subgroup of
the unit circle in the complex plane consisting of all pn—th

roots|of unity for all natural numbers n and fixed prime p.

Egggggg_é. For an’ Artinian ring R the following are equivalent:
(ﬁ) " R is equationally compact. ' '
(fi) RY = B & P where B ="<B;+,.,0> is a finite group,

P = <P;+,+,0> is a finite direct sum of Priifer

A groups, and R-P = P.R = {OF.

. (iii) R is (algebraic) retract of a compact topological

ring.

proof: (#ii) = (1) holds for arbitrary universal algebras

(see [81). '

(i) = (ii): By a result of F. Szasz [9, Satz 4] every Artinian

ring is the ring direct sum of its torsion ideal T and some |

torsion-free ideal D. But D is then an equationally compact
torsion-free Artinian ring, so must be (0) by Lemma 5. Hence

R =T: Let RY = B ® P be the (gréup) decomposition of R* into

its divisible part P and reduced part B. As a torsion divisible

abelian group P is, as well-known, a direct sum of Priifer |
groups. Now by Propoéition 3 R.P = P-R = {0}. Thus every
subgroup of P is an ideal of R and therefore P is a finite
direct sum, because R is Artinian.

. Now the family F = {n-B @& P; neN} is easily seen to be a
‘downward directed set of ideals of R, hence has a smallest
‘element no-B ® P since R is Artinian. However nO-B ® P is
¢learly divisible, being the meet of F, and so nO-B = (0)
as B is reduced. Thus B is a bounded torsion group. The
quotient R/P is Artinian and, again by Proposition 3, equa-
tionally compact; moreover, (R/P)* = B, ‘Hence B is finite by
Lemma 4, and we are done.

(ii) = (iii): Let R =~ B ¢ Pl@ e B Pn where B is finite

and Pi = Z(p;), i=1,...,n. Each Pi is divisible, hence injec-

tive and therefore retract of every extending abelian group -

e.g., the compaot topological circle group C. Let fi;C -> Pi

-10-




be a retraction. Endowing B with the discrete topology, we
have then a (group) retraction ‘

; £ H > R |
where H is the compact topological group B & (@(C| i=1,..,n))
and f = ldB @ f1@ - @ f

|

jf multiplication is deflned on H by letting every element
of 8¢

butivilty, H clearly becomes a ring. Moreover H is a topological

] i=1,...,n) annihilate H and then extending by distri-

ring under the given topology, because the inverse image under
. the muitiplication map of any subset of H is the‘finite union
of sets of the form A1XA2 where each Aj is a coset of

®(C| i=1,...,n) in H, all of which, however, are closed; thus
multiplication is continuous. By a straightforward calcula-
tion one sees that f is a ring homomorphism, and the proof is

complete.

Remark. It is not possible, in general, to obtain a ring-direct
sum in the decomposition given in condition (ii). Consider,

, ® 7(2"), R-z(2") =
7(2°).R = {0}, and (1,0)-(1,0) 1is defined to be the primitive

square root of unity in 7(2°). Here we have a nonzero divisible

for example, the ring R, where RT = 7

element appearing as a product of two nondivisible elements.

The following improves-Coréllary 2:

Corollary 3. A compact topological Artinian.fing R is finite.

proof: By Theorem 3 we have R+ ~ B @ P @ - ® P where B is
finite and P = Z(pm) Let P be the subgroup of P consisting
of all pk—th roots of unity, and let

R = B @ PX 9.-..9 P¥
1 n

Now R = K}(Rkl k=1,2,%,...), that is, the intersection of the
complements Rﬁ\RK is empty. By the Baire Category Theorem

[7, p.200] at least one of the sets R~RX is not dense in R,
i.e., for some ko the finite subgroup Rko contains a nonempty -
open set; this forces the topology to be discrete and therefore

by compactness R must be finite.

'Corollary 4, An equationally compact ring satisfying both

chain conditions 1s finite.
proof: clear.
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Compactifications. We conclude with a few remarks on the

question of embedding rings into equationally compact ones.
Following the terminology of [14] we define, for a fixed
universal algebra A, a compactification of A to be an algebra
B such that B i1s equationally compact and A is a subalgebra

of B. B 1s a quasi-compactification of A if A is a subalgebra
of B and évery system of equations with constants in A and

finitely solvable_ih A is solvable in B. The classes of

compactifications resp. quasi-compactifications of A are denoted

by Comp(A) resp. c(A). Clearly Comp(A) S c(A). A positive
formula is a formula of the first order predicate calculus
which is built up from polynomial equations (of a fixed alge-
braic type). by application of the logical connectives\j, 3,
A,V in a finite number of steps. We quote the following
result of G.H. Wenzel: ' '

_Proposition 8 [14, Theorems 8.10,12j. Let A be an algebra
and let K be one of Comp(A) or c(A). If K is not empty then

there is an algebra B in K such that B satisfies every positive

formula with constants in A which is satisfiable in A.

Proposition 9. Let R be a ring'and A an infinite division

ring.  If R contains A as a subring, then c(R) = @&. In parti-
cular, an infinite semisimple Artinian ring cannot be quasi-
compactified, and hence not (algebraically) embedded . - into

a compact topological ring. If R is an algebra over A and

R2 # {0}, then c(R) =¢. If D denotes any divisible subgroup
of R and R-D #n{O}, then ¢(R) =¢. 1In particular, if R is a
Subring of a compaét topological ring, then R-D = D*R = {0}.

proof: If c(R) # ¢, then c(R) contains a ring by Prop051t10n 8;
the proofs are then implicit in Proposition 3.

Proposition 10. Let R be an infinite Artinian ring with

identity. Then Comp(R) = ¢. In particular, R cannot be (alge-

vbraically) embedded in a compact tcpological ring.

- proof: R is Noetherian by a well-known result; hence R has
finite length. If n is the (unique!) length of a maximal
chain of left ideals then as is easily checked, the  property



of "maximal length of at most n' is characterized by the

positive formula

¥ o= (in)n-:-'(\'/x

OIS FOPRRR = NS
( \/x T YL Xt Ay X )
1<k<n+? K‘ 17% | k-1"k-1
Thus if Comp(R) # @, there is by Proposition 8 an S e Comp (R)
satisfying ¥, i.e., of finite length. But this cannot be,

since by Corollaryiﬂ S would be finite.

I am indebted to my supervisor, G.H. Wenzel, for his
invaluable advice and assistance, and in particular for

numerous corrections and improvements in the foregoing.
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